Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland Erbendorf, Shallow Refraction Seismic Stümpel, Rabbel, Steuernagel (Kiel)

Problem:

In the close vicinity of the KTB-location Oberpfalz" the near surface distribution of seismic velocities and refractor dephts was

Field equipment and configuration:

The shallow seismic measurements were carried out on 6 crossing profiles (Fig. 1a and 1b);

Geophon spacing : 5 m

Registration : 24 channels, digital : P- and SH-pneumatic hammer : 120 m or 480 m : 2 - 4 spreads

Spread length Coverage

Data and method of interpretation:

Both P- and S-wavefields show a lot of pro-nounced traveltime anomalies. The traveltime anomalies originate either from undulation of the refractor topographie or from lateral velocity variations or from both. shing between these different possibilities would require a detailed mapping of the uppermost velocities. The interpretation is based on the assumption of a two layer medium with smooth velocity variations. It was performed by ray tracing.

Results:

With regard to the crossing points of the profiles a consistent interpretation of the -wave data was obtained by assuming constant velocities (VP= 1850 m/s and 4700 m/s) and a considerable refractor topography. Keeping the latter one constant, the S-wave data are fitted by introducing smooth lateral Vsvariations for the overburden (Vs= 670 - 960 m/s and 2475 m/s). The low Vp/Vs-ratio of 1.9-2.8 of the top layer indicates that its material is not a watersaturated sediment but weathered hardrock. Considering the velocity uncertainty the refractor topography could easily translated into lateral velocity variations of the top layer. However, this would not affect the $V_{\rm P}/V_{\rm S}$ -ratio and the drawn conclusions.

Fig. 3: Example of traveltime anomalies

top : P-wave seismogram sect middle : reversed shot section bottom : seismic model

velocities and computed travel times indicated.

Fig. 1a/1b: Location of seismic profiles and interpretation results

top layer Vp = 1850 m/s, bottom layer Vp = 4700 m/s;

Fig. 2: Typical seismic registration

top : P -wave seismogram section middle : SH-wave seismogram section bottom : seismic model velocities and computed ray tracing

