Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland Permeability Estimation from Logs based on a new Petrophysical Model

The Clausthal Concept

la Present Downhole Measure - ments Related to Permeability

Cable Tester (FMT, RFT)

 Point Information from Pressure-Buildup/ Drawdown Curves (Horner-type Plots)

Acoustic Logs

- Attenuation of Compressional Waves
- Travel time and Amplitude Ratio of Tube Waves

Electrical Logs

- Infiltration Profiles
- Irreducible Water Saturation
- Induced Polarisation
- Complex Resistivity
- Interlayer Conductivity

Nuclear Magnetic Resonance (NMR-) Logs

- Free Fluid Index
- Spin-Relaxationtime

Natural Gamma-Ray Spectrometry

- Thorium Concentration

Permeability from Logging Parameters with strong Correlations to Specific Internal Surface!

lb

Linking of Measurable Log-Parameters to Permeability by Structural Models of Intergranular Pore Systems

Conceptual Model for a Bundle of Capillary Tubes (KOZENY/CARMAN 1913, 1956):

$$K = \frac{\Phi}{8T} r_{hyd}^2 \qquad (1)$$

Permeability K = f $\left(\text{Tortuosity T} = \left(\frac{L'}{L}\right)^2$, Porosity $\Phi = \frac{V_{por}}{V_b}$, mean effective hydraulic radius $r_{hyd}\right)$

Introducing the Concept of FORMATION FACTOR F = T/Φ and replacing r_{hvd} by the Specific Internal Surface S_{por}

$$r_{\text{myd}} \sim \frac{V_{\text{oor}}}{S_{\text{abs}}} = \frac{1}{S_{\text{oor}}}$$
 (2)

Reduces Permeability Estimation to

$$K \cdot F \sim S_{por}^{-2}$$
 (3)

 New "PIGEON-HOLE"-Model for Self Similar Pore Structures (PAPE, RIEPE, SCHOPPER 1981);

In real Rocks S_{por} is composed of structures of different order of magnitude, i.e. the pore wall surface has a Fractal Dimension D (according to MANDELBROT 1977). For sedimentary rocks D=2.36 could be confirmed experimentally.

The fractal theory implicates that S $_{\text{por}}$ -values, measured by different methods with different "yardsticks" $\lambda_{i},$ are related by a Conversion Factor Q

$$\log Q = \log \frac{S_{por}(\lambda_1)}{S_{por}(\lambda_2)} = (2 - D) \log \frac{\lambda_1}{\lambda_2}$$
 (4)

lc

Derivation of a General Permeability Equation

In nature the self similar pore structures can be changed by Diagenetic Processes:

 An increased surface by additional "Lamellae structures", e.g. by clay minerals:

A smoothed surface, e.g. by cementing minerals

The influence of both types of surface changes on permeability can be quantified in the model by the introduction of one single Lithology Factor q₀

Application of the complex model to hydraulic flow processes results in the

"PARIS" -Equation:

$$\log (K \cdot F) = \alpha \log (S_{por} / q_0) + \beta$$
 (5)

The model-constants α and β depend on D from fractal theory and on λ_i from surface area measurement. In case of S_{pot} derived from BET-adsorption measurements:

$$\alpha_{BET} = -3.11$$
 $\beta_{BET} = 2.68$

if K in Darcies and S_{por} in $\mu m^{-1} = m^2/cm^3$.

The Lithology Factor q_o can be deduced from empirical correlations combining Core and Log-Data.

- 72 -

Experimental Verification of the Concept

IIa Experimental Proof of the PARIS-Equation

Laboratory measurements on a great variety of sedimentary rocks corroborate the general validity of the model derived PARIS-Equation:

The deviations from the Model Line can be used as a direct method to calculate the Lithology Factor q_{\circ} .

Practical application of this Equation needs the use of Log-derivable surface dependent parameters P (Spor).

The resolution power of present methods for determining S_{por} is different:

General Flow llb Chart for the Derivation and Control of adapted Permeability Equations Derivation of a Theoretical Relation for each Parameter $P = f(S_{por})$ **Experimental Control** P = f (S por, BET) Replacing Sport BET by f-1 (P) in (5) Calculation of "Yardsticks" $\lambda_i(P)$ in (4) Derivation of Equations analogeous to (5) with Calculated Model Constants $\alpha(P)$ and $\beta(P)$ for $\lambda_i = r_{\text{hyd}}$ Final Result: K = f(P,qo)**Experimental Verification** with Core Data Application to Logging Data

Permeability from Electrical Measurements

General Conductivity - Equation for Porous Media:

$$C_O = \frac{1}{F}C_W + C_S$$

$$C_S = \frac{a}{F} \cdot S_{por}$$

Rock Conductivity - Pore Fluid Conductivity + Interlayer Conductivity Cs

Combination of electrical and hydraulic parameters:

$$C_S = 85.8 \cdot 10^{-3} \cdot r_{hyd}^{-0.677} \cdot F^{-1}$$

(7) C_s in S/m r_{hyd} in μ m

Final Result:

Simplified "2nd PARIS-Equation" (1984)

$$K_{EI} = 0.58 \cdot 10^{-4} \cdot F^{-4} \cdot C_S^{-3} \cdot q_O$$
 (8)

K_□ in Darcies C_s in S/m

Permeability from Nuclear Magnetic Resonance (NMR)

Based on Correlations of Spor with Spin-Relaxationtime t, and Free Fluid Index (FFI).

$$S_{por} = \left(\frac{1}{t_1} - \frac{FFI}{\Phi} \cdot \frac{1}{t_w}\right) \cdot C_{NMR}$$
 (9)

Final Result: Simplified "BUDAPEST-Equation" (1985):

$$K_{NMR} = \frac{475}{F} \left(\frac{1}{t_1} \cdot C_{NMR} / q_0 \right)^{-3.11}$$
 (10)

K in Darcies C_{NMR} = 0.66 s · µm⁻¹

Permeability from Natural Gamma-Ray Spectroscopy

Illa

Experimental Verification

The accumulation of Thorium (Th 4+) in sedimentary rocks is governed by adsorption mechanisms.

Consequently, Th-Concentrations C_{Th} determined from Laboratory GR-Spectra show a direct relationship to Specific Surface S_q referred to the unit rock mass.

$$C_{Th} = a_{Th} \cdot S_g^{1/2}$$

$$S_{g} = \frac{\Phi}{(1-\Phi)} \cdot \frac{S_{por}}{\rho_{M}}$$
 (12)

a_{Th} = Average Mass of Thorium-Ions per Surface Area

Final Result:

"ABERDEEN-Equation" (1986):

$$K_{Th} = \frac{475}{F} \left[\frac{(1-\Phi)}{\Phi} \cdot \frac{1}{q_0} \cdot \rho_M \cdot \left(\frac{C_{Th}}{a_{Th}} \right)^{2'} \right]^{-3.11}$$
 (13)

IIIb

Field Verification Example

Verification is based on treating Core-Data (K, ϕ , F, $\rho_{\rm M}$, Pc) and Thorium Content from Spectrometry-Logs

Empirical Proof of the Relationship K = f (C_{th})

Proof of Model Theory

Determination of $q_o = f(C_{Th}, \Phi)$

LOG and CORE-Data		PERMEABILITY - Devoes	
0 THORIUM Conc. C to 0 500 CORE POROSITY @ 05 10-6	Cm • (1 - Φ) / Φ	10-6 K from Regression Equation 3:10-9 K from ABERDEEN-Equation 1:10-6 CORE-REPAREABILITY	
CORE POROSITY USIN-	CORE-ENWEAGUIT	THE CORE-E-MEASURE	101 2 Carcus '00
Reservoi	r Section of	Lower Permian Gas	Sands
riesel voi	occion on	LOWEL FEITHALL Gas	Janus
			-
.	3	3	- 63-
			-\$-
4750			1 8
	5		3
			5-
			2
- <		12	2
	3		
-5		The state of the s	3

Calculation of hydraulic radius r_{hyd} from Equations (8) and (7):

 r_{hyd} results from $\,$ C $_{\text{Th}}\text{-Log}$ Data and $\,$ D, F Core Data

rhyd results from Mercury Pc-Curves