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A B S T R A C T   

Precise and prompt information on forest disturbances in the tropics is critical to support law enforcement and 
protect tropical forests. In 2023, medium resolution ALOS-2 ScanSAR data (~100 m spatial resolution) was made 
available for Southeast Asia, marking the first freely accessible large-area L-Band dataset. We assessed its po-
tential for large-area forest disturbance mapping and its combination with high-resolution C-band Sentinel-1 data 
(~20 m spatial resolution). We mapped forest disturbances in Sumatra, Indonesia for the year 2021 based on 
ALOS-2 ScanSAR data and Sentinel-1 data separately, and subsequently combined the mapped disturbances. 
Forest disturbances detected by both C-band and L-band SAR using a probabilistic change algorithm were 
combined at the product level by merging both sets of detections. The added benefit of combining both sensors 
was particularly evident in higher detection rates, as indicated by an improved producer accuracy (78.9 ± 11.9 
%) compared to detections based on single sensor ALOS-2 ScanSAR (40.8 ± 6.3 %) and Sentinel-1 data (63.3 ±
9.6 %). Both combined and single sensor detections showed negligible false detections. ALOS-2 ScanSAR showed 
advantages for overcoming limited capability of Sentinel-1 to detect large-sized disturbance events characterized 
by post-disturbance tree remnants, occurring at locations with large-scale agricultural clearings. The medium 
resolution of approximately 100 m restricts the detection capability of ALOS-2 ScanSAR data for small-scale 
disturbances, resulting in missed detections. ALOS-2 ScanSAR detections showed a delay of up to 17.8 days 
compared to detections based solely on Sentinel-1 data. Combining ALOS-2 ScanSAR and Sentinel-1-based dis-
turbances resulted in improved detection timeliness, with an average improvement of up to 16.5 days compared 
to Sentinel-1-based detections. Furthermore, we observed improved detection rates for our ALOS-2 ScanSAR- 
based detections compared to those of the ALOS-2 ScanSAR-based JICA-JAXA Forest Early Warning System in the 
Tropics (JJ-FAST) forest disturbance alerting product. This suggests that the potential of ALOS-2 ScanSAR data in 
operational forest monitoring systems is not currently fully realized. Comparing the SAR-based disturbance 
detections from this study with existing optical-based forest disturbance products (GFC and GLAD-L) suggested 
improved detection accuracies by overcoming sensor-specific omission errors when using combined SAR and 
optical data. The demonstrated potential of L-Band ALOS-2 ScanSAR data for improving operational forest 
monitoring efforts using C-band radar and optical satellites is expected to be amplified by upcoming L-Band 
satellite missions like NiSAR (2024) and ROSE-L (2028), which will provide freely accessible L-Band data with 
higher spatial resolution.   

1. Introduction 

Forests in the tropics are vital for the global carbon cycle and 
biodiversity (Boulton et al., 2022; Sullivan et al., 2017). However, in 
recent years, increasing levels of forest disturbances pose a threat to 
tropical forests (Vancutsem et al., 2021). Indonesia is among the coun-
tries experiencing some of the highest rates of deforestation worldwide 

(Margono et al., 2014), primarily driven by agricultural expansion, 
timber production and mining, with fires frequently employed as a 
means of land clearing in management practices (Abood et al., 2015; 
Gaveau et al., 2014; Sloan et al., 2017). Detecting forest disturbances in 
a timely and accurate manner is crucial to support law enforcement 
activities, which ensures sustainable land management practices and 
protects remaining tropical forests (Finer et al., 2018; Tabor and 
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Holland, 2021). 
Remote sensing has demonstrated its usefulness as an affordable tool 

to monitor tropical forest and detect tropical forest disturbances at scale 
(De Sy et al., 2012). Optical sensors, including Landsat and Sentinel-2, 
have been used to track forests and detect forest disturbances, 
commonly by means of spectral vegetation indices (Chen et al., 2021; 
Hamunyela et al., 2016; Verbesselt et al., 2012). In tropical regions, 
optical sensors may suffer from persistent cloud coverage resulting in 
delayed or missed detections when monitoring forest disturbances 
(Doblas Prieto et al., 2023; Hirschmugl et al., 2020). In contrast, Syn-
thetic Aperture Radar (SAR) sensors actively emit radar signals that are 
capable of penetrating clouds (Joshi et al., 2016). The radar signal is 
sensitive to the vegetation structure and moisture content (Richards, 
2009; Woodhouse, 2006). The radar signal interacts with the vegetation 
structure depending on its polarization and wavelength and the size, 
spatial orientation, and density of the vegetation structure components 
(Flores-Anderson et al., 2019). The backscatter of the signal emitted in 
horizontal or vertical polarizations can be received in co-polarization (e. 
g., HH or VV) or cross-polarization (e.g., HV or VH). The recorded 
backscatter intensity received in various polarizations relates to the 
spatial orientation and density of the sensed objects (Woodhouse, 2006). 
The wavelength of the radar signal determines the size of object that it 
can penetrate or interact with. Shorter wavelengths, like those in C- 
Band, interact with smaller objects, while longer wavelengths, such as L- 
Band, penetrate smaller objects and interact with larger ones (Ulaby and 
Long, 2013). In tropical broadleaf forest, C-Band radar will interact with 
twigs and leaves, while L-Band radar can penetrate parts of the canopy 
and interact with branches or tree trunks. L-Band is considered better 
suited for detecting tropical forest disturbances due to its greater depth 
of penetration and increased saturation level (Reiche et al., 2018; Ulaby 
and Long, 2013; Woodhouse, 2006). Current large-scale tropical forest 
disturbance systems, such as RAdar for Detecting Deforestation (RADD) 
(Reiche et al., 2021) or Near-Real Time System for Detection of Defores-
tation (DETER-R) (Doblas et al., 2022), primarily rely on freely available 
Sentinel-1 C-Band SAR data (Ballère et al., 2021; Mermoz et al., 2021), 
despite of C-Band being demonstrated as less suitable for detecting 
tropical forest disturbances. 

Tropical forest disturbance monitoring based on high-spatial reso-
lution ALOS-2 PALSAR-2 Fine Beam data has showcased the capabilities 
of L-Band SAR data (Ali et al., 2018; Reiche et al., 2018). However, the 
low temporal resolution of 46 days and limited free data access hamper 
large-scale applications. ALOS-2 PALSAR-2 ScanSAR data holds great 
potential for promptly detecting forest disturbances due to its wide 
swath and resulting rapid revisit time of 14 days, despite having a me-
dium spatial resolution of approximately 100 m (Table 1). So far, the 
usage of ALOS-2 ScanSAR data was focused primarily to height esti-
mation of tropical forests (Urbazaev et al., 2018) and SAR interferom-
etry applications, such as studying the impact of earthquakes (Liang and 
Fielding, 2017; Natsuaki et al., 2016). Studies demonstrating the po-
tential of ScanSAR data for disturbance detection did not incorporate 

ALOS-2 data, which offers an improved temporal resolution of up to 14 
days, but instead relied on ALOS-1 data with a temporal resolution of 46 
days (Valeriano and Amaral, 2010; Whittle et al., 2012). 

The operational forest disturbance alerting system JICA-JAXA Forest 
Early Warning System in the Tropics (JJ-FAST) produced internally by the 
Japan International Cooperation Agency (JICA) and the Japan Aerospace 
Exploration Agency (JAXA) is based on ALOS-2 ScanSAR data (Watanabe 
et al., 2021, 2018). A minimum mapping unit of 1 ha limits the system to 
detect large-sized disturbance events only and potentially neglects the 
potential of ALOS-2 ScanSAR data (Watanabe et al., 2021, 2018). In 
2023, ALOS-2 ScanSAR level 2.2 data became freely available for 
Southeast Asia. This is the first time L-Band data is openly accessible for 
large areas, enabling the assessment of the large-scale potential of L- 
Band SAR data for forest disturbance detections. These insights can 
contribute to an improved comprehension of the constraints and capa-
bilities of L-Band SAR data in supporting large-scale forest disturbance 
detection. This becomes particularly relevant in preparation for up-
coming satellite missions like NiSAR and ROSE-L, which will provide 
freely available L-Band SAR data (Table 1). These data streams will 
provide further opportunities to combine freely available L-Band SAR 
data with Sentinel-1 (C-Band) SAR data for tropical forest monitoring at 
scale. 

In this study, we assess the potential of medium resolution ALOS-2 
ScanSAR data (L-Band) for large-scale tropical forest disturbance map-
ping and evaluate its effectiveness when combined with high-resolution 
Sentinel-1 data (C-Band). 

In a case study conducted in Sumatra (Indonesia), we first detect 
forest disturbances based on ALOS-2 ScanSAR and Sentinel-1 data 
separately for 2021. Subsequently, we combine both single-sensor de-
tections. We calculated the detection accuracies, mapped area statistics 
and detection timeliness of the individual single-sensor detection and 
combined detections, to assess the strengths, limitations, and combined 
potential of both datasets to detect forest disturbances. Additionally, we 
compare ALOS-2 ScanSAR-based forest disturbance detections of this 
study with detections of the JJ-FAST alerting system to better under-
stand the potential of ALOS-2 ScanSAR data. Similarly, we assessed the 
benefits of SAR-based forest disturbance detections in relation to optical- 
based disturbance detections by comparing SAR-based disturbance de-
tections of this study against disturbances identified by the Landsat- 
based GLAD-L alerting system (Hansen et al., 2016) and the annual 
GFC (Global forest change) product (Hansen et al., 2013). 

2. Study area and data 

2.1. Study area 

The study area includes the main island of Sumatra (Indonesia) and 
its smaller adjacent islands, comprising an area of approximately 47.500 
kha (Fig. 1). Sumatra experiences a tropical humid climate with elevated 
temperatures and high precipitation persisting throughout the year 

Table 1 
Current and upcoming SAR satellite missions operating at L-Band wavelength.  

Mission Start(End of expected Lifetime) Agency Spatial Resolution [m] Revisit time [days] Data policy Reference 

ALOS – 2 PALSAR – 2 2014 (2019) JAXA Stripmap mode:3– 10 
ScanSAR mode: 
60 – 100 

14 Mainly Commercial (JAXA, n.d.) 

SAOCOM 2018 
(1A: 2023 &1B: 2025) 

CONAE Stripmap mode: 
10 
TopSAR mode: 
30 – 100 

8 (16) Freely available (ESA, n.d.) 

NiSAR Planned for 2024(2029) NASA & ISRO 3 – 10 m 12 Freely available (NASA, n.d.) 
ALOS – 4 PALSAR – 3 Planned for 2024(2031) JAXA Stripmap mode:3 – 10 

ScanSAR mode:25  
(1 look) 

14 Commercial (Motohka et al., 2019) 

ROSE-L Planned for 2028 
(A: 2035B: 2037) 

ESA 5 – 50 m 6 (12) Freely available (ESA, 2023)  
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(Hayasaka, 2023). The main island of Sumatra consists of two very 
distinct parts: the Barisan Mountains in the west, featuring elevations 
exceeding 2000 m, and flat plains in the east (Fig. 1A1). The flat plains in 
particular have experienced high deforestation rates, resulting in the 
conversion of 70 % of primary forest to other land cover by 2010 
(Margono et al., 2012). Deforestation activities are primarily driven by 
commercial agriculture crop expansion and timber extraction (Austin 
et al., 2019; Margono et al., 2014). Disturbance activities occur 

throughout Sumatra with distinct proximity to areas of high human 
footprints (Singh and Yan, 2021). Sumatra is predicted to experience 
continuous forest loss in the future, making it a prime region to study the 
potential of medium resolution ALOS-2 ScanSAR (L-Band) for tropical 
forest disturbance mapping (Abood et al., 2015; Saputra and Lee, 2019). 

Fig. 1. Study Area of Sumatra (Indonesia). Elevation (A1) and the extent of the used forest baseline map (A2) are provided. Additionally shown are the number of 
available images for ALOS-2 ScanSAR (ascending: B1; descending: B2) and Sentinel-1 data (ascending: B3 and descending: B4) for 2021. 
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2.2. Data 

2.2.1. ALOS-2 PALSAR-2 ScanSAR data 
ALOS-2 PALSAR-2 Level 2.2 ScanSAR normalized L-Band backscatter 

data acquired in broad area observation mode was used. The data is 
provided in dual-polarization (HH- and HV-polarization). ALOS 
PALSAR-2 ScanSAR data in ascending and descending orbits for the 
period 2017–2021 were accessed via Google Earth Engine. The data is 
provided at a pixel spacing of 25 × 25m, although the spatial resolution 
is approximately 100 m (JAXA, 2023). Although there is a potential 
revisit time of 14 days, we observed almost no observations in ascending 
orbit and 18–36 observations in descending orbit for the year 2021 
(Fig. 1B1, B2). 

2.2.2. Sentinel-1 data 
Sentinel-1 A/B Interferometric Wide swath C-Band data was used. 

Here, Ground Range Detected (GRD) data was available in VV- and VH- 
polarization. Ascending and descending orbits covering the years 
2017–2021 were accessed through Google Earth Engine. The data is 
provided at a pixel spacing of 10x10m, although the spatial resolution is 
approximately 20 m (ESA, 2012). The revisit time of two Sentinel-1 
satellites in the tropics is up to 6 days (ESA, 2022). We observed 
30–84 observations in ascending and 16–60 observations in descending 
orbits for the year 2021 (Fig. 1B3, B4). 

2.2.3. JJ-FAST product 
JJ-FAST is a forest disturbance alerting product providing informa-

tion on disturbances for the pan-tropics, including 78 countries (Wata-
nabe et al., 2021, 2018). JJ-FAST detections have a pixel spacing of 
50x50m and are based on dual-polarization ALOS-2 PALSAR-2 ScanSAR 
data (JICA and JAXA, 2023a). The spatial resolution of the underlying L- 
Band data is approximately 100 m. The product’s minimum mapping 
unit is currently 1 ha (Version 4.1), with older versions showing coarser 
minimum mapping units (1.5 for version 4.0-3.1 and 2 ha for version 
3.0) (JICA and JAXA, 2024). Detections utilizing version 3.1 or subse-
quent versions are created based on a forest baseline map that is directly 
derived from the individual ALOS-2 ScanSAR images (JICA and JAXA, 
2023a). Older versions used the global ALOS PASLAR forest/non-forest 
product as the underlying forest baseline map. All JJ-FAST detections 
available for 2021 (Version 3.0) were accessed and downloaded through 
JJ-FAST’s MapMonitor (JICA and JAXA, 2023). 

2.2.4. Landsat-based forest disturbance products 
The GFC product and the GLAD-L product provide forest disturbance 

information at a 30 m spatial resolution and are based on optical Landsat 
data. Both products are produced by the University of Maryland. The 
GFC, introduced in 2013, is a global forest change product providing 
annual information on forest disturbances (Hansen et al., 2013). In 
contrast, GLAD-L is an alerting system that provides information on 
forest disturbances in near real time for the entire pantropics (30◦N- 
30◦S) from 2016 onwards (Hansen et al., 2016). 

2.2.5. Forest baseline map 
We created a forest baseline map for 2021 (Fig. 1A2) using a Global 

Forest Change product based on Landsat-data (Hansen et al., 2013). We 
defined forest as tree cover exceeding 30 % for the year 2000 and 
removed forest disturbances occurring between 2001 and 2020 prior to 
the study’s monitoring period in 2021. Our forest baseline map covers 
approximately 27,000 kha. 

3. Methods 

3.1. Pre-processing of SAR data 

Both ALOS-2 ScanSAR and Sentinel-1 GRD data are provided with 
initial pre-processing steps applied before their ingestion into Google 

Earth Engine. The ALOS-2 ScanSAR data has been ortho-rectified and 
radiometrically terrain-corrected using the AW3D30 Digital Surface 
Model providing γ0 backscatter (Small, 2011). The Sentinel-1 data has 
undergone radiometric and terrain correction, among other processes, 
and has been geocoded (Google Earth Engine Team, 2022). 

We further applied additional pre-processing steps to both datasets 
(Table 2) (Mullissa et al., 2021). In order to obtain γ0 backscatter for the 
Sentinel-1 GRD data we applied an angular-based radiometric slope 
correction (Hoekman and Reiche, 2015; Vollrath et al., 2020). The 
correction was not applied to ALOS-2 ScanSAR data, as this data is 
initially provided as fully terrain-corrected y0 backscatter. We masked 
terrain artifacts in the ALOS-2 ScanSAR data using the provided quality 
band with an additional buffer of 100 m (native resolution of the data) to 
ensure no remaining artifacts (JAXA, 2023; Small, 2011). 

An adaptive multi-temporal speckle filtering was applied to both 
ALOS-2 ScanSAR and Sentinel-1 data, before converting the data to dB 
scale (Quegan and Yu, 2001). 

Sentinel-1 data acquired in Interferometric Wide swath mode have 
small overlapping areas at the image edges in the range direction 
(Fig. 1B3, B4), leading to areas with large differences in incidence angles 
between orbits. We only considered observations from the most frequent 
orbit between 2017 and 2020 in order to avoid combining large differ-
ences in incidence angles, which could introduce errors in disturbance 
detections (Reiche et al., 2021). ALOS-2 ScanSAR data acquired in broad 
area observation mode does not show overlapping areas of image edges 
with large differences in incidence angle and therefore did not require 
corrections (Fig. 1B1, B2). 

SAR data can be affected by heavy rain cells causing decreased 
backscatter and false detections in forest disturbance detection algo-
rithms (Doblas et al., 2020). Rain cells are visible as large patches of 
connected pixels with decreased backscatter values in SAR observations. 
Furthermore, rain cells are typically short-lived, resulting in decreased 
backscatter values for no more than one observation. The impact of rain 
cells is more pronounced in shortwave SAR data, like C-Band Sentinel-1, 
whereas longer wavelength radar, such as L-Band ALOS-2 ScanSAR data, 
can penetrate rain cells more effectively (Danklmayer et al., 2009). Rain 
cell masking was therefore only applied to Sentinel-1 data. Here, 
decreased backscatter occurring in large clusters of pixels for only one 
time step over forest was masked out as an artifact caused by rain cells 
(Reiche et al., 2021). 

We applied image normalization to ALOS-2 ScanSAR and Sentinel-1 
data, by normalizing individual images to mitigate potential false de-
tections due to decreased backscatter values during the dry season. We 
compared the expected historic median backscatter time series value 
(2017–2020) against the median backscatter values of an observation 
and – if required – matched the median backscatter distribution (Reiche 
et al., 2018). 

3.2. Forest disturbance mapping 

We mapped forest disturbances for 2021 within the boundaries of the 
forest baseline map (Chapter 2.2.5), using ALOS-2 ScanSAR and 
Sentinel-1 data separately. We followed the definition of forest distur-
bance as the partial or complete removal of forest cover within an ALOS- 
2 ScanSAR (25 m) or a Sentinel-1 (10 m) pixel, in line with recent studies 
(Balling et al., 2023; Hansen et al., 2016; Reiche et al., 2021; Vargas 
et al., 2019). 

We employed an algorithm for probabilistic change detection on a 
pixel level (Reiche et al., 2018, 2015), which also provided the basis for 
generating the RADD alerts (Reiche et al., 2021). SAR time series from 
2017 to 2020 were used to compute statistics of backscatter values 
(mean and standard deviation) for stable forest and to establish pa-
rameters for a Gaussian Mixture Model. The utilization of the Gaussian 
Mixture Model was implemented to compute non-forest probability 
values for individual new observations. After calculating non-forest 
probabilities separately for each polarization, the highest probability 
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of both polarizations was selected and set as the non-forest probability 
for the respective observation. New observations exceeding a non-forest 
probability of 60 % were flagged as potential forest disturbances. Within 
a 90-day period, disturbances in each new observation, which had been 
flagged and which had a non-forest probability exceeding 97.5 % were 
confirmed (high-confidence alert), while those with a non-forest prob-
ability below 85 % were rejected. Flagged disturbances with a non-forest 
probability that remained between 85 and 97.5 % were left flagged and 
unconfirmed (low confidence alert). The date of the disturbance was 
assigned as the date when it was initially flagged. In wetland areas, co- 
and cross-polarization were used to flag potential disturbances, while a 
confirmation relied exclusively on the cross-polarization. This was done 
to mitigate potential false detections in the co-polarization due to 
heighten sensitivities toward soil moisture changes and increased dou-
ble bounce scattering caused by floods (Refice et al., 2020). We used 
CIFOR’s global tropical and subtropical wetlands map to locate wetlands 
(Gumbricht et al., 2017). 

For ALOS-2 ScanSAR data, we detected disturbances as decreasing 
backscatter values in HV-polarization and as increasing or decreasing 
backscatter in HH-polarization. Decreasing backscatter in HV- 
polarization is caused by reduced volume scattering, indicating a loss 
of forest structure, whereas decreasing HH-polarization is caused by a 
reduced double bounce scattering, indicating a disruption in the align-
ment or orientation of the branches or trunks. However, increased 
backscatter in HH-polarization can be caused by enhanced double 
bounce on post-disturbance tree remnants (e.g., trunks, branches) 
(Watanabe et al., 2021). For Sentinel-1, we exclusively detected 
decreasing backscatter values in both VV- and VH-polarizations, as they 
are indicative of alterations in volume scattering, double bounce, or 
surface scattering. These alterations are typically observed during the 
transition from forest to non-forest areas (Richards, 2009; Woodhouse, 
2006). We applied a minimum mapping unit of 0.1 ha. Forest distur-
bance event sizes were calculated as connected detections on a pixel- 
level (8-connected). 

Combined C- and L-band disturbance detections were generated 
through post-classification merging at a product level, which involved 
incorporating both ALOS-2 and Sentinel-1 based detections. In case of 
overlapping detections, we chose the earliest detection date from either 
sensor. The pixel spacing used for the combination was 10 m. 

3.3. Detection accuracy and evaluation of timeliness 

To validate the disturbance detections, we utilized monthly com-
posites of very-high-resolution multi-spectral PlanetScope data (~4.7 
m) (Planet Team, 2022). We visually checked for the presence of a forest 
disturbance. In cases where environmental factors (e.g., clouds, haze, 
etc.) hampered a visual interpretation of the Planet data (31 samples), 
we used the original ALOS-2 ScanSAR and Sentinel-1 time series to 
verify the occurrence of a disturbance (ESA, 2012; JAXA, 2023). 

Employing a stratified random sampling method (Olofsson et al., 
2014; Stehman et al., 2003), we incorporated two stable forest strata and 
six disturbance strata. The stable forest strata encompassed all pixels 
within the forest baseline map, with one stratum sampling outside and 
the other inside a 500 m buffer surrounding identified forest distur-
bances. The latter was included to mitigate the potential underrepre-
sentation of omission errors (Olofsson et al., 2020). 

The six forest disturbance strata were delineated into two primary 
disturbance categories: forest disturbance detected by both sensors and 
forest disturbance detected by only one sensor. Each main disturbance 
stratum was then divided into three separate strata based on the size of 
the detected disturbance event: <1ha, ≥1 – <5ha and ≥5 ha. The sizes of 
the disturbance events were calculated individually, based on the 
combined map of forest disturbance detections from ALOS-2 ScanSAR 
and Sentinel-1 data. 

We introduced the ‘detected by only one sensor’ disturbance stratum 
to address potential omission errors and false detections in either of the 
single disturbance detections. Furthermore, we incorporated the 
refinement of the two main disturbance strata into event size-based 
strata to accommodate differing spatial resolutions of ALOS-2 Scan-
SAR and Sentinel-1 data. In total, we utilized 1000 samples, comprising 
of 200 samples for each stable forest stratum and 100 samples for each of 
the forest disturbance strata (Table 3). The combined disturbance map 
of ALOS-2 ScanSAR and Sentinel-1 data was used to generate the strata 
and area statistics. As proposed by Stehman et al. (2003), we calculated 
inclusion probabilities to account for samples not being proportionally 
allocated to the strata areas. We then used these inclusion probabilities 
as estimation weights to construct an area-weighted confusion matrix 
and calculate user and producer accuracies (Stehman, 2014). Errors 
resulting from an inaccurate forest baseline map, which may suffer from 
typical errors found in optical remote sensing products (Verhelst et al., 
2021), were excluded when calculating the accuracies. 

We calculated the differences in the detection dates of ALOS-2 
ScanSAR-based and Sentinel-1 based detection to assess the improve-
ment of timeliness. The same method was applied to the combined forest 
disturbances detection. The improvement or delay in timeliness were 
calculated relative to the disturbance date detected by Sentinel-1 data. 
Only disturbances detected by both ALOS-2 ScanSAR and Sentinel-1 
data were taken into consideration. Timeliness is defined here as the 
date when a forest disturbance is detected. Therefore, an enhancement 
in timeliness refers to detecting disturbances at an earlier date. 

3.4. Comparison with JJ-FAST & Landsat-based products 

We calculated and compared accuracies of ALOS-2 ScanSAR-based 
disturbance detections from this study with JJ-FAST detections. Accu-
racies were calculated using a post-stratification on the validation data 
set. Here, we only included samples that match the overlap of the forest 
baseline maps used in this study and applied for the JJ-FAST product 
(430/1000) and reduced the validation strata accordingly. For the 
samples in the reduced strata, the inclusion probabilities were recalcu-
lated (Tsendbazar et al., 2021), and area-adjusted user and producer 
accuracies were calculated for the JJ-FAST product and ALOS-2 Scan-
SAR-based disturbance detections of this study, following the method-
ology described in Chapter 3.3. 

To specifically evaluate errors in small-, medium- and large-sized 
disturbance events, we additionally examined area-adjusted accuracies 
for each disturbance event size class alone. Therefore, we combined 
accuracies of the respective event size strata of forest disturbance 
detected by both sensors and forest disturbance detected by only one 
sensor (Chapter 3.3). 

For the validation of the Landsat-based forest disturbance alerting 
system GLAD-L and the annual GFC product we used all initial samples 

Table 2 
Prior (o), additional (x) and pre-processing steps not (− ) applied to the SAR data used in this study.   

Slope 
correction 

Quality band 
masking 

Speckle 
filtering 

Conversion to dB 
scale 

Dominant orbit 
masking 

Rain cell 
masking 

Image 
Normalization 

ALOS-2 PALSAR-2 ScanSAR 
Level 2.2 

o x x x − − x 

Sentinel-1 GRD 
Level 1 

x − x x x x x  
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and the validation procedure described in Chapter 3.3. We calculated 
user and producer accuracies accordingly. The original samples 
described in Chapter 3.3 were applicable because our forest baseline 
map, and therefore our validation strata, were based on the GFC 
product. 

4. Results 

4.1. Forest disturbance mapping 

High omission rates were observed in single-sensor mapping (Fig. 2). 
A higher producer accuracy (1 – omission error) was found for Sentinel- 
1 (63.3 ± 9.6 %) compared to ALOS-2 ScanSAR (40.8 ± 6.3 %). Negli-
gible false detection rates (1 – user accuracy) were found for both ALOS- 
2 ScanSAR (UA: 98.6 ± 0.8 %) and Sentinel-1 (UA: 100 ± 0 %). 
Combining mapped forest disturbances from Sentinel-1 and ALOS-2 
ScanSAR resulted in reduced omission errors (PA: 78.9 ± 11.9 %), 
while maintaining a low false detection rate (UA: 99.3 ± 0.4 %). 

More forest disturbances were detected based on Sentinel-1 data 
(379.3 kha) in comparison to ALOS-2 ScanSAR-based detections (291.3 
kha) (Table 4). Disturbances detected based on only Sentinel-1 data 
showed equal proportions for small- (35.6 %), medium- (30.2 %) and 
large-sized (34.2 %) disturbance events. For ALOS-2 ScanSAR data, we 
observed a trend of higher detection rates for larger-sized disturbance 
events. In this context, large-sized disturbance events (≥5ha) accounted 
for 50.5 %, while medium- (31.1 %) and small-sized (18.4 %) distur-
bance events showed substantially smaller proportions. 

The combined detections showed slightly higher proportions for 
large-sized events (39.9 %) compared to small- (29.6 %) and medium- 

sized (30.4 %) disturbance events. Combining ALOS-2 ScanSAR and 
Sentinel-1 based disturbances detections showed the highest detection 
rate of 510.8kha, indicating an increase of 219.5 kha and 131.5 kha in 
detections compared to ALOS-2 ScanSAR and Sentinel-1 disturbances 
maps, respectively. 

When compared to Sentinel-1 based detections, we observed higher 
omission rates in ALOS-2 ScanSAR-based detections for small-scale 
disturbances, such as selective logging or logging roads (Fig. 3a). Log-
ging roads were typically partially detected by Sentinel-1 but entirely 
omitted by ALOS-2 ScanSAR. The combined forest disturbance de-
tections primarily consisted of Sentinel-1 detections in these regions. 

For medium-sized disturbance events, we observed omission errors 
for ALOS-2 ScanSAR and Sentinel-1 based detections (Fig. 3b). Omission 
errors in ALOS-2 ScanSAR disturbance detections occurred for distur-
bances within the forest but in spatial proximity to roads (e.g., selective 
logging, timber extraction, etc.). The Sentinel-1 disturbance detections 
showed omission errors for disturbance patches characterized by post- 
disturbance tree remnants. The combined detections did not show 
either of the omission errors. 

For large-sized disturbance events, such as large-scale clearings 
associated with agricultural expansion or timber production, we 
observed the benefit of ALOS-2 ScanSAR-based detections, showing 
fewer omission errors in areas with post-disturbance tree remnants 
(Fig. 3c). However, omission errors were noticeable in ALOS-2 ScanSAR 
detections, typically in the case of small, isolated forest patches that had 
been detected using Sentinel-1 data (Northwest in Fig. 3c). 

4.2. Detection timeliness 

Forest disturbances detected with ALOS-2 ScanSAR showed an 
average detection delay of 18 days when compared to those detected 
with Sentinel-1 (Table 5). A decreasing detection delay was observed for 
increasing forest disturbance event sizes. While small-sized disturbance 
events showed a 21-day average detection delay, a 12-day detection 
delay was observed for large-sized events. Timeliness improved when 
combining forest disturbances detected with ALOS-2 ScanSAR and 
Sentinel-1 data. New disturbances were detected, on average, 16.5 days 
earlier compared to detections based on Sentinel-1 data alone. Overall, 
improvement rates were consistent across small-, medium- and large- 
sized disturbance events. 

4.3. Comparison with JJ-FAST & Landsat-based products 

Disturbances detected based on ALOS-2 ScanSAR in this study 
(producer accuracy: 55.8 ± 6 %) showed substantially lower omission 
rates than the JJ-FAST product (producer accuracy: 29.2 ± 4.1 %) 
(Fig. 4). Low false detection rates were observed for both. We observed 
increasing producer accuracies for larger disturbance event sizes. ALOS- 
2 ScanSAR-based detections in this study showed consistently higher 
producer accuracies than JJ-FAST detections. Particularly, for medium- 
sized events, there was a notable 43.6 % difference between the two 
detections, with a higher producer accuracy for detections in this study 
(57 ± 4.1 %) compared to the JJ-FAST product (13.4 ± 3.4 %). The 
same was evident when exclusively considering flatlands (≤5◦), with 
ALOS-2 ScanSAR detections in this study showing a higher producer 
accuracy (59.6 ± 6.4 %) than the JJ-FAST product (33.3 ± 5 %). 
Applying coarser minimum mapping units, corresponding to current or 

Table 3 
Validation strata and corresponding sample sizes.  

Strata Stable forest (outside buffer) Stable forest (inside buffer) Forest disturbance detected by only one 
sensor 

Forest disturbance detected by both 
sensors 

Disturbance event size [ha] 
<1 ≥1 –5 ≥5 <1 ≥1 –5 ≥5 

Number of Samples 200 200 100 100 100 100 100 100  

Fig. 2. Producer and user accuracies (±standard error) for disturbances 
detected based on ALOS-2 ScanSAR (L-Band) and Sentinel-1 data (C-Band) and 
the combined detections. 
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older versions of the JJ-FAST product, to our ALOS-2 ScanSAR-based 
disturbance detections showed consistently higher producer accuracies 
of detections (1 ha: 50.6 ± 5.5 %; 1.5 ha: 46.9 ± 5.1 %; 2 ha: 45.1 ± 5 
%) compared to the JJ-FAST product (29.2 ± 4.1 %). 

A comparison of SAR-based disturbance maps from this study with 
30 m operational Landsat-based products, GLAD-L alerts, and the annual 
GFC product showed similarly negligible commission errors (UA: 100 % 
± 0) (Table 6). However, the optical-based forest disturbances had 
rather low producer accuracies (GLAD-L: 15.4 % ± 2.7 %; GFC: 54.3 % 
± 7.6). The alerting system GLAD-L exhibited more omission errors than 
all SAR-based disturbance maps, while the annual GFC product showed 
more omission errors only when compared to the Sentinel-1 and the 
combined Sentinel-1 and ALOS-2 disturbance detections. 

5. Discussion 

We assessed the potential of medium resolution ALOS-2 PALSAR-2 
ScanSAR data (100 m resolution) for tropical forest disturbance 

Table 4 
Area statistics of disturbance detections based on ALOS-2 ScanSAR (L-Band) and Sentinel-1 data (C-Band) and the combined disturbance map.  

Disturbance event 
sizes [ha] 

ALOS-2 ScanSAR Sentinel-1 Combined 

Absolute area [kha] Relative area [%] Absolute area [kha] Relative area [%] Absolute area [kha] Relative area [%] 

<1  53.7  18.4  135.1  35.6  151.5 29.6 
≥1 – <5  90.6  31.1  114.4  30.2  155.4 30.4 
≥ 5  147.0  50.5  129.8  34.2  203.9 39.9 
Total  291.3  100.0  379.3  100.0  510.8 100  

Fig. 3. Forest disturbance detection dates based on ALOS-2 ScanSAR (L-Band) and Sentinel-1 data (C-Band) and the combination of both disturbance detections for a 
small-(A), medium- (B) and large- (C) sized disturbance events. Post-disturbance monthly Planet imagery is provided as a basemap. Central coordinates for the events 
are: small-sized: 0.9176◦S; 101.0301◦W; medium-sized: 4.426◦N; 97.8016◦W; large-sized: 4.9323◦N; 97.0500◦W. 

Table 5 
Mean temporal difference of detections [days] (standard deviation) relative to 
Sentinel-1 based detections. Positive values refer to a detection delay and 
negative values to improved detection timeliness. Values are based on distur-
bances detected in both ALOS-2 ScanSAR (L-Band) and Sentinel-1 data (C-Band). 
Areas are given for the overlapping disturbances detected in ALOS-2 ScanSAR 
and Sentinel-1 data.  

Disturbance event sizes 
[ha] 

ALOS-2 
ScanSAR 

Combined Overlapping area 
[kha] 

0.1 – <1 20.9 (80.2) − 20.2 
(42.0)  

8.2 

≥1 – <5 25.1 (75.1) − 16.9 
(37.9)  

41.2 

≥ 5 11.6 (62.9) − 17.0 
(34.4)  

112.1 

Total 17.8 (68.6) − 16.5 
(35.7)  

161.5  
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mapping and demonstrated how the combination with high-resolution 
Sentinel-1 data (20 m resolution) can lead to more timely and accu-
rate detections. Our findings further indicate that medium resolution 
ALOS-2 ScanSAR data is currently underutilized in the monitoring and 
alerting product JJ-FAST. 

5.1. Potential of ALOS-2 ScanSAR data for tropical forest disturbance 
mapping 

ALOS-2 ScanSAR data (L-Band) can reduce omission errors in 
Sentinel-1-based (C-Band) disturbance detections related to post- 
disturbance tree remnants in large-sized disturbance events (Fig. 5A). 
The backscatter values caused by post-disturbance tree remnants may 
resemble those of stable forest, reducing the contrast between stable and 
disturbed forest and hindering a disturbance detection. Although both 
short- (e.g., X-Band, C-Band) and long wavelength (e.g., L-Band) SAR 
data are affected (Balling et al., 2021; Watanabe et al., 2021), shorter 
wavelengths are more susceptible due to the radar signal’s increased 
sensitivity in interacting with smaller objects (Balling et al., 2023). 
While incorporating texture, in addition to the individual pixel back-
scatter, was found to partially mitigate omission errors in disturbance 
detection based on short wavelengths (Balling et al., 2023), the intro-
duction of false detections due to spatial blurring and increased 
computational costs presents a trade-off for its applicability on a large 
scale. Combining short- and long-wavelength SAR may offer a more 
viable path for large-scale applications. Moreover, we observed 
increased backscatter values for HH-polarized ALOS-2 ScanSAR data at 
locations with post-disturbance tree remnants (Fig. 5A). The increase of 
backscatter values in HH-polarization is typically related to amplified 

double bounce scattering on vertically oriented tree remnants (e.g., tree 
trunks) or enhanced direct scattering on horizontally oriented tree 
remnants (e.g., tree logs) (Watanabe et al., 2021). We utilized this 
characteristic to detect increased backscatter in HH-polarization as 
forest disturbances, leading to additional reductions in omission errors. 

Medium resolution ALOS-2 ScanSAR data failed to detect many 
small-scale disturbances events, such as disturbance patches related to 
smallholder agriculture (Fig. 5B) or selective logging (Fig. 5C), that were 
detected by Sentinel-1 data (Doblas Prieto et al., 2023; Reiche et al., 
2021). These omission errors are linked to the different spatial resolu-
tions of ALOS-2 ScanSAR (~100 m) and Sentinel-1 (~20 m) and do not 
signify wavelength-specific detection advantages. The medium resolu-
tion of approximately 100 m of ALOS-2 ScanSAR data limit its detection 
capabilities to larger-sized events. 

We observed higher detection rates of ALOS-2 ScanSAR-based 
disturbance detections for small- and medium-sized disturbance events 
when compared to detections of the JJ-FAST product, which can be 
likely related to the high minimum mapping unit of 2 ha applied in the 
JJ-FAST product tested (Version 3.0) (JICA and JAXA, 2023b). How-
ever, when applying coarser minimum mapping units (1 ha, 1.5 ha, or 2 
ha) to our ALOS-2 ScanSAR-based disturbance detections, we consis-
tently observed higher producer accuracies (1 ha: 50.6 %; 1.5 ha: 46.9 
%; 2 ha: 45.1 %) than those achieved by the JJ-FAST product (29.2 %). 
This indicates that not only the coarse minimum mapping unit 
contribute to high omission errors in the JJ-FAST product, but poten-
tially also the underlying detection method. This highlights the 
underutilized potential of the ALOS-2 ScanSAR data for large-scale 
operational monitoring. Newer versions of the JJ-FAST product apply 
a 1 ha minimum mapping unit and introduce improved detection 
methods (JICA and JAXA, 2023b), which might account for the high 
omission errors. However, these newer versions are not provided 
retrospectively (JICA and JAXA, 2023b). 

5.2. Improvements in detection timeliness 

The improved detection timeliness in the combined detections (up to 
16.5 days), compared to detections relying solely on Sentinel-1 data, 
was primarily due to the capability of the long-wavelength ALOS-2 
ScanSAR L-band data to detect forest disturbances characterized by post- 
disturbance tree remnants. Sentinel-1 shortwave C-band SAR is more 
prone to delayed detection at disturbance sites with tree remnants 
(Balling et al., 2023; Watanabe et al., 2021). Delayed detections arise 
when backscatter levels eventually decrease due to the removal of tree 
remnants, a process typically conducted for several land management 
practices. 

Our results confirm that combining multi-sensor satellite data leads 

Fig. 4. Producer (A) and User (B) accuracies (±standard error) for all forest disturbances detected in our study and detected by JJ-FAST using ALOS-2 ScanSAR data. 
Accuracies are given for all strata (stable and disturbed forest) and only for the disturbance strata of small- (<1ha), medium- (>= 1 ha – < 5 ha), and large-sized 
disturbance events (>= 5 ha). 

Table 6 
Producer and User accuracy for SAR-based disturbance detections of this study 
and optical-based disturbance detections of the Global Forest change product for 
2021.   

Producer accuracy ±
standard error [%] 

User accuracy ± standard 
error [%] 

SAR-based (Our study) 
Sentinel-1 63.3 ± 9.6 100 ± 0 
ALOS-PALSAR-2 

ScanSAR 
40.7 ± 6.3 98.6 ± 0.8 

Combined 78.9 ± 11.9 99.3 ± 0.4  

Optical-based (existing products) 
GLAD-L 15.4 ± 2.7 100 ± 0 
GFC 54.3 ± 7.6 100 ± 0  
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to faster detections, corroborating previous studies (Chen et al., 2021; 
Reiche et al., 2018; Shimizu et al., 2019). Improved detection timeliness 
stems from increased observation density and the complementing ability 
to detect forest disturbances, including those with and without tree 
remnants and across scales from small to large. 

5.3. Current and future L-band missions for tropical forest disturbance 
detection 

Similar to previous studies, we would like to emphasize the necessity 
for a continuous data stream of freely available L-Band SAR data 
(Musthafa et al., 2021), in addition to the freely available C-Band data 
stream from Sentinel-1. Providing free access for ALOS-2 ScanSAR data 
also for other regions will accelerate the uptake of the data and enable 
improved large-scale forest monitoring. 

Alongside ALOS-2, the SAOCOM mission has been providing L-Band 
data since 2018. However, freely accessible SAOCOM data is restricted 
to the European territory. Future acquisitions of L-Band SAR data over 
tropical forest environments are assured with three upcoming L-Band 
SAR missions, namely ALOS-4 PALSAR-3, NISAR, and ROSE-L (Motohka 
et al., 2019). The latter two missions will offer L-Band data free of 
charge, with spatial resolutions ranging from 3-50 m, and temporal 
resolution of up to 12 days (NISAR) and 6 days (ROSE-L) (ESA, 2023; 
NASA, n.d.), depending on the acquisition mode. The increased spatial 
resolution has the potential to overcome omission errors observed in this 
study for ALOS-2 ScanSAR-based disturbance detections, in particular 
concerning small-sized disturbance events. 

5.4. Comparison SAR-based and optical-based forest disturbance 
detection 

Comparing SAR-based disturbance detections of this study with op-
tical Landsat-based disturbance products (e.g., GLAD-L & GFC) (Hansen 
et al., 2016, 2013) revealed omission errors in all of the single SAR- 
based and optical-based products. In particular, the optical-based 

alerting system GLAD-L exhibited severe omission errors (PA: 15.4 ±
2.7 %), which were much larger than those in all of the SAR-based de-
tections (PA: Sentinel-1 63.3 ± 9.6 %; ALOS-2 ScanSAR 40.7 ± 6.3). 
SAR-based disturbance detections can outperform optical-based distur-
bance detections, especially in areas with persistent cloud cover (Doblas 
Prieto et al., 2023; Hirschmugl et al., 2020). However, in other regions, 
optical-based disturbance products can outperform SAR-based distur-
bance alerts (Doblas Prieto et al., 2023; Reiche et al., 2024) due to 
heightened sensor-specific omission errors in the SAR products, such as 
those caused by tree remnants (Balling et al., 2023, 2021; Watanabe 
et al., 2021). 

Additionally, the accuracy of large-scale disturbance detection is 
closely linked to the dominant forest disturbance types, which have 
different effects on either SAR or optical remote sensing data. Reiche 
et al. (2024) provided a sophisticated comparison of SAR-based (RADD) 
and optical-based (GLAD-L & GLAD-S) disturbance monitoring and 
alerting systems for various forest disturbance types (e.g., large-scale 
clearings, selective logging, forest fires, etc.) and found that by inte-
grating multi-sensor systems, it is possible to overcome sensor-specific 
omission errors and increase detection timeliness and confidence. 

6. Conclusion 

In this study, we mapped forest disturbances based on medium res-
olution ALOS-2 ScanSAR and high-resolution Sentinel-1 data and com-
bined both disturbance detections. The combined forest disturbance 
detections exhibited substantially decreased omission errors, with 
minimum false detection rates, compared to single-sensor disturbance 
detections. Long wavelength ALOS-2 ScanSAR data (L-Band) has been 
shown to be particularly beneficial for detecting large-sized disturbance 
events characterized by post-disturbance tree remnants, which 
frequently cause omission errors or delayed detections for short wave-
length SAR data like Sentinel-1C-Band. The medium spatial resolution of 
approximately 100 m limits the detection capability of ALOS-2 ScanSAR 
data to detect small-sized disturbances events (e.g., selective logging, 

Fig. 5. Forest disturbances mapped using ALOS-2 ScanSAR (L-Band) or Sentinel-1 data (C-Band) in a region showing disturbance events attributed to or charac-
terized by: tree remnants (A), smallholder agriculture (B), or selective logging (C). Backscatter time series from ALOS-2 ScanSAR (HH and HV) and Sentinel-1 data 
(VV and VH) are displayed in co- and cross-polarization, accompanied by the dates of detected disturbances. Additionally, pre-, and post-disturbance Planet imagery 
is provided. 
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logging roads, etc.), that are correctly detected by Sentinel-1 data. 
Combining disturbance detections from both sensors resulted in an 
average improvement in detection timeliness of 16.5 days compared to 
using Sentinel-1 detections alone. Forest disturbance detections based 
on ALOS-2 ScanSAR data resulted in considerably higher detection rates 
when compared with the ALOS-2 ScanSAR data-based JJ-FAST alerting 
product. The high omission errors of the JJ-FAST product (Version 3.0) 
are linked to the coarse 2 ha minimum mapping unit, resulting in missed 
detections, especially for small- and medium-sized disturbance events. 
Comparing the SAR-based (C- and L-Band) disturbance detections from 
this study with existing optical-based forest disturbance products 
(GLAD-L and GFC) suggested improved detection accuracies when 
combining SAR and optical data. This improvement is achieved by 
overcoming sensor-specific omission errors, which is particularly 
beneficial in challenging environments such as tropical forests. Up-
coming L-Band satellite missions, like NiSAR and ROSE-L, will offer 
freely accessible high-resolution L-Band SAR data, amplifying the po-
tential demonstrated by L-Band ALOS-2 ScanSAR data. Our study 
highlights the necessity for freely available SAR data at C- and L-Band in 
order to accurately detect forest disturbances, in particular disturbance 
types associated with high temporal dynamics and complex structural 
properties. 
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