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ABSTRACT
A dramatic decrease of biodiversity is currently questioning human-environment interactions that have shaped ecosystems over 
thousands of years. In old cultural landscapes of Central and East European (CEE) countries, a vast species decline has been 
reported for various taxa although intensive land cultivation has been reduced in favor of agroecological transformation, nature 
conservation and sustainable land management in the past 30 years. Thus, in the recent history, agricultural intensification 
cannot solely be discussed as the major driver controlling biodiversity. In cultural landscapes, we state that drivers and pres-
sures mainly emerge from the backyards of rural settlements that act as interconnected rural hotspots and therefore form an 
ecological metapopulation in which small-scale backyard habitats are capable of preserving and exchanging species pools of the 
historical cultural landscape. We further argue that shifting sociocultural norms significantly affecting the survival of source 
populations in rural hotspots and drastically limit their dispersal pathways, which triggers the degradation of the rural metapo-
pulation in recent times. Pressures of cultivation shift, landscape decoupling, structural homogenization, and use of technology 
and agrochemicals are identified as backyard ecological drivers negatively affecting biodiversity preservation, particularly in the 
surrounding rural landscape. Spatiotemporal dimensions of backyard pressures involving material fluxes, species exchange and 
retention, alternation of site conditions, and local genetic adaptation are delineated for different backyard features, including 
building structures, gardens, lawns, and paved grounds. Finally, we propose a future research agenda to quantify effects and 
trends of rural hotspots and followed patterns of altered species dynamics. We give an example on the use of satellite time series 
to remotely map rural backyard habitats and reveal significant spatiotemporal trends induced by small-scale human behavior 
that may lead to a new socioecological perception and stimulate actions to shape ecological dynamics emerging from the back-
yards of human settlements.

1   |   Introduction—The Cultural Context of 
Biodiversity Change

The world is observing a strong decline in biodiversity, which 
follows various anthropogenic ecosystem interferences. 
Recent knowledge about biodiversity loss is often referred to 
the decline of species numbers or species biomass owing to 
habitat loss, as indicated by time-series records of faunistic and 

floristic surveys, which show strong negative trends worldwide 
(Almond, Grooten, and Peterson 2020; Lister and Garcia 2018; 
Pereira et al. 2024; Sánchez-Bayo and Wyckhuys 2019; Wagner 
et al. 2021). Many factors are described on various taxa, i.e., 
pollution, hunting, land take, and habitat fragmentation 
through urbanization, colonization, industrialization, and/
or agricultural intensification where new human settlements 
carve large niches into natural landscapes and convert natural 
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ecosystems into anthropogenic ones (Abudulai et  al.  2022; 
Ritter  2011; Vitousek  1997). However, biodiversity decline 
is also present in (post-)industrial societies of, e.g., Europe 
where human land-use practices have already initiated eco-
system change at multiple scales over thousands of years and 
have finally shaped quasi-non-natural, widespread cultural 
landscapes (Agnoletti  2014; Antrop  2004). Although many 
ecosystems in Europe are thus affected broadly by agriculture 
and forest clearance since the Neolithic period, where today 
no untouched wilderness exists, rates of biodiversity loss are 
generally comparable to worldwide trends. Even for a hundred 
years now, nature conservation by designing ecological net-
works has become an important part of European land-use 
practice defining protected areas in which natural habitats 
become restored (Bingham et  al.  2021; Jongman  1995). The 
historical background of cultural landscapes thus may lead to 
complex interactions in a human-environmental system that 
still make it difficult to disentangle the underlying mecha-
nisms of biodiversity change and explain recent patterns of 
biodiversity decline.

In the European cultural landscape, trends and future dy-
namics of biodiversity are connected to an inherent long-term 
human presence forcing a historic coevolution of species de-
pending on human demography and technological develop-
ment with different responses on genetic, taxonomic, and 
functional levels of biodiversity. Consequently, biodiversity 
loss cannot solely be linked to processes of nature-to-culture 
conversion. In fact, agricultural transformation once led to 
faunal and botanical diversification through anthropogenic 
land-use change from 6.000 BP onward when agriculture was 
imported to Europe. It was the emergence of the European 
rural landscape in which agriculture initiated steady hab-
itat transformation between shifting land cultivation and 
livestock keeping in close proximity to human settlements 
that were founded in their current arrangement during me-
dieval times. Closely interconnected habitats with active 
nutrient relocation between extensive small-scale land use 
regimes of farmlands, (wood-)pastures, or heathlands ac-
companied by large forest clearance (between 80% and 90% 
of mixed-temperate forests) finally lead to a significant bio-
diversity peak at the beginning of the 19th century (Bignal 
and McCracken 2000; Fukarek 1979; Sukopp and Trepl 1987). 
Hence, statements such as “agriculture is the largest contribu-
tor to biodiversity loss” or “agriculture destroys biodiversity” 
(Dudley and Alexander  2017) are not generally true, partic-
ularly not in traditional cultural landscapes where shifting 
biodiversity baselines are an inherent characteristic of close 
human-environment interactions (Agnoletti  2014; Cevasco 
and Moreno  2012). Currently, biodiversity loss is hence re-
garded as a species decline from the last early 19th-century 
peak as a consequence of modern agriculture that facilitated 
the process of agricultural intensification at different stages 
nonuniformly distributed in Europe. Intensification com-
prises the substitution of traditional grazing cycles by stall-
feeding with newly introduced leguminous feed crops (e.g., 
Trifolium pratense, Medicago sativa), the implementation of 
mineral fertilizer that progressively replaced organic fertil-
izer such as dung, compost or sod cuts and the utilization of 
technology in form of agricultural machinery for land culti-
vation (Chorley  1981; Thompson  1968; Van Zanden  1991). 

Productivity growth was further accelerated following the 
unification of fields and site factors through technological 
management that reduced biodiversity due to structural ho-
mogenization, decreasing ecotone areas or reduced distur-
bance dynamics (Clough, Kirchweger, and Kantelhardt 2020; 
O'Brien, Prados, and La Escosura  1992; Van Zanden  1991). 
Agricultural intensification was rapid particularly during 
socialist land collectivization in Central-East Europe (CEE) 
(excluding Poland) between 1945 and 1965, initiating a wide 
application of pesticides, the development of advanced plant 
breeding, and an increased application of mineral fertil-
izer, which further increased farmland productivity in the 
second half of the 20th century (Skokanová, Falt'an, and 
Havlíček 2016).

1.1   |   A Contradicting View on Biodiversity Decline 
and Agricultural Intensification

The key factors triggering biodiversity loss from the begin-
ning 19th century onward can be clearly defined as agricul-
tural intensification mainly changing landscape architecture, 
decoupling nutrient cycles, introducing technological land 
management and distributing agrochemicals such as fertiliz-
ers and pesticides (Emmerson et al. 2016; Geiger et al. 2010). 
Interestingly, from a recent perspective, it should be recog-
nized that negative effects of human-environment interac-
tions have either finalized for decades or have significantly 
reduced since the early 1990s of the 20th century in CEE 
countries: Chemical fertilizer consumption was drastically 
reduced by 50%–74% from 1989 to 2019 (BMEL  2021; Stoate 
et  al.  2009; Sutcliffe et  al.  2015), while pesticide usage has 
exhibited a slightly negative trend over the last 30 years 
(BMEL  2021; EU  2021). Field sizes were decreasing due to 
the splitting of large parcels and land abandonment in the 
process of postsocialist privatization and decollectiviza-
tion (Griffiths et  al.  2013; Prokopová et  al.  2018; Sabates-
Wheeler  2002; Václavík and Rogan  2009). In a systematic 
review (Plieninger et  al.  2016) revealed that between 1990 
and 2015 the most prominent driver of European landscape 
change was land abandonment/extensification. Moreover, 
biodiversity-promoting measures (e.g., flower strips, step-
ping stone habitats, agroforestry), ecological-organic farming, 
precision agriculture, and smart farming have been strongly 
expanded and were steadily replacing conventional agricul-
tural practices toward a new paradigm to foster sustainable 
agroecosystems (Kernecker et  al.  2020; Moudrỳ et  al.  2018; 
Pawlewicz et  al.  2020; Tscharntke et  al.  2021). At the same 
time, atmospheric pollution negatively affected plant species 
diversity by deposition of, e.g., nitrogen and sulfur oxides were 
considerably reduced (Drosihn 2021).

From the early 1990s an increasing agroecological transfor-
mation, reduced inputs of harmful substances and more dein-
tensified land use practices can be concluded for the European 
cultural landscape that is, however, crucially contrasted by 
a dramatic and ongoing decrease of different biodiversity 
indicators in the last 30 years. For example, the prominent 
Krefeld study reports on a strong decline in total flying insect 
biomass by 76% between 1989 and 2016 in western Germany 
(Hallmann et  al.  2017). The results are confirmed across 
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various gradients of land-use intensities in, e.g., Germany 
where biomass decline was reported for arthropods by 67% 
(2008–2017) (Seibold et al. 2019), for hoverflies by 89% (1989–
2014) (Hallmann et  al.  2021), for nocturnal moths by 48% 
(1989–2018) (Roth et  al.  2021), or for carabid counts by 60% 
(1989–2011) (Skarbek, Kobel-Lamparski, and Dormann 2021). 
Species richness of butterflies is reduced by 20% (1990–2013) 
(Habel et al. 2016) or by 10% (2005–2015) (Rada et al. 2019), of 
carabids by 31% (1989–2011) (Skarbek, Kobel-Lamparski, and 
Dormann 2021) or by 25% (1994–2017) (Homburg et al. 2019). 
Further drastic decline can be observed in counts of farm-
land birds by 40% (1990–2018) (Kamp et  al.  2021), whereas 
species richness of vascular plants is only slightly decreasing 
by 6% (1990–2008) (Wesche et al. 2012) or by 1.9% per decade 
(1988–2017) (Eichenberg et  al.  2021). All long-term records 
are summarized for Germany, although there is strong evi-
dence for an ongoing species decline in all European countries 
(Burns et al. 2021; De Heer, Kapos, and Ten Brink 2005; Rigal 
et al. 2023).

Although agricultural intensification is the most discussed 
driver behind recent decline of insects, avifauna, and plant 
taxonomic and functional diversity (Carmona et  al.  2020; 
Habel, Samways, and Schmitt 2019; Rigal et al. 2023; Rumohr 
et  al.  2023), the temporal discrepancy between recorded 
negative biodiversity trends and actual statistics about in-
dicators that determine agricultural intensification such as 
usage of fertilizer, pesticides, mechanical tillage, land unifi-
cation, etc., becomes obvious in cultural landscapes, such as 
Europe. In fact, cereal yields as prominent intensification in-
dictor are stagnating for all CEE countries since 1990 (Brisson 
et al. 2010; Liira et al. 2008). In this respect, the fundamen-
tal incongruity is that most extinctions of species should al-
ready have occurred due to realized habitat loss long time 
ago, which is usually true for short-lived specialist species, 
e.g., insects, annual plants and for small fragmented habitats 
(Hanski and Ovaskainen 2002; Krauss et al. 2010). Conversely, 
ecological legacy effects might still be pending, most likely in 
cases of long-lived species, e.g., perennial plants, mammals 
on large and connected habitats where persistent extinction 
is often described as (co-)extinction debt in a metapopulation 
context (e.g., Culbert et al. 2017; Deák et al. 2021; Kuussaari 
et  al.  2009; Löffler, Poniatowski, and Fartmann  2020). In 
fragmented landscapes, delayed (co-)extinction is facilitated 
by increasing habitat numbers and area, decreasing habitat 
isolation and temporally close habitat destruction time (with 
variable time spans of debt duration between 5 and 1000 years) 
(Figueiredo et  al.  2019; Hanski and Ovaskainen  2002; 
Hylander and Ehrlén 2013). It is clearly evident that biodiver-
sity dynamics can only be understood against this background 
of patterns and processes concerning the dynamic configura-
tion of remaining habitat fragments in a landscape context. In 
order to establish a causal link between ecosystem change and 
biodiversity loss it is thus of utmost importance to understand 
agriculture as part of a spatiotemporally interconnected cul-
tural landscape that particularly includes rural settlements as 
old remnants of a historical highly diverse background, their 
ecological integrity and multitrophic, multispecies exchange 
pathways in which historic and recent anthropogenic activi-
ties have evolved over thousands of years and thus stimulating 
biodiversity over complex agroecological networks. For this 

purpose, we frame the hypothesis of a degrading rural meta-
population where villages act as remaining rural hotspots that 
are currently under pressure considering recent sociocultural 
change and outline a research agenda to better monitor the 
influence of cultural drivers and gain knowledge to address 
conservation measures for future biodiversity control.

2   |   The Rural Hotspot Hypothesis

In a rural landscape context, the survival of local species pools 
can only be guaranteed over long time periods by connected 
networks of source habitats that are embedded in a metapop-
ulation structure and thus permanently provide recolonization 
pathways. We state that backyard habitats in rural settlements 
act as anchor points for a historically interconnected metapop-
ulation that represents the ecological network of a grown cul-
tural landscape. Therein, backyard habitats consist of green 
features such as home gardens, lawns, trees, and shrubs and 
also include structural features such as buildings, playgrounds, 
walls, animal enclosures, ponds, tracks, debris, and storage 
areas. Their small-scale feature variation provides diverse eco-
logical niches for plants and animals that are capable of gen-
erating unique and stable habitats even within an intensively 
used agricultural landscape. For example, some wild birds are 
shown to occupy mainly small and stable breeding territories 
in south-east England's gardens (71.5%) even though these hab-
itats only cover 2% of the total area (Mason 1998). In intensively 
used areas, rural settlements already have been recognized as 
the most important habitat for the conservation of many seden-
tary farmland birds (Cannon 1999; Havlíček et al. 2021; Rosin 
et al. 2016; Šálek, Bažant, and Żmihorski 2018). Moreover, home 
gardens exhibit a remarkably high small-scale plant species 
diversity in comparison to surrounding seminatural habitats 
(Thompson et al. 2003). Backyard habitats are characterized by 
generally low population sizes and related microhabitats owing 
to the irregular practice of maintenance and abandonment. This 
way, private gardens supply a wide range of diverse resources, 
particularly for pollinating insects that accumulate in hotspots 
of high abundances and species numbers against a background 
dominated by intense farmland (Samnegård, Persson, and 
Smith 2011). There is evidence that also mammals benefit from 
the introduction of supplementary food and structure resources 
leading to higher richness, diversity, and abundance compared 
to wild sites (Hansen et al. 2020; Parsons et al. 2018).

Although the total area amount of backyard habitats is generally 
small, their distribution is ubiquitous and relatively dense, en-
abling small linkage paths, across all types of land use (Figure 1). 
This way, backyard habitats are able to form ecological networks 
for holding sink and source dynamics of species dispersal in a 
metapopulation framework (Rudd, Vala, and Schaefer  2002). 
They represent nodes of high structural complexity and multi-
functional diversity in which genetic diversity of the historical 
cultural landscape has been preserved over centuries (Galluzzi, 
Eyzaguirre, and Negri 2010). In this regard, they are considered 
as hotspots for agro-biodiversity since they are predominantly 
remnants of historic rural settlements and related extensive 
land use practice. As an example of historical continuity, scat-
tered old trees in traditional meadow orchards nowadays rep-
resenting keystone ecological structures for the preservation of 
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biodiversity that particularly affect surrounding areas in agri-
cultural landscapes (Horak et al. 2013; Manning, Fischer, and 
Lindenmayer  2006; Plieninger et  al.  2015). Rural settlements 
thus generate highly structured and interconnected backyard 
habitats that have already proven to control multiple levels of 
biodiversity, considerably affecting the landscape in which they 
are integrated.

Significant sociocultural changes have impacted the rural 
metapopulation with dramatic consequences for farmland 
biodiversity that have particularly begun for CEE countries 
in the early 1990s after the change of communist political sys-
tem and followed EU accessions. After 1990, modernization 
of farmstead and villages have shown to entail significantly 
higher contributions to bird species decline than agricultural 
intensification itself (Rosin et  al.  2021), although there is still 
ongoing debate about underlying mechanisms to also link field 
nesters decline (Hertzog et al. 2022). In the past three decades, 
an ongoing harmonization of socioeconomic conditions be-
tween urban and rural areas have most likely further affected 
human-environment interactions in backyard habitats that are 
still relatively unexplored. In rural settlements, increased wel-
fare induces improved living standards which in turn change 
social norms that are controlling human-induced environmen-
tal pressures such as effects of increased prosperity on build-
ing constructions, renovations and farmstead design as well as 
changing patterns of work and organization of time on animal 
keeping, cultivation practice and garden use. Their implications 
for structural and functional modifications of backyard habitats 
and arising consequences for biodiversity on the landscape scale 
are still being underestimated. Thus, revealing the spatiotempo-
ral dimensions of drivers and pressure indicators in the context 
of backyard metapopulations can be the basis for a new research 

agenda to support and schedule future conservation measures 
that involve social, economic and environmental factors into an 
integrated rural landscape approach.

3   |   Drivers and Pressure Indicators for Degrading 
Rural Hotspots

3.1   |   Use of Agrochemicals

An uncontrolled availability and hence increased household ap-
plications of mineral fertilizers gradually decreases fine-scale 
backyard habitat diversity by aligning nutrient conditions, par-
ticularly converting nutrient-poor niches to highly productive 
sites in private gardens. Artificial fertilizers undermine histor-
ically established and closely linked nutrient cycles that were 
previously activated from litter or dung composting. Currently, 
many gardens are already considered as over-fertilized (Cameira, 
Tedesco, and Leitao 2014). In particular, lawns are exposed to 
massive amounts of fertilizer. It was shown that the per hectare 
input of fertilizers to maintain vital and robust lawns can exceed 
chemicals added for food production in the U.S. (Robbins and 
Sharp  2003). There is evidence that nitrogen and phosphorus 
leaching from urban lawns affects eutrophication of ground-
water and open water bodies (Groffman et  al.  2004; Sharma 
et al. 1996). Comparable studies are surprisingly rare for CEE 
rural landscapes. (Kalmykova et al. 2012) remarks that there are 
no statistics on mineral fertilizer use for nonagricultural pur-
poses to determine urban phosphorus budgets in Sweden. There 
are a few studies pointing to the still underestimated role of 
household fertilizer applications, e.g., fertilizing in Austrian gar-
dens contributes to 12% of environmental nitrogen flows (Pierer, 
Schröck, and Winiwarter 2015) or vegetable gardening with an 

FIGURE 1    |    Spatial distribution of backyard habitats, shown as polygon centroids of garden areas, embedded in a rural landscape that is main-
ly agriculturally used; boxplot of polygon areas derived from biotope mapping in 2009, Landesamt für Umwelt (LfU) und Landesvermessung und 
Geobasisinformation (LGB) Brandenburg, Germany.
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area coverage of 3.5% is responsible for 27% of total nitrogen elu-
viation (Kliebsch, Müller, and Van Der Ploeg  1998). However, 
up to date, there are no statistics available about temporal trends 
of private fertilizer use and its implications for species loss on a 
landscape scale.

Furthermore, systematic empirical surveys on trends and ef-
fects of private pesticide usage are also missing, particularly 
with regard to rural biodiversity (Robbins, Polderman, and 
Birkenholtz 2001). It is known that pesticide usage on private 
lawns or gardens has strong negative impacts on plant spe-
cies richness (Bertoncini et  al.  2012), soil microfauna (Byrne 
and Bruns  2004), and flower visiting insects (Muratet and 
Fontaine  2015), with even potential threats to human food 
safety and health (Meftaul et  al.  2020). However, their use is 
only partly regulated (e.g., prohibition of Glyphosate for private 
use, September 2021, Germany) and can hardly be monitored by 
environmental agencies. An increased awareness of negative ef-
fects of agrochemical applications can only be achieved by shift-
ing social norms toward an increasing motivation for a moral 
responsibility and reconnectivity to nature that confesses back-
yards as wildlife refuges (Goddard, Dougill, and Benton 2013).

3.2   |   Cultivation Shift

There are potential socioeconomic drivers to facilitate land use 
change from private cultivation (food gardens, flower beds, or-
chards) and animal keeping (chicken yards, hay barns, and sta-
bles, feeding grounds) toward extended monofunctional areas 
(lawns, paved grounds, gravel yards). Such areas can be less 
labor-intensive since they fulfill mainly esthetic functions and 
allow for uniform management. In this regard, unmanaged 
ruderal vegetation and small deposit niches such as woodpiles, 
dung, and compost heaps or debris areas are consequently re-
moved to homogenize new esthetic standards and replace forms 
of land use that are no longer essential for life care. The substitu-
tion of cultivation by aestheticization represents an ongoing lev-
eling of rural–urban gradients, particularly with regard to forms 
of labor, household incomes, industrial food production, and 
private lifestyle concepts (holiday travels, digital media enter-
tainment, and social representation). In general, the time held 
back for backyard management and active use is continuously 
reduced as a direct consequence of the socioeconomic align-
ment of living standards and lifestyle requirements between 
rural and urban settlements. Although, there is a known trend 
of increased suburbanization or periurbanization since the early 
1990s in CEE countries (Shaw, van Vliet, and Verburg  2020; 
Szmytkie 2020), the effective range of changing lifestyle exten-
sion into remote rural villages is still unclear. Their negative 
effects on ecological networks and species pools, however, are 
highlighted (Holgerson et  al.  2018; Jokimäki, Suhonen, and 
Kaisanlahti-Jokimäki 2021; Rosin et al. 2021). One of the most 
vivid symbols of shifted social norms reflecting modern life-
style is the lawn (Ignatieva et  al.  2015). Its extent is growing, 
e.g., lawns have almost doubled from 12.6% to 22.5% relative 
cover between 1960 and 2015 in three Swedish cities (Hedblom 
et al. 2017). However, spatiotemporal trends of rural lawn areas 
and their managed plant communities are rarely documented 
although there is evidence that floristic lawn diversity is influ-
enced by socioeconomic drivers (Wheeler et al. 2017). Recently, 

further trends have arisen to replace living lawns with synthetic 
grass for enlarging clean and easy-to-maintain green areas, par-
ticularly in urban landscapes (Francis 2018).

One important aspect of aestheticization is the introduction 
of non-native plants into backyards. The magnitude of global 
exchange and hence local availability of exotic species, partic-
ularly ornamental plants for private garden arrangements, is 
rapidly increasing following higher risks of negative ecological 
impacts such as biotic homogenization (Blouin, Pellerin, and 
Poulin  2019; Simberloff et  al.  2013; Van Kleunen et  al.  2015). 
Since plants in their native environment provide highly diver-
sified habitats for many insects, birds, and mammals due to 
long-term coevolution, their replacement by non-native plants 
may entail species loss if pollinator behavior is not adaptable or 
opportunistic (possibility of home range expansion) (Burghardt 
et  al.  2010; Pardee and Philpott  2014; Tallamy, Narango, and 
Mitchell 2021) or even leads to population collapse if non-native 
plants become dominant (> 30% plant biomass) (Narango, 
Tallamy, and Marra 2018). Recently, a new ecological paradigm 
has been discussed recognizing non-native plants as additional 
pollinator resources, particularly for generalist species in tem-
perate zones, when native plants become scarce at the end of the 
growing season (Koyama et al. 2018; Salisbury et al. 2015; Staab, 
Pereira-Peixoto, and Klein 2020). More evidence is needed to un-
derstand the evolutionary history of food webs that has been es-
tablished for backyard plant species compositions, particularly 
with regard to coevolving specialist species.

Paved grounds are an extreme example of intended cultivation 
shift and induced habitat loss through soil sealing in back-
yards. There is evidence of increased soil sealing rates also in 
rural areas by 20%−25% (1994–2006) in Italy (Munafò, Salvati, 
and Zitti  2013), by 33% (1987–2013) in Flanders, Belgium 
(Vanderhaegen and Canters 2016) or an average loss of land of 
0.6% (2006–2012) in periurban areas across Europe (Naumann 
et al. 2019). However, in the underlying studies, there is no dis-
tinction made between patterns of urbanization leading to soil 
sealing through land taken by buildings or infrastructure and 
backyard processes stimulated by internal cultivation shifts. 
There seems to be a general confusion in defining and moni-
toring the term soil sealing, which is often interchanged with 
urban growth, neglecting fine-scale land conversion processes 
in the backyards of settled areas. Such processes, addressed as 
“hidden urbanization” can result in a strong increase in imper-
vious surface (by up to 56% between 1997 and 2016) as shown 
in Lower Saxony, Germany (Strohbach et al. 2019). Until now, 
there are no systematic studies available about temporal trends 
of backyard cultivation shifts potentially accelerating soil seal-
ing rates in rural landscapes of CEE countries.

3.3   |   Landscape Decoupling

To enable source populations that can preserve and spread spe-
cies in a metapopulation context, backyard habitats need to be 
integrated into a metapopulation's dispersal network. Spatial 
connectivity and possible dispersal pathways between subpop-
ulations play an important role in the stability and persistence 
of metapopulation systems. A continuous integration of back-
yards into the surrounding landscape matrix, hence, enhances 

 20457758, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70811 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [12/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 15 Ecology and Evolution, 2025

network continuity by establishing interlinked keystone hab-
itats and triggering species exchange. However, due to differ-
ent isolation effects, backyards become increasingly decoupled 
from their surroundings, in particular as a recent phenomenon 
in rural areas (Figure  2). Backyard isolation can be physical 
through property boundaries of hedges, fences, or walls to in-
tentionally protect and mark the ownership of land. They act as 
less permeable barriers against the movement of reptiles, am-
phibians, or mammals. For example, the frequency of Common 
Toad, Slow-worm, and Grass Snakes occurrence is negatively 
correlated to artificial boundary features based on 3806 surveys 
in British gardens (Humphreys et al. 2011). In Australian subur-
ban areas, backyard faunal wildlife activity exhibits the stron-
gest negative effects when the fence material is closed (Fardell, 
Pavey, and Dickman 2022).

There is, furthermore, a functional decoupling when nutrient 
cycles are broken (e.g., litter input from the rural environment 
for animal bedding and garden fertilizing), dispersal paths 
are interrupted (e.g., free animal movement between property 
boundaries and villages) or subsistence farming is abandoned 
(e.g., individual land management for food production). The 
separation of functions between backyards and the surrounding 
landscape is directly limiting dispersal options by decreasing 

habitat continuity beyond the boundaries of rural properties. 
It was shown that plant species diversity on grasslands is sig-
nificantly associated with the distance to the nearest histori-
cal village (unimodal relationship to 19th-century locations), 
but not to present-day villages, indicating a strong influence of 
traditional grazing practice to habitat connectivity reflecting 
the movement patterns of livestock in the historical landscape 
(Reitalu et al. 2010). In contrast, ornamental lawns are species-
poor, mostly comprising the same species composition, and thus 
do not represent native environments in which they are planted 
(Ignatieva et  al.  2015). Arthropod diversity, abundance, and 
community composition are consequently higher with fewer 
lawn or grass-free lawns, but also with larger vegetable gardens 
and more cover by woody plants that represent their natural 
background (Pardee and Philpott 2014; Smith et al. 2015).

Structural isolation additionally occurs in cases where a func-
tional separation is supplemented by diverging management 
in which vegetation growth and phenology are detached from 
abiotic, natural site factors by implementing artificial irrigation, 
fertilization, illumination, and pest control. Decoupled envi-
ronments of novel site compositions (e.g., altered seasonality 
and day/night periodicity) do not necessarily provide natural 
source populations but have the potential of creating isolated 

FIGURE 2    |    Changing village landscape integration on the basis of digital orthophotos comparing the years 1953, 1992, and 2023 in Brandenburg, 
Germany. Former continuous integration of village backyard cultivation and subsistence farmland was already fully replaced by segregated bound-
aries between rural settlement areas and the surrounding large, uniform agricultural fields in 1992. While field unification remains constant, rural 
settlement areas change in extent, building density, and form of use from 1992 to 2023.
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subpopulations through genetic local adaptation (Homola 
et al. 2019; Merckx et al. 2021). In fact, genetic shifts between 
species beyond the range of phenotypic plasticity can create 
genotypes that are incompatible with their original site condi-
tions. Genetic change, thus, may not disperse into the natural 
environment back again to avoid developmental traps if, e.g., 
photoperiodic thresholds for controlling life-cycle development 
or temperature thresholds regulating growth mismatch actual 
background cues.

3.4   |   Structural Homogenization

In the past decades, lifestyle factors, sociocultural norms, and 
the socioeconomic background have changed in traditional 
rural environments of CEE countries. Normative standards of 
cleanliness and representativeness are developing in step with 
growing prosperity. Processes of urbanization additionally 
spreading into the countryside while remote villages are af-
fected by population loss and aging (Antrop  2000). As a con-
sequence, backyards have become functionally homogenized 
due to village modernization, renovation, and reorganization 
of human land use interactions affecting farmland biodiversity 
in rural landscapes (Antrop 2000; Rosin et al. 2021; Żmihorski 
et  al.  2020). This contrasts the fact that old farmsteads with 
animal and plant production are key habitats and provide bio-
diversity hotspots for farmland birds (Hiron et al. 2013; Rosin 
et al. 2016; Šálek, Bažant, and Żmihorski 2018). Also, floral di-
versity and related arthropod species richness can be bound to 
small-scale variable microhabitat conditions of human-made 
artifacts as described in wall ecology (Francis 2011) or animal—
building interactions (de Wilde and de Souza 2022; Meier, Raps, 
and Leistner  2020). Moreover, the multitude of backyard fea-
tures such as wood stacks, compost and debris heaps, leaf piles, 
ponds, trees, hedges, gardens, or areas for animal husbandry 
create an integrated small ecosystem with specialized nutri-
ent, edaphic, microclimatic, and biotic conditions that provide 
a wide range of resources for biodiversity regulation (Davies 
et al. 2009; Galluzzi, Eyzaguirre, and Negri 2010). A structural 
homogenization can lead to local species extinction. However, 
the structural variety and spatial heterogeneity of backyard fea-
tures as microhabitats for plants and arthropod species and for 
bird nesting are still being neglected by conservation policies.

Today, the removal of nesting sites in modern and renovated 
building architecture and the decrease of foraging grounds due 
to structural homogenization are identified as the main causes 
of an ongoing bird species decline (50% decline in building nest-
ers, e.g., sparrows, swallows, owls in new and renovated houses) 
(Rosin et al. 2020). The composition of traditional village flora 
is still undergoing a considerable trend of homogenization to-
ward common ubiquists that are expected in urbanized areas, 
comparing the periods 1980–1983 and 2004–2005 in North 
Rhine Westphalia, Germany (Huwer and Wittig 2013) or detect-
ing a species decline by 31% between 1976 and 2012 in Hessen, 
Germany (Gregor et al. 2016). Even though the floral diversity 
of backyards may be still high, there is evidence that variation 
in structural metrics, for example, tree height and density, can 
be lower between yards than among natural areas, as shown 
in North American yards (Pearse et  al.  2018). There is still a 
great need for research particularly, revealing temporal trends 

of backyard structural transformation along with social drivers 
that influence management decisions and alter ecological out-
comes and ecosystem services in an integrative socioecological 
system (Cook, Hall, and Larson 2012; Hostetler 2021).

3.5   |   Use of Technology

Technology and automation have already entered backyards 
introducing new practices of intensive management. A recent 
development are robotic and autonomous mowing machines 
with expected annual growth rates of 21.9% (Grand View 
Research  2019). In order to enable a forward movement, such 
systems need to keep vegetation below an optimal cutting height 
resulting in almost permanent mowing (1–3 times per week) 
(Hossain et al. 2022; Sportelli et al. 2021). Robotic lawnmowing 
obviously entails drastic consequences for species diversity since 
the number of spontaneous flowers and adapted pollinators cru-
cially depend on the mowing frequency. Mowing less frequent 
provides more time for flower development which results in a 
significant diversification of plant community composition 
(Chollet et al. 2018; Sehrt et al. 2020) and, hence, increases, e.g., 
bee species richness (Lerman et al. 2018; Wastian, Unterweger, 
and Betz  2016) or arthropod biomass and species numbers 
(Wintergerst et  al.  2021). It was shown that heteropteran bio-
diversity was reduced by 50% in each monthly mowing event 
on urban grasslands (Unterweger, Rieger, and Betz  2017). 
Furthermore, a decrease of traditional heterogenous mowing 
operations (spatiotemporal asynchrony) negatively affects sur-
vival rates and resource availability for rural hay meadow inver-
tebrates (Cizek et al. 2012).

Automatic irrigation systems have the potential to homoge-
nously distribute water resources for maintaining high pro-
ductive green backyard areas. Regular water provision, thus, 
contrast less productive xeric sites such as dry grasslands that 
are known to bear high species numbers due to higher compet-
itive pressures (Cook and Faeth  2006). Irrigation can further 
increase grass density and evaporation rates, which leads to 
temperature modifications by shading and cooling. Such mi-
croclimate alterations can affect the development of thermoph-
ilous insects (Andrey, Humbert, and Arlettaz  2016; Humbert, 
Delley, and Arlettaz 2021); however, the mechanism impacting 
arthropod communities are still poorly understood, particularly 
with regard to rural backyards. Many ecological implications 
behind the advancement of modern management practice into 
backyards are still understudied. This regards for example noise 
pollution and gas emission from application of machinery or 
potentially negative effects of plastics for, e.g., bed borders or 
weed foils.

4   |   Research Agenda

4.1   |   Quantitative Analyses of Rural Hotspot 
Dynamics

According to the large number of various drivers that have been 
put pressure on different levels of biodiversity in backyard habi-
tats, rural hotspots may have a significant impact on biodiversity 
dynamics in complex cultural landscapes. Empirical evidence 
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is needed to determine the actual magnitude of their contribu-
tion to biodiversity change within the last three decades, par-
ticularly in comparison to agricultural land use, and hence to 
increase our potential influence to promote biodiversity from 
the backyard of rural settlements. Against this background, in 
order to identify and describe the rural hotspots and to delin-
eate the rural metapopulation under changing socioeconomic 
backgrounds and arising management practice, local-scale, spa-
tiotemporally explicit, and temporally repeated observations of 
rural backyard habitats, their regional-scale connectivity and 
their cultural-historical genesis as part of a rural landscape 
are urgently required. For this purpose, direct measurements 
and field surveys of geochemical fluxes (e.g., the amount and 
type of fertilizer and pesticides used), of intensities of physical 
change (e.g., niche deconstruction from buildings, renovations, 
pavements), of recent and retained species diversity (e.g., spe-
cies composition of lawns, trees, shrubs, gardens, soil seed bank 
reservoirs, and faunal surveys of, e.g., birds, insects, mammals) 
and of plant traits (vitality, phenology, life-cycle, numbers of 
flowers and fruits, growth) have to be combined with recent and 
historic social statistics of socioeconomic factors (e.g., household 
incomes, employment) and sociocultural factors (e.g., environ-
mental perception, time management, education) but also need 
to consider habitat continuity in a metapopulation network in 
which species dispersal beyond backyard borders are mapped 
analyzing habitat connectivity and material fluxes that extent 
backyard processes into the surrounding landscape. Since back-
yard habitats are part of legally protected spaces of privacy, 
citizen science projects have the potential to advance scientific 
surveys that can be complemented by environmental data col-
lected by amateur naturalists. Ecological applications for citizen 
scientist are already versatile (Silvertown 2009), e.g., map trace 
metal contaminants in garden soils (Taylor et al. 2021), report 
problematic invasive plants (Dehnen-Schmutz and Conroy 2018; 
Encarnação, Teodósio, and Morais 2021) or collect bird watches 
(Sullivan et al. 2014). However, they still need to be standardized 
and coordinated to systematically monitor temporal trends and 
related biodiversity dynamics that are controlled by ecological 
networks within rural metapopulations.

Further opportunities to indicate backyard drivers are indirect 
measurements from remote sensing technologies that are ca-
pable of quantifying surface properties on the basis of varying 
spectral information induced by interacting and recorded solar 
radiation. Remote sensing provides time series of satellite im-
agery that map spatially explicit reflectance signatures of plant 
species and habitats, vegetation optical traits, and surface ma-
terial compositions or even of direct chemical, structural, or 
taxonomic diversity approximations (Laliberté, Schweiger, and 
Legendre 2020; Rocchini et al. 2018; Rossi et al. 2021). Image 
analysis and derived information on vegetation characteristics is 
already widely applied for nature conservation purposes to mon-
itor habitats in protected area networks (Nagendra et al. 2013), 
advance biodiversity science (Cavender-Bares et  al.  2022), en-
hance functional ecology (Asner and Martin 2016), or assess the 
impacts of land use change (Haines-Young 2009). Remote sens-
ing of backyards is currently limited to mapping the distribution 
of private gardens (Baker and Smith 2019; Mathieu, Freeman, 
and Aryal 2007) and to classifying land cover units using high-
resolution imagery (Wagner and Egerer  2022) in urban green 
areas. However, there is still a lack of tracking change of complex 

backyard structures utilizing image time series analyses, partic-
ularly, including backyards in rural settlements of CEE coun-
tries (Shahtahmassebi et al. 2021).

4.2   |   An Example of Backyard Process Delineation 
Using Remote Sensing Proxies

Backyard locations can be sampled using satellite time series 
to identify spatially and temporally explicit trends that indi-
cate patterns and dynamics of backyard processes, essentially 
to identify potential causes of biodiversity change. Gardens, for 
example, are distinctively defined green backyard features that 
can be used to contrast anthropogenically managed habitats 
with undisturbed vegetation of the local surrounding rural land-
scape. For this purpose, satellite based vegetation trends were 
modeled between 1990 and 2024 using the normalized differ-
enced spectral vegetation index (NDVI) (Tucker  1979) to map 
plant biochemical and physiological variation. Garden areas are 
therein characterized by trends of greening when the NDVI is 
significantly increasing and by trends of diversification when 
the within year NDVI variance is significantly increasing. The 
trend significance is calculated after detrending known back-
ground trends of, e.g., greening (Piao et al. 2020) or phenology 
shift (Cleland et al. 2007) using abandoned land use areas as ref-
erence for unmanaged habitats. We used an area-wide biotope 
type mapping for the federal state of Brandenburg to extract the 
polygon centroids of garden areas and closest abandoned land 
use polygons (Figure 2). For each centroid all available annual 
Landsat 5 & 8 NDVI values within the growing season between 
May and September only around villages and hamlet centers 
(radius = 1 km retaining 24.197 centroids) were extracted. In 
each growing season from 1990 to 2024 the average (greening) 
and the variation (variance) of NDVI values were derived for 
each centroid and modeled as temporal regression after remov-
ing local trends by subtracting greening and variance trends 
of closest abandoned land use polygons. Thus, a landscape de-
coupling of garden areas can be proven if the slope of the re-
spective regression line is statistically significant (p < 0.05) after 
detrending. Due to differing sensor characteristics, we ana-
lyzed the two sensors separately resulting in two time periods 
1990–2011 (Landsat 5) and 2013–2024 (Landsat 8). For the area 
of Brandenburg, it reveals that from 1990 to 2011 17.4% and from 
2013 to 2024 10.93% of all garden centroids exhibit two signifi-
cant trends, in both greening and diversification, while in 71.05% 
(1990–2011) and in 76.78% (2013–2024) of all cases at least one 
trend is significantly different from the local background trend, 
which indicates a strong tendency of garden decoupling in the 
considered time periods.

Significant NDVI trends for garden areas can additionally be 
partitioned into clusters according to the trend direction and 
strength that are defined by the algebraic sign and magnitude 
of the slope derived from the detrended NDVI regression line 
(Figure 3). Based on these slopes of greening and within-year 
NDVI variation, garden areas can be assigned to clusters that 
are postulated to represent temporal backyard dynamics of (A) 
intensification that is characterized by decreasing NDVI vari-
ability due to plant species homogenization in, e.g., ornamental 
lawns or coniferous hedges and a positive greening trend due 
to irrigation, agrochemical usage or land-use conversion, of (B) 
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naturalization that also shows a positive greening trend when 
paved or bare grounds are getting replaced by new vegetation 
canopies but also indicating an increased species diversity rep-
resented by higher phenological variation, of (C) artificializa-
tion that follows a reduction of green features and is further 
accompanied by decreasing species and phenological variation 
due to, e.g., sealing into homogenous paved grounds and of (D) 
ruralization that entails negative greening trends due to variable 
garden usage for, e.g., private farming or animal keeping, which 
additionally increases seasonal variability of NDVI signals due 
to small-scale land use patterns.

Interestingly, the relative contribution of designated hypothetical 
process categories (A–D) is not stable over time, e.g., artificializa-
tion was important from 1990 to 2011 (21%) and reduced from 2013 
to 2024 (8%) while naturalization was doubled from 9% to 18% 
comparing both time periods. Further quantitative validation is 
however needed to derive a realistic evaluation of actual backyard 
management as proposed in the research agenda. Irrespective 
of process definitions, NDVI trend analysis reveals both, garden 
trends that are not in accordance with expected regional variations 
caused by, e.g., climate change dynamics and gardens that form 
clusters in which a coherent history of management activities is 
represented. Thus, human-environmental interactions can be de-
lineated as impacts that are decoupled from quasi-natural process 
dynamics. NDVI clusters can additionally occur as spatial patterns 
in terms of local-structural similarities (e.g., north–south intensifi-
cation gradient Figure 3) or as random spatial distributions making 
each backyard part of a unique individual behavior. It illustrates 
that backyard dynamics in rural settlements can be made visible 
over time and in space whereby the underlying mechanisms of a 
changing rural metapopulation systems are highly influenced by 

individual living conditions that can vary significantly within the 
neighborhood and hence creates multiple overlapping temporal 
dynamics at spatially small scales. In the future, long-term retro-
spective image analyses using VIs will be based on the next gen-
eration spatially highly resolved satellite time series (0.5–3 m) that 
will allow for a more accurate delineation of different backyard 
features, particularly extracting building structures and differen-
tiating between management practices and habitat types and their 
spatial distribution. In this regard further indicators to monitor 
backyard metapopulations via remote sensing proxies need to be 
defined that extract information from phenological traits compar-
ing seasonal harmonic parameters (e.g., amplitude, length, and 
shift) (Donnelly, Yu, and Liu 2021; Tian et al. 2020), from plant 
community composition discriminating species and habitats 
(Shahtahmassebi et  al.  2021), from direct diversity estimations 
mapping spectral heterogeneity (Rocchini et al. 2010) or from mor-
phological features extracting surface texture, vegetation struc-
ture and building architectural style (Goodwin et al. 2009; Ossola 
et al. 2019). Finally, time series analyses must include varying so-
cioeconomic stages of development to reveal interdependencies of 
human behavior and biodiversity responses in a rural landscape, 
particularly to foster region-based measures to maintain and rec-
reate a connected backyard metapopulation.

5   |   Conclusion

5.1   |   Toward a New Socioecological Mindset

There are evidently versatile pressures on the diversity of species 
and habitats emerging from the backyards of rural settlements. 
Their number and spatiotemporal dynamics may outrank effects 

FIGURE 3    |    Significant (p < 0.05) Landsat 5 & 8 NDVI greening and within-year variance trends from 1990 to 2024 of background detrended rural 
garden centroids showing n = 6266 gardens (25.9% of all gardens that have two significant trends in at least one time period 1990–2011 [Landsat 5] 
and 2013–2024 [Landsat 8]); axes show the slopes of the detrended NDVI regression lines; on the maps each point represents an actual garden loca-
tion with significant trend that can be assigned to one of the 4 trend clusters (A–D) and spatially mapped to reveal spatial structures in the federal 
state of Brandenburg, Germany.
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following agricultural intensification, particularly in an intercon-
nected rural landscape of the past 30 years. Measuring and mon-
itoring rural hotspots will provide new indicators to disentangle 
significant drivers and to build future scenarios that describe 
recent trends of biodiversity decline as response to a changing 
rural metapopulation in old cultural landscapes. In this regard, 
backyard research, exemplifies direct links between human-
environmental interactions and hence opens up new options for 
private engagement, participation, and active involvement in na-
ture conservation. It deploys key feedback loops, which reveals bio-
physical implications of backyard management and thus enable a 
reflection of story lines to control biodiversity (Dougill et al. 2006). 
Feedback learning can motivate to adapt social norms toward sus-
tainable and environmental-friendly practice, advance ecological 
outcomes of individual behavior and finally to empower commu-
nity diffusion through new socioecological standards (Cook, Hall, 
and Larson 2012; Goddard, Dougill, and Benton 2013). We do not 
always need to change the world by addressing heteronomous ac-
tions such as agricultural land use practice or large area protection 
networks. In fact, we can change our backyard behavior, therein 
stimulate environmental education and increase the awareness 
for local diversity to finally enable new knowledge about backyard 
biodiversity and its implications for future conservation strategies 
(Kim and Byrne 2006). There is already evidence that urban green 
spaces can support the conservation of mammals, avifauna or in-
sects (Daniels and Kirkpatrick 2006; Hunter and Hunter 2008; Van 
Helden, Close, and Steven  2020) while creating interconnected 
habitats within the residential ecosystem (Goddard, Dougill, and 
Benton 2010). However, there is an apparent lack of rural hotspot 
research considering effects of changing socioeconomic condi-
tions on village life and associated backyard processes that highly 
control patterns of connectivity and integrity in the broad context 
of old cultural landscapes.
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