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Abstract—This paper evaluates the recently introduced phase
histogram (PH) technique for estimating forest height and vertical
structure using theoretical modeling and synthetic aperture
radar (SAR) data experiment, and makes comparison with the
well-known SAR tomography (TomoSAR) technique. By jointly
exploiting multiple SAR images, TomoSAR allows for direct
imaging of the three-dimensional structure of the vegetation,
from which biophysical parameters such as forest height and
terrain topography can be extracted. The PH technique assigns
each pixel in a SAR interferogram to a specific height bin based
on the value of the corresponding interferometric phase, thus
allowing for the estimation of the forest vertical structure by
accumulating pixels magnitudes within a given spatial window.
The two techniques are here compared on an experimental
basis using monostatic L-Band tomographic data from the ESA
campaign TomoSense, flown in 2020 at the Eifel Park in North
West Germany, including 30 +30 monostatic overpasses acquired
along two opposite flight headings. The analysis we present
considers a characterization of forest scattering by 3D imaging
and forest height retrieval. Experimental results indicate that the
PH technique can only loosely approximate the vertical structure
produced by SAR tomography. Still, it can produce a reasonably
good estimate of forest height. In particular, TomoSAR and the
PH technique are observed to have an average root mean square
error (RMSE) with respect to Lidar estimate of 2.8 m and
4.45 m in North-West heading data, and 1.84 m and 5.46 m in
South-East heading data, respectively. The observed results are
interpreted in light of a simple physical model to characterize
phase histograms depending on the number of scatterers within
the SAR resolution cell, on which basis we derive analytical
expressions to predict height dispersion in phase histograms. The
conclusion from both experimental and theoretical results is that
phase histograms cannot correctly reproduce forest structure,
unless the distribution of scatterers within the SAR resolution
cell is characterized by a single dominant scatterer. Consistently,
we conclude that the PH technique is inherently best suited for
the analysis of high- or very-high resolution data, which suggests
its use in the context of higher frequency SAR Missions (e.g.:
Tandem-X) and when there are few acquisitions available.

Index Terms—SAR, L-Band, SAR tomography, phase his-
togram, forest scattering, forestry
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I. INTRODUCTION

FORESTS are crucial to understanding the terrestrial car-
bon cycle and its implications on climate change. For

this reason, the scientific community has repeatedly stated the
importance of the provision of accurate information about the
world’s forests [1]. In this context, the research carried out
in the last years has demonstrated that observing the vertical
structure of the vegetation plays a fundamental role in the
retrieval of biophysical parameters such as forest height and
Above Ground Biomass (AGB). This is largely witnessed by
missions such as GEDI, which implements a Lidar sensor on-
board the International Space Station, and BIOMASS, which
will implement a P-Band spaceborne Synthetic Aperture Radar
(SAR) and is tasked with measuring forest parameters globally
and systematically [2]–[4].

Considering the specific case of SAR systems, different
methods have been proposed to exploit the vertical structure of
the vegetation for the retrieval of biophysical parameters. The
well-known PolInSAR algorithm leverages polarization and
baseline diversity to decompose the interferometric coherence
into ground-only and volume-scattering contributions, after
which forest height is retrieved based on suitable parametric
model [5]–[8]. The recently proposed Ground Cancellation al-
gorithm is based on a coherent cancellation of ground scatter-
ing by taking the difference between two phase-calibrated SAR
images [9], [10]. SAR tomography (TomoSAR) synthesizes a
two-dimensional aperture by collecting multiple flights over
the same area, thus providing resolution also in the elevation
direction. In this way, TomoSAR allows for direct imaging
of the vertical structure of forest scattering, on which basis
biophysical parameters are derived [11]–[25].

Quite interestingly, a different approach for retrieving in-
formation about the vertical structure of the vegetation is
found in [26]–[28]. This approach, which we refer to as Phase
Histogram (PH) technique, attempts to retrieve forest structure
by analyzing the interferometric phase from a single interfer-
ometric pair within a given estimation window. Each pixel
from a SAR interferogram is assigned to a specific height bin
based on the value of the corresponding interferometric phase
and the interferometric vertical wavenumber. In so-doing, a
tomography-like representation of forest vertical structure is
built by accumulating the intensity of all pixels that fall in the
same height bin within a given spatial window [28].

The main goal of this paper is to understand the limits of
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Fig. 1. Schematic diagram illustrating the TomoSAR acquisition geometry [29].

the PH technique and the main contributions of this paper are:
1) Using multi-polarized monostatic L-Band TomoSense

data to analyze the performance of PH technique in
reconstructing the vertical structure of the forest;

2) Introducing a new physical modeling of PH technique,
and quantitatively characterizing the height dispersion
of the phase histogram as a function of the number of
scatterers within any SAR pixel.

To do that, we first compare the PH technique against To-
moSAR on an experimental ground by analyzing L-Band to-
mographic data from the ESA airborne campaign TomoSense
[17], flown in 2020 at the Kermeter area in the Eifel Park,
North-West Germany. The data analyzed in this paper feature
30+30 mono-static overpasses acquired along two opposite
flight headings, and provide a vertical resolution consistently
better than 5 m on the whole area of interest. Moreover, the
data are accurately calibrated and ground-steered, so that the
phase reference for any interferogram is automatically set to
0 in correspondence of the terrain level [17]. The analysis
we present considers the evaluation of the vertical profile of
forest scattering and forest height retrieval. In the evaluation
of the forest vertical profile, we take the result by TomoSAR
as the auxiliary verification against which to evaluate the PH
technique, by virtue of the fine vertical resolution ensured
by TomoSense data. Certain areas of interest in leaf area
density (LAD) products from terrestrial laser scanning (TLS)
and airborne laser scanning (ALS) are taken as references.
Concerning the estimation of forest height, both TomoSAR
and the PH technique are evaluated against the canopy height
model (CHM) generated by ALS. The observed results are
interpreted in light of a simple physical model to characterize
phase histograms depending on the number of scatterers within
the SAR resolution cell, on which basis we derive analytical
expressions to predict height dispersion in phase histograms.

The structure of this paper is as follows. In section II we
recall signal processing models and methods for TomoSAR

and the PH technique. In section III we present the TomoSense
data-set. Experimental results are shown in section III. Phase
histogram modeling is presented in section V. Conclusions are
drawn in section VI.

II. SIGNAL MODEL AND PROCESSING METHODS

This section is intended to present basic physical models
underpinning the estimation of forest vertical structure from
SAR data, and to recall the rationale of tomographic SAR
imaging and the PH technique.

We consider the availability of a stack of N SAR images,
correctly coregistered on a common grid and phase calibrated
[29]. For sake of simplicity we consider here the case of
approximately parallel trajectories1, which allows to express
the complex SAR pixel from the n− th SAR image as [29]:

In (r, x) =

∫
Ω

s(y, z)exp

(
j
4π

λ
Rn(y, z)

)
dydz (1)

where:
• the subscript Ω is used to remark that the integration is

limited to the extent of the SAR resolution cell, defined
by the range and azimuth resolution of the SAR system.

• s(y, z) represents the complex reflectivity of the individ-
ual scattering elements in height/ground range plane.

• λ is the carrier wavelength.
• Rn(y, z) denotes slant range, intended as the closest-

approach distance between the ground objects at position
(y, z) and the n− th trajectory.

As commonly done in the literature, we define a reference
topography and a reference (Master) flight, in such a way as
to approximate the slant range distance for each image as:

Rn(y, z) = Rn(yref , zref ) +
bn
R
v + r (2)

where:
1We refer the reader to [16] for the case of non-parallel trajectories.
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• (r, v) are the slant range and elevation coordinates w.r.t.
the reference point (yref , zref ). The reference point is
assumed to lie on the terrain surface, which we assume
to be known (e.g.: based on the availability of a Lidar
DTM or tomographic processing [18], [30], [31]), see
Fig. 1.

• bn is the length of the normal interferometric baseline
of the n − th trajectory and R is the distance from the
Master image and the reference point.

Plugging (2) into (1) and solving the integration with respect
to r leads to:

In (r, x) = exp

(
−j 4π

λ
Rn(yref , zref )

)∫
p(v)exp (jknv) dv

(3)
where p(v) is the projection of the complex reflectivity s(y, z)
along elevation [29] and kn = 4πbn

λR is the interferometric
elevation wavenumber.

After terrain flattening, consisting in the removal of the
phase terms outside the integral in equation (3), one finally
gets that:

ITC
n (r, x) =

∫
p(v)exp (jknv) dv (4)

where ITC
n (r, x) = In (r, x) exp

(
j 4πλ Rn(yref , zref )

)
de-

notes the stack of terrain compensated (TC) SAR pixels. We
finally note that it is common practice to express equation (4)
upon the change of variable z = v · sinθ, with θ the local
incidence angle, so as to make direct reference to the vertical
direction. In so-doing, we can finally state the fundamental
model:

ITC
n (r, x) =

∫
p(z)exp (jkz (n) z) dz (5)

where the interferometric vertical wavenumber is:

kz (n) =
4πbn

λR sin θ
(6)

A. SAR tomography

SAR Tomography can be thought of as a straightforward
extension of traditional SAR focusing from 2D to 3D. Con-
ventional SAR systems transmit radar pulses and receive
the echoes backscattered by the illuminated targets along
the flight trajectory. In this way, the received signal can be
focused to produce a 2D image of the illuminated area, where
targets are resolved in the range/azimuth plane. TomoSAR
imaging is based on the joint exploitation of multiple SAR
images acquired along different tracks. This allows focusing
the received signal not only in the range/azimuth plane, as in
conventional 2D SAR imaging, but also in elevation [11], [12],
[32]–[39]. A pictorial representation of how the TomoSAR
technique works is provided in Fig. 1. On a mathematical
ground, SAR Tomography is a sheer consequence of the
model in equation (5). This model states that the stack of
SAR pixels is obtained as the Fourier Transform of the
vertical distribution of the projected reflectivity p(z), which
can therefore be reconstructed from the observed SAR data by
Fourier analysis. This result has been exploited in number of

different contexts in the literature, leading to the development
of various approaches depending on the particular case under
investigation [16], [32], [39]–[42].

A most fundamental aspect that determines the quality of
tomographic imaging is given by the distribution of the normal
baselines, which determines the set of interferometric vertical
wavenumbers kz in equation (5). Following standard argu-
ments from Fourier analysis, the achievable vertical resolution
is given by the span of interferometric vertical wavenumbers
that is:

dz =
2π

max (kz)−min (kz)
(7)

This value is commonly referred to as Rayleigh resolution.
Importantly, we recall here the existence of techniques that
provide super-resolution capabilities, that is the capability to
resolve targets at a finer resolution than the one expressed in
(7). For forestry applications, super-resolution algorithms are
typically needed whenever Rayleigh resolution is too coarse as
compared to forest height, see for example [43]. Still, an aspect
to be kept in mind is that super-resolution algorithms do not, in
general, preserve radiometric accuracy, suggesting that the best
option for tomographic imaging of forested areas is to design
the acquisitions so as to guarantee a sufficiently fine Rayleigh
resolution, as stated by equation (7). Since TomoSense L-Band
data itself can provide a vertical resolution better than 5 m, the
core of this paper is not to explore the application of super-
resolution algorithms. Another fundamental parameter to the
quality of tomographic imaging is represented by height of
ambiguity (HoA), which represents the distance from a target
along the vertical direction at which artifacts appear due to the
finite sampling of the interferometric vertical wavenumbers.
Assuming, for sake of simplicity, a uniform progression with
spacing ∆kz the HoA is obtained as:

zamb =
2π

∆kz
(8)

Common practice requires the HoA to be roughly twice forest
height, see for example the case of the BIOMASS mission
[4], implying that resolving nl vertical layers within the
vegetation requires no less than 2nl acquisitions. The need
for a large number of acquisitions is the real drawback of
SAR Tomography. This is a possibility for airborne campaigns,
where it is typically feasible to fly an aircraft many times
in the same day. Still, it is indeed a most important hurdle
towards spaceborne applications, where the number of avail-
able acquisitions corresponds to the number of orbits over a
given area. As subsequent orbits are typically acquired at time
lags of several days, the acquisitions are unavoidably degraded
by temporal decorrelation, [44]–[47]. For this reason, the one
mission currently appointed to gather tomographic acquisitions
of forested areas is the forthcoming ESA Earth Explorer
BIOMASS, for which temporal decorrelation is predicted to
be successfully mitigated by the three-day revisit time and the
long wavelength [48]. Besides addressing temporal decorre-
lation, most spaceborne SAR missions maintain a fixed orbit
generating zero-baseline datasets, which are another problem
for TomoSAR.
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Fig. 2. Schematic diagram illustrating the implementation of
PH technique.

B. Phase Histogram technique

Differently from SAR tomography, the Phase Histogram
(PH) technique can - in principle - retrieve information about
the forest structure by analyzing the interferometric phase from
a single interferometric pair. This is obtained by assigning
each pixel from a SAR interferogram within a given estimation
window to a specific height bin based on the value of the cor-
responding interferometric phase and interferometric vertical
wavenumber. In so-doing, a tomography-like representation of
forest vertical structure is built by accumulating the intensity
of all pixels that fall in the same height bin within a given
spatial window [28].

Mathematically, the PH technique is described as
follows. Let us consider a complex interferogram〈
ITC
1 (m) · conj

(
ITC
2 (m)

)〉
L

, with the index m denoting
the value of the m − th pixel in the interferogram and the
symbol ⟨⟩L denoting spatial averaging over L pixels (in case
a multi-looked interferogram is used). Given an estimation
window comprising M > L pixels, the phase histogram is
obtained as [28]:

PH(zn) =

M∑
m=1

fm · rect(φm, zn) (9)

where:
• PH(zn) is the value of the resulting phase histogram at

height bin zn.

• φm = ∠
〈
ITC
1 (m) · conj

(
ITC
2 (m)

)〉
L

is the interfero-
metric phase at the m− th pixel.

• rect(φm, zn) represents a rectangle function of interfer-
ometric phase and height bin used to assign each pixel
to a specific height bin. Formally:

rect(φm, zn) =

{
1, if zn − ∆z

2 < φm

kz
< zn + ∆z

2

0, otherwise
(10)

where ∆z represents the height sampling interval and
kz is the interferometric wavenumber of the selected
interferogram.

• fm is a positive-valued term to be accumulated at each
height bin. Different choices are reported in literature for
this term. After the work in [28], we will here assume fm
to correspond to the magnitude of the (multi-looked) in-
terferogram, i.e.: fm =

∣∣〈ITC
1 (m) · conj

(
ITC
2 (m)

)〉
L

∣∣.
A pictorial representation of how the PH technique works
is provided in Fig. 2. In this paper, we employ single-look
process to derive the interferometric phase. As the literature
[27] indicates, the principle of ”few look” plays a pivotal
role in preserving the forest vertical structure and effectively
discerning the ground. Consequently, we adopt the parameter
L = 1 to extract the interferometric phase, facilitating a more
precise representation of the forest’s vertical composition. A
comparison between single- and a multi-look processing will
be discussed in later sections.

III. STUDY SITE AND DATASET

The TomoSense experiment was funded by ESA to support
scientific research in the field of remote sensing of forested
areas, with a particular emphasis on the application of To-
moSAR methods in the context of future mono- and bi-static
spaceborne missions operating at P-, L-and C-Band. The test
site for the TomoSense experiment is the Kermeter area at
the Eifel National Park in North Rhine-Westphalia, North-
West Germany. SAR data include P-, L-, and C-Band surveys
acquired by flying up to 30 trajectories in two headings to
provide tomographic imaging capabilities. L- and C-Band data
were acquired by simultaneously flying two aircraft to gather
bistatic data along different trajectories. The SAR dataset is
complemented by 3D structural canopy measurements made
via terrestrial laser scanning, Unoccupied Aerial Vehicle Lidar
(UAV-L), ALS, and in-situ forest census. All data are publicly
available through ESA for the purpose of scientific research.
The remainder of this section presents an overview of the
test site and the collected SAR data. For a more detailed
description of the TomoSense campaign and all acquired data
we refer the reader to [17].

A. Test site

A photo of the Kermeter area is shown in Fig. 3, The
location was chosen due to its abundant ecological diversity,
characterized by forests that encompass a variety of species,
diverse topography, and varying age classes. The Kermeter
is an upland region, with an elevation range from 250 m to
530 m. The area is covered by one of the largest contiguous,
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Fig. 3. The Kermeter area at the Eifel National Park, North-
West Germany.

deciduous forests in that region. It covers an area of 3592 ha,
of which about 3300 ha is a single forested area. Beech woods
dominate the shaded, damp northern slopes (24%), in places
with trees that are over 200 years old. Oak woods hold sway on
the drier, southern slopes (26%), interrupted by rocky outcrops.
About 550 ha consist of spruce trees, which are a consequence
of reforestation measures after the Second World War. The
main area of interest for SAR acquisitions is approximately
6.4 Km long and 800 m wide. Forest height ranges roughly
from 10 to 30 m, with peaks up to over 40 m, whereas forest
biomass ranges from 20 to 300 Mg/ha, with peaks up to over
400 Mg/ha. Topographic slopes at this area are typically on
the order of 5◦, with few areas reaching 10◦ and beyond.

B. SAR data

SAR acquisitions were carried out by MetaSensing in
2020 (P- and L-Band) and 2021 (C-Band). The data were
acquired by flying up to 30 times along two opposite headings
(North-West and South-East), to provide vertical resolution
capabilities from two opposite views. L- and C-Band data
were acquired in bistatic mode by flying two identical SAR
sensors onboard two aircraft. All data were collected in fully
polarimetric mode, resulting in the collection of approximately
one thousand SAR images. All data were focused in ground
coordinates onto a Digital Terrain Model (DTM) available
from aerial Lidar data by CzechGlobe. Data processing con-
sisted in SAR focusing, phase calibration, terrain detection,
and generation of tomographic products. Importantly, phase
calibration of SAR data included accurate ground-steering, so
that the phase of all interferograms is expected to be 0 in
correspondence of the terrain level. We refer the reader to [17]
for further details on signal processing of TomoSense data.

The data-set considered within this paper is the one acquired
at L-Band in mono-static mode. This data-set includes 30 tra-
jectories acquired along two opposite headings and guarantees
a vertical resolution of 5 m or better across the whole area of
interest. Specific SAR parameters for this data-set are reported
in Table I.

C. Lidar data

The SAR data is complemented by small-footprint Lidar
ALS data acquired by CzechGlobe in the summer 2018
and remeasured in the summer 2021. Lidar-derived products

TABLE I: The parameters of mono-static L-Band dataset

Parameter Value

Number of passes in NW 30
Number of passes in SE 30

Polarimetric channel Full
Heading NW and SE

Wavelength 21.8 cm
Bandwidth 50 MHz

Slant range resolution 3 m
Azimuth resolution 1 m
Vertical resolution < 5 m

include terrain topography, forest height, and AGB estimates
at 1 m posting. For the aim of providing a reference map to
validate forest height retrieval, Lidar forest height map was
further processed to make its spatial resolution comparable
with that of SAR-derived products. This was done by taking
the 75% percentile height within the estimation window used
for SAR analysis (see next section). The derived forest height
map was then resampled on the same spatial grid used for
focusing SAR data. Importantly, we note that Lidar and SAR
products were processed using the same terrain elevation as
reference (i.e.: the one derived from Lidar), which reduced
the conversion from one coordinate system to the other to a
simple roto-translation.

IV. EXPERIMENTAL RESULTS

The analyses we present concern the evaluation of the verti-
cal profile of forest scattering and the forest height retrieval. In
the evaluation of the forest vertical profile, we take the result
by TomoSAR as the reference against which to evaluate the PH
technique by virtue of the fine vertical resolution ensured by
TomoSense data. Concerning the estimation of forest height,
both TomoSAR and the PH technique are evaluated against
the canopy height model (CHM) generated by Airborne Laser
Scanning.

A. 3D imaging of the vegetation

To ensure an objective and fair comparison between the two
techniques, the LAD profiles acquired by TLS and ALS are
adopted as references in this paper. We selected three plots
with a 25 m radius (red circles in Fig. 9) and some specific
areas of interest along the azimuth axis for comparative ex-
periments. For data processing, we adopted the same window
size for estimating the vertical distribution of the backscattered
power by TomoSAR and for calculating the phase histograms.
The window size is fixed to 35 m in ground range and 35 m in
azimuth. The PH technique was implemented as described in
section II-B using three levels of interferogram multilooking,
namely L = 1 (i.e.: single look) and L = 15 (3 looks in
ground range and 5 looks in azimuth), and L = 119 (7 looks
in ground range and 17 looks in azimuth). For clarity, in the
following, we will refer to phase histograms by the names
single-look PH and multi-looked PH.

Phase histograms were built over an azimuth strip of ap-
proximately 3 Km by using 10 different interferometric pairs,
which were selected so as to have a HoA between 60 m
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Fig. 4. Comparison between the backscattering profiles at all polarization and the LAD profiles of TLS data. Top panel: SAR
Tomography. Second panel: the single-look PH technique. All panels are normalized from 0 to 1. These plots refer to the
locations specified in NW Lidar CHM of Fig. 9.

and 100 m. This choice was necessary to counteract the large
along-track baseline variations within the TomoSense dataset,
which made it impractical to use a single interferogram to
cover the whole analyzed area. The nominal incidence angle
for the analyzed area is about 35◦, which leads to a ground-
range resolution of approximately 6 m.

SAR tomography was implemented on the same area by
standard beamforming, namely:

T (z) =

〈∣∣∣∣∣∑
n

ITC
n exp (−jkz (n) z)

∣∣∣∣∣
2〉

W

(11)

with ⟨⟩W denoting spatial averaging within the 35 × 35 m
window. The choice of using beamforming is the consequence
of the availability of a very large number of trajectories
within the TomoSense dataset, which allows for fine vertical
resolution (5 m or better) everywhere in the scene. For the
same reason, within this section, we take the result from
tomography as the auxiliary verification against which to
evaluate results from the PH technique in this section. Certain
areas of interest in LAD products from TLS and ALS are taken
as references. Both techniques were used to generate 3D data
over the selected area, which were afterwards resampled to
move voxels above the ground to their correct ground-range
position. This operation is essential to correctly compare 3D
SAR data with the Lidar forest height map, especially in cases
such as TomoSense characterized by a hilly topography.

Results comparing LAD profiles based on plot levels ac-
quired by TLS with those obtained using both TomoSAR

and the single-look PH technique are illustrated in Fig. 4.
These plots refer to the locations specified in NW Lidar forest
height of Fig. 9. It can be clearly seen from the results that
SAR tomography can match the LAD profiles very well, and
can detect the accurate canopy phase center regardless of the
polarization. Moreover, the energy attenuation and angular
spread trends are also very similar. In contrast, with PH
technique, the backscattering profile obtained is not always
satisfactory. From the results of the three plots, the phase
center peak positions obtained by different polarizations are
not uniform, and there are obvious side lobes, especially in plot
1478. From the perspective of PH technique model (as shown
in 9), the result is constrained by variations in both amplitudes
and phase heights of adjacent pixels within the window. This
limitation leads to the presence of more unwanted side lobes
in the phase histograms along the vertical height axis when
there are more than one dominant scatterers present in different
horizontal height layers.
Results from multiple polarization relative to a single vertical
section are shown in Fig. 5 and Fig. 6. The results from SAR
tomography in Fig. 5 are quite clear and simple to interpret
along the whole transect. Scattering from the terrain level is
well detected, and the higher peak is observed to match Lidar
canopy height in all the polarizations.

The multi-polarized results from the single-look PH in Fig.
6 are observed to produce a less clear result in any polarization.
Some resemblance with the result from SAR tomography is
observed, but overall the histogram appears to be dispersed
along the height direction, providing no clear identification of



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING , VOL. , NO. , 2023 7

Fig. 5. Vertical section from TomoSAR technique. First panel from top: LAD profiles. Second panel from top to bottom: HH
tomogram,HV tomogram and VV tomogram. All panels of tomograms are normalized such that the mean along each column
is 1. In all panels, the white line denotes Lidar forest height and the black line denotes ground level.

scattering from the terrain and canopy layers. Moreover, the
power peak along the vertical direction is generally observed
to be at a lower location than the upper peak in the tomogram
(hence below canopy height). Analyzing the outcomes, we
observe that diverse polarizations yield similar results within
either TomoSAR or the PH technique. This similarity could be

attributed to the penetrability of the L-Band and the scattering
mechanisms within the forest. Nevertheless, our experimental
findings demonstrate the superior capability of the TomoSAR
technique over the PH technique in reconstructing the vertical
structure of the forest.

Results relative to a single vertical section with multi-looked
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Fig. 6. Vertical section from the PH technique. First panel from top: LAD profiles. The followed panels from top to bottom:
HH phase histograms, HV phase histograms and VV phase histograms. All panels of phase histograms are normalized such
that the mean along each column is 1. In all panels, the white line denotes Lidar forest height and the black line denotes
ground level. The dashed red lines indicate the region covered by any single interferogram.

interferogram of the PH technique are shown in Fig. 7. The
dispersion is reduced in the second panel from top, obtained
by multilooking the interferogram with L = 15 looks. This is
expected because the multi-looked interferogram will smooth
the interferometric phase, leading to more concentrated phase

histograms. This phenomenon becomes more apparent in the
results when using a larger filter window, as shown in the
bottom panel. This result is consistent with the recommen-
dation in [27] to adopt a few-look approach when filtering
interferograms, as it determines a balance between preserving
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Fig. 7. Vertical section from the PH technique using multi-looked HV interferograms. First panel from top: single-look phase
histogram. Second panel from top: multi-looked phase histograms (3×5 looks). Third panel from top: multi-looked phase
histograms (7×17 looks). In all panels, the white line denotes Lidar forest height. All panels are normalized such that the
mean along each column is 1. The dashed red lines indicate the region covered by any single interferogram.

relevant information and suppressing unwanted noise. As in
the case of the single-look interferogram, the signal appears to
peak at a lower height w.r.t. the tomogram, and scattering from
the terrain level is undetected. Using a strong multilooking
(bottom panel), the interferometric phase tends to default to
the effective phase center within the estimation window. This
is reflected in the phase histogram being concentrated at a
single location in the vertical direction, often found in between
terrain and canopy height.

To explore the role of spatial resolution on tomography
and phase histograms, a further analysis is conducted after
degrading the spatial resolution of complex SAR images to
12× 12 m (ground range× azimuth). Results are shown in Fig.
8. It is readily observed that the result from SAR tomography
is essentially unchanged, as also in this case, it is possible to
clearly detect scattering from the terrain and from the forest
canopies. The result from the PH technique appears to show a

similar spatial characteristic as compared to the full-resolution
case presented in Fig. 7, although showing a slightly higher
dispersion along the vertical direction. Interestingly, the low-
resolution PH presents few bright pixels within the forest
layer, which are most likely associated with strong scatterers
dominating the Radar returns at specific locations.

B. Forest height retrieval

Forest height retrieval was carried out over the entire area
of interest by applying the power loss method in [13] to
extract the upper envelope of the vertical structures produced
by TomoSAR and the PH technique. The power loss method
proceeds by selecting Lidar forest height as the ground truth,
and then fit a proper power loss value for the forest height
inversion of the entire scene. For the case of the PH technique,
phase histograms at each location were built by processing the
interferogram whose height of ambiguity was the closest to
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Fig. 8. Vertical section from TomoSAR and the PH technique as obtained from degraded resolution HV data. First panel from
top: SAR Tomography. Second panel from top: single-look phase histogram. In all panels, the white line denotes Lidar forest
height. All panels are normalized such that the mean along each column is 1. The dashed red lines indicate the region covered
by any single interferogram.

the value of 60 m. The availability of N = 30 acquisitions
allowed for the formation of N(N−1)

2 = 435 interferograms at
each image pixel, which made it possible to obtain the desired
height of ambiguity everywhere in the scene with a deviation
of few meters. The estimation window was set to 15×15 m
for both TomoSAR and the PH technique.

Results are shown in Fig. 9 and Fig. 10 for the NW
and SE data-sets, respectively. SAR tomography is observed
to produce accurate results, achieving an overall RMS error
of 2.8 m (NW dataset) and 1.84 m (SE dataset). The PH
technique is not as accurate, attaining an overall RMS error
of 4.45 m (NW dataset) and 5.46 m (SE dataset). Still, it
succeeds in representing the variation of forest height over the
whole scene. Completely wrong results are observed only in a
few areas. Importantly, we remark that TomoSense data were
already accurately ground-steered using tomographic methods,
see [17]. For this reason, results relative to the PH technique
are to be intended as lower bounds, terrain detection being
already solved for this dataset.

V. MODELLING PHASE HISTOGRAMS

The observations from the previous paragraph indicate that
the PH technique does provide an indication about forest
structure, but it cannot be considered as effective as SAR
tomography. This finding is to be compared to the the ones
obtained at X-Band in [49] and [27] as well as from the ones in
[28] at L-Band, where phase histograms could be effectively
used for the detection of the terrain phase and the retrieval
of forest height. Our interpretation of the observed results is

that the effectiveness of the PH technique is strictly related
to the physics of forest scattering in SAR data, as determined
by wavelength and spatial resolution. For an X-Band high-
resolution system it is plausible to assume that the the Radar
returns are dominated by single scatterers, either within the
forest canopies or even at the ground level by penetration
through forest gaps. In such a situation, the interferometric
phase in each pixel is mostly associated with the height of the
dominant scatterer, resulting in a clear phase signature. This
interpretation is consistent with the one in [50], which suggests
that high-resolution X-Band data are characterized by high
extinction and large gaps that allow significant penetration.
On the other hand, at lower frequencies the SAR pixel is
more likely to be determined by a multitude of elementary
scatterers, as a result of the penetration capabilities of longer
wavelengths. In this situation the value of the interferometric
phase at each SAR pixel is determined by the interference
among all scatterers within the same resolution cell, triggering
a random behavior. This phenomenon is clearly also related to
spatial resolution, in that a coarser spatial resolution increases
the possibility to have multiple scatterers within a single SAR
pixel. Still, it is important to recall that scattering at longer
wavelength is also determined by dominant scatterers. This is
for example the case of ground-trunk double bounce scattering,
especially at P-Band [51], but it might as well be associated
with scattering from (well-oriented) large branches within the
forest canopies.

Based on this discussion, the comparison between SAR
tomography and the PH technique presented in the previous
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Fig. 9. Forest height retrieval for NW acquisitions. Top row: canopy height model (CHM) from Lidar, TomoSAR, and the
PH technique. Bottom row: resulting RMS error (left panel) and 2D histograms of Lidar CHM and the retrieved height from
TomoSAR (mid panel) and the PH technique (right panel).

Fig. 10. Forest height retrieval for SE acquisitions. Top row: canopy height model (CHM) from Lidar, TomoSAR, and the
PH technique. Bottom row: resulting RMS error (left panel) and 2D histograms of Lidar CHM and the retrieved height from
TomoSAR (mid panel) and the PH technique (right panel).

section seems to indicate that L-Band TomoSense data respond
better to the multiple scatterer model in (5), in particular: i) we
ascribe the absence of a detectable signal from the terrain in
PHs to the complex topography that characterizes TomoSense
data, which inhibits strong reflection from the ground level;
ii) the observation that PHs are dispersed along the vertical
direction and peak at a lower height w.r.t. SAR tomography
suggests that canopy scattering is not, in general, characterized
by dominant scatterers.

To substantiate the discussion, we develop here a simple
mathematical model derived by discretizing equation (5) to

express the SAR pixels in two images as a collection of
elementary scatterers. We assume the scatterers to have unitary
amplitude, so as to describe a situation where no dominant
scatterer is present, whereas the phase of each scatterer is
assumed to be uniformly distributed in the interval (−π,+π)
to account for the fact that the range to each scatterer may
vary by several wavelengths within the resolution cell. With
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Fig. 11. Single-look phase histograms from numerical simulations assuming a number of point targets varying from 2 to 100.
In all other experiments the targets are uniformly deployed in a region from 0 m to 25 m, indicated by the red rectangles. The
height of ambiguity is fixed to 60 m in all experiments in the top row and 120 m in all experiments in the bottom row. Each
histogram is obtained from 105 independent realizations. Blue curves were obtained by accumulating unitary values, that is by
letting fm = 1 in equation (9). Black curves were obtained by accumulating interferogram amplitudes.

those assumptions, the model is given as:

ITC
1 =

∑
n=1

exp (jψn) (12)

ITC
2 =

∑
n=1

exp (jψn) · exp (jkzzn)

with kz is the interferometric wavenumber of the image pair.
The interferogram is X = ITC

2 ·conj
(
ITC
1

)
, which we rewrite

as:

X =
∑
n,m

exp (j (ψn − ψm)) · exp (jkzzn) (13)

=
∑
n

exp (jkzzn) +
∑
n ̸=m

exp (j (ψn − ψm)) · exp (jkzzn)

The second term in the second equation (the double sum for
n ̸= m) is a random number that describes the interference
among all targets within the resolution cell, determining phase
dispersion. Note that this term vanishes in expectation (hence
it tends to vanish by multilooking), so that the expected value
of the interferogram is:

E [X] =
∑
n

exp (jkzzn) (14)

This term is deterministic number, whose phase determines
the interferometric phase center:

zpc =
∠E [X]

kz
(15)

Assuming a collection of 2 or more scatterers uniformly
distributed in the height interval (0, zmax), the interferometric
phase center is readily found to correspond to the center of
the distribution, i.e.: zpc = zmax

2 .

To visualize the effect of phase dispersion, we report in Fig.
11 the phase histograms resulting from Monte Carlo experi-
ments obtained by implementing the interferogram model in
equation (13) under the assumption of a number of targets per
resolution cell ranging from 2 to 100. In all experiments the
targets are uniformly deployed in a region from 0 m to 25 m,
as indicated by the red rectangles. The height of ambiguity is
fixed to 60 m in all experiments in the top row and 120 m in
all experiments in the bottom row. Each histogram is obtained
from 105 independent realizations. For sake of completeness,
phase histograms were implemented in two ways: blue curves
were obtained by accumulating unitary values, that is by letting
fm = 1 in equation (9); black curves were obtained by
accumulating the interferogram amplitudes |X|, consistently
with the methodology assumed in the analysis of experimental
data.

It is readily observed that in all cases the phase histograms
fail in reconstructing the simulated uniform distribution. In
the case of 2 targets (left-hand panels) two peaks arise. The
bimodal distribution arises from the actual value of the phase
difference between the two targets ψ2−ψ1 in each realization,
determining the peak to show at zmax

2 or at zmax−zamb

2 .
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When 3 or more targets are present the interferometric phase
assumes a random behavior, and the resulting heights tend to
distribute over the interval

(
− zamb

2 , zamb

2

)
. Here, we observe

that dispersion is minimized by forming phase histograms by
accumulating the interferogram amplitudes, due to the fact
that larger amplitudes are achieved by constructive interference
when the random and deterministic terms in equation (13) are
in phase. Still, we remark that in no case the shape of the phase
histograms approaches the simulated uniform distribution. An
interesting trait is that the observed height dispersion does
not change dramatically with the number of simulated targets,
nor by changing the height of the ambiguity. This observation
suggests the possibility for an approximate determination of
height dispersion in phase histograms depending on forest
height solely. This topic is quantitatively considered in the
following section.

A. Height dispersion in phase histograms

In this section we derive quantitative, yet reasonably simple,
expressions to relate height dispersion in phase histograms to
forest structure, aiming at providing results of practical use. To
do that, we recall a well-known method from communication
theory, consisting in evaluating the dispersion of the phase of
a random complex number with real-valued expected value
as the ratio of the dispersion of the imaginary part to the
magnitude of the expected (see the Appendix). Please note
that we neglect SAR signal extinction in the real illuminated
scenario for sake of simplicity.

This result is translated to the case of a SAR interferogram
as:

σφ =
σℑ{Xc}

|E [X]|
(16)

where Xc = X · exp (−jkzzpc) is the counter-rotated inter-
ferogram, such that the phase of its expected value is 0 by
construction. To compute the dispersion of the imaginary part
we write Xc as:

Xc =

Ns∑
n=1

exp (jkz (zn − zpc)) · on (17)

where Ns is the total number of scatterers per resolution cell,
and on is defined as:

on = pn + jqn = exp (jψn)

Ns∑
m=1

exp (−jψm) (18)

with pn, qn two random real-valued numbers. As per the last
section, the target phases ψn are characterized as indepedent
and identically distributed uniform variables in the interval
(−π, π).

It is immediate to show that E [on] = 1, after which one
gets that E [pn] = 1 and E [qn] = 0. To calculate the second
order moments of pn, qn we first calculate the expected values
of the products ono∗m and onom:

E [ono
∗
m] =

Ns∑
a=1

Ns∑
b=1

E [exp (j (ψn − ψa − ψm + ψb))] (19)

As the phases ψn are assumed to be indepedent and identically
distributed uniform variables in the interval (−π, π), the
expected value inside the sum can only be non-null when the
four phases ψn − ψa − ψm + ψb cancel out one another. If
n = m, this requires that a = b, which happens Ns times. If
n ̸= m, it is required that a = n and b = m, which can only
happen one time. Accordingly, we get that:

E [ono
∗
m] = (Ns − 1) δn−m + 1 (20)

where δn−m is the Kronecker delta. The expected value of
onom is:

E [onom] =

Ns∑
a=1

Ns∑
b=1

E [exp (j (ψn − ψa + ψm − ψb))] (21)

If n = m, the condition for the four phases to cancel out is
that a = b = n, which only happens once. If n ̸= m, it is
required that either a = n and b = m or that a = m and
b = n which happens twice. Accordingly:

E [onom] = 2− δn−m (22)

Noticing that:

E [ono
∗
m] = E [pnpm] + E [qnqm] + jE [qnpm]− jE [pnqm]

(23)

E [onom] = E [pnpm]− E [qnqm] + jE [qnpm] + jE [pnqm]
(24)

it is immediate to see that E [pnqm] = 0 ∀n,m, as this is
the one condition that makes both E [ono

∗
m] and E [onom]

real-valued, consistently with equation (20) and (22). At this
point, the expected values of pnpm and qnqm are immediately
obtained by taking the sum and the difference of equation (23)
and (24):

E [pnpm] =
E [ono

∗
m] + E [qnqm]

2
=

(
Ns

2
− 1

)
δn−m +

3

2
(25)

E [qnqm] =
E [ono

∗
m]− E [qnqm]

2
=
Ns

2
δn−m − 1

2
(26)

Finally, the covariances are obtained as: Cov (pn, pm) =
E [pnpm] − E [pn]E [pm] , Cov (qn, qm) = E [qnqm] −
E [qn]E [qm]. Since E [pn] = 1 and E [qn] = 0, we get that:

Cov (pn, pm) =

(
Ns

2
− 1

)
δn−m +

1

2

Cov (qn, qm) =
Ns

2
δn−m − 1

2
(27)

Cov (pn, qm) = 0

for any n,m. After (17), the imaginary part of Xc is expressed
as:

ℑ (Xc) =

Ns∑
n=1

cos (kz (zn − zpc))·qn+sin (kz (zn − zpc))·pn

(28)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING , VOL. , NO. , 2023 14

, and the variance of ℑ (Xc) is thus derived from (27) and
(28) as:

σ2
ℑ(Xc)

=
Ns

2
(Ns − 1)− 1

2

∣∣∣∣∣
Ns∑
n=1

cn

∣∣∣∣∣
2

+
1

2

Ns∑
n=1

dn (29)

where we put cn = cos (kz (zn − zpc)) and dn =
cos (2kz (zn − zpc)) to simplify the notation. The phase vari-
ance is easily derived by noting that E [XC ] =

∑Ns

n=1 cn,
hence:

σ2
φ =

1

2

Ns (Ns − 1)∣∣∣∑Ns

n=1 cn

∣∣∣2 +

∑Ns

n=1 dn∣∣∣∑Ns

n=1 cn

∣∣∣2 − 1

 (30)

and height dispersion is finally obtained as:

σz =
σφ
kz

(31)

The expressions above can be considerably simplified under
the assumption of a large number of scatterers uniformly
distributed over a total height zmax. In this case the following
approximations hold:

Ns∑
n=1

cn ≃ Ns · sinc
(
zmax

zamb

)
(32)

Ns∑
n=1

dn ≃ Ns · sinc
(
2
zmax

zamb

)
Plugging (32) into (30) and neglecting terms that vanish for
large Ns, one gets finally:

σ2
φ ≃ 1

2

(
sinc−2

(
zmax

zamb

)
− 1

)
(33)

after which height dispersion is approximated as:

σz ≃ 1

2
√
2π

√
z2amb ·

(
sinc−2

(
zmax

zamb

)
− 1

)
(34)

Most interestingly, it is possible to show that σz converges
to a non-null value as zamb increases2, leading to further
approximating height dispersion as:

σz ≃ 0.2041 · zmax (35)

which confirms the observation in the last section that height
dispersion is mostly related to forest height3.

The extent to within which the approximations in equations
(34) and (35) are valid is investigated in Fig. 12, which
reports height dispersion as a function of the number of
targets per resolution cell for a uniform distribution of targets
with zmax = 25 m. Three values of ambiguity are tested:
60 m, 80 m, and 150 m. Black curves result from Monte
Carlo experiments simulating 105 realizations. Blue curves are
drawn according to equation (31). Red circles are obtained
from the approximation in equation (34). The limit predicted

2One can derive (35) by noting that lim
x→0

{
1

2x2

(
sinc−2 (x)− 1

)}
= π2

6
.

3Neglecting noise or other decorrelation factors.

Fig. 12. Height dispersion in phase histograms as a function
of the number of targets per resolution cell for a uniform
distribution with zmax = 25 m. Black curves result from
Monte Carlo experiments simulating 105 realizations. Blue
curves are drawn according to equation (31). Red circles are
obtained from the approximation in equation (34). The limit
predicted by the approximation in equation (35) is σz ≃ 5.1
m and is indicated by the red square.

by the approximation in equation (35) is σz ≃ 5.1 m, as
represented by the red square.

The approximation in equation (34) is observed to predict
dispersion to within one meter or less whenever 4 or more
targets are found within the resolution cell. The assessment
in (35) is indeed not as accurate, especially for low values of
the height of ambiguity. Yet, it succeeds in providing a first
indication about height dispersion in phase histograms on the
sole basis of forest height.

VI. DISCUSSION AND CONCLUSIONS

This paper has presented an evaluation using theoretical
model and experimental results between SAR Tomography
and the Phase Histogram technique in the context of remote
sensing of forested areas. The analysis was initially carried
out by applying both techniques to the analysis of L-Band
tomographic data from the TomoSense campaign, flown in
2020 at the Eifel Park, North-West Germany. The observed
results were then interpreted on the basis of a simple physical
model to characterize phase histograms as a function of the
number of scatterers per resolution cell, which led to an
analytical assessment of the the expected outcome in terms
of peak position and height dispersion.

Experimental results showed that phase histograms do pro-
vide some indication about forest structure, but are far from
the accurate representation produced by SAR tomography.
In particular: i) the ground signal could not be detected
in phase histograms, whereas it was clearly visible in the
tomograms with all polarizations; ii) the peak of the phase
histogram along the vertical direction was generally observed
to be at a lower location than the upper peak in the to-
mogram (hence below canopy height); iii) both single-look
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and few-look phase histograms appear to be dispersed along
the height direction; iv) no dramatic change was observed
in the phase histogram by degrading spatial resolution from
6×1 m to 12×12 m (ground range×azimuth). According
to the developed theory, the results are perfectly consistent
with the presence of a distribution of elementary scatterers
within each SAR resolution cell, in which conditions phase
histograms cannot correctly reproduce forest vertical structure.
From a physical point of view, we ascribe the observed
behavior to a combination of L-Band penetration capabilities
with the features of the TomoSense dataset, i.e.: medium
spatial resolution (6 m in ground range) and hilly topography.
Accordingly, one general conclusion from this work is that
phase histograms cannot correctly reproduce forest vertical
structure, unless Radar returns in each SAR pixel are actually
determined by a dominant scatterer and the variation of the
position of dominant scatterers in neighboring SAR pixels is
large enough to probe the whole vertical structure. This can be
in principle the case of very high-resolution data, preferably
in the case where scattering from the terrain level is enhanced
by a flat topography.

On the other hand, results relative to forest height retrieval
show that tracking the upper envelope in phase histograms
achieved an RMS error of 4.45 m and 5.46 m in NW and SW
data, respectively. Whereas not as accurate as the results from
tomography (2.8 m and 1.84 m in NW and SE data), those
results advocate for the actual presence of strong, although
not fully dominant, scatterers within each SAR pixel. Indeed,
theoretical analysis showed that for a uniform distribution
the main peak is expected to occur at half the forest height,
with a dispersion slightly exceeding 20% of forest height.
Were this the case for TomoSense, height retrieval from phase
histograms would have shown significantly larger RMS errors
(e.g.: for a 30 m uniformly distributed forest we would expect
the peak to arise at 15 m, with a dispersion only slightly larger
than 6 m). We remark that the observed accuracy is intended
as a lower bound concerning phase histograms, since terrain
topography was derived by tomography. Yet, these results
confirm that the PH technique is a powerful method to retrieve
forest height, especially considering that it can be implemented
using just two acquisitions. In this sense, we reiterate our
recommendation that the PH technique should be applied to
high-resolution data, preferably paired with fully polarimetric
acquisitions to help the detection of scattering from the terrain
level using well-known PolInSAR methods.

APPENDIX A
The goal of this appendix is to describe how to evaluate

the dispersion of the phase of a random complex number
with real-valued expected value as the ratio of the dispersion
of the imaginary part to the magnitude of the expected. The
method is immediately understood by considering the problem
of estimating the phase of a complex number in the presence
of additive circle normal noise:

z = ρejφ + w

We write z as z = ρ̂ejφ̂, with ρ̂ and φ̂ the resulting
magnitude and phase in the presence of noise. The phase

estimation error due the presence of the additive noise is
therefore dφ = φ̂ − φ. To relate the dispersion of dφ to the
the noise variance, we counter rotate z by the true phase φ:

zC = ze−jφ = ρ̂ejdφ = ρ+ wC (36)

with wC = we−jφ the phase rotated noise. Assuming that the
phase error is small, zC can be linearized as:

zC ≃ ρ+ dρ+ jρdφ = ρ+ ℜ (wC) + jℑ (wC) (37)

After which we have that

dφ =
ℑ (wC)

ρ
(38)

APPENDIX B

The goal of this appendix is to describe more details of
derivation from equation (27) to equation (29). we repeated
the equation (28) of imagery part of the Xc.

ℑ (Xc) =

Ns∑
n=1

cos (kz (zn − zpc))·qn+sin (kz (zn − zpc))·pn

(39)
For simplicity, we calculate the left and right parts of the
equation (28) separately since they are unrelated:

A =

Ns∑
n=1

cos (kz (zn − zpc)) · qn (40)

B =

Ns∑
n=1

sin (kz (zn − zpc)) · pn (41)

Then, we can get the variances both two parts:

σ2
A =

Ns∑
n,m

cncm ·
(
Ns

2
δn−m − 1

2

)

=

Ns∑
n=m

c2n
Ns

2
− 1

2

Ns∑
n,m

cncm

=

Ns∑
n=m

c2n
Ns

2
− 1

2

∣∣∣∣∣
Ns∑
n

cn

∣∣∣∣∣
2

(42)

σ2
B =

Ns∑
n,m

snsm ·
((

Ns

2
− 1

)
δn−m +

1

2

)

=

Ns∑
n=m

s2n

(
Ns

2
− 1

)
+

1

2

Ns∑
n,m

snsm

=

Ns∑
n=m

s2n
Ns

2
−

Ns∑
n=m

s2n +
1

2

Ns∑
n,m

snsm

(43)

where we put cn = cos (kz (zn − zpc)), sn =
sin (kz (zn − zpc)) and dn = cos (2kz (zn − zpc)) to
simplify the notation. For any n,m, the counter-rotation
makes the expected value of interferogram a real number,
resulting in

∑Ns

n,m snsm = 0. Then the variance of ℑ (Xc) is
thus derived from equation (42) and (43),
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σ2
ℑ(Xc)

= σ2
A + σ2

B

=

Ns∑
n=m

c2n
Ns

2
− 1

2

∣∣∣∣∣
Ns∑
n

cn

∣∣∣∣∣
2

+

Ns∑
n=m

s2n
Ns

2
−

Ns∑
n=m

s2n

=

Ns∑
n=m

(
c2n + s2n

) Ns

2
− 1

2

∣∣∣∣∣
Ns∑
n

cn

∣∣∣∣∣
2

− 1

2

Ns∑
n

(1− dn)

=
Ns

2
(Ns − 1)− 1

2

∣∣∣∣∣
Ns∑
n=1

cn

∣∣∣∣∣
2

+
1

2

Ns∑
n=1

dn

(44)
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