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Abstract The prediction of post‐sunset equatorial plasma depletions (EPDs), often called ionospheric
plasma bubbles, has remained a challenge for decades. In this study, we introduce the Ionospheric Bubble
Probability (IBP) model, an empirical model to predict the occurrence probability of EPDs derived from 9 years
of CHAMP and 9 years of Swarm magnetic field measurements. The model predicts the occurrence probability
of EPDs for a given longitude, day of year, local time and solar activity, for the altitude range of about 350–
510 km, and low geographic latitudes of±45°. IBP has been found to successfully reconstruct the distribution of
EPDs as reported in previous studies from independent data. IBP has been further evaluated using 1‐year of
untrained data of the Ionospheric Bubble Index (IBI). IBI is a Level 2 product of the Swarm satellite mission
used for EPD identification. The relative operating characteristics (ROC) curve shows positive excursion above
the no‐skill line with Hanssen and Kuiper's Discriminant (H&KSS) score of 0.52, 0.51, and 0.55 at threshold
model output of 0.16 for Swarm A, B, and C satellites. Additionally, the reliability plots show proximity to the
diagonal line with a decent Brier Skill Score (BSS) of 0.249, 0.210, and 0.267 for Swarm A, B, and C
respectively at 15% climatological occurrence rate. These tests indicate that the model performs significantly
better than a no‐skill forecast. The IBP model offers compelling glimpses into the future of EPD forecasting,
thus demonstrating its potential to reliably predict EPD occurrences. The IBP model is publicly available.

Plain Language Summary Post‐sunset equatorial plasma depletions (EPDs), often called
ionospheric plasma bubbles, are a severe threat for reliable radio wave communication. However, their
predictability has remained a challenge for the scientific community for decades. In this study, we introduce the
Ionospheric Bubble Probability (IBP) model predicting the occurrence probability of post‐sunset EPDs for a
given longitude, day of year, local time and solar activity, for the altitude range of about 350–510 km, and low
geographic latitudes of±45°. To this aim we have used 9 years of CHAMP and 9 years of Swarmmagnetic field
measurements. The IBP model predictions have been found to agree well with climatologies derived from
independent data and performs largely better than unskilled forecasts. The IBP model is made publicly
available.

1. Introduction
The post‐sunset equatorial and low‐latitude ionosphere is susceptible to irregularities associated with F region
plasma instability, popularly known as equatorial plasma depletions (EPDs) or ionospheric plasma bubbles. EPDs
are regions of steep plasma depletions of several orders of magnitude in electron density with scale sizes ranging
from thousands of kilometers down to meters (e.g., Hysell & Seyler, 1998; Lühr et al., 2014; Su et al., 2001). EPD
is explained to be governed by the Generalized Rayleigh‐Taylor (GRT) instability mechanism which operates at
the bottomside F region when uplifted during evening time post‐sunset rise driven by the pre‐reversal
enhancement (PRE) of zonal electric field over the dip equator (e.g., Balsley et al., 1972; Haerendel, 1973;
Ossakow, 1981; Sultan, 1996; Woodman & La Hoz, 1976) and by drift wave instability (e.g., Hysell, 2000). The
growth of GRT instability depends on various ionospheric and thermospheric parameters which include F layer
height, zonal (eastward) electric field, bottomside density gradient, meridional wind and perturbation in electron
density in the form of seed (e.g., Kelley, 2009). EPDs have been found to exhibit serious threats to radio waves
employed for satellite‐based communication/navigation applications by producing random fluctuations in signal
amplitude and phase known as scintillations. Based on simultaneous observations of plasma density and Global
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Positioning System (GPS) observables on board the Swarm satellite mission, Xiong et al. (2016, 2020) showed
the positive relation between the strengths of EPDs and the severeness of GPS scintillations to even total signal
losses. Therefore, predicting EPD occurrence is of absolute necessity.

Although the underlying principle of GRT instability is well understood (e.g., Kelley, 2009; Sultan, 1996), un-
derstanding the variability in EPD occurrence on a day‐to‐day basis continues to be puzzling (e.g., Abdu, 2019;
Basu et al., 2009; Carter et al., 2014; Chou et al., 2020; Das et al., 2021; Hysell et al., 2022; Manju & Aswa-
thy, 2020; Patra & Das, 2023; Rajesh et al., 2017; Retterer & Roddy, 2014; Saito &Maruyama, 2007; Shinagawa
et al., 2018; Tsunoda et al., 2010, 2018; Yamamoto et al., 2018). While the PRE has been found to show a
remarkable agreement with EPD occurrence climatologically (e.g., Clemesha &Wright, 1966; Dabas et al., 2003;
Fejer et al., 1999; Gentile et al., 2006; Huang & Hairston, 2015; Hysell & Burcham, 2002; Stolle et al., 2008; Su
et al., 2008; Tsunoda, 2005), it fails to account on its day‐to‐day occurrence variability (e.g., Abdu et al., 1983;
Fukao et al., 2006; Saito & Maruyama, 2006, 2007). Intriguingly, the growth rate of GRT instability has been
found to display similar uncertainty (e.g., Aa et al., 2023; Das et al., 2021; Shinagawa et al., 2018). Since the EPD
occurrence shows a large variability both in small‐ and large‐longitudinal scales (e.g., Kil & Heelis, 1998a; Kil
et al., 2009; Martinis et al., 2021; Singh et al., 1997; Stolle et al., 2008; Tsunoda et al., 2018; Tsunoda &
White, 1981), predicting EPD occurrence becomes even more challenging. Now, it is fairly well understood that
missing understanding of the spatio‐temporal behavior of EPDs, that is, growth, zonal movement and decay of
EPDs, along with the paucity of continuous measurements of ionospheric parameters is the cause for the chal-
lenge in predicting the day‐to‐day occurrence variability of EPDs (e.g., Das et al., 2021; Hysell et al., 2021; Li
et al., 2021; Patra & Das, 2023).

For a long time, traditional methods such as in situ density measurements, optical imagers and radio wave
sounding have been employed to study the day‐to‐day, global, and climatological occurrence of EPDs (e.g., Aa
et al., 2023; Burke et al., 2004; Das et al., 2021; Fagundes et al., 1999; Farley et al., 1970; Gentile et al., 2011;
Huang et al., 2014; Kil & Heelis, 1998b; Kudeki & Bhattacharyya, 1999; Martinis & Mendillo, 2007; Sahai
et al., 1994, 2000; Woodman & La Hoz, 1976). Subsequently, it has been found that magnetic field perturbations
associated with the diamagnetic current linked to steep density gradient at the edges of the EPDs can also be used
for characterizing EPDs (e.g., Lühr et al., 2002; Rodríguez‐Zuluaga et al., 2019). Diagnosing EPDs through those
signatures in the magnetic field and electron density, Stolle et al. (2006) could successfully reconstruct the well‐
known EPD climatology using fluxgate magnetometer measurements on‐board the Challenging Mini‐Satellite
Payload (CHAMP) which similarly were obtained by traditional methods based on plasma density data from
other satellite missions (e.g., Gentile et al., 2006; Xiong et al., 2010). This success led to the introduction of the
Ionospheric Bubble Index (IBI) as a standard Level 2 (L2 − L2 data are data products derived from calibrated L1
data time series) data product of the Swarm mission for the detection of EPDs (e.g., Park et al., 2013). Recently,
Reddy et al. (2023) have utilized a machine learning (ML) based AI Prediction of EPDs (APE) model to predict
the IBI. Their model is derived from 8 years of Swarm data. Feature analyses revealed that F10.7 is the most
important feature in driving the EPD predictions, whereas latitude is the least.

The advantage of EPD climatology derived from in situ observations of Low Earth Orbit (LEO) satellites is their
global coverage. However, it should be noted that these satellites can only detect those irregularities that have
evolved into plumes reaching F region altitudes at or above the F2 peak (∼350 km altitude). Conversely, the
bottom‐side F region irregularities below ∼350 km altitude, from which plumes may evolve (e.g., Hysell, 2000),
occur more frequently than F region plumes are observed, for example, almost every evening throughout the year
and solar cycle, for example, in the American sector. A comprehensive investigation of the irregularity occurrence
derived from 20 years of incoherent scatter radar data at the Jicamarca radio observatory has been provided by
Zhan et al. (2018). Accordingly, based on 10 years of ground‐based GPS observations distributed in South
America, Macho et al. (2022) indicated some activity of weak scintillations also during low solar flux years, while
moderate or intense scintillations did only occur during moderate or high solar flux years.

This article introduces an empirical model of the occurrence probability of post‐sunset F region EPDs called the
Ionospheric Bubble Probability (IBP) model in version 1.2.1 (v1.2.1). The IBP model is derived from the
detection of magnetic field perturbations associated with EPDs obtained from 9 years of CHAMP and 9 years of
Swarm observations in the geomagnetic field. The model predicts the EPD occurrence rate for a given longitude,
day of year, local time and solar activity, for the altitude range 350–510 km, and low geographic latitudes of±45°.
The occurrence probability is given in the range of 0–1, from a 0% to 100% probability, respectively. The structure
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of this manuscript goes as following. Section 2 provides a description of the data on which the model is based,
Section 3 describes the model development methods, Section 4 shows the model results and discusses them,
Section 5 provides a model assessment, and finally, conclusions are described in Section 7. The forward model
code is available from IBP (2024).

2. Data
2.1. Swarm Satellite Mission

The Swarm satellite mission is a constellation consisting of three identical satellites Alpha, Bravo and Charlie (A,
B and C) launched in November 2013 into polar, near‐circular orbits at an altitude of approximately 490 km
(Friis‐Christensen et al., 2006; Olsen et al., 2013). Following orbital maneuvers in April 2014, Swarm A and C fly
in a side‐by‐side configuration with an inclination of 87.4° and an initial altitude of about 460 km (see Figure 1),
while Swarm B flies at an inclination of 88° and at a higher orbit of initially about 530 km altitude. Swarm B has
been precessing away from the lower pair at a rate of approximately 1.5 hr of local time per year while Swarm A
and C precess westward in local time at a rate of 2.7 hr per month. The Swarm satellites cover all local times about
every 4 months. The satellites carry, among other instruments, a magnetometer package consisting of an Absolute
Scalar Magnetometer (ASM) and a Vector Field Magnetometer (VSM), which provides precise measurements of
the Earth's magnetic field at the satellite location at 1 Hz frequency. Each satellite also carries a spherical
Langmuir probe as part of the Electric Field Instrument (EFI) providing plasma density observations at 2 Hz
frequency (Knudsen et al., 2017).

It is known that EPDs can be detected by high‐precision magnetometers on board LEO satellites from their
diamagnetic effects as regions of locally depleted plasma are characterized by enhanced magnetic field strength
(e.g., Lühr et al., 2003; Park et al., 2013; Stolle et al., 2006). For the Swarm mission, the European Space Agency
(ESA) has introduced the Ionospheric Bubble Index (IBI) as a standard L2 data product, which is generated from
in situ magnetic field and plasma observations onboard the Swarm satellites and provides detections of EPDs
along Swarm orbits. The IBI product considers not only the characteristic small‐scale variations in the magnetic
field to detect EPDs but also the concurrent change in plasma density to confirm these detected EPDs. The
detection threshold of EPDs based on their diamagnetic effects is set to 0.15 nT. If the correlation between the
magnetic field and electron density is sufficiently high (i.e., p2 > 0.5, where p is the Pearson correlation coef-
ficient), which confirms the diamagnetic effect, the magnetic fluctuation is flagged as confirmed EPD. The IBI
product provides a binary indicator for each of the low latitude (below 45°), night side (18–06 LT), 1 Hz magnetic
readings whether the measurement is affected by an EPD or not. If the data quality does not allow for EPD
detection, for example, due to enhanced noise or too many data gaps, the data is flagged by an integer value larger
than 1. The detailed description of the IBI product and of its derivation is outlined in Park et al. (2013). Swarm
data between 01 January 2014 and 31 December 2022 have been used in this study to derive the model. The mean
satellite altitudes were around 480 km for Swarm A and C and 510 km for Swarm B (see Figure 1).

2.2. CHAMP Satellite Mission

CHAMP (CHallenging Minisatellite Payload) was launched on 15 July 2000 into a polar, near‐circular orbit with
an inclination of 87.3° and an initial orbit altitude of 456 km (Reigber et al., 2002), which decayed to around
250 km in 2010 when the mission re‐entered the atmosphere (see Figure 1). The study of geomagnetic field was
one of the objectives behind this satellite mission. CHAMP carried both scalar and vector magnetometers, which
provided precise measurements of the Earth's magnetic field at the satellite altitude at 1 Hz frequency. The first
global survey of magnetic signatures of EPDs including a description of their detection in the magnetic field was
published by Stolle et al. (2006). In order to derive the IBP model, the CHAMP magnetic data was re‐processed
by the IBI processor as used for the L2 Swarm product to ensure consistency of the detections between Swarm and
CHAMP. Since the CHAMP mission provided electron density measurements at only 15 s resolution, the cor-
relation between magnetic field fluctuations and electron density was disabled in the processor when applied to
CHAMP, because it was not expected to make meaningful contribution as is the case for the high resolution
plasma density data from Swarm. Therefore, all detections in the magnetic field that exceeded a predefined
threshold are identified as an EPD. CHAMP data between 01 January 2001 and 31 December 2009 have been
used to derive the model. The mean satellite altitude as shown in Figure 1 was around 360 km.
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2.3. Comparing CHAMP and Swarm Data Sets

Figure 2 shows the probability density of orbits with EPD detections over local time for the CHAMP and Swarm
satellites for the data periods between 01 January 2001 and 31 December 2022. Figure 2a shows CHAMP data
applied to a detection threshold of 0.15 nT for EPDs as implemented for the Swarm IBI processor, but without
confirmation through correlation with electron density. In Figure 2c, results for the Swarm satellites are shown
under the same conditions as for Figure 2a but the EPDs detected by Swarm A,B,C satellites have been addi-
tionally confirmed by correlation with concurrent electron density measurements. In Figure 2c, the probability
density of EPDs rapidly increases after 18 LT, peaks between 20 LT and 22 LT and then gradually decreases.
Very few EPDs are detected after 02 LT. This behavior is well known from several other independent satellite
observations (e.g., Gentile et al., 2006; Xiong et al., 2010). For the IBP model, we use the Swarm data that have
been processed with a 0.15 nT detection threshold for EPDs and simultaneously correlated with electron density
measurements as shown in Figure 2c. The probability density based on CHAMP data with the same threshold of
0.15 nT shows a flatter distribution with a maximum around 22 LT and still relatively high values after 02 LT in
Figure 2a. The relatively large number of EPD detections between 02 LT and 06 LT for CHAMP, are detections
with similar frequency and amplitude to EPDs but do not have corresponding signatures in electron density. Thus,
the histogram is smeared out and we obtain a lower local maximum. Figure 2b shows the distribution of EPD
detection for CHAMP but with a higher detection threshold of 0.25 nT. This resulting histogram shows reduced
detections of EPDs beyond 02LT and a higher probability density between 20 and 24 LT, which is more consistent
with observations of EPDs dedections including the correlation between the magnetic field and plasma density.
Additionally, when the correlations to electron density is not considered for EPDs detected from Swarm satellites,
the probability distribution shown in Figure 2d resembles more closely with the EPD probability distribution
shown for CHAMP with 0.25 nT detection threshold in Figure 2b than with the EPD probability distribution for
0.15 nT detection threshold shown in Figure 2a.

For these reasons, the EPD detection thresholds as applied for Figures 2b and 2d have been chosen for CHAMP
and Swarm data, respectively, to develop the IBP model. Additionally, we only consider CHAMP and Swarm
data during periods with solar flux indices F10.7 ≥80 s.f.u and during geomagnetic quiet periods with Hp30
indices≤3 (Tapping, 2013; Yamazaki et al., 2022). Setting a threshold for F10.7 improved the performance of the
IBP model, for example, reduces the overestimation of low occurrence rates (see also Section 5.2).

3. Model Development
The IBPmodel describing the EPD occurrence probability is based on parameter estimations for functions of local
time, longitude, day of year (doy) and solar flux level. The model development is based on the assumption that an
EPD has a random life‐time and that it is detected by the satellite at an arbitrary time during the EPD's existence.
We further assume that the time of appearance of an EPD at a certain region has a constant mean and a given
variance and may be modeled by a Gaussian distributed random variable. The random lifetime of an EPD is
described by an exponential distributed random variable. For each EPD, a realization of its lifetime and its starting

Figure 1. Orbit altitude evolution of the CHAMP and Swarm satellites. The gray line indicates daily values of the F10.7 solar activity index. The light gray areas indicate
the times of satellite data which where selected to derive the IBP model.
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time is created which defines its time of existence. In addition, we make use of a Poisson distributed random
variable to account for the possibility that several EPDs may appear at the same location during the same night.
The parameters of the IBP model are described in Table 1.

We make use of a half orbit integration of the IBI data set (either ascending or descending), since no latitudinal
distribution is modeled and it is also uncertain, if two detections during one pass are in fact the same EPD. If no
EPD is detected along the satellite pass, the pass is flagged with 0. If at least one EPD is detected in the subset of
IBI data, the pass is flagged with 1. Our model process is thus also constructed to have two states, 0 and 1. To

Figure 2. Probability density of orbits with EPD detections over local time for the CHAMP and Swarm missions.
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obtain a state of 1, a minimum of one bubble has to appear before the satellite
pass and in addition when adding its life time it has to exceed the time of the
satellite pass. This may be expressed in the following way. Let T(i)0 , L

(i), i∈N
be the series of realizations of appearance times (in local time) and lifetimes
of EPDs and the number of EPDs in that night be given by n. Then, we can
define a process X(t), which describes the state of an EPD being detected
during a satellite pass or not. For a given local time, t, we can write:

X(t) = 1{∑

n

i=1
1(T(i)0 < t) ⋅ 1(T(i)0 + L

(i) > t)} (1)

The first term of Equation 1 indicates the appearance of the bubble before time, t, while the second term indicates
if its end of existence is past t. The function 1 represents the indicator function and takes a value of 1 if the
condition is valid, else the indicator function is 0. This function represents a process that has two states 0 and 1. A
state of 0 denotes that no EPD is detected while a state of 1 denotes that a minimum of one EPD is detected in the
satellite pass at the given time, which is identical to the integration of the data set. Given the distributions (see
Table 1), we can rewrite the probability, P, of obtaining a flag of 1 as

P[X(t) = 1] = 1 − P[X(t) = 0]

= 1 − P[{∑
Nλ

i=1
1(T(i)0 < t) ⋅ 1(T(i)0 + L

(i) > t)} = 0]

= 1 − eλ ⋅ I(t,γ,μ,σ)

(2)

where Nλ is a realization of a Poisson distributed random variable and the integral I(t, γ, μ, σ) is defined as,

I(t,γ,μ,σ) =∫

t

− ∞

1
̅̅̅̅̅
2π

√
σ
e
(− (x− μ)

2

2σ2
)
(− e− γ(t− x)) dx (3)

The complete derivation of Equation 2 can be found in Appendix A.

3.1. Modeling the Bubble Intensity Parameter

Several parameters of this IBP model are not a single number, but are functions dependent on day of year,
longitude, and F10.7. The global bubble intensity parameter, λ, varies with day of year, with the F10.7 index and
also with longitude and can be represented as,

λ = λ(doy,lon,F10.7) (4)

The longitudinal distribution of λ is given by a probability density function ϕmonth(lon) for each month. Since the
integral of a probability density function equals 1, ϕmonth(lon) is not affecting the global intensity. Thus we may
separate into global intensity and longitudinal distribution. The global bubble intensity consists of three parts, a
constant (C1), a linear fit including the F10.7 index (C2 · F10.7) and an estimated function gosc(doy) to describe the
day‐of‐year dependency. Eventually λ can be written as

λ(doy,lon,F10.7) = (gosc(doy) + C1 + C2 ⋅F10.7) ⋅ϕmonth(lon) (5)

By substituting λ in Equation 2, we obtain

P[X(t) = 1] = 1 − e(gosc(doy)+C1+C2 ⋅F10.7) ⋅ϕmonth(lon) ⋅ I(t,γ,μ,σ) (6)

3.2. Modeling the Longitudinal Probability Density and Timeshift Functions

The longitudinal probability density function ϕmonth(lon) is obtained using a kernel density estimation method.
The density is estimated from the normalized EPD detections of the CHAMP and Swarm satellites. To determine

Table 1
The Basic Model Parameters Used in the IBP Model

Parameter
(units) Influence Distribution

μ(hours), σ(hours) Mean and variance start‐time Gaussian distribution

λ Plasma bubble intensity Poisson distribution
1
γ (hours) Expected lifetime of bubbles Exponential distribution
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the optimal bandwidth for the kernel density estimation of ϕmonth(lon), we apply a direct plug‐in method
developed by Sheather and Jones (1991). To validate this choice of bandwidth, cross‐validation was carried out
where the bandwidth selected by employing the Sheather and Jones (1991) method was found to be optimal. We
apply this kernel density estimator to the observed bubbles for each month and arrive at the monthly longitudinal
densities, which are shown in Figure 3. The solid red lines in this figure show the longitudinal variation of
ϕmonth(lon) for each month. Remarkable, already here, are the higher values of ϕmonth(lon) over the Atlantic/
American sector during the months of November–February and the lower values during May–August. The
histogram shown in blue color gives the monthly probability density of EPDs detected from CHAMP and Swarm
satellites as a function of longitude.

The time of appearance of EPD is modeled in this IBP model using a Gaussian distribution with the parameters μ
and σ. As it is known that the appearance of EPD may vary with day‐of‐year and longitude (see Figure 8, Stolle
et al., 2008), this has been taken into account by adding a monthly timeshift function depending on longitude,
tsmonth(lon), to the parameter μ0, which can be expressed as

μ(month,lon) = μ0 + tsmonth(lon) (7)

The monthly variation of tsmonth(lon) as a function of longitude is shown in Figure 4 where variations of up to 2 hr
in tsmonth(lon) may be observed. The timeshift is estimated using a least‐squares fit for the coefficients of the
harmonic function described below

tsmonth(lon) = t0 +∑
2

1
(t(s)i sin(i ⋅

lon
360

⋅ 2π)) + (t(c)i cos(i ⋅
lon
360

⋅ 2π)) (8)

The coefficients for the timeshift function can be estimated directly from the local time and the longitude of the
detected EPDs using a least‐squares fit, since we assume the lifetime parameter γ to be globally constant.
However, the constant t0 may be affected, but this can be compensated by the estimation of parameter μ in a
following step. By expanding I(t, γ, μ, σ) using Equation 3 and then substituting tsmonth(lon) in Equation 6, the
model takes the following form:

P[X(t) = 1] = 1 − exp{(gosc(doy) + C1 + C2 ⋅F10.7) ⋅ϕmonth(lon)

⋅ (∫
t

− ∞

1
̅̅̅̅̅
2π

√
σ
exp{

− (x − (μ + tsmonth(lon)))2

2σ2
}(− e− γ(t− x)dx)}

(9)

Equation 9 provides a probability for each time, t, which is used to estimate whether the current data point is an
EPD or not. We compare this estimated probability of EPDs with the observed EPD flag of 0 and 1 in the data and
minimize the root mean square error (RMSE) to estimate the parameters μ, σ, γ, C1 and C2. It is important to note
that since gosc(doy) is determined at a later step, we use λtmp in place of λ by setting gosc(doy) to 0 in Equation 9
while estimating μ, σ, γ, C1 and C2, where λtmp is given by

λtmp = (C1 + C2 ⋅F10.7) ⋅ϕmonth(lon) (10)

and

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
(Flagi − Pi)

2
√

(11)

This RMSE was minimized using a BFGS (Broyden‐Fletcher‐Goldfarb‐Shanno) method. This minimization
method also has the option of passing on boundary conditions. To ensure that the actual minimum was reached
reliably, the minimization was performed multiple times with randomized starting points.

After estimating μ, σ, γ, C1 and C2 using Equation 9, we now estimate gosc(doy), which is a periodic function that
takes the day‐of‐year variability of the intensity of the EPDs into account. Without including this parameter in λ,
the model cannot account for the well‐known day‐of‐year variability of EPDs. To resolve this issue, the residuals
between the number of EPDs that are observed in the data and the number that are estimated by the model over a
5‐day moving period are computed. From these residuals, a least‐squares fit to estimate the coefficients for
gosc(doy) is performed. The function gosc(doy) is developed using a harmonic expansion and reads as
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gosc(doy) = g0 +∑
2

1
(g(s)i sin(i ⋅

doy
365

⋅ 2π)) + (g(c)i cos(i ⋅
doy
365

⋅ 2π)) (12)

In summary, the procedure for solving for the parameters and coefficients of the IBP model follows the following
steps:

1. Estimate monthly time‐shift coefficients
2. Estimate monthly longitudinal densities
3. Estimate the global coefficients μ, σ, γ, C1 and C2
4. Compute residuals and estimate the coefficients for gosc

The values of the coefficients μ, σ, γ, C1 and C2 obtained after minimization are summarized in Table 2.

4. Results and Discussions
4.1. Climatology of EPD Occurrence Derived by the IBP Model

We first evaluate the IBPmodel (v1.2.1) with a constant input value of F10.7= 150 s.f.u to examine if it is capable
of describing the day‐of‐year, longitudinal and localtime distributions of EPDs that has been discussed in earlier
works based on CHAMP, Swarm and other LEO satellite missions (e.g., Aa et al., 2020; Gentile et al., 2006; Stolle
et al., 2006; Xiong et al., 2010). The longitudinal and temporal distribution of EPDs along with its occurrence
probability are shown in Figure 5 for solstice (June and December) and equinox months (March and September).
The IBP model reproduces high occurrence probability of EPDs ranging between 50% and 90% over the South‐
American sector (75–25°W) and low occurrence probability over the Pacific sector (180–120°W) during the
December solstice. For this period, EPDs over the South American sector arise around 20 LT, peak between 21 and
22 LT and then rapidly decrease after 23 LT, which is consistent with its climatological variations as reported by
the earlier independent works cited above. For theMarch/September equinoxmonths, high occurrence probability
of EPDs ranging between 50% and 70% is seen to extend eastward from the SouthAmerican sector over to theWest
African sector (75°W–30°E). The temporal variation of EPDs for these periods differ slightly as the occurrence
probability of EPDs peaks around 21 LT during March and an hour later, around 22 LT, during September.
Significant EPDs occurrence probability reaching about 40% is also seen over the Pacific sector during equinox
months. The IBP model records high occurrence probability of EPDs during June over the African (25°W–50°E)
and Pacific sectors in pre‐midnight hours while minima is recorded over the South American sector.

Figure 3. Monthly longitudinal densities obtained using kernel density estimation is shown in solid red lines. The histogram in the background shows the monthly
probability density of EPDs as a function of longitude.
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The IBP model has been derived from in situ observations where the majority of data originates from 350 to
510 km altitude (see Figure 1). EPDs are created at lower altitudes at the bottom side F region, but do not always
develop into plumes reaching the topside F region particularly during seasons with low PRE and during low solar
flux (e.g., Hysell, 2000; Zhan et al., 2018). Irregularities which do not reach altitudes higher than 350 km are not
represented by the statistical model.

Figure 4. Dependence of monthly timeshift function on longitude. Here in the y‐axis, 0 refers to 24 LT.
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4.2. Dependence of EPD Occurrence on Solar Activity

The occurrence of EPDs shows an evident dependence on solar activity with
EPDs being more prevalent under solar maximum than solar minimum
conditions (e.g., Gentile et al., 2006; Stolle et al., 2006). The performance of
the IBP model in simulating the variability of EPDs under varying solar flux
conditions is given in Figure 6. On the basis of the F10.7 index, we assess

whether the IBP model reproduces a more frequent occurrence of EPDs under solar maximum than solar min-
imum conditions. We present the monthly global occurrence rate of EPDs derived from the IBP model with F10.7
index ranging between 80 and 200 s.f.u with increasing steps of 40 s.f.u in Figure 6. The monthly global
occurrence rate from the IBP model, referred henceforth as monthly IBP index, is derived for a fixed value of
F10.7 for all integer longitudes at a resolution of 5° at the middle of each month and averaged between 19 and 01
LT. We find that the IBP model reproduces the expected positive linear relationship between EPD occurrence
rates and F10.7 index. The monthly IBP index generally retains negligible probabilities for F10.7 at 80 s.f.u
except in the America‐Atlantic‐Africa sector during the equinoxes and solstice periods. However, with increasing
F10.7 levels, the monthly IBP indices begin to show higher probabilities as EPDs become more prevalent. Be-
sides, with F10.7 at 160 s.f.u, the day‐of‐year and longitudinal variations of the EPD occurrence rates are
particularly well characterized by the IBP model compared to the climatology derived from other satellite
missions or studies at similar solar flux levels. At the Atlantic sector during December solstice, the IBP model
gives ∼60% (Figure 6), CHAMP ∼65% and GRACE (Gravity Recovery And Climate Experiment) ∼55% (Xiong
et al., 2010, their Figure 5), and DMSP (Defense Meteorological Satellite Program) ∼50% (Gentile et al., 2006,
their Figure 5). The slightly decreasing occurrence rate from CHAMP, GRACE, to DMSP can be explained by the
increasing orbit altitude of these satellites (Xiong et al., 2010). The results from the IBP model showing a
dependence on F10.7 levels compares similarly well with the findings of Xiong et al. (2010) and Gentile
et al. (2006).

Table 2
IBP Model Coefficients

C1 C2 1
γ (hours) μ (hours) σ (hours)

− 221.7870 4.3522 1.4121 − 1.3386 1.0754

Figure 5. Occurrence probability of EPDs presented as a function of longitude and local time predicted by the IBP model at a constant F10.7 index of 150 s.f.u during
(a) December, (b) March, (c) June, and (d) September.
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4.3. Detectability of Post‐Midnight Irregularities

In recent years, particularly during the lowminima of solar cycles 23 and 24, EPDs have been frequently observed
in situ between midnight and sunrise onboard the C/NOFS (Communications/Navigation Outage Forecasting
System) satellite (e.g., Dao et al., 2011), onboard the Swarm satellites (e.g., Aa et al., 2020), and onboard the
COSMIC‐2 (Constellation Observing System for Meteorology, Ionosphere, and Climate‐2) satellites (e.g.,
Zakharenkova et al., 2023), mainly in June solstice months over the African sector. The cause for post‐midnight
irregularities is not yet fully understood (e.g., Otsuka, 2018), however, it is not the subject of our paper to deepen
discussions on their generation. We rather discuss the detectability of the post‐midnight depletions in the in situ
magnetic data on which the model is based on.

Figure 2c, including data for all solar flux and geomagnetic activity levels, does not give any remarkable oc-
currences after 02 LT. Also, reproducing Figure 5c for solar flux level F10.7 = 80 s.f.u. and Figure 6a for post‐
midnight hours do not show any or any considerable occurrence rates, respectively (not shown here). Stolle
et al. (2006) projected that a minimum of 2 · 1011 m− 3 in change of electron density is needed to create a detectable
signal in the magnetic field due to diamagnetic currents. The studies mentioned above used thresholds derived
from the log‐scale of electron density: Zakharenkova et al. (2023) a threshold of − 0.5 after midnight and Aa
et al. (2020) of − 0.3 at all local times. In a low electron density environment of only up to few 1011 m− 3, such as at
and after midnight (Wan et al., 2018, their Figure 2d) a log‐scale detection threshold of − 0.5 amounts to about
0.68 · 1011 m− 3. Wan et al. (2018, their Figure 2b) showed that the mean plasma depletion depth is up to 7 ·
1011 m− 3 after sunset, but does not exceed 2 · 1011 m− 3 after midnight. Thus the detection of plasma irregularities
in the magnetic field due to diamagnetic currents is not sensitive to shallow depletions, such as occur at post‐
midnight hours and during low solar activity.

However, the IBP model is still valuable to relate to scintillations in the radio wave L‐band used by GNSS (Global
Navigation Satellite System). Xiong et al. (2016) showed that GPS loss of lock is linearly related to the depletion

Figure 6. Occurrence probability of EPDs presented as a function of longitude and month predicted by the IBP model at F10.7 values of (a) 80 s.f.u, (b) 120 s.f.u,
(c) 160 s.f.u and (d) 200 s.f.u.

SpaceWeather 10.1029/2023SW003809

STOLLE ET AL. 11 of 20

 15427390, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003809 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [30/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



depth and that GPS losses occur less than 1% during depletions depths below 10 · 1011 m− 3. Accordingly, the
studies by, for example, Béniguel and Hamel (2011), Otsuka (2018), and Wan et al. (2018) revealed that GPS
scintillations have not been observed during post‐midnight plasma irregularities. The sensitivity is different for
radio waves in VHF (Very High Frequency) and UHF (Ultra High Frequency) used by radars. Hysell and
Burcham (2002) and Otsuka (2018) studied post‐midnight irregularities within this frequency range.

5. Assessment of the IBP Model
5.1. Overview of Assessment Methods

The performance of probabilistic predictions by models developed for space weather phenomena have been
typically quantified in the literature using skill scores and relative (receiver) operating characteristic (ROC)
curves (e.g., Barnes et al., 2016; Murray et al., 2017; Nishizuka et al., 2020). A skill score is generally defined as
the measure of accuracy of forecasts of interest relative to the accuracy of the forecasts produced by some
reference procedure (J. Murphy, 1988). A generic skill score takes the following form,

Skill Score =
Aforecast − Areference
Aperfect − Areference

(13)

where Aforecast is the accuracy of the forecasting method under consideration, Aperfect is the accuracy of a perfect
forecast and Areference is the accuracy of a reference method or the accuracy that is attainable by chance, which is
usually chosen to be the climatology or persistence of the considered event. For probabilistic forecasts, a measure
of accuracy is the mean square error (MSE), which can be used to calculate Aforecast as shown in Barnes
et al. (2016) in the following way,

Aforecast = MSE(pf ,o) = 〈(pf − o)
2
〉 (14)

where pf is the forecast probability from the considered method and o is the value for binary outcomes (o = 0 for
non event, o = 1 for an event). The MSE for a perfect forecast, Aperfect, is 0.

In this work, we use the Brier Skill Score (BSS) (Wilks, 1995) for evaluating the probability forecasting capability
of the IBP model. BSS measures the accuracy of the forecasts relative to the accuracy of standard reference
forecasts, which in common practice are based on climatology and persistence. BSS can be complemented by a
reliability diagram, which compares the forecast probabilities with the observed frequency of the events. BSS is
calculated from the Brier score (BS) and reference Brier score (BSref) by using the following equation,

BSS =
BS − BSref
0 − BSref

=
BSref − BS
BSref

= 1 −
BS
BSref

(15)

where BS = MSE(pf, o). BSref for climatology and persistence can be given by BSc = MSE(〈o〉, o) and BSp = 2
(1 − r) MSE(〈o〉, o) = 2 (1 − r) BSc, respectively (e.g., A. H. Murphy, 1992). In the equation involving BSp, the
persistence correlation coefficient, r, is a first order autocorrelation coefficient of the time series of observations
ot. We compute r based on correlation of ot together with its 1 day lagged time series ot− 1 for taking the persistent
prediction, which predicts the same state on the next day, into account. While calculating r, we assume that the
effects of local time precession of the Swarm satellites (0.09 hr/day) will be insignificant for the chosen
persistence time interval of 1 day.

The quality of the probability forecasts are also assessed by using the ROC curve, which relates the true positive
rate (TPR) or the probability of detection (POD) against the corresponding false alarm rate (FAR) (e.g., Ma-
son, 1982; Swets, 1973). TPR or POD and FAR can be easily understood in case of a binary categorical fore-
casting system using a 2 × 2 contingency table (see Table 3).

From the contingency table, POD and FAR are defined as follows (e.g., Mason, 1982)

POD =
TP

TP + FN
and FAR =

FP
FP + TN

(16)
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Probabilistic forecasts can be converted to binary, categorical forecasts by selecting a probability threshold, Pth,
such that any forecast probability over the threshold is considered to be a forecast for an event, and anything less is
considered to be a forecast for a non‐event. By varying this threshold value, contingency tables along with
corresponding POD and FAR can be determined for every Pth and based on these resulting POD and FAR values,
a ROC curve can be obtained. As POD and FAR are the axes of the ROC curve and they range between 0 and 1,
the ROC curve for no‐skill forecasts coincides with the 45° line from the origin passing through (0,0) and (1,1)
with POD and FAR being equal. For a perfect forecast, the ROC curve connects the points (0,0), (0,1) and (1,1)
with the values of POD and FAR being 1 and 0, respectively. The accuracy of binary, categorical forecasts can be
determined using standard skill scores and can be summarized by the ROC Skill Score (ROCSS), also known as
the Gini coefficient G1 (e.g., Jolliffe & Stephenson, 2012) and by the Hanssen and Kuiper's Discriminant
(H&KSS), also known as the true skill statistic (TSS) or the Peirce skill score (e.g., Hanssen & Kuipers, 1965; A.
Murphy, 1993).G1= 2 × A − 1.0 where A is the area under the ROC curve, andG1= 1.0 denotes a perfect score.
H&KSS can be written as,

H&KSS = POD − FAR (17)

H&KSS takes into account the success due to random guessing and it ranges between − 1 and +1. A score of +1
indicates perfect agreement between predictions and observations while a score of 0 or less indicate no‐skill
forecasting capability. As H&KSS can be sensitive to Pth, we also calculate the Gini coefficient to present a
concise summary of the assessment of the IBP model.

5.2. Model Assessment

We use 1 year of recent IBI index data from the Swarm A, B and C satellites between January and December 2023
for the purpose of IBP model validation. During this period, the total number of orbits with and without EPD for
each Swarm satellite are summarized in Table 4. For each orbit of the satellite, we first compute the EPD
occurrence probability from the IBP model for all longitude and local time that the satellite traverses. These
probability outputs are then used to derive the maximum EPD occurrence probability for each satellite orbit. With
different choices of probability threshold, Pth, we predict using this derived maximum EPD occurrence proba-
bility whether each satellite orbit contains or not contains EPD. The contingency tables for binary, categorical
forecasts of EPD is then created by varying Pth and compared with the observed IBI data set. We chose a threshold
step of 0.02 resulting in covering the Pth levels between 0 and 1. Thereafter, POD and FAR values are calculated
for different contingency tables and ROC curves are generated for Swarm A, B, and C satellites. These ROC

curves are presented in the upper panels of Figure 7 and are used to visualize
H&KSS. When Pth is set to 1, no EPD detections are forecasted and hence
TP = FP = 0, which corresponds to the point (0,0) on the ROC curves. When
Pth is set to 0, all detections are forecasted as EPD and hence FN = TN = 0,
which corresponds to the point (1,1) on the ROC curves. For Figures 7a–7c,
we find that ROC curves stay well above the 45° no‐skill forecast line shown
here in dashed green color. The ROC curves also stay close to the FAR = 0
while the POD rises, which suggests that the IBP model well forecasts EPD
events. For Swarm satellites A, B and C, we find that H&KSS maximizes at
similar values, for example, when Pth equals 0.16, which is shown through
dashed vertical black lines. H&KSS values reach 0.52, 0.51 and 0.55 for

Table 3
2 × 2 Contingency Table for a Binary, Categorical Forecasting System

Forecasts

Observation Positive Negative Total

Event True Positive (TP) False Negative (FN) TP + FN

Nonevent False Positive (FP) True Negative (TN) FP + TN

Total TP + FP FN + TN N = TP + FP + FN + TN

Table 4
Total Number of Orbits With and Without EPD for Each Swarm Satellite
Between January and December 2023

# of orbits

Satellite Total With EPDs Without EPDs

A 3,448 651 2,797

B 3,243 700 2,543

C 3,457 640 2,817
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satellites A, B and C, respectively, which suggests that the forecasting capability of the IBP model is significantly
better than a no‐skill forecast. The Gini coefficient for Swarm A, B, and C satellites are 0.63, 0.62, and 0.66,
respectively.

The climatological BSS (BSSc) and persistent BSS (BSSp) are computed by choosing BSref as BSc and BSp,
respectively, and are shown in Table 5. As the interpretation of BSS can be very sensitive to the choice of the
reference climatology (e.g., Hamill & Juras, 2006), we compute BSSc for climatological occurrence rate ranging
from 5% to 20% to highlight its dependency on varying levels of climatological occurrence rate of EPDs. The IBP
model shows a decent BSScwith values lying approximately between 0.19 and 0.34 for climatological occurrence
rate of EPDs ranging between 5% and 20% for Swarm A, B, and C satellites. In addition, we present the reliability
plots in the lower panels of Figure 7. These plots are presented based on BSSc|15 since the climatological
occurrence rate of EPDs, in general, was found to be approximately 15% for Swarm A, B, and C satellites in 2023.
The reliability plots are constructed by first selecting probability intervals and then the frequency of observed
events within each interval is estimated using the method described in Wheatland (2005). This observed fre-
quency is then plotted against the predicted probability and the error bars are estimated based on the number of
events that lie within each interval. On a reliability plot, perfect prediction corresponds to a 45° line when
observed frequency equals the predicted probability, which is plotted here using the dashed green lines in
Figures 7d–7f. Points lying above this line indicate underprediction while points located below this line imply
overprediction. We find that the IBP model underestimates the occurrence frequency of EPD when the predicted
probability exceeds around 0.5 for all three satellites. Below this value, the model is generally correctly predicting
the occurence frequency of EPD between 0 and 0.3 but between 0.3 and 0.5 there is also slight underestimation for
all three satellites. We additionally found that the model showed an overestimation for low EPD occurrence rates,
which increased with the amount of data of very low solar flux. These times are usually free of EPD detections in

Figure 7. The top panels of the figure (a–c) show receiver operating characteristic (ROC) plots depicting the probability of detection as a function of the false alarm rate
by varying the threshold above which an EPD is forecasted. In this case the maximum H&KSS occurs for p = 0.16 for Swarm A, B and C and is indicated by a dashed
vertical line. The random classifier line of the ROC plots is donated in dashed green colors. The bottom panels (d–f) show reliability plots in which the observed
frequency of EPDs is plotted as a function of the forecast probability. Perfect reliability occurs when all points lie on the diagonal (x= y) line. The error bars are based on
the sample sizes in each relevant bin.
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the topside F region. A reasonable results was found for a cutoff of F10.7 ≤80 s.f.u. as shown in Figure 7. In
summary, the model slightly underestimates the EPD occurrence at occasions of high EPD probability and it is
generally correctly predicting the EPD occurrence at low EPD probability. The BSSp levels for SwarmA, B, and C
satellites calculated with reference to BSSc|15 are found to be slightly higher than BSSc|15 values implying that IBP
model performs better against persistent predictions than climatological predictions for EPDs for the period of the
test data set considered for its evaluation. The performance of the IBP model based on the evaluation metrics used
here above is summarized in Table 5.

Figure 8 shows an example of comparison between IBP model predictions and GNSS amplitude scintillations
detected at the SABA receiver (De Zeeuw‐van Dalfsen & Sleeman, 2018) between 1 January 2020 and 1 May
2024. The SABA station is equipped with a Septentrio PolaRx5S GNSS receiver and located on the Caribbean
island of Saba (17.62°N lat, − 63.24°E lon). The station's magnetic latitude is 22.9°N. The scintillation intensity is
given by the S4‐index (e.g., Groves et al., 1997), which is expressed as the standard deviation of the signal
amplitude normalized with its average. Only GNSS satellites that were above 20° elevation were taken into
account. The percentage of those satellites that were affected by at least moderate scintillation is shown on a color‐
coded grid. The threshold for moderate scintillation is defined here as S4 > 0.5, which is according to the defi-
nition used to provide space weather advisories for civil aviation (Kauristie et al., 2021). Bins without obser-
vations, mainly due to computer and network issues at the station, are displayed in gray. The white lines represent
the contours along the 25% irregularity occurrence rate as estimated by the IBP model for this location on the
same grid. In both data and model, very little or no irregularities have been observed or predicted during low solar
flux conditions, for example, during 2020 and 2021 (see Figure 1 for solar flux conditions). The occurrence
increases with increasing solar flux level in 2022. The contour lines of the model predictions well encompass the
observed scintillations. This example demonstrates the capability of the IBP model to predict the probability for
irregularities causing GNSS scintillations in a climatological sense. It remains to be noted that the data show a
considerable day‐to‐day variability of irregularities, which, as expected, cannot be captured by the statistical
model.

6. Application of the IBP Model
The IBP model estimates the occurrence probability of post‐sunset equatorial
plasma irregularities between 0 (EPDs not at all expected to occur) and 1
(EPDs are fully expected to occur) for a given longitude, local time, day of
year, and solar flux value. The performance of the IBP model has been
assessed as an estimate largely exceeding a non‐skilled forecast in Section 5.
Thus, the model can be used to predict IBP occurence with reasonable con-
fidence. The model forward code is publicly made available, as being an

Table 5
IBP Model Performance Based on the Evaluation Metrics for Swarm Data
Between January and December 2023

Satellite H&KSS (Pth) G1 BSSc|5 BSSc|10 BSSc|15 BSSc|20 BSSp

A 0.52 (0.16) 0.63 0.327 0.279 0.249 0.243 0.371

B 0.51 (0.16) 0.62 0.303 0.249 0.210 0.191 0.264

C 0.55 (0.16) 0.66 0.342 0.296 0.267 0.263 0.366

Figure 8. The percentage of GNSS satellite signals affected by amplitude scintillation (S4 > 0.5), plotted on a grid as a
function of date and time of day. Superimposed with white lines is the contour along the 25% occurrence rate as estimated by
the IBP model.
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official L2 product of the Swarm mission as given at https://swarmhandbook.earth.esa.int/catalogue/SW_IBP_
CLI_2_. The forward model code itself and its documentations are available at Gitlab at IBP (2024). The model
code is provided in Python and is also available as a Python package (https://pypi.org/project/ibpmodel/). Our
study evaluates the IBP model v1.2.1. The model coefficients will be updated with time, when more Swarm
observations will be available. A yearly update is anticipated. Updates will come with increasing version numbers
and will be described in the Gitlab documentation.

Besides the consideration of the assessment results given in Section 5, the user of the IBP model shall be aware of
the following constraints. The IBP model

• estimates the EPD occurrence rate at altitudes between 350 and 510 km, and does not give information on
EPDs which do not reach these altitudes.

• is not recommended to be applied for solar flux indices F10.7 ≤ 80 s.f.u. and F10.7 ≥ 200 s.f.u.
• can only consider plasma depletions of magnitudes above ∼2 · 1011 m− 3.
• does not predict EPD occurrence depending on latitude. It provides the EPD occurrence for a user‐defined
longitude, but integrated over latitude.

7. Conclusions
In this study, we have presented the IBP model by explaining its derivation, its assessment, and giving recom-
mendations for its application. The main findings of this study are summarized below:

• The IBP model is a statistical climatological model for predicting the occurrence probability of F region EPDs
for a given local time, solar radio flux, day of year, and longitude.

• It fully captures the climatology and solar flux dependence of EPDs at altitudes between 350 and 510 km. The
model especially performs well in the American/Atlantic sector during December solstice and increased solar
activity conditions, which is encouraging as this region and this time of year is a hotspot for EPDs.

• Using 1 year of recent and untrained Swarm magnetic data, the IBP model has been evaluated and various
evaluation metrics have been presented. The IBP model shows improved prediction capability compared to
climatological and persistent forecasts with moderate skill scores. With the addition of recent and future
Swarm data, for example, by updating the model parameters, it is expected that the skill scores and accuracy of
the IBP model enhances further.

• The IPB model well reproduces scintillation activity in a climatological sense.
• The IBP model is publicly made available at IBP (2024).
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Appendix A: Derivation of Equation 2

P[X(t) = 1] = 1 − P[X(t) = 0]

= 1 − P[{∑
Nλ

k=1
1(T(k)0 < t) ⋅ 1(T(k)0 + L(k) > t)} = 0]

= 1 − ∑
∞

k=1
e− λ

λk

k!
P[1(T(1)0 < t) ⋅ 1(T(1)0 + L(1) > t) = 0]

k

= 1 − ∑
∞

k=1
e− λ

λk

k!
(1 − P[1(T(1)0 < t) ⋅ 1(T(1)0 + L(1) > t) = 1])

k

= 1 − ∑
∞

k=1
e− λ

λk

k!
(P[T(1)0 > t] + P[T(1)0 + L(1) < t])

k

= 1 − e− λ ⋅ eλ ⋅ (P[T
(1)
0 > t]+P[T(1)0 +L(1) < t])

= 1 − eλ ⋅ ( P[T
(1)
0 > t]+P[T(1)0 +L

(1) < t]− 1)

= 1 − eλ ⋅ ( − P[T
(1)
0 < t]+P[T(1)0 +L(1) < t])

= 1 − eλ ⋅ (− ∫
t

− ∞
1̅̅̅
2π

√
σ
e
(− (x− μ)

2

2σ2
)
dx+∫

t
− ∞

1̅̅̅
2π

√
σ
e
(− (x− μ)

2

2σ2
)P[L1 < t− x]dx

= 1 − eλ ⋅ (− ∫
t

− ∞
1̅̅̅
2π

√
σ
e
(− (x− μ)

2

2σ2
)
dx+∫

t
− ∞
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2π

√
σ
e
(− (x− μ)

2

2σ2
)(1− e− γ ⋅ (t− x))dx

= 1 − e
λ ⋅

⎛

⎜
⎜
⎝∫

t
− ∞

1̅̅̅
2π

√
σ
e
(− (x− μ)

2

2σ2
)
(− e− γ(t− x))dx

⎞

⎟
⎟
⎠

= 1 − eλ ⋅ I(t,γ,μ,σ)

(A1)

where Nλ is a realization of a Poisson distributed random variable. Through the application of inverse probability,
the realization of the random variable can be expressed as infinite sum, which can be transformed to an expo-
nential function. The transformations leading to the exponential function apply independence of the events and
again inverse probability.

Data Availability Statement
The CHAMP magnetic data set used in this paper is accessible at Rother and Michaelis (2019). The Swarm data
set is publicly available from the European Space Agency website (Swarm Data, 2024). The IBP model is one of
ESA's Swarm data products and it is publicly available at IBP (2024). The F10.7 index is accessible at
F10.7 (2024). The Hp30 index is accessible at Matzka et al. (2022) and Hpo (2024). All data sets and software are
freely available without the need for user registration. The CHAMP magnetic data set and the Hp30 index are
published under licence CC BY 4.0. The SABA scintillation data is available via the eSWua portal (Romano
et al., 2008) at SABA GNSS Scintillation Data (2024).
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