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A B S T R A C T

For over four decades, spaceborne multispectral data have played a crucial role in supporting mineral explo-
ration and geologic mapping. The spaceborne multispectral datasets, however, have a restricted number of bands 
with coarse spectral resolution and, thus are very limited in mineral mapping. The advent of high-quality 
spaceborne imaging spectroscopic data like the Environmental Mapping and Analysis Program (EnMAP), has 
bridged this gap initiating a new era in global hyperspectral mineral mapping. The EnMAP satellite, operational 
since November 2022, covers the spectral range of 420 and 2450 nm in 224 bands, offering a spatial resolution of 
30 m and a mean spectral sampling distance of 8.1 and 12.5 nm in the visible-near infrared and shortwave 
infrared regions, respectively. In this paper, we demonstrate the enhanced mapping capabilities of EnMAP using 
datasets acquired over the Reko Diq mining district, a cluster of Miocene porphyries located in Pakistan’s Chagai 
Belt hosting an undeveloped world-class porphyry Cu-Au ± Mo deposit. The EnMAP’s Level 2A data product was 
processed using the polynomial fitting technique to characterize the diagnostic absorption features of the 
alteration minerals in the Reko Diq porphyry system. This involved retrieving the minimum wavelength, depth, 
width, and asymmetry parameters for key absorption features and employing them interactively for mineral 
characterization. A diverse array of minerals were successfully mapped over the study area and validated by 
ground spectroscopy. This includes abundance/composition maps for white micas, chlorite, epidote, calcite, 
kaolinite, gypsum, jarosite, and ferric and ferrous iron minerals. The minimum wavelength of white mica was 
found to vary between 2195 and 2210 nm, with the shorter wavelengths (Al-rich) white mica occurring proximal 
to the known mineralized zones. The potassic alteration cores and the outer propylitic zones were identified by 
the ferrous iron and chlorite-epidote-calcite mineral maps, respectively. This study demonstrated the superiority 
of EnMAP hyperspectral data in delineating the alteration mineralogy and zonation pattern of porphyry copper 
systems. This capability can potentially contribute to the exploration of new deposits in exposed terrains 
worldwide.

1. Introduction

Multispectral satellite imagery, such as Landsat and Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, 
has been extensively used over the past decades to assist mineral 
exploration and geologic mapping worldwide. The critically configured 
spectral bands, coupled with moderate spatial resolution, global 
coverage, and free accessibility have made these datasets a cost-effective 
and widely used tool for regional mapping of hydrothermal alteration 

minerals, discriminating between different rock types, and generating 
exploration targets for follow-up field mapping and sampling (Di Tom-
maso and Rubinstein, 2007; Goetz et al., 1983; Mars and Rowan, 2006; 
Pour and Hashim, 2012; Rowan et al., 2006; Sabins, 1999; van der Meer 
et al., 2012; Zhou et al., 2017). These multispectral datasets, however, 
have a limited number of bands with a relatively broad spectral reso-
lution in the visible-near infrared (VNIR) and shortwave infrared (SWIR) 
regions, resulting in uncertainties in mineral identification and map-
ping. Consequently, discrimination is restricted to mineral groups only, 
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and the level of confidence given to the mapped minerals is not always 
high, with the outcomes often failing to accurately depict the full spatial 
extent of particulate minerals or differentiating between spectrally 
similar minerals co-occurring in a pixel (Dalton et al., 2004; van der 
Meer et al., 2012). Furthermore, multispectral datasets fall short in 
consistently detecting the variations observed in mineral chemistry, 
thereby impeding effective vectoring within the lithocap towards 
mineralized centers.

The high-resolution multispectral data have enabled improved 
mineral mapping capabilities. For instance, Worldview-3 multispectral 
data at 3.7 m spatial resolution in the SWIR region allows mapping for 
smaller and/or weaker alteration zones, as well as more accurate min-
eral identification for phyllosilicates at deposit to district scales (Coulter 
et al., 2017). Worldview-3 together with Sentinel-2 satellite data also 
enables improved mapping for ferric and ferrous iron minerals, 
including jarosite, goethite, and hematite discriminations (Mars, 2018; 
Van der Werff and Van der Meer, 2015). Despite these improvements, 
however, the fundamental limitations described above still apply to 
these datasets.

In contrast, hyperspectral imaging (also referred to as imaging 
spectroscopy) at medium to high spatial resolution is a proven tech-
nology for the systematic mapping of alteration minerals associated with 
various hydrothermal mineral systems. Four decades of airborne 
hyperspectral data have proved the technology and its wide applica-
bility in the field of geology and mineral exploration (Bedini, 2017; 
Berger et al., 2003; Clark et al., 2003; Cudahy et al., 2008a; Cudahy 
et al., 2001; Kruse et al., 2003). The finer spectral resolution of hyper-
spectral datasets allows them to capture more detailed information 
about the spectral signatures of minerals, resulting in more accurate 
mineral mapping and improved discrimination capabilities compared to 
multispectral data (van der Meer et al., 2012). This technology has 
played a key role in advancing our understanding of alteration zonation, 
identifying the large-scale footprint of mineral systems, and mapping 
the chemistry of vector minerals (comprising the Tschermak substitu-
tion1 in white mica (Duke, 1994)), facilitating ore targeting and explo-
ration drilling (Asadzadeh et al., 2023; Cudahy, 2016; Graham et al., 
2018; Portela et al., 2021; Swayze et al., 2014; Uribe-Mogollon and 
Maher, 2020).

The airborne surveys, however, are restricted to specific regions and 
lack global coverage due to cost and logistic hurdles. Since the inception 
of the Hyperion/EO-1 demonstration mission in 2000, the potential of 
high-quality spaceborne hyperspectral data has been recognized, lead-
ing to numerous efforts to launch imaging spectroscopy systems into 
orbit. Today, a range of spaceborne hyperspectral missions, comprising 
DLR Earth Sensing Imaging Spectrometer (DESIS), PRecursore Iper-
Spettrale della Missione Applicativa (PRISMA), Hyperspectral Imager 
Suite (HISUI), Advanced Hyperspectral Imager aboard China’s Gaofen-5 
satellite, Earth Surface Mineral Dust Source Investigation (EMIT), and 
Environmental Mapping and Analysis Program (EnMAP) offer medium 
spatial resolutions data from the Earth’s surface (Alonso et al., 2019; 
Cogliati et al., 2021; Green, 2022; Guanter et al., 2015; Liu et al., 2019; 
Matsunaga et al., 2022). While the potential of spaceborne hyperspectral 
imaging data for mineral exploration purposes is promising (e.g., Chir-
ico et al., 2023; Dong et al., 2022), the effectiveness and utility of 
EnMAP data for raw material exploration are yet to be substantiated 
using real operational datasets.

This study aims to assess the applications of EnMAP hyperspectral 
data in the field of geology and mineral exploration by studying the 
world-class Reko Diq porphyry Cu-Au-Mo deposit in the Chagai Belt, 
Baluchistan province of Pakistan. It also seeks to test the effectiveness of 
spectroscopic-stemmed processing techniques and algorithms in the 
analysis of EnMAP hyperspectral data for accurate mineral character-
ization and mapping. Reko Diq has been the focus of several remote 

sensing studies over the past decades, including a study using the 
Landsat-1 data (Schmidt, 1976) and a subsequent analysis using the 
ASTER instrument (Rowan et al., 2006). The bedrock geology and the 
alteration patterns of this deposit are well-documented by surface and 
subsurface mapping, ground spectroscopy, and geochemical analysis. 
The existence of previous remote sensing studies from the ASTER in-
strument, the well-exposed bedrock, and the sheer size of the Reko Diq 
deposit—recognized as one of the largest undeveloped porphyry copper 
deposits in the world with minimum surface disturbances—makes this 
site an ideal choice for remote sensing mapping. It also provides a solid 
basis for evaluating the enhanced capability of the EnMAP instrument in 
alteration mineral mapping.

Porphyry copper deposits typically exhibit large and concentric 
zoned alteration, with potassic alteration of biotite-orthoclase at the 
core, upwards and outwards to phyllic alteration of quartz-sericite- 
chlorite and then propylitic alteration of epidote-chlorite‑carbonates, 
overprinted (and overlaid) by intermediate argillic alteration of illite- 
kaolinite-montmorillonite and/or advanced argillic alteration of 
quartz-alunite-pyrophyllite-kaolinite-dickite (Seedorff et al., 2005; Sil-
litoe, 2010). This generalized model reflects the evolution of hydro-
thermal fluids from near-neutral, high-temperature conditions to cooler 
more acidic fluids over space and time.

Given the recent classification of copper as a critical raw material 
(Energy, U.S.D.o, 2023), there is an immediate need to enhance explo-
ration programs to meet the rising demand for copper resources during 
green transitions. Porphyry copper deposits, which account for nearly 
70 % of global copper production (Singer, 2017), continue to be a 
valuable target for spectral remote sensing studies.

2. Geology of the Reko Diq deposit

The world-class Reko Diq copper‑gold ± molybdenum porphyry 
deposit is located in the east-west trending Chagai magmatic belt of 
northwest Balochistan Province, Pakistan (Fig. 1). The region is char-
acterized by mountain ranges of low-moderate relief interspersed by 
sandy and stony pediplains over topographic depressions, with 
extremely arid conditions, sparse vegetation cover, and generally 
shallow chemical weathering. At Rekndo Diq, the bedrocks are partially 
covered by alluvial-fluvial deposits, and locally by a veneer of Fe-stained 
eolian quartz sands (Perelló et al., 2008; Rowan et al., 2006).

The Reko Diq igneous complex contains a cluster of 18 individual 
porphyry centers, within a 10 km × 3 km NW trending mineralized 
corridor which is bounded by the Drana-Koh fault system to the north 
and the Tuzgi fault to the south. It is estimated to contain a global 
resource of 5900 million metric tons @ 0.41 % Cu and 0.22 g/t Au 
(Perelló et al., 2008; Razique et al., 2014), with the majority of reserves 
located in the western porphyry systems (i.e., H79, H15, H14, and H13), 
the Tanjeel system, and the H8 and H35 sub-systems (Fig. 1). Porphyry 
Cu–Au mineralization at Reko Diq is spatially and temporally associ-
ated with the Miocene calc-alkaline granodiorite and quartz-diorite to 
diorite porphyry stocks and dykes (Fig. 1) emplaced into the Early 
Miocene felsic-intermediate-mafic volcanic and subvolcanic country 
rocks of the Reko Diq Formation and the underlying Late Oligocene 
clastic sedimentary rocks of the Dalbandin Formation in a continental 
arc setting (Razique et al., 2014; Zürcher et al., 2019).

Although each of the porphyry systems in the cluster originates from 
spatially separate and temporally distinct porphyry intrusives, the 
resulting hydrothermal alteration and mineralization exhibit significant 
spatial overlap (Razique et al., 2014). The alteration halos of H14-H15 
porphyry centers, for instance, are coalesced and zoned from potassic 
(biotite+K-feldspar) outboard to phyllic (quartz-sericite+/− chlorite) 
and distal propylitic (chlorite-epidote+/− carbonate) alteration. 
Potassic alteration is overprinted by phyllic alteration which in turn is 
overprinted by intermediate argillic alteration. Advanced argillic alter-
ation is uncommon in the study area (Razique et al., 2014).

High-grade mineralization of disseminated and veinlet 1 The substitution of elements within a mineral crystal structure.
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chalcopyrite+/− bornite is associated with intensive potassic alteration 
and A-type veins in early mineral granodiorite and intro-mineral quartz- 
diorite intrusions and adjacent country rock. Of all mineralized por-
phyry centers in the district, significant supergene enrichment is found 
only at the Tanjeel porphyry system where a relatively large supergene 
chalcocite blanket occurs beneath a 40-50 m thick leached cap of su-
pergene kaolinite+/− alunite, residual hydrothermal quartz and sericite, 
quartz-limonite veins, Fe oxides (jarosite+hematite+/− geothite) and 
Cu oxides (chalconthite+/− chrysocolla) (Perelló et al., 2008).

3. The EnMAP satellite data

The Environmental Mapping and Analysis Program (EnMAP) satel-
lite was successfully launched into orbit on April 1, 2022, by a Falcon 9 
rocket from Cape Canaveral in Florida. The commissioning phase 
completed by the end of October 2022, marked the successful initiation 
of its operational phase (Storch et al., 2023). Since then, the instrument 
has been routinely collecting data worldwide. EnMAP is a German 
hyperspectral satellite system designed to provide high-quality, well- 
calibrated data for environmental monitoring and sustainable manage-
ment of the Earth’s natural resources (Chabrillat et al., 2022). Specifi-
cations of the sensor and satellite system are summarized in Table 1. 
Additional information about the instrument, data processing levels, 
and data access can be found in Guanter et al. (2015) and Storch et al. 
(2023) as well as the EnMAP portal at www.enmap.org.

4. Materials and methods

The datasets used herein include EnMAP data covering the deposit 
and surrounding areas, detailed geology (and alteration) maps (as 
depicted in Fig. 1), and field spectroscopy conducted over deposit 
outcrops.

Fig. 1. Simplified geologic map of the area adopted from Razique et al. (2014) and modified/improved through visual image interpretation techniques using 
orthorectified satellite data. The deposit/prospect locations and naming were extracted from Ürcher et al. (2015).

Table 1 
The specification of the EnMAP satellite system (source: www.enmap.org).

Spectral range VNIR SWIR

420–1000 nm 900–2450 nm

Spectral sampling interval 6.5 nm 10 nm
Spectral bandwidth (FWHM) 8.1 nm 12.5 nm
Number of spectral bands 95 135
Signal-to-noise-ratio (SNR) >470:1 >250:1
Spectral stability 0.5 nm 1 nm
Radiometric resolution 14 bits
Geolocation accuracy <30 m
Co-registration accuracy 0.3–0.4 pixel
Geometric resolution 30 m × 30 m
Swath 30 km

Revisit time 27 days @ ±5◦ off-nadir tilt 
4 days @ ±30◦ off-nadir tilt

Operational lifetime > 5 years
Equator crossing time 11:00 h ± 18 min.
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4.1. EnMAP data acquisition and preprocessing

The EnMAP data over the target area was obtained upon our request 
on November 8th, 2022 at 07:10:35 UTC (12:10 local time). At the time 
of acquisition, the solar zenith angle was 46.13◦. The Level 2A EnMAP 
orthorectified surface reflectance product comprising 224 consecutive 
spectral bands at 30-m resolution in BSQ format was ordered from the 
EOWEB® Geoportal. The data were processed by the ground segment 
with the following setting: ‘L2A processing with atmospheric correction 
for land surfaces’ with ozone correction activated, with no terrain 
correction and spectral interpolation, and resampling using the nearest 
neighbor method. A subset of the original EnMAP 30 × 30 km tile 
covering an area of 500 km2 was prepared for processing in this study. 
Although a new EnMAP processor was introduced at the end of March 
2023, which largely eliminates the striping noise of the sensor, we pri-
marily employed the datasets provided by the old processor for this 
study. Accordingly and as the first step, the striping noise was removed 
in the frequency domain using the Fast Fourier Transform (FFT) tech-
nique (Asadzadeh et al., 2019). In this approach, all the bands, except 
the atmospheric bands, were transformed into the frequency, and their 
systematic noise was isolated and removed. The image was then trans-
formed back into the image/spectral domain, resulting in a de-noised 
dataset suitable for spectral mineral mapping.

4.2. Spectral mineral mapping

We refined the fitting to the minimum technique described by 
Rodger et al. (2012) by allowing it to search for the minimum within a 
user-specified wavelength range. For this aim, the local continuum is 
first removed over the desired absorption feature(s), by fitting a straight 
line to the side shoulders (Clark et al., 2003). Then the wavelength of 
minimum reflectance (also known as minimum wavelength) is deter-
mined by fitting a quadratic or a higher-order polynomial to the 
apparent minimum and its adjacent bands located within the user- 
specified range. For the quadratic fitted polynomial, the root of the 
explicit first derivative is used to accurately determine the minimum 
wavelength of the absorption feature (Rodger et al., 2012). In the case of 
higher-order polynomials, the (real) roots of the explicit first derivative 
are derived from the Lagrange method (Asadzadeh and Souza Filho, 
2016). The depth of the feature is subsequently retrieved from the co-
efficients of the fitted polynomial relative to the continuum hull. The 
method also retrieves the width, area, and asymmetry of the absorption 
feature following the procedures described in Asadzadeh and Souza 
Filho (2016). When the retrieved wavelength falls within the user- 
defined range, the second derivative of the fitted polynomial is posi-
tive, and the absorption depth exceeds a user-defined threshold, then the 
feature is considered a true absorption feature, and the extracted spec-
tral parameters are stored for further analysis. The feature width is 
calculated at a depth level set by the user, ranging from 50 % (equivalent 
to FWHM; full-width-half maximum) to 90 % of the absolute depth. The 
obtained spectral parameters are subsequently stored and used for both 
identifying and characterizing the target minerals, including mapping 
the occurrences, relative abundances, and any compositional variations. 
This methodology also enables the detection of mineral mixtures in the 
data. Here, it is assumed that the continuum-removed absorption depth 
is proportional to the relative abundance of the corresponding mineral 
and the minimum wavelength is proportional to the cation composition 
of the mineral revealing its physicochemistry (Cudahy et al., 2008a).

In our processing chain, multiple features are incorporated into the 
decision-making process to enhance the accuracy of mineral identifi-
cation and mapping. However, instead of evaluating and thresholding 
the spectral parameters individually, we employ a pair of spectral pa-
rameters presented in a scatterplot to interactively isolate a specific 
mineral/feature within the image data. For instance, the Al–OH ab-
sorption depth at 2200 nm plotted against the kaolinite absorption 
depth at ∼2165 nm is used to distinguish kaolinite-dominated pixels 

from white mica. Moreover, by examining the scatterplots of the 
retrieved spectral parameters (e.g., the minimum wavelength against 
depth) further insights about the state of the minerals including the 
spectral mixtures between minerals are obtained. To track the relative 
variations in the proportion of absorption features, two absorption depth 
ratios comprising Mg–OH/Al–OH and Fe–OH/Mg–OH were introduced 
and tested (detailed below). Additionally, a new spectral index was 
developed to differentiate between low-temperature illite and high- 
temperature sericitic (muscovite) white mica, as detailed below.

Based on our general understanding of alteration mineralogy in 
porphyry copper deposits and previous studies conducted in the Reko 
Diq area outlined above, a set of spectrally active (and spatially map-
pable) minerals were nominated for remote sensing mapping using the 
EnMAP hyperspectral data. These minerals along with the processing 
methodology used for their identification and quantification are sum-
marized in Table 2.

White mica was identified based on the presence of a prominent 
Al–OH absorption at 2200 nm, the existence of an additional absorption 
at ∼2350 nm, and the absence of a kaolinite absorption at ∼2165 nm 
(Cudahy et al., 2008b). To achieve this, a 2nd-order polynomial was 
fitted to the wavelength range between 2180 and 2225 nm after 
removing the continuum between 2120 and 2250 nm. The resulting 
depth and wavelength values were then utilized to represent the abun-
dance (2200D) and chemical composition (Tschermak substitution level 
(Duke, 1994); 2200W) of the white mica, respectively.

The secondary absorption feature of kaolinite at 2165 nm was 
characterized by fitting a 2nd-order polynomial to the range of 
2155–2182 nm (continuum removed between 2120 and 2250 nm 
range). The plot of 2200D against 2165D was then used to identify this 
mineral within the EnMAP data. In this plot, kaolinite-bearing pixels are 
linearly distributed and show a significant positive correlation (see 
below). The absorption depth at 2165 nm (2165D) was used to represent 
the relative abundance of kaolinite. Due to the scarcity of kaolinite in the 
area, the crystallinity index was not calculated for this mineral.

In an attempt to distinguish between white mica of muscovite (ser-
icite) and illite composition, two distinct differences were recognized 
between these minerals: (i) muscovite retains an additional absorption 
feature at 2120 nm, which is mostly absent in illite (see, for example, 
Fig. 2a) (ii) illite’s Al–OH feature at 2200 nm is wider and more asym-
metric rightward compared to muscovite. By considering the first 
distinction, the ratio of R2080/R2118 (where Rλ represents reflectance at 
wavelength λ) was used to highlight the pixels dominated by high- 
temperature muscovite in the study area.

To characterize the double absorption features of chlorite centered at 
2250 nm (Fe–OH) and 2340 nm (Mg–OH), 4th-order polynomials were 
fitted to the interval between 2224 and 2282 nm and 2282–2377 nm, 
respectively (see Table 2). Given that chlorite and epidote exhibit 
similar absorption features in this range, what is yielded by this method 
is a mixture of both minerals. To differentiate between them, additional 
spectral products were developed and tested: (i) the diagnostic absorp-
tion feature at 1550 nm to identify epidote-bearing pixels. For this aim, 
the ratio of R1587/R1542 was calculated and the (filtered) result plotted 
against 2340D was used to isolate epidote-dominated pixels (Table 2). 
The outcomes, masked for topographic shadows, represent the epidote’s 
abundance (1550D). (ii) The ratio between Fe–OH and Mg–OH depth 
(2250D/2340D; Table 2) to separate epidote from chlorite. Theoreti-
cally, chlorite and epidote should exhibit ratio values >0.6 and < 0.6, 
averaged around 0.8 and 0.5, respectively (see Supplementary Fig. S1a). 
(iii) The absolute difference between Mg–OH and Fe–OH depth (2340D 
– 2250D). Chlorite is expected to exhibit index values between 0.03 and 
0.12 (on average, 0.07), while epidote tends to have values >0.25 (on 
average, 0.28). (iv) The absolute difference in the minimum wavelength 
of the Fe–OH and Mg–OH features (2340 W – 2250 W). This index 
should yield a relatively constant value for epidote (i.e., 82 nm), while 
for chlorite, it ranges between 75 and 92 nm for Mg-rich and Mg-poor 
species, respectively. The other product, developed to highlight the 

S. Asadzadeh et al.                                                                                                                                                                                                                             Remote Sensing of Environment 314 (2024) 114389 

4 



overprinting effects of chlorite on white mica, was obtained by dividing 
the feature depth at 2350 nm (shared between white mica and chlorite) 
to 2200D. This ratio map was masked by the white mica occurrence and 
smoothed using a median filter. No independent product was developed 
for calcite, and the identification of calcite-bearing pixels was based on 
the 2250D/2340D index and the fact that calcite lacks a feature at 2250 
nm and a ferrous iron feature in the VNIR.

To evaluate the effectiveness of the indices developed here for dis-
tinguishing chlorite from epidote, we utilized the spectral library of 
calcite-epidote-chlorite synthetic mixtures as described in Dalton et al. 
(2004). We employed a similarity metric based on the coefficient of 
determination (R2) aiming to compare them against the continuum- 
removed image spectra, analogous to the methodology implemented 
in the Tetracorder package (Dalton et al., 2004). However, instead of 
generating a classification map, we retrieved the proportion of each 
mineral in the matched spectra to create relative abundance maps. The 
results were then combined to represent calcite, epidote, and chlorite as 
RGB components.

The spatial occurrences of gypsum and jarosite were mapped using 
the scripts provided in Table 2. In the case of gypsum, the plot of 1750D 
(estimated by R1685/R1759 ratio) against 2200D was used to identify 
gypsum-bearing pixels. The assumption here is that the presence of 
white mica has obscured the 2210 nm feature of gypsum (and anhydrite) 
(Asadzadeh et al., 2023). However, given the co-occurrences of gypsum 
with white mica in porphyry copper deposits, the noted scatterplot 
should effectively accentuate the subtle occurrences of gypsum in the 
area. The continuum-removed depth at 2266 nm (continuum removed 
between 2135 and 2345 nm range) plotted against 2200D was used to 
detect jarosite. The results were constrained by 900D > 0.087 (see 
Table 2) and further masked out by topographic shadow. The depth at 
2266 nm represents the relative abundance of jarosite. The shadow mask 
was derived by thresholding the EnMAP band at 1675 nm (R1675<0.215 
in re-scaled data).

To detect the broad Fe2+ absorption feature associated with elec-
tronic transitions, a simple band ratio (i.e., (R920 + R1650)/(R1030 +

R1230) adapted from Cudahy et al. (2008a)) was applied to reflectance 
data. With the new EnMAP processor, the mismatch between VNIR and 

SWIR bands has been significantly reduced. Accordingly, we utilized the 
new processor product to map ferric iron minerals. For this aim, a 2nd- 
order polynomial was fitted within the wavelength range of 770 to 1080 
nm, following spectral smoothing using a Boxcar filter (width = 7; 
Table 1). The plot of 900 W against 900D was utilized to isolate pixels 
with ferric iron minerals, and the outcome was masked for topographic 
shadow.

All the resulting mineral maps were color-coded and overlaid onto an 
albedo image to better represent the variations in the desired spectral 
parameters. To improve the representations, linear stretching was 
applied to all grayscale data. For the 2200D, 2250D, 2340D, and 1100D 
maps, however, a logarithmic conversion (log(depth× 100)) was 
employed beforehand to show the variations more clearly.

To enable a comparison between the spectroscopic-based technique 
and standard machine learning methods, we employed the Support 
Vector Machine (SVM) classification algorithm. Eight training classes 
were manually defined over the EnMAP data and the entire cube was 
processed using a 3rd-degree polynomial kernel type. The classes 
include sericite and propylitic alteration, kaolinite, sand dunes, and 
three classes representing the country rocks (not depicted in the final 
map). In addition to mineral maps, specific scatterplots were also 
created to elucidate the methodology and highlight the prevalent min-
eral mixtures in the study area. In the end, selected spectral plots derived 
from single pixels were compared to the USGS spectral library (Kokaly 
et al., 2017) to visualize the mineral mixtures and assess the reliability 
and validity of the EnMAP hyperspectral data as well as the processing 
methods.

4.3. Ground spectroscopy

As part of the Reko Diq mapping and drilling program conducted by 
Barrick Gold in the mid-2000s, spectral measurement was conducted 
using an ASD Terraspec Pro spectrometer along multiple transects 
crossing the porphyry centers. The Terraspec Pro instrument collects 
data within the wavelength range of 350 to 2500 nm at 3–6 nm spectral 
resolution. A Spectralon panel was used to convert the measurements 
into reflectance. These measurements were obtained from outcrops on 

Table 2 
Spectral mineral products derived from the analysis of EnMAP hyperspectral data over the Reko Diq porphyry copper deposit. The table contains a summary of the 
distinctive absorption features and the scripts used for mineral detection and characterization. The scripts are adopted and modified after (Cudahy et al., 2008a; 
Laukamp et al., 2021; Roache et al., 2011). λD is the depth of an absorption feature at wavelength λ, and λW represents the minimum wavelength of that same feature. 
Note that the wavelength range used for continuum removal (CR) differs from the range used for polynomial fitting.

Mineral Distinctive features Product 
ID

CR range 
(nm)

Mapping script Mapping 
result

White mica Al–OH bands at 2200 and 2350 nm 2200D 
2200W

2120–2250
A fitted 2nd-order polynomial to the apparent minimum between 2180 and 
2225 nm constrained by the lack of a kaolinite feature at ∼2165 nm and the 
existence of an additional absorption feature at ∼2350 nm.

Figs. 3c-d

Kaolinite Asymmetrical Al–OH doublets at 
2165 and 2205 nm

2165D 2120–2250
A fitted 2nd-order polynomial to the apparent minimum between 2155 and 
2182 nm. The scatterplot of 2200D versus 2165D was used interactively to 
identify kaolinite.

Fig. 4a

Chlorite 
(±epidote)

Mg–OH features between 2310 and 
2370 nm. A Fe–OH absorption 
feature near 2250 nm

2250D 
2250W 2174–2392

Fe–OH: A fitted 4th-order polynomial between 2224 and 2282 nm. Figs. 4c-d

2340D 
2340W Mg–OH: A fitted 4th-order polynomial between 2282 and 2377 nm. Figs. 4e-f

Epidote
Two Fe–OH features at ∼2258 and 
2340 nm. A subordinate OH feature 
near 1550 nm

1550D –
The ratio of R1587/R1542 , smoothed by a median filter (1550D), plotted against 
2340D (see Fig. 8d) to isolate the epidote-bearing pixels. Fig. 5a

Gypsum Multiple H2O, OH, and S–O features 
at 1540, 1750, and 2210 nm.

1750D –
The ratio of R1685/R1759 (1750D) plotted against 2200D to isolate the gypsum- 
bearing pixels. Fig. 7b

Jarosite
Broad 900 nm feature Distinctive 
Fe–OH and S–O feature between 
2240 and 2290 nm

2265D 2135–2345
The continuum-removed depth at 2266 nm plotted against 2200D to isolate 
jarosite-bearing pixels. This was constrained by 900D > 0.087 and masked for 
topographic shadow.

Fig. 7a

Ferrous Iron
Broad electronic transition 
absorptions between 1000 and 1300 
nm

1100D –
Ferrous iron abundance derived by applying (R920 + R1650)/(R1030 + R1230), 
stretched between 1.07 and 1.143. Fig. 5d

Ferric iron
Broad charge transfer feature at 
∼900 nm 900D 

900W
770–1080

A fitted 2nd-order polynomial between 770 and 1080 nm following spectral 
smoothing using the Boxcar filter (width = 7). The plot of 900 W against 900D 
was used to highlight ferric iron pixels.

Figs. 7 c-d
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Fig. 2. The EnMAP-derived spectra (solid and dashed gray lines) compared with the USGS spectral library (solid red line) published by Kokaly et al. (2017): a) 
various compositions of white mica mixed with chlorite and trace amounts of kaolinite. The muscovitic white mica displays an extra absorption feature at 2118 nm, 
which is typically absent in illite, b) kaolinite with trace amounts of white mica and chlorite, c) jarosite mixed with white mica with trace amounts of chlorite, d) 
epidote at around 1550 nm wavelength range. The gray shade marks the added bands in the new EnMAP processor, e) calcite with traces of clays and chlorite, f) 
epidote and chlorite with trace amounts of white mica. Note that the presented spectral data has not undergone any smoothing/polishing. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

S. Asadzadeh et al.                                                                                                                                                                                                                             Remote Sensing of Environment 314 (2024) 114389 

6 



the ground using a contact probe under artificial illumination. A subset 
of this collection was used here to validate the results of spectral analysis 
and assess the effectiveness of EnMAP data in mapping surface 
mineralogy.

5. Results

5.1. Visual inspection of EnMAP’s spectral content

Visual inspection of the spectral plots from image pixels reveals a 
significant level of concordance between the EnMAP-derived spectra 
and the USGS spectral library (Fig. 2). However, most pixel spectra show 
a complex mixture of two to three minerals, supporting the in-
terpretations made in the image and feature domains (see below). This 
includes white mica (with characteristic features at 2200 and 2350 nm) 
mixed with chlorite (features at 2250 and 2338 nm) and kaolinite 
(subtle feature at 2165 nm; Fig. 2a). Pixels from the phyllic zone show a 
noticeable shift of up to 10 nm in the minimum wavelength of white 
mica (Fig. 2a), with some displaying a feature at 2118 nm characteristic 
of muscovite-dominated pixels. Fig. 2b illustrates varying proportions of 
kaolinite in image pixels, mainly mixed with white mica (feature at 
2346 nm) and chlorite (2242–50 and 2338 nm). Note that EnMAP has 
successfully resolved the subtle feature of kaolinite at 2384 nm.

Fig. 2c draws a comparison between the spectrum of jarosite and a 
jarosite-bearing pixel spectrum. In most pixels, jarosite (with a diag-
nostic feature at 2266 nm) is found to be intimately mixed with white 
mica (with features at 2200 and 2346 nm) and occasionally with chlorite 
(with features at 2242 nm). Based on Fig. 2d, the EnMAP data can 
resolve the subtle feature of epidote at 1550 nm, although its left 
shoulder appears to be overestimated compared to the USGS spectral 
library. This discrepancy could potentially explain why the polynomial 
fitting technique was not effective in resolving this feature (see below). 
Fig. 2e compares the spectral plot of calcite indicated by a diagnostic 
absorption feature at 2338 nm. The image pixel, though, shows traces of 
clay co-occurrences marked by features at 2208 and 2245 nm. The 
extracted spectra for epidote (with features at 2254 and 2338 nm) and 
chlorite (with features at 2251 and 2343 nm) compare well with the 
reference data (.Fig. 2f), demonstrating the high quality of EnMAP in the 
far end of the SWIR range enough to discriminate the faint absorption 
features of typically dark Mg–OH minerals. Note that the chlorites 
observed in the phyllic zone depicted in Figs. 2a-b are Mg-rich in 
composition.

5.2. Spectral mineral mapping

Figs. 3–7 present the EnMAP true- and false-color imagery (Figs. 3a-
3b), along with the mineral maps acquired over the study area, including 
white mica composition and abundance (Figs. 3c-3f), kaolinite occur-
rence and abundance (Figs. 4a-4b), chlorite, epidote, and calcite abun-
dance and composition (Figs. 4c-4f and 5a-5c), ferrous iron minerals 
(Fig. 5d), spectral similarity mapping (Fig. 6a), SVM-derived classifi-
cation map of major alteration assemblages (Fig. 6b), secondary sulfate 
minerals (Figs. 7a-7b), and maps of ferric iron minerals (Figs. 7c-7d). 
The locations of ground spectroscopic measurements are depicted in 
Fig. 3a.

In the true color composite image (Fig. 3a), the hydrolytic 
(hydrogen-ion metasomatism comprising phyllic + argillic) alteration 
zones are depicted in white, with the propylitic halo and the unaltered 
country rocks appearing in a deep blue color. The sand dunes, scattered 
in the NW–SE direction, are distinguished by a beige hue. As indicated in 
Supplementary Fig. S2a, a significant portion of the deposit remains 
uncovered by eolian sands, enabling remote sensing mineral mapping. 
In the SWIR data, the hydrolytically altered zones are distinctly marked 
by a crimson hue, whereas the propylitic halo appears in yellowish to 
pistachio green colors. The unaltered rocks, on the other hand, display a 
moderate shade of blue (and partly white) forming a distinct contrast to 

the hydrothermally altered zones (Fig. 3b).
Spectral mineral mapping reveals that a significant portion of the 

altered zones is comprised of white mica from the phyllic alteration zone 
(Fig. 3c). The abundance of white mica is notably high in the central 
parts but sharply declines towards the margins. The minimum wave-
length of white mica ranges between 2195 and 2210 nm (Fig. 3d). 
Notably, the shorter wavelength portion corresponding to Al-rich white 
mica (appearing bluish in Fig. 3d) is observed towards the core of the 
system proximal to the mineralized areas. In contrast, the longer 
wavelength end (varying from yellow to red; Fig. 3d) is found in the 
distal zones, close to the propylitic alteration. The zones of Al-rich white 
mica also appear to be dominated by muscovite rather than illite 
(Fig. 3e), indicating a higher formation temperature proximal to the 
potassic cores. Assuming that the Al-rich zones are promising explora-
tion targets, besides the known deposits/prospects, the map also high-
lights new target areas characterized by Al-rich white mica towards the 
north of the Reko Diq Caldera (marked as A and B in Fig. 3d). These 
partly covered areas hold potential for further exploration.

The 2350D/2200D ratio map depicted in Fig. 3f shows lower values 
in the central areas, gradually increasing towards the periphery where 
the propylitic alteration zone is located. This spatial pattern could be 
due to the overprinting effect of chlorite’s absorption feature at 2340 nm 
with the Al–OH feature of white mica at 2350 nm (Table 2). The absence 
of chlorite in the central zone contributes to the low values observed in 
the ratio map of Fig. 3f, conforming to the zones of Al-rich white micas 
(Compare Fig. 3d with Fig. 3f). In pixels where white mica is the 
dominant mineralogy, this ratio might also provide indirect hints about 
the relative proportions of illite and muscovite, complementing the map 
shown in Fig. 3e. This is because muscovite exhibits a deeper absorption 
feature at 2200 nm relative to 2345 nm, resulting in a lower 2348D/ 
2200D ratio when compared to illite.

The mineral kaolinite was mapped as scattered patches outside the 
hydrothermal systems (Fig. 4a). However, as mentioned below, 
kaolinite is present in low quantities (i.e., <30 %) in conjunction with 
white mica in the central zones. The asymmetry of the 2200 nm feature 
shown in Fig. 4b provides additional evidence for the co-occurrences of 
kaolinite and white mica. Here, the range of values is between − 0.3 and 
+ 0.7, of which the values ~ > 0.5 correspond to kaolinite, values less 
than 0 are suggestive of Al-poor white mica, and values falling within 
these ranges indicate a mixture of (Al-rich) white mica with kaolinite.

Chlorite and epidote, as representative minerals of the propylitic 
alteration, form a circular halo around the Reko Diq crater, marking the 
outer rim of the hydrothermal systems (Figs. 4c-4f). Towards the 
northeast, they are elongated and aligned in the NW–SE direction (white 
arrows in Fig. 5b). The nature of this NW-SE trending anomaly, whether 
it is linked to the propylitic alteration or attributed to wind-blown sand, 
remains uncertain and requires further investigation on the ground. 
Nevertheless, if confirmed to be authentic, it could potentially signify 
the presence of a concealed hydrothermal system in the northern/ 
northeastern margin of the crater. Furthermore, while the diorite 
intrusion to the west of the area (Fig. 1) is not reported to be mineral-
ized, it is similarly encircled by the propylitic alteration minerals 
(marked by a white arrow in Figs. 4e-4f).

When compared, the propylitic zones defined by the Fe–OH feature 
in Fig. 4c appear narrower and more limited spatially compared to the 
Mg–OH feature in Fig. 4e. Note that the outcrops of limestone mapped in 
Fig. 4e are absent in Fig. 4c due to the absence of the 2250 nm feature in 
carbonates minerals. The mapped limestones conform to the Cretaceous 
limestone outlined in the geology map in Fig. 1. The minimum wave-
lengths of the Fe–OH and Mg–OH features range between 2246 and 
2261 nm and 2327 to 2345 nm, respectively. If attributed to chlorite 
only, this is indicative of chlorite of intermediate composition. Note that 
the calcic outcrops in Figs. 4e-4f display relatively constant wavelength 
values (i.e., 2331–35 nm). An example of the calcite spectra is illustrated 
in Fig. 2e.

The epidote, identified by the presence of the 1550 nm absorption 
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Fig. 3. Alteration mineral maps derived from EnMAP hyperspectral data over the Reko Diq porphyry Cu–Au deposit. The maps in (c) to (f) are color-coded and 
superimposed onto an albedo image. a) EnMAP natural color composite image corresponding to bands at 640, 550, and 460 nm respectively as RGB. b) Enhanced 
false-color composite image using the SWIR bands at 1675, 2208, and 2239 nm respectively as RGB. c) White mica abundance map (2200D). d) White mica 
composition map (2200 W). e) The distribution of muscovitic white mica. f) The ratio between absorption depths at 2340 and 2200 nm (2340D/2200D). The solid 
circles in (d) represent the ground measurement sites color-coded using the corresponding color bar. The processing methodologies used to generate the illustrated 
mineral maps are summarized in Table 2. This figure contains modified EnMAP data ©DLR [〈2022〉] all rights reserved. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. a) Kaolinite abundance based on the 2165 nm absorption feature (2165D). b) The asymmetry of the Al–OH absorption feature at 2200 nm derived from the 
absorption width calculated at 70 % feature depth and smoothed using a median filter. c) Chlorite-epidote abundance based on the Fe–OH absorption feature 
(2250D). d) Chlorite composition based on the minimum wavelength of the Fe–OH absorption feature (2250 W). e) Chlorite-epidote abundance based on the Mg–OH 
absorption feature (2340D). f) Chlorite composition based on the minimum wavelength of the Mg–OH absorption feature (2340 W). The limestone outcrops are 
marked by the black arrows. The solid circles in (d) and (f) represent the ground measurement sites color coded using the corresponding color bars. This figure 
contains modified EnMAP data ©DLR [<2022>] all rights reserved. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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feature, occurs in a small portion of the propylitic alteration (Fig. 5a). 
The Fe–OH/Mg–OH ratio map in Fig. 5b, however, reveals a different 
pattern for epidote occurrences. In this map, values below 0.35 (blue to 
cyan) can be indicative of epidote (± calcite; see below), while values 
above 0.6 (dark red) indicate the prevalence of chlorite. Any values 
falling within this range can be attributed to a mixture of epidote and 
chlorite (Supplementary Fig. S1a). The depth difference shown in Fig. 5c 
reveals a similar pattern. Here, the values span between 0.044 and 0.21, 
of which the higher end (~ > 0.2) corresponds to calcite, values falling 
between 0.2 and 0.1 to epidote+chlorite, and values below 0.1 to 
chlorite. The variations depicted in Fig. 5c, however, are more discrete 
compared to Fig. 5b implying the superiority of the ratio map in Fig. 5b. 
The pattern derived from the minimum wavelength difference, in 
contrast, is considerably indistinct and lacks the clarity observed in the 
maps of depth ratios and depth differences (Supplementary Fig. S2b). 
Here, the wavelength difference ranges between 66 and 100 nm, which 
is beyond the limit observed in laboratory data, likely because of mix-
tures with other minerals.

As illustrated in Fig. 5d, ferrous iron minerals appear to be quite 
abundant in the area. These minerals are primarily mapped over the 

propylitic alteration zones in relation to epidote and chlorite minerals. 
Albeit, they extend into the center partially overlapping with the 
potassic alteration zones outlined by the white polygons. Ferrous iron, in 
particular, is pervasive over the potassic cores of the H79, H9, and H36 
systems.

The ternary color composite map of calcite, epidote, and chlorite 
(Fig. 6a) reveals analogous patterns for the propylitic alteration. The red 
and green hues highlight areas rich in calcite and epidote, respectively, 
with magenta representing a mixture of calcite + chlorite. A comparison 
of the maps presented in Figs. 5a-5c and 6a unveils several interesting 
features. Despite some spatial overlaps between the maps in Fig. 5a and 
b, there exist clear differences. The most notable difference is the total 
area recognized to contain epidote, which is significantly larger in 
Fig. 5b. Another disparity arises from the association of epidote derived 
from the 1550 nm feature with higher ratio values in Fig. 5b. The 
mapped minerals in Fig. 6a closely resemble the pattern depicted in the 
ratio map in Fig. 5b, indicating the potential of this ratio to differentiate 
between epidote and chlorite within the propylitic alteration zone, 
though the ratio remain insensitive to calcite co-occurrences. Fig. 6b 
illustrates the classification results obtained from the SVM method. In 

Fig. 5. a) Epidote abundance based on the subtle absorption feature at 1550 nm. b) the ratio between the absorption depth at 2250 and 2340 nm (Fe–OH/Mg–OH 
depth ratio). c) Depth difference of the chlorite-epidote absorption features at 2250 and 2340 nm. d) Ferrous iron abundance. The white arrows in (b) highlight 
elongated chlorite occurrences discussed in the text. The solid circles represent the ground measurement sites color coded using the corresponding color bars. The 
outlines of the potassic zones overlaid in (d) are based on field mapping. The processing methodologies used to generate the illustrated mineral maps are summarized 
in Table 2. This figure contains modified EnMAP data ©DLR [<2022>] all rights reserved. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
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contrast to the spectroscopic-based methods, SVM was only able to map 
propylitic and sericite alteration as bulk zones with no ability to 
distinguish between mineral assemblages. This is likely due to insuffi-
cient (and imbalanced) training data for mineral mixtures and the 
complex (nonlinear) relationships between spectral features and the 
corresponding mineral classes. While the overall outline of the propylitic 
alteration in the southern parts is consistent with the maps shown in 
Fig. 6a, major differences exist over the northern parts.

Secondary sulfate minerals, including jarosite and gypsum, were 
mapped in small outcrops in the center of the porphyry system (Figs. 7a-
7b). These minerals overlap spatially and are mostly concentrated 
within the phyllic alteration zones. The jarosite-bearing areas largely 
coincide with the Tanjeel deposit over which supergene enrichment is 
reported (Perelló et al., 2008), indicating the critical role of pyrite in the 
process. Yet traces of jarosite are mapped over the H27 and H10 centers. 
The supergene blankets form due to acid leaching caused by intense 
pyrite oxidations. While gypsum is being detected across a wider area, it 
is worth noting that its proportion is expected to be quite low because 
the 1770 nm feature is weakly developed in the EnMAP data (see also 
section 5.3). In porphyry systems, gypsum is formed through the hy-
dration of primary anhydrite, which lacks an absorption feature at 1750 
nm (Asadzadeh et al., 2023). The presence of gypsum/anhydrite has 
been confirmed during previous studies (Schmidt, 1976) and in the 
current field campaign (see section 5.3).

The altered areas are associated with a notable increase in ferric iron 
contents, particularly over the phyllic alteration zones (Fig. 7c). The 
ferric iron content is notably high over the Tanjeel deposit where 
considerable amounts of jarosite are also detected from the SWIR+VNIR 
bands (Fig. 7a). The wavelengths of the ferric iron features varies be-
tween 900 and 960 nm with the shorter wavelengths (i.e., >910 nm in 
Fig. 7d) corresponding to jarosite-rich areas and the longer wavelengths 
to goethite zones (compare Fig. 3d with Figs. 7c-7d). Due to EnMAP’s 
noise in this region (see below) and subsequent spectral smoothing, the 
retrieved minimum wavelengths might not be as accurate as expected.

Fig. 8 shows the scatterplots of the selected spectral parameters used 
to interpret mineral mixtures in the area. The scatterplot of the ab-
sorption feature parameters offers valuable insights into the state of the 
mineral, composition, and mixtures in the area. In Fig. 8a, the plot of 
2200D against 2165D reveals two distinct clusters. The first cluster 
retaining higher values along both axes is indicative of well-crystalline 
kaolinite (corresponding to the kaolinite mapped in Fig. 4a). The sec-
ond cluster, characterized by high values along 2200D and relatively 

low values along 2165D, corresponds to white mica. The positive cor-
relation between 2200D and 2165D variables in this cluster, running 
parallel to the kaolinite cluster, suggests that low quantities of kaolinite 
are present in an intimate mixture with white mica over the deposit. This 
is further supported by the plot of 2200 W against 2200D in Fig. 8b, 
where two clusters emerge with no distinct boundary, particularly to-
wards the lower proportions. One cluster, centered around 2205 nm, is 
close to the wavelength minimum of kaolinite (occurring between 2204 
and 2208 nm), indicating the possible presence of kaolinite in the pixels 
(It should be emphasized that despite the interference of kaolinite’s 
absorption feature, the shifts in the minimum wavelength is largely 
attributed to changes in the chemistry of white mica). The spectral plots 
in Figs. 2a-2b demonstrate the subordinate occurrences of kaolinite 
within white mica-dominated pixels, a point confirmed by field spec-
troscopy. Note that pixels with high values in the 2165 nm region and 
low absorption depth at 2200 nm correspond to noise. This applies also 
to Fig. 8d and e.

The small tail at the right corner of the main cluster in Fig. 8c cor-
responds to epidote-rich pixels mapped in Fig. 5a. Despite this, however, 
the overall positive correlation between the two variables indicates that 
a lower level of epidote is still present in the analyzed pixels (but with no 
discernible feature at 1550 nm), supporting the earlier finding about the 
abundance of epidote in the area. The plot in Fig. 8d exhibits a negative 
correlation between chlorite and white mica in the study area. This is 
indicative of an intimate mixture between sericitic white mica and 
chlorite (and likely epidote) and a gradual transition from phyllic to 
propylitic alteration, represented by white mica and chlorite-epidote, 
respectively (see also Fig. 3f). It further shows that low quantities of 
chlorite are still present in the white mica-dominated zones, which in-
creases outward (C.f., Fig. 3f) and vice versa. This notion is corroborated 
by the spectral plots shown in Fig. 2.

The plot of 2340D against 2250D (Fig. 8e) demonstrates a strong 
positive correlation between the two parameters. However, towards the 
higher end, it partitions into two distinct populations: one with deep 
features at 2340 nm and relatively shallow values at 2250 nm indicative 
of epidote and the second with deep absorptions at both ranges consis-
tent with chlorite. This trend, observed specifically in pixels where the 
two minerals are relatively pure, aligns with the pattern observed in 
Supplementary Fig. S1b. In the EnMAP data, however, due to the 
pervasive mixture of the two minerals (and mixtures with other minerals 
including white mica), the clusters blend at lower proportions. This is 
further exemplified in Fig. 8f, where the Fe–OH feature depth is plotted 

Fig. 6. a) Ternary abundance map derived from the similarity between pixel spectra and a mixed spectral library showing the distribution of calcite (Cal), epidote 
(Epd), and chlorite (Chl) as RGB. b) classification map derived from SVM for the major alteration minerals. This figure contains modified EnMAP data ©DLR 
[<2022>] all rights reserved. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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against its minimum wavelength. In this plot, epidote is prominently 
distinguished by its relatively constant minimum wavelength at ~2254 
nm and a deeper absorption feature. At lower proportions, it appears to 
be mixed with chlorite, which exhibits inherent variability from Fe-poor 
to Fe-rich species. In other words, except in a limited number of pixels 
where the two minerals are observed in their isolated/pure forms, in 
most parts of the area, epidote and chlorite appear to be intimately 
mixed.

5.3. Ground spectroscopy and validation of EnMAP results

Ground spectroscopy revealed similar variations in the composition 
of white mica ranging between 2197 and 2209 nm (Fig. 9a). Remark-
ably, the trend and the absolute values derived from ground spectros-
copy closely align with the range retrieved from EnMAP data over the 
entire deposit (Fig. 3d), further validating the accuracy of the EnMAP 
data and processing methodologies. The shorter wavelengths, K-rich 
white mica was identified within the phyllic alteration zone surrounding 
the potassic cores (see the solid circles in Fig. 3d). The mineralogical 
associations observed by ground spectroscopy were also consistent with 
those mapped by EnMAP. For instance, the locations dominated by 
white mica on the ground corresponded to the image data, and areas 

exhibiting a mixture of chlorite and white mica were consistent between 
the ground and imagery (Fig. 9a), indicating the intimate mixtures be-
tween these minerals. Another subordinate mineral identified on the 
ground was gypsum, recognized by its characteristic absorption features 
at 1750 and 1940 nm (Fig. 9b). The secondary absorption feature of 
muscovite at 2120 nm, detected in the EnMAP data (Fig. 3e), is also 
clearly discernible in this spectrum. A reasonable agreement was found 
between the chlorite-epidote absorption features recorded over the 
propylitic alteration (see Fig. 4d for measurement locality). However, 
there exist some discrepancies between the data pairs, including the 
retrieved minimum wavelengths for the Fe–OH and Mg–OH features 
(Fig. 9c). This could be attributed to the heterogeneity of the propylitic 
alteration zone and the scaling effects. In the NIR range, however, there 
is a significant difference between the EnMAP pixel spectrum and ferric 
iron absorption measured on the ground (Fig. 9d), which is due to the 
inherent noise of the data in this wavelength range. Following spectral 
smoothing, the feature appears to closely match the ground data.

Fig. 7. a) Jarosite abundance based on the Fe–OH feature at 2266 nm. b) Gypsum abundance based on the S–O feature at 1750 nm. c) Ferric iron abundance 
(900D). d) Ferric iron composition map (900 W). The processing methodologies used to generate the illustrated mineral maps are summarized in Table 2. This figure 
contains modified EnMAP data ©DLR [<2022>] all rights reserved. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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6. Discussion

6.1. Alteration zonation and mineral chemistry

In porphyry systems, the potassic core typically hosts the main body 
of mineralization (Cooke et al., 2020; Cooke et al., 2014; Sillitoe, 2010). 
However, except for airborne thermal infrared sensors, remote sensing 
mapping of potassic alteration presents a significant challenge, pri-
marily because of the low reflectance properties of biotite and the 
spectral neutrality of K-feldspar in the VNIR–SWIR range. As a result, 
potassium alteration has been occasionally mapped using airborne im-
aging spectroscopic data (Asadzadeh et al., 2023). However, as indi-
cated in Fig. 5d, mapping ferrous iron minerals using the NIR bands can 
provide an alternative approach to detect biotite occurrences indirectly 
and, consequently, map the potassic zone in exposed porphyry systems. 
Ferrous iron anomalies can be attributed to Fe2+ present in biotite and/ 
or overprinted chlorite minerals associated with potassic alteration.

The zonation pattern observed in Figs. 3c-3e, in which high abun-
dances of Al-rich, muscovitic white mica are proximal to the minerali-
zation centers, is consistent with the typical zoning documented in many 
other shallow-level porphyry systems using laboratory/field spectros-
copy (Alva-Jimenez et al., 2020; Halley et al., 2015; Uribe-Mogollon and 
Maher, 2018; Wallace and Maher, 2019). It represents the sericite- 
quartz-pyrite assemblage formed at a high fluid-rock ratio. The 
composition of white mica typically exhibits vertical and lateral varia-
tions within porphyry systems. Vertically, it transitions from phengentic 
(Al-poor) white mica in the deeper, hotter parts of the deposit to mus-
covitic (Al-rich) white mica in the upper, cooler parts where potassic 

alteration forms. Laterally, it varies from high Al contents at the center 
(<2205 nm in wavelength) to low Al in the distal zones, as is observed in 
this area and elsewhere (Asadzadeh et al., 2023). The lateral composi-
tional variation is primarily controlled by pH and fluid chemistry and 
the composition of the host rocks with acidic environments favoring the 
formation of muscovite white mica. Such remotely detectable variations 
arise from Tschermak substitution, in which octahedral and tetrahedral 
Al3+ are substituted by Fe2+/Mg2+ and Si4+ cations, respectively (Halley 
et al., 2015; Uribe-Mogollon and Maher, 2018; van Ruitenbeek et al., 
2012).

In the Reko Diq area, while the majority of exploration efforts have 
been focused on the western porphyry centers, the white mica compo-
sition map in Fig. 3d reveals that the eastern centers are equally pro-
spective for copper mineralization and warrant additional drilling. 
Similarly, the anomalies located north of the crater represent valuable 
targets for field investigation and sampling.

The progressive decline in thermal conditions and flow dynamics 
within the porphyry hydrothermal system, combined with paleosurface 
erosion can give rise to distinct overprinting (telescoping) of the initial 
alteration zones (Sillitoe, 2010). In the Reko Diq area, white mica is 
found to be spatially associated (and spectrally mixed) with kaolinite 
and chlorite (see Figs. 8a, c, and 2a,b). This pervasive mixing can be 
attributed to the overprinting of initial phyllic alteration by a subse-
quent low-temperature intermediate argillic alteration, forming a 
kaolinite-illite-chlorite assemblage (Halley et al., 2015; Sillitoe, 2010). 
The detection of only trace amounts of kaolinite over the porphyry 
systems implies that either the pH of the fluid was not very acidic (>4) 
or the circulation of acidic fluids did not endure for a long time. The 

Fig. 8. Scatterplots of the spectral parameters used to decipher mineral mixtures in the Reko Diq area. a) The plot of 2200D against 2165D, b) 2200 W plotted 
against 2200D, c) Al–OH feature depth plotted against Mg–OH depth at 2340 nm, d) the plot of Mg–OH depth (2340D) against epidote’s Fe–OH feature at 1550 nm, 
e) the feature depth at 2340 nm plotted against the depth at 2250 nm, and f) the Fe–OH minimum wavelength plotted against its depth. The colors show the density 
of the pixels with a red color corresponding to a higher proportion. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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relatively abundant chlorite inside the phyllic zone, which is detectable 
remotely, supports the former assumption. Here, chlorite is the retro-
grade of the original mafic minerals (Sillitoe, 2010). The pronounced 
level of chlorite at the margins of the phyllic zone (Fig. 3f), which is 
accompanied by Al-poor, texture-destructive illite (Fig. 3d), indicates 
the progressive cooling and neutralization of the hot acidic fluid while 
passing from sericite to inner propylitic alteration. The coexistence of 
chlorite with Al-poor white mica within this zone, is suggestive of the 
texture-destructive illite in the periphery of the system.

In spectral geology, smectites are commonly separated from white 
mica (illite-muscovite), but there has been little attempt to distinguish 
between illite and sericite (muscovite). In contrast to sericite, illite forms 
during the intermediate argillic alteration at lower temperature condi-
tions and has less association with mineralization processes. Accord-
ingly, differentiating between illite and sericite can offer valuable 
proximity to the heat and fluid sources within the system. The use of the 
2120 nm absorption feature in this study yielded very encouraging re-
sults. However, the method (and the spectral index) should be further 
tested in analogous hydrothermal systems before being used as an index 
to differentiate the mineralogy of white mica.

A question that arises here is to which degree the white mica 

compositional map depicted in Fig. 3d, is interfered by the simultaneous 
occurrences of kaolinite. A linear mixture simulation using the USGS 
spectral library showed that the existence of 50 % kaolinite in a pixel 
(with its minimum at 2204 nm) can shift the minimum wavelength of 
white mica from 2202 to 2204 nm. At the 30 % level, it shifts the 
minimum to just 1 nm. While this implies that the presence of kaolinite 
can interfere with the minimum wavelength mapping of white mica, for 
low quantities of kaolinite (i.e., <30 %) observed in this particular area, 
the shift remains on the order of 1 nm. In other words, despite being 
overprinted by kaolinite, the variations mapped in Fig. 3d are mostly 
due to inherent compositional variations in hydrothermally-formed 
white mica.

6.2. Differentiation of calcite, epidote, and chlorite

A common spatial pattern in porphyry systems is zonation in the 
propylitic alteration, characterized by a transition outward from actin-
olite to epidote to chlorite. Chlorite, as the dominant alteration mineral 
within the propylitic zone, typically exhibits lateral variations in its 
composition, with Mg-rich chlorite appearing in the inner parts due to 
higher fluid temperature and more oxidized and acidic fluids proximal 

Fig. 9. The EnMAP pixel spectra (solid gray lines) compared to ground spectroscopic data obtained from an ASD instrument: a) variations in the compositions of 
white mica (± chlorite), b) the same spectra as (a) exhibited between 1650 and 2140 nm, to highlight the absorption features of gypsum at 1750 and 1940 nm, c) 
chlorite and epidote spectra from the propylitic alteration zone, d) the broad ferric iron feature in the NIR, indicating the noisy nature of the EnMAP data within this 
range. For clarity, the spectrally smoothed data is represented by the dashed line in (d). The locations of the samples are shown in Figs. 3d and 4d. This illustration 
contains modified EnMAP data ©DLR [〈2002〉].
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to the intrusive center (Asadzadeh et al., 2023; Cooke et al., 2014; Neal 
et al., 2018). This characteristic zonation pattern, however, is not clearly 
evident in Fig. 4d and f. The lack of clear zoning may be attributed to the 
spatial and temporal overlap of multiple magmatic-hydrothermal events 
in the Reko Diq crater, coupled with successive stages of epidote for-
mation and dissolution resulting in pronounced overprinting of alter-
ation assemblages (Fig. 8f and c). The end result is an intimate mixing of 
underlying minerals, obscuring the inherent variation in the minimum 
wavelength (composition) of chlorite.

Our spectral simulations also showed that white mica’s features at 
2200 and 2345 nm can contribute to shifting the absorption minimums 
of chlorite. At 50 % proportion, it causes the Fe–OH feature to shift from 
2252 to 2246 nm and from 2246 to 2238 nm and the Mg–OH feature 
from 2335 to 2344 nm and from 2321 to 2333 nm for Fe-rich and Fe- 
poor chlorites, respectively. In other words, the Mg–OH and Fe–OH 
features of chlorite are respectively shifted towards shorter and longer 
wavelengths when they are overlapped by white mica features. Physical 
mixtures of chlorite with epidote and calcite showed a similar pattern. 
At 60 % (30 %) relative proportion, epidote can shift the minimum 
wavelength of chlorite from 2346 to 2339 (2341) nm. Calcite can induce 
change from 2346 to 2342 and 2344 nm at 60 % and 30 % relative 
proportions, respectively. Yet both minerals have little effect on the 
Fe–OH absorption feature at 2255 nm. The absorption minimums of the 
epidote are relatively constant occurring at 2254–2255 and 2337–2338 
nm. Such mixture-induced shifts in the minimum wavelengths of chlo-
rite likely have hindered compositional mapping using EnMAP data and 
can explain the absence of discernible patterns within the propylitic 
zones (Fig. 4d and f); although heterogeneity in the composition of the 
host rock surrounding the volcanic crater (Fig. 1) may have played a 
role. The minimum wavelength of chlorite in this area typically falls 
between 2250 and 2256 nm, which is typical of intermediate chlorite 
composition.

In the literature, the separation of epidote from chlorite typically 
relies on epidote’s diagnostic feature at 1550 nm (Cudahy et al., 2008a; 
Roache et al., 2011). However, as indicated in Fig. 5a, this method can 
underestimate the spatial extent of epidote for several reasons: (i) the 
feature is inherently weak and its spectral contrast compared to sensor 
noise level is low; thus many of the epidote-bearing pixels could go 
undetected. The EnMAP sensor, in particular, cannot reliably retrieve 
the left shoulder of this feature due to the low SNR of the corresponding 
bands (highlighted in Fig. 2d) and the remaining atmospheric noise at 
the edge of the 1400 nm water absorption. (ii) The intensity of the ab-
sorption feature is negatively affected by chlorite cooccurrence. As 

depicted in Fig. 10, the existence of 20 % chlorite in a sample results in a 
50 % reduction in the intensity of this absorption feature. (iii) the shift in 
the composition from epidote to clinozoisite (Roache et al., 2011) can 
reduce the intensity and thus its detectability with clinozoisite showing 
less pronounced absorption features. So by using this feature, epidote is 
detectable only when it is highly abundant and is not associated with 
large amounts of chlorite. This could explain the sparse occurrences of 
epidote mapped in Fig. 5a using the 1550 nm feature.

On the other hand, the absorption depth index (2250D/2340D) 
proposed in this study was proved to be a useful index in distinguishing 
between epidote and chlorite and predicting the mixtures between them 
in the EnMAP data (Fig. 5b and Supplementary Fig. S1b). Although it is 
not directly sensitive to calcite occurrences in a pixel, which is predicted 
in Fig. 6a to coexist with epidote. Note that the mixture library reported 
by Dalton et al. (2004), used to generate Fig. 6a, contains Fe-rich cli-
nochlore with its minimum wavelength at 2346 nm, which is much 
beyond the trend mapped in this area (Fig. 4f). Accordingly, it is likely 
that many of the chlorite+calcite areas mapped in Fig. 6a (magenta 
color) correspond to Fe-poor chlorite that in the absence of a represen-
tative endmember in the library, are mapped as chlorite+calcite 
mixture.

6.3. Comparison with ASTER mineral maps

A comparison between the results of this study and the mineral maps 
obtained from processing the ASTER multispectral data in Rowan et al. 
(2006) reveals several notable differences: (i) in contrast to ASTER, 
EnMAP detected no occurrences of alunite in the area; (ii) while both 
sensors successfully detected jarosite, the map derived from EnMAP 
using the combined VNIR+SWIR bands was spatially more coherent; 
(iii) EnMAP data outlines a larger expanse of white mica within the 
phyllic alteration zones, and (iv) EnMAP accurately captures the com-
plete shape of the propylitic alteration zone while discriminating be-
tween epidote, chlorite, and calcite minerals. Furthermore, EnMAP 
provides valuable insights into the composition and mineralogy of white 
mica, the overprint of kaolinite, illite, and chlorite on the sericite 
alteration assemblages, the presence of gypsum/anhydrite-rich zones, 
and the distribution of ferric and ferrous iron minerals. The capability of 
EnMAP to reveal the chemistry of vector minerals, which has not been 
possible in multispectral datasets like ASTER, can serve as a useful tool 
for identifying the intrusive centers of the porphyry system and 
discriminating between barren and fertile phyllic zones. The capability 
of EnMAP in characterizing the mineralogy of propylitic alteration can 

Fig. 10. The relative depth of the 1540 nm absorption feature of epidote as a function of chlorite proportion calculated using the USGS spectral library of chlorite- 
epidote mixtures described in Dalton et al. (2004).
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also be highly valuable for identifying exploration targets within green 
rocks (Pacey et al., 2020).

Overall, the mineral maps derived from EnMAP data exhibit greater 
spatial coherence compared to ASTER data and reveal a wealth of new 
information about the mineralogy of the alteration assemblages. None-
theless, EnMAP has a narrow swath width (i.e., 30 × 30 km) and is 
therefore useful for studying targets of small spatial extent. The next 
generation of imaging spectroscopic missions currently in development, 
including ESA’s Copernicus Hyperspectral Imaging Mission for the 
Environment (CHIME) and NASA’s Biology and Geology (SBG) missions, 
will be able to provide wide swath coverages (120–180 km) enabling 
regional to continental mineral mapping.

6.4. Spectral processing method

In terms of the processing method, quadratic fitting to the minimum 
was found to be susceptible to sensor noise, particularly towards the 
longer wavelength range of the SWIR detector, where calcite-chlorite- 
epidote’s absorption features occur. The method also proved impractical 
for mapping ferric iron absorption in the VNIR. Conversely, higher-order 
polynomial fitting, which incorporates more bands in the retrieval 
process, demonstrated greater resilience against noise and provided 
more spatially coherent results for chlorite, epidote, and calcite, while 
exhibiting a notably lower level of retrieval uncertainty. For instance, a 
4th-order polynomial fitting can attain an uncertainty of <2.4 nm in the 
retrieval process (Asadzadeh and Souza Filho, 2016), which is lower 
than the 3.8 nm uncertainty reported in Rodger et al. (2012) for the 
quadratic fitting method. This technique, however, struggled to yield 
satisfactory estimates for ferric iron abundance/composition, mostly 
due to the VNIR–SWIR sensor overlap at this wavelength range, the 
noisy channels at the edge of the VNIR detector (Storch et al., 2023), and 
likely residual atmospheric artifacts.

The polynomial fitting technique, as a physically-based approach 
stemming from spectroscopic principles for processing imaging spec-
troscopic data at the individual pixel level, is sensor agnostic and 
transferable to other areas/scales, ensuring reproducible results using 
EnMAP and other hyperspectral datasets. Leveraging the spectral 
knowledge about minerals eliminates the need for training data in the 
detection and mapping process. The method presented here, involving 
interactive thresholding of the retrieved spectral parameters using 
scatterplots, can further improve the mineral identification process 
while providing useful information about mineral mixtures, their rela-
tive abundances, and compositional variations without the need for 
reference data. The level of information presented in this study cannot 
be obtained using standard classification algorithms without high- 
quality training data.

7. Conclusion

By leveraging the spectroscopic contents of EnMAP data, more than 
nine mineral products were identified, mapped, and verified across the 
Reko Diq mining district. These include white micas, chlorite, epidote, 
calcite, kaolinite, gypsum, and jarosite, as well as ferric and ferrous iron 
minerals. The chemical composition of white mica, inferred from vari-
ations in the minimum wavelength of the 2200 nm feature, proved 
valuable in unveiling the geochemical/thermal gradients of the 
magmatic-hydrothermal fluids, providing an effective vectoring tool 
towards the mineralized centers; a characteristic not feasible by multi-
spectral datasets. The spectroscopic-based processing method also 
revealed a late-stage overprint of kaolinite (and illite) on the sericite 
alteration assemblages, a transition from highly abundant muscovite in 
the center to chlorite outwards, and a mixture of epidote, chlorite, and 
calcite within the propylitic alteration zone. Furthermore, the ferrous 
iron mineral map was found to effectively highlight the potassic alter-
ation zones, offering a potentially new way for mapping this important 
alteration using imaging spectroscopic data.

Overall, this study demonstrated the superior quality and good 
calibration accuracy of EnMAP hyperspectral data and its effectiveness 
in delineating the architecture, zonation, overprinting relationships, and 
physicochemistry of the alteration minerals associated with the por-
phyry copper deposit. The accurate mineralogical information and the 
enhanced mapping capability provided by this instrument is expected to 
play a significant role in discovering new deposits in well-exposed 
metallogenic belts worldwide, facilitating ore targeting and prospect 
appraisal.
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