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Abstract

Considering biological systems as information processing entities and analyzing their orga-

nizational structure via information-theoretic measures has become an established

approach in life sciences. We transfer this framework to a field of broad general interest, the

human gut microbiome. We use BacArena, a software combining agent-based modelling

and flux-balance analysis, to simulate a simplified human intestinal microbiome (SIHUMI).

In a first step, we derive information theoretic measures from the simulated abundance

data, and, in a second step, relate them to the metabolic processes underlying the abun-

dance data. Our study provides further evidence on the role of active information storage as

an indicator of unexpected structural change in the observed system. Besides, we show

that information transfer reflects coherent behavior in the microbial community, both as a

reaction to environmental changes and as a result of direct effective interaction. In this

sense, purely abundance-based information theoretic measures can provide meaningful

insight on metabolic interactions within bacterial communities. Furthermore, we shed light

on the important however little noticed technical aspect of distinguishing immediate and

delayed effects in the interpretation of local information theoretical measures.

Author summary

The idea of considering biological systems as information processing systems has recently

gained increasing attention in life sciences. Following this approach, one assumes that

every agent of a living system stores and transfers information and that those operations

reflect biological processes. Consequently, one should be able to gain knowledge on a sys-

tem’s biological processes by measuring its information processing. An established mathe-

matical framework to quantify information processing based on observational data is

given by information theory. We explore this idea in the context of bacterial community

analysis in the human gut habitat. This complex system is a common subject of ongoing
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research due to its impact on immunity and health. To keep complexity manageable and

allow for controlled intervention, we simulate metabolic interaction of seven key species,

representing the essential metabolic potential of the human gut microbiome. However,

our approach can likewise be directly applied to in vivo/in vitro data. Estimating informa-

tion storage and transfer from the resulting abundance data, we first identify a technical

artefact, whose disregard can lead to strong misinterpretations of information processing.

Second, making use of the metabolic data that the simulation provides, we show that

information storage and transfer indeed relate to environmental conditions and species’

interactions in a meaningful way. We derive general principals for the interpretation of

these measures, that allow us to infer patterns of bacterial interaction without the need to

measure chemical processes. In this sense, our approach could provide an alternative way

to study impacts of dietary plans or medical interventions on the community level.

Introduction

One way to approach the question of what constitutes biological systems is to understand

them as information-processing entities [1–3]. Living systems sense their environment and

make use of this information to react. Next to exchange of mass and energy, transfer of infor-

mation is one of the key characteristics underlying biological systems (see [1, 4]). Information

theory [5] provides a framework to measure and analyze these operations in physical systems.

Information processing can be understood as “computing” in the sense of transferring infor-

mation, transforming, and storing it. Following this paradigm, the interaction of a set of bio-

logical agents can be considered as “computing system” (see, e.g., [2, 6]). Hereby, agents can

make use of their own past states (information storage), or information gained from interaction

with other agents (information transfer). Whatever information cannot be captured as storage

or transfer will be subsumed as intrinsic uncertainty [7]. This comprises aspects of environ-

mental conditions, randomness, or information being actively modified. Identifying the evolv-

ing degree to which agents make use of information sources, i.e. studying their information
decomposition, can yield insights into the systems’ internal organizational structure and allows

to examine interactions of living organisms even without the precise observation of biochemi-

cal processes (see, e.g. [8, 9]).

Understanding life as a “computing” system goes back to Erwin Schrödinger [4]. Various

computational characteristics of living systems have been recently studied. Using information

theory, Flack identifies hierarchies in living systems [8]. Similarly, Krakauer et al. discuss the

information theory of individuality [9]. Lizier, Prokopenko, Zomaya and others have proposed

information-theoretic measures that allow analyzing information processing in systems of

interacting agents [7, 10–12]. In addition to the exemplary application to swarm algorithms

[6], such analyses are primarily used in the field of neuroscience [13, 14]. In the present paper

we explore the idea of using information processing as a means to infer biological interactions

without assuming any further prior knowledge about the nature of these interactions.

Various measures for different aspects of information in information processing systems

have been proposed (see, e.g. [15]). In particular, Schreiber’s transfer entropy [16] is used as a

measure of information transfer, while active information storage [11] serves as a measure of

the actively used memory of an agent. In accordance with the basic idea of information decom-

position, Schreiber’s definitions are based on time series of agents’ states. Heuristically, (active)

information storage of agent A is defined as the amount of uncertainty about A’s next state

that can be reduced by the knowledge of its past states. Analogously, information transfer
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from agent B to agent A is defined as the amount of uncertainty about agent A’s next state that

can be reduced by the additional knowledge of agent B’s past states. The estimation of these

quantities depends on choosing a fixed number of of past states of an agent to be used for the

estimation, the so-called history length. Intuitively, history length should exactly cover the

length of the agent’s “memory”.

The exact interpretations of these quantities of information processing depend on the spe-

cific system and its environment. On a certain level of abstraction, information storage mea-

sures the independence of an agent’s development from its surrounding, while information

transfer measures development driven by interaction. If an interaction between two agents A

and B is being reflected in their states (we call this an effective interaction), a transfer of infor-

mation will be measurable on the basis of two corresponding time series covering the agent’s

‘state’. It is in this sense that dynamic information decomposition captures the underlying

organizational structure of a complex system.

The aim of this work is to explore the extent to which microbial communities can be under-

stood as “computational systems”, and what insight this perspective provides on the biology of

interactions both within a community and between a community and its environment. The

latter is of particular relevance in host-microbiome interaction. An essential component of

human interaction with its environment is given by the host-microbe system of the gastroin-

testinal tract [17–19]. However, a better understanding of this system is still a challenging

research question due to the complexity and dynamics of the human microbiome. Uncovering

interactions among species of the gut microbial community and examining corresponding

effects on human health is subject of ongoing research [20–22]. New tools and concepts

towards a better understanding of this system within its environment in a holistic sense are

therefore of great interest for future studies on diagnosis and modulation. The central research

claim we address in this paper therefore is the following: If indeed, microbial communities can

be understood as “computing” entities, it should be possible to infer meaningful relations

between the community’s information-theoretic structure and microbiome(-host) interac-

tions. Using the purely abundance-based measures of information transfer and active informa-

tion storage, this would allow us to gain insight on microbial interaction patterns without the
knowledge of metabolic processes.

To make this hypothesis testable, we focus on a reduced representation of the intestinal

microbial community, the Simplified Human Intestinal Microbiota (SIHUMI). This highly

standardized community, which has been introduced by Becker et al. [23], consists of seven

species, which represent the key functional capabilities of the human intestinal microbiome in

both composition and fermentation capacities [24]. In our framework, we consider each spe-

cies as an agent, all of which together form a joint complex system, i.e. a system of interacting

agents. The SIHUMI community consists of specific strains of Anaerostipes, Bacteroides, Bifi-
dobacterium, Blautia, Clostridium, Escherichia, and Lactobacillus. Genome sequences are avail-

able for all seven organisms, such that the metabolic potential of the community is well

understood. Instead of using data from fermentation systems, we base our analysis on modeled

data. We use BacArena, a software combining agent-based modelling and flux-balance analy-

sis, to simulate the SIHUMI community [25]. Using simulated abundance data enables us to

compare our information theoretic measures to the metabolic processes underlying the abun-

dance data.

To keep our approach viable also for in vitro analysis, we need to define the state of an

agents in terms of a quantity which can be measured also in in vivo systems. Therefore, we

define the “state” of an agent at a given time in terms of the number of individuals of the

respective species, i.e. its abundance at this time. The ability to realistically model microbial

interactions based on metabolic modeling has been proven for BacArena. In particular,
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intestinal microbial communities, such as SIHUMI, have been shown to be well reflected by

corresponding BacArena simulations [25]. The set-up of our base simulation follows the set-up

for the simulation of the seven SIHUMI strains in [25]. In particular, we use the same growth

stimulating initial base medium. In order to enforce dynamics of collapse and recovery

throughout the simulation, we intervene with the system by adding the base medium several

times in so-called feeding events.
There are several reasons why it is beneficial to base this first systematic assessment of infor-

mation processing in a microbial community in in silico data. Primarily, it enables interven-

tions that would be difficult to carry out in in vitro experiments. Nevertheless, the simulation

comprises all essential interactions, such as growth and occupation of space, as well as meta-

bolic degradation within a fully controlled set-up. In addition, the actual state of the system as

a whole, including all metabolic processes, is known at all times, such that methodological arte-

facts can be easily separated from signals of community interaction to be studied during the

analysis.

In this study, we infer signals of transfer entropy and active information storage from simu-

lated time series of microbial abundance data and explore the potential of these quantities of

information decomposition with regard to their potential for biological interpretation. Our

results support the usefulness of active information storage as an indicator of sudden internal

change. Concerning the biological interpretation of information transfer, our in silico experi-

ments support two hypotheses:

Hypothesis 1. Information transfer captures coherence of the community in reaction to envi-

ronmental changes.

Hypothesis 2. Information transfer captures coherence resulting from effective interaction

among members in the community.

Note that the notion of coherence has appeared in similar contexts before. For example,

Wang et al. [6] use it to characterize phases of high information transfer and storage in the dis-

tributed computation of swarms.

In order to test for stability, we repeat all estimations for varying history length. In doing so,

we observe the occurrence of delayed effects. These technical artefacts are signals in informa-

tion transfer/active information storage that point to past phenomena in the abundance time

series rather rather than to concurrent ones. They can occur in any kind of history-based

information theoretical measure and, if kept unnoticed, may lead to severe misinterpretations.

We contrast them with so-called immediate effects, characterized by being stable with respect

to changing the parameter of history length. Commonly, immediate effects are of higher inter-

pretive relevance.

Eventually, we discuss our results in the context of general principles that Wang et al. sug-

gest in their information-theoretical analysis of swarm dynamics [6].

Results

First of all, we want to focus on the virtual abundance data, which will later serve as input for

our information theoretical analysis. Fig 1A displays the abundances of the seven SIHUMI spe-

cies in a single run of our BacArena base simulation. It is immediately apparent that the devel-

opment of the abundances is strongly influenced by the feeding events, which are marked by

dotted lines. The initial nutrient-rich environment leads to an increase in the number of indi-

viduals of all species. After some time, with essential nutrients becoming rare, the increase lev-

els off, and Bacteroides even starts decreasing in abundance. This decrease is interrupted by

the first feeding event after time step 35. The supply of nutrients leads to an increase in some
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Fig 1. Information theoretic measures of the simulated SIHUMI community. A: Abundances of the seven SIHUMI

species Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Blautia producta, Clostridium
ramosum, Escherichia coli, and Lactobacillus plantarum in a run of the base simulation. Dashed vertical lines mark the

feeding events after time steps 35, 62, and 121. B: Active information storage (AIS) averaged over all living species in

the community for varying history lengths 10, 15, and 20. The yellow frame shows a pattern which is shifted by five

time steps across history length. In contrast, the arrows point on noticeable simultaneous effects across history length.

C: Collective transfer entropy (CTE) averaged over all living species in the simulated community for varying history

lengths 10, 15, and 20.

https://doi.org/10.1371/journal.pcbi.1012359.g001
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species and prevents decrease in other species. After another 25 time steps, nutrient availability

is getting critical again. Shortly before the second feeding event, all species strongly decrease in

abundance, with Bacteroides and Lactobacillus even getting extinct. The nutrient refill after

time step 62 avoids further decrease in the rest of the species and, after a couple of steps, some

species start to build up abundance again. Following a period of constancy in all abundances,

the pattern repeats, with Blautia getting extinct and Escherichia strongly decreasing in abun-

dance. Nutrient supply interrupts this decrease and, again, leads to an increase in the abun-

dances of the other species. Some time steps later, abundances level off, and, with no further

nutrient input being provided, the species get extinct one after another. Only Escherichia is

still present at the end of the simulation.

Based on the species’ abundance data, we can now derive the system’s information process-

ing. Fig 1B displays the corresponding active information storage (AIS) averaged over all living

species. Note that slight fluctuations in AIS during phases of constant abundances are a techni-

cal artefact due to the random noise added in the estimation process (compare [26]). Appar-

ently, sudden large changes in community composition are always accompanied by downward

‘outliers’ in AIS across history length. The arrows in Fig 1B mark the most noticeable of those

‘outliers’. Around the second feeding and right before the end of the simulation, AIS even

takes negative values, indicating that the past is misinformative of the current value of abun-

dance (compare the Methods Section).

The collective transfer entropy (CTE) averaged over all living species is displayed in Fig 1C.

Again, arrows mark simultaneous downward ‘outliers’, which take place at the second feeding

event, after the third feeding event, and shortly before the end of the simulation. There is a

gradual buildup of CTE before the feeding events, coinciding with periods of constant abun-

dances across the community.

Considering CTE for varying history lengths 10, 15 and 20 (the k-variants), we observe that

some patterns of the signals are shifted by exactly 5 time steps between history lengths 10 and

15, as well as between history lengths 15 and 20. Similar effects can be observed for AIS.

Noticeable examples are highlighted by yellow frames in Fig 1B and 1C. This phenomenon

results from a technical artefact, which will be discussed later.

Information transfer reflects coherence in reaction to environmental

changes

If information transfer indeed captures coherent reactions to environmental changes, a pertur-

bation of coherence should lead to a decrease in information transfer. We test this by manipu-

lating results of the base simulation in a window between the second and third feeding (Fig

2A). Naturally, the further the second feeding event dates back, the lower the overall availabil-

ity of essential nutrients. This gradual change in environmental conditions eventually leads to

a collective stop in growth. With constant abundances in all species, the collective transfer

entropy averaged over all living species becomes maximal during this time window (recall Fig

1C). We disturb the coherent behavior by randomly altering abundances between time steps

109 and 128 (Fig 2B).

Fig 2C displays the averaged collective transfer entropy of all living species both for the

non-manipulated (solid lines) and the manipulated realization (dashed lines). In the non-

manipulated realization, average CTE reaches its highest plateau of almost 10 nats at time step

112. At that time, abundances of all species have been constant for a while and continue to do

so. In the manipulated realization, average CTE never reaches this level. With abundances

changing at time step 109, average CTE slightly increases, followed by a decrease down to less

than 3 nats. Throughout the next time steps, it fluctuates between this value and a maximum
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Fig 2. Disturbance of coherent behaviour leads to a decrease in information transfer. A: Abundances of the seven

SIHUMI species between time steps 85 and 128 for a run of the base simulation. The dashed vertical line marks the

feeding events after time step 121. B: Manipulated abundances of the seven SIHUMI species between time steps 85 and

128. C: Comparison of summarized abundances and collective transfer entropy averaged over all living species in the

non-manipulated (solid lines) and manipulated (dashed lines) scenario.

https://doi.org/10.1371/journal.pcbi.1012359.g002
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of just below 6 nats. It is only as of time step 125 that CTE in the two scenarios coincide again.

Hence, by disturbing a community-wide coherent reaction to environmental changes, CTE

can indeed be diminished (see S1 Fig for the k-variants of this signal).

Information transfer reflects coherence resulting from effective

interactions

We test our second hypothesis by enforcing an effective direct interaction between two species.

A resulting increase in the (apparent) information transfer between those two species would

support our hypothesis. In preparation, we generate a new strain of Clostridium, whose reac-

tions have been changed towards a larger production of L-valine. We intervene in a simulation

by adding individuals of manipulated Clostridium to provoke a crossfeeding of L-valine, which

has been shown to stimulate the growth of Bacteroides (compare S3 Fig). In Fig 3, both strains

of Clostridium are grouped together under Clostridium.

Fig 3A and 3B display the abundances of the seven species between time steps 22 and 31 for

a non-manipulated and a manipulated run of the simulation, respectively. In the non-manipu-

lated case, Clostridium slightly increases in abundance between time step 26 and 27, Bacter-
oides remains constant as of time step 26. In the manipulated case, the addition of several

individuals of manipulated Clostridium at time step 28 is followed by a slight increase in the

abundance of Bacteroides at time step 30, leading into a subsequent steep increase. Fig 3C and

3D illustrate the contribution of L-valine to this growth: The amount of L-valine being pro-

duced by Clostridium and being consumed by Bacteroides increases significantly right after the

addition of manipulated Clostridium, and right before the increase in abundance of Bacter-
oides. Hence, we have created a scenario in which crossfeeding leads to a change of abun-

dances—an effective interaction. This effective interaction is indeed reflected in the

corresponding transfer entropy, as a comparison between Fig 3C and 3D shows. While no

information is transferred from Clostridium to Bacteroides in the non-manipulated cases

(independent of history length k), transfer entropy takes values above 0.8 nats concurrently to

Bacteroides’ increase in abundance in the manipulated case (see S2 Fig for the k-variants of

this signal).

Apart from the expected increase in transfer entropy at time step 30, we observe a lower pla-

teau between time steps 26 and 27. This might surprise since abundances have not changed in

this period and there is no signal in the non-manipulated scenario. However, we have to bear

in mind that local transfer entropy is estimated on basis of the whole time series. Therefore,

changing the time series at some point in time can lead to changes in local transfer entropy at

other points in time.

Discussion

Interpreting information storage and transfer

Note that from an experimental perspective, the data resulting from our simulation appears

exceptional to some extent. Longer periods of constant abundances are quite unlikely to be

observed in natural systems due to various sources of uncertainty. However, following our

reductionist approach using BacArena, the data still captures the essentials of bacterial com-

munity interaction we need to focus on. At the same time, the special structure of our data

allowed us to identify artefacts of entropy estimation which would have been difficult to iden-

tify in analog estimates based on noisy observational data. However, filtering out such estima-

tion artefacts is substantial for the interpretation of the information theoretical signals.

PLOS COMPUTATIONAL BIOLOGY Information storage and transfer in a simulated human gut microbiome

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012359 September 17, 2024 8 / 22

https://doi.org/10.1371/journal.pcbi.1012359


We have observed that active information storage is a mere reflection of sudden changes in

the underlying abundances (recall Fig 1B). This relation between abundance data and AIS is

not surprising. Active information storage quantifies the degree of predictability of a species’

abundance from its past –which is surely low whenever abundance suddenly increases or

decreases after a period of constancy. The fact that AIS can serve as an indicator of changes in

composition or behavior of a complex system has been discussed before, see e.g. [6] for experi-

ments on swarm dynamics, or [13] for neural information processing. In our case, in which

AIS of an agent is estimated on basis of time series of abundance data, only, it can be seen as a

Fig 3. Direct interactions can be measured by information transfer. A: Abundances of the seven SIHUMI species between time steps 22 and 31

simulated in a 10x10 arena, starting off with ten individuals per species and a quarter of the base feeding. B: Abundances of the species in a second

run, in which 20 individuals of manipulated Clostridium are introduced into the arena at time step 28. C: Comparison of crossfeeding of valine and

apparent information transfer from Clostridium to Bacteroides in the non-manipulated scenario. D: Comparison of crossfeeding of valine and

filtered apparent information transfer from Clostridium to Bacteroides in the manipulated scenario.

https://doi.org/10.1371/journal.pcbi.1012359.g003
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pure indicator of sudden changes in the underlying time series, and therefore cannot be

expected to contain further information about the system.

In contrast, we have seen that (collective) information transfer captures “coherent” develop-

ment in species’ abundances, both as a result of environmental changes and in reaction to

crossfeeding. It can be assumed that further types of interaction, like competition over nutri-

ents or the exposure to detrimental by-products of other species, may lead to an increased

information transfer as well. In general, effective synergistic or competitive interactions are

difficult to enforce in the SIHUMI community. The species in this community rather seem to

coherently react to environmental changes. Indeed, there is growing evidence that the gut

microbiome is shaped by habitat filtering rather than direct synergistic interactions (see e.g.

[27, 28]), meaning that community assembly is dominated by the availability of nutrients

rather than by the direct metabolic interaction among the bacteria being present. Our simula-

tion experiments following realistic scenarios also support this claim. The main drivers of

abundances and thereby also of the course of transfer entropy obviously are the feeding events.

Coherent reactions to environmental changes follows the availability of nutrients. The sheer

abundance of nutrients in combination with the mostly generalist metabolic repertoire of the

chosen species seems to render competition less important. Furthermore, abundant resources

being available appear to reduce the pressure on the bacteria to directly interact. One might

hypothesize that this would change for a community in a rather restricted environment.

The impact of history length in measuring information storage and

transfer—Distinguishing immediate and delayed effects

In order to understand the origin of the “shifted patterns” observable in the information theo-

retic signals across history lengths (Fig 1B and 1C), compare the definition of active informa-

tion storage for history length k at time step xn+1 (Eq (3), below). One conditions on a certain

past state xt in the estimation of AIS at time steps xt+1, . . ., xt+k. The same holds for collective

transfer entropy (Eq (5), below). Therefore, if increasing the history length by s leads to a shift

of some feature in AIS/CTE from xn+1 to xn+1+s, this suggests that the observed feature is

related to omitting xn−k from the conditioned past rather than to the transition from xn to xn+1.

We call such a feature a delayed effect, since it reflects a past development. Unrecognized

delayed effect bear the risk of strong misinterpretations. In contrast, if some feature in AIS/

CTE is temporally stable at xn+1 across history lengths, we may confidently relate it to the

development in abundances between xn and xn+1. We call such a feature an immediate effect.
We will further illustrate this phenomenon in the information theoretical signals of Clos-

tridium. Fig 4A displays its abundance and active information storage for history lengths 10,

15, and 20. Fig 4B allows a closer look at an apparent shifted pattern after the third feeding

event. The strong increase in AIS for k = 10 between time steps 72 and 73 repeats itself five

time steps later for k = 15 and ten time steps later for k = 20. This hints towards the fact that

the cause for this pattern in AIS is not Clostridium’s abundance between time steps 72 and 73

(nor its abundance between time steps 77 and 78 or time steps 82 and 83, respectively). Instead,

we have to relate this pattern to the omission of time step 62 from the conditioned past. In this

case, the shift of the conditioned past onto the plateau of constant abundance naturally

increases the informative value of the past on the next value of abundance. Following this pro-

cedure, we identify all shifted patterns in the signal. Fig 5 illustrates the result of our identifica-

tion process, with dotted lines indicating the periods where a clear identification of the signal

is difficult due to superposition of shifted and non-shifted features. As expected, the strong

downward outliers are all immediate effects, being clearly related to the sudden increases or

decreases in abundance. In contrast, several increases of AIS are delayed effects, which are not
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primarily related to the concurrent development of abundance, but to the fact that the condi-

tioned past is being successively shifted on plateaus of constant abundance.

The procedure is analog in the case of collective transfer entropy. Fig 6A displays the abun-

dance and collective transfer entropy of Clostridium for history lengths 10, 15, and 20. As

Fig 4. Identifying immediate and delayed effects in the active information storage of Clostridium. A: Abundance

and active information storage (AIS) of Clostridium with varying history lengths 10, 15, and 20 for a run of the base

simulation. Dashed vertical lines mark the feeding events after time steps 35, 62, and 121. B: Illustration of a delayed

effect in the AIS of Clostridium. The highlighted sections of the k-variants of AIS are shifted by exactly five time points,

indicating that they capture an effect lagging behind by the respective history length.

https://doi.org/10.1371/journal.pcbi.1012359.g004
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already implied by the average CTE in Fig 1C, CTE tends to build up during periods of longer

constancy. From time to time, the signal shows strong upward and downward outliers. Again,

indicating ambiguous parts by dashed lines results in a “filtered” version of the CTE of Clos-
tridium (see Fig 6B). As we have already seen for AIS, it is mainly increases of CTE during

times of constant abundance, which are identified as delayed effects.

The relation of information storage and transfer

Wang et al. [6] studied collective communication and memory in the spatiotemporal dynamics

of simulated swarms, suggesting general principles for distributed computation in social and

biological systems. The authors observe that average maximal information transfer tends to

follow maximal information storage. We observe this pattern as well in the sense that with

compositional changes around feeding events, which lead to declines in both information the-

oretic measures, AIS tends to build up and reach its maximal plateau quicker than CTE (com-

pare Fig 7A and 7B for community-wide and species-specific signals). This phenomenon can

easily be explained: In our simulation, a drop in AIS of a species is caused by either a sudden

increase in abundance (after a feeding event) or a sudden decrease in abundance (with essen-

tial nutrients missing). Those disturbances are followed by either constant abundance (which

renders the next state of abundance highly predictable from its past), or by a steady increase

(which is, as well, a stable and thereby predictable trend). In contrast, high CTE requires uni-

formity in preferably many species or effective direct interactions among them. Both is not

given during the phases of disturbance. Species react differently, both with respect to shortage

Fig 5. Filtered active information storage of Clostridium. Filtered active information storage (AIS) of Clostridium for a run of the base simulation

with delayed effects marked by dotted lines. Dashed vertical lines mark the feeding events after time steps 35, 62, and 121.

https://doi.org/10.1371/journal.pcbi.1012359.g005
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of nutrients, as well as to the subsequent feeding events. However, it is not interactions driving

their abundances. Only after abundances have been simultaneously constant over some period,

CTE reaches maximal values.

Additionally, the results presented in [6] suggest that information transfer alternates with

information storage. While this may be valid for a wide range of disturbed complex systems, it

Fig 6. Filtering the collective transfer entropy of Clostridium. A: Abundance and collective transfer entropy (CTE) of

Clostridium with varying history lengths 10, 15, and 20 for a run of the base simulation. Dashed vertical lines mark the

feeding events after time steps 35, 62, and 121. B: Filtered collective transfer entropy (CTE) of Clostridium with delayed

effects marked by dotted lines.

https://doi.org/10.1371/journal.pcbi.1012359.g006
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does not hold true in our specific scenario. Recall that an individual in the swarm simulated in

[6] has effectively two possible sources of information: it’s own past, which dominates in

phases of “coordinated” collective behavior, and other individuals which become more impor-

tant in phases of disturbance. However, in our setting there is a third crucial source of infor-

mation which is the system’s environment. One could think of the environment as

Fig 7. Comparing active information storage and collective transfer entropy. A: Filtered active information storage

(AIS) and collective transfer entropy (CTE) for a run of the base simulation averaged over all living species in the

SIHUMI community. Dashed vertical lines mark the feeding events after time steps 35, 62, and 121. B: Filtered active

information storage (AIS) and collective transfer entropy (CTE) of Clostridium.

https://doi.org/10.1371/journal.pcbi.1012359.g007
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constituting an additional agent governing the availability of nutrients. Lack of, or a sudden

refill of nutrients clearly shapes this other agent’s “behavior”. Neither AIS nor CTE will be able

to capture such interaction directly since the environment is not considered as an agent in the

system. And indeed, both measures drop after the feeding event (compare Fig 7A and 7B),

indicating the past to be misinformative about the future. In such times of disturbance, the

only measure that we would expect to increase is intrinsic uncertainty (compare the Methods

Section).

Nevertheless, we have seen earlier that there are situations in which species’ reactions to the

environment lead to an increase in (collective) transfer entropy. It will be an interesting future

task to find ways to distinguish environmentally-induced from interaction-driven transfer

signals.

Conclusion

We took first steps into the study of the human gut microbiome as computing entity. First

steps only, since we restricted ourselves to a simplified and simulated community. That allowed

us to directly intervene in the system to confirm two hypotheses: Information transfer among

the species reflects coherent behavior both as a reaction to environmental changes and in form

of direct effective interactions. In particular, the latter will serve as a valuable tool when being

applied to real data. It could provide insight into little understood or so far unknown relation-

ships and dependencies between bacterial species. Such knowledge can be crucial when it

comes to the design of dietary measures or medical intervention strategies. Hence, the transfer

of our work to real data provides a natural next step. Albeit rare, suitable long-term time series

of the composition of the human gut microbiome do exist.

Using a rather constrained simulation for the basis of our analysis allowed us to decipher

the artefacts of entropy estimation which must be taken into account when interpreting

courses of local AIS and CTE. Currently, we chose to manually distinguish immediate and

delayed effects in the signals. However, for wider applicability, an automatized process would

be desirable. Such a process might for example be developed via objective decision criteria

based on k-variants of the signals.

Materials and methods

A suitable experimental playground for our research questions is provided by BacArena, a soft-

ware for the simulation of microbial communities, combining agent-based modelling and flux

balance analysis [25]. The time series of abundance data resulting from these experiments

serve as basis for our information theoretical analysis of the underlying system.

Simulating a microbiome with BacArena

The experimental setup of our base simulation appears as case study of an integrated multi-

species model of the human gut in [25]. The model was assembled using manually curated

genome-scale metabolic models of the following seven human gut bacteria [29]:

• Anaerostipes caccae DSM 14662

• Bacteroides thetaiotaomicron VPI 5482

• Blautia producta DSM 2950

• Escherichia coli str. K 12 substr. MG1655

• Clostridium ramosum VPI 0427 DSM1402
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• Lactobacillus plantarum subsp. plantarum ATCC 14917

• Bifidobacterium longum NCC2705

The models, as being used in [25], are provided in the supplementary material (see S1

Data). This community, which also has been used in in vitro and in animal experiments, com-

prises representatives of the functionally most relevant groups of the human gut microbiome.

As such, it has been established as a simplified human intestinal microbiota (SIHUMI) [23].

Using the R-version of BacArena, we set up a 100 x 100 grid, the so-called arena. Following

the set-up by the authors of BacArena [25], the arena was initialized with all nutrients which

can be consumed by at least one species expect mucus glycans. Per default, all nutrients were

set to a concentration of 0.1 μM per cell. Based on flux variability analysis [30], the nutrients

essential for a species-wise biomass growth rate of 0.01h−1 were determined. In order to ensure

this growth, the concentration of the corresponding essential nutrients was increased to 1 μM

per grid cell. Overall, the medium consists of 269 nutrients, 29 of which are classified as essen-

tial. The exact diet definition can be found in S1 Table. We will denote this composition as

base feed/medium. 10 individuals of each species were randomly placed on the grid. Default

values were used for growth and movement parameters (compare [25], Table 3). After time

steps 35, 62, and 121, the initial amount of nutrients was added to the medium again (feeding
events). After the third feeding event, the simulation was continued until only one species was

alive, leading to a simulation length of 184 steps. The R code underlying this simulation is pro-

vided in S1 Code. Large parts of our analysis are based on the species abundances resulting

from one run of the base simulation. These time series can be found in S2 Table.

In order to test our hypotheses on the biological interpretation of transfer entropy, we per-

form two interventions. According to our first hypothesis, transfer entropy captures coherent

behavior in the form of a coherent reaction to environmental changes. Hence, we disturb a

period of formerly constant abundances in the base time series by randomly increasing or

decreasing abundances following time step 109. The manipulated time series data is provided

in S3 Table.

According to our second hypothesis, transfer entropy reflects direct effective interactions

between species. To test this hypothesis, we enforce such an interaction between two species.

In preparation, we conducted simulations to identify products of one SIHUMI species whose

availability leads to a strong growth of another SIHUMI species. In doing so, we learned that

the combined increased availability of phosphate and the amino acid L-valine leads to a growth

in abundance of Bacteroides (compare S3 Fig). Among the SIHUMI species, one of the main

producers of L-valine is Clostridium. However, the regular amounts produced are too small to

effectively lead to significant changes in abundance of Bacteroides. Therefore, we change the

corresponding reaction in the model of Clostridium towards 1000-fold output of L-valine. In

the following, we will refer to this new strain as manipulated Clostridium. In order to increase

controllability, we set up a new simulation on a smaller grid (30 x 30) with randomly distribut-

ing ten individuals of each of the seven SIHUMI species. We use a quarter of the base feeding

as initial medium.

We run the simulation until 38 time steps are reached. The resulting time series of abun-

dance data can be found in S4 Table. In a second run, we intervene at time step 28. Specifically,

we add 20 individuals of manipulated Clostridium, 6.25 fmol per cell of glutamate, which Clos-
tridium needs to produce L-valine, and 6.25 fmol per cell of phosphate to the medium and

continue the simulation for another 10 time steps. The source code underlying the simulation

is provided in S2 Code. The resulting abundance data can be found in S4 Table.
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Information decomposition

Our two operations of interest, information storage and transfer, are ultimately related by the

theory of information decomposition (see e.g. [7]). In the following, we define the two opera-

tions in this context.

Let V ¼ f. . . ;X;Y;Z; . . .g be a system of countably many stationary discrete Markov

processes, or, as we will call them in the following, agents. Let p(x) denote p(X = x), p(y) =

p(Y = y), etc. The information being contained in a state xn+ 1 of an agent X can be quantified

by the agent’s (local) entropy

hXðxnþ1Þ ¼ � logðpðxnþ1ÞÞ: ð1Þ

In other words, hX(xn+1) quantifies the amount of uncertainty captured in the measurement

xn+1 at time point n. One can distinguish three possible sources for this information.

The first source is the agent’s own past. Let k denote the agent’s Markov order, i.e.

pðxiþ1jxi; . . . ; xi� kþ1Þ ¼ pðxiþ1jxi; . . . ; xi� kþ1; xi� kÞ ð2Þ

In the following, we will use the notation xðkÞi ¼ ðxi; . . . ; xi� kþ1Þ. Then, the local active informa-
tion storage AIS [7] quantifies the amount of information in xn+1 which is predictable from the

past state xðkÞn , i.e.

aXðxnþ1; xðkÞn Þ ¼ log
pðxnþ1jxðkÞn Þ

pðxnþ1Þ

� �

: ð3Þ

Note that local AIS is negative whenever

p xnþ1

�
�
� xðkÞn Þ < pðxnþ1

� �
: ð4Þ

In this case, aXðxnþ1; xðkÞn Þmeasures the amount of misinformation about xn+1 by xðkÞn .

The second source consists of information provided by other agents and not being con-

tained in X’s own past. Let VX � V n X be the subset of all possible information contributors of

X. This set can be determined on basis of background knowledge of the system or using

computational methods [10]. Let v*ðlÞX;n be the vector of states of the agents in VX obtained by

concatenation, with l being the vector of their respective Markov orders. Information being

predictable from the past of other agents but not from the past of X itself is measured by the

(local) collective transfer entropy CTE [7]

tXðxnþ1; xðkÞn ; v
* ðlÞ

X;nÞ ¼ log
p xnþ1

�
�
� xðkÞn ; v

*ðlÞ

X;n

� �

p xnþ1

�
�
� xðkÞn

� �

0

B
@

1

C
A: ð5Þ

This measure includes interaction-based as well as single-sourced transfers to X.

To infer the contribution of a single agent on X, we can restrict V to one element. Indeed,

let Y 2 VX be an agent with Markov order l. Then, (local) apparent transfer entropy TE [16]

from Y to X is defined as

tY!Xðxnþ1; xðkÞn ; y
ðlÞ
n Þ ¼ log

pðxnþ1 j xðkÞn ; y
ðlÞ
n Þ

pðxnþ1 j x
ðkÞ
n Þ

 !

: ð6Þ

Transfer entropy can be understood as the average amount of information in the source Y
about the next state of the destination X that was not already contained in the past of X itself.
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Note that the collective transfer entropy is not the sum of the apparent transfer entropies from

all sources but a sum of incrementally conditioned transfer entropies [7]. Analogously to the

case of local AIS, negative local (collective) TE indicates that the sources’ past states have been

misinformative about the agent’s next state. An expected causal delay between source and des-

tination variable can be taken into account by replacing yðlÞn by yðlÞnþ1� d and v*ðlÞX;n by v*ðlÞX;nþ1� d.

The third source comprises all information which is neither stored in the agent’s past nor

being transferred from other agents. It is called local intrinsic uncertainty U and consequently

measured by [7]

uXðxnþ1; xðkÞn ; v
* ðlÞ

X;nÞ ¼ log
�
p
�
xnþ1 j x

ðkÞ
n ; v

*ðlÞ
X;n

��
: ð7Þ

Hence, the information needed to predict the next state of an agent is a composition of

information being stored in the agent’s own past, information being transferred from other

agents, and intrinsic uncertainty. Formally, this can be expressed as [7]

hXðxnþ1Þ ¼ aXðxnþ1; xðkÞn Þ þ tXðxnþ1; xðkÞn ; v
* ðlÞ

X;nÞ þ uXðxnþ1; x
ðkÞ
n ; v

*ðlÞ
X;nÞ: ð8Þ

Implementation

We consider the seven species of the simulated SIHUMI community as agents of a complex

system V. We identify each of them with a stationary discrete Markov process X. A time series

of abundance data ~X resulting from a simulation run can then be thought of as a specific reali-

zation of this Markov process. We consider all species as possible mutual information contrib-

utors due to competition over essential nutrients and space. Hence, we set VX ¼ V n X for

every X.

In order to apply the information theoretic measures presented above, we need to choose

two defining parameters. We set a delay of d = 2 in the transfer between species, since the

change in abundance of a species will lead to a change in metabolic activity of another species

at earliest in the next time step. Any change in abundance of another species will therefore

occur at earliest in the next but one time step.

A species’ Markov order, or “informing past”, can often not be known but only be esti-

mated. Apart from already implemented estimation methods, like the Ragwitz optimization

provided with the JIDT toolkit [31], one can get hints on the past dependency structure by

considering the time series’ active information storage for varying history lengths (compare

e.g. [11]). Typically, average information storage of an agent increases with increasing history

length k until k reaches the length of the agent’s intrinsic memory, where it tends to levels off

or decline. However, the specific structure of our abundance curves provokes a different pat-

tern. As Fig 1A displays, the abundances in our base simulation are characterized by constant

periods, being interrupted by comparably short phases of increase or decrease. Clearly, an

agent X’s active information storage at some time point n + 1 is relatively high if ð~xðkÞn ; ~xnþ1Þ is

constant or shows a uniform trend. However, the longer the history length k, the rarer this sit-

uation occurs. With this phenomenon being the dominant driver of AIS in our time series,

average AIS tends to decrease with increasing history length.

Fig 8 illustrates the phenomenon for the example of Anaerostipes, with history lengths vary-

ing between k = 1 and k = 30. We want to highlight two patterns, during which the differences

between the history lengths become very clear. In frame 1 (see yellow box in Fig 8), the effect

of the plateau of constant abundance on AIS decreases with increasing history length. While

the existence of such a plateau could be easily derived from AIS curves with history length up
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to 20, the effect is growingly blurred for larger history lengths. Frame 2 displays extreme outli-

ers for very small history lengths, capturing short periods of comparatively small slope in

abundance. Hence, the choice of history length apparently is a balancing act between fine scan-

ning, increasing susceptibility to noise, and coarse scanning, bearing the risk of averaging out

signals relevant for the analysis.

The scope of our analysis is an insight into the behavior and, consequently, a refined appli-

cation of information storage and transfer in the context of microbial communities. Fig 8 illus-

trates that both the restriction to only one history length as well as to extremely small or large

history lengths is not adequate for this task. Therefore, we consider intermediate-sized history

lengths of k = 10, 15 and 20 (and l = 9, 14 and 19, taking the delay of d = 2 into account)

throughout this analysis. We will further discuss the observed phenomena in the Results

Section.

The (joint) probabilities appearing in the formulas above have to be estimated. To this end,

we make use of the R package QtAC (Quantifying the Adaptive Cycle) [26], which is available

via https://github.com/hannahschrenk/QtAC. The package borrows the Kraskov-Stögbauer-

Grassberger (KSG) estimator of the JIDT toolkit, an advanced kernel estimator being opti-

mized to deal with small sample sizes [31]. By default it yields results in nats (natural units of

information). QtAC contains estimators for local and average transfer entropy, collective

transfer entropy, as well as active information storage. The (joint) probabilities are estimated

based on the whole time series of (joint) abundances. Note that all information theoretic

Fig 8. The effects of varying history length on active information storage of Anaerostipes. Abundance and active information storage of

Anaerostipes for a run of the base simulation with history length k varying between 1 and 30. Dashed vertical lines mark the feeding events after time

steps 35, 62, and 121. The yellow frames emphasize two types of differences across history lengths.

https://doi.org/10.1371/journal.pcbi.1012359.g008
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measures being displayed in this work are local measures. As of now, we will omit the adden-

dum “local” to increase readability.

The information theoretic values being shown are averaged over 25 estimation runs. Based

on the significance test included in QtAC, we only took results with a significance� 0.05 into

account. All parameter choices are listed in S5 Table.

Supporting information

S1 Fig. Collective transfer entropy under varying history lengths. Collective transfer entropy

averaged over all living species in the SIHUMI community between time steps 85 and 128 for

varying history lengths 10, 15, and 20 in the non-manipulated (A) and manipulated scenario

(B).

(TIF)

S2 Fig. Transfer entropy under varying history lengths. Information transfer from Clostrid-
ium to Bacteroides between time steps 85 and 128 for varying history lengths 10, 15, and 20 in

the non-manipulated (A) and manipulated scenario (B).

(TIF)

S3 Fig. The combined addition of L-valine and phosphate stimulates the growth of Bacter-
oides. Growth of Bacteroides in a 30x30 arena on the base medium (A) minus L-valine and

phosphate, (B) minus phosphate but with an increased value of phosphate (6.25 fmol/cell), (C)

minus phosphate but with an increased value of L-valine (6.25 fmol/cell), (D) with increased

values of phosphate and L-valine (6.25 fmol/cell each).

(TIFF)

S1 Data. Models of the seven SIHUMI species used in the base simulation.

(RDATA)

S1 Table. Nutrients added to the media at feeding events in the base simulation.

(CSV)

S2 Table. Time series of abundance data resulting from the base simulation.

(CSV)

S3 Table. Manipulated time series of abundance data of the base simulation.

(CSV)

S4 Table. Time series of abundance data resulting from the simulation with and without

enforced interaction.

(XLSX)

S5 Table. Parameters used in the information theoretic computations with QtAC.

(PDF)

S1 Code. Source code of the base simulation.

(RMD)

S2 Code. Source code of the simulation with enforced interaction.

(RMD)
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