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A B S T R A C T

Operational Earth observation missions, like the Sentinel-3 (S3) satellites, aim to provide imagery for long-term
environmental assessment to monitor and analyze vegetation changes and dynamics. However, the S3 archive is
limited in temporal availability to the year 2016. Although S3 provides continuity of previous missions, key
vegetation products (VPs) including leaf area index (LAI), fraction of photosynthetically active radiation
(FAPAR), fractional vegetation cover (FVC), and leaf chlorophyll content (LCC), can be reliably produced from
Ocean and Land Colour Instrument (OLCI) data only since the sensors’ launch. To overcome this limitation, our
study proposes a reconstruction workflow that extends the data record beyond its data acquisition. By using
multi-output Gaussian process regression (MOGPR) fusion, we explored guiding predictor VPs from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor for the reconstruction of multi-decadal (spanning two
decades, 2002–2022) temporal profiles of four OLCI-derived VPs (S3-MOGPR), moving past S3’s launch. We first
evaluated three MODIS-derived inputs as predictor variables: LAI, FAPAR, and the Normalised Difference
Vegetation Index (NDVI) over nine sites with distinct land covers from the Ground-Based Observations for
Validation (GBOV) service. Each predictor produced a distinct time series for the four reconstructed S3 VPs. To
determine which predictor variable most accurately reconstructs data streams of the targeted variable, all S3-
MOGPR VPs were compared to satellite-based products from the Copernicus Global Land Service (CGLS).
MOGPR models were trained for 2019 and compared to reference data. Since MODIS LAI demonstrated the best
reconstruction performance of all predictors, S3-MOGPR VPs were fully reconstructed from 2022 back to 2002
using guiding MODIS LAI and evaluated with in-situ data. The most consistent reconstructed product was FVC
(R = 0.96, NRMSE = 0.17) over mixed forests compared to CGLS estimates. FVC also yielded the highest
validation statistics (R = 0.93, ρ = 0.92, NRMSE = 0.14) over croplands. The highest correlation coefficients
were achieved by the predictor variable LAI reconstructing FVC with mean R, ρ and NRMSE = 0.11 among all
sites of 0.91 and 0.88, respectively. In the absence of both satellite and ground-based LCC reference measure-
ments, the reconstructed LCC profiles were compared to the OLCI and MERIS Terrestrial Chlorophyll Index
(OTCI, MTCI). The correlation metrics provided strong evidence of the reconstructed LCC product’s integrity,
with the highest correlation over deciduous broadleaf, mixed forests and croplands (R > 0.9). The lowest cor-
relations for all reconstructed variables appeared over evergreen broadleaf forests, driven by the absence of
seasonal patterns. Altogether, by leveraging the flexibility of the MOGPR algorithm with guiding historical data,
contemporary EO data can be extrapolated into the past.

1. Introduction

Climate change poses ever greater pressure to understand and eval-
uate the multi-decadal evolution of ecosystems and biophysical pro-
cesses (Luo et al., 2011). Earth-observing satellite missions facilitate and

support global-scale monitoring of environmental dynamics and related
land use changes (Winkler et al., 2021). Essential Climate Variables
(ECVs) are physical, chemical, and biological variables, or a set of
grouped variables, that play a crucial role in the Earth system’s dy-
namics (Global Climate Observing System (GCOS), 2022). ECVs provide
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empirical evidence to understand, monitor, andmitigate risks associated
with Earth’s climate (Zemp et al., 2021), but also biodiversity and other
environmental changes. The importance of the global assessment of
ECVs was recognized by the Global Climate Observing System (GCOS)
and supported by the European Union’s Earth Observation Programme,
Copernicus (Thépaut et al., 2018). Among many, one of the services
offered by Copernicus is the Climate Change Service (C3S), which pro-
vides extensive information encompassing various Earth-system com-
ponents, including the atmosphere, land, ocean, sea-ice, and carbon. The
C3S focuses on producing a consistent and comprehensive overview of
the past, current, and future Earth climate via the generation of 20 ECVs
(Buontempo et al., 2022). The environment’s response to climate change
is predominantly gathered from satellite observations leading to the
retrieval of ECVs, constituting the principal source of information.
However, with a few exceptions, most satellites do not provide multi-
decadal imagery, either because of their short life cycle or recent
launch dates (Fuchs et al., 2013; Joshi et al., 2016; Kooistra et al., 2023;
Winkler et al., 2021). For instance, vegetation products (VPs) retrieved
by Sentinel-3 Ocean and Land Colour Instrument (S3 OLCI) data have
only been available since S3’s launch in 2016, which limits evaluating
long-term, multi-decadal time series of biophysical variables based on
the same data stream. Apart from monitoring marine and coastal water
qualities, one of the S3 mission’s objectives is to assess land surface
properties, such as vegetation cover, land use and land cover (LC)
changes (De Grave et al., 2020; Jutz and Milagro-Pérez, 2020), which
are crucial areas of research within the context of the Copernicus pro-
gram in Europe. While data collected by sensors with coarse resolution,
like the NOAA-Advanced Very High Resolution Radiometer (AVHRR)
sensor launched in 1979, provides valuable long-term observations, it
has limitations for monitoring fine-scale land cover changes in Europe.
In contrast, medium-resolution imagery, such as those from the Mod-
erate Resolution Imaging Spectrometer (MODIS), offers a promising
compromise between LANDSAT/SPOT and AVHRR imagery since 2000
(Clevers et al., 2005; Mucher et al., 2000). The OLCI mission’s land
applications are tailored to maintain the continuity of MODIS and Me-
dium Resolution Imaging Spectrometer (MERIS) sensors (Donlon et al.,
2012). OLCI measures the spectral reflectance of the Earth’s surface in
21 spectral bands, ranging from 400 to 1020 nm, with a spatial reso-
lution of 300 m. Amidst numerous environmental variables, such as
snow cover, and coastal chlorophyll concentration in oceans (Garnesson
et al., 2021; Ghent et al., 2017; Nagler et al., 2018), key VPs can be
retrieved by OLCI and mapped on global scales (Gobron et al., 2022;
Kovács et al., 2023b). These VPs include two ECVs, namely the leaf area
index (LAI) and the fraction of absorbed photosynthetically active ra-
diation (FAPAR), and other important variables describing the Earth’s
surface and the vegetation physiological states, namely fractional
vegetation cover (FVC), and leaf chlorophyll content (LCC). Moreover,
these four VPs are considered key variables essential to the interpreta-
tion of sun-induced fluorescence within the S3-FLEX (FLuorescence
EXplorer) tandem mission concept (De Grave et al., 2020; Drusch et al.,
2017). These VPs can be briefly described as follows:

FAPAR quantifies the proportion of solar radiation within the
400–700 nm spectral domain that is absorbed by active vegetation,
expressed as a ratio to the total surface incident radiation (Sellers et al.,
1997). It is an important variable for the modelling of primary pro-
duction (see review by (Weiss et al., 2004)). Additionally, FAPAR is an
observational constraint for the simulation of atmospheric carbon fluxes
in biosphere models (Kaminski et al., 2012; Knorr et al., 2010). FVC
represents the proportion of vegetation visible from a nadir point of view
and refers to the coverage of photosynthetic leaf areas (Deardorff,
1978). FVC serves as a crucial biophysical variable for modelling land
surface dynamics, addressing climate change implications, and
enhancing numerical weather prediction accuracy (Zeng et al., 2000).
LAI is half of the collective leaf area intercepting sunlight per area of the
surface (Chen and Black, 1992). This variable is strongly associated with
evapotranspiration and canopy photosynthetic activity. LAI is also a key

element in biogeochemical ecosystem cycles (Bréda, 2003; Chen and
Black, 1992; Weiss et al., 2004). The solar radiation that is absorbed by
the leaves is controlled by the pigments that are responsible for photo-
synthetic activity, mainly chlorophyll a and b. LCC drives photosyn-
thetic potential and contributes to primary production (Curran et al.,
1990; Gitelson et al., 2003). FAPAR and LAI are part of the 55 ECVs
(Baret et al., 2013; Bojinski et al., 2014). Together with FVC and LCC,
these four VPs offer valuable insights into vegetation health and
ecosystem integrity. Recognizing their collective importance, multi-
decadal data records of such variables can provide traceable evidence
for past, current, and possible future ecosystem variability (Bojinski
et al., 2014).

Such multi-decadal monitoring of ECVs would help to learn about
how the land cover has changed, e.g., due to climate-induced vegetation
shifts (Linderman et al., 2010) or human-induced land transitions such
as deforestation, afforestation, and expansion of cultivated areas (e.g.,
Barona et al., 2010; Cavalli et al., 2023; Winkler et al., 2021). The
quantification of multi-decadal ECV monitoring would support the
World Meteorological Organization’s (WMO) recommendation for the
calculation of climate normals of bio-geophysical variables for every 30-
year period. The 30-year normals could be considered as representatives
of current and predictors for future changes within the climate system.
(Devasthale et al., 2023; Livezey et al., 2007).

For the analysis of temporal trends over multiple decades, one of the
most important aspects of satellite data and derived products, e.g., VPs,
is its consistency. Typically, a solution for obtaining multi-decadal time
series relies on a sequence of multiple sensors, such as S3 followed back
in time by MERIS or MODIS. Nonetheless, data from subsequent satellite
missions are not equal in terms of radiometric accuracy and spatial
resolution, among others, leading to biases and uncertainties in derived
products (Chander et al., 2013). On top of that, VP products of different
satellite data sources can further deviate due to differences in the
implemented retrieval algorithm (e.g., Bayat et al., 2021; Xiao et al.,
2016). This holds especially true in the current era of data-driven
models, where not only the selected algorithm but also the critical
role of the training data determines the retrieval (e.g., Berger et al.,
2021; Elmes et al., 2020). All these factors combined make it especially
challenging to use one-to-one sequences of a VP frommultiple sensors to
track trends over a longer period. A harmonization method is needed for
consistent decadal product reconstruction across sequences of multi-
sensor data streams, so supporting a reliable long-term record of VPs
related to land use, climate change, land degradation (Dubovyk, 2017)
and related environmental assessments (e.g., Fang et al., 2019; Mur-
adyan et al., 2022; Pan et al., 2018).

Temporal reconstruction techniques serve to fill in gaps in satellite
imagery caused by clouds or other factors (e.g., Pipia et al., 2022; Poggio
et al., 2012; Vuolo et al., 2017). Throughout the scientific literature,
numerous studies have presented temporal reconstruction techniques
for satellite imagery, including cloud removal (i.e., gap-filling) (e.g.,
Belda et al., 2020; Caballero et al., 2023; Mateo-Sanchis et al., 2018;
Tang et al., 2013; Xiao et al., 2015), and noise reduction (Moreno et al.,
2014). Sensor malfunction or random error are also common issues that
induce gaps in the data stream and need to be dealt with (Shen et al.,
2015). In addition, data and sensor fusion methods prove to be an
effective solution for the reconstruction of the missing data (Schmitt and
Zhu, 2016). By their nature, these interpolation techniques are inapt for
extrapolation, such as reconstructing products into the past beyond
available observations. To adequately reconstruct past satellite data,
auxiliary guiding data and, at the same time, powerful algorithms are
needed to enable meaningful extrapolation. For instance, gradient-
boosted decision trees, using land surface temperature (LST), reflec-
tance and LC data streams as ancillary inputs, have been used to simu-
late long-term solar-induced fluorescence data (Chen et al., 2022). In
another example, surface reflectance and the normalised difference
vegetation index (NDVI) were successfully reconstructed by (Xiao et al.,
2017) using NASA’s land long-term data record (Pedelty et al., 2007).
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The leverage of machine learning (ML) regression algorithms has
become a preferred methodology in recent years for processing a
plethora of remote sensing time series applications (e.g., Su et al., 2021;
Xi et al., 2021; Xu et al., 2021). Gaussian process regression (GPR)
emerged as a powerful ML method for non-parametric regression and
function approximation. GPR has been successfully applied for bio-
physical variable retrieval from optical imagery (e.g., Caballero et al.,
2022; Estévez et al., 2022; Kovács et al., 2023b; Reyes-Muñoz et al.,
2022; Verrelst et al., 2012a). These models not only provide predictions
but also uncertainty estimates (e.g., García-Soria et al., 2024; Verrelst
et al., 2012b, 2013). As a flexible ML prediction method, GPRs can be
used for time series reconstruction and gap-filling purposes. By using a
specifically designed covariance function, which is learned from the
data, along with the associated mean and standard deviation (the
model’s prior knowledge), GPR can describe a probability distribution
over functions (the model’s posterior knowledge), shaping the model’s
predictions and uncertainties. (e.g., Amin et al., 2022; Pipia et al., 2021;
Salinero-Delgado et al., 2021). For a comprehensive introduction to GPR
models, refer to Rasmussen and Williams (2006) and to Camps-Valls
et al. (2016). Based on GPR, an attractive opportunity for harmonized
time series reconstruction based on multiple data sources is given by
multi-output GPR (MOGPR) (Álvarez et al., 2012). The idea of multi-
source learning originated from the field of geostatistics (Goovaerts
and Goovaerts, 1997). The main difference between GPR and MOGPR is
that GPR assumes that the model inputs are independent, adversely,
MOGPR allows for the possibility of correlation between multiple in-
puts, exploring the relationships between them to model the MOGPR
model outputs.

The MOGPR methodology can identify appropriate cross-covariance
functions for the multiple outputs, enabling the representation of these
outputs as a single GPRwith a well-defined covariance function (Álvarez
et al., 2012). In the context of Earth observation (EO) data streams,
MOGPRs have been used to exploit the dependencies between distinct
yet complementary data streams (e.g., optical with radar) (e.g., Cabal-
lero et al., 2023; Pipia et al., 2019). MOGPRs are effective in simulta-
neously modelling multiple outputs, enabling the transfer of valuable
information across the inputs (Lin et al., 2021), thus allowing for the
reconstruction of harmonized data streams through independent yet
complementary data sources. The presented MOGPR algorithm is
particularly ambitious as it exploits the complementary connection be-
tween two independent data streams, constructs a cross-domain kernel
function capable of transferring information across time series, and ex-
ecutes reconstruction (Pipia et al., 2019). As such, with the guidance of
one archived long-term data stream, this MOGPR multisensor fusion
approach can ensure continuous (i.e., gap-free) harmonized data
streams from both data sources, thus leading to a long-term backwards
reconstructed product.

Overall, given the temporally limited data archive of currently
operational missions such as S3, we identified a lack of reconstruction
methods for the production of multi-decadal continuous ECV data
streams based on guiding archived products. Hence, to realize such
reconstructed long-term data streams, flexible time series extrapolation
workflows need to be developed that enable robust and accurate multi-
decadal data reconstruction. Moving along these lines, the objectives of
this study are threefold. We aim to:

1) explore the MOGPR algorithm’s fusion ability to model complex
relationships between multi-decadal MODIS-based predictors and
S3-based target VPs. Furthermore, we will investigate the temporal
interactions between predictors and reconstructed VPs to provide a
rationale for the LC-specific reconstruction accuracy;

2) analyze the impact of various MODIS predictor variables, namely
FAPAR, LAI, and NDVI, on the consistency of reconstructed S3
vegetation products over the 2002–2022 temporal range; and,

3) evaluate how consistently the proposed workflow reconstructs multi-
decadal FAPAR, LAI, FVC and LCC temporal profiles using S3 data

compared to satellite-based reference data streams and ground-based
observations.

2. Materials and methods

The following key steps were implemented to reconstruct S3 OLCI-
based products, as also depicted in the flowchart of Fig. 1. First, we
provide the theoretical background of the MOGPR formulations (Section
2.1). Second, the two main vegetation products are described, i.e., those
to reconstruct (long-term Sentinel-3 VPs, hereafter named S3-MOGPR)
and those to use as predictor biophysical variables from MODIS, here
named as preVars. As an example, the MODIS-based predictor LAI is
hereafter referred to as “preLAI”. Both the reconstructed S3-MOGPR and
MODIS-based preVars datasets are described in Section 2.2. Nine GBOV
sites across LC types were selected and site-specific, local MOGPR
models were trained over the year 2019 (Global Vegetation Observa-
tions (GBOV), 2023; Brown et al., 2020). We tested our algorithm over
specific regions of interest (ROI) described in Section 2.2.2. Statistical
evaluation against benchmark and in-situ data of the reconstructed time
series using hold-out correlation and validation is presented in Section
2.3. To represent the practical application of the algorithm, temporally
reconstructedmaps were produced showing the phenological patterns of
different land covers. Two sites with 50 km radius region of interest were
selected, namely the Central Plains Experimental range in Colorado, US
and Hainich in Germany.

2.1. Theoretical background

2.1.1. Single-output Gaussian process regression
To acquire a thorough understanding of the foundational method-

ology upon which MOGPR is built, we first explore Single-Output
Gaussian Process Regression.

SupposeD =
{
ti, yi

}N
i=1 is a set of N pairs of parameter yi obtained at

time ti. These are used in order to learn a function f to predict parameter
estimates of new t inputs. The equation to predict yi is defined as:

yi = f(ti)+ ei, ei ∼ N
(
0, σ2n

)

given that t ∈ ℝ, the variance is σ2n and f(t) is the prediction function,
and N is the additive noise. If we define t = [t1,…, tN]⊺ the model shall
calculate that f(t) is normally distributed with a zero mean. Further-
more, the covariance matrix is formulated as K(t, t). Kernels, such as the
Matern 3/2 kernel (Rasmussen and Williams, 2006), are used in order to
relate the similarity between input t with the i, j calculated by the kernel
function k

(
ti, tj
)
.

Given the training data as p(f*|D, t*), it allows for the estimation of
the distribution of f* at point t*.

Thanks to the Bayesian nature of the GPR algorithm the mean and
variance are given by:

f(t*) = μGP(t*) = kT
(
K+ σ2nIN

)− 1y

σ2f (t*) = σ2GP(t*) = c − kT
(
K+ σ2nIN

)− 1k*

in which, k is an N by 1 vector, y = [y1,…, yN]⊺ and c = k(t, t) + σ2n and
f(t*). The hyperparameters are adjusted by the marginal likelihood
maximization for the model (Rasmussen, 2004), cross-validating (Snee,
1977) or by Bayesian learning process (Love and Jones, 2012).

2.1.2. Multi-output Gaussian process regression
The use of Gaussian processes and probabilistic models for multi-

output learning was pioneered in geostatistics, where prediction over
vector-valued output data is known as cokriging (Journel and Huij-
bregts, 1978). Geostatistical approaches to multivariate modelling are
often based on the Linear Model of Coregionalization (LMC) (Álvarez
et al., 2012), which can be seen as a generative method for creating valid
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covariance functions. In the LMC, the outputs are represented as linear
combinations of independent random functions. This is done in such a
way that the resulting covariance function, expressed jointly over all the
inputs and outputs, is a valid positive semidefinite function.

For the sake of simplicity, we will assume an isotopic model
(Wackernagel, 2003) for the multi-output model analysis in all future
discussions. This means that the model‘s observed data have been
collected at the same point locations, and the frequency of the acquisi-
tions is also the same. As a result, the model will have an equal amount
of input data for modelling the cross-covariance between the model’s
outputs.

Consider a set of D correlated outputs
{
fd(t)

}D

d=1. Imagine that we
have Q groups of random processes with covariance functions
{
k1(t, tʹ) , k2(t, tʹ) ,…kq(t, t́ )

}
, and for each group, we have obtained ℛq

samples independently from the same Gaussian process. Each element
fd(t) is expressed as the linear combination of zero-mean latent functions
{
uiq(t)

}Q

q=1
and it can then be formulated as:

fd(t) =
∑Q

q=1

∑ℛq

r=1
aid,qu

i
q(t), d = 1,…,D (1)

in which aid,q are the scalar coefficients corresponding to the i − th
sample of the latent Gaussian process, the d model’s output, and the q
group of input observed data. The uiq(t) is the random sample of the
Gaussian processes with covariance function kq(t, tʹ) =

cov
[
uiq(t) , uíq(t́ )

]
. The processes uiq(t)with q = 1,…,Q and i = 1,…,ℛq,

have the same covariance function.
Generalizing, for the multi-output case where f(t) = [f1(t) …fD (t) ]T ,

the covariance is given as:

cov[f(t) , f(tʹ) ] =
∑Q

q=1
AqAq

Tkq(t, tʹ) (2)

where Aq =
[
a1q , a2q…aRq

q

]
is a matrix containing all the stacked scale

parameters of the LMC model. We can then define a matrix Bq = AqAq
T

commonly known as coregionalization matrix.
Assuming all outputs have the same number of training samples N,

The methodology can be achieved by having different numbers of
sources for each output function.

If Td =
[
t1,d,…, tN,d

]⊺ is a vector with the time samples of output d
and T⊺ =

[
T⊺
1,…,T⊺

D

]⊺ is a vector of all time samples, the LMC’s full
covariance matrix is formulated as:

K (T,T) =
∑Q

q=1
Bq ⊗ Kq(T,T) (3)

in which ⊗ is the Kronecker product and Bq ∈ ℝD ×D are rank-ℛq posi-
tive definite matrices. These principles form the foundation of the
method as they summarize the connections between the various outputs.

Starting from a generative model for the outputs, the LMC leads to a
sum of separable kernels. This sum represents the covariance function as
the sum of the products of two covariance functions. The first covariance
function (the coregionalization matrix Bq) models the correlation be-
tween outputs. The second covariance function models the input
dependence independently of the particular set of functions fd(t) (the
covariance function kq(t, tʹ)).

Considering the MODIS–S3 fusing approach, the configuration pa-
rameters for the MOGPR model are D = 2 (number of outputs), Q = 2
(number of different random processes), andℛq = 2 (number of samples
for each random process). Let D1 = {(ti, f1(ti) ) |i = 1,…,N} be a set of N
pairs of random functions fi extracted from S3 OLCI data acquired at
times ti and D2 = {(ti, f2(ti) ) |i = 1,…,N} the correspondent VPs sam-
ples derived fromMODIS data, if f1 and f2 follow a Gaussian process, the
formulation of the LMC presented in Eq. (1) can be interpreted as
follows:

Fig. 1. Flowchart workflow followed throughout this study.
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f1(t) = a11,1u
1
1(t) + a21,1u

2
1(t) + a11,2u

1
2(t) + a21,2u

2
2(t)

f2(t) = a12,1u
1
1(t) + a22,1u

2
1(t) + a12,2u

1
2(t) + a22,2u

2
2(t)

(4)

Fig. 2 schematizes the MOGPRmodelling for the S3 OLCI and MODIS
Vps inputs reconstruction based on the LMC. Most conveniently, the
MOGPR methodology is attained by modelling each channel as a single
output Gaussian process. If the results show correlation, the single
output approach neglects to consider the correlations among the model
outputs, thereby compromising the consistency of regression processes
(Bonilla et al., 2007). To consider the possible dependencies between the
processes, we write the joint multivariate Gaussian distribution in its
simplified form:

f ∼ N
(
0,Kf,f

)
(5)

where Kf,f =
∑Q

q=1Bq ⊗ Kq with Kq ∈ ℝN×N, describes the covariance for
the joint process. With regard to the MODIS–S3 fusing approach, if we
have a finite number of random variables for these independent pro-
cesses (f1 and f2), they can be stacked to finally obtain the random
vector-valued function. By creating a larger vector, the following is
yielded:

[
f1
f2

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1(t1)
⋮

f1(tN)
f2(t1)

⋮
f2(tN)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼ N

([
0
0

]

,
∑Q

q=1
Bq ⊗ Kq

)

(6)

For a detailed review and description of the methodology and also
for an explanation regarding the multi-output prediction and uncer-
tainty calculations for a given new input t* value, consider the publi-
cations of (Álvarez et al., 2012; Caballero et al., 2023; Pipia et al., 2019).
Throughout the presented workflow, the Python-based GPy library
(GPy, 2012) was used, with the Matern 3/2 Covariance Kernel specifi-
cation. For an in-depth explanation of the methodology, readers are
advised to consider the work presented by Pipia et al. (2019). In prac-
tice, thanks to the covariance functions between the introduced multi-
source data streams, e.g. given a historical data stream and a more
limited data stream, the MOGPR fitting reconstructs harmonized multi-
source data streams along the entire temporal window with a user-
defined temporal sampling, e.g. every 8 days.

2.2. Vegetation products

2.2.1. Vegetation products used for long-term reconstruction
Throughout the analysis, we analyzed key VPs for, MOGPR model

training, decadal reconstruction, correlation, and validation. The main
satellite VPs included S3 OLCI-based FAPAR, FVC, LAI, and LCC for
long-term reconstruction and MODIS-based FAPAR, LAI, and NDVI for
predictor time series input to the MOGPR algorithm (see also Table 1).
The four VPs that were reconstructed were inferred by using hybrid
methods applied to S3 OLCI top-of-atmosphere (TOA) radiances on S3
scenes acquired from 1st January 2019 to 27th December 2019 (Total
No of scenes: 44). Key development steps of the hybrid models consisted
of simulating top-of-canopy (TOC) reflectance spectra with various leaf
canopy states using the SCOPE model (v.1.7.) (Van Der Tol et al., 2009).
Biochemical, biophysical, soil, and geometry variables were sampled to

execute SCOPE simulations. The input variable values, ranges, and dis-
tributions for the SCOPE and 6SV models, as applied in our study, are
described more in detail by De Grave et al. (2020); Reyes-Muñoz et al.
(2022). In addition, TOA radiance spectra of non-vegetated surfaces
from S3 imagery were selected (e.g., water, soil, and rocks) to comple-
ment training input for mapping of heterogeneous surfaces (Kovács
et al., 2023b; Reyes-Muñoz et al., 2022). These simulations were
coupled with the 6SV radiative transfer model (RTM) (Kotchenova et al.,
2006; Vermote et al., 1997) to enable biophysical variable retrieval
directly from TOA radiance data. For the detailed atmospheric proper-
ties used throughout the simulation, readers are advised to consult
Table 2 from Kovács et al. (2023b). GPR algorithms were then trained on
the TOA simulations, learning the nonlinear relationship between
reflectance and variables. Note hereby, since the SCOPE-simulated
canopies were a function of green leaves only, thus strictly speaking,
the retrieved canopy variables LAI and FVC refer to green LAI, green
FVC, while FAPAR refers to green instantaneous FAPAR of the leaves.
For a thorough explanation of the biochemical leaf and canopy structure
variables used for simulations, readers are referred to Table 1 in Reyes-
Muñoz et al. (2022). Also, to evaluate the validity of the GPR models at
the continental and global scale, FAPAR, FVC, LAI, and LCC data streams
were earlier adequately validated (Reyes-Muñoz et al., 2022), and suc-
cessfully inter-compared against reference MODIS and CGLS-based EO
products for the entire year 2019 (Kovács et al., 2023b). These maps can
also be retrieved by the PyEOGPR package (D.Kovács, 2024).

To train the MOGPR models for reconstruction, a comprehensive
dataset encompassing predictor variables fromMODIS (FAPAR, LAI, and
NDVI (Myneni et al., 2015)) and target variables from S3 (FAPAR, FVC,
LAI, and, LCC), composited into an 8-day temporal resolution, was
compiled for the year 2019. Each of the satellite products has been
resampled to MODIS’ VPs nominal resolution, 500 m pixels, to
adequately match target (S3) and predictor (MODIS) spatial footprints.
The vegetation products were handled in GEE with the Python API
(Google Earth Engine, 2023). The used products and their descriptions
are given in Table 1. For each time step, the average of the coinciding
pixels within the sites was taken in a square (1.5 km × 1.5 km). This
square enabled the comprehensive assessment by aggregating pixels
since all datasets can have gaps and inconsistencies when only focusing
on a single pixel. Additionally, the square region covered the entire
footprint of the upscaled in-situ reference measurements, as thoroughly
described by (Global Vegetation Observations (GBOV), 2023; Brown
et al., 2020). The S3-MOGPR data was finally obtained for each S3-based
VP usingMODIS FAPAR, LAI, and NDVI as input to theMOGPR temporal
reconstruction algorithm for the years between 2002 and 2022.

2.2.2. Reference vegetation products and sites
Table 2 lists the satellite and ground-based datasets used for both

correlation and validation. For each reconstructed S3-MOGPR variable
(i.e., FAPAR, FVC, LAI, and LCC), three different time series were
generated by using three different guiding predictor variables (i.e. pre-
FAPAR, preLAI, and preNDVI). Each of these different reconstructed
FAPAR-, FVC-, LAI-MOGPR profiles were correlated to data from the
Copernicus Global Land Service (CGLS) originating the synergy PROBA-
V, SPOT/VEGETATION and Sentinel-3 (Fuster et al., 2020). These
products were downloaded from https://land.copernicus.

eu/global/themes/vegetation (accessed on 11 November
2023). Table 2 summarizes the satellite and ground-based datasets used
for both correlation and validation.

Due to the generally scarce availability of satellite-based LCC prod-
ucts, we relied on the MERIS and S3-OLCI Terrestrial Chlorophyll Index
(MTCI and OTCI) as a reference measurements (Dash and Curran, 2007;
Pastor-Guzman et al., 2020). Since both of these indices are surrogates of
canopy chlorophyll content (CCC) the reconstructed LCC profiles were
upscaled to CCC, by multiplying LCC with LAI:

CCC = LCC*LAI (7)Fig. 2. Block diagram of MOGPR modelling based on the Linear Coregionali-
zation Model (LMC).
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CCC profiles were compared to both MTCI and OTCI to achieve a
more comprehensive evaluation of the reconstructed datasets. The
reflectance spectra of vegetation exhibit lower values in the visible
spectrum (400–700 nm) attributed to chlorophyll absorption, while NIR
reflectance (700–1300 nm) is higher due to the internal leaf structure
scattering (Horler et al., 1983; Pastor-Guzman et al., 2020). These in-
teractions give rise to a red edge between 650 and 750 nm, which shifts
to longer wavelengths at increased chlorophyll content (Brown et al.,
2019a). The use of the red edge region for chlorophyll detection was first
exploited with the Medium Resolution Imaging Spectrometer (MERIS).
Its product, the MERIS Terrestrial Chlorophyll Index (MTCI) was
developed to use the information in the red edge region to assess chlo-
rophyll in plants. The continuity of this index is secured by its S3 suc-
cessor, OTCI (Pastor-Guzman et al., 2020). The MTCI and OTCI indices
are calculated as follows for the corresponding sensors, MERIS and
OLCI:

MTCI =
R10 − R9
R9 + R8

=
R753.75 − R708.75
R708.75 + R681.25

(8)

OTCI =
R12 − R11
R11 + R10

=
R753.75 − R708.75
R708.75 + R681.25

(9)

Since each MODIS preVar yielded a slightly different time series for
each S3 target variable, due to the underlying interconnection between
vegetation properties, the preVar whose reconstruction consistency was
the highest, is selected to reconstruct S3-MOGPR vegetation products to
be validated with in-situ reference measurements. To be able to compare
biophysical variables (LCC and CCC) to MTCI and OTCI, these were
normalised based on their seasonal minima and maxima. Note that the
available MTCI data are provided at 10-day intervals, whereas OTCI
data are available at 2-to-3-day revisit times (Donlon et al., 2012; UK
Multi-Mission Product Archive Facility Infoterra Ltd et al., 2019).

2.2.3. GBOV reference measurements
To validate, upscaled reference measurements from the GBOV sites

were used https://gbov.land.copernicus.eu/ (accessed on
12th December 2023). GBOV collects and unites data across various
international research networks. To facilitate practical usage of the in-

situ measurements, these were upscaled to represent larger areas
enough to cover several pixels of mid-resolution satellites, such as S3 or
MODIS. In-situ reference measurements were upscaled with the
Sentinel-2 Level 2 Prototype Processor (SL2P). SL2P adopts artificial
neural networks (ANNs) that are trained with RTM simulations from the
coupled Leaf Optical Properties Spectra (PROSPECT) and Scattering by
Arbitrarily Inclined Leaves (4SAIL) (Verhoef and Bach, 2007). SL2P used
reflectances from Landsat-8 Operational Land Imager (OLI) and
Sentinel-2 Multi Spectral Instrument at 20 m resolution, to generate
upscaled reference measurements local bias corrected to the ground
truth data (Brown et al., 2021).

Since GBOV is intended to be the official validation service for CGLS,
it features FAPAR, FVC, and LAI in its catalogue of vegetation products,
regrettably missing LCC (Bai et al., 2019). LAI reference measurements
provided by GBOV are not accounting for foliage clumping (Fernandes
and Djamai, 2019), thus the provided values refer to plant area index
(PAI) as opposed to LAI, because the upwards-facing image classification
is not able to distinguish between foliage and woody material. More-
over, GBOV-provided FAPAR values are actually fractional intercepted
photosynthetic radiation (FIPAR) metrics as the vegetation is assumed to
be completely absorbing when in reality some reflectance/transmittance
occurs (Brown et al., 2021).

The S3-MOGPR was prototyped on a variety of LCs, both in the
Northern and Southern Hemispheres. The location of the sites and in-
formation regarding their dominant LCs are depicted in Fig. 3 and
Table 3. These specific sites were selected due to the availability of in-
situ reference measurements for FAPAR, FVC, and LAI, so the long-
term products could be validated. Moreover, the selection was also
influenced by the need to investigate sites on various continents and
different biomes. To showcase a practical application of the MOGPR
temporal reconstruction algorithm, the four reconstructed biophysical
variables were mapped over a circular region centered at one of the
GBOV sites, i.e., the Central Plains Experimental Range (CPER) site, with
a 50 km radius. These maps were produced throughout the year 2015, a
year before S3’s launch. To demonstrate the mapping applicability of
MOGPR, Fig. 13 portrays maps of FVC, FAPAR, LAI, and LCC maps
reconstructed throughout 2015 at 8 days temporal resolution, with
monthly averages shown for four months. Satellite imagery in the visible

Table 1
Satellite-based vegetation products that were reconstructed and used as predictor variable for reconstruction.

Usage Product name Vegetation
product

Spatial-
temporal
resolution

Temporal
availability

Retrieval method

Reconstructed
variables S3-MOGPR

FAPAR, FVC
LAI, LCC 300 m - <4 days 2016 October - Hybrid (GPR-SCOPE) (Kovács et al., 2023b; Reyes-Muñoz et al., 2022)

Predictor
variables

MCD15A3H
MODIS FAPAR, LAI 500 m - 4 days 2002 July -

Principal algorithm using 3D RTM generated Look-up-Table based retrieval
with red and NIR bands (Knyazikhin et al., 1998; Myneni et al., 2015)

MOD09GA_006
MODIS NDVI 500 m - daily

2002 February
-

Normalised difference of near-infrared and red bands. Calculated with surface
reflectances corrected for atmospheric conditions such as gasses, aerosols,

and Rayleigh scattering (Vermote and Wolfe, 2021)

Table 2
Satellite and land-based vegetation products that were used for intercomparison.

Usage Product Vegetation
Product

Spatial-temporal
resolution

Temporal
availability

Retrieval method Reference

Correlation

Copernicus Global
Land Service FAPAR, FVC 300 m - <4 days 1999–2020 June

Neural networks trained with
reflectance data (Verger and Adrià, 2022)

S3/PROBA-V/SPOT LAI
OLCI Terrestrial
Chlorophyll Index

OTCI 300 m - <4 days 2016 October to
present

Computed from red, red-edge
and NIR bands

(Pastor-Guzman et al., 2020)

MERIS Terrestrial
Chlorophyll Index

MTCI 1 km - 10 days 2005–2012 Computed from red, red-edge
and NIR bands

(Dash and Curran, 2007)

Validation
Ground Based
Observation for

Validation (GBOV)

FAPAR (FIPAR),
FVC LAI (PAI)

300 m (upscaled
reference measurement)

< weekly

2014–2022 (Site
and Variable
dependent)

Upscaled In-situ reference
measurements with Sentinel-2

and Landsat 8 data

(Global Vegetation
Observations (GBOV), 2023;

Brown et al., 2020)
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spectral domains and a representative LC classification map from the
ESA GlobCover catalogue for the investigated area are shown Buchhorn
et al. (2020). The site CPER was selected to represent MOGPR maps, due
to the variety of LCs the circular area entails. These maps provide a
practical application for the MOGPR temporal reconstruction algorithm.
The selected four months (January, April, June, and October) were
selected for representation due to their distinct growing stages of
vegetation and they were mapped at 500 m resolution. The presented
maps were processed through the openEO API and Terrascope back end
(Schramm et al., 2021).

2.3. Statistical analysis and error metrics

The consistency of the S3-MOGPR products was assessed by corre-
lating all reconstructed variables with their corresponding reference
products, as outlined in Section 2.2. Additionally, FAPAR, FVC and LAI
reconstructed variables were validated to in-situ reference measure-
ments from the GBOV network (Global Vegetation Observations
(GBOV), 2023; Brown et al., 2020).

For the statistical evaluation of the consistency of S3-MOGPR prod-
ucts against reference measurements, we used Pearson’s (R) and
Spearman’s (ρ) correlation coefficients. Using 1.5 × 1.5 km match ups
reduces measurement differences due to differences in the Projected
Instantaneous Field of View of Measurement (PIFOV) of single OLCI and
MODIS 500 m resolution inputs. Being a measure of the monotonic
correlation, ρ has the advantage of avoiding skewed correlations,
whereas R is highly sensitive to extreme outliers (Rodgers and Nice-
wander, 1988; Spearman, 1961). Additionally, in case of non-normality,

the implementation of Spearman’s rho, as a non-parametric, rank-based
alternative to Pearson’s R is essential (Fowler, 1987; Khamis, 2008;
Schober et al., 2018). Thus, it is advantageous to investigate both R and
ρ to have a comprehensive understanding of statistical correlation and
evaluation.

Additionally, to evaluate the error metrics between reconstructed
and reference datasets, both root mean squared error (RMSE) and mean
absolute error (MAE) in their normalised forms by their range (i.e.,
NRMSE and NMAE) were calculated. The difference between NRMSE
and NMAE indicators is useful to assess the effect of outliers between the
compared datasets. This could be expected as the errors increase in a
quadratic manner, heavily penalizing the outliers for NRMSE. In cases
where NRMSE is larger than NMAE, it indicates outliers in the compared
datasets, that heavily penalize NRMSE. The calculation of these mea-
sures is formulated below in Eqs. (13) and (14). Moreover, to follow
good practices of validation of the VPs and to make understanding easier
how well the reconstructed data meet user requirements, bias, precision
and user agreement rates (UAR) were also reported (Brown et al., 2020;
Fernandes et al., 2014). These metrics are shown in Eqs. (10) and (11).
The UAR is defined as the number of observations falling into the un-
certainty user requirement for the ECVs (0.5 for LAI and 0.05 for FAPAR
(Global Climate Observing System (GCOS), 2022)).

Bias =
1
N
∑N

i=1
(Xi − Yi) (10)

Fig. 3. Global map showing the locations of the nine GBOV sites, where S3-MOGPR products were reconstructed.

Table 3
GBOV validation sites used for long-term reconstruction of S3-MOGPR time series.

GBOV site name Site abbreviation Dominant LC (1.5 × 1.5 km) Temporal window used for validation Latitude (◦) Longitude (◦)

Blandy Experimental Farm BLAN Deciduous Broadleaf 2016–2020 39.060 − 78.716
Bartlett Experimental Forest BART Mixed Forest 2014–2020 44.064 − 71.287
Central Plains Experimental Range CPER Grassland 2014–2020 40.816 − 104.745
Disney Wilderness Preserve DSNY Open Shrublands 2014–2020 28.125 − 81.436
Jones Ecological Research Center JERC Evergreen Needleleaf 2014–2020 31.195 − 84.468
Smithsonian Environmental Research Center SERC Croplands 2015–2020 38.890 − 76.560
Santa Rita SRER Shrublands 2016–2020 31.911 − 110.835
Tumbarumba TUMB Evergreen Broadleaf 2020 − 35.657 148.151
Hainich HAIN Mixed Forest 2020–2022 51.079 10.452
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Precision =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Xi − Yi) − Bias

√
√
√
√ (11)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1(Xi − Yi)
2

N

√

(12)

NRMSE = RMSE
/
∑N

i=1Yi

N
(13)

NMAE(%) =
1
n
∑n

i=1

|Xi − Yi|

(Ymax − Ymin)
(14)

where Xi,Yi are the individual values of estimated (X) and reference (Y)
variables.

To assess the distinct correlation metrics of the reconstructed time
series by different predictor variables, the mean of Pearson’s R and
Spearman’s ρ were calculated, following the methodology described by
(Fisher, 1915). Taking the regular arithmetic mean of correlation co-
efficients tends to result in underestimation due to the skewed nature of

Fig. 4. Time series of S3-MOGPR FAPAR, FVC, LAI and LCC at BLAN, CPER, JERC, and SERC sites, reconstructed by each of the three predictor variables (preNDVI,
preLAI and preFAPAR). Results of investigated temporal profiles at other sites are portrayed in Appendix A.
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the sampling distribution (Silver and Dunlap, 1987). Evaluating the
mean of correlation coefficients required the transformation of both R
and ρ to Fisher’s Z, which is formulated in Eq. (15):

Z =
1
2
ln
(
1+ r
1 − r

)

(15)

where Z is the Fisher transformed sample correlation coefficient R or ρ,
and r is the original correlation coefficient. It is a normalised version of
the correlation coefficient, less affected by the skew of the sampling
distribution (Corey et al., 1998). The depicted equation is essentially the
correlation coefficient’s inverse hyperbolic tangent function. The mean
of various Fisher Z was calculated for both R and ρ, and the inverse
function, Eq. (16) was used to obtain the average of the correlation
coefficients (R and ρ).

r =
e2z − 1
e2z + 1

(16)

3. Results

To identify the most robust preVar for reconstruction, this section is
divided as follows: Section 3.1 presents the resulting S3-MOGPR time
series by the three preVars. The effect of the preVars is evaluated when
correlating to satellite measurements in Section 3.2. The S3-MOGPR
time series and their associated uncertainty are depicted within the
2002–2022 window reconstructed by the most effective preVar, along
with the satellite and ground-based measurements in Section 3.4. The
LCC-to-OTCI correlation is assessed in Section 3.3. To evaluate the ac-
curacy of the reconstructed S3-MOGPR products, they were validated
with in-situ reference measurements; see Section 3.6.

3.1. S3-MOGPR reconstruction by distinct predictor variables

Fig. 4 presents reconstructed time series data streams of all S3-
MOGPR variables generated by the three guiding preVars. To facilitate
visual comprehension of the temporal profiles, four selected sites are
depicted in the main body of the paper (Fig. 4); the others are given in
Appendix A. As expected, the reconstructed data streams vary depend-
ing on the site and the preVars used in the MOGPR fusion algorithm.
Sites with LCs that show enhanced seasonality and greater cyclic pat-
terns were better captured by all three predictor variables than those
with lower yearly phenological dynamics. For LCs with pronounced
seasonality, our S3-MOGPR outputs exhibited consistency, capturing
yearly minima and maxima with similar amplitudes, despite variations
in noise levels. This includes sites with LCs such as deciduous (BLAN)
and mixed forests (BART and HAIN in Appendix A), and grasslands
(CPER), all showing relatively similar time series generated by each of
the three preVars.

Generally, preLAI-based reconstruction yielded the time series with
the fewest fluctuations in amplitude. Both preFAPAR and preNDVI-

guiding output temporal profiles possess more noise in the time
domain; however, the effect of these two preVars yields greater ampli-
tude for the reconstructed time series in some cases. This effect for
preFAPAR and preNDVI is especially apparent in the cases of preNDVI-
FAPAR-MOGPR over grasslands (CPER), preNDVI-FVC-MOGPR over
deciduous broadleaf forests (BLAN), and preNDVI-LCC-MOGPR over
grasslands (CPER). When assessing the reconstruction outcomes of open
and closed shrublands (DSNY, SRER in Appendix A) and evergreen
broadleaf forests (TUMB in Appendix A), all depict radically different
time series by the three preVars, with different amplitude, noise and
phase.

3.2. Correlation of reconstructed S3-MOGPR products against satellite
products

The reconstructed FAPAR-, FVC-, and LAI-MOGPR data streams were
subsequently correlated to CGLS products, over the temporal window of
2002–2019. The statistical metrics, including correlation coefficients (R
and ρ) with the error metrics (NRMSE and NMAE) normalised among
different units to ensure equivalent parameters in the comparison, are
given in Table 5. The results show a high correlation for the majority of
the sites that have LCs with defined yearly seasonality (see: Fig. 4 and
Table 3). The heatmaps (see Fig. 5) reveal that the reconstruction
worked with efficiently over sites such as BLAN, BART, JERC, CPER,
SERC, and HAIN, where both R and ρ present coefficients above 0.9. For
the reconstructed FAPAR, FVC, and LAI, with a slightly lower perfor-
mance when reconstructing FAPAR by preNDVI, showing R and ρ < 0.8.
The accuracy of reconstruction over the shrublands of DSNY and SRER is
governed by the used predictor variable. When comparing the correla-
tion between preFAPAR and preNDVI over these sites, reconstruction
heavily underperformed as opposed to using preLAI. As described in
Section 3.1, preVars that propagated substantial noise and wider am-
plitudes to S3-MOGPR profiles, the NRMSE errors are substantially
larger than NMAE for this predictor, especially apparent for mixed for-
ests (see BART, HAIN in Appendix A).

Notable differences between Pearson (R) and Spearman (ρ) correla-
tions were noted in the mixed forests of BART. For all reconstructed
variables, by all predictors, R values were larger (∼ 0.1–0.2) than for ρ.
This indicates that the reconstructed temporal profiles show a greater
linear relationship rather than monotonic trends toward CGLS reference
data streams.

The grouped boxplots on Fig. 6 show the Fisher Z transformed cor-
relation coefficients’ and errors’ spread, grouped by each preVar. The
boxplots show that for all reconstruction cases, the highest mean Fisher
Z metrics were obtained by preLAI, which also yielded the lowest
spread. PreFAPAR, although with greater spread, displayed higher mean
Fisher Z values when compared to preNDVI. The lowest error metrics
were noted for LAI-MOGPR, where all predictors showed errors lower
than 0.15, also with rather low variability compared to other S3-MOGPR
variables. The average correlation coefficients were calculated using the

Table 5
Statistical metrics for comparing CCC to MTCI (2010–11) and OTCI (2020–21). CCC was attained by multiplying LCC by LAI values for the corresponding dates. Note,
that TUMB does not feature available MTCI retrievals within the 2010–11 timeframe.

CCC OTCI MTCI

R rho Bias N Precision NRMSE R rho Bias N Precision NRMSE

BLAN 0.94 0.91 0.04 370 0.2 0.2 0.65 0.7 − 0.04 58 0.2 0.2
BART 0.93 0.72 − 0.09 354 0.17 0.19 0.95 0.67 − 0.15 63 0.19 0.24
CPER 0.37 0.23 − 0.25 298 0.06 0.25 0.71 0.71 − 0.19 49 0.05 0.19
DSNY 0.63 0.6 0.01 365 0.11 0.11 0.81 0.82 0 63 0.13 0.13
JERC 0.77 0.76 0.01 182 0.16 0.16 0.94 0.9 − 0.03 63 0.13 0.13
SERC 0.9 0.89 0.1 129 0.27 0.29 0.97 0.93 0.05 57 0.22 0.23
SRER 0.61 0.52 − 0.2 289 0.03 0.21 0.52 0.71 − 0.21 62 0.03 0.21
TUMB − 0.37 − 0.24 − 0.07 366 0.09 0.12 – – – – – –
HAIN 0.79 0.77 − 0.03 237 0.25 0.25 0.95 0.95 − 0.03 51 0.14 0.14
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Fig. 5. Pearson, Spearman coefficients and normalised error metrics for correlating FAPAR, LAI and FVC-MOGPR to CGLS data from 2002 to 2019. The assessment of
results by both R, ρ yields a comprehensive analysis of the monotonic and linear correlation between datasets.
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Fig. 6. Boxplots for the distributions of the Pearson (R) and Spearman (ρ) correlation coefficients Fisher’s Z transformed form for FAPAR, FVC, LAI-MOGPR against
CGLS data. Normalised error metrics (NRMSE, NMAE) are shown for the reconstructed S3-MOGPR variables’ correlation. To facilitate an adequate comparison
between coefficients, these boxplots display the Fisher Z transformed coefficients. × marks the mean, whereas the horizontal line in the boxes refers to the median.
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Fisher Z transformation method, as described in Section 2.3, their
average was calculated, and finally the inverse Fisher Z transform was
applied to assess the averaged values. The best reconstruction method
was using the MODIS LAI as predictor input. The averaged R, ρ is the
highest for all S3-MOGPR variables when using preLAI, with the best
performing case of FVC-MOGPR (R, ρ = 0.91, 0.88) followed by LAI-
MOGPR (R, ρ = 0.89, 0.85) and FAPAR-MOGPR (R, ρ = 0.81, 0.76),
as also shown in Table A.8. PreLAI and preFAPAR produced rather
similar overall NRMSE and NMAE error metrics, but preLAI out-
performed preFAPAR when considering correlation statistics (both R,ρ).
The most effective way thus is to reconstruct by MODIS-based preLAI,
then preFAPAR, and finally using preNDVI.

3.3. LCC statistical evaluation

Since the CGLS catalogue vegetation product range does not feature
available LCC reference products, our LCC-MOGPR products were
correlated to OTCI and MTCI. Since LCC, OTCI and MTCI have their own
units, both were normalised to range between 0 and 1. The years 2020
and 2021 were used for correlation analysis. Table 7 shows correlation
and error metrics comparing different temporal profiles of LCC-MOGPR
obtained by using different preVars, correlating to OTCI. Generally, the
reconstructed LCC profiles demonstrated consistency with the reference
OTCI products, yielding high correlation metrics. (R and ρ > 0.8) over
deciduous and mixed forests (BLAN, BART), JERC, SERC, and HAIN,
when reconstructing with preLAI. When comparing LCC to MTCI, the
most robust reconstructions were attained over BART, JERC, SERC and
HAIN, all possessing pronounced intra-annual seasonality. Normalised
error values stayed below 0.2 for these sites, both for NRMSE and NMAE.
CPER and SRER exhibited inferior results, with R and ρ ranging between
0.5 and 0.7 with preLAI but showed metrics with lower agreements
when reconstructed with the other two preVars. TUMB showed negative

correlations for all preVar cases, with higher error metrics (NRMSE >

0.3 and NMAE > 0.28) for all preVars. For numerical data regarding
correlation and error metrics, see the preLAI column in Table 7. Despite
the dissimilarities between the very nature of the two compared metrics,
being a biochemical product (i.e., LCC) and a spectral index (i.e., OTCI
and MTCI), the reconstructed data show moderately accurate results
when MODIS-based preLAI is used, with the caveat of negative corre-
lations over TUMB. The usage of preFAPAR and preNDVI as predictor
inputs resulted in less effective reconstruction of LCC data streams.

The summarized, averaged correlation and error metrics, using the
Fisher-Z method as explained in Section 2.3, are shown in Fig. 8. Similar
to FAPAR, FVC, and LAI, for the LCC-OTCI comparison, the most
consistent metrics were attained by using preLAI as a predictor,
depicting the highest mean Fisher Z, lowest variability, and lowest error
metrics. After using the inverse Fisher transform, the highest metrics
were achieved for preLAI (R, ρ = 0.78, 0.75), followed by preFAPAR (R,
ρ = 0.56, 0.57) and preNDVI (R, ρ = 0.45, 0.44). The scatter plots
depicted between LCC and OTCI datasets in Fig. 9 show the values of
LCC-MOGPR by preLAI and OTCI. LCC-MOGPR generally shows good
agreement, with site-dependent biases. LCC-MOGPR over the shrub-
lands (SRER) is overestimated, whereas the mixed forests (BART, HAIN)
are slightly underestimated through end-of-season compared to OTCI.
Evergreen broadleaf forest (TUMB) is negatively correlated.

Reconstructed LCC and CCC profiles behaved similarly to MTCI and
OTCI with notable differences over BLAN, where LCC/CCC showed R ∼

0.9 for OTCI, but only R ∼ 0.6 for MTCI (see Table 4). Due to the fact
that the investigated indices (OTCI and MTCI) are surrogates for canopy
scale chlorophyll contents (CCC), LAI was multiplied by LCC to obtain
CCC, and thus it could also be compared against the reference data (Dash
and Curran, 2007; Pastor-Guzman et al., 2020). Note that some cases,
where LAI is lower than 1, results in CCC showing values lower than
LCC. The correlation metrics slightly improved by the upscaling,

Fig. 7. Pearson, Spearman coefficients and normalised error metrics for correlating of LCC-MOGPR to OTCI data through 2020 and 2021. The assessment of results
by both R, ρ yields a comprehensive analysis of the monotonic and linear correlation between datasets.
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Fig. 9. Scatter plots of LCC-MOGPR with upscaled CCC reconstructed by preLAI compared to normalised OTCI data throughout 2020–21, and to normalised MTCI
over 2010–11 over nine GBOV sites.

Table 4
Statistical metrics for comparing LCC to MTCI (2010− 11) and OTCI (2020− 21). Note, that TUMB does not feature available MTCI retrievals within the 2010–11
timeframe. R an Rho for the LCC-OTCI comparison are indicated in Fig. 7.

LCC OTCI MTCI

Bias N Precision R rho Bias N Precision NRMSE

BLAN − 0.04 370 0.07 0.63 0.7 − 0.06 58 0.12 0.13
BART − 0.11 354 0.06 0.9 0.67 − 0.15 63 0.06 0.17
CPER − 0.05 298 0.08 0.67 0.67 0.02 49 0.05 0.06
DSNY − 0.01 365 0.07 0.8 0.81 0 63 0.08 0.08
JERC − 0.01 182 0.06 0.92 0.9 − 0.03 63 0.04 0.05
SERC − 0.06 129 0.09 0.97 0.94 − 0.08 57 0.05 0.09
SRER 0.06 289 0.04 0.52 0.73 0.04 62 0.03 0.05
TUMB 0.09 366 0.07 – – – – – –
HAIN − 0.09 237 0.12 0.95 0.96 − 0.1 51 0.07 0.12

Fig. 8. Boxplots for the distributions of the Pearson (R) and Spearman (ρ) correlation coefficients Fisher’s Z transformed form for LCC-MOGPR against OTCI data.
Normalised error metrics (NRMSE, NMAE) are shown for reconstructed LCC-MOGPR to OTCI correlation. To allow for an adequate comparison between coefficients,
these boxplots plot the Fisher Z transformed coefficients. × marks the mean, whereas the horizontal line in the boxes refers to the median.
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showcasing improvements over several sites for both OTCI and MTCI.
However, CCC shows systematic over-underestimation as compared to
normalised values of OTCI and MTCI. The greatest differences between
the correlation to OTCI and MTCI for the CCC data streams were
observed over the CPER site, where R values for the MTCI comparison
doubled as compared to OTCI.

3.4. S3-MOGPR time series with uncertainties and reference products

As described in Section 3.2, the most consistent S3-MOGPR recon-
struction results against the CGLS and OTCI/MTCI reference product
were obtained by using preLAI from MODIS. These temporal profiles
with the associated epistemic (i.e., model-based) uncertainty of the
MOGPR method are also plotted as a blue-shaded region over the mean
back prediction of each time series. The uncertainty is generally lower
for sites with higher seasonal variation in the amplitude of the profiles.
Note how LCs such as evergreen broadleaf (TUMB) and shrublands
(SRER) that exhibit low yearly changes in vegetation dynamics depict
higher associated uncertainties. For deciduous broadleaf and mixed
forests (BLAN, BART, HAIN in Appendix A) and croplands (SERC) the
S3-MOGPR profiles generally show reliable performance with the CGLS
benchmarking as well as ground-based reference products, with a slight
negative bias through the end-of-season. For open shrublands and
evergreen needle leaf (JERC, DSNY in Appendix A), less seasonality is
present, and the results also compare adequately to reference mea-
surements, with increased fluctuations over DSNY, and systematic
overestimations in the case of LAI-MOGPR for JERC. Closed shrublands
and evergreen broadleaf forests (SRER, TUMB both in Appendix A) all
show reduced seasonal vegetation dynamics and deviated in satellite
and ground-based comparisons for these LCs. These sites are all char-
acterized by LCs that do not exhibit a pronounced cyclical change
throughout the year. The epistemic MOGPR uncertainty for such LCs is
also larger as compared to ones with more seasonal variations (e.g.
SERC, BLAN).

LCC-MOGPR profiles tend to capture vegetation seasonality better
than OTCI, as seen on Fig. 10. When comparing the two time series, LCC-
MOGPR shows a more realistic end-of-season minimum for deciduous
broadleaf forests (BLAN) and croplands (SERC) reaching close to zero
values, whereas OTCI stays relatively high. Seasonal peaks are well
captured by both LCC-MOGPR and OTCI reaching similar yearly max-
imas. The CCC temporal profiles show similar seasonal characteristics to
both OTCI and MTCI, which can be expected due to the nature of these
indices being surrogates for canopy scale chlorophyll contents. Fig. 10
presents the S3-MOGPR reconstructed time series (FAPAR, FVC, LAI,
and LCC) processed with MODIS-based preLAI, along with the reference
datasets (both CGLS, OTCI and ground-based measurements) plotted.

3.5. Non-reconstructed S3 based VP validation

To provide a solid basis for the assessment of the reconstructed
MOGPR products, the non-reconstructed S3 OLCI based vegetation
products retrievals were validated. The data represented in Fig. 11 and
Tables 6 show the comparison between the data streams retrieved S3
OLCI without the MOGPR temporal reconstruction applied. The corre-
lation statistics were obtained not only in 2019, but for some sites in
2020 and 2021 where measurements were available. As it could be ex-
pected, the harmonized MODIS-S3 OLCI results present superior vali-
dation statistics for several sites, mainly benefiting from the
supplementary information provided by the additional sensor (Trevisiol
et al., 2024). One particular caveat is the TUMB site, where the MOGPR

reconstructed time series correlation to reference data heavily deterio-
rated for FVC and LAI. S3 based LAI data shows some slight over-
estimations (positive bias) as compared to GBOV measurements.
Generally, FVC and LAI tend to show better agreement than FAPAR to in
situ data.

3.6. Validating S3-MOGPR to ground measurements

To further evaluate the integrity of the generated S3-MOGPR tem-
poral profiles and to bypass the satellite-based retrievals’ inconsistencies
for the reference products, our results were validated with in-situ ground
reference measurements. As investigated in Section 3.2 the most robust
reconstruction methodology was to use MODIS preLAI as predictor
input; thus, the resulting profiles by using preLAI were validated against
in-situ reference measurements at the nine locations, as described in
Table 3. The correlation coefficients after validation show overall good
agreement results. Fig. 12 depicts scatter plots between the FAPAR, FVC,
and LAI-MOGPR, and ground-based measurements. Corresponding
correlation coefficients and error statistics were calculated, as shown in
Table 7. The highest correlations were achieved over JERC and SERC for
FVC-MOGPR (R = 0.93). Furthermore, the results indicate generally
good agreement. SERC exhibited the highest correlation for all recon-
structed variables (R, ρ ≥ 0.84). Additionally, BLAN, CPER, JERC, and
HAIN indicated R, ρ ∼ 0.7 for all reconstructed variables. The largest
accuracy deviations were noted over SRER where R values were
approximately three times larger for reconstructed FAPAR and FVC than
LAI. The lowest agreements were obtained over TUMB for all variables,
while the reconstructed FVC still showed moderate correlation metrics
(R = 0.56). Reconstructed FAPAR was the only S3-MOGPR variable to
depict negative correlations when comparing its linear and monotonic
relationship to in-situ data over TUMB. This is also apparent when
investigating the gradient of best-fit lines for correlation for these two
sites in Fig. 12. Comparing the reconstructed time series by the MOGPR
harmonization, one can note that several statistical metrics have
improved. Pearson correlations have improved over BART, DSNY, JERC
and SRER when using harmonized, reconstructed data for FAPAR, FVC
and LAI too. Furthermore, UAR values show better agreements over
JERC and SERC, especially for the reconstructed LAI data streams. Dif-
ferences in biases were minor in magnitude after the MOGPR
reconstruction.

3.7. Reconstructed maps

Following, the MOGPR algorithm was run sequentially to produce
S3-like VPs maps, reconstructing time series for multiple pixels at 500 m
spatial resolution for the year 2015, before S3’s launch to showcase the
MOGPR algorithm’s past data reconstruction capability. The resulting
maps (44, at 8 days resolution) were composited monthly, and four
months are shown with distinct growing stages for vegetation. Fig. 13
and 14 were selected for mapping as these sites involve different types of
vegetation cover in their vicinity. Fig. 13 shows grassland and cropland-
dominated areas near CPER, whereas Fig. 14 entails mixed forests and
croplands in the 50 km radius region of the HAIN site. Reconstructing
vegetation patterns a year before S3’s launch demonstrates the MOGPR
algorithm’s ability to accurately capture seasonal variations in vegeta-
tion across different land cover types. The peak of the growing season
over the croplands, located just south of the CPER station (Fig. 13), is
prominently visible on all variable’s June maps. Evergreen forests,
south-east from the HAIN site, present relatively low seasonal fluctua-
tions of their foliage, this is also well represented in Fig. 14.
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Fig. 10. Temporal profiles over BLAN, CPER, JERC, and SERC depicting S3-MOGPR variables for the 2002–2022 window with uncertainties. CGLS, M/OTCI, and
GBOV in-situ reference measurements are plotted. Yellow dots indicated the training S3 data to the MOGPR algorithm in 2019. PreLAI is used as a predictor variable.
The temporal profiles for BART, DSNY, SRER, TUMB, and HAIN are shown in Appendix A. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 11. Scatter plots depicting the relationship between the S3 OLCI based FAPAR, FVC, and LAI retrieved on real scenes and in-situ reference measurements.

Table 6
Validation statistical metrics recommended by good practice (Fernandes et al., 2014) when validating S3 OLCI based FAPAR, FVC and LAI on real S3 scenes.

S3 real scenes FAPAR FVC LAI

R Rho NRMSE R Rho NRMSE R Rho NRMSE

BLAN 0.67 0.59 0.16 0.89 0.84 0.17 0.83 0.83 1.95
BART 0.27 0.36 0.31 0.56 0.65 0.31 0.45 0.43 1.55
CPER 0.46 0.53 0.21 0.78 0.77 0.13 0.65 0.72 0.71
DSNY 0.16 0.23 0.12 0.51 0.55 0.14 0.48 0.57 0.99
JERC 0.57 0.47 0.15 0.73 0.72 0.16 0.71 0.73 0.96
SERC 0.80 0.66 0.22 0.83 0.77 0.19 0.79 0.71 1.19
SRER 0.48 0.48 0.22 − 0.15 0.29 0.35 0.16 0.48 0.53
TUMB − 0.47 − 0.43 0.27 0.86 0.58 0.17 0.66 0.55 0.48
HAIN 0.67 0.70 0.26 0.82 0.75 0.21 0.79 0.76 1.20

S3 real scenes FAPAR FVC LAI

Bias N Precision UAR Bias N Precision Bias N Precision UAR

BLAN 0.1 46 0.13 0.24 0.13 46 0.11 1.73 45 0.9 0.16
BART − 0.16 44 0.26 0.18 − 0.1 47 0.29 − 0.05 42 1.54 0.24
CPER 0.17 102 0.12 0.18 0.09 102 0.09 0.48 96 0.52 0.59
DSNY − 0.06 63 0.1 0.38 − 0.1 63 0.09 0.72 61 0.69 0.36
JERC − 0.1 105 0.12 0.28 − 0.09 105 0.14 0.64 103 0.71 0.39
SERC − 0.13 52 0.17 0.19 0.01 52 0.19 0.29 51 1.15 0.33
SRER 0.18 49 0.12 0.22 0.22 49 0.27 0.41 49 0.33 0.61
TUMB − 0.19 90 0.19 0.17 − 0.07 90 0.15 0 87 0.48 0.72
HAIN − 0.18 75 0.19 0.11 − 0.05 75 0.21 − 0.16 74 1.19 0.31
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Fig. 12. Scatter plots depicting the relationship between the MOGPR reconstructed FAPAR, FVC, and LAI and in-situ reference measurements. For the site-specific
temporal windows used for validation consult Table 3.

Table 7
Correlation coefficients and error metrics recommended by good practice (Fernandes et al., 2014) calculated by validating S3-MOGPR reconstructed to in-situ
measurements. For the site specific temporal windows used for validation consult Table 3.

FAPAR FVC LAI

R rho NRMSE NMAE R rho NRMSE NMAE R rho NRMSE NMAE

BLAN 0.75 0.77 0.14 0.12 0.88 0.88 0.14 0.12 0.82 0.84 0.19 0.17
BART 0.6 0.61 0.24 0.2 0.74 0.72 0.26 0.22 0.61 0.56 0.14 0.10
CPER 0.68 0.77 0.2 0.18 0.78 0.81 0.1 0.09 0.69 0.73 0.09 0.06
DSNY 0.34 0.42 0.1 0.07 0.83 0.84 0.1 0.09 0.64 0.75 0.11 0.09
JERC 0.68 0.73 0.14 0.11 0.93 0.92 0.1 0.1 0.79 0.84 0.09 0.07
SERC 0.86 0.84 0.2 0.16 0.93 0.9 0.14 0.13 0.9 0.86 0.08 0.06
SRER 0.81 0.73 0.26 0.25 0.84 0.82 0.1 0.11 0.36 0.53 0.05 0.05
TUMB − 0.25 − 0.19 0.14 0.12 0.56 0.51 0.1 0.05 0.2 0.51 0.10 0.09
HAIN 0.83 0.71 0.26 0.25 0.88 0.76 0.2 0.16 0.82 0.76 0.13 0.10

FAPAR FVC LAI

Bias N Precision UAR Bias N Precision Bias N Precision UAR

BLAN 0.09 115 0.12 0.27 0.1 115 0.1 1.66 112 0.79 0.11
BART − 0.14 171 0.17 0.18 − 0.11 171 0.22 0.32 134 1.27 0.39
CPER 0.18 276 0.05 0.02 0.09 277 0.06 0.44 227 0.32 0.64
DSNY − 0.04 168 0.07 0.49 − 0.08 168 0.06 0.97 162 0.56 0.2
JERC − 0.1 221 0.07 0.21 − 0.09 221 0.06 0.65 199 0.53 0.48
SERC − 0.16 224 0.13 0.18 − 0.08 224 0.12 0.15 212 0.75 0.56
SRER 0.25 165 0.03 0 0.11 165 0.02 0.47 154 0.17 0.62
TUMB 0.1 80 0.09 0.22 0 80 0.08 0.82 80 0.58 0.25
HAIN − 0.25 142 0.12 0.02 − 0.15 142 0.11 − 0.5 134 1.2 0.32
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Fig. 13. Temporally reconstructed maps for the four VPs throughout the year 2015. The maps are centered at the CPER site (lat: 40.815, long: − 104.745) and a 50
km radius area is plotted. RGB imagery and land cover maps are shown for the investigated area.
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Fig. 14. Temporally reconstructed maps for the four VPs throughout the year 2015. The maps are centered at the HAIN site (lat: 51.079, long: 10.452) and a 50 km
radius area is plotted. RGB imagery and land cover maps are shown for the investigated area.
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Additionally, to assess the consistency of the reconstructed maps a year
prior to S3’s launch, the spatio-temporal datasets presented on Fig. 14
and 13, were per pixel intra-annually correlated to CGLS products
(Fuster et al., 2020), as seen on Fig. 15. No major differences can be
noted when comparing the correlation maps between different vari-
ables. For CPER the agreement is higher as compared to CPER for all
variables. Over HAIN, some negative correlation can be observed on the
south-eastern side of the circular ROI. This area is covered by evergreen

needleleaf forests, usually depicting lower intra-annual seasonality.

4. Discussion

Aiming to generate S3-consistent, multi-decadal ECVs, we propose a
flexible methodology to reconstruct long-term past time series by using
MOGPR fusion guided by complementary MODIS products. The sys-
tematic analysis evaluates the outcome of past biophysical variable data

Fig. 15. Per pixel intra-annual Pearson correlation maps over the CPER and HAIN site in 2015.
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reconstruction (S3-based FAPAR, FVC, LAI, and LCC) by different
MODIS-based predictor time series (MODIS-based preFAPAR, preLAI,
and preNDVI). Our MOGPR-based reconstruction approach, despite
relying on predictor data from MODIS products that exhibit inherent
differences compared to S3 due to advancements in technology, hard-
ware, and retrieval algorithms and crucially for LCC the missing red-
edge bands, successfully provides harmonized, temporally consistent
data streams of LAI, FAPAR, FVC, and LCC time series. In the following,
we discuss the performance of the MOGPR-reconstructed products
compared to satellite benchmark products and ground data and provide
limitations, challenges, and opportunities for our models.

4.1. Performance of different predictor variables in MOGPR fusion

The S3-based reconstructed time series products realized by distinct
predictor variables (Fig. 4) showed varying results. Both preNDVI and
preFAPAR from MODIS propagated more noise to nearly all S3-MOGPR
sites and variables. The resulting S3-MOGPR variables’ data streams
could produce erroneous output owing to the propagation of the preVars
noise, amplitude, and cyclic properties throughout when using ML
methods to model time series (Dera et al., 2023). The profiles recon-
structed by preNDVI are more susceptible to noise as compared to those
predicted by preLAI. Constrained by the use of only two bands, NDVI is
potentially vulnerable to noise from sensor calibration, atmospheric
attenuation, clouds, and off-nadir viewing angles, resulting in (non-
seasonal) fluctuations in its temporal profiles (Goward et al., 1991; Hird
and McDermid, 2009). Another limitation of NDVI is its saturation at
canopies having LAI values of ∼3–4 (Yan et al., 2022), becoming
insensitive at denser vegetation (Ferrara et al., 2010; Gitelson, 2004).
Alternatively, instead of NDVI, the MODIS vegetation continuous fields
(VCF) and other spectral indices could have been selected as the guiding
predictor variable, such as the enhanced vegetation index (EVI), which
may be less prone to saturation in dense vegetation (Carroll et al., 2011;
Huete et al., 2002). The bottom line is to identify a predictor variable
that follows as closely as possible to the temporal profile of the targeted
variable. Here, the presented workflow showcased the MOGPR algo-
rithm’s ability to extrapolate and reconstruct temporal profiles with
MODIS-based LAI, FAPAR and NDVI, as these are three independent
vegetation products. Follow-up research could evaluate the role of
alternative ancillary predictors (such as EVI) data for guiding time series
harmonization.

FAPAR time series retrieved by MODIS have considerable noise, as
also noted by (Camacho et al., 2013). FAPAR, in its nature, entails the
absorbed incoming radiation; it elicits the question of the diurnal vari-
ation of its value by the varying Solar Zenith angle (SZA) (Tran et al.,
2020; Widlowski, 2010). Because FAPAR varies with weather conditions
and incoming radiation and most FAPAR products correspond to values
at the satellite transmit time only (instantaneous FAPAR), the observed
FAPAR values are subject to the uncertainties induced by the afore-
mentioned factors (Chen et al., 2020; Moreno et al., 2014). Such fluc-
tuations in the temporal domain can propagate higher uncertainties into
the reconstruction algorithm, and the time series prediction becomes
fundamentally difficult for high noise profiles, as also observed by Giles
et al. (2001); Johnson et al. (2019). The MOGPR algorithm ultimately
reconstructed past data records with increased consistency when less
noise and fluctuations were presented in the training dataset’s predictor
variable, as also investigated by Villacampa-Calvo et al. (2021). The
profiles with the fewest fluctuations for S3-MOGPR were retrieved by
using preLAI. However, some studies demonstrated that also MODIS LAI
temporal profiles can be prone to noise (Brown et al., 2020; Fuster et al.,
2020; Yan et al., 2024).

Especially interesting is the temporal reconstruction of LCC from
preLAI, as LCC and LAI typically present a different seasonal behaviour
with maximums of LCC occurring later than LAI, as shown in Brown
et al. (2019b); Wang et al. (2021). Notably, the reconstructed S3-
MOGPR data over TUMB exhibits inconsistent patterns across all

predictor variables. This can be explained by the lack of a marked sea-
sonality (nor a stationary state), which compromises the predictive ca-
pacity of S3-MOGPR over time.

4.2. Consistency of S3-MOGPR products against CGLS reference data

The S3-MOGPR-generated products indicated consistency over
diverse locations and LCs when compared to the reference CGLS dataset
(FAPAR, FVC and LAI). The high R, ρ correlations can generally be
linked to strong seasonality. This is visible when investigating Table 5,
where the highest correlations between S3-MOGPR products and the
satellite-based reference dataset were obtained over sites with LCs such
as deciduous, mixed forests and croplands (BLAN, BART, SERC and
HAIN depicting R, ρ ∼ 0.9 for FAPAR, FVC and LAI).

The overall strong correlation between FAPAR and LAI yields
optimal performance when using these variables mutually (recon-
structed-predictor) (Roujean and Lacaze, 2002). FAPAR being a physi-
ological variable, and LAI adding information on the physical structure,
are both correlated with the green vegetation captured by satellites. This
can be noted when addressing the higher correlation of the recon-
structed FAPAR and LAI when they are predicted by preFAPAR or
preLAI, rather than by preNDVI (see Fig. 6).

When correlating the reconstructed S3-MOGPR variables obtained
by preNDVI to CGLS, NDVI as a predictor variable yields better results
over sparse canopies as opposed to the higher density of the vegetation
(forest) stands, which often leads to saturation of the spectral recordings
(Mutanga et al., 2023), as exhibited in Table 5 over TUMB, showing the
lowest correlations for preNDVI-based reconstruction for all S3-MOGPR
variables. An NDVI value may be the result of unknown variability of
vegetated ground cover (e.g., different values for FVC and LAI) and
clumped leaf area (Myneni and Williams, 1994), thus propagating un-
certainties to the relationship between NDVI, LAI, and FVC. This is
apparent in the generally lower correlations when reconstructing S3-
MOGPR variables by preNDVI.

Typically, similar values were obtained for linear (R) and monotonic
(ρ) relationships between S3-MOGPR and CGLS data streams, except for
the site BART, where R values were generally greater by 0.1 than ρ. This
could be because the time series of CGLS captures the growing season
earlier than the MODIS-based S3-MOGPR reconstruction, as the CGLS
product shows an earlier start of the growing season (see BART in Ap-
pendix A). This causes a deviation between the S3-MOGPR and CGLS
time series, especially over the growing season, ultimately indicating a
lower monotonic correlation and higher non-linearity between the two
temporal profiles.

The reconstructed maps provide a visual representation of the
applicability of the MOGPR algorithm to sensor harmonized maps. The
correlation to CGLS data streams, duly validated by (Fuster et al., 2020),
show promising results, achieving higher overall correlation over CPER
where all variables yielded mean R of greater than 0.9. Interestingly, the
maps over CPER yielded better correlation metrics than for HAIN, due to
the land cover heterogeneity within the vicinity of the HAIN site. Land
cover heterogeneity exacerbates VP retrieval performance, as also noted
by (Gelybó et al., 2013).

4.3. Assessing the validation S3-MOGPR products to ground data

To assess the validity of the generated S3-MOGPR products, match-
ing values were compared against ground measurements (Fig. 12) and
their error metrics were calculated, as shown in Table 3. The best vali-
dation statistics were achieved over SERC for all variables, with FVC
showing the highest correlation of R, ρ = 0.93, 0.9. For croplands
(SERC), slight systematic underestimation, (with biases of − 0.16, − 0.08
respectively) can be observed for FAPAR-, FVC-MOGPR products during
winter, similarly to the findings of Chernetskiy et al. (2017). This
negative bias increased by the reconstruction procedure algorithm. In
this case, the MOGPR models do not detect the predominant presence of
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bare soil or that it is contaminated by a heterogeneous signal. The pre-
sented validation error metrics for FVC-MOGPR are in the same order as
the ones reported by Ding et al. (2015). As complementary to LAI, FVC
measures the horizontal extension of vegetation, where saturation or
clumping effects do not occur. FVC outperforming LAI and FAPAR
through in-situ validation was also noted by Upreti et al. (2019).

Over sites with croplands (SERC), deciduous (BLAN), and mixed
forests (HAIN in Appendix A) all reconstructed variables showed con-
sistency R,ρ > 0.75. The good validation statistics over these LCs were
also noted by Yan et al. (2016). Over BLAN, systematic positive bias was
noted for all three variables, in agreement with Camacho et al. (2013)
who reported similar biases for LAI. For SERC and HAIN a slight nega-
tive bias could be observed. Lower correlations were obtained over the
evergreen broadleaf forests of TUMB. The lack of accurate retrievals as
compared to ground measurements over such land covers was also noted
by Kang et al. (2021) when evaluating various VPs against in-situ data.
This land cover type exhibits lower seasonal phenological dynamics,
which is hardly captured by the satellite-based VPs (Verger et al., 2023).
Cloud contamination, poor atmospheric conditions, and radiative signal
saturation further exacerbate this issue (Yan et al., 2016).

4.4. Chlorophyll variables’ comparison against the OTCI and MTCI
datasets

The scarcity of global LCC datasets and in-situ reference measure-
ments impeded direct validation of the LCC-MOGPR product. Having
explored different LCC products (e.g. from Croft et al. (2020b) and Xu
et al. (2022)), in our experience these products were perceived as un-
reliable for comparison, showcasing highly irregular time series. The
MODIS-based LCC product provided by Xu et al. (2022) was evaluated as
unreliable. The authors discussed the limitation of inferring LCC from
MODIS due to the missing red-edge band, and this was further supported
by Kovács et al. (2023b) where the tested MODIS-based LCC dataset
proved to be poorly performing. We also inspected the LCC product by
Croft et al. (2020b) and observed irregular temporal patterns, which
made the product untrustworthy for comparison analysis. Notwith-
standing, we utilized the OTCI and MTCI land products as a sound
benchmark due to their strong relation to vegetation (canopy) chloro-
phyll content (Pastor-Guzman et al., 2020). Estimating leaf-level vari-
ables, such as LCC, is generally more challenging than retrieving
canopy-level variables, such as LAI or FAPAR, from EO data, caused
by the complex relationship between leaf characteristics and canopy-
scale reflectance (see e.g., discussion in Estévez et al. (2021)). There-
fore, the error metrics in Table 7 and 8 portray higher overall normalised
errors as compared to the case of FAPAR, FVC, and LAI-MOGPR to CGLS
products. Despite these, the preLAI-based LCC-MOGPR showed high
consistency when correlating to normalised OTCI/MTCI over most sites
except for TUMB. The upscaled CCC product, at the canopy scale, shows
mildly improved agreements to reference data, as it could be expected.
Even though LCC-MOGPR, OTCI and MTCI are indicators of chlorophyll
content, their calculations are based on completely different algorithms.
While OTCI/MTCI is a rather simple 3-band spectral index (empirical
approach), LCC is based on physical equations in an RTM embedded
within a hybrid retrieval scheme (see Reyes-Muñoz et al. (2022)).
Overall, the reconstructed LCC and CCC product showed high consis-
tency with OTCI/MTCI datasets for both linear (R) and monotonic (ρ)
relationships across sites exhibiting distinct seasonal variations.
Notably, the highest correlation metrics were observed among decidu-
ous broadleaf (BLAN) and mixed forests (HAIN in Appendix A), aligning
with the findings of Croft et al. (2020a). Generally, the LCC-MOGPR

profiles display a more realistic trend over the winter, whereas OTCI
tends to overestimate and not reach such yearly minimums (Pastor-
Guzman et al., 2020). Some discrepancies could be observed for CCC
when compared to the reference indices, possibly resulting from the
nature of the two products and their normalisation strategies.

4.5. MOGPR associated uncertainties

The usage of MOGPR for time series reconstruction enables the
quantification of errors since it can generate predictions by integrating
prior knowledge and offer measures of confidence intervals (un-
certainties) for the predictions Wang (2023). Our presented algorithm
showed minimal uncertainty over most sites for the reconstructed LAI,
FVC, with few exceptions for LCC data records. The MOGPR algorithm
could capture rapid phenological changes, often associated with un-
certain outputs (McHutchon and Rasmussen, 2011) with minor de-
viations (see sites, e.g., BLAN, JERC, SERC, HAIN). This is due to that
training the algorithm over a whole year allows for detecting the typical
phenological changes with high precision. The MOGPR-associated un-
certainties were nevertheless generally more notable for FAPAR-
MOGPR reconstructed profiles. The increased uncertainty limit the
retrieval accuracy and optimal temporal resolution of the S3-based
FAPAR retrievals, thus inherently affecting the reconstruction uncer-
tainty (Kovács et al., 2023b). MOGPR reconstruction-associated un-
certainties can be also a result of ecological factors such as different LCs
and land surface heterogeneity (Yu et al., 2018). When comparing the
winter months over BART (in Appendix A) and BLAN (Fig. 10), it can be
noted that the uncertainty of BART through winter is much larger than
for BLAN for all reconstructed S3 variables. BLAN consists predomi-
nantly of deciduous broadleaf trees, whereas BART is a mixed forest of
deciduous-to-boreal forest transitional ecotone (National Ecological
Observatory Network (NEON), 2023), BART through winter exhibits
more vegetation heterogeneity, ultimately resulting in increased un-
certainty (Goldblum and Rigg, 2010; Wu et al., 2019). The effect of land
surface heterogeneity-induced reconstruction uncertainty can also be
noted over SRER, showing high uncertainties for reconstructed LCC,
FVC, and FAPAR. SRER is a site dominated by drought-resistant, thorny
vegetation, such as shrubs and perennial grasses, ultimately exposing
greater soil surfaces (Network), N.N.E.O, 2023).

4.6. Limitations, challenges and opportunities

Consistent backward time series reconstruction before a mission’s
launch is a challenging task, but it is essential for a wide range of ap-
plications, such as tracking multi-decadal vegetation cover change
patterns, which in turn can be related to climate change and biodiversity
monitoring, and even economic analysis (Burgdorf et al., 2023; Prival-
sky and Gluhovsky, 2015). Despite its effectiveness in reconstructing
multi-decadal, highly consistent time series, MOGPR’s computational
demands pose a significant challenge. For instance, reconstructing a
single site-specific time series using 2vCPU @ 2.2GHz and 13GB RAM
took approximately 2–3 min. The MOGPR fusion methodology requires
a large matrix inversion (Das et al., 2018), thus the computational
process is memory-heavy, leading to extended computational times
(Caballero et al., 2023). By leveraging the openEO API to connect to a
more powerful back-end provided by Terrascope (Terrascope, 2024,
Accessed: 2024-03-27), the MOGPR algorithm achieved notable speed
improvements. This enabled the processing of 50 km-radius circular
maps within hours. Maps were produced at 8 days temporal resolution,
thus 44 yearly maps were processed.
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The presented MOGPR workflow opens several opportunities for
further research and mapping applications, such as enlarging the spatial
scale. To overcome the computational burden when progressing toward
multi-decadal global maps, the presented workflow could be employed
on high-performance computing, incorporating parallel computing en-
vironments (Gomes et al., 2020) and programming techniques (Sedona
et al., 2019). Given the proven capability of the MOGPR algorithm to
model the underlying interconnection between biophysical properties,
its applications extend beyond past vegetation data record simulation.
MOGPR-based multi-sensor fusion applications can be extended to
various time series data streams to obtain consistent weather-related
parameters (Wu et al., 2022), aid numerical weather prediction (Ren
et al., 2021), improve tropical forest monitoring (Reiche et al., 2015)
and model sea and land surface temperatures (Long et al., 2020; Ma and
Kang, 2020). Moreover, the reconstructed multi-decadal ECV data
streams can be a useful input into ecosystem sensitivity analysis, by
assessing the response of ECVs’ time series to environmental stressors
(Kovács et al., 2023a; Papagiannopoulou et al., 2017) and studies on
climate change (Brown et al., 2012; Trenberth et al., 2014).

The results indicate LAI to be a strong predictor for guiding the
temporal reconstruction of different vegetation products. The time series
reconstruction integrity could be improved with the involvement of
ECVs given the underlying interconnection. For example, LAI has a
proven effect on local micro-climate, thus opening up further opportu-
nities to aid in the modelling of soil moisture, air temperature, and
vapour pressure deficit (Von Arx et al., 2013). Moreover, using a more
ample training dataset, with globally sampled LC-specific data for the
site-specific local models, would lead to a better representation of
extreme events, such as the fires over TUMB in early 2020 (Parker et al.,
2021). Such events could cause drastic VP values, that would normally
not occur in the training data over a regular year.

Finally, to further improve the consistency of the reconstructed
products, the intra-sensor differences between MODIS and OLCI could
be addressed, e.g., by employing cross-calibration of reflectances, at-
mospheric aerosol and Rayleigh scattering corrections before the
retrieval of VPs, and so achieving cross-calibrated time series retrieved
by the two sensors (Bojanowski et al., 2022). Also, for exploring ad-
vancements that further augment accuracy and processing speed, future
work could address the comparison of the MOGPR method for data
fusion and reconstruction against advanced neural network-based
techniques, such as transfer learning that leverages the production of
long-term LAI maps at fine resolutions (Zhou et al., 2023).

5. Conclusions

This study presents a flexible methodology for backward recon-
structing key VP data streams from S3 data way before S3’s launch in
2016 through time series fusion with guiding MODIS-based predictor
variables. We evaluated three MODIS-derived predictor variables
(FAPAR, LAI, and NDVI) on their ability to reconstruct data streams of
S3-based biophysical and biochemical products (FAPAR, FVC, LAI, and
LCC) for the past two decades (2002− 2022). Using a fusion MOGPR
algorithm with a long-term MODIS LAI data stream as the most effective

guiding predictor variable, we successfully reconstructed a multi-
decadal time series of S3-based LAI, FAPAR, FVC, and LCC. Validation
against in-situ reference measurements at nine distinct land cover sites
demonstrated the accuracy and consistency of the reconstructed VPs,
with FVC particularly well captured. Despite the inherent differences
between the nature of LCC and OTCI and MTCI, when reconstructed by
MODIS-based LAI, the LCC-MOGPR profiles displayed more consistency
when compared to OTCI, especially over croplands, deciduous broad-
leaf, and mixed forests. The consistency of the reconstructed data stream
was mainly governed by vegetation seasonality, as the sites where lower
intra-annual vegetation dynamics are present (e.g., evergreen broadleaf
over TUMB) was poorly reconstructed. We conclude that the presented
temporal reconstruction method can capture underlying in-
terconnections between temporal data streams of biophysical variables
and use this to reconstruct past data records given a guiding long-term
data stream, such as MODIS. The presented MOGPR workflow ad-
dresses the limitations of S3’s limited temporal record and paves the way
for uninterrupted tracking of ECV dynamics over the past few decades.
The workflow further opens up opportunities for consistent, long-term
vegetation traits quantification, supporting multi-decadal monitoring
of land-climate dynamics.
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Appendix A. Appendix

Fig. A.16. Time series at BART, DSNY, SRER, TUMB and HAIN sites of S3-MOGPR FAPAR, FVC, LAI and LCC reconstructed by the three different predictor variables
(preNDVI, preLAI and preFAPAR).
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Fig. A.17. Temporal profiles over BART, DSNY, SRER, TUMB and HAIN depicting S3-MOGPR variables for the 2002–2022 window with uncertainties. Also, CGLS,
M/OTCI and GBOV in-situ reference measurements are plotted. Yellow dots indicated the training S3 data to the MOGPR algorithm in 2019. PreLAI is used as a
predictor variable. The temporal profiles for BLAN, CPER, JERC, and SERC are shown on Fig. 10. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Table A.8
Average correlation coefficients and averaged normalised error metrics between FAPAR, FVC, LAI-MOGPR, and CGLS data, calculated by using the Fisher method.
First, the correlation coefficients for each (R and ρ) were transformed to Fisher Z form, their average was calculated and finally, the inverse Fisher transformation was
applied to the averaged Fisher Zs to obtain the mathematically correct R and ρ. This calculation calculated the R and ρ for each reconstructed variable compared to
CGLS, by each predictor variable.

R ρ

preFAPAR preLAI preNDVI preFAPAR preLAI preNDVI

FAPAR-MOGPR 0.77 0.81 0.61 0.75 0.76 0.60
FVC-MOGPR 0.85 0.91 0.70 0.80 0.88 0.68
LAI-MOGPR 0.80 0.89 0.66 0.78 0.85 0.66

Averaged NRMSE Averaged NMAE
preFAPAR preLAI preNDVI preFAPAR preLAI preNDVI

FAPAR-MOGPR 0.120 0.123 0.152 0.113 0.111 0.132
FVC-MOGPR 0.106 0.106 0.137 0.094 0.091 0.122
LAI-MOGPR 0.084 0.078 0.096 0.070 0.066 0.078

Table A.9
Average correlation coefficients and averaged normalised error metrics between LCC-MOGPR and OTCI data, calculated by using the Fisher method. First, the cor-
relation coefficients for each (R and ρ) were transformed to Fisher Z form, their average was calculated, and finally, the inverse Fisher transformation was applied to the
averaged Fisher Zs to obtain the mathematically correct R and ρ. This calculation calculated the mean R and ρ for the LCC-OTCI comparison, by each predictor variable.

R ρ

preFAPAR preLAI preNDVI preFAPAR preLAI preNDVI

LCC-MOGPR 0.56 0.78 0.45 0.57 0.75 0.44
Averaged NRMSE Averaged NMAE

preFAPAR preLAI preNDVI preFAPAR preLAI preNDVI
LCC-MOGPR 0.29 0.20 0.27 0.24 0.16 0.22
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D.Kovács, D.. pyeogpr (zenodo). Zenodo. https://doi.org/10.5281/zenodo.13373838.
Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.H., Féménias, P., Frerick, J., Goryl, P.,

Klein, U., Laur, H., Mavrocordatos, C., et al., 2012. The global monitoring for
environment and security (gmes) sentinel-3 mission. Remote Sens. Environ. 120,
37–57.

Drusch, M., Moreno, J.F., del Bello, U., Franco, R., Goulas, Y., Huth, A., Kraft, S.,
Middleton, E.M., Miglietta, F., Mohammed, G.H., Nedbal, L., Rascher, U.,
Schüttemeyer, D., Verhoef, W., 2017. The FLuorescence EXplorer Mission
concept—ESA’s earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284.

Dubovyk, O., 2017. The role of remote sensing in land degradation assessments:
opportunities and challenges. Europ. J. Remote Sens. https://doi.org/10.1080/
22797254.2017.1378926.

Elmes, A., Alemohammad, H., Avery, R., Caylor, K., Eastman, J.R., Fishgold, L.,
Friedl, M.A., Jain, M., Kohli, D., Laso Bayas, J.C., et al., 2020. Accounting for
training data error in machine learning applied to earth observations. Remote Sens.
12, 1034.
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