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A B S T R A C T

The main terrestrial carbon (C) fraction is soil organic carbon (SOC), which has a considerable effect on climate
change and greenhouse gas emissions through the absorption and sequestration of carbon dioxide (CO2). This
has made SOC assessment very important from both economic and environmental viewpoints. The growing
count of soil spectral libraries (SSLs) from regional to global scales has brought a tremendous opportunity for
the quantification of SOC through developing spectral-based prediction models. Hence, there is a need to take
advantage of big data analytics for spectral data processing. The unique ability of deep learning (DL) techniques
to leverage important features of high-dimensional large-scale SSLs has made them top-demanding for more
sophisticated modeling. The core objective of the present study was to assess the ability of two different DL
algorithms, i.e., one-dimensional convolutional neural network (1DCNN) and fully connected neural network
(FCNN) coupled with stacked autoencoder (SAE) feature extraction for SOC prediction based on the data from
the land use/cover area frame statistical survey (LUCAS) database. SAE extracted the high-level deep features
from the visible–near-infrared–shortwave infrared (Vis–NIR–SWIR) spectra of 11441 soil samples, which were
then considered as inputs to the 1DCNN and FCNN models for predicting the SOC content. Both SAE-DL
feature-selected models yielded higher accuracy than those the DL developed on the entire spectra and a
random forest (RF) model was constructed for comparison. The best prediction was achieved by SAE-1DCNN
(R2 = 0.78, RMSE = 3.94%, RPD = 4.88, RPIQ = 3.91) followed by 1DCNN (R2 = 0.73, RMSE = 5.43%, RPD
= 3.67, RPIQ = 2.84) proving the superiority of 1DCNN over FCNN in this study. These results supported
the applicability of combined deep features extraction and regression methods for predicting SOC using high
dimensional large-scale SSLs.
1. Introduction

Soil degradation is a serious concern worldwide and may be evident
in increasing carbon dioxide (CO2) emissions following deforestation,
the reduction in above- and below-ground carbon (C) storage, and its
impact on the ecosystems’ ability to control soil-vegetation-atmosphere
transfer (SVAT) processes (Vågen et al., 2016). This, in turn, affects the
delivery of essential ecosystem services and has significant implications
for climate change and food security (Lal, 2004). Soil organic carbon
(SOC) serves as a crucial indicator of soil quality, with the Euro-
pean Union (EU) identifying its decline as one of the primary factors
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contributing to soil degradation. Consequently, there is a substan-
tial demand for regular SOC quantification and monitoring. However,
wet chemical analyses are costly and time-consuming which compli-
cates the continuous SOC monitoring, especially at large scales. Such
assessment would greatly benefit from rapid and cost-effective SOC
prediction techniques.

One recognized approach to accurately, rapidly, and inexpensively
quantify and monitor soil attributes is soil spectroscopy across the
visible–near-infrared–shortwave infrared (Vis–NIR–SWIR; 350–2500
nm) part of the electromagnetic spectrum (Ben-Dor and Banin, 1995).
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Various multivariate statistical methods and machine learning (ML)
algorithms, such as partial least squares regression (PLSR), artificial
neural networks (ANN), random forest (RF), support vector machine
regression (SVMR) and cubist have been employed to develop proxy
models for SOC assessment using spectral data (Angelopoulou et al.,
2020). The majority of published research has focused on small-scale
calibration of SOC prediction models using local spectral datasets
and hence, applying and transferring them to areas with different
soil conditions poses a significant challenge (Castaldi et al., 2018).
An increasing number of large-scale soil spectral libraries (SSLs) are
currently developing on regional, continental, and global scales to
address the abovementioned issue. Some of these SSLs are the global
SSL, the European land use/cover area frame statistical survey (LU-
CAS), the Brazilian SSL (BSSL), The International Centre for research
in Agroforestry–international soil reference and Information Centre
(ICRAF-ISRIC) SSL, the open SSL (OSSL), and the Balkan, Middle
East, and North African (GEO-CRADLE) SSL. These SSLs represent a
tremendous opportunity for developing adapted approaches for SOC
prediction models. They offer access to large-scale databases with high
data volume and significant spectral variability.

The development of large-scale SSLs has caused a growing need
for big data analytics to analyze vast and diverse datasets efficiently,
uncover hidden patterns, and identify previously unknown correlations
in soil science research (Padarian et al., 2019). Due to their inher-
ent capacity for processing large-scale data, hierarchical learning, and
support for extensive computational resources, deep learning (DL) tech-
niques have gained increasing popularity for modeling soil properties
(Tsakiridis et al., 2020a). Among DL algorithms, convolutional neural
networks (CNN) and fully connected neural networks (FCNN) are com-
mon for various soil science applications. However, the application of
DL in predicting SOC has predominantly focused on CNN, which excels
at extracting deep features from datasets using kernel learning. For
instance, Shen and Viscarra Rossel (2021) introduced an automated
approach for tuning a one-dimensional convolutional neural network
(1DCNN) and demonstrated its effectiveness on the LUCAS SSL for SOC
quantification. In another study by Tsakiridis et al. (2020b), a localized
multi-channel 1DCNN was applied to the LUCAS dataset, aiming to
estimate ten different soil physicochemical properties, including SOC,
simultaneously. While some studies have combined CNNs with other
algorithms for SOC prediction, there is a noticeable lack of research
using FCNN for SOC quantification (Zhao et al., 2021).

Soil properties are intricately encoded in the measured spectra,
therefore there is a crucial need to streamline spectral complexity
and enhance the prediction performance (Ma et al., 2023). This can
be achieved by eliminating non-informative, redundant variables and
extracting significant features that exhibit high correlation with the
target variables. The utilization of effective and DL-compatible feature
selection and extraction methods holds significant importance for har-
nessing the full potential of SSLs and modeling SOC. Some DL methods
can incorporate autoencoders to simplify data complexity and reduce
dimensionality by eliminating irrelevant variables (Wang et al., 2016).
This process ensures that models are fed with the optimal number of
selected or extracted spectral features, improving their accuracy and
efficiency.

Stacked autoencoder (SAE) neural network is an unsupervised learn-
ing network made of multiple layers of sparse autoencoders. Recent
advancement in autoencoder-based feature extraction has led to more
applications of SAE as an alternative feature extraction technique. This
has aided in solving the curse of dimensionality as well as providing
more discriminating features as compared to the conventional feature
selection approaches (Roy et al., 2018). Far to date, SAE had been
applied to a wide variety of applications due to its feature extraction;
thus, it was allowed to deal with data as complex as this. However,
none of these uses has demonstrated how far the combination of SAE
with deep learning techniques applies to soil reflectance spectra for SOC

assessment. m
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Within this framework, this study intends to examine the ability of
two different DL algorithms (i.e., CNN and FCNN) coupled with SAE
model feature selection/extraction, to quantify and model SOC using
LUCAS SSL. To our knowledge, these algorithms have not been tested
for SOC prediction, neither individually nor combined. As variables
of greater importance are selected/extracted using a feature selec-
tion/extraction technique, it is therefore expected that the models’
accuracy will be improved compared to models developed using the
DL on full-range spectra. In addition, the results of the proposed DL
architectures will be compared with those obtained by using the more
popular conventional ML (i.e., random forest) algorithm.

2. Materials and methods

2.1. LUCAS soil dataset and pre-processing

The LUCAS database used contained 19967 surface soil samples
(0–20 cm) taken from various land use types of 25 European Union
states (Fig. 1), in 2009 (Toth et al., 2013). The database consists of
SOC and 11 other soil sample properties, as well as their Vis–NIR–
SWIR (400–2499.5 nm) spectra with 0.5 nm spectral resolution. The
SOC content of all samples was determined by dry combustion using a
Vario Max CN Analyzer (Elementar Analyse Systeme GmbH, Germany).
Spectral measurements were also performed using FOSS XDS Rapid
Content Analyzer apparatus (FOSS Analytical, Hilleroed, Denmark)
in the laboratory. For this study, 11441 samples were selected from
croplands as per the purpose of this study to monitor the SOC contents
of areas related to agricultural activities.

For pre-processing of the spectra, the noisy parts from 350 and
500 nm were initially removed, leaving spectra in the range of 500 nm
to 2499.5 nm. Savitzky-Golay (SG) smoothing was then performed on
the remaining spectra to reduce the artificial noise caused by random
measurement errors. The first derivative with a second-order polyno-
mial fit and 41 wavelength window size was the next preprocessing
step to correct the background signals and offset and improve spectral
features (Gholizadeh et al., 2015). The spectral outliers were then iden-
tified using principal component analysis and Mahalanobis distance
methods and removed from the dataset. The final pre-processing step
was normalization of the SOC distribution by the Robust-Scaler trans-
formation which subtracts the median and scales the data according
to the quantile range. The pre-processed dataset was then divided
into the train (75%) and test (25%) portions using Kennard-stone (KS)
algorithm. The KS algorithm selects n samples uniformly distributed
ver the predictor space, thus not only ensures the randomization in
ata selection for the training and testing sets but also optimizes the
overage of the spectral variability. The training portion was utilized
o build the prediction models and the testing portion was used to verify
heir accuracy and generalization ability.

The proposed algorithms were implemented based on Python 3.6.
he deep learning framework was Keras with the TensorFlow backend.
ll proposed architectures were developed and completed on a personal
omputer at the early step and then transferred to the Google Colab Pro
remium cluster account to train the most stable models. The Google
olab Pro cluster is equipped with an NVIDIA Tesla T4 or the NVIDIA
esla P100 GPU with 16 GB of GPU VRAM, 52 GB of RAM, and two
CPUs.

.2. Feature extraction by SAE

SAE is an unsupervised learning algorithm mainly used for feature
xtraction and dimensionality reduction. It is composed of multiple
tacked layers of autoencoders to produce better high-level non-linear
eatures of the input data (Meddeb et al., 2023). The autoencoder
ncludes encoder and decoder units. During learning, the encoder trans-

its the input vector to a hidden feature representation while the
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Fig. 1. LUCAS samples position in Europe.
Fig. 2. Stacked autoencoder architecture.
decoder maps it back to a vector with the same size as the input space
(Fig. 2). Yu et al. (2018b) have formulated these steps below:

𝑦 = 𝑓 (𝑤𝑦𝑥 + 𝑏𝑦)

𝑧 = 𝑓 (𝑤𝑧𝑥 + 𝑏𝑧)
(1)

where 𝑤𝑦 and 𝑤𝑧 are the input-to-hidden and hidden-to-output weight
matrices, respectively, 𝑏𝑦 and 𝑏𝑧 are the hidden and output units bias,
while the activation function is denoted by 𝑓 (.). In our study, the
‘‘leaky-ReLU’’ was used as the activation function 𝑓 (.).

The unsupervised pre-training of the SAE was initiated by intro-
ducing the original input spectra to the first layer. The numbers of
channels in consecutive layers of the SAE were set to 4000, 2000, 1000,
h, 1000, 2000 and 4000. The h denotes the number of channels (or
deep spectral features) in the final layer of the encoding unit of SAE.
After pre-training and assigning the optimal weights, the deep features
extracted from the original spectra were then employed as inputs for
the SAE-1DCNN and SAE-FCNN algorithms.

2.3. Spectral modeling

As the main purpose of this study, two DL models (1DCNN and
FCNN) were developed on spectral features extracted by another DL
3 
methodology (SAE) to predict SOC. DL are neural network models with
several ‘‘hidden’’ layers for gradual learning of more complex features
and transforming the input data to outputs (Schmidhuber, 2015). DL
models have a deeper structure with more layers than the traditional
artificial neural networks (Padarian et al., 2019) which is beneficial for
hierarchical learning of the deep features within the input dataset. The
results of the DL approaches were compared with those obtained by the
classic ML method of RF.

2.3.1. Stacked autoencoder - 1D convolutional neural network
(SAE-1DCNN)

CNN is a deep feed-forward artificial neural network that mostly
deals with video, image and signal processing tasks in various fields of
research including soil sciences. A CNN model is usually composed of
an input layer, a hidden layer (which typically contains convolution,
pooling, and fully connected layers), and an output layer. For this
study, a 1D-CNN architecture was designed with three convolution
layers as the hidden layer. The input layer with a channel size of 500
received 500 deep spectral features extracted by SAE. The input layer
output was then introduced to the convolution layers to extract features
through the filter sliding (with the filter size of 8) process named
the convolution operation (Yang et al., 2021). The first convolution
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Fig. 3. Stacked autoencoder-1D Convectional Neural Network.
layer contained 32 neurons, while the neurons in the second and
third convolution layers were doubled and quadrupled to 64 and 128,
respectively. Each layer’s output was then passed through the ‘‘leaky-
ReLU’’ activation function and then employed as the next layer’s input.
To reduce the resulting output data dimensions and the over-fitting risk,
a pooling layer was added to the network. The max-pooling method
with a filter size of 2 by 2 was used for this step. A one-dimension
vector was then created by flattening the pooling step’s output and
passed to a fully connected network which contained a multitude of
neurons connecting to the SOC content as the output of this experiment.
The model was properly trained with 700 epochs. Adam optimizer was
employed with the learning rate of 1e-3, to obtain the optimal model
while mean square error (MSE) was used as the loss function. Fig. 3
shows the architecture of SAE-1DCNN used in this study.

2.3.2. Stacked autoencoder - fully connected neural network (SAE-FCNN)
SAE-FCNN is a deep neural network architecture (Fig. 4) that lever-

ages the capabilities of SAE for unsupervised extraction of deep spectral
features and FCNN for supervised prediction of target variables using
the extracted deep features (Yu et al., 2018b). After pre-training of SAE
and extraction of the deep spectral features, the decoding part was
removed and FCNN was added to the SAE encoding layer forming a
SAE-FCNN regression network for SOC prediction. Dropout regulariza-
tion was used which is the random selection and ignoring the neurons
while the remaining can assist in predicting the ignored ones. Dropout
forces the network to be less sensitive to the specific weight of neurons.

Training of the network was conducted with the batch size of twenty
and maximum epoch size of 400. The early stopping with 25 epochs of
patience was used for validation of the training phase. To minimize the
RMSE function, the Adam optimizer was used to train the model with
a starting learning rate of 0.001.

2.3.3. Random forest
RF is a tree-based learning algorithm for both classification and

regression applications. Multiple decision trees are produced in the
forest and fitted on various data subsets. The average result obtained by
each tree was used to improve the accuracy of prediction and control
over-fitting. Three important RF parameters needed to be tuned before
modeling: (i) a number of regression trees (𝑛tree) in the forest, (ii)
minimum data per node (nodesize), and (iii) a number of predictors
(𝑚try) selected at each node.

2.3.4. Assessment metrics
The accuracy of each developed model was determined using four

commonly used evaluation techniques including root mean squared
error (RMSE), coefficient of determination (R2), ratio of prediction to
4 
Table 1
Statistical summary of SOC concentration (%) of dataset after removing outliers.

n Minimum Maximum Mean Std. CV Skewness

9894 0.00 19.92 2.26 19.70 8.72 3.42

n: Number of samples, Std: Standard deviation, CV: Coefficient of variation.

deviation (RPD) and ratio of performance to inter-quartile distance
(RPIQ).

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(2)

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
(3)

𝑅𝑃𝐷 = 𝑆𝑡𝐷
𝑅𝑀𝑆𝐸

(4)

𝑅𝑃𝐼𝑄 =
𝑄3(𝑜𝑏𝑠) −𝑄1(𝑜𝑏𝑠)

√

1
𝑛
∑𝑛

𝑖=1(𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2
(5)

3. Results

3.1. Samples statistical summary and spectra

The SOC content statistics of the remaining LUCAS dataset after
outliers removal, are summarized in the Table 1. It includes minimum,
maximum, mean, standard deviation (StD), coefficient of variation
(CV), and skewness. Accordingly, the average SOC concentration was
2.26%±19.7% (StD), with a very high variability of CV = 8.72 which
was expected due to the diverse soil and land use types that the sam-
ples were gathered from several European countries and geographical
regions (Toth et al., 2013). In addition, the dataset was positively
skewed from the normal distribution and hence was subjected to the
Robust-Scaler transformation.

The average reflectance and related standard deviation of the LU-
CAS samples used in this study are presented in Fig. 5. As a brief
overview, the overall shape of the spectra and reflectance patterns are
roughly typical of soil spectra, with a continuous ascending trend and
two 1400 nm and 1900 nm located absorption minima stemmed from
the soil hygroscopic moisture content (Gholizadeh et al., 2023). The
other absorption features between 2000 nm and 2500 nm can mostly
be attributed to the soil mineral and organic constituents. The relatively
high variations of the spectra were not surprising as the samples have
been collected from various soil types and land uses across Europe.
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Fig. 4. Stacked autoencoder fully connected neural Network.
Fig. 5. Average reflectance of all samples along with variance.
3.2. SAE extracted features

The SAE feature extraction network was well-trained and optimized
after 700 epochs as shown in Fig. 6b. The calculated average deviation
of the output spectra from the original input spectra was acceptably
low (8.5 × 10−3) (Fig. 6a). This low deviation indicates that the SAE
effectively reconstructed the original input spectra. The mean spectra
calculation, which is useful for reducing the effect of measurement
variations and testing repeatability, also supports the robustness of
this reconstruction. After pre-training, the feature extraction began in
the first hidden layer of the SAE, where the original 4000-band input
spectra were encoded into 2000 variables. These 2000 variables were
then passed to the second layer, where they were further reduced to
1000 features. In the final layer, the input variables were reduced
from 1000 to 500, resulting in the extraction of the most informative
deep spectral features. This consecutive dimension reduction from 4000
to 500 variables ensured that the final SAE output retained the most
representative features of the original input spectral data.

3.3. Models performance

All DL models were well trained and converged after running 700
epochs based on the training/validation loss (Fig. 7). The best training
performance and stability were achieved by assuming that all models
were trained well according to the best-optimized hyperparameter
values. Several models were trained based on different values of hy-
perparameters to achieve the best model performance and training
5 
stability. Table 2 presents the SOC prediction results obtained by differ-
ent DL-developed architectures. SOC prediction performance of the RF
model developed on the whole spectra is also included for comparison.

As a general comparison between different algorithms used in this
study, 1DCNN outperformed both FCNN and RF, regardless of the input
data (whole spectra or extracted features). According to the results,
1DCNN developed on the extracted features (SAE-1DCNN) had the
highest prediction accuracy (R2 = 0.78, RMSE = 3.93%, RPD = 4.88,
RPIQ = 3.91) followed by 1DCNN developed on the whole spectra
(R2 = 0.73, RMSE = 5.43%, RPD = 3.67, RPIQ = 2.84). The worst
performance was exhibited by the RF model constructed on the whole
spectra (R2 = 0.61, RMSE = 8.87%, RPD = 2.17, RPIQ = 1.74). The
FCNN and SAE-FCNN methods showed medium performances with
prediction results between 1DCNN and RF (R2 = 0.63, RMSE = 6.72%,
RPD = 2.97, RPIQ = 2.29 for FCNN and R2 = 0.64, RMSE = 6.12%, RPD
= 3.25, RPIQ = 2.52 for SAE-FCNN). Considering the effect of SAE,
developing models on the extracted features led to better predictions
than those constructed on the whole spectra. This difference was much
greater between results obtained by 1DCNN and SAE-1DCNN.

4. Discussion

4.1. Effect of the feature extraction

DL Models developed on SAE-extracted features yielded better SOC
predictions than those developed on the whole spectra. As a robust
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Fig. 6. The mean original and reconstructed spectra (a), and Pre-training error (b).
Fig. 7. Training/validation plots for FCNN (a), SAE-FCNN (b), 1DCNN (c), and SAE-1DCNN (d).
Table 2
SOC prediction models performance based on different architectures.

EP LR BS AF R2 RMSE RPD RPIQ
FCNN 700 −3 20 Leaky 0.625 6.715 2.966 2.293
SAE - FCNN 700 −3 20 Leaky 0.641 6.122 3.254 2.516
1DCNN 700 −3 16 Leaky 0.733 5.429 3.669 2.837
SAE - 1DCNN 700 −3 16 Leaky 0.784 3.935 4.884 3.914
RF – – – – 0.607 8.868 2.167 1.737

EP: Epochs, LR: learning rate, BS: Batch size, AF: Activation function.
6 
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dimension reduction algorithm, SAE extracted high-level deep spectral
features from the LUCAS data and then passed them to the input
layers of the DL networks. This resulted in higher informative data
with lower dimensionality which substantially improved efficiency of
the modeling process as well as the accuracy of the predicted SOC.
Using FCNN models developed on SAE-derived spectral features, similar
enhancements were reported by Yu et al. (2018a) for nitrogen concen-
tration detection in oilseed rape with R2 = 0.903, RMSE=0.307% and
RPD=3.238, and Yu et al. (2018b) for pear’s firmness and soluble solid
content (SSC) prediction with R2 = 0.890, RMSE=1.81% and RPD=3.05
for firmness, and R2 = 0.921, RMSE=0.22% and RPD=3.68 for SSC.
SAE–FCNN models constructed on the NIR hyperspectral images were
also found to be potential tools for non-destructive quantification of the
total viable count (TVC) in peeled shrimp, providing a new quality and
safety prospecting methodology for shrimp products (Yu et al., 2019).

4.2. RF or DL techniques? a comparison

Generally speaking, RF is a powerful and efficient algorithm with
relatively fast computational speed and limited computational cost (Bai
et al., 2022). The SOC prediction performance of RF in this study
was acceptable to some extent (Table 2) which further proves the
RF efficiency for this specific application. However, all DL and SAE-
DL techniques outperformed RF in the prediction of SOC. It might
be due to some drawbacks that are associated with the RF method
especially when facing large datasets with high dimensionality. RF may
overfit to the uninformative noisy data especially when its structure is
composed of a large number of trees which makes the forest structure
too complex. In addition, RF is like a black box and hence, except for
tuning of some parameters, there is no control on the inner processes
to enhance its performance and accuracy (Bai et al., 2022).

Better performance of 1DCNN over FCNN can be attributed to, the
strong learning ability of CNN which has made it capable of detect-
ing important features within complex and high-dimensional LUCAS
datasets (Ma et al., 2019). The great potential of CNN in dealing
with large datasets can be considered as another reason that has
made it the best option for modeling SOC using LUCAS SSL. This
potential has provided a great opportunity for large-scale monitoring
of the soil properties (Yang et al., 2021). The superiority of CNN-
based models constructed on proximal and remote sensing data has
been acknowledged in several SOC prediction-related researches. In
a SOC assessment study using Vis–NIR–SWIR spectra in China, CNN
outperformed both RF and PLSR techniques with higher prediction
accuracies (Bai et al., 2022). Similarly, in the study of SOC prediction
using USDA SSL with 37540 Vis–NIR–SWIR reflectance spectra, CNN
outperformed RF and other well-known ML models such as PLSR,
K-Nearest Neighbors (KNN) and Ridge (Wang et al., 2022). The perfor-
mance of CNN is however affected by some important factors including
hardware quality, data size (Bai et al., 2022) and computational power
demand (Wang et al., 2022). Several parameters are also needed to
be optimized during the modeling to prevent the overfitting (Darwish
et al., 2020).

Unlike CNN, few studies have investigated the applicability of FCNN
in prediction of the soil properties. In a study conducted by Gholizadeh
et al. (2020) on the forest soils, FCNN developed on Vis–NIR–SWIR
spectra outperformed RF, PLSR and SVMR in predicting the toxic
elements. They also noticed the higher performance of FCNN on larger
datasets, while in the lower-size datasets, the results obtained by RF
and SVMR were comparable to those obtained by FCNN. This was
justified by the strong capability of RF and SVMR to develop models
using small-sized datasets (Jiang et al., 2019). However, through all the
investigation, 1DCNN and FCNN are obviously performing better, and
one problem remains to be critical: the interpretability. Deep learning
models, though at least offering some interpretability by the user in
the form of features of importance and decision trees, are still mostly

treated as black boxes, given their architecture can be quite complex
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and data is very high dimensional. This can render the interpretability
of how the concrete spectral features are working in the prediction of
SOC quite impenetrable and reduces practical usability for such models.
In this respect, interpretability provides further decision-making capa-
bilities, which may be one of the limiting factors to broader acceptance
in the realm of soil science, let alone beyond, despite high predictive
performance these models can otherwise achieve. Emphasis should
therefore be placed on model improvements for better performance
and on developing methods that could possibly make deep learning
models more interpretable with the use of visualization techniques,
explainable AI architectures, integration of interpretable models in
deep learning architectures. Notably, Grushetskaya et al. (2024) have
recently explored the use of XAI frameworks with the same LUCAS
SSL data used in this study, demonstrating how such methods can
help explain deep learning model decisions for SOC prediction, thereby
increasing transparency and usability in practical applications.

5. Conclusion

The main purpose of this research was to compare two DL-based
SOC prediction models (1DCNN and FCNN) established on the whole
LUCAS SSL spectra and related features extracted by the SAE algorithm.
According to the results, models developed on the SAE retrieved fea-
tures yielded higher accuracy compared to when they were constructed
on the whole Vis–NIR–SWIR spectra. SAE-1DCNN model showed the
highest accuracy with R2 = 0.784, RMSE = 3.935%, RPD = 4.884,

PIQ = 3.914 followed by 1DCNN (R2 = 0.733, RMSE = 5.429%,
RPD = 3.669, RPIQ = 2.837) proving the superiority of 1DCNN over
FCNN within the current study. Regardless of the input dataset used
(whole spectra or SAE derived), both DL methods outperformed the
RF model developed on the whole spectra. This could further prove
the superiority of DL algorithms when facing large high-dimensional
datasets, specifically the SSLs. Results obtained in this research can be
encouraging for more investigation efforts on both feature extraction
and regression applications of DL algorithms on SSLs to predict SOC
or other soil properties. Despite the promising results, there are some
limitations in the current study. Models were developed and tested on
the LUCAS SSL dataset alone and may not generalize well to other soil
spectral libraries or regions. Reliance on SAE for feature extraction sug-
gests that an investigation of the application of other advanced feature
extraction techniques might further improve model performance. Other
issues concern the huge computational resource needs of deep learning
models, especially 1DCNN, which raises questions about their practi-
cality in any setting. In addition, areas that continue to need further
research include the lack of external validation on independent data
sets and the intrinsic complexity and challenges of interpretability with
deep learning models. This would, therefore, also become important in
addressing these limitations for future studies to enhance the robustness
and applicability of DL-based SOC prediction models in subsequent
works.
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