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Abstract 

In 2021, the International Earth Rotation and Reference Systems Service (IERS) established a working group tasked 
with conducting the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) to assess 
the current accuracy of EOP forecasts. From September 2021 to December 2022, EOP predictions submitted by par‑
ticipants from various institutes worldwide were systematically collected and evaluated. This article summarizes 
the campaign’s outcomes, concentrating on the forecasts of the dX, dY, and dψ, dε components of celestial pole 
offsets (CPO). After detailing the campaign participants and the methodologies employed, we conduct an in‑depth 
analysis of the collected forecasts. We examine the discrepancies between observed and predicted CPO values 
and analyze their statistical characteristics such as mean, standard deviation, and range. To evaluate CPO forecasts, 
we computed the mean absolute error (MAE) using the IERS EOP 14 C04 solution as the reference dataset. We then 
compared the results obtained with forecasts provided by the IERS. The main goal of this study was to show the influ‑
ence of different methods used on predictions accuracy. Depending on the evaluated prediction approach, the MAE 
values computed for day 10 of forecast were between 0.03 and 0.16 mas for dX, between 0.03 and 0.12 mas for dY, 
between 0.07 and 0.91 mas for dψ, and between 0.04 and 0.41 mas for dε. For day 30 of prediction, the correspond‑
ing MAE values ranged between 0.03 and 0.12 for dX, and between 0.03 and 0.14 mas for dY. This research shows 
that machine learning algorithms are the most promising approach in CPO forecasting and provide the highest 
prediction accuracy (0.06 mas for dX and 0.08 mas for dY for day 10 of prediction).
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Graphical abstract

1 Introduction
The irregularities in the Earth’s rotation are observed as 
variations in the rotation rate, polar motion, and altera-
tions in the direction of the rotation axis in space, known 
as precession and nutation. The Earth’s precession and 
nutation are largely generated by the lunisolar tidal 
torque. Diurnal retrograde variations in the atmospheric 
and oceanic angular momenta in an Earth-fixed refer-
ence system, combined with the free core nutation effect, 
induce additional nutation motions (Dehant et al. 2015). 
The precession–nutation effect pertains to the move-
ment of the celestial intermediate pole (CIP) within the 
celestial reference frame (McCarthy and Petit 2004). This 
motion occurs with a frequency range from − 0.5 cycles 
per sidereal day (cpsd) to + 0.5 cpsd, as detailed by Capit-
aine et al. (2005).

In contrast, polar motion encompasses the CIP’s 
motion within the celestial frame across all other fre-
quency ranges or its motion within the terrestrial frame 
for all frequencies, excluding those falling between − 1.5 
cpsd and − 0.5 cpsd. This distinction incorporates retro-
grade, nearly diurnal ocean tidal terms into nutation, as 
observed from the terrestrial reference frame. In addi-
tion, polar motion encompasses nutation terms with 
frequencies below − 0.5 cpsd or above + 0.5 cpsd, as per-
ceived within the celestial reference frame (Gross 2015).

Earth orientation parameters (EOP) include correc-
tions to the conventional precession–nutation model, 
i.e., celestial pole offsets (CPO), polar motion, differences 
between universal time and coordinated universal time 
(UT1–UTC), and Length-of-Day (derivative of UT1–
UTC). They are necessary for transformation between 
International Celestial and Terrestrial Reference Frames 
(ICRF and ITRF, respectively). However, the complexity 

and time-consuming nature of the required data process-
ing invariably results in report delays. Currently, the offi-
cial and most accurate EOP solution obtained from the 
combination of observations from different space geod-
esy techniques is provided by the International Earth 
Rotation and Reference Systems Service (IERS) with the 
delay of up to 6  weeks. Less accurate and more quickly 
processed data are available with a delay of one to sev-
eral days. Consequently, accurately predicting EOP based 
on past observed data in conjunction with geophysical 
phenomena is of great scientific and practical signifi-
cance. Short-term predictions of EOP are routinely used 
for many real-time advanced geodetic and astronomical 
tasks, such as navigation and positioning on Earth and in 
space.

The CPO signifies the disparity between the observed 
position of the celestial pole and its position predicted 
by a precession–nutation model. The IERS consistently 
monitors and reports the ongoing differences between 
the observed and modeled celestial pole positions. The 
newest CPO definition, introduced in 2000 by the Inter-
national Astronomical Union (IAU), assumes CPO as 
the corrections dX and dY applied to the coordinates 
of the CIP within the ICRF (Resolution B1.6, McCarthy 
and Capitaine 2003). The IAU 2000 recommendations 
introduced a new parametrization of the CPO based on 
the non-rotating origin of the Earth’s orientation matrix 
(McCarthy and Capitaine 2003). The IERS regularly 
publishes the CPO based on the IAU 2000A preces-
sion–nutation model. The conventional offsets expressed 
in terms of longitude (dψ) and obliquity (dε), associated 
with the former IAU 1980 theory of nutation and the 
IAU 1976 precession model (Kaplan 2005), can still be 
accessed from the IERS website.
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Accurate determination of CPO through very-long-
baseline interferometry (VLBI) measurements has been 
possible since 1984. Today, VLBI is widely recognized as 
the most accurate technique for observing CPO (Kiani 
Shahvandi et  al. 2024). In addition, combined solutions 
are calculated by integrating VLBI with other space-geo-
detic techniques. While some models solely include CPO 
determined from geodetic measurements, others also 
offer predictions. Among the many utilized CPO mod-
els accessible to the public are the United States Naval 
Observatory (USNO) combined CPO series produced 
by the IERS Rapid Service/Prediction Center (Dick and 
Thaller 2015; Wooden et al. 2010), the International VLBI 
Service for Geodesy and Astrometry (IVS) combined 
CPO series produced by the IVS Combination Center 
(Böckmann et al. 2010), and the IERS EOP 14 C04 com-
bined CPO series developed by the IERS Earth Orienta-
tion Product Center at the Paris Observatory (Bizouard 
and Gambis 2009). Comparative analyses of these differ-
ent CPO series have been conducted by Malkin (2010a, b, 
2013, 2014, 2017), demonstrating substantial differences 
among them, reaching several tens of μas.

At present, EOP predictions are regularly provided by 
the IERS Rapid Service/Prediction Centre (Luzum et al. 
2001) and many other research groups working on EOP 
predictions (Kiani Shahvandi et al. 2023; Belda et al. 2018; 
Modiri et al. 2024). However, the predictions provided by 
these institutes differ in terms of input data, forecasting 
method, and prediction horizon, leading to different lev-
els of accuracy for each prediction.

Since the beginning of this century, major progress has 
been made in processing geodetic observations for esti-
mating EOP (Bizouard et  al. 2019; Karbon et  al. 2017; 
Nilsson et al. 2014). The First Earth Orientation Param-
eters Prediction Comparison Campaign (1st EOP PCC), 
which was conducted in 2006–2008, aimed to assess and 
compare the accuracy of different prediction methods 
(Kalarus et al. 2010). These methods included the least-
squares (LS) extrapolation and autoregression (AR) (Wu 
et  al. 2019; Xu et  al. 2015), spectral analysis combined 
with LS (Zotov et al. 2018; Guo et al. 2013), artificial neu-
ral networks (ANN) (Schuh et al. 2002), wavelet decom-
position and auto-covariance method (Kosek et al. 2006), 
and Kalman filtering (Xu et  al. 2012; Gross et  al. 1998). 
The main conclusion from this campaign was that no sin-
gle prediction technique could be considered optimal for 
all EOP components and all prediction intervals. It was 
also proved that the prediction accuracy benefits from 
the use of atmospheric and oceanic angular momentum 
(AAM and OAM, respectively) data and forecasts.

At present, there is increased understanding of the 
influence of the Earth’s surficial fluid layers (i.e., atmos-
phere, oceans, and hydrosphere) on the rotational 
changes of the solid Earth (Schindelegger et  al. 2016; 
Nastula et  al. 2019). As additional data in the EOP 
forecasting process, teams often use not only AAM 
and OAM data and predictions but also hydrologi-
cal angular momentum (HAM) and sea-level angular 
momentum (SLAM). Moreover, the number of research 
groups actively developing advanced methods for EOP 

Table 1 List of predicted parameters, length of prediction, prediction techniques, and input data for each ID

A more detailed description of prediction techniques is given in Table 6

*Dobslaw and Hill, 2018

ID Predicted 
parameters

Length of 
prediction 
[days]

Prediction technique Input data

ID 100 dX, dY
dψ, dε

364 Least squares plus autoregression (LS + AR) EOP data (IERS 14 C04 + finals daily)

ID 101 dX, dY
dψ, dε

90 Least squares plus autoregression (LS + AR);
dψ and dε are not predicted but transformed from dX 
and dY predictions

EOP data (IERS 14 C04)

ID 102 dX, dY 364 Least squares (LS) EOP data (IERS 14 C04)

ID 104 dX, dY 179 Kalman filter EOP data (Goddard Space Flight Center, GSFC)

ID 117 dX, dY 365 Empirical free core nutation EOP data (IERS 14 C04 + finals daily)

ID 127 dX, dY 11 First‑order neural ordinary differential equations (ODEs) EOP data (Jet Propulsion Laboratory, JPL); GFZ 
AAM data* and 6‑day predictions

ID 134 dX, dY 11 First‑order neural ODEs EOP data (IERS 14 C04); GFZ EAM 
(AAM + OAM + HAM + SLAM) data* and 6‑day 
predictions

ID 154 dX, dY 31 First‑order neural ODEs EOP data (JPL)

ID 155 dX, dY 31 First‑order neural ODEs EOP data (IERS 14 C04)
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forecasting has increased. Given these advances, it can 
be considered a good time to re-assess the quality of the 
currently available EOP predictions in the frame of the 
Second Earth Orientation Parameters Prediction Com-
parison Campaign (2nd EOP PCC) (Kur et  al. 2022; 
Śliwińska et al. 2022; Śliwińska-Bronowicz et al. 2024). 
The 2nd EOP PCC was initiated in 2021 by a working 
group of the IERS and lasted between September 2021 
and December 2022. The primary objective of the 2nd 
EOP PCC was to thoroughly compare and evaluate dif-
ferent approaches, models, and strategies used in pre-
dicting EOP. The campaign was run by Centrum Badań 
Kosmicznych Polskiej Akademii Nauk (CBK PAN) with 
support from the German Research Centre for Geo-
sciences (GFZ). This project attracted 23 registered 
institutions from 8 countries, involving over 50 peo-
ple regularly delivering predictions based on 50 differ-
ent methods, each assigned a unique ID. Information 
about the campaign progress and technical details can 
be found in the work by Śliwińska et al. (2022) and on 
the 2nd EOP PCC website (http:// eoppcc. cbk. waw. pl/– 
accessed on July 10, 2023).

This paper summarizes the results of evaluation of pre-
dictions of CPO components (dX, dY and dψ, dε) col-
lected during the 2nd EOP PCC. The analyses are based 
on comparison between observed CPO taken from the 
IERS 14 C04 solution and predicted values. We study in 
detail statistics of prediction residuals as well as the mean 
absolute error (MAE) of predictions.

The remainder of the paper is structured as follows. 
Section  2 presents an overview of CPO predictions 
and their preliminary assessment, specifically, statistics 
of prediction methods, input data and submitted files 
(Sect.  2.1) and the analysis of the prediction residuals 
(Sect.  2.2). Detailed evaluation of the accuracy of CPO 
forecasts and the benefits of transformation of dψ, dε to 
dX, dY parameters is presented in Sect. 3. Finally, Sect. 4 
presents the ranking of all CPO predictions, summariz-
ing the campaign results and identifying the most reliable 
forecasting techniques for dX, dY predictions.

2  Overview of CPO predictions
2.1  Prediction methods, input data and statistics 

of submitted files
An overview of the prediction techniques, input data, 
and prediction horizons exploited by campaign partici-
pants is presented in Table 1. A full description of each 
approach is provided in Table 6. Each campaign partici-
pant could apply more than one prediction technique, 
and no recommendations for predictions were given, 
allowing participants freedom in the choice of the predic-
tion method, forecast horizon, and input data. The pre-
diction methods used by the campaign participants were 

LS extrapolation, AR (both methods are used alone or 
in combination), Kalman filter, empirical free core nuta-
tion (FCN), and machine learning (ML). Participants sent 
their predictions for time periods of 11, 31, 90, 179 and 
364, and 365  days. Each registered prediction approach 
was assigned an individual ID by the EOP PCC Office.

All IDs predicted dX, dY parameters and only IDs 
100 and 101 additionally provided forecasts of dψ, dε 
(Table 1). It should be noted that the dψ, dε predictions 
provided by ID 101, according to the participant’s dec-
laration, were not directly forecasted but transformed 
from their dX and dY predictions. During the campaign 
period, all participants sent 559 predictions of dX and 
dY and 185 predictions of dψ and dε using nine differ-
ent forecasting approaches. In addition, we used CPO 
predictions provided by the Rapid Service/Prediction 
Centre of IERS as a comparative dataset. These predic-
tions received the ID 200. The IERS forecasts are sourced 
from regularly updated files finals.daily, based on the 
previous IAU1980 convention for precession–nutation, 
and finals.2000A.daily, based on the current IAU2000A 
convention for precession–nutation (https:// www. iers. 
org/ IERS/ EN/ DataP roduc ts/ Earth Orien tatio nData/ eop. 
html —accessed on May 1, 2023). These forecasts are col-
lected by the EOP PCC Office every Wednesday, follow-
ing the same procedure used for submissions from other 
participants.

The entire set of submitted forecasts was tested to find 
erroneous predictions, which cannot be used in further 
processing. A two-step approach was applied to eliminate 
outlier predictions separately for 10- and 30-day predic-
tion horizon. In the initial stage of data selection, known 
as the “σ criterion”, we independently calculated the 
standard deviation Sj of the differences between refer-
ence (IERS 14 C04) and prediction ( xobs − xpred ) for each 
submitted prediction independently. Subsequently, we 
computed the overall standard deviation of differences 
for all submissions ( Stotal ). Individual predictions with 
Sj > Stotal were excluded from further analysis.

This process targets highly inaccurate predictions that 
deviate significantly from observational data and other 
submissions, possibly due to many factors, such as pro-
ducing highly inaccurate predictions related to incorrect 
units, errors in algorithms, or incorrect use of input data.

In the second step of data selection, to exclude indi-
vidual predictions from a specific participant that signifi-
cantly deviate from the rest of the predictions provided 
by the same participant, we applied a criterion based on 
the β parameter, computed separately for every single 
prediction as described in Kalarus et al. (2010):

(1)βj =
∑I

i=1

(

α ·MDAEi −
∣

∣εi, j
∣

∣

)

http://eoppcc.cbk.waw.pl/
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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where I denotes the length of prediction (I = 10, or 30), 
MDAE is a median absolute prediction error defined 
for the i th day in the future, and the prediction residu-
als εi,j = xobsi − x

pred
i,j  are used to calculate the differences 

between observed EOP data and their i th point for the j 
th prediction. If βj < 0 , the predictions were rejected and 
not included in further processing. The α parameter was 
determined empirically, and in this study, its value was 
chosen as α = 3.

Table 2 shows number of rejected and total submitted 
predictions of dX, dY and dψ, dε for 10- and 30-day pre-
diction horizon together with percentage of rejection. For 
10-day horizon, the set of submitted files was reduced 
by 4.9% because of highly inaccurate forecasts, while for 
30-day predictions, the percentage of rejection was 3.5%. 
In general, the highest percentage of outlier forecasts was 
detected for ID 127, while the lowest—for ID 101. More 

Fig. 1 Number of accepted predictions for each submission day after applying σ and β criteria

Fig. 2 Prediction residuals for a dX and b dY for day 1 of prediction
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erroneous files were identified for dY and dε than for dX 
and dψ.

Figure 1 shows the number of accepted predictions for 
each submission day after applying sigma and beta crite-
ria. It can be seen from the plot that in the case of dψ, dε, 
the number of accepted files is rather stable during the 
whole campaign duration (2–4 submissions), while for 
dX, dY the number of uploaded files has increased after 
April 2022. This is probably due to the addition of new 
methods by one of the participants (IDs 154 and 155).

2.2  Analysis of prediction residuals for dX and dY
This part of our study presents basic statistics of predic-
tion residuals (εi,j) between observed and predicted val-
ues of the parameters dX and dY.

Figures  2 and 3 show time variability of prediction 
residuals for day 1 (ε1,j) and day 8 (ε8,j) computed for each 
ID over the entire campaign duration. The differences 
between the reference and predicted dX, dY series for day 
1 of prediction range from 0.13 to 0.61 mas (Fig. 2), while 
these differences for day 8 of prediction are between 0.24 
and 0.58 mas (Fig. 3).

Figure  4 shows the minimum, mean, maximum and 
range of prediction residuals for dX and dY, computed 
for day 1, day 8, day 15, and day 22 of prediction for 
each ID. Since the predictions from IDs 127 and 134 are 

11 days long, their statistics were computed only for day 
1 and day 8. The maximum range of prediction residuals 
for all considered days is obtained for ID 100 for both dX 
and dY (Fig. 4). For dX, the εi,j values of ID 100 are 0.44, 
0.49, 0.52, and 0.52 mas for day 1, day 8, day 15, and day 
22, respectively. The corresponding εi,j values for dY are 
equal to 0.61, 0.58, 0.57, and 0.54 mas, respectively. ID 
200 has the smallest range of differences for day 1 of pre-
diction, both for dX and dY (equal to 0.13 mas for dX and 
0.16 mas for dY), but this value visibly increases for day 
8, day 15, and day 22 and is comparable to those received 
for other IDs.

As a next step, the distribution of the prediction residu-
als ( εi,j ) of dX, dY parameters was studied by analysing 
their histograms (Fig.  5). The histograms display a sym-
metric, bell-shaped curve with a single peak around the 
mean showing that the data follows a normal distribution 
but with an additional tail. In the case of day 8, the dis-
tribution of individual values is more dispersed than for 
day 1, for which we observe more consistent values of pre-
diction residuals. Figure 5 shows that for day 1, the most 
common values of differences between the reference and 
predicted series (indicated by peaks in the histograms) 
are (–0.07)—0.03 mas for dX and (–0.05)—0.10 mas for 
dY. For day 8, the most frequent values of differences are 
(–0.06)—0.00 for dX and (–0.03)—0.05 mas for dY. It is 

Fig. 3 Prediction residuals for a dX and b dY for day 8 of prediction
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also visible that the prediction residuals are mostly nega-
tive for dX, while for dY there is a greater balance between 
positive and negative values. Moreover, a larger deviation 
of residual values is observed for dY than for dX.

We now analyse relations between prediction residuals 
obtained for day 1 and corresponding residuals received 
for day 8, day 15 and day 22. To do so, for each ID sepa-
rately, we computed correlation coefficients: between 
prediction residuals ε1,j and ε8,j, between ε1,j and ε15,j, and 
between ε1,j and ε22,j, which are presented in Table 3.

For ID 100 there is a strong positive correlation 
between prediction residuals for day 1 and correspond-
ing residuals for other days (between 0.77 and 0.84 for 
both dX and dY). A weak relationship between residu-
als for day 1 of prediction and residuals for other days 
was found for ID 200 (correlation coefficients ranging 
between 0.15 and 0.26 for both dX and dY). This may 
be due to a different behavior of the prediction accuracy 
for ID 200 in the first days of the forecast than in the fol-
lowing days (see also Fig.  4 with statistics of prediction 
residuals for day 1, day 8, day 15, and day 22). Notably, for 

dX of ID 155, the correlations between residuals for day 1 
and other prediction days are above 0.50, while for the dY 
component the corresponding correlations are lower and 
decrease with subsequent days of prediction (i.e., the cor-
relation between residuals for day 1 and day 8 is higher 
than the correlation between those of day 1 and day 15). 
This may suggest that the residuals of predicted dY values 
do not change substantially with prediction day. Over-
all, we do not observe a change in correlation larger than 
40%, except for ID 104, where there is an increase of 60% 
from day 15 to day 22 (dY), for ID 155, where is decrease 
of 50% (dY) and −42% from day 8 to day 15 (dY), and for 
ID 155, where is decrease of 42% (dX) from day 8 to day 
15. This may indicate that the accuracy of prediction does 
not change as the prediction day increases.

In the following, we analyse correlations between 
participants’ prediction residuals separately for day 1, 
day 8, day 15, and day 22 (Fig. 6). For day 1 of predic-
tion for both dX and dY, a strong positive correlation 
(between 0.80 and 1.00) was found for the following 
pairs: IDs 155 and 102, IDs 134 and 102, IDs 127 and 

Fig. 4 Minimum, mean, maximum, and range of prediction residuals for a dX and b dY, computed for day 1, day 8, day 15, and day 22 of prediction 
for each ID. Note that the predictions of IDs 127 and 134 are 12 days long so data for day 15 and day 22 are omitted
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104, IDs 154 and 104, IDs 154 and 127, and IDs 155 and 
134 (see Fig. 6a, b). The highest correlation coefficients 
are detected for ML-based methods, either between 
prediction residuals from two ML-based methods 
(between IDs 154 and 127, between IDs 155 and 134) 
or between prediction residuals from ML and from 
other techniques (between IDs 155 and 102, between 
IDs 134 and 102, between IDs 127 and 104, between 

IDs 154 and 104). For day 1, predictions from ID 200 
disseminated by IERS, are characterized by lower cor-
relations (between − 0.20 and 0.40) than those of other 
IDs (except for correlation between IDs 101 and 134 
and between IDs 101 and 102).  For those pairs of IDs 
that had the highest correlations for day 1, the correla-
tions are also high for day 8 (see Fig. 6c, d), day 15 (see 
Fig. 6e, f ) and day 22 (Fig. 6g, h).

Fig. 5 Distributions of the prediction residuals for a dX and b dY for day 1 and day 8 of predictions for all IDs with their respective best‑fitted 
normal distributions

Table 3 Correlation coefficients: between prediction residuals ε1,j and ε8,j, between ε1,j and ε15,j, and between ε1,j and ε22,j, computed 
for each ID separately

In brackets, the percentage change in correlation coefficients relative to the previous one is shown

dX dY

Day 1 vs. day 8 Day 1 vs. day 15 Day 1 vs. day 22 Day 1 vs. day 8 Day 1 vs. day 15 Day 1 vs. day 22

ID 100 0.84 0.83 (−1%) 0.77 (−7%) 0.84 0.80 (−5%) 0.81 (1%)

ID 101 0.74 0.79 (7%) 0.76 (−4%) 0.78 0.71 (−9%) 0.80 (13%)

ID 102 0.60 0.73 (22%) 0.60 (−18%) 0.34 0.40 (18%) 0.48 (20%)

ID 104 0.52 0.70 (−35%) 0.53 (−32%) 0.60 0.48 (−20%) 0.64 (60%)

ID 117 0.73 0.78 (6%) 0.66 (−15%) 0.53 0.49 (−8%) 0.47 (−4%)

ID 127 0.49 – – 0.46 – –

ID 134 0.48 – – 0.21 – –

ID 154 0.40 0.57 (42%) 0.37 (−35%) 0.65 0.57 (−12%) 0.53 (−7%)

ID 155 0.54 0.62 (15%) 0.52 (−16%) 0.34 0.20 (−41%) 0.10 (−50%)

ID 200 0.24 0.26 (8%) 0.24 (−8%) 0.24 0.15 (−38%) 0.15 (0%)
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Fig. 6 Correlation coefficients between prediction residuals for each ID, computed separately for day 1 (a, b), day 8 (c, d), day 15 (e, f), and day 22 (g, h)
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There is no noticeable decrease in the correlation 
between different IDs for day 15 and day 22 of predic-
tion compared with the values received for day 1 and 
day 8, and no negative correlations are noted. Despite 
the use of different prediction methods and differ-
ent forecast horizons, there is a positive correlation 
between prediction residuals obtained for different IDs.

The correlation between residuals for ID 200 and 
residuals from the other participants increased in day 
8, day 15 and day 22 compared to the correlations 
received for day 1, especially for the dY component. 
Taking into account all considered prediction days, 
residuals of ID 200 have the highest agreement with 

the residuals for IDs 101 and 154 and the lowest cor-
respondence with the residuals for ID 102.

3  Detailed evaluation of predictions
3.1  MAE and its time evolution
In this section, we assess the quality of CPO predic-
tions from all IDs based on MAE computed according 
to the following equation (Kalarus et al. 2010):

(2)MAEi =
1

np

∑np

j=1

∣

∣εi,j
∣

∣,

Fig. 7 MAE for a dX and b dY predictions for up to 10 days into the future for each ID
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where np is the number of predictions related to the same 
ID and the same dX, dY or dψ, dε data.

We consider MAE for the 10-day and 30-day predic-
tion horizon (Figs.  7 and 8, respectively). Figures  7 and 
8 additionally include MAE values for day 0, which rep-
resents the day of submission (the last observational data 
record). Day 0 is used to assess whether participants 
encountered any errors during the preparation of obser-
vational data, which could affect their forecast accuracy. 
Since final IERS 14 C04 solution is usually published with 
around 6-week delay, to perform prediction, participants 
usually use IERS 14 C04 supplemented with different 
rapid solutions that are not as accurate as the final IERS 

14 C04 series due to limited access to all data and shorter 
processing time. Therefore, differences at day 0 between 
various participants may result from diverse rapid data 
used or different methods of processing of that data. 
Large errors at day 0 may indicate problems with cor-
rect data preparation or limitations in access to the lat-
est observational data. Except for IDs 100 (Fig.  7a) and 
101 (Fig. 7b), there were no issues at the data preparation 
stage, as MAE for day 0 is relatively low for most IDs. For 
day 0, the MAE for ID 200 is lower than for other partici-
pants; however, for this ID MAE increases rapidly after 
day 1 of prediction for both dX and dY, suggesting some 
modelling errors.

Fig. 8 MAE for a dX and b dY predictions for up to 30 days into the future for each ID
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For the dX component, most IDs show a similar course 
of the MAE change, with little increase in error between 
day 1 and day 10 (Fig. 7a). However, MAE for ID 100 is 
visibly higher than that of the other IDs (between 0.14 
and 0.16 mas) for the whole prediction horizon. Notably, 
for ID 200, MAE increases almost linearly (MAE equal to 
0.04 mas for day 1, and 0.13 mas for day 10). The MAE of 
dX forecast from ID 200 is higher than that of any other 
ID after day 2 of prediction. Of all IDs, ID 154 provides 
the lowest MAE value on day 10 (about 0.05 mas).

For the dY component, the MAE for the consecutive 
forecast days remains relatively stable for all IDs except 
200 (Fig.  7b). For IDs 100 and 101, the MAE is greater 
than that for other IDs and reaches 0.09–0.12 mas for 
the whole prediction horizon. The forecasts provided by 
IDs 134 and 127 are the most accurate for day 10 of the 
prediction (MAE values about 0.06 mas). Similar to the 
results for dX, MAE for the dY parameter provided by ID 
200 is lower than corresponding values for other IDs only 
for day 1 and day 2 of the prediction. The almost linear 
increase in error causes the MAE of ID 200 to reach 0.09 
mas on day 10 of prediction.

Figure  8 shows that, for a 30-day prediction horizon, 
the MAE values for dX and dY do not increase linearly; 
however, about every seventh day of prediction there are 

peaks of increased prediction errors. The nature of these 
peaks is not entirely known, but they appear practically 
for every ID, so it might be a matter of the C04 data. For 
ID 104, these peaks might indeed be somewhat different, 
but generally in dX, they are not as pronounced as in dY, 
and more varied depending on the ID. In dY, however, 
distinct peaks appear practically for all IDs. Similar to the 
10-day prediction horizon, MAE for forecasts from ID 
200 rises most rapidly for the first 10 days of prediction; 
however, for the subsequent days, the change in MAE as 
the prediction day increases is of a similar course as in 
the case of MAE for other participants. For the dX com-
ponent, the lowest MAE on day 30 of the prediction is 
found for IDs 104 and 154 (0.05 mas). For the dY compo-
nent, the lowest MAE is provided by IDs 117 (0.08 mas) 
and 102 (0.06 mas).

We also investigated whether participants improved 
their methods throughout the campaign by plotting 
the MAE for a 10-day prediction horizon for dX and 
dY (Figs.  9 and 10, respectively) across eight consecu-
tive 2-month periods: P1, from 1st September 2021 to 
31st October 2021; P2, from 1st November 2021 to 31st 
December 2021; P3, from 1st January 2022 to 28th Feb-
ruary 2022; P4, from 1st March 2022 to 30th April 2022; 
P5, from 1st May 2022 to 30th June 2022; P6, from 1st 

Fig. 9 MAE for dX predictions for individual 2‑month periods (a–h). The thick black line represents the mean value of MAE over the 2‑month period 
(“Mean for period"), the thick magenta line (“Mean for all”) represents mean MAE for the whole campaign duration
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July 2022 to 31st August 2022; P7, from 1st September 
2022 to 31st October 2022; and P8, from 1st Novem-
ber 2022 to 31st December 2022. Each MAE plot also 
includes the mean MAE for all IDs in each considered 
period and the mean of MAE for all IDs for the whole 
campaign duration.

To quantify the change in MAE in each period rela-
tive to the previous one, the percentage change (PCh) 
of MAE for each of the above periods was calculated as 
follows:

where  MAEi is the value for the ith point of prediction 
computed for the nth period. If PCh > 0, the preceding 
period has a lower MAE (predictions are improved). If 
PCh < 0, the preceding period has a higher MAE (pre-
dictions are worsened). The  PChn values are shown in 
Fig. 11.

Figure  9 shows that for dX, the mean value of MAE 
computed for the whole campaign duration and mean 
value of MAE obtained for each period is comparable in 
the P1 (Fig.  9a) and P7 periods (Fig.  9g). Conversely, in 
the P8 period (Fig. 9h), the mean MAE for this 2-month 

(3)

PChn = mean

(

MAEi(n)−MAEi(n+ 1)

MAEi(n)

)

· 100%

period is substantially higher than for the previous peri-
ods and the whole campaign duration. This is due to the 
high value of MAE detected for IDs 100 and 200. The 
accuracy of predictions from IDs 200 and 117 is higher 
than the mean MAE in the P1 (Fig.  9a) and P2 periods 
(Fig.  9b). Over the following months, the accuracy of 
both forecasts increased considerably. However, the 
MAE value for ID 200 increased substantially again for 
the last 4 months (P7–P8) of the campaign, while ID 117 
maintained a high forecast accuracy. During the period 
of increased forecast errors for ID 200 (P1, P2, P8), there 
was also a clear linear increase in MAE for this predic-
tion, especially between day 2 and day 6 of forecast. In 
other periods, the behavior of MAE for ID 200 is simi-
lar to that observed for the other IDs. From January 1, 
2022 to June 30, 2022 (P3–P5), the MAE values for each 
ID are below 0.15 mas and remain stable for the whole 
prediction horizon. Starting from around the middle of 
the campaign duration, the average MAE for the period 
is changed only by single outlier IDs, for which the errors 
are visibly higher than for the others [IDs 100 and 117 for 
P5 (Fig. 9e), IDs 101 and 102 for P6 (Fig. 9f ), IDs 100 and 
102 for P7 (Fig. 9g), IDs 100 and 200 for P8 (Fig. 9h)].

For the dY predictions (Fig. 10), the mean MAE com-
puted for the whole campaign duration and for each 

Fig. 10 MAE for dY prediction for individual 2‑month periods (a–h). The thick black line represents the mean value of MAE over the 2‑month period 
(“Mean for period"), the thick magenta line (“Mean for all”) represents mean MAE for the whole campaign duration
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period separately is comparable for the P4–P6 periods 
(Fig. 10d–f). The mean MAE for the P3 (Fig. 10c) and P8 
periods (Fig. 10h) is higher than the MAE for the whole 
campaign period, which relates to the high MAE of ID 
101. For P3 (Fig. 10c), which covers the period between 
January 1, 2022 and February 28, 2022, all MAE values 
are very high (above 0.05 mas starting from day 1). In the 
P7 period (Fig. 10g), the highest MAE values are for IDs 
100 and 101. In the P6 period (Fig. 10f ), ID 101 has the 
highest MAE values, whereas IDs 101 and 104 have the 
highest MAE values in the P5 period (Fig. 10e). The high-
est MAE value was observed for ID 101 in the P3 and P8 
periods (Fig. 10c, h, respectively).

The values of percentage change of MAE in analysed 
periods are shown in Fig. 11. It can be seen that the accu-
racy of predictions of dX component varies between the 
2-month periods for all IDs, but we do not observe a con-
stant decrease or increase in MAE, but rather alternating 
periods of improvement and deterioration in accuracy 
(Fig. 11a). The period P8 exhibits a clear increase in accu-
racy for almost all IDs as most values of PCh are posi-
tive. For ID 134, after some decrease of accuracy in P2 

(November–December 2021), and P3 (January–February 
2022) there is a prominent MAE improvement in the P5 
(May–June 2022) and P8 (November–December 2022) 
periods. In the case of P7 (September–October 2022) 
period, we note a decrease of prediction accuracy for all 
IDs except for ID 101.

Figure  11b shows that the accuracy of dY predictions 
increased for most IDs in most periods. A decrease of 
MAE from one period to the next was observed in the 
following cases: in period P4 (November–December 
2021) for all IDs; in period P5 (May–June 2022) for ID 
100 (73%), and ID 200 (40%); for period P7 (September–
October 2022) for all IDs excluding IDs 100 and 200; 
for period P8 (November–December 2022) for all IDs 
excluding IDs 101 and 127. In period P5, for most IDs 
the deterioration in accuracy is noticeable. In general, for 
dY predictions of most IDs, after declines in prediction 
accuracy in the first half of the campaign, the accuracy 
improves in the majority of cases in the last months of 
the 2nd EOP PCC duration. In contrast, for dX forecasts, 
periods of increased and decreased prediction accuracy 
alternated with each other.

3.2  Transformation between dX, dY and dψ, dε
Many of the existing algorithms that are applied to posi-
tional astronomy are reliant on conventional transforma-
tions (Hohenkerk 2017). These transformations involve 

Fig. 11 Percentage change (PCh) of MAE for a dX and b dY 
predictions in individual analysis periods (P2–P8) in relation 
to the previous periods (P1–P7). The periods where data are 
not available are marked as grey, red colors indicate a MAE reduction, 
green colors indicate a MAE increase

Fig. 12 a MAE for d ψ , b MAE for d ε predictions for up to 10 days 
into the future for IDs 100, 101, and 200
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expressing the sequence of rotations between the terres-
trial and celestial systems using familiar angular quanti-
ties based on the equinox and sidereal time. Even though 
the IAU 2000A precession–nutation model and the new 
definition of UT1 can be implemented without adopting 
the (X, Y) coordinate scheme for pole coordinates used 
by the IERS, the new models still describe the pole’s posi-
tion using conventional angles (Kaplan 2005). The X and 
Y components must be derived from these angular quan-
tities. Consequently, even users implementing the new 
IAU models may need to convert dX and dY values to 
their equivalent dψ and dε values.

This section discusses the influence of conventional 
transformation between dψ, dε and dX, dY components 
of CPO on the MAE values for the 10-day forecast hori-
zon. To do this, we compare MAE for original dX, dY 
predictions with MAE of dX, dY predictions obtained 
by transformation from dψ, dε forecasts. This analysis is 
conducted only for IDs that provided forecasts for both 
dX, dY and dψ, dε components of CPO (IDs 100, 101, and 
200).

To perform a transformation of CPO from IAU 1980 
(dψ, dε) to IAU 2000 (dX, dY) model, we used the package 
of subroutines, uai2000.package, available at the Earth 

Orientation Center of Paris Observatory (https:// hpiers. 
obspm. fr). The programs, originally written by Chris-
tian Bizouard from Systèmes de Référence Temps Espace 
(SYRTE), are based upon the International Astronomical 
Union’s SOFA (Standards of Fundamental Astronomy) 
matrix transformations. SOFA service (http:// www. iauso 
fa. org/) provides astronomical software packages that 
contain sets of algorithms and procedures for imple-
menting standard models used in fundamental astron-
omy (Wallace 1998).

First, we analyse the accuracy of original predictions 
of dψ, dε by showing their MAE over the 10-day predic-
tion horizon (Fig. 12). One can see in the figure that in 
the case of dψ, MAE values for day 0 for IDs 100 and 101 
are much higher than in the case of ID 200 and reach 
0.46 and 0.66 mas, respectively (Fig. 12a). In contrast, the 
MAE for day 0 of ID 200 equals 0.07 mas and increases 
almost linearly for the next 10 days. The MAE for day 0 
for the dε parameter is equal to 0.04 mas for ID 200 and 
0.10 mas for ID 101 and does not change noticeably for 
the next 10 days of prediction. Conversely, the MAE for 
day 0 for ID 100 reaches 0.23 mas, it increases until day 7, 
reaching a maximum value of 0.41 mas, and then begins 
to decrease again until 0.32 mas at day 10.

Fig. 13 Impact of transformation from dψ, dε to dX, dY on MAE: a MAE for dX obtained by transformation of d ψ,), b MAE for dY obtained 
by transformation of d ε , c differences of MAE between original submitted dX predictions and the transformed dX from d ψ predictions, and d 
differences of MAE between original submitted dY predictions and the transformed dY from d ε predictions

https://hpiers.obspm.fr
https://hpiers.obspm.fr
http://www.iausofa.org/
http://www.iausofa.org/
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We now come to the comparison of the accuracy 
of original dX, dY forecasts (shown in Fig.  7) with the 
accuracy of forecasts received by transformation from 
dψ, dε. MAE for the transformed dX, dY are plotted in 
Fig. 13a, b, while the MAE differences between original 
dX, dY predictions and transformed dX, dY predictions 
are shown in Fig.  13c, d. Note that, as declared by the 
participant submitting predictions under ID 101, their 
predictions of dψ, dε are not direct forecasts of these 
components, but they are transformed values of the dX, 
dY predictions developed by that participant. Therefore, 
in this case we deal with a double transformation.

The transformation results show higher MAE val-
ues in all cases for transformed than for directly pre-
dicted dX and dY values. The smallest difference in 
MAE between original and transformed predictions 

of dX, dY is obtained for the case of ID 200. This might 
suggest that for ID 200 both dX, dY and dψ, dε are pre-
dicted with similar level of accuracy. The differences 
between MAE computed for original and transformed 
dX, dY predictions are highest for ID 101 (in the case of 
dX transformed from dψ) and ID 100 (in the case of dY 
transformed from dε). This means that after parameter 
prediction transformations, the MAE increases com-
pared with the untransformed data. This also suggests 
issues with the prediction of dψ, dε by IDs 100 and 101, 
which contribute to the increased MAE of dX, dY pre-
dictions after transformation. As a result, replacing pre-
dicted dψ, dε with their transformation to dX, dY is not 
recommended. This analysis illustrates the influence of 
differences in accuracy between dX, dY and dψ, dε pre-
dictions on the results of the parameter transformation, 

Table 4 Ranking of IDs according to the adopted criteria and the number of points awarded to each ID in individual categories for dX

Place ID sum of points % of rejected 
predictions

Range of 
prediction 
residuals

MAE for day 1 MAE for day 6 MAE for day 7 MAE for 
day 10

Median PCh

1 ID 154 13 3 2 2 1 1 1 3

2 ID 127 25 8 3 3 2 2 2 5

3 ID 155 26 1 1 9 5 4 4 2

4 ID 101 27 2 5 5 4 5 5 1

5 ID 104 33 4 8 4 3 3 3 8

6 ID 134 38 1 4 6 8 6 6 7

7 ID 117 42 7 6 7 6 7 7 2

8 ID 200 47 6 9 1 9 9 9 4

9 ID 102 49 5 7 8 7 8 8 6

10 ID 100 53 1 10 10 10 10 10 2

Table 5 Ranking of IDs according to the adopted criteria and the number of points awarded to each ID in individual categories for dY

Place ID Sum of points % of rejected 
predictions

Range of 
prediction 
residuals

MAE for day 1 MAE for day 6 MAE for day 7 MAE for 
day 10

Median PCh

1 ID 155 10 2 1 2 1 1 1 2

2 ID 154 20 5 2 5 2 2 2 2

3 ID 134 22 4 3 3 3 4 3 2

4 ID 102 31 1 4 7 6 5 6 2

5 ID 127 32 7 6 6 4 3 4 2

6 ID 117 39 8 5 4 5 6 5 6

7 ID 200 41 3 9 1 8 8 8 4

8 ID 104 43 6 7 8 7 7 7 1

9 ID 101 53 1 8 9 10 10 10 5

10 ID 100 59 9 10 10 9 9 9 3
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rather than the impact of the transformation itself on the 
accuracy of the transformed predictions.

4  Summary and conclusions
In this study, we analyzed the accuracy of CPO predic-
tions collected during the 2nd EOP PCC, using the IERS 
14 C04 solution as a reference. The campaign’s primary 
objective was to evaluate the current potential of EOP 
prediction. This involved exploring emerging method-
ologies such as ML, which have seen rapid advances in 
recent years. The 2nd EOP PCC was an excellent and 
innovative opportunity for scientists from a range of 
countries and institutes to collaborate and compete in 
enhancing EOP predictions. With the participation of 23 
institutions worldwide, the operational phase of the cam-
paign spanned 70  weeks and yielded an unprecedented 
collection of EOP forecasts.

The 2nd EOP PCC served as a valuable endeavor to 
assess different prediction techniques within a stand-
ardized framework and under consistent rules and con-
ditions. During the campaign, CPO were predicted by 6 
groups with 9 different approaches, and more than 500 
predictions were submitted to the EOP PCC Office. It 
was found that the ML and Kalman filter approaches 
achieved the highest accuracy for CPO prediction. 
Depending on the evaluated prediction approach, 
the MAE values computed for day 10 of forecast are 
between 0.03 and 0.16 mas for dX, between 0.03 and 
0.12 for dY, between 0.07 and 0.91 mas for dψ, and 
between 0.04 and 0.41 mas for dε. For day 30 of pre-
diction, the corresponding MAE values range between 
0.03 and 0.12 mas for dX, between 0.03 and 0.14 mas 
for dY.

To summarize the achievements of the 2nd EOP PCC 
in CPO prediction, we devised a ranking of IDs based on 
the following criteria:

1) Percentage of rejected submissions: this criterion 
evaluates the credibility of predictions by measuring 
the proportion of unreliable or inconsistent submis-
sions;

2) Range of differences between the reference val-
ues and the prediction: this criterion examines the 
repeatability of predictions by assessing the range 

of prediction residuals. Forecasts with high stability 
over time should exhibit a small range of prediction 
residuals;

3) MAE values for day 1, day 6, day 7 and day 10: this 
criterion evaluates the quality of predictions at the 
beginning, middle, and end of a 10-day prediction 
horizon. Predictions for 30 days into the future were 
not considered to include all IDs in the ranking;

4) Median PCh: this criterion assesses the stability of 
the method’s accuracy.

Under the classification, each ID has been assigned 
points (from 0 to 10) corresponding to its position, with 
the understanding that a lower number of points indi-
cates a higher position in the ranking. The rankings for 
dX and dY are shown in Tables  4 and 5, respectively. 
Overall, predictions made by ML algorithms (IDs 127, 
134, 154, and 155) are at the top of the ranking, indicat-
ing the credibility of this approach in CPO forecasting. 
For prediction of the dX and dY parameters, the lowest 
rankings are represented by prediction techniques based 
on the LS + AR (except for ID 101, which took fourth 
place for dX).

One of the main conclusions of this study is that the 
CPO predictions provided by the IERS are not sufficiently 
reliable, especially for the first days of prediction, due to 
an almost linear increase of the MAE for up to 10 days 
into the future. Overall, the results of the 2nd EOP PCC 
are promising as most of CPO predictions processed by 
campaign participants achieve accuracy similar or bet-
ter than the accuracy received for forecasts provided by 
the IERS, especially after around third day of prediction. 
Moreover, in contrast to the forecasts disseminated by 
the IERS, predictions developed by 2nd EOP PCC par-
ticipants do not show a significant increase in prediction 
errors with increasing prediction day. Therefore, ML-
based forecasts can be successfully used in operational 
applications where accurate predictions for the first days 
of the forecast horizon are most important.

Appendix
See Table 6.
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Table 6 Description of each ID predicting dX, dY, dψ, and dε as provided by 2nd EOP PCC participants

ID 100: Least‑squares extrapolation and auto‑regressive model (LS + AR model)

Input data used: EOP data (C04 + finals daily)

Names and affiliations of participants: Xueqing Xu
CAS Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Predicted parameters: dX, dY, d ψ , dε 

Description of method: The LS + AR: as complex variations of the Earth’s rotation, there are commonly relative regular and irregular signals coupling 
in the EOP data series, such as the trend, annual, Chandler terms, and high‑frequency trembles in polar motion; and the trend, interannual, seasonal, 
and sub‑seasonal oscillations in LOD changes. For the predictions of these stable signals, we adopt the LS model expressed by polynomial trend 
and harmonic oscillations; and a stochastic process AR model can be employed for the predictions of irregular variations (Xu et al. 2015; Xu et al. 2012)

ID 101: LS + AR

Input data used: EOP data (IERS 14 C04)

Names and affiliations of participants: Yuanwei Wu, Xin Zhao, Xinyu Yang
National Time Service Center of Chinese Academy of Sciences

Predicted parameters: dX, dY (dψ and dε are not predicted but transferred from dX and dY)

Description of method: The dX and dY series are predicted using the LS + AR method. A linear term and two periodic terms are used in least‑squares 
fitting to mode the free‑core nutation (FCN) signal. The dX and dY are predicted separately, which sometimes results in a better prediction of one 
component than the other

ID 102: least‑squares (LS)

Input data used: EOP data (IERS 14 C04)

Names and affiliations of participants: Christian Bizouard, Observatoire de Paris

Predicted parameters: dX, dY

Description of method: For all predicted EOP parameters, the past data allowing to build the prediction are the daily operational C04 series 
up to the current date. The predicted values are given for each day of the interval [MJD0, MJD0 + 365] at 0 h UTC 
dX, dY: (1) LS estimation of a set of 50 harmonic circulation oscillation from 1984 until the last VLBI estimates. This model includes the FCN as the sum 
of several close periodic terms. (2) Extrapolation

ID 104: Kalman filter

Input data used: EOP data (Goddard Space Flight Center, GSFC)

Names and affiliations of participants: Richard Gross, Dale Boggs, Mike Chin, Todd Ratcliff
NASA Jet Propulsion Laboratory, California Institute of Technology

Predicted parameters: dX, dY

Description of method: The input dX(t), dY(t) observations of celestial pole offsets (CPOs) are smoothed using a Kalman filter and smoother. The 
applied Kalman filter includes a model of the dX(t), dY(t) process that consists of a sum of a linear trend, an annual periodic term, a FCN periodic term, 
a first‑order autoregressive (AR‑1) process, and a term representing observational white noise. The fit is performed during each prediction solution 
and is conducted using the most recent 365 days of input data. During the fit, a search is conducted for the best‑fitting FCN period. A different FCN 
period, typically ranging between 443 and 449 days, is used for each prediction. The model that is fit to the input dX(t), dY(t) observations in this man‑
ner is then used to predict the future values of dX(t), dY(t)

ID 117: the empirical free core nutation

Input data used: EOP data (IERS 14 C04 + Bulletin A)

Names and affiliations of participants: Sadegh Modiri (1), Daniela Thaller (1), Santiago Belda (2), Sonia Guessoum (2), Jose M Ferrandiz (2), Shrishail 
Raut (3, 4), Sujata Dhar (3), Robert Heinkelmann (3), Harald Schuh (3, 4)
(1) Federal Agency for Cartography and Geodesy BKG, Frankfurt am Main, Germany
(2) UAVAC, University of Alicante, Alicante, Spain
(3) GFZ German Research Centre for Geosciences, Potsdam, Germany
(4) Technische Universitat Berlin, Institute for Geodesy and Geoinformation Science, Berlin, Germany

Predicted parameters: dX, dY

Description of method: The empirical FCN B16 model is applied to CPO prediction (Belda et al. 2016, 2018). The B16 model was developed 
with higher temporal resolution by fitting the amplitude parameters directly to the observed CPO data using specific parameters such as a slid‑
ing window length of 400 days, a displacement step size of 1 day, and a constant period of − 431.18 sidereal days. Keeping the latest amplitudes 
and phase constant, daily CPO values are predicted by extrapolating the FCN model with the parameters derived from the CPO values of the 400 days 
preceding the prediction epoch. These parameters were chosen to optimize the accuracy of the model and ensure that it could capture the complex 
motion of the Earth’s axis

ID 127, 134, 154, 155: first order neural ordinary differential equations

Input data used:
127: EOP data (Jet Propulsion Laboratory, JPL), GFZ AAM data and 6‑day predictions
134: EOP data (IERS 14 C04), GFZ EAM (AAM + OAM + HAM + SLAM) data, and 6‑day predictions
154: EOP data (JPL)
155: EOP data (IERS 14 C04)
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