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Abstract
Tree allometric models, essential for monitoring and predicting terrestrial carbon 
stocks, are traditionally built on global databases with forest inventory measurements 
of stem diameter (D) and tree height (H). However, these databases often combine H 
measurements obtained through various measurement methods, each with distinct 
error patterns, affecting the resulting H:D allometries. In recent decades, terrestrial 
laser scanning (TLS) has emerged as a widely accepted method for accurate, non-
destructive tree structural measurements. This study used TLS data to evaluate the 
prediction accuracy of forest inventory-based H:D allometries and to develop more ac-
curate pantropical allometries. We considered 19 tropical rainforest plots across four 
continents. Eleven plots had forest inventory and RIEGL VZ-400(i) TLS-based D and 
H data, allowing accuracy assessment of local forest inventory-based H:D allometries. 
Additionally, TLS-based data from 1951 trees from all 19 plots were used to create 
new pantropical H:D allometries for tropical rainforests. Our findings reveal that in 
most plots, forest inventory-based H:D allometries underestimated H compared with 
TLS-based allometries. For 30-metre-tall trees, these underestimations varied from 
−1.6 m (−5.3%) to −7.5 m (−25.4%). In the Malaysian plot with trees reaching up to 77 m 
in height, the underestimation was as much as −31.7 m (−41.3%). We propose a TLS-
based pantropical H:D allometry, incorporating maximum climatological water deficit 
for site effects, with a mean uncertainty of 19.1% and a mean bias of −4.8%. While 
the mean uncertainty is roughly 2.3% greater than that of the Chave2014 model, this 
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1  |  INTRODUC TION

Tropical forests are home to some of the highest aboveground 
vegetation carbon stocks globally (Santoro et al., 2020). However, 
climate change and the ongoing processes of deforestation and 
forest degradation are causing these ecosystems to transition from 
carbon sinks to carbon sources, as evidenced by recent studies 
(Gatti et al., 2021; Hubau et al., 2020; IPCC, 2022). The impact of 
our warming climate is further exacerbating this situation, leading 
to increased tropical tree mortality rates and forest degradation at 
a global scale (Bauman et  al.,  2022; Lapola et  al.,  2023). Notably, 
large trees, which play a crucial role in sequestering carbon, are also 
highly susceptible to climate-induced stress, making them more vul-
nerable to drought-induced mortality (Bennett et al., 2015; Tavares 
et al., 2023). Consequently, there is a growing urgency to better un-
derstand the intricate relationship between tropical forests, their 
aboveground biomass (AGB) and the effects of climate warming. 
This understanding is crucial for predicting, monitoring and mitigat-
ing the consequences of climate change, as well as for devising im-
proved management strategies for tropical forests.

AGB cannot be directly, non-destructively measured on site and 
is therefore, often estimated using allometric size-to-mass models 
from more easily measurable properties of stem diameter (D) and 
tree height (H) (Brown, 1997). When D, H and wood-specific gravity 
(or wood density) are known, a single AGB model can be applied 
across different tropical vegetation types with no detectable effect 
of the region or environmental factors (Chave et al., 2014). However, 
this is strongly contingent on the assumption of accurate H measure-
ments or estimations. Several studies have stressed the significance 
of incorporating H into biomass estimations for tropical forests 
(Chave et al., 2014; Feldpausch et al., 2012). Tree height data are also 
instrumental in scaling AGB from local plots to regional and global 
levels using remote sensing techniques, underscoring the necessity 
for an extensive dataset of H for calibration and validation (Jucker 
et al., 2017). However, the available destructive calibration data for 
constructing these allometric models often suffer from limitations 
and biases, predominantly favouring smaller, more easily measured 
trees while underrepresenting larger ones (Burt et al., 2020; Calders 
et al., 2022). Consequently, this introduces uncertainties and biases 
into plot-scale allometric models, which in turn can propagate into 
regional and global models (Avitabile et al., 2016).

In tropical rainforests with dense canopies, accurately measur-
ing H using forest inventory methods (e.g. measuring tape and poles 
for small trees, different hypsometers, ultrasonic and laser range-
finders, mechanical clinometers, physically climbing the tree with a 
tape measure, expert estimation and destructive methods), hereaf-
ter referred to as inventory methods, can be challenging, and data 
on H is often limited in quantity or accuracy (Hunter et  al.,  2013; 
Larjavaara & Muller-Landau,  2013). In such cases, individual H is 
estimated through the use of tree height-to-stem diameter (H:D) 
allometric relationships, which typically assume a constant H:D 
ratio, stem taper and crown-mass fraction (Feldpausch et al., 2011). 
Local H:D models offer more precise height estimations (Fayolle 
et al., 2016; Imani et al., 2017; Kearsley et al., 2013) because they in-
herently account for environmental conditions, forest structure and 
the disturbance history of the specific plot. Furthermore, Sullivan 
et al.  (2018) demonstrated that by using a sample of just 50 trees 
per site (plot sizes ranging between 0.25 and 4.4 ha), including the 
10 largest trees, one can develop local H:D models with low pre-
diction errors. This approach significantly reduces sampling efforts, 
particularly for the largest trees, for which H measurement is often 
highly challenging or even unfeasible (Hunter et al., 2013; Larjavaara 
& Muller-Landau, 2013).

In the tropics, regional, continental or pantropical models are 
frequently employed for H estimation. One of the widely used pan-
tropical H:D models was developed by Chave et al. (2014), where 
H is predicted from D and three climatic variables. This model was 
constructed using a dataset comprising 4004 trees from 58 sites 
encompassing tropical forests, subtropical forests and woodland 
savannas. Most databases used for pantropical allometries com-
bine D and H data collected at permanent plots using various in-
ventory methods, each with distinct measurement uncertainties 
(Burt et al., 2020). Even when H is measured destructively, often 
different approaches are applied post-harvest (Burt et al., 2020). 
The accuracy of H measurements is also contingent on the struc-
tural complexity of the forest, the observer's experience and the 
equipment employed. This can introduce subjectivity and mea-
surement heterogeneity, potentially biasing the resulting H:D 
models (Laurin et  al.,  2019). Measuring D is also often challeng-
ing in tropical rainforests due to stem deformities and buttressed 
roots reaching several metres in height. Measuring D above these 
roots is time-consuming, hazardous and difficult to replicate, 

model demonstrates more consistent uncertainties across tree size and delivers less 
biased estimates of H (with a reduction of 8.23%). In summary, recognizing the errors 
in H measurements from forest inventory methods is vital, as they can propagate into 
the allometries they inform. This study underscores the potential of TLS for accurate 
H and D measurements in tropical rainforests, essential for refining tree allometries.

K E Y W O R D S
accuracy, forest inventory, terrestrial laser scanning, tree allometry, tree height, tropical 
rainforest

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17473 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [11/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3 of 18TERRYN et al.

particularly in the context of monitoring (Cushman et al., 2014). As 
a result, the measurement of D for these buttressed trees is more 
prone to errors, and situations may arise where the D is not mea-
sured. Nevertheless, in contrary to H, D is more consistently mea-
sured based on a single instrument and straightforward protocols 
such as those provided by the Forest Global Earth Observatory 
(ForestGEO) network (Anderson-Teixeira et  al.,  2015; Condit 
et al., 2014). Measurement difficulties can result in biased H cen-
sus data, especially for large tropical trees with substantial AGB, 
impacting the H:D relationships. This raises questions about the 
accuracy of H:D models derived from various inventory-based 
measurements. Specifically, data interoperability and the influ-
ence of measurement uncertainty, as well as traceability, must be 
well understood before utilizing these extensive global databases 
to establish new allometries.

Terrestrial laser scanning (TLS), also known as terrestrial lidar, has 
transformed the way we assess forest structure. Laser scanning is an 
active remote sensing technique that emits laser pulses and analyses 
the returned energy over time (in the case of time-of-flight scanners) 
or the phase difference (in case of phase-shift scanners) to precisely 
measure distances. With this technology, we can capture the three-
dimensional (3D) structure of the forest and its individual trees in 
the form of point clouds. These point clouds allow us to derive struc-
tural metrics like D, H and crown dimensions relatively quickly, accu-
rately and easily (Calders et al., 2015; Hopkinson et al., 2004; Tansey 
et al., 2009). A study conducted by Terryn et al. (2022) demonstrated 
that using high-end TLS equipment (RIEGL VZ400), accuracies of 
2 cm for D (at both breast height and above buttresses) and 30 cm 
for H can be achieved for trees (15–37 m tall) in two dense tropi-
cal rainforest plots. In contrast, inventory-based H measurements 
in dense tropical forests can exhibit biases of up to 10 m (Laurin 
et al., 2019). Over recent years, the use of TLS in forest assessments 
has witnessed a substantial rise, establishing itself as a traceable, 
non-destructive and accurate method for numerous tree structural 
measurements. However, it is crucial to highlight that achieving this 
is feasible only after processing the raw point cloud data, which 
essentially comprises x, y, z coordinates. Processing steps, such as 
co-registration and tree segmentation, particularly the latter, can 
be quite time-consuming. Fortunately, laser scanning data for trees 
are increasingly accessible to the public through platforms such as 
GlobalTLS (https://​www.​globa​l-​tls.​net/​), ForestScan (https://​data.​
ceda.​ac.​uk/​neodc/​​fores​tscan​), and FOR-instance (Puliti et al., 2023). 
This development opens up new opportunities for the evaluation 
and improvement of existing H:D models based on highly accurate 
3D tree measurements.

In this study, we compiled a comprehensive dataset of highly 
precise D and H measurements acquired through TLS. This dataset 
encompasses 1951 trees across 19 distinct tropical rainforest plots 
across four different continents. Our investigation focuses on two 
main research questions: First, what is the predictive accuracy of 
forest inventory-based local H:D allometries in tropical rainforests? 
To address this, we utilized spatially coincident TLS-based and for-
est inventory-based H and D data available for 11 of the 19 plots. 

Second, can we decrease the uncertainty and bias of pantropical 
H:D allometries using TLS? To explore this, we developed a new H:D 
model for tropical rainforests, leveraging TLS-based H and D data 
from all 19 plots. Our research highlights the importance of quanti-
fying prediction uncertainty stemming from H measurement errors 
at both local and pantropical scales. It illuminates the impact of for-
est inventory height measurement errors on H:D allometries and the 
potential of TLS for mitigating those errors.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Terrestrial laser scanning

We compiled a pantropical dataset comprising 1951 point clouds 
of tropical rainforest trees, which had been previously extracted 
from TLS data as part of earlier studies. The dataset spans 19 dif-
ferent tropical rainforest plots from 10 different countries (Figure 1, 
Table  1). Precipitation at these plots ranges from approximately 
1800 to 3500 mm per year according to the WorldClim database 
(0.5′ resolution) (Fick & Hijmans, 2017). We selected a D cut-off of 
10 cm since this is a frequently selected cut-off point in inventory 
measurements in tropical rainforests (Harris et  al.,  2021). All TLS 
data were collected with a RIEGL VZ-400 or VZ-400i TLS instrument 
for data interoperability (Calders et al., 2017). Both of these systems 
are full waveform, multiple target instruments with similar scanner 
characteristics. More specifications on TLS data collection for each 
plot can be found in Table S1.

Tree point clouds were segmented from the co-registered plot 
point cloud either completely manually or with a combination of a 
segmentation algorithm and manual corrections afterwards to en-
sure a high-quality dataset (Table S1). The sampling strategy of in-
dividual trees differed between plots as the trees were extracted 
in the context of different research projects for which these data 
were initially collected (Table S1). D and H were calculated from the 
tree point clouds with the ITSMe package in R (Terryn et al., 2023). 
The parameters for the D calculation were optimised for each plot 
and a visual inspection of the calculation through figures, such as 
Figure S1, ensured the D estimates' quality.

2.1.2  |  Forest inventory

For 11 of the 19 plots, inventory data of the same plot as the TLS 
data was gathered either from publicly available sources such as the 
Tallo database (Jucker et al., 2022) or unpublished sources (Table S1). 
If inventory data were available from multiple years, the year clos-
est to when the TLS data were collected was chosen (Table 1). The 
inventory-based H measurements varied from using measuring tape 
for small trees, clinometers and laser rangefinders to using ground-
based Field-Map technology (IFER, Ltd.) and canopy cranes for 
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canopy trees (Table S1). For the EBC plot, in addition to TLS-based 
and inventory-based H and D measurements, post-harvest measure-
ments were available, providing insight into how well TLS-based H:D 
allometry compares to post-harvest-based (destructive) H:D allom-
etry (Lau et al., 2019).

2.1.3  |  Environmental variable

To build our new pantropical H:D model for tropical rainforests, we 
chose to add the maximum climatological water deficit (MCWD) to 
the model. The MCWD is a measure of the severity of water stress 
that vegetation may experience during a certain period. The MCWD 
has proven to be a key environmental variable in pantropical mod-
els before and is highly correlated (correlation >0.8) with other 
environmental variables, temperature seasonality, precipitation sea-
sonality and dry season length, that were found to drive the H:D 
allometry of tropical trees (Banin et  al.,  2012; Chave et  al.,  2014; 
Feldpausch et al., 2011). Given the constraints of our study, which is 
confined to 19 tropical rainforest plots, we opted to include just one 
environmental variable (MCWD) to prevent overfitting. This deci-
sion not only addresses overfitting concerns but also ensures the 
interpretability of the model. The MCWD, calculated as the mean 
yearly MCWD over a period of 1981 to 2020, was extracted from 
the Global CHIRPS MCWD (Maximum Cumulative Water Deficit) 

Dataset (Funk et  al.,  2015; Silva Junior et  al.,  2019; Silva Junior 
et al., 2021).

2.2  |  Local H:D allometry analysis

To assess the prediction accuracy of plot-level inventory-based H:D 
allometries, we compare them to H:D allometries build on the best 
available data (TLS) for that plot. Therefore, we constructed fixed 
effect models for each plot, incorporating the data type (TLS, in-
ventory or post-harvest for EBC) as a fixed effect across all poten-
tial combinations of model parameters (Figure  S2, Equations  1–4; 
Equations S1).

2.2.1  |  Plot selection

In an ideal scenario, we would have spatially and temporally coinci-
dent TLS and inventory data for the same trees within each plot. This 
approach would eliminate the influence of plot environment, tem-
poral changes and differences in sampling strategies on the results. 
This requires, first and foremost, that TLS and inventory height (H) 
and diameter (D) data from the same year are available for the same 
plot. Additionally, it requires matching individual trees from TLS data 
to inventory data.

F I G U R E  1 Spatial coverage of the 
terrestrial laser scanning (TLS) and 
forest inventory (inventory) data that 
include tree height measurements of 
tropical rainforests (a) pantropical and 
in (b) South America, (c) Asia, (d) Africa 
and (e) Australia. TLS data of all 19 plots 
were used in the pantropical allometry 
analysis. Coincident TLS and inventory 
data of 11 plots (marked by a brown 
cross) were used in the local allometry 
analysis. Dark and light green colours on 
the map show evergreen and deciduous 
forests, respectively (ESA's Global Land 
Cover Map of 2020). Map lines delineate 
study areas and do not necessarily depict 
accepted national boundaries.
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For two plots (YAN01 and EBC), we obtained matched tree 
data from the same year and plot (Table  1). For two other plots 
(DRO01 and AEP09), matched TLS and inventory data were avail-
able but collected 1 year apart. Matching between the TLS and 
inventory tree data was done manually for these plots. For YAN01, 
trees were first segmented from the TLS data, and a map with tree 
locations was created. This map was later used to locate trees in 
the field to measure their diameter D and H using inventory meth-
ods. For EBC, individual trees were selected, conventionally mea-
sured, scanned and harvested (Lau et al., 2019). For DRO01 and 
AEP09, reflective QR codes attached to the trees during scanning 
were used to identify the trees during tree segmentation (Terryn 
et al., 2022).

For seven other plots (LPG01, ANK01, MAL01, PAR06, CAXA, 
NOU11 and BCI), both TLS-based and inventory-based H and D data 
were available, but tree matching was not possible. Furthermore, 
for five of these plots, there is a time gap of more than 1 year (up 
to 10 years) between the TLS and inventory data collection (see 
Table  1). Since tree matching was not feasible, we ensured that 
for each of these seven plots, there were at least 50 individuals in 
both datasets (TLS and inventory). Sullivan et al. (2018) suggested a 
sample size of at least 50 trees (including the 10 largest) per plot to 
achieve local allometries with low prediction error.

2.2.2  | Model forms, fitting and selection

First, the TLS, post-harvest and inventory datasets were combined 
for each plot. To fit the allometric models for plots where tree 
matching was not feasible, we used all available trees from TLS and 
inventory data that fell within a comparable diameter range. For ex-
ample, if the minimum diameter (D) for inventory data was 10 cm but 
18 cm for TLS, we included only trees with a D greater than 18 cm. 
For the maximum diameter, we set the cut-off where the difference 
between the maximum diameters for TLS and inventory data was 
less than 10 cm.

For model fitting, we considered four commonly used functional 
forms to model the local H:D relationships, namely the log–log form 
(Equations 1), the log–log2 form (Equation 2), the rescaled Weibull 
form (rWei, Equation 3) and the generalised Michaelis–Menten form 
(gMM, Equation 4). The latter two are non-linear H:D models, having 
biological interpretations, that are less sensitive to individual points, 
making them more stable and more reliable for data extrapolation 
(Batista et al., 2001). We applied a natural logarithm transformation 
on the rescaled Weibull, and the generalised Michaelis–Menten 
form to increase the likelihood of homoscedastic behaviour of the 
residuals:

(1)ln(H) = a + b ⋅ ln(D) + ϵ,

TA B L E  1 Summary of the assembled terrestrial laser scanning (TLS) and forest inventory (inventory) data including plot code, the country 
where the plot is located (international country code), the year of data collection (TLS/inventory), the number of trees (TLS/inventory/
post-harvest) used in the local H:D allometry analysis (LAA), the number of trees (TLS) used in the pantropical allometry analysis (PAA, total 
number of 1951), the stem diameter (D) range, the tree height (H) range of the trees for the pantropical allometry analysis and the maximum 
climatological water deficit (MCWD).

Plot code Country Collection year # trees LAA # trees PAA D range (cm) H range (m) MCWD (mm)

EBC* GUY 2017/2017 26/26/26 106 10–157 14–52 −131

LPG01 GAB 2013/2013 104/106 107 19–223 15–43 −287

YAN01* COD 2023/2023 110/110 106 10–76 10–43 −62

AEP09* AUS 2018/2019 57/57 200 12–90 19–38 −373

DRO01* AUS 2018/2019 56/56 59 15–123 10–35 −352

ANK01 GHA 2016/2015 179/66 182 11–101 12–40 −195

MLA01 MYS 2018/2014 189/402 189 10–149 10–77 −18

PAR06 GUF 2019/2012 204/499 202 10–93 15–45 −148

BCI PAN 2019/2014 195/339 196 22–211 17–43 −222

CAXA BRA 2014/2023 151/496 151 11–160 21–56 −156

NOU11 GUF 2015/2005 155/214 155 19–105 17–52 −69

AEP02 AUS 2018/− - 27 18–45 13–23 −410

AEP33 AUS 2018/− - 16 50–100 28–41 −395

AEP41 AUS 2018/− - 32 10–72 15–33 −385

CBN01 MYS 2017/− - 44 10–111 10–52 −18

DIM BRA 2021/− - 83 10–75 12–36 −42

SAF03 MYS 2018/− - 35 12–92 9–44 −24

TAM05 PER 2017/− - 37 15–117 13–42 −144

TAM06 PER 2017/− - 24 17–89 12–37 −145

*For these plots, the individual trees in the TLS and the inventory data were paired. The relative D and H distribution of TLS and inventory-based 
data for each plot used in the LAA are shown in Figure S3.
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with H, the tree height in metres, D, the stem diameter in centimetres, 
a, the intercept and b, c and k, the shape parameters of the functional 
forms, ε the error term, ln the natural logarithm and exp the exponen-
tial function.

Fixed effect models were fitted with the data type (e.g. the 
method of H and D measurements: TLS, inventory, post-harvest) 
treated as a fixed effect factor on the intercept and shape param-
eters. By including data type as a fixed effect on these parame-
ters, we accounted for the variation in the H and D relationship 
that may arise from different data types used to fit the allom-
etry. Since it is unclear which parameters might be influenced 
by the data type, we explored different combinations of adding 
data type as a fixed effect to the parameters of the four different 
model forms. Hence, for each functional form, we fit a null model 
with no fixed effect of the data type (Equations 1–4), as well as 
24 models incorporating each possible combination of fixed ef-
fects of the data type on the intercept and the shape parameters 
(Equations S1).

To fit the H:D allometries, we used Bayesian multilevel models 
implemented by the brms R package (version 2.19.0), which uses the 
probabilistic programming language Stan (Bürkner, 2017). Priors for 
the a, b, c and k parameters were based on previous literature (Chave 
et al., 2014; Feldpausch et al., 2011; Martnez Cano et al., 2019), and 
modelled as normal distributions and in case of rWei and gMM mod-
els as gamma distributions. The utilization of gamma distributions 
aimed to enhance model convergence by ensuring that all param-
eters remain positive. The fixed effects priors were modelled as 
zero-centred uninformed normal distributions. Model inference re-
lied on drawing 5000 posterior samples after conducting a burn-in 
of 10,000 iterations across four parallel chains to guarantee model 
convergence while limiting computing time. Trace, density and post-
predictive check plots (Figures S4, S5), along with the Gelman–Rubin 
Statistic (R-hat) and effective sample size (ESS) were employed to 
verify and ensure model convergence and model structure. For each 
plot, the best model was selected based on the Bayesian leave-one-
out (LOO) cross-validation method using the loo and loo_compare 
function within the brms package (Luo & Al-Harbi,  2017; Sivula 
et al., 2020).

2.3  |  TLS-based pantropical H:D allometry analysis

To improve the estimation of H on a pantropical level, we built a 
new pantropical H:D model using mixed-effect models. This model 
was based on TLS-based H and D, from 1951 tree point clouds from 
tropical rainforests across four continents, and the MCWD to help 
account for between plot variance (Figure S6).

2.3.1  | Model forms, fitting and selection

We also applied Bayesian models implemented by the brms R pack-
age to fit the mixed-effect pantropical H:D models (Bürkner, 2017). 
First, we explored the fit of the same model forms (Equations 1–4) as 
were applied for the local allometry analysis to the full TLS dataset, 
to obtain pantropical H:D allometries for each model form. These 
allometries do not yet consider any environmental factors but we 
did account for between-plot variation using ‘plot’ as a random fac-
tor in the models. Adding a random effect for plot helps to account 
for the nested structure in the data. Random effects can capture the 
variation in H:D relationship between the different plots. For each 
functional form for the simple pantropical H:D allometries, eight dif-
ferent combinations of random effects (including no random effects) 
on the model parameters a, b, c or k were added to account for plot 
grouping, resulting in 28 different models (Equations 1–4; Equations 
S25–S47). For all models, inference was based on 5000 posterior 
samples following 10,000 burn-in iterations for four parallel chains 
to guarantee model convergence while limiting computing time. 
Trace, density and post-predictive check plots (Figures S4, S5), along 
with the Gelman-Rubin Statistic (R-hat) and ESS were employed 
to verify and ensure model convergence and model structure. The 
best model among the 28 different models was determined based 
on the LOO comparison method and is further referred to as the 
simple pantropical model as it does not include any environmental 
variables.

Secondly, the model form selected for our simple H:D allometry 
(excluding the environmental variable MCWD) served as the foun-
dation for further model development. This was done to create a 
complex pantropical H:D model that incorporates MCWD to address 
between-plot variance. MCWD was introduced to the model param-
eters where the simple pantropical model exhibited a random effect 
of plot, indicating variance between plots. The random effects were 
also included because even if a model includes and accounts for a 
number of explanatory variables, other unaccounted effects could 
still play a role on the response variable. Hence, the combined effect 
of these possible omitted variables can still be represented by the 
random effects (Cysneiros et al., 2021).

2.4  |  Accuracy and trueness assessment

To assess the difference in local inventory-based and TLS-based 
H:D allometries, we applied the best model (see Local H:D allom-
etry analysis section, Table 2) to make predictions of H for the D 
range, assuming TLS and inventory data as the data type, for each 
plot. The predicted heights were corrected for the bias intro-
duced by the back transformation of the log-transformed predic-
tions (Martnez Cano et al., 2019). Next, we calculated the absolute 
height differences (Ĥinventory – ĤTLS) and relative height differences 
(Ĥinventory / ĤTLS – 1). We computed 95% credible intervals (CI) based 
on 5000 samples from the posterior distributions of all parameters 
of the corresponding allometric models. The CI means that there is 

(2)ln(H) = a + b ⋅ ln(D) + c ⋅ ln(D)
2
+ ϵ,

(3)ln(H) = a + ln
(
1 − exp

(
− b ⋅ Dk

))
+ ϵ,

(4)ln(H) = a + b ⋅ ln(D) − ln
(
k + Db

)
+ ϵ,
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    |  7 of 18TERRYN et al.

a 95% probability that the true (unknown) estimate would lie within 
the interval, given the evidence provided by the observed data.

We also assessed model prediction accuracy, the closeness be-
tween the predicted and observed H, and the trueness, the part of 
accuracy related to systematic errors, of the inventory local H:D al-
lometries, and the simple and complex pantropical TLS-based H:D 
allometries. To assess prediction error, we used a relative accuracy 
metric, the natural logarithm of the accuracy ratio (Tofallis,  2015) 
instead of the mean absolute percentage error (MAPE). As Burt 
et al. (2020) pointed out, MAPE has undesirable properties including 

asymmetric penalty, asymmetric bounds and outlier penalty. The 
natural logarithm of the accuracy ratio Qi is defined as the natural 
logarithm of the ratio of the estimated 

(
Ĥi

)
 and the measured H 

(
Hi

)
:

For the local inventory H:D allometries, for each plot we applied the 
best model to make predictions of H for all TLS trees using the inven-
tory H:D allometry 

(
Ĥi = Ĥinventory

)
 and the TLS-based H as a reference 

(
Hi = HTLS

)
. For the pantropical H:D allometries, we assessed model 

(5)ln
(
Qi

)
= ln

(
Ĥi

Hi

)

.

TA B L E  2 Summary table of the best model for each plot, specifying its model form, the estimates and the 95% credible interval (CI) of the 
intercept (a) and the shape parameters of the functional forms (b, c and k), the estimates and the 95% CI of the fixed effects of data type on 
these parameters, and the root mean square error (RMSE, [m]) of the model.

Plot code Model form Parameter
Parameter 
estimate Estimate 95% CI

Fixed effect 
estimate Estimate 95% CI RMSE

EBC gMM a 3.98 [3.86, 4.14] - - 0.11

b 1.00 [0.86, 1.13] −0.08 [−0.13, −0.04]

k 25.43 [20.92, 30.39] - -

LPG01 log–log a 1.68 [1.36, 2.00] −0.59 [−1.04, −0.13] 0.21

b 0.43 [0.34, 0.51] 0.17 [0.04, 0.29]

YAN01 rWei a 3.70 [3.47, 4.01] −0.23 [−0.65, 0.34] 0.19

b 0.06 [0.05, 0.08] - -

k 0.78 [0.65, 0.93] 0.05 [−0.21, 0.27]

AEP09 log–log2 a 1.48 [1.09, 1.86] - - 0.12

b 0.66 [0.46, 0.86] - -

c −0.04 [−0.07, −0.02] - -

DRO01 log–log2 a 1.16 [0.71, 1.60] - - 0.23

b 0.69 [0.49, 0.91] - -

c −0.04 [−0.07, −0.01] - -

ANK01 rWei a 3.65 [3.54, 3.81] - - 0.18

b 0.05 [0.03, 0.07] −0.03 [−0.05, −0.01]

k 0.91 [0.75, 1.08] 0.23 [0.02, 0.44]

MLA01 log–log2 a 0.63 [0.29, 0.96] −1.39 [−2.00, −0.78] 0.22

b 0.93 [0.74, 1.12] 0.80 [0.44, 1.17]

c −0.04 [−0.07, −0.01] −0.13 [−0.18, −0.07]

PAR06 rWei a 3.63 [3.55, 3.73] - - 0.16

b 0.07 [0.06, 0.08] −0.01 [−0.02, −0.01]

k 0.86 [0.78, 0.95] - -

BCI log–log2 a 0.90 [0.44, 1.37] −1.78 [−2.81, –0.77] 0.16

b 0.80 [0.59, 1.01] 0.84 [0.34, 1.37]

c −0.04 [−0.07, −0.02] −0.10 [−0.17, –0.04]

CAXA log–log2 a 1.29 [0.83, 1.74] −1.56 [−2.25, −0.85] 0.25

b 0.75 [0.54, 0.96] 0.57 [0.17, 0.97]

c −0.05 [−0.07; −0.02] −0.06 [−0.12, −0.00]

NOU11 rWei a 4.05 [3.80, 4.54] −0.36 [−0.89, 0.08] 0.15

b 0.07 [0.04, 0.10] −0.04 [−0.07, −0.00]

k 0.73 [0.51, 0.97] 0.30 [−0.07, 0.66]

Note: The value for the fixed effect equals the increase/decrease (when +/−) in the model parameter when the allometric model is modelled using 
inventory compared with TLS (the reference data type) tree heights.
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8 of 18  |     TERRYN et al.

prediction accuracy and trueness of the simple and complex pantrop-
ical model using k-fold cross-validation. We used the kfold function of 
the brms R package to perform 19-fold cross-validation by refitting the 
selected model 19 times each time leaving out one plot of the original 
data (Bürkner, 2017). Subsequently, the kfold_predict function of the 
same package was applied to compute the H predictions considering 
no group-level effect (similar to predicting H for new plots).

We quantified the accuracy (uncertainty) of the H estimations 
using the median symmetric accuracy (MSA, Morley et  al.,  2018). 
The value of MSA can be interpreted as a percentage total error (e.g. 
a value of 10% means a total error of 10%) and is calculated as

with M representing the median function. We also quantified the true-
ness (bias) using the systematic signed percentage bias (SSPB, Morley 
et al. (2018)), which gives the percentage systematic error (e.g. a nega-
tive percentage value of −10% means a 10% negative bias and a posi-
tive percentage value of 10% means a 10% positive bias):

with sgn representing the sign function and M representing the median 
function. In comparison with existing H:D models, we also calculated 
the MSA and SSPB for the H predictions based on the pantropical H:D 
model of Chave et al. (2014) (equation 6a–6b).

3  |  RESULTS

3.1  |  Local H:D allometry

Our analysis shows that for all plots, apart from two (AEP09 and 
DRO01), the best local H:D model included fixed effects of data type 
on one or several parameters (Table 2). Notably, for two of those plots 
(ANK01, LPG01) this does not result in statistically credible (95% 
CI, in the Bayesian sense) differences between inventory-based and 
TLS-based allometries over the full D range (Figure  2). Conversely, 
for seven plots, the inventory-based allometries exhibit statisti-
cally credible underestimation (95% CI) of H, with mean values be-
tween −1.62 m (−5.32%) and − 7.52 m (−25.42%) for trees of 30 m tall 
(Figure 3; Figure S7). For the Malaysian plot (MLA01) the underestima-
tion increases up to −31.70 m (−41.26%) for the tallest trees (Figure 3, 
bottom). In the majority of plots, the underestimation of H is not con-
sistent across the height range; it increases with H for certain plots but 
decreases for others. In contrary to all other plots, for the LPG01 plot, 
H is overestimated for trees taller than approximately 25 m (Figure 3). 
The H difference is also often accompanied by an increase in the width 
of the CI with increasing H (Figure 3). The widening of the CI with tree 
size is caused by the limited number of trees with high H values which 
increases the uncertainty of the allometric models at these tree sizes.

For EBC, the only plot where coincident TLS, post-harvest and 
inventory data of the same trees was available, the best H:D model 
shows overlapping fits for TLS and post-harvest whereas the fit for 

inventory allometry did not overlap and was credibly (95% CI) lower 
(Figure 2). Compared with the TLS allometry, the allometry based 
on this inventory data (using a laser rangefinder) underestimates H 
on average between −2.50 m (−6.2%) and − 3.52 m (−12%) along the 
diameter range (Figure 3).

3.2  |  TLS-based pantropical H:D allometry

We found the best allometric form, for our simple pantropical H:D 
model (excluding environmental variables), to be the log–log2 form 
(Equation 2) with random effects of plot on parameters a and b:

with H, the tree height in metres, D, the stem diameter in centimetres, 
a, b and c model parameters, ϵ the error term, and ln the natural log-
arithm. Fitting this form (Equation 8) to the TLS data resulted in our 
best-fit simple pantropical H:D model:

with aplot ∼ 

(
0,0.382

)
 the random effect of plot on the intercept a 

and bplot ∼ 

(
0,0.102

)
 the random effect of plot on the shape param-

eter b (Table 3; Figure S8). The model has a mean uncertainty (MSA, 
total error) of 19.70% and a mean bias (SSPB, systematic error) of 
−4.78% based on cross-validation (Table 4).

To account for between plot variation, we added the MCWD to 
the parameters a and b of the simple pantropical H:D allometry form:

where e and f are additional model parameters compared with the sim-
ple pantropical H:D model form and MCWD is the maximum climato-
logical water deficit (mm). Fitting this form (Equation 10) to the data 
resulted in our best-fit complex pantropical H:D model:

with aplot ∼ 

(
0,0.322

)
 the random effect of plot on the intercept 

a and bplot ∼ 

(
0,0.072

)
 the random effect of plot on the shape pa-

rameter b (Table 3; Figure S8). Adding the MCWD to the model has 
reduced the standard deviation of the random effects on a and b com-
pared with the simple pantropical model (Equation 9). This suggests 
that MCWD accounts for some of the between plot variance but not 
all of it. This model has a mean uncertainty (MSA, total error) of 19.14% 
and a mean bias (SSPB, systematic error) of −4.77% based on cross-
validation (Table 4).

Compared with the model of Chave et al. (2014) and the simple 
pantropical model (Equation 9), the mean uncertainty of the complex 
pantropical model (Equation 11) is lower and uncertainties are more 
stabilised along all tree heights (Figure 4). Moreover, looking at the 
different height classes, the mean bias for trees taller than 40 m in 
the complex pantropical model is also lower (Figure 4). Interesting to 

(6)MSA = 100 ⋅

(
exp

(
M

(
|
|
|
ln
(
Qi

)|
|
|

)
− 1

))
,

(7)SSPB = 100 ⋅

(
sgn

(
M
(
ln
(
Qi

)))
⋅ exp

(
M
(
ln
(
Qi

)))
− 1

)
,

(8)ln(H) = (a| plot) + (b| plot) ⋅ ln(D) − c ⋅ ln(D)
2
+ ϵ,

(9)ln(H) =
(
0.91 + aplot

)
+
(
0.86 + bplot

)
⋅ ln(D) − 0.06 ⋅ ln(D)

2,

(10)
ln(H) = (a| plot) + e ⋅MCWD + ((b| plot) + f ⋅MCWD) ⋅ ln(D) − cln(D)

2
+ ϵ,

(11)

ln(H)=
(
0.76+aplot

)
−1.22 ⋅MCWD+

((
0.93+bplot

)
+0.56 ⋅MCWD

)

⋅ ln(D)−0.05 ⋅ ln(D)
2,
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    |  9 of 18TERRYN et al.

note is the very low bias of the Chave et al. (2014) model for trees 
smaller than 20 m. Most of the trees (1766, 60%) used to calibrate 
Chave et al. (2014) their model were less than 20 m tall.

The comparison of the uncertainty and bias between local 
inventory-based and the complex pantropical TLS-based H:D 
model shows that for the majority of the plots the mean uncer-
tainty (MSA) is lower for the local inventory-based models than 
the complex pantropical model (Figure  5). Conversely, for mean 
bias (SSPB), the complex pantropical model demonstrates lower 

values compared with the local inventory-based models in the ma-
jority of the plots.

3.3  |  TLS versus forest inventory dataset 
comparison

Our TLS dataset of tropical rainforest trees exhibits an inherently 
different tree size distribution compared with typical inventory 

F I G U R E  2 Best tree height:stem diameter (H:D) model fit for each plot (a–k). The model fits for forest inventory (inventory), terrestrial 
laser scanning (TLS) and post-harvest tree height (H) and stem diameter (D) data are shown in black lines with orange, purple and green 
credible intervals (CI) respectively. The 0.95, 0.8 and 0.5 CI are shown in different shades going from dark to light respectively. The individual 
trees are represented as dots in the same colours. There is some binning visible in the inventory H data for some plots due to the limited 
precision (1 m) of those H measurements.
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10 of 18  |     TERRYN et al.

datasets used for modelling H:D allometry, such as those utilized 
by Chave et al. (2014) and the Tallo database by Jucker et al. (2022) 
(Figure S9). Our TLS dataset contains only 66% and 1% of the num-
ber of tropical rainforest trees compared with Chave et  al.  (2014) 
and the Tallo dataset, respectively. But, compared with the Tallo 
database, this percentage increases to 3% and 4% when consider-
ing D above 20 and 40 cm, respectively. Moreover, compared with 
Chave et al. (2014), our TLS dataset contains proportionally 34.5%, 
and 75.1% more trees with a D above 20 cm and 40 cm, respectively. 

Thus, these inventory datasets exhibit a relative underrepresenta-
tion of larger trees compared with TLS.

All the trees from the TLS dataset were measured with the 
same H measurement method, while Burt et  al.  (2020) reported 
that at least four different methods (pre- and post-harvest) were 
used in the dataset Chave et al. (2014) compiled. Also for the Tallo 
database, Jucker et al. (2022) report that tree heights were mea-
sured using a variety of approaches, including laser or ultrasonic 
range finders, clinometers, as well as tape measures, telescopic 

F I G U R E  3 Absolute difference in tree 
height (H) when predicted from the best 
allometry for forest inventory (inventory) 
data versus terrestrial laser scanning (TLS) 
data (i.e. Hinventory – HTLS) for plots in (a) 
Africa, (b) South America and (c) Asia and 
Australia. Negative values indicate that 
the inventory allometry underestimates 
the tree height compared with the TLS-
based allometry. The different colours 
and line types reflect the different plots 
per panel and the shaded area is the 0.95 
credible interval (CI). The same figure but 
for relative tree height difference can be 
found in Figure S7.

TA B L E  3 Summary table of the best model for the simple (Equation 9) and complex pantropical model (Equation 11), specifying the 
estimates for the model parameters and σ (the standard deviation of ϵ) and the 95% credible intervals (CIs) on these estimates, and also the 
estimate of the standard deviation of the random effect on a and b and their 95% CIs.

H:D model Parameter Parameter estimate Estimate 95% CI
Standard deviation random 
effect estimate

Estimate 95% 
CI

Simple pantropical a 0.91 [0.64, 1.2] 0.38 [0.26, 0.56]

b 0.86 [0.72, 0.98] 0.10 [0.07, 0.15]

c −0.06 [−0.07, −0.04] - -

σ 0.14 [0.13, 0.14] - -

Complex pantropical a 0.76 [0.45, 1.09] 0.32 [0.21, 0.49]

b 0.93 [0.80, 0.1.06] 0.07 [0.05, 0.11]

c −0.05 [−0.07, −0.04] - -

e −1.22 [−2.24, −0.12] - -

f 0.56 [0.26, 0.84] - -

σ 0.14 [0.13, 0.14] - -
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    |  11 of 18TERRYN et al.

poles for smaller trees and for a very small subset of trees with 
fully sun-exposed crowns, a combination of high-resolution aerial 
photos and ALS.

4  |  DISCUSSION

4.1  |  TLS for benchmarking H

In this study, we employed TLS as a benchmark for assessing 
inventory-based H estimates. The accuracy of TLS-based metrics 
will however depend on the tree point cloud quality, which, in 
turn, is influenced by various factors during both acquisition and 
processing phases. Concerning TLS acquisition, it is important to 
highlight that tropical rainforests present a challenging environ-
ment, with reported instances of canopy occlusion at the canopy's 
uppermost layer (Schneider et al., 2019). Occlusion refers to the 

absence of data points in certain parts of the forest due to ob-
struction of the laser beams by vegetation or other obstacles in 
their path. Occlusion has only a minimal impact on the accuracy of 
H measurements as long as laser rays still hit the top of the tree 
which is all that is needed to get the correct H. Still a high degree 
of occlusion of the top of canopy can lead to underestimations of 
the H. The degree of occlusion within the point cloud, however, 
depends on a combination of several factors, including vegeta-
tion density, the specific characteristics of the laser system in use 
(e.g. sensor properties and scanner type) and the scanning pattern 
(e.g. pattern density and multi-scan approach) employed. In dense 
vegetation, more laser beams can be blocked by the vegetation, 
preventing them from reaching objects behind. However, certain 
laser scanner characteristics, such as a smaller laser beam diver-
gence, greater sampling range and a higher maximum number of 
targets per pulse, can enhance canopy penetration. Therefore, se-
lecting the appropriate laser scanning setup and scanning pattern 

H:D model
Mean MSA 
(%) 95% CI MSA (%)

Mean SSPB 
(%) 95% CI SSPB (%)

Chave et al. (2014) 16.88 - −13.00 -

Simple pantropical 19.70 [16.58, 23.90] −4.78 [−12.31, 2.49]

Complex pantropical 19.14 [16.17, 23.35] −4.77 [−12.24, 2.45]

Notes: The median symmetric accuracy (MSA) and the systematic signed percentage bias (SSPB) 
quantify the uncertainty (total error) and bias (systematic error) respectively. The mean MSA and 
SSPB values and their 95% credible intervals (CIs) are given, calculated based on the posterior 
predictions. For the pantropical model of Chave et al. (2014) the calculation of a CI was not 
possible.

TA B L E  4 Results of the cross-validation 
prediction metrics for pantropical H:D 
allometries: Pantropical model of Chave 
et al. (2014) equation 6a–6b, the simple 
pantropical model (Equation 9) and 
complex pantropical model (Equation 11).

F I G U R E  4 Results for the tree height (H) prediction from the pantropical H:D model of Chave et al. (2014), the TLS-based simple 
pantropical H:D model (Equation 9) and the TLS-based complex pantropical H:D model (Equation 11) represented in orange, purple and 
green respectively. (a) H predictions compared with the H measured from the terrestrial laser scanning (TLS) tree point clouds, (b) the 
median symmetric accuracy (MSA, [%]) quantifying the uncertainty (total error) and (c) the systematic signed percentage bias (SSPB, [%]) 
quantifying the bias (systematic error) of the models for different H ranges. The mean MSA and SSPB values and their 0.95 credible intervals 
(CIs) are given, calculated based on the posterior predictions. For the pantropical model of Chave et al. (2014), the calculation of a CI was not 
possible. For the TLS-based models tree height predictions were based on 19-fold cross-validation.
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is crucial to acquiring good-quality point clouds. Furthermore, it 
is important to mention that wind can induce a ghosting effect 
in the point cloud due to tree sway in light breezes. This could 
potentially impact measurements of D and H. It is therefore ad-
visable to conduct scans when wind speeds are below 5 m⋅ s−1 
(Seidel et al., 2012; Wilkes et al., 2017). Finally, the quality of the 
tree point cloud also relies on the proper execution of processing 
steps (e.g. co-registration and tree segmentation) following data 
acquisition. Existing automatic segmentation algorithms exhibit 
limited effectiveness in tropical rainforests due to their intricate 
and multi-layered structure. Hence, it remains crucial to manually 
inspect and amend segmentation outcomes to guarantee result 
quality.

The tree point clouds utilized in our study were obtained using a 
high-quality laser scanning system employing a multi-scan approach. 
Additionally, manual segmentation quality checking was performed 
to ensure the quality of the point clouds and the structural mea-
surements. Our findings also tend to further support the reliability 
of TLS-based allometries, showing no credible (95% CI) difference 
between TLS-based allometry and allometry derived from H mea-
surements conducted post-harvest (destructively) in one of the plots 
(EBC). Consequently, TLS stands as one of the most accurate non-
destructive benchmarks for H assessments, especially for tall trees 
in dense tropical rainforests (Ali & Wang, 2021; Ferraz et al., 2016; 
Gonzalez de Tanago et al., 2018; Kunz et al., 2022).

4.2  |  Accuracy of forest inventory H:D allometry

Our analysis revealed that in the majority of the plots (9 out of 11), 
allometric models based on inventory data yielded credibly (95% CI) 
different H estimations compared with those constructed using TLS 
data. In seven of these plots, the inventory-based allometry exhib-
ited an underestimation of H across the entire range of H. These 

underestimations ranged from −5.3% to −25.4% for trees meas-
uring 30 m in height, up to −41.3% for the tallest Malaysian trees. 
These findings are in line with the results reported by Larjavaara and 
Muller-Landau (2013) for the sine method, which is often employed 
with laser range finders. They noted an average systematic underes-
timation of 20% for this method. In their study, Ojoatre et al. (2019) 
also observed that, in contrast to airborne laser scanning (ALS), 
hypsometer-measured field heights underestimated H in a tropical 
rainforest in Malaysia, with a RMSE of 3.11 m.

Our analysis was conducted on a limited dataset of only 11 trop-
ical rainforest plots, with constrained replication for various inven-
tory H measurement methods (e.g. laser range finder and clinometer). 
Consequently, we were unable to discern distinct patterns associated 
with specific inventory H measurement methods. It is interesting, 
however, that with plots where the same inventory H measurement 
method was utilized, we noticed discrepancies in the extent of under-
estimation. For example, while both NOU11 and ANK01 employed 
a clinometer for inventory H measurement, NOU11 exhibited con-
siderable underestimation, whereas ANK01 showed no significant 
underestimation. This variability could be attributed to other factors, 
including forest structure, the individual conducting the measurement 
and the specific instrument used, as noted by Larjavaara and Muller-
Landau  (2013). Furthermore, the relationship between the accuracy 
and H varied from nearly constant underestimation to accuracy that 
decreased or even increased with increasing H. Due to this inconsis-
tency, it is challenging to apply effective corrections on inventory H 
measurements. Additionally, when utilizing H data from online data-
bases, it is often problematic to trace how and under what conditions 
the measurements were obtained (Burt et  al.,  2020). Enhancing the 
provision of standardized metadata during measurement publication 
will aid in mitigating this issue. Given the dependence of measurement 
accuracy on numerous factors and the traceability issues associated 
with inventory-based H measurements, our ability to establish reliable 
H:D allometries using such data is impeded.

F I G U R E  5 Comparison of the 
median symmetric accuracy (MSA, [%]) 
quantifying the uncertainty (total error) 
and the systematic signed percentage 
bias (SSPB, [%]) quantifying the bias 
(systematic error) between local forest 
inventory-based and the complex 
pantropical TLS-based H:D models 
(Equation 11) for each plot (a–k). The 
mean MSA and SSPB values and their 
0.95 credible intervals (CIs) are given, 
calculated based on the posterior 
predictions based on 10-fold cross-
validation.
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In two plots (AEP09 and DRO01), there were no statistically 
significant differences (95% CI) in H between the TLS-based and 
inventory-based allometries, across the entire H range. Nevertheless, 
this does not rule out the possibility of measurement errors at the 
individual tree level. When comparing individual Hs for DRO01, it 
becomes evident that significant H differences exist at the individual 
tree level (see Figure 2; Figure S10a). These differences encompass 
both overestimations and underestimations of approximately similar 
magnitudes, suggesting the presence of predominantly high random 
errors and low systematic errors for this particular plot. In the con-
text of allometric modelling, random errors do not result in incorrect 
allometries as long as a sufficient number of trees are used to model 
the relationship, as pointed out by Burt et  al.  (2020) and Sullivan 
et  al.  (2018). Conversely, systematic errors, as observed in inven-
tory H measurements at the individual tree level in the YAN01 plot 
(Figure S10b), can lead to incorrect allometries.

Regrettably, in seven of the 11 plots, individual tree-level mea-
surement errors could not be evaluated due to the lack of linkage be-
tween the tree IDs in the TLS and inventory data, often exacerbated 
by data collection occurring in different years. To ensure future di-
rect comparisons, it is crucial to consistently establish connections to 
available census data. The absence of a link between TLS and inven-
tory data for seven plots made it impossible to select the same trees 
to construct local H:D allometries. Moreover, five of these plots had 
a temporal difference larger than 1 year between the TLS and inven-
tory measurements. For the unpaired plots, it is noteworthy that the 
differences observed between the TLS-based and inventory-based 
allometries may arise (partially) from this disparate tree sampling. 
However, concerning the difference in sample size, it primarily af-
fects the model's uncertainty. Larger sample sizes generally result in 
more precise parameter estimates, with narrower credible intervals 
reflecting less uncertainty. Additionally, larger samples enhance the 
likelihood of proper model convergence due to more data informing 
the parameter estimates. Conversely, smaller samples may lead to 
convergence issues or unreliable estimates. Thus, for plots without 
paired data, we utilized as many available trees (for both TLS and 
inventory data) to build the models. Regarding the temporal differ-
ences, assuming no significant disturbances occurred during this pe-
riod, the trees should follow the same H:D allometry, which would 
not affect our results. However, we cannot guarantee the absence 
of structural changes within this timeframe, so the observed differ-
ences might partially result from such changes. We acknowledge 
that differences in sample sizes and temporal differences could po-
tentially influence the estimated parameters' means. Nonetheless, it 
is important to note that for certain sites (EBC, YAN01), we utilized 
the exact same trees measured in the same year, and these sites still 
exhibit differences. This strongly suggests that the observed differ-
ences stem from the measurement method, not sample size or sam-
pling strategy or temporal differences.

Moreover, the absence of a link between TLS and inventory data 
led to a comparison of H:D allometries developed using inventory H 
and D data with those constructed from TLS-based H and D data. 
Consequently, variations in the allometries may arise not only from 

discrepancies in H measurements but also from differences in D 
measurements. It is important to note that differences in D mea-
surements between inventory and TLS data exist, particularly for 
buttressed trees (Terryn et al., 2022). However, these discrepancies 
are considerably smaller in proportion compared with the disparities 
in H measurements (Figure  S10), which suggests that differences 
between inventory and TLS allometries primarily originate from dis-
crepancies in H measurements.

4.3  |  Impact of H measurement errors from forest 
inventory data

Tree heights represent a crucial input for allometric equations that 
estimate AGB based on D and H, as outlined by Chave et al. (2014) 
and Feldpausch et  al.  (2012). A relative underestimation of H will 
approximately result in the same relative underestimation of tree 
AGB, following the AGB allometry proposed by Chave et al. (2014) 
(Equation 4). To illustrate using the equation of Chave et al. (2014), 
a 5.3% underestimation in H (which is what we obtained as a me-
dian value for trees of 30 m tall considering all plots) would corre-
spond to an 5.2% underestimation in tree AGB for a tree of 30 m 
tall. However, this reasoning assumes the H data used to calibrate 
the AGB allometry were not biased. Burt et al.  (2020) pointed out 
that in the case of the pantropical AGB model of Chave et al. (2014), 
H was predominantly measured post-felling using a tape measure, 
although several studies opted for pre-harvest H measurements. It 
is crucial to acknowledge that utilizing improved H estimations as 
input in AGB models, which were originally calibrated with under-
estimated H, could result in overestimations of AGB. Consequently, 
careful consideration of the calibration process for allometries based 
(partially) on H data, such as AGB allometries, is equally important. 
The impact on plot-level AGB estimation was beyond the scope of 
our study and would require additional species-specific information, 
including wood density values, and a comprehensive inventory of 
stem diameters within each plot. To achieve comprehensive and 
well-usable forest inventories in the future, it is essential to adopt 
standardized data collection protocols and provide adequate meta-
data information on the used methods. Moreover, extrapolating 
models to cover the entire H range could potentially lead to inac-
curate estimates.

In recent years, a growing volume of inventory-based H and D 
data has been collected and aggregated in publicly accessible da-
tabases. Jucker et al.  (2022) introduced their global tree allometry 
and crown architecture dataset, known as Tallo, which encompasses 
498,838 georeferenced and taxonomically standardized records 
of individual trees, including 45% from tropical regions, with mea-
surements of D and H. This dataset encompasses a more extensive 
collection of trees, including large specimens, and spans various 
tropical regions. Consequently, it may capture a more comprehen-
sive spectrum of variation in H:D models compared with the dataset 
employed by Chave et  al.  (2014). Nevertheless, our findings raise 
important questions about the use of global databases, such as Tallo 

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17473 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [11/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 18  |     TERRYN et al.

(Jucker et al., 2022) that combine H data acquired through various 
methods, for constructing new pantropical H:D models before fully 
comprehending and rectifying the errors in these H measurements. 
The frequent underestimation consistently observed in our study 
implies that if all these inventory data were combined into a single 
pantropical model, this model would also likely underestimate H and 
subsequently lead to an underestimation of AGB when H is esti-
mated with inventory-based allometries (Burt et al., 2020).

4.4  |  TLS-based pantropical H:D allometry

We have constructed a novel pantropical H:D allometric model 
based on TLS data including 1951 point clouds from individual tropi-
cal rainforest trees. Despite the limited coverage of our TLS dataset, 
it offers consistent and precise measurements, particularly for tall 
trees. This is of particular significance as Sullivan et al. (2018) dem-
onstrated that allometries with low prediction errors do not neces-
sarily require an extensive calibration dataset but rather demand 
accurate and relevant data, typically 50 trees per plot, including 
the 10 largest specimens. Brede et al.  (2022) also highlighted that 
only 55 individual tree samples per plot (between 1 and 4 ha) were 
needed to achieve a population bias of less than 5%. It is important 
to note that the accuracy of H measurements can be influenced by 
various factors, including the type of laser scanner, scanning pattern 
and forest structural complexity. Following rigorous field protocols 
can, however, help counteract or eliminate uncertainties stemming 
from these factors in TLS data. Nevertheless, these variables must 
be taken into account when integrating tree structural data from 
diverse TLS sources with the intention of constructing allometric 
models.

Our optimal pantropical H:D model adheres to the same struc-
tural form suggested by Chave et  al.  (2014). However, we incor-
porated the MCWD, which quantifies water stress and reflects 
hydraulic constraints on the H:D relationship. With advancements 
in remote sensing and climate models, MCWD data are becoming 
more readily available to the public. Chave et  al.  (2014) identified 
MCWD, precipitation and temperature seasonality as explanatory 
environmental variables for their pantropical H:D model, which 
encompassed tropical rainforests, subtropical forests and dryland 
savannas. Furthermore, our analyses unveiled that allometric mod-
els from various plots differed not only in terms of the intercept 
(parameter a) but also in shape (parameters b and c). In contrast to 
the Chave et  al.  (2014) model, we incorporated MCWD into both 
the intercept parameter (a) and one of the parameters governing 
the curve's shape (b). Although the inclusion of MCWD explained 
some of the variation between plots, a substantial amount was still 
unaccounted for. Numerous other factors, including species iden-
tity, forest structure, soil properties, solar radiation and presence of 
structural parasites have been demonstrated to influence the H:D 
allometry (Banin et al., 2012; Cysneiros et al., 2021; Dias et al., 2017; 
Feldpausch et al., 2011). Integrating more variables could potentially 
enhance the model, but obtaining precise pantropical data for these 

variables through open-access sources is not consistently feasible. 
It is vital to recognize that our pantropical H:D model was designed 
exclusively for tropical rainforests and should solely be applied to 
tropical rainforest trees within the calibrated D-H-MCWD range 
(10 cm ≤ D ≤ 223 cm, 9 m ≤ H ≤ 77 m, −410 mm ≤ MCWD ≤ –18 mm). 
Additionally, it is crucial to highlight that our pantropical TLS-based 
model was calibrated using TLS-based D measurements. As previ-
ously emphasized, TLS-based D measurements can slightly deviate 
from inventory D measurements, particularly in the case of but-
tressed trees. This discrepancy may lead to prediction errors when 
employing inventory D measurements as input for the TLS-based 
pantropical model (Burt et al., 2020). Nevertheless, given the mini-
mal difference between inventory and TLS-based D measurements 
(Concordance Correlation Coefficient scores >0.96, Figure S10), es-
pecially when contrasted with the H difference, the resulting impact 
is expected to be limited.

In comparison with the model of Chave et al. (2014), our pantrop-
ical model exhibits an improved performance in terms of reduced 
uncertainty and bias for trees exceeding 20 m in height. However, 
for trees shorter than 20 m, our model performs less well than Chave 
et al. (2014). It is worth noting that the model developed by Chave 
et  al.  (2014) was primarily trained on trees below 20 m (constitut-
ing 67% of their dataset), whereas only 20% of our TLS-extracted 
trees were smaller than 20 m. In tropical TLS studies, the emphasis 
is frequently on larger trees, and not all trees within the plots un-
dergo segmentation. This is also attributed to the substantial effort 
currently needed to achieve high-quality segmentation for all trees 
within a forest plot. Nevertheless, advancements in tree segmen-
tation algorithms are opening avenues for achieving comprehen-
sive segmentation (Wilkes et  al., 2022). Additionally, with the raw 
TLS data remaining accessible, there is the potential to extract all 
trees, including the smaller ones, from these plot point clouds. This 
presents an opportunity to enhance future pantropical H:D models 
for the entire range of trees in the plots. Despite the better perfor-
mance of the model of Chave et al.  (2014) for trees below 20 m, it 
does not provide any insights into the error associated with H esti-
mations, including confidence or credible intervals. Our model, akin 
to many others, struggles with the traditional issue of overestima-
tion for small trees and underestimation for tall trees. In addition to 
the previously highlighted concern that the model may not account 
for other potentially influential variables affecting H, there is an ad-
ditional issue where the model structure might not be aptly designed 
to capture the true relationship between the predictor variables (D 
and MCWD) and H. Burt et al. (2020) and Calders et al. (2022) have 
raised awareness about the use of inappropriate model forms and 
assumptions concerning the size dependency of allometric relation-
ships. As a result, there is a search for new model forms utilizing 
dynamic allometric modelling techniques. One potential solution is 
the model proposed by Zhou et al. (2021). Dynamic allometric mod-
els are models that aim to depict potential size-dependent changes 
in the scaling between two metrics. However, it is important to note 
that this method is still in its initial stages concerning multivariate 
models.
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Our findings also indicate that while local inventory-based H:D 
models frequently perform better in terms of uncertainty, they 
may exhibit worse performance in bias compared with a pantrop-
ical H:D model built on accurate TLS data. In instances where in-
ventory H measurements are unbiased, exemplified by AEP09, the 
local model outperforms the pantropical H:D model significantly. 
However, frequently, the inventory H data exhibited bias, leading 
to local models that could be outperformed by the pantropical TLS-
based model. The challenge lies in the unknown degree of bias pres-
ent in inventory-based H data, making the decision between a local 
inventory-based model and a pantropical TLS-based model a com-
plex task. Because the pantropical model was constructed based on 
a restricted dataset (1951 trees from 19 plots), there was a notable 
degree of variability in both uncertainty and bias associated with 
this model. Consequently, it is crucial to continuously enhance this 
model by incorporating more data from diverse plots that cover a 
broader range of environmental conditions.

5  |  CONCLUSION

Tree height:stem diameter (H:D) allometries hold a critical role in the 
monitoring of tropical rainforest structure and the estimation and 
upscaling of AGB at various scales within tropical regions. However, 
it is important to recognize that the methodology employed for 
measuring H can significantly impact H:D allometries, subsequently 
affecting estimates and derivations based on them. Our findings re-
veal that in tropical rainforests, H:D allometries derived from forest 
inventory methods often exhibit a notable trend of underestimating 
H, characterized by considerable variation among different forest 
plots. This inherent variability complicates the task of accounting for 
these errors when constructing pantropical H:D models. To address 
this issue, we advocate for the utilization of TLS data, which offers 
superior accuracy and measurement consistency compared with in-
ventory data, particularly for tall trees. In addition, we introduce a 
pantropical H:D model specifically tailored to tropical rainforests, 
constructed using TLS data from 19 diverse tropical rainforest plots 
spanning four continents. This model incorporates an environmental 
variable, the MCWD, enhancing its predictive capability. The model 
demonstrates stable performance with a mean uncertainty of 19.1% 
across various D ranges and a mean bias of −4.8%. We anticipate 
that these H:D model allometries will contribute to more accurate H 
estimates across tropical rainforests.
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