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Abstract
Tree allometric models, essential for monitoring and predicting terrestrial carbon 
stocks, are traditionally built on global databases with forest inventory measurements 
of	stem	diameter	(D)	and	tree	height	(H).	However,	these	databases	often	combine	H	
measurements obtained through various measurement methods, each with distinct 
error	patterns,	affecting	the	resulting	H:D	allometries.	In	recent	decades,	terrestrial	
laser	 scanning	 (TLS)	 has	 emerged	 as	 a	widely	 accepted	method	 for	 accurate,	 non-	
destructive	tree	structural	measurements.	This	study	used	TLS	data	to	evaluate	the	
prediction	accuracy	of	forest	inventory-	based	H:D	allometries	and	to	develop	more	ac-
curate	pantropical	allometries.	We	considered	19	tropical	rainforest	plots	across	four	
continents.	Eleven	plots	had	forest	inventory	and	RIEGL	VZ-	400(i)	TLS-	based	D	and	
H	data,	allowing	accuracy	assessment	of	local	forest	inventory-	based	H:D	allometries.	
Additionally,	TLS-	based	data	from	1951	trees	from	all	19	plots	were	used	to	create	
new	pantropical	H:D	allometries	for	tropical	rainforests.	Our	findings	reveal	that	 in	
most	plots,	forest	inventory-	based	H:D	allometries	underestimated	H	compared	with	
TLS-	based	allometries.	For	30-	metre-	tall	 trees,	these	underestimations	varied	from	
−1.6 m	(−5.3%)	to	−7.5 m	(−25.4%).	In	the	Malaysian	plot	with	trees	reaching	up	to	77 m	
in	height,	the	underestimation	was	as	much	as	−31.7 m	(−41.3%).	We	propose	a	TLS-	
based	pantropical	H:D	allometry,	incorporating	maximum	climatological	water	deficit	
for	site	effects,	with	a	mean	uncertainty	of	19.1%	and	a	mean	bias	of	−4.8%.	While	
the	mean	uncertainty	is	roughly	2.3%	greater	than	that	of	the	Chave2014	model,	this	
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1  |  INTRODUC TION

Tropical forests are home to some of the highest aboveground 
vegetation	carbon	stocks	globally	 (Santoro	et	al.,	2020).	However,	
climate change and the ongoing processes of deforestation and 
forest degradation are causing these ecosystems to transition from 
carbon sinks to carbon sources, as evidenced by recent studies 
(Gatti	et	al.,	2021;	Hubau	et	al.,	2020;	 IPCC,	2022).	The	 impact	of	
our	warming	climate	 is	 further	exacerbating	 this	 situation,	 leading	
to increased tropical tree mortality rates and forest degradation at 
a	 global	 scale	 (Bauman	 et	 al.,	2022; Lapola et al., 2023).	 Notably,	
large trees, which play a crucial role in sequestering carbon, are also 
highly susceptible to climate- induced stress, making them more vul-
nerable	to	drought-	induced	mortality	(Bennett	et	al.,	2015; Tavares 
et al., 2023).	Consequently,	there	is	a	growing	urgency	to	better	un-
derstand the intricate relationship between tropical forests, their 
aboveground	 biomass	 (AGB)	 and	 the	 effects	 of	 climate	 warming.	
This understanding is crucial for predicting, monitoring and mitigat-
ing the consequences of climate change, as well as for devising im-
proved management strategies for tropical forests.

AGB	cannot	be	directly,	non-	destructively	measured	on	site	and	
is	 therefore,	often	estimated	using	allometric	 size-	to-	mass	models	
from	more	easily	measurable	properties	of	 stem	diameter	 (D)	 and	
tree	height	(H)	(Brown,	1997).	When	D,	H	and	wood-	specific	gravity	
(or	wood	 density)	 are	 known,	 a	 single	AGB	model	 can	 be	 applied	
across different tropical vegetation types with no detectable effect 
of	the	region	or	environmental	factors	(Chave	et	al.,	2014).	However,	
this	is	strongly	contingent	on	the	assumption	of	accurate	H	measure-
ments	or	estimations.	Several	studies	have	stressed	the	significance	
of	 incorporating	 H	 into	 biomass	 estimations	 for	 tropical	 forests	
(Chave	et	al.,	2014; Feldpausch et al., 2012).	Tree	height	data	are	also	
instrumental	 in	scaling	AGB	from	local	plots	to	regional	and	global	
levels using remote sensing techniques, underscoring the necessity 
for	an	extensive	dataset	of	H	for	calibration	and	validation	(Jucker	
et al., 2017).	However,	the	available	destructive	calibration	data	for	
constructing these allometric models often suffer from limitations 
and biases, predominantly favouring smaller, more easily measured 
trees	while	underrepresenting	larger	ones	(Burt	et	al.,	2020; Calders 
et al., 2022).	Consequently,	this	introduces	uncertainties	and	biases	
into plot- scale allometric models, which in turn can propagate into 
regional	and	global	models	(Avitabile	et	al.,	2016).

In tropical rainforests with dense canopies, accurately measur-
ing	H	using	forest	inventory	methods	(e.g.	measuring	tape	and	poles	
for small trees, different hypsometers, ultrasonic and laser range-
finders, mechanical clinometers, physically climbing the tree with a 
tape	measure,	expert	estimation	and	destructive	methods),	hereaf-
ter referred to as inventory methods, can be challenging, and data 
on	H	 is	often	 limited	 in	quantity	or	 accuracy	 (Hunter	et	 al.,	2013; 
Larjavaara	 &	Muller-	Landau,	 2013).	 In	 such	 cases,	 individual	 H	 is	
estimated	 through	 the	 use	 of	 tree	 height-	to-	stem	 diameter	 (H:D)	
allometric	 relationships,	 which	 typically	 assume	 a	 constant	 H:D	
ratio,	stem	taper	and	crown-	mass	fraction	(Feldpausch	et	al.,	2011).	
Local	 H:D	 models	 offer	 more	 precise	 height	 estimations	 (Fayolle	
et al., 2016; Imani et al., 2017; Kearsley et al., 2013)	because	they	in-
herently account for environmental conditions, forest structure and 
the	disturbance	history	of	 the	 specific	 plot.	 Furthermore,	 Sullivan	
et	al.	 (2018)	demonstrated	that	by	using	a	sample	of	 just	50	trees	
per	site	 (plot	sizes	ranging	between	0.25	and	4.4 ha),	 including	the	
10	 largest	 trees,	 one	 can	develop	 local	H:D	models	with	 low	pre-
diction errors. This approach significantly reduces sampling efforts, 
particularly	for	the	largest	trees,	for	which	H	measurement	is	often	
highly	challenging	or	even	unfeasible	(Hunter	et	al.,	2013; Larjavaara 
&	Muller-	Landau,	2013).

In the tropics, regional, continental or pantropical models are 
frequently	employed	for	H	estimation.	One	of	the	widely	used	pan-
tropical	H:D	models	was	developed	by	Chave	et	al.	(2014),	where	
H	is	predicted	from	D	and	three	climatic	variables.	This	model	was	
constructed	using	a	dataset	comprising	4004	trees	from	58	sites	
encompassing tropical forests, subtropical forests and woodland 
savannas.	Most	databases	used	 for	pantropical	 allometries	 com-
bine	D	and	H	data	collected	at	permanent	plots	using	various	in-
ventory methods, each with distinct measurement uncertainties 
(Burt	et	al.,	2020).	Even	when	H	is	measured	destructively,	often	
different	approaches	are	applied	post-	harvest	(Burt	et	al.,	2020).	
The	accuracy	of	H	measurements	is	also	contingent	on	the	struc-
tural	complexity	of	the	forest,	the	observer's	experience	and	the	
equipment employed. This can introduce subjectivity and mea-
surement	 heterogeneity,	 potentially	 biasing	 the	 resulting	 H:D	
models	 (Laurin	et	 al.,	 2019).	Measuring	D	 is	 also	often	 challeng-
ing in tropical rainforests due to stem deformities and buttressed 
roots	reaching	several	metres	in	height.	Measuring	D	above	these	
roots	 is	 time-	consuming,	 hazardous	 and	 difficult	 to	 replicate,	

model	demonstrates	more	consistent	uncertainties	across	tree	size	and	delivers	less	
biased	estimates	of	H	(with	a	reduction	of	8.23%).	In	summary,	recognizing	the	errors	
in	H	measurements	from	forest	inventory	methods	is	vital,	as	they	can	propagate	into	
the	allometries	they	inform.	This	study	underscores	the	potential	of	TLS	for	accurate	
H	and	D	measurements	in	tropical	rainforests,	essential	for	refining	tree	allometries.

K E Y W O R D S
accuracy, forest inventory, terrestrial laser scanning, tree allometry, tree height, tropical 
rainforest
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particularly	in	the	context	of	monitoring	(Cushman	et	al.,	2014).	As	
a result, the measurement of D for these buttressed trees is more 
prone to errors, and situations may arise where the D is not mea-
sured.	Nevertheless,	in	contrary	to	H,	D	is	more	consistently	mea-
sured based on a single instrument and straightforward protocols 
such as those provided by the Forest Global Earth Observatory 
(ForestGEO)	 network	 (Anderson-	Teixeira	 et	 al.,	 2015; Condit 
et al., 2014).	Measurement	difficulties	can	result	in	biased	H	cen-
sus	data,	especially	for	 large	tropical	trees	with	substantial	AGB,	
impacting	 the	H:D	relationships.	This	 raises	questions	about	 the	
accuracy	 of	 H:D	 models	 derived	 from	 various	 inventory-	based	
measurements.	 Specifically,	 data	 interoperability	 and	 the	 influ-
ence of measurement uncertainty, as well as traceability, must be 
well	understood	before	utilizing	these	extensive	global	databases	
to establish new allometries.

Terrestrial	laser	scanning	(TLS),	also	known	as	terrestrial	lidar,	has	
transformed the way we assess forest structure. Laser scanning is an 
active remote sensing technique that emits laser pulses and analyses 
the	returned	energy	over	time	(in	the	case	of	time-	of-	flight	scanners)	
or	the	phase	difference	(in	case	of	phase-	shift	scanners)	to	precisely	
measure	distances.	With	this	technology,	we	can	capture	the	three-	
dimensional	 (3D)	structure	of	 the	 forest	and	 its	 individual	 trees	 in	
the form of point clouds. These point clouds allow us to derive struc-
tural	metrics	like	D,	H	and	crown	dimensions	relatively	quickly,	accu-
rately	and	easily	(Calders	et	al.,	2015;	Hopkinson	et	al.,	2004; Tansey 
et al., 2009).	A	study	conducted	by	Terryn	et	al.	(2022)	demonstrated	
that	 using	 high-	end	 TLS	 equipment	 (RIEGL	 VZ400),	 accuracies	 of	
2 cm	for	D	(at	both	breast	height	and	above	buttresses)	and	30 cm	
for	H	can	be	achieved	 for	 trees	 (15–37 m	 tall)	 in	 two	dense	 tropi-
cal	 rainforest	 plots.	 In	 contrast,	 inventory-	based	H	measurements	
in	 dense	 tropical	 forests	 can	 exhibit	 biases	 of	 up	 to	 10 m	 (Laurin	
et al., 2019).	Over	recent	years,	the	use	of	TLS	in	forest	assessments	
has witnessed a substantial rise, establishing itself as a traceable, 
non- destructive and accurate method for numerous tree structural 
measurements.	However,	it	is	crucial	to	highlight	that	achieving	this	
is feasible only after processing the raw point cloud data, which 
essentially comprises x, y, z	 coordinates.	Processing	steps,	 such	as	
co- registration and tree segmentation, particularly the latter, can 
be quite time- consuming. Fortunately, laser scanning data for trees 
are increasingly accessible to the public through platforms such as 
GlobalTLS	 (https:// www. globa l-  tls. net/ ),	 ForestScan	 (https:// data. 
ceda. ac. uk/ neodc/  fores tscan ),	and	FOR-	instance	(Puliti	et	al.,	2023).	
This development opens up new opportunities for the evaluation 
and	improvement	of	existing	H:D	models	based	on	highly	accurate	
3D tree measurements.

In this study, we compiled a comprehensive dataset of highly 
precise	D	and	H	measurements	acquired	through	TLS.	This	dataset	
encompasses	1951	trees	across	19	distinct	tropical	rainforest	plots	
across four different continents. Our investigation focuses on two 
main research questions: First, what is the predictive accuracy of 
forest	inventory-	based	local	H:D	allometries	in	tropical	rainforests?	
To	address	this,	we	utilized	spatially	coincident	TLS-	based	and	for-
est	 inventory-	based	H	and	D	data	available	for	11	of	the	19	plots.	

Second,	 can	we	 decrease	 the	 uncertainty	 and	 bias	 of	 pantropical	
H:D	allometries	using	TLS?	To	explore	this,	we	developed	a	new	H:D	
model	 for	 tropical	 rainforests,	 leveraging	TLS-	based	H	and	D	data	
from	all	19	plots.	Our	research	highlights	the	importance	of	quanti-
fying	prediction	uncertainty	stemming	from	H	measurement	errors	
at both local and pantropical scales. It illuminates the impact of for-
est	inventory	height	measurement	errors	on	H:D	allometries	and	the	
potential	of	TLS	for	mitigating	those	errors.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Terrestrial	laser	scanning

We	 compiled	 a	 pantropical	 dataset	 comprising	 1951	 point	 clouds	
of	 tropical	 rainforest	 trees,	 which	 had	 been	 previously	 extracted	
from	TLS	data	as	part	of	earlier	studies.	The	dataset	spans	19	dif-
ferent	tropical	rainforest	plots	from	10	different	countries	(Figure 1, 
Table 1).	 Precipitation	 at	 these	 plots	 ranges	 from	 approximately	
1800	 to	 3500 mm	 per	 year	 according	 to	 the	WorldClim	 database	
(0.5′	resolution)	(Fick	&	Hijmans,	2017).	We	selected	a	D	cut-	off	of	
10 cm	since	 this	 is	a	 frequently	selected	cut-	off	point	 in	 inventory	
measurements	 in	 tropical	 rainforests	 (Harris	 et	 al.,	2021).	 All	 TLS	
data	were	collected	with	a	RIEGL	VZ-	400	or	VZ-	400i	TLS	instrument	
for	data	interoperability	(Calders	et	al.,	2017).	Both	of	these	systems	
are full waveform, multiple target instruments with similar scanner 
characteristics.	More	specifications	on	TLS	data	collection	for	each	
plot can be found in Table S1.

Tree point clouds were segmented from the co- registered plot 
point cloud either completely manually or with a combination of a 
segmentation algorithm and manual corrections afterwards to en-
sure	a	high-	quality	dataset	(Table S1).	The	sampling	strategy	of	 in-
dividual	 trees	differed	between	plots	 as	 the	 trees	were	extracted	
in	 the	context	of	different	 research	projects	 for	which	 these	data	
were	initially	collected	(Table S1).	D	and	H	were	calculated	from	the	
tree	point	clouds	with	the	ITSMe	package	in	R	(Terryn	et	al.,	2023).	
The parameters for the D calculation were optimised for each plot 
and a visual inspection of the calculation through figures, such as 
Figure S1, ensured the D estimates' quality.

2.1.2  |  Forest	inventory

For	11	of	the	19	plots,	 inventory	data	of	the	same	plot	as	the	TLS	
data was gathered either from publicly available sources such as the 
Tallo	database	(Jucker	et	al.,	2022)	or	unpublished	sources	(Table S1).	
If inventory data were available from multiple years, the year clos-
est	to	when	the	TLS	data	were	collected	was	chosen	(Table 1).	The	
inventory-	based	H	measurements	varied	from	using	measuring	tape	
for small trees, clinometers and laser rangefinders to using ground- 
based	 Field-	Map	 technology	 (IFER,	 Ltd.)	 and	 canopy	 cranes	 for	

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17473 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [11/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.global-tls.net/
https://data.ceda.ac.uk/neodc/forestscan
https://data.ceda.ac.uk/neodc/forestscan


4 of 18  |     TERRYN et al.

canopy	trees	(Table S1).	For	the	EBC	plot,	in	addition	to	TLS-	based	
and	inventory-	based	H	and	D	measurements,	post-	harvest	measure-
ments	were	available,	providing	insight	into	how	well	TLS-	based	H:D	
allometry	compares	to	post-	harvest-	based	(destructive)	H:D	allom-
etry	(Lau	et	al.,	2019).

2.1.3  |  Environmental	variable

To	build	our	new	pantropical	H:D	model	for	tropical	rainforests,	we	
chose	to	add	the	maximum	climatological	water	deficit	(MCWD)	to	
the	model.	The	MCWD	is	a	measure	of	the	severity	of	water	stress	
that	vegetation	may	experience	during	a	certain	period.	The	MCWD	
has proven to be a key environmental variable in pantropical mod-
els	 before	 and	 is	 highly	 correlated	 (correlation	 >0.8)	 with	 other	
environmental variables, temperature seasonality, precipitation sea-
sonality	 and	dry	 season	 length,	 that	were	 found	 to	drive	 the	H:D	
allometry	 of	 tropical	 trees	 (Banin	 et	 al.,	2012; Chave et al., 2014; 
Feldpausch et al., 2011).	Given	the	constraints	of	our	study,	which	is	
confined	to	19	tropical	rainforest	plots,	we	opted	to	include	just	one	
environmental	 variable	 (MCWD)	 to	 prevent	 overfitting.	 This	 deci-
sion not only addresses overfitting concerns but also ensures the 
interpretability	of	 the	model.	The	MCWD,	calculated	as	 the	mean	
yearly	MCWD	over	a	period	of	1981	to	2020,	was	extracted	from	
the	 Global	 CHIRPS	MCWD	 (Maximum	 Cumulative	Water	 Deficit)	

Dataset	 (Funk	 et	 al.,	 2015;	 Silva	 Junior	 et	 al.,	 2019;	 Silva	 Junior	
et al., 2021).

2.2  |  Local H:D allometry analysis

To	assess	the	prediction	accuracy	of	plot-	level	inventory-	based	H:D	
allometries,	we	compare	them	to	H:D	allometries	build	on	the	best	
available	data	 (TLS)	 for	 that	plot.	Therefore,	we	constructed	 fixed	
effect	models	 for	 each	 plot,	 incorporating	 the	 data	 type	 (TLS,	 in-
ventory	or	post-	harvest	for	EBC)	as	a	fixed	effect	across	all	poten-
tial	 combinations	 of	model	 parameters	 (Figure S2, Equations 1–4; 
Equations S1).

2.2.1  |  Plot	selection

In an ideal scenario, we would have spatially and temporally coinci-
dent	TLS	and	inventory	data	for	the	same	trees	within	each	plot.	This	
approach would eliminate the influence of plot environment, tem-
poral changes and differences in sampling strategies on the results. 
This	requires,	first	and	foremost,	that	TLS	and	inventory	height	(H)	
and	diameter	(D)	data	from	the	same	year	are	available	for	the	same	
plot.	Additionally,	it	requires	matching	individual	trees	from	TLS	data	
to inventory data.

F I G U R E  1 Spatial	coverage	of	the	
terrestrial	laser	scanning	(TLS)	and	
forest	inventory	(inventory)	data	that	
include tree height measurements of 
tropical	rainforests	(a)	pantropical	and	
in	(b)	South	America,	(c)	Asia,	(d)	Africa	
and	(e)	Australia.	TLS	data	of	all	19	plots	
were used in the pantropical allometry 
analysis.	Coincident	TLS	and	inventory	
data	of	11	plots	(marked	by	a	brown	
cross)	were	used	in	the	local	allometry	
analysis. Dark and light green colours on 
the map show evergreen and deciduous 
forests,	respectively	(ESA's	Global	Land	
Cover	Map	of	2020).	Map	lines	delineate	
study areas and do not necessarily depict 
accepted national boundaries.

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17473 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [11/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 18TERRYN et al.

For	 two	 plots	 (YAN01	 and	 EBC),	 we	 obtained	 matched	 tree	
data	 from	 the	 same	year	 and	plot	 (Table 1).	 For	 two	other	plots	
(DRO01	and	AEP09),	matched	TLS	and	inventory	data	were	avail-
able	 but	 collected	1	 year	 apart.	Matching	 between	 the	TLS	 and	
inventory	tree	data	was	done	manually	for	these	plots.	For	YAN01,	
trees	were	first	segmented	from	the	TLS	data,	and	a	map	with	tree	
locations was created. This map was later used to locate trees in 
the	field	to	measure	their	diameter	D	and	H	using	inventory	meth-
ods. For EBC, individual trees were selected, conventionally mea-
sured,	scanned	and	harvested	 (Lau	et	al.,	2019).	For	DRO01	and	
AEP09,	reflective	QR	codes	attached	to	the	trees	during	scanning	
were	used	to	identify	the	trees	during	tree	segmentation	(Terryn	
et al., 2022).

For	seven	other	plots	 (LPG01,	ANK01,	MAL01,	PAR06,	CAXA,	
NOU11	and	BCI),	both	TLS-	based	and	inventory-	based	H	and	D	data	
were available, but tree matching was not possible. Furthermore, 
for	five	of	these	plots,	there	is	a	time	gap	of	more	than	1	year	(up	
to	 10 years)	 between	 the	 TLS	 and	 inventory	 data	 collection	 (see	
Table 1).	 Since	 tree	 matching	 was	 not	 feasible,	 we	 ensured	 that	
for each of these seven plots, there were at least 50 individuals in 
both	datasets	(TLS	and	inventory).	Sullivan	et	al.	(2018)	suggested	a	
sample	size	of	at	least	50	trees	(including	the	10	largest)	per	plot	to	
achieve local allometries with low prediction error.

2.2.2  | Model	forms,	fitting	and	selection

First,	the	TLS,	post-	harvest	and	inventory	datasets	were	combined	
for each plot. To fit the allometric models for plots where tree 
matching	was	not	feasible,	we	used	all	available	trees	from	TLS	and	
inventory	data	that	fell	within	a	comparable	diameter	range.	For	ex-
ample,	if	the	minimum	diameter	(D)	for	inventory	data	was	10 cm	but	
18 cm	for	TLS,	we	included	only	trees	with	a	D	greater	than	18 cm.	
For	the	maximum	diameter,	we	set	the	cut-	off	where	the	difference	
between	 the	maximum	diameters	 for	TLS	and	 inventory	data	was	
less	than	10 cm.

For model fitting, we considered four commonly used functional 
forms	to	model	the	local	H:D	relationships,	namely	the	log–log	form	
(Equations 1),	 the	 log–log2	 form	 (Equation 2),	 the	rescaled	Weibull	
form	(rWei,	Equation 3)	and	the	generalised	Michaelis–Menten	form	
(gMM,	Equation 4).	The	latter	two	are	non-	linear	H:D	models,	having	
biological interpretations, that are less sensitive to individual points, 
making	them	more	stable	and	more	reliable	for	data	extrapolation	
(Batista	et	al.,	2001).	We	applied	a	natural	logarithm	transformation	
on	 the	 rescaled	 Weibull,	 and	 the	 generalised	 Michaelis–Menten	
form to increase the likelihood of homoscedastic behaviour of the 
residuals:

(1)ln(H) = a + b ⋅ ln(D) + ϵ,

TA B L E  1 Summary	of	the	assembled	terrestrial	laser	scanning	(TLS)	and	forest	inventory	(inventory)	data	including	plot	code,	the	country	
where	the	plot	is	located	(international	country	code),	the	year	of	data	collection	(TLS/inventory),	the	number	of	trees	(TLS/inventory/
post-	harvest)	used	in	the	local	H:D	allometry	analysis	(LAA),	the	number	of	trees	(TLS)	used	in	the	pantropical	allometry	analysis	(PAA,	total	
number	of	1951),	the	stem	diameter	(D)	range,	the	tree	height	(H)	range	of	the	trees	for	the	pantropical	allometry	analysis	and	the	maximum	
climatological	water	deficit	(MCWD).

Plot code Country Collection year # trees LAA # trees PAA D range (cm) H range (m) MCWD (mm)

EBC* GUY 2017/2017 26/26/26 106 10–157 14–52 −131

LPG01 GAB 2013/2013 104/106 107 19–223 15–43 −287

YAN01* COD 2023/2023 110/110 106 10–76 10–43 −62

AEP09* AUS 2018/2019 57/57 200 12–90 19–38 −373

DRO01* AUS 2018/2019 56/56 59 15–123 10–35 −352

ANK01 GHA 2016/2015 179/66 182 11–101 12–40 −195

MLA01 MYS 2018/2014 189/402 189 10–149 10–77 −18

PAR06 GUF 2019/2012 204/499 202 10–93 15–45 −148

BCI PAN 2019/2014 195/339 196 22–211 17–43 −222

CAXA BRA 2014/2023 151/496 151 11–160 21–56 −156

NOU11 GUF 2015/2005 155/214 155 19–105 17–52 −69

AEP02 AUS 2018/− - 27 18–45 13–23 −410

AEP33 AUS 2018/− - 16 50–100 28–41 −395

AEP41 AUS 2018/− - 32 10–72 15–33 −385

CBN01 MYS 2017/− - 44 10–111 10–52 −18

DIM BRA 2021/− - 83 10–75 12–36 −42

SAF03 MYS 2018/− - 35 12–92 9–44 −24

TAM05 PER 2017/− - 37 15–117 13–42 −144

TAM06 PER 2017/− - 24 17–89 12–37 −145

*For	these	plots,	the	individual	trees	in	the	TLS	and	the	inventory	data	were	paired.	The	relative	D	and	H	distribution	of	TLS	and	inventory-	based	
data	for	each	plot	used	in	the	LAA	are	shown	in	Figure S3.
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6 of 18  |     TERRYN et al.

with H, the tree height in metres, D, the stem diameter in centimetres, 
a, the intercept and b, c and k, the shape parameters of the functional 
forms, ε	the	error	term,	ln	the	natural	logarithm	and	exp	the	exponen-
tial function.

Fixed	effect	models	were	 fitted	with	 the	data	 type	 (e.g.	 the	
method	of	H	and	D	measurements:	TLS,	inventory,	post-	harvest)	
treated	as	a	fixed	effect	factor	on	the	intercept	and	shape	param-
eters.	By	including	data	type	as	a	fixed	effect	on	these	parame-
ters,	we	accounted	for	the	variation	 in	the	H	and	D	relationship	
that may arise from different data types used to fit the allom-
etry.	 Since	 it	 is	 unclear	 which	 parameters	 might	 be	 influenced	
by	the	data	 type,	we	explored	different	combinations	of	adding	
data	type	as	a	fixed	effect	to	the	parameters	of	the	four	different	
model	forms.	Hence,	for	each	functional	form,	we	fit	a	null	model	
with	no	fixed	effect	of	the	data	type	(Equations 1–4),	as	well	as	
24	models	 incorporating	 each	possible	 combination	of	 fixed	 ef-
fects of the data type on the intercept and the shape parameters 
(Equations	S1).

To	fit	the	H:D	allometries,	we	used	Bayesian	multilevel	models	
implemented	by	the	brms	R	package	(version	2.19.0),	which	uses	the	
probabilistic	programming	language	Stan	(Bürkner,	2017).	Priors	for	
the a, b, c and k	parameters	were	based	on	previous	literature	(Chave	
et al., 2014; Feldpausch et al., 2011;	Martnez	Cano	et	al.,	2019),	and	
modelled	as	normal	distributions	and	in	case	of	rWei	and	gMM	mod-
els	 as	 gamma	distributions.	 The	utilization	of	 gamma	distributions	
aimed to enhance model convergence by ensuring that all param-
eters	 remain	 positive.	 The	 fixed	 effects	 priors	 were	 modelled	 as	
zero-	centred	uninformed	normal	distributions.	Model	inference	re-
lied on drawing 5000 posterior samples after conducting a burn- in 
of 10,000 iterations across four parallel chains to guarantee model 
convergence while limiting computing time. Trace, density and post- 
predictive	check	plots	(Figures S4, S5),	along	with	the	Gelman–Rubin	
Statistic	 (R-	hat)	 and	effective	 sample	 size	 (ESS)	were	employed	 to	
verify and ensure model convergence and model structure. For each 
plot, the best model was selected based on the Bayesian leave- one- 
out	 (LOO)	 cross-	validation	method	 using	 the	 loo and loo_compare 
function	 within	 the	 brms	 package	 (Luo	 &	 Al-	Harbi,	 2017;	 Sivula	
et al., 2020).

2.3  |  TLS- based pantropical H:D allometry analysis

To	 improve	 the	 estimation	 of	H	 on	 a	 pantropical	 level,	we	 built	 a	
new	pantropical	H:D	model	using	mixed-	effect	models.	This	model	
was	based	on	TLS-	based	H	and	D,	from	1951	tree	point	clouds	from	
tropical	rainforests	across	four	continents,	and	the	MCWD	to	help	
account	for	between	plot	variance	(Figure S6).

2.3.1  | Model	forms,	fitting	and	selection

We	also	applied	Bayesian	models	implemented	by	the	brms	R	pack-
age	to	fit	the	mixed-	effect	pantropical	H:D	models	(Bürkner,	2017).	
First,	we	explored	the	fit	of	the	same	model	forms	(Equations 1–4)	as	
were	applied	for	the	local	allometry	analysis	to	the	full	TLS	dataset,	
to	obtain	pantropical	H:D	allometries	 for	each	model	 form.	These	
allometries do not yet consider any environmental factors but we 
did account for between- plot variation using ‘plot’ as a random fac-
tor	in	the	models.	Adding	a	random	effect	for	plot	helps	to	account	
for the nested structure in the data. Random effects can capture the 
variation	in	H:D	relationship	between	the	different	plots.	For	each	
functional	form	for	the	simple	pantropical	H:D	allometries,	eight	dif-
ferent	combinations	of	random	effects	(including	no	random	effects)	
on the model parameters a, b, c or k were added to account for plot 
grouping,	resulting	in	28	different	models	(Equations 1–4; Equations 
S25–S47).	 For	 all	models,	 inference	was	 based	 on	 5000	posterior	
samples following 10,000 burn- in iterations for four parallel chains 
to guarantee model convergence while limiting computing time. 
Trace,	density	and	post-	predictive	check	plots	(Figures S4, S5),	along	
with	 the	 Gelman-	Rubin	 Statistic	 (R-	hat)	 and	 ESS	 were	 employed	
to verify and ensure model convergence and model structure. The 
best	model	among	the	28	different	models	was	determined	based	
on the LOO comparison method and is further referred to as the 
simple pantropical model as it does not include any environmental 
variables.

Secondly,	the	model	form	selected	for	our	simple	H:D	allometry	
(excluding	the	environmental	variable	MCWD)	served	as	the	foun-
dation for further model development. This was done to create a 
complex	pantropical	H:D	model	that	incorporates	MCWD	to	address	
between-	plot	variance.	MCWD	was	introduced	to	the	model	param-
eters	where	the	simple	pantropical	model	exhibited	a	random	effect	
of plot, indicating variance between plots. The random effects were 
also included because even if a model includes and accounts for a 
number	of	explanatory	variables,	other	unaccounted	effects	could	
still	play	a	role	on	the	response	variable.	Hence,	the	combined	effect	
of these possible omitted variables can still be represented by the 
random	effects	(Cysneiros	et	al.,	2021).

2.4  |  Accuracy and trueness assessment

To	 assess	 the	 difference	 in	 local	 inventory-	based	 and	 TLS-	based	
H:D	allometries,	we	applied	the	best	model	 (see	Local	H:D	allom-
etry analysis section, Table 2)	 to	make	predictions	of	H	for	 the	D	
range,	assuming	TLS	and	inventory	data	as	the	data	type,	for	each	
plot. The predicted heights were corrected for the bias intro-
duced by the back transformation of the log- transformed predic-
tions	(Martnez	Cano	et	al.,	2019).	Next,	we	calculated	the	absolute	
height	differences	 (Ĥinventory – ĤTLS)	and	relative	height	differences	
(Ĥinventory / ĤTLS – 1).	We	computed	95%	credible	intervals	(CI)	based	
on 5000 samples from the posterior distributions of all parameters 
of the corresponding allometric models. The CI means that there is 

(2)ln(H) = a + b ⋅ ln(D) + c ⋅ ln(D)
2
+ ϵ,

(3)ln(H) = a + ln
(
1 − exp

(
− b ⋅ Dk

))
+ ϵ,

(4)ln(H) = a + b ⋅ ln(D) − ln
(
k + Db

)
+ ϵ,
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    |  7 of 18TERRYN et al.

a	95%	probability	that	the	true	(unknown)	estimate	would	lie	within	
the interval, given the evidence provided by the observed data.

We	also	assessed	model	prediction	accuracy,	the	closeness	be-
tween	the	predicted	and	observed	H,	and	the	trueness,	the	part	of	
accuracy	related	to	systematic	errors,	of	the	inventory	local	H:D	al-
lometries,	and	the	simple	and	complex	pantropical	TLS-	based	H:D	
allometries. To assess prediction error, we used a relative accuracy 
metric,	 the	natural	 logarithm	of	 the	 accuracy	 ratio	 (Tofallis,	2015)	
instead	 of	 the	 mean	 absolute	 percentage	 error	 (MAPE).	 As	 Burt	
et	al.	(2020)	pointed	out,	MAPE	has	undesirable	properties	including	

asymmetric penalty, asymmetric bounds and outlier penalty. The 
natural logarithm of the accuracy ratio Qi is defined as the natural 
logarithm of the ratio of the estimated 

(
Ĥi

)
	and	the	measured	H	

(
Hi

)
:

For	the	local	inventory	H:D	allometries,	for	each	plot	we	applied	the	
best	model	to	make	predictions	of	H	for	all	TLS	trees	using	the	inven-
tory	H:D	allometry	

(
Ĥi = Ĥinventory

)
	and	the	TLS-	based	H	as	a	reference	

(
Hi = HTLS

)
.	 For	 the	pantropical	H:D	 allometries,	we	 assessed	model	

(5)ln
(
Qi

)
= ln

(
Ĥi

Hi

)

.

TA B L E  2 Summary	table	of	the	best	model	for	each	plot,	specifying	its	model	form,	the	estimates	and	the	95%	credible	interval	(CI)	of	the	
intercept	(a)	and	the	shape	parameters	of	the	functional	forms	(b, c and k),	the	estimates	and	the	95%	CI	of	the	fixed	effects	of	data	type	on	
these	parameters,	and	the	root	mean	square	error	(RMSE,	[m])	of	the	model.

Plot code Model form Parameter
Parameter 
estimate Estimate 95% CI

Fixed effect 
estimate Estimate 95% CI RMSE

EBC gMM a 3.98 [3.86,	4.14] - - 0.11

b 1.00 [0.86,	1.13] −0.08 [−0.13,	−0.04]

k 25.43 [20.92,	30.39] - - 

LPG01 log–log a 1.68 [1.36,	2.00] −0.59 [−1.04,	−0.13] 0.21

b 0.43 [0.34,	0.51] 0.17 [0.04,	0.29]

YAN01 rWei a 3.70 [3.47,	4.01] −0.23 [−0.65,	0.34] 0.19

b 0.06 [0.05,	0.08] - - 

k 0.78 [0.65,	0.93] 0.05 [−0.21,	0.27]

AEP09 log–log2 a 1.48 [1.09,	1.86] - - 0.12

b 0.66 [0.46,	0.86] - - 

c −0.04 [−0.07,	−0.02] - - 

DRO01 log–log2 a 1.16 [0.71,	1.60] - - 0.23

b 0.69 [0.49,	0.91] - - 

c −0.04 [−0.07,	−0.01] - - 

ANK01 rWei a 3.65 [3.54,	3.81] - - 0.18

b 0.05 [0.03,	0.07] −0.03 [−0.05,	−0.01]

k 0.91 [0.75,	1.08] 0.23 [0.02,	0.44]

MLA01 log–log2 a 0.63 [0.29,	0.96] −1.39 [−2.00,	−0.78] 0.22

b 0.93 [0.74,	1.12] 0.80 [0.44,	1.17]

c −0.04 [−0.07,	−0.01] −0.13 [−0.18,	−0.07]

PAR06 rWei a 3.63 [3.55,	3.73] - - 0.16

b 0.07 [0.06,	0.08] −0.01 [−0.02,	−0.01]

k 0.86 [0.78,	0.95] - - 

BCI log–log2 a 0.90 [0.44,	1.37] −1.78 [−2.81,	–0.77] 0.16

b 0.80 [0.59,	1.01] 0.84 [0.34,	1.37]

c −0.04 [−0.07,	−0.02] −0.10 [−0.17,	–0.04]

CAXA log–log2 a 1.29 [0.83,	1.74] −1.56 [−2.25,	−0.85] 0.25

b 0.75 [0.54,	0.96] 0.57 [0.17,	0.97]

c −0.05 [−0.07;	−0.02] −0.06 [−0.12,	−0.00]

NOU11 rWei a 4.05 [3.80,	4.54] −0.36 [−0.89,	0.08] 0.15

b 0.07 [0.04,	0.10] −0.04 [−0.07,	−0.00]

k 0.73 [0.51,	0.97] 0.30 [−0.07,	0.66]

Note:	The	value	for	the	fixed	effect	equals	the	increase/decrease	(when	+/−)	in	the	model	parameter	when	the	allometric	model	is	modelled	using	
inventory	compared	with	TLS	(the	reference	data	type)	tree	heights.
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8 of 18  |     TERRYN et al.

prediction	accuracy	and	trueness	of	the	simple	and	complex	pantrop-
ical	model	using	k-	fold	cross-	validation.	We	used	the	kfold function of 
the	brms	R	package	to	perform	19-	fold	cross-	validation	by	refitting	the	
selected	model	19	times	each	time	leaving	out	one	plot	of	the	original	
data	 (Bürkner,	2017).	Subsequently,	 the	kfold_predict function of the 
same	package	was	applied	to	compute	the	H	predictions	considering	
no	group-	level	effect	(similar	to	predicting	H	for	new	plots).

We	quantified	 the	accuracy	 (uncertainty)	of	 the	H	estimations	
using	 the	median	 symmetric	 accuracy	 (MSA,	Morley	 et	 al.,	 2018).	
The	value	of	MSA	can	be	interpreted	as	a	percentage	total	error	(e.g.	
a	value	of	10%	means	a	total	error	of	10%)	and	is	calculated	as

with M	representing	the	median	function.	We	also	quantified	the	true-
ness	(bias)	using	the	systematic	signed	percentage	bias	(SSPB,	Morley	
et	al.	(2018)),	which	gives	the	percentage	systematic	error	(e.g.	a	nega-
tive	percentage	value	of	−10%	means	a	10%	negative	bias	and	a	posi-
tive	percentage	value	of	10%	means	a	10%	positive	bias):

with sgn representing the sign function and M representing the median 
function.	In	comparison	with	existing	H:D	models,	we	also	calculated	
the	MSA	and	SSPB	for	the	H	predictions	based	on	the	pantropical	H:D	
model	of	Chave	et	al.	(2014)	(equation	6a–6b).

3  |  RESULTS

3.1  |  Local H:D allometry

Our	 analysis	 shows	 that	 for	 all	 plots,	 apart	 from	 two	 (AEP09	 and	
DRO01),	the	best	local	H:D	model	included	fixed	effects	of	data	type	
on	one	or	several	parameters	(Table 2).	Notably,	for	two	of	those	plots	
(ANK01,	 LPG01)	 this	 does	 not	 result	 in	 statistically	 credible	 (95%	
CI,	 in	the	Bayesian	sense)	differences	between	inventory-	based	and	
TLS-	based	 allometries	 over	 the	 full	 D	 range	 (Figure 2).	 Conversely,	
for	 seven	 plots,	 the	 inventory-	based	 allometries	 exhibit	 statisti-
cally	 credible	underestimation	 (95%	CI)	 of	H,	with	mean	values	be-
tween	−1.62 m	(−5.32%)	and − 7.52 m	(−25.42%)	for	trees	of	30 m	tall	
(Figure 3; Figure S7).	For	the	Malaysian	plot	(MLA01)	the	underestima-
tion	increases	up	to	−31.70 m	(−41.26%)	for	the	tallest	trees	(Figure 3, 
bottom).	In	the	majority	of	plots,	the	underestimation	of	H	is	not	con-
sistent	across	the	height	range;	it	increases	with	H	for	certain	plots	but	
decreases	for	others.	In	contrary	to	all	other	plots,	for	the	LPG01	plot,	
H	is	overestimated	for	trees	taller	than	approximately	25 m	(Figure 3).	
The	H	difference	is	also	often	accompanied	by	an	increase	in	the	width	
of	the	CI	with	increasing	H	(Figure 3).	The	widening	of	the	CI	with	tree	
size	is	caused	by	the	limited	number	of	trees	with	high	H	values	which	
increases	the	uncertainty	of	the	allometric	models	at	these	tree	sizes.

For	EBC,	the	only	plot	where	coincident	TLS,	post-	harvest	and	
inventory	data	of	the	same	trees	was	available,	the	best	H:D	model	
shows	overlapping	fits	for	TLS	and	post-	harvest	whereas	the	fit	for	

inventory	allometry	did	not	overlap	and	was	credibly	(95%	CI)	lower	
(Figure 2).	Compared	with	 the	TLS	allometry,	 the	allometry	based	
on	this	inventory	data	(using	a	laser	rangefinder)	underestimates	H	
on	average	between	−2.50 m	(−6.2%)	and − 3.52 m	(−12%)	along	the	
diameter	range	(Figure 3).

3.2  |  TLS- based pantropical H:D allometry

We	found	the	best	allometric	form,	for	our	simple	pantropical	H:D	
model	(excluding	environmental	variables),	to	be	the	log–log2 form 
(Equation 2)	with	random	effects	of	plot	on	parameters	a and b:

with H, the tree height in metres, D, the stem diameter in centimetres, 
a, b and c model parameters, ϵ the error term, and ln the natural log-
arithm.	Fitting	this	form	(Equation 8)	to	the	TLS	data	resulted	in	our	
best-	fit	simple	pantropical	H:D	model:

with aplot ∼ 

(
0,0.382

)
 the random effect of plot on the intercept a 

and bplot ∼ 

(
0,0.102

)
 the random effect of plot on the shape param-

eter b	(Table 3; Figure S8).	The	model	has	a	mean	uncertainty	(MSA,	
total	 error)	 of	 19.70%	 and	 a	 mean	 bias	 (SSPB,	 systematic	 error)	 of	
−4.78%	based	on	cross-	validation	(Table 4).

To	account	for	between	plot	variation,	we	added	the	MCWD	to	
the parameters a and b	of	the	simple	pantropical	H:D	allometry	form:

where e and f are additional model parameters compared with the sim-
ple	pantropical	H:D	model	form	and	MCWD	is	the	maximum	climato-
logical	water	deficit	 (mm).	Fitting	this	form	(Equation 10)	to	the	data	
resulted	in	our	best-	fit	complex	pantropical	H:D	model:

with aplot ∼ 

(
0,0.322

)
 the random effect of plot on the intercept 

a and bplot ∼ 

(
0,0.072

)
 the random effect of plot on the shape pa-

rameter b	 (Table 3; Figure S8).	Adding	the	MCWD	to	the	model	has	
reduced the standard deviation of the random effects on a and b com-
pared	with	 the	simple	pantropical	model	 (Equation 9).	This	suggests	
that	MCWD	accounts	for	some	of	the	between	plot	variance	but	not	
all	of	it.	This	model	has	a	mean	uncertainty	(MSA,	total	error)	of	19.14%	
and	a	mean	bias	(SSPB,	systematic	error)	of	−4.77%	based	on	cross-	
validation	(Table 4).

Compared	with	the	model	of	Chave	et	al.	(2014)	and	the	simple	
pantropical	model	(Equation 9),	the	mean	uncertainty	of	the	complex	
pantropical	model	(Equation 11)	is	lower	and	uncertainties	are	more	
stabilised	along	all	tree	heights	(Figure 4).	Moreover,	looking	at	the	
different	height	classes,	the	mean	bias	for	trees	taller	than	40 m	in	
the	complex	pantropical	model	is	also	lower	(Figure 4).	Interesting	to	

(6)MSA = 100 ⋅

(
exp

(
M

(
|
|
|
ln
(
Qi

)|
|
|

)
− 1

))
,

(7)SSPB = 100 ⋅

(
sgn

(
M
(
ln
(
Qi

)))
⋅ exp

(
M
(
ln
(
Qi

)))
− 1

)
,

(8)ln(H) = (a| plot) + (b| plot) ⋅ ln(D) − c ⋅ ln(D)
2
+ ϵ,

(9)ln(H) =
(
0.91 + aplot

)
+
(
0.86 + bplot

)
⋅ ln(D) − 0.06 ⋅ ln(D)

2,

(10)
ln(H) = (a| plot) + e ⋅MCWD + ((b| plot) + f ⋅MCWD) ⋅ ln(D) − cln(D)

2
+ ϵ,

(11)

ln(H)=
(
0.76+aplot

)
−1.22 ⋅MCWD+

((
0.93+bplot

)
+0.56 ⋅MCWD

)

⋅ ln(D)−0.05 ⋅ ln(D)
2,
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    |  9 of 18TERRYN et al.

note	is	the	very	low	bias	of	the	Chave	et	al.	(2014)	model	for	trees	
smaller	than	20 m.	Most	of	the	trees	(1766,	60%)	used	to	calibrate	
Chave	et	al.	(2014)	their	model	were	less	than	20 m	tall.

The comparison of the uncertainty and bias between local 
inventory-	based	 and	 the	 complex	 pantropical	 TLS-	based	 H:D	
model shows that for the majority of the plots the mean uncer-
tainty	 (MSA)	 is	 lower	 for	 the	 local	 inventory-	based	models	 than	
the	 complex	 pantropical	model	 (Figure 5).	 Conversely,	 for	mean	
bias	 (SSPB),	 the	 complex	 pantropical	model	 demonstrates	 lower	

values compared with the local inventory- based models in the ma-
jority of the plots.

3.3  |  TLS versus forest inventory dataset 
comparison

Our	TLS	dataset	of	 tropical	 rainforest	 trees	exhibits	an	 inherently	
different	 tree	 size	 distribution	 compared	 with	 typical	 inventory	

F I G U R E  2 Best	tree	height:stem	diameter	(H:D)	model	fit	for	each	plot	(a–k).	The	model	fits	for	forest	inventory	(inventory),	terrestrial	
laser	scanning	(TLS)	and	post-	harvest	tree	height	(H)	and	stem	diameter	(D)	data	are	shown	in	black	lines	with	orange,	purple	and	green	
credible	intervals	(CI)	respectively.	The	0.95,	0.8	and	0.5	CI	are	shown	in	different	shades	going	from	dark	to	light	respectively.	The	individual	
trees	are	represented	as	dots	in	the	same	colours.	There	is	some	binning	visible	in	the	inventory	H	data	for	some	plots	due	to	the	limited	
precision	(1 m)	of	those	H	measurements.
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10 of 18  |     TERRYN et al.

datasets	 used	 for	modelling	H:D	 allometry,	 such	 as	 those	 utilized	
by	Chave	et	al.	(2014)	and	the	Tallo	database	by	Jucker	et	al.	(2022)	
(Figure S9).	Our	TLS	dataset	contains	only	66%	and	1%	of	the	num-
ber	of	 tropical	 rainforest	 trees	 compared	with	Chave	et	 al.	 (2014)	
and the Tallo dataset, respectively. But, compared with the Tallo 
database,	 this	percentage	 increases	 to	3%	and	4%	when	consider-
ing	D	above	20	and	40 cm,	respectively.	Moreover,	compared	with	
Chave	et	al.	(2014),	our	TLS	dataset	contains	proportionally	34.5%,	
and	75.1%	more	trees	with	a	D	above	20 cm	and	40 cm,	respectively.	

Thus,	 these	 inventory	datasets	exhibit	a	 relative	underrepresenta-
tion	of	larger	trees	compared	with	TLS.

All	 the	 trees	 from	 the	 TLS	 dataset	 were	 measured	 with	 the	
same	H	measurement	method,	while	Burt	 et	 al.	 (2020)	 reported	
that	at	least	four	different	methods	(pre-		and	post-	harvest)	were	
used	in	the	dataset	Chave	et	al.	(2014)	compiled.	Also	for	the	Tallo	
database,	Jucker	et	al.	(2022)	report	that	tree	heights	were	mea-
sured using a variety of approaches, including laser or ultrasonic 
range finders, clinometers, as well as tape measures, telescopic 

F I G U R E  3 Absolute	difference	in	tree	
height	(H)	when	predicted	from	the	best	
allometry	for	forest	inventory	(inventory)	
data	versus	terrestrial	laser	scanning	(TLS)	
data	(i.e.	Hinventory – HTLS)	for	plots	in	(a)	
Africa,	(b)	South	America	and	(c)	Asia	and	
Australia.	Negative	values	indicate	that	
the inventory allometry underestimates 
the	tree	height	compared	with	the	TLS-	
based allometry. The different colours 
and line types reflect the different plots 
per	panel	and	the	shaded	area	is	the	0.95	
credible	interval	(CI).	The	same	figure	but	
for relative tree height difference can be 
found in Figure S7.

TA B L E  3 Summary	table	of	the	best	model	for	the	simple	(Equation 9)	and	complex	pantropical	model	(Equation 11),	specifying	the	
estimates for the model parameters and σ	(the	standard	deviation	of	ϵ)	and	the	95%	credible	intervals	(CIs)	on	these	estimates,	and	also	the	
estimate of the standard deviation of the random effect on a and b	and	their	95%	CIs.

H:D model Parameter Parameter estimate Estimate 95% CI
Standard deviation random 
effect estimate

Estimate 95% 
CI

Simple	pantropical a 0.91 [0.64,	1.2] 0.38 [0.26,	0.56]

b 0.86 [0.72,	0.98] 0.10 [0.07,	0.15]

c −0.06 [−0.07,	−0.04] - - 

σ 0.14 [0.13,	0.14] - - 

Complex	pantropical a 0.76 [0.45,	1.09] 0.32 [0.21,	0.49]

b 0.93 [0.80,	0.1.06] 0.07 [0.05,	0.11]

c −0.05 [−0.07,	−0.04] - - 

e −1.22 [−2.24,	−0.12] - - 

f 0.56 [0.26,	0.84] - - 

σ 0.14 [0.13,	0.14] - - 
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    |  11 of 18TERRYN et al.

poles for smaller trees and for a very small subset of trees with 
fully	sun-	exposed	crowns,	a	combination	of	high-	resolution	aerial	
photos	and	ALS.

4  |  DISCUSSION

4.1  |  TLS for benchmarking H

In	 this	 study,	 we	 employed	 TLS	 as	 a	 benchmark	 for	 assessing	
inventory-	based	H	estimates.	The	accuracy	of	TLS-	based	metrics	
will however depend on the tree point cloud quality, which, in 
turn, is influenced by various factors during both acquisition and 
processing	phases.	Concerning	TLS	acquisition,	 it	 is	 important	to	
highlight that tropical rainforests present a challenging environ-
ment, with reported instances of canopy occlusion at the canopy's 
uppermost	 layer	 (Schneider	et	al.,	2019).	Occlusion	refers	 to	 the	

absence of data points in certain parts of the forest due to ob-
struction of the laser beams by vegetation or other obstacles in 
their path. Occlusion has only a minimal impact on the accuracy of 
H	measurements	as	 long	as	 laser	rays	still	hit	the	top	of	the	tree	
which	is	all	that	is	needed	to	get	the	correct	H.	Still	a	high	degree	
of occlusion of the top of canopy can lead to underestimations of 
the	H.	The	degree	of	occlusion	within	 the	point	cloud,	however,	
depends on a combination of several factors, including vegeta-
tion density, the specific characteristics of the laser system in use 
(e.g.	sensor	properties	and	scanner	type)	and	the	scanning	pattern	
(e.g.	pattern	density	and	multi-	scan	approach)	employed.	In	dense	
vegetation, more laser beams can be blocked by the vegetation, 
preventing	them	from	reaching	objects	behind.	However,	certain	
laser scanner characteristics, such as a smaller laser beam diver-
gence,	greater	sampling	range	and	a	higher	maximum	number	of	
targets per pulse, can enhance canopy penetration. Therefore, se-
lecting the appropriate laser scanning setup and scanning pattern 

H:D model
Mean MSA 
(%) 95% CI MSA (%)

Mean SSPB 
(%) 95% CI SSPB (%)

Chave	et	al.	(2014) 16.88 - −13.00 - 

Simple	pantropical 19.70 [16.58,	23.90] −4.78 [−12.31,	2.49]

Complex	pantropical 19.14 [16.17,	23.35] −4.77 [−12.24,	2.45]

Notes:	The	median	symmetric	accuracy	(MSA)	and	the	systematic	signed	percentage	bias	(SSPB)	
quantify	the	uncertainty	(total	error)	and	bias	(systematic	error)	respectively.	The	mean	MSA	and	
SSPB	values	and	their	95%	credible	intervals	(CIs)	are	given,	calculated	based	on	the	posterior	
predictions.	For	the	pantropical	model	of	Chave	et	al.	(2014)	the	calculation	of	a	CI	was	not	
possible.

TA B L E  4 Results	of	the	cross-	validation	
prediction	metrics	for	pantropical	H:D	
allometries:	Pantropical	model	of	Chave	
et	al.	(2014)	equation	6a–6b,	the	simple	
pantropical	model	(Equation 9)	and	
complex	pantropical	model	(Equation 11).

F I G U R E  4 Results	for	the	tree	height	(H)	prediction	from	the	pantropical	H:D	model	of	Chave	et	al.	(2014),	the	TLS-	based	simple	
pantropical	H:D	model	(Equation 9)	and	the	TLS-	based	complex	pantropical	H:D	model	(Equation 11)	represented	in	orange,	purple	and	
green	respectively.	(a)	H	predictions	compared	with	the	H	measured	from	the	terrestrial	laser	scanning	(TLS)	tree	point	clouds,	(b)	the	
median	symmetric	accuracy	(MSA,	[%])	quantifying	the	uncertainty	(total	error)	and	(c)	the	systematic	signed	percentage	bias	(SSPB,	[%])	
quantifying	the	bias	(systematic	error)	of	the	models	for	different	H	ranges.	The	mean	MSA	and	SSPB	values	and	their	0.95	credible	intervals	
(CIs)	are	given,	calculated	based	on	the	posterior	predictions.	For	the	pantropical	model	of	Chave	et	al.	(2014),	the	calculation	of	a	CI	was	not	
possible.	For	the	TLS-	based	models	tree	height	predictions	were	based	on	19-	fold	cross-	validation.
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12 of 18  |     TERRYN et al.

is crucial to acquiring good- quality point clouds. Furthermore, it 
is important to mention that wind can induce a ghosting effect 
in	 the	 point	 cloud	 due	 to	 tree	 sway	 in	 light	 breezes.	 This	 could	
potentially	 impact	measurements	of	D	and	H.	 It	 is	 therefore	ad-
visable to conduct scans when wind speeds are below 5 m⋅ s−1 
(Seidel	et	al.,	2012;	Wilkes	et	al.,	2017).	Finally,	the	quality	of	the	
tree	point	cloud	also	relies	on	the	proper	execution	of	processing	
steps	 (e.g.	 co-	registration	and	 tree	 segmentation)	 following	data	
acquisition.	 Existing	 automatic	 segmentation	 algorithms	 exhibit	
limited effectiveness in tropical rainforests due to their intricate 
and	multi-	layered	structure.	Hence,	it	remains	crucial	to	manually	
inspect and amend segmentation outcomes to guarantee result 
quality.

The	tree	point	clouds	utilized	in	our	study	were	obtained	using	a	
high- quality laser scanning system employing a multi- scan approach. 
Additionally,	manual	segmentation	quality	checking	was	performed	
to ensure the quality of the point clouds and the structural mea-
surements. Our findings also tend to further support the reliability 
of	TLS-	based	allometries,	 showing	no	credible	 (95%	CI)	difference	
between	TLS-	based	allometry	and	allometry	derived	from	H	mea-
surements	conducted	post-	harvest	(destructively)	in	one	of	the	plots	
(EBC).	Consequently,	TLS	stands	as	one	of	the	most	accurate	non-	
destructive	benchmarks	for	H	assessments,	especially	for	tall	trees	
in	dense	tropical	rainforests	(Ali	&	Wang,	2021;	Ferraz	et	al.,	2016; 
Gonzalez	de	Tanago	et	al.,	2018;	Kunz	et	al.,	2022).

4.2  |  Accuracy of forest inventory H:D allometry

Our	analysis	revealed	that	in	the	majority	of	the	plots	(9	out	of	11),	
allometric	models	based	on	inventory	data	yielded	credibly	(95%	CI)	
different	H	estimations	compared	with	those	constructed	using	TLS	
data.	In	seven	of	these	plots,	the	inventory-	based	allometry	exhib-
ited	 an	 underestimation	of	H	 across	 the	 entire	 range	of	H.	 These	

underestimations	 ranged	 from	 −5.3%	 to	 −25.4%	 for	 trees	 meas-
uring	30 m	 in	height,	up	 to	−41.3%	for	 the	 tallest	Malaysian	 trees.	
These findings are in line with the results reported by Larjavaara and 
Muller-	Landau	(2013)	for	the	sine	method,	which	is	often	employed	
with laser range finders. They noted an average systematic underes-
timation	of	20%	for	this	method.	In	their	study,	Ojoatre	et	al.	(2019)	
also	 observed	 that,	 in	 contrast	 to	 airborne	 laser	 scanning	 (ALS),	
hypsometer-	measured	field	heights	underestimated	H	in	a	tropical	
rainforest	in	Malaysia,	with	a	RMSE	of	3.11 m.

Our analysis was conducted on a limited dataset of only 11 trop-
ical rainforest plots, with constrained replication for various inven-
tory	H	measurement	methods	(e.g.	laser	range	finder	and	clinometer).	
Consequently, we were unable to discern distinct patterns associated 
with	 specific	 inventory	 H	 measurement	 methods.	 It	 is	 interesting,	
however,	 that	with	plots	where	the	same	 inventory	H	measurement	
method	was	utilized,	we	noticed	discrepancies	in	the	extent	of	under-
estimation.	 For	 example,	while	 both	NOU11	 and	 ANK01	 employed	
a	 clinometer	 for	 inventory	 H	measurement,	 NOU11	 exhibited	 con-
siderable	 underestimation,	 whereas	 ANK01	 showed	 no	 significant	
underestimation. This variability could be attributed to other factors, 
including forest structure, the individual conducting the measurement 
and	the	specific	instrument	used,	as	noted	by	Larjavaara	and	Muller-	
Landau	 (2013).	 Furthermore,	 the	 relationship	between	 the	accuracy	
and	H	varied	from	nearly	constant	underestimation	to	accuracy	that	
decreased	or	even	increased	with	increasing	H.	Due	to	this	inconsis-
tency,	 it	 is	challenging	to	apply	effective	corrections	on	 inventory	H	
measurements.	Additionally,	when	utilizing	H	data	from	online	data-
bases, it is often problematic to trace how and under what conditions 
the	measurements	were	obtained	 (Burt	 et	 al.,	2020).	 Enhancing	 the	
provision	of	standardized	metadata	during	measurement	publication	
will aid in mitigating this issue. Given the dependence of measurement 
accuracy on numerous factors and the traceability issues associated 
with	inventory-	based	H	measurements,	our	ability	to	establish	reliable	
H:D	allometries	using	such	data	is	impeded.

F I G U R E  5 Comparison	of	the	
median	symmetric	accuracy	(MSA,	[%])	
quantifying	the	uncertainty	(total	error)	
and the systematic signed percentage 
bias	(SSPB,	[%])	quantifying	the	bias	
(systematic	error)	between	local	forest	
inventory-	based	and	the	complex	
pantropical	TLS-	based	H:D	models	
(Equation 11)	for	each	plot	(a–k).	The	
mean	MSA	and	SSPB	values	and	their	
0.95	credible	intervals	(CIs)	are	given,	
calculated based on the posterior 
predictions based on 10- fold cross- 
validation.
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    |  13 of 18TERRYN et al.

In	 two	 plots	 (AEP09	 and	 DRO01),	 there	 were	 no	 statistically	
significant	 differences	 (95%	 CI)	 in	 H	 between	 the	 TLS-	based	 and	
inventory-	based	allometries,	across	the	entire	H	range.	Nevertheless,	
this does not rule out the possibility of measurement errors at the 
individual	 tree	 level.	When	comparing	 individual	Hs	 for	DRO01,	 it	
becomes	evident	that	significant	H	differences	exist	at	the	individual	
tree	level	(see	Figure 2; Figure S10a).	These	differences	encompass	
both	overestimations	and	underestimations	of	approximately	similar	
magnitudes, suggesting the presence of predominantly high random 
errors and low systematic errors for this particular plot. In the con-
text	of	allometric	modelling,	random	errors	do	not	result	in	incorrect	
allometries as long as a sufficient number of trees are used to model 
the	 relationship,	 as	 pointed	 out	 by	Burt	 et	 al.	 (2020)	 and	 Sullivan	
et	 al.	 (2018).	 Conversely,	 systematic	 errors,	 as	 observed	 in	 inven-
tory	H	measurements	at	the	individual	tree	level	in	the	YAN01	plot	
(Figure S10b),	can	lead	to	incorrect	allometries.

Regrettably, in seven of the 11 plots, individual tree- level mea-
surement errors could not be evaluated due to the lack of linkage be-
tween	the	tree	IDs	in	the	TLS	and	inventory	data,	often	exacerbated	
by data collection occurring in different years. To ensure future di-
rect comparisons, it is crucial to consistently establish connections to 
available	census	data.	The	absence	of	a	link	between	TLS	and	inven-
tory data for seven plots made it impossible to select the same trees 
to	construct	local	H:D	allometries.	Moreover,	five	of	these	plots	had	
a	temporal	difference	larger	than	1	year	between	the	TLS	and	inven-
tory measurements. For the unpaired plots, it is noteworthy that the 
differences	observed	between	the	TLS-	based	and	inventory-	based	
allometries	may	 arise	 (partially)	 from	 this	 disparate	 tree	 sampling.	
However,	 concerning	 the	difference	 in	 sample	 size,	 it	primarily	af-
fects	the	model's	uncertainty.	Larger	sample	sizes	generally	result	in	
more precise parameter estimates, with narrower credible intervals 
reflecting	less	uncertainty.	Additionally,	larger	samples	enhance	the	
likelihood of proper model convergence due to more data informing 
the parameter estimates. Conversely, smaller samples may lead to 
convergence issues or unreliable estimates. Thus, for plots without 
paired	data,	we	utilized	as	many	available	 trees	 (for	both	TLS	and	
inventory	data)	to	build	the	models.	Regarding	the	temporal	differ-
ences, assuming no significant disturbances occurred during this pe-
riod,	the	trees	should	follow	the	same	H:D	allometry,	which	would	
not	affect	our	results.	However,	we	cannot	guarantee	the	absence	
of structural changes within this timeframe, so the observed differ-
ences	 might	 partially	 result	 from	 such	 changes.	We	 acknowledge	
that	differences	in	sample	sizes	and	temporal	differences	could	po-
tentially influence the estimated parameters' means. Nonetheless, it 
is	important	to	note	that	for	certain	sites	(EBC,	YAN01),	we	utilized	
the	exact	same	trees	measured	in	the	same	year,	and	these	sites	still	
exhibit	differences.	This	strongly	suggests	that	the	observed	differ-
ences	stem	from	the	measurement	method,	not	sample	size	or	sam-
pling strategy or temporal differences.

Moreover,	the	absence	of	a	link	between	TLS	and	inventory	data	
led	to	a	comparison	of	H:D	allometries	developed	using	inventory	H	
and	D	data	with	those	constructed	from	TLS-	based	H	and	D	data.	
Consequently, variations in the allometries may arise not only from 

discrepancies	 in	 H	 measurements	 but	 also	 from	 differences	 in	 D	
measurements. It is important to note that differences in D mea-
surements	 between	 inventory	 and	 TLS	 data	 exist,	 particularly	 for	
buttressed	trees	(Terryn	et	al.,	2022).	However,	these	discrepancies	
are considerably smaller in proportion compared with the disparities 
in	 H	measurements	 (Figure S10),	 which	 suggests	 that	 differences	
between	inventory	and	TLS	allometries	primarily	originate	from	dis-
crepancies	in	H	measurements.

4.3  |  Impact of H measurement errors from forest 
inventory data

Tree heights represent a crucial input for allometric equations that 
estimate	AGB	based	on	D	and	H,	as	outlined	by	Chave	et	al.	(2014)	
and	Feldpausch	 et	 al.	 (2012).	 A	 relative	 underestimation	of	H	will	
approximately	 result	 in	 the	 same	 relative	 underestimation	 of	 tree	
AGB,	following	the	AGB	allometry	proposed	by	Chave	et	al.	(2014)	
(Equation 4).	To	illustrate	using	the	equation	of	Chave	et	al.	(2014),	
a	5.3%	underestimation	 in	H	 (which	 is	what	we	obtained	as	a	me-
dian	value	for	trees	of	30 m	tall	considering	all	plots)	would	corre-
spond	 to	an	5.2%	underestimation	 in	 tree	AGB	 for	 a	 tree	of	30 m	
tall.	However,	this	reasoning	assumes	the	H	data	used	to	calibrate	
the	AGB	allometry	were	not	biased.	Burt	et	al.	 (2020)	pointed	out	
that	in	the	case	of	the	pantropical	AGB	model	of	Chave	et	al.	(2014),	
H	was	predominantly	measured	post-	felling	using	a	 tape	measure,	
although	several	studies	opted	for	pre-	harvest	H	measurements.	It	
is	 crucial	 to	 acknowledge	 that	utilizing	 improved	H	estimations	 as	
input	 in	AGB	models,	which	were	originally	calibrated	with	under-
estimated	H,	could	result	in	overestimations	of	AGB.	Consequently,	
careful consideration of the calibration process for allometries based 
(partially)	on	H	data,	such	as	AGB	allometries,	is	equally	important.	
The	impact	on	plot-	level	AGB	estimation	was	beyond	the	scope	of	
our study and would require additional species- specific information, 
including wood density values, and a comprehensive inventory of 
stem diameters within each plot. To achieve comprehensive and 
well- usable forest inventories in the future, it is essential to adopt 
standardized	data	collection	protocols	and	provide	adequate	meta-
data	 information	 on	 the	 used	 methods.	 Moreover,	 extrapolating	
models	 to	cover	 the	entire	H	 range	could	potentially	 lead	 to	 inac-
curate estimates.

In	recent	years,	a	growing	volume	of	 inventory-	based	H	and	D	
data has been collected and aggregated in publicly accessible da-
tabases.	Jucker	et	al.	 (2022)	 introduced	their	global	tree	allometry	
and crown architecture dataset, known as Tallo, which encompasses 
498,838	 georeferenced	 and	 taxonomically	 standardized	 records	
of	 individual	 trees,	 including	45%	from	tropical	 regions,	with	mea-
surements	of	D	and	H.	This	dataset	encompasses	a	more	extensive	
collection of trees, including large specimens, and spans various 
tropical regions. Consequently, it may capture a more comprehen-
sive	spectrum	of	variation	in	H:D	models	compared	with	the	dataset	
employed	 by	Chave	 et	 al.	 (2014).	 Nevertheless,	 our	 findings	 raise	
important questions about the use of global databases, such as Tallo 
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(Jucker	et	al.,	2022)	that	combine	H	data	acquired	through	various	
methods,	for	constructing	new	pantropical	H:D	models	before	fully	
comprehending	and	rectifying	the	errors	in	these	H	measurements.	
The frequent underestimation consistently observed in our study 
implies that if all these inventory data were combined into a single 
pantropical	model,	this	model	would	also	likely	underestimate	H	and	
subsequently	 lead	 to	 an	 underestimation	 of	 AGB	when	H	 is	 esti-
mated	with	inventory-	based	allometries	(Burt	et	al.,	2020).

4.4  |  TLS- based pantropical H:D allometry

We	 have	 constructed	 a	 novel	 pantropical	 H:D	 allometric	 model	
based	on	TLS	data	including	1951	point	clouds	from	individual	tropi-
cal	rainforest	trees.	Despite	the	limited	coverage	of	our	TLS	dataset,	
it offers consistent and precise measurements, particularly for tall 
trees.	This	is	of	particular	significance	as	Sullivan	et	al.	(2018)	dem-
onstrated that allometries with low prediction errors do not neces-
sarily	 require	 an	 extensive	 calibration	 dataset	 but	 rather	 demand	
accurate and relevant data, typically 50 trees per plot, including 
the	10	 largest	specimens.	Brede	et	al.	 (2022)	also	highlighted	 that	
only	55	individual	tree	samples	per	plot	(between	1	and	4 ha)	were	
needed	to	achieve	a	population	bias	of	less	than	5%.	It	is	important	
to	note	that	the	accuracy	of	H	measurements	can	be	influenced	by	
various factors, including the type of laser scanner, scanning pattern 
and	forest	structural	complexity.	Following	rigorous	field	protocols	
can, however, help counteract or eliminate uncertainties stemming 
from	these	factors	in	TLS	data.	Nevertheless,	these	variables	must	
be taken into account when integrating tree structural data from 
diverse	 TLS	 sources	with	 the	 intention	 of	 constructing	 allometric	
models.

Our	optimal	pantropical	H:D	model	adheres	to	the	same	struc-
tural	 form	 suggested	 by	 Chave	 et	 al.	 (2014).	 However,	 we	 incor-
porated	 the	 MCWD,	 which	 quantifies	 water	 stress	 and	 reflects	
hydraulic	constraints	on	the	H:D	relationship.	With	advancements	
in	 remote	 sensing	and	climate	models,	MCWD	data	are	becoming	
more	 readily	 available	 to	 the	public.	Chave	et	 al.	 (2014)	 identified	
MCWD,	 precipitation	 and	 temperature	 seasonality	 as	 explanatory	
environmental	 variables	 for	 their	 pantropical	 H:D	 model,	 which	
encompassed tropical rainforests, subtropical forests and dryland 
savannas. Furthermore, our analyses unveiled that allometric mod-
els from various plots differed not only in terms of the intercept 
(parameter	a)	but	also	in	shape	(parameters	b and c).	In	contrast	to	
the	Chave	et	 al.	 (2014)	model,	we	 incorporated	MCWD	 into	both	
the	 intercept	 parameter	 (a)	 and	 one	 of	 the	 parameters	 governing	
the	curve's	 shape	 (b).	Although	 the	 inclusion	of	MCWD	explained	
some of the variation between plots, a substantial amount was still 
unaccounted for. Numerous other factors, including species iden-
tity, forest structure, soil properties, solar radiation and presence of 
structural	parasites	have	been	demonstrated	 to	 influence	 the	H:D	
allometry	(Banin	et	al.,	2012; Cysneiros et al., 2021; Dias et al., 2017; 
Feldpausch et al., 2011).	Integrating	more	variables	could	potentially	
enhance the model, but obtaining precise pantropical data for these 

variables through open- access sources is not consistently feasible. 
It	is	vital	to	recognize	that	our	pantropical	H:D	model	was	designed	
exclusively	 for	 tropical	 rainforests	and	should	solely	be	applied	 to	
tropical	 rainforest	 trees	 within	 the	 calibrated	 D-	H-	MCWD	 range	
(10 cm	≤	D	≤ 223 cm,	9 m	≤	H	≤ 77 m,	−410 mm	≤	MCWD	≤	–18 mm).	
Additionally,	it	is	crucial	to	highlight	that	our	pantropical	TLS-	based	
model	was	calibrated	using	TLS-	based	D	measurements.	As	previ-
ously	emphasized,	TLS-	based	D	measurements	can	slightly	deviate	
from inventory D measurements, particularly in the case of but-
tressed trees. This discrepancy may lead to prediction errors when 
employing	 inventory	D	measurements	 as	 input	 for	 the	 TLS-	based	
pantropical	model	(Burt	et	al.,	2020).	Nevertheless,	given	the	mini-
mal	difference	between	inventory	and	TLS-	based	D	measurements	
(Concordance	Correlation	Coefficient	scores	>0.96,	Figure S10),	es-
pecially	when	contrasted	with	the	H	difference,	the	resulting	impact	
is	expected	to	be	limited.

In	comparison	with	the	model	of	Chave	et	al.	(2014),	our	pantrop-
ical	model	 exhibits	 an	 improved	performance	 in	 terms	of	 reduced	
uncertainty	and	bias	 for	 trees	exceeding	20 m	 in	height.	However,	
for	trees	shorter	than	20 m,	our	model	performs	less	well	than	Chave	
et	al.	(2014).	It	is	worth	noting	that	the	model	developed	by	Chave	
et	 al.	 (2014)	was	primarily	 trained	on	 trees	below	20 m	 (constitut-
ing	67%	of	 their	dataset),	whereas	only	20%	of	our	TLS-	extracted	
trees	were	smaller	than	20 m.	In	tropical	TLS	studies,	the	emphasis	
is frequently on larger trees, and not all trees within the plots un-
dergo segmentation. This is also attributed to the substantial effort 
currently needed to achieve high- quality segmentation for all trees 
within a forest plot. Nevertheless, advancements in tree segmen-
tation algorithms are opening avenues for achieving comprehen-
sive	 segmentation	 (Wilkes	et	 al.,	2022).	Additionally,	with	 the	 raw	
TLS	data	 remaining	accessible,	 there	 is	 the	potential	 to	extract	 all	
trees, including the smaller ones, from these plot point clouds. This 
presents	an	opportunity	to	enhance	future	pantropical	H:D	models	
for the entire range of trees in the plots. Despite the better perfor-
mance	of	the	model	of	Chave	et	al.	 (2014)	for	trees	below	20 m,	 it	
does	not	provide	any	insights	into	the	error	associated	with	H	esti-
mations, including confidence or credible intervals. Our model, akin 
to many others, struggles with the traditional issue of overestima-
tion for small trees and underestimation for tall trees. In addition to 
the previously highlighted concern that the model may not account 
for	other	potentially	influential	variables	affecting	H,	there	is	an	ad-
ditional issue where the model structure might not be aptly designed 
to	capture	the	true	relationship	between	the	predictor	variables	(D	
and	MCWD)	and	H.	Burt	et	al.	(2020)	and	Calders	et	al.	(2022)	have	
raised awareness about the use of inappropriate model forms and 
assumptions	concerning	the	size	dependency	of	allometric	relation-
ships.	As	 a	 result,	 there	 is	 a	 search	 for	 new	model	 forms	 utilizing	
dynamic allometric modelling techniques. One potential solution is 
the	model	proposed	by	Zhou	et	al.	(2021).	Dynamic	allometric	mod-
els	are	models	that	aim	to	depict	potential	size-	dependent	changes	
in	the	scaling	between	two	metrics.	However,	it	is	important	to	note	
that this method is still in its initial stages concerning multivariate 
models.
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Our	findings	also	indicate	that	while	local	inventory-	based	H:D	
models frequently perform better in terms of uncertainty, they 
may	exhibit	worse	performance	 in	bias	 compared	with	a	pantrop-
ical	H:D	model	 built	 on	 accurate	TLS	data.	 In	 instances	where	 in-
ventory	H	measurements	are	unbiased,	exemplified	by	AEP09,	the	
local	 model	 outperforms	 the	 pantropical	 H:D	 model	 significantly.	
However,	 frequently,	 the	 inventory	H	 data	 exhibited	 bias,	 leading	
to	local	models	that	could	be	outperformed	by	the	pantropical	TLS-	
based model. The challenge lies in the unknown degree of bias pres-
ent	in	inventory-	based	H	data,	making	the	decision	between	a	local	
inventory-	based	model	and	a	pantropical	TLS-	based	model	a	com-
plex	task.	Because	the	pantropical	model	was	constructed	based	on	
a	restricted	dataset	(1951	trees	from	19	plots),	there	was	a	notable	
degree of variability in both uncertainty and bias associated with 
this model. Consequently, it is crucial to continuously enhance this 
model by incorporating more data from diverse plots that cover a 
broader range of environmental conditions.

5  |  CONCLUSION

Tree	height:stem	diameter	(H:D)	allometries	hold	a	critical	role	in	the	
monitoring of tropical rainforest structure and the estimation and 
upscaling	of	AGB	at	various	scales	within	tropical	regions.	However,	
it	 is	 important	 to	 recognize	 that	 the	 methodology	 employed	 for	
measuring	H	can	significantly	impact	H:D	allometries,	subsequently	
affecting estimates and derivations based on them. Our findings re-
veal	that	in	tropical	rainforests,	H:D	allometries	derived	from	forest	
inventory	methods	often	exhibit	a	notable	trend	of	underestimating	
H,	 characterized	 by	 considerable	 variation	 among	 different	 forest	
plots. This inherent variability complicates the task of accounting for 
these	errors	when	constructing	pantropical	H:D	models.	To	address	
this	issue,	we	advocate	for	the	utilization	of	TLS	data,	which	offers	
superior accuracy and measurement consistency compared with in-
ventory data, particularly for tall trees. In addition, we introduce a 
pantropical	H:D	model	 specifically	 tailored	 to	 tropical	 rainforests,	
constructed	using	TLS	data	from	19	diverse	tropical	rainforest	plots	
spanning four continents. This model incorporates an environmental 
variable,	the	MCWD,	enhancing	its	predictive	capability.	The	model	
demonstrates	stable	performance	with	a	mean	uncertainty	of	19.1%	
across	various	D	 ranges	and	a	mean	bias	of	−4.8%.	We	anticipate	
that	these	H:D	model	allometries	will	contribute	to	more	accurate	H	
estimates across tropical rainforests.
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