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Abstract Floods, droughts, and rainfall‐induced landslides are hydro‐hazards that affect millions of people
every year. Anticipation, mitigation, and adaptation to these hazards is increasingly outpaced by their changing
magnitude and frequency due to climate change. A key question for society is whether the research we pursue
has the potential to address knowledge gaps and to reduce potential future hazard impacts where they will be
most severe. We use natural language processing, based on a new climate hazard taxonomy, to review, identify,
and geolocate out of 100 million abstracts those that deal with hydro‐hazards. We find that the spatial
distribution of study areas is mostly defined by human activity, national wealth, data availability, and population
distribution. Hydro‐hazard events that impact large numbers of people lead to increased research activity, but
with a strong disparity between low‐ and high‐income countries. We find that 100 times more people need to be
affected by hazards before low‐income countries reach comparable research activity to high‐income countries.
This “Wealth over Woe” bias needs to be addressed by enabling and targeting research on hydro‐hazards in
highly impacted and under‐researched regions, or in those sufficiently socio‐hydrologically similar. We
urgently need to reduce knowledge base biases to mitigate and adapt to changing hydro‐hazards if we want to
achieve a sustainable and equitable future for all global citizens.

Plain Language Summary Floods, droughts, and landslides are “natural hazards” responsible for the
deadliest and most costly disasters globally. The scientific community studies these hazards to reduce their
undesired impacts on society. To assess whether these research efforts are well‐targeted, we require a global
overview of where these hazards are studied and whether impacted regions are considered. Hence, we create a
global map of flood, drought, and landslide research that shows whether published research is distributed
equitably. We find that there is more research in regions where many people live, in wealthy regions, and in
regions that have had disasters happening in the past. However, the level of research in wealthy countries is
much higher despite considerably more people being affected by disasters in low‐income countries. Based on
our findings, we recommend regions where more research is needed for an equitable distribution of research so
that all of global society is better prepared for future disasters.

1. Introduction
Hydro‐hazards, such as floods, droughts, and rainfall‐induced landslides, affect millions of people and cause
thousands of fatalities annually. According to the Center for Research on the Epidemiology of Disasters (CRED),
floods and droughts together affected more than 130 million people in 2022 alone. Critically, the risk from hydro‐
hazards will keep increasing due to projected climate and anthropogenic change (Arnell et al., 2019; IPCC, 2022),
which already overwhelms disaster risk reduction efforts (Kreibich et al., 2022). The clear societal threats posed
by hydro‐hazards suggest that science should tackle knowledge gaps to better guide adaptation policies where the
risk is greatest. However, existing natural hazard research likely overlooks many countries or regions which are
not studied in depth despite their exposure to hydro‐hazards. For example, only 6.5% of all natural hazard research
studies are performed in Africa (Emmer, 2018) despite this continent having the largest predicted increase in flood
exposure (Jongman et al., 2012).

Biased research distributions can be found across several disciplines including medicine (Sumathipala
et al., 2004), conservation science (Di Marco et al., 2017), geoscience (North et al., 2020), and climate science
(Callaghan et al., 2021). Biases have systemic causes such as differences in research funding (Overland
et al., 2022; Woelbert et al., 2021), discrimination in the academic publishing system (Singh, 2006), data
availability (Lindersson et al., 2020; Mwampamba et al., 2022), and language barriers (North et al., 2020).
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However, for hydro‐hazards, there are substantial knowledge gaps regarding which environmental, anthropo-
genic, and socio‐economic characteristics determine research foci and biases. We lack quantitative information
regarding which regions are underrepresented in studies of hydro‐hazards. Quantifying and mapping these biases
is key to revealing and eventually addressing their underlying causes. For hydro‐hazards, the large spatial
variability of the components of risk (i.e., hazard, vulnerability, and exposure) complicates bias analyses. Threats
from floods, droughts, and landslides are highly heterogeneous, for example, landslides are gravitational mass
movements and occur predominantly in rugged not flat terrain. The exposure to any natural hazard depends on
hazard magnitude and population distribution (Devitt et al., 2023). Differences in people's vulnerability, for
example, due to their socio‐economic situation, further determine how strongly they might be affected when a
hazard occurs (Benevolenza & DeRigne, 2019). The potential for negative impacts (or risk) from hydro‐hazards
depends on the integration of hazard, exposure, and vulnerability. Therefore, we would not expect the global
research landscape to be spatially homogeneous, given that the risk is not spread in this way. Instead, we would
expect a fair research distribution to follow one or a combination of the following aspects:

1. Socio‐Hydrological Variations: Research is conducted where scientific knowledge gaps have been identified.
To advance scientific understanding, the scientific community should aim for research that is representative of
the underlying socio‐hydrological processes, in regard to both hazard generation and risk. Representative
knowledge distribution is particularly relevant in the context of vulnerability, as it is highly spatially het-
erogeneous and results are difficult to transfer to other communities (King‐Okumu et al., 2020; Ward
et al., 2020).

2. Impact Density: Research is conducted where the impact or risk is largest. Impact can be measured as the
number of events, fatalities, people affected, or economic loss. For our analysis, we mainly focus on the
number of events and people affected. We disregard fatalities and economic losses since fatalities are
underreported for drought events (UNDRR, 2021) and economic impact data disproportionately favors high‐
income countries (King‐Okumu et al., 2020). The only exception is a supplemental analysis of landslide fa-
talities, as they are considered more accurate than the number of people affected (Froude & Petley, 2018).

3. Population Density: Finally, an equitable distribution might simply entail an equal allocation of studies ac-
cording to the distribution of people.

Aiming for representative research coverage regarding hydro‐climatic, landscape, and socio‐economic charac-
teristics is not only important for addressing the current hazard situation but also for predicting and projecting
future risk. We investigate a corpus of 100 million scientific abstracts (Kinney et al., 2023) by extracting and
geolocating those studies focused on hydro‐hazards. We compare the spatial distribution of these abstracts with
hydro‐climatic, socio‐economic, and disaster impact data to determine biases in the current knowledge base. And
finally, to address these biases, we recommend high‐priority regions for future research and funding. Our results
integrate knowledge on hydro‐hazards for disaster risk reduction and contribute toward a more sustainable and
equitable global research landscape.

2. Materials and Methods
2.1. Abstract Data Mining and Annotation With Hydro‐Hazards Taxonomy

Figure 1 provides an overview of the database as well as filtering and geolocation steps to identify and geolocate
research related to hydro‐hazards for subsequent estimation of global research distributions. Each step is
described in detail below:

Abstract Database: The Semantic Scholar Academic Graph (Kinney et al., 2023) formed our basis for data
mining. Currently, it contains 215 million scientific documents from all scientific fields, published and indexed by
non‐profit organizations like Crossref or PubMed, preprint repositories such as arXiv, and academic publishers
like Springer Nature. Within the Semantic Scholar corpus, the abstracts data set provides abstract texts for around
100 million records. We utilized Deep Search (Staar et al., 2020) (https://ds4sd.github.io/), a tool that uses natural
language processing to ingest and analyze unstructured data (Figure 1a). Deep Search processes text from the
abstract data set and enriches the metadata (e.g., doi, title, abstract text…), for instance through language
detection. As subsequent search and filtering was based on English language keywords, we used this information
to filter out non‐English abstracts. 95% of all abstracts were in English (Figure S1 in Supporting Information S1).
The metadata associated with each abstract includes entries like unique identifiers, language, publication date, or
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subject (e.g., Environmental Science). We further excluded subjects related to the humanities, such as history,
philosophy, and art.

Abstract filtering: We first extracted all hydro‐hazard‐specific abstracts from the 100 million documents using a
term query (Figure 1b) in Lucene syntax (i.e., landslide OR mudslide OR rockslide OR flood OR drought OR
rockfall) within Deep Search. As a result, 610,000 relevant articles remained. We then classified each abstract
according to all hazards mentioned in that abstract as drought‐related, flood‐related, or landslide‐related. Ab-
stracts mentioning multiple hazards were counted for each category. We created a climate‐specific taxonomy for
hydro‐hazards for the classification, which includes relevant hazard types and sub‐types, along with possible
synonyms. For example, “floods” are classified under “flood hazard,” encompassing different forms of floods
such as “flash flood”, “stormwater,” “outburst flood,” “fluvial flood,” and others. Synonyms for, for example,
“fluvial flood” include “river flood,” “riverine flood,” etc. A full overview of hazard entities can be found in Table
S1 in Supporting Information S1, while the entire taxonomy is part of the supplemental data.

Geo‐entity enrichment: We employed a hybrid rule‐based and gazetteer matching approach for location word
identification (toponym recognition) (Hu et al., 2023). The rule‐based approach identified locations based on
natural feature keywords (area, basin, fold, rift, river, range,…), in combination with detecting capitalization. We
build a dictionary of location names (i.e., a targeted gazetteer) to identify locations mentioned within the abstract
(Figure 1c). We included location names for administrative areas, regions, lakes, rivers, and basins. Geographic
taxonomy information about towns and cities with at least 100,000 inhabitants was sourced fromWikipedia's rich
open knowledge base (Lehmann et al., 2015) and was further augmented with GitHub open‐source collections for
smaller capitals and cities by countries, as well as the Encyclopedia Britannica for lakes and rivers (Table S2 in
Supporting Information S1). By limiting the gazetteer to large, administrative, and natural features we aimed to
reduce possible ambiguity (Hu et al., 2023) and directly classified location entities according to type (e.g., match:
“New Orleans,” type: cities).

Converting geographic entities into coordinates: We used a combination of the geocoding software Nominatim
(Clemens, 2015) and data from Natural Earth Data (NE, www.naturalearthdata.com) to geolocate the identified

Figure 1. Overview of methodological steps for abstract search, annotation, and geolocation. The abstract database (Kinney et al., 2023) was processed using
DeepSearch (Auer et al., 2022; Pyzer‐Knapp et al., 2022; Staar et al., 2020).
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geo‐entities. Nominatim searches OpenStreetMap https://www.openstreetmap.org/copyright (OSM) (Ben-
nett, 2010; Haklay & Weber, 2008) data. In case of ambiguity (e.g., multiple identical geo‐entities), the five
largest entities returned by Nominatim were selected and further ranked based on their OSM importance values,
indicating search popularity (e.g., Paris, France: 0.8 vs. Paris, Texas: 0.5). We used data from NE to supplement
the OSM results and to improve shape outlines of large features such as regions and continents. The matching was
based on geo‐entity name and identified type (e.g., “rivers,” “countries”). Manual evaluation showed that this
approach was more accurate in identifying regions and natural features than Nominatim alone. Final coordinates
are based on feature bounding boxes for OSM and river lines, as well as exact polygon shapes for all other NE
data.

2.2. Abstract to Grid Conversion

We used the geolocated entities to calculate a gridded distribution of the area each abstract covers. Figure 2
demonstrates this process. For each of the four locations identified within the abstract (Figure 2a) the grid cells
that are touched by the location polygon are given the weight of 1 (unless it is a country, where cell weight is based
on coverage). The sum of the four grids (Figure 2f) is then divided by the total grid sum (13.56 in this case),

Figure 2. Schematic showing single abstract processing. (a) Abstract (Balana et al., 2019) with annotated hazards (gray) and geolocations (blue), (b–e) geo entity
polygon (red) with underlying raster weights. (b) bounding box of Open Street Map entity. (c–e) polygons/bounding box extracted fromNatural Earth Data. Rivers were
extracted as bounding boxes for a vague estimate of catchment outline. (e) for country shapes, each cell is weighted according to the fraction covered by its shape.
(f) Sum of raster (b–e). (g) Grid divided by the total sum of all cells to normalize the raster grid for each abstract to a sum of 1. This ensures comparable weights between
abstract raster grids, independent of the number of geo‐entities tagged.
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resulting in a weighted research distribution (Figure 2g). This process produces greater weights for cells where
multiple locations overlap.

Creating a spatial grid for each abstract enabled us to calculate the density distribution of studies so that we could
compare them with other data sets (e.g., population density) that were also transformed onto the same grid
resolution. Similar to Callaghan et al. (2021), we chose a raster grid of 2.5°. However, unlike them, we considered
not just the smallest but all locations extracted from an abstract. We commonly found that multiple equally
relevant study locations are mentioned in one abstract without relevancy distinction. A country might be
mentioned either as a study or modeling domain itself or just to specify the location of a smaller entity for the
reader. An alternative counting method was used to calculate absolute numbers of abstracts per country. All
geolocations that fell within a country (excluding continents and marine regions) were counted, and the number of
unique abstracts per country was calculated.

2.3. Manual Evaluation of Annotation Quality

The combined OSM and NE tagged geo‐entity data set was manually checked, and wrong results that frequently
occurred were removed. For example, the frequent geo‐entity “Mobile” is often misidentified as Mobile County
in Alabama. A full list of these manual edits is provided in the supplement. Afterward, eight evaluators manually
assessed 418 abstracts to determine geolocation annotation accuracy. The evaluation focused on three aspects: 1.
Accuracy of the identified location words (Is the identified entity a location?). 2. Accuracy of the geolocation.
And 3. missed locations. Of the 418 abstracts 288 (69%) had automatically annotated locations, with a total of 779
identified locations across all abstracts. Figure S2 in Supporting Information S1 gives a full overview of eval-
uation statistics.

Regarding aspect 1. Precision and recall are standard information retrieval metrics that are commonly used to
evaluate location recognition (Hu et al., 2023). Ting (2010) defines precision as “Total number of documents
retrieved [locations in our case] that are relevant/Total number of documents that are retrieved” and recall as
“Total number of documents retrieved that are relevant/Total number of relevant documents in the database.” We
reach a precision value of 0.91 and a recall value of 0.78 (Figure S2a in Supporting Information S1). In com-
parison, Hu et al. (2023) evaluate 27 common toponym recognition methods on 26 different data sets. The 27
methods range in precision between 0.477 and 0.868 and in recall between 0.261 and 0.784. Our approach thus
reaches state‐of‐the‐art accuracy in location recognition.

Regarding aspects 1. and 2.: 91.1% of all annotated locations have been correctly geolocated (Figure S2b in
Supporting Information S1). However, in 22% of abstracts with at least one location and in 3% of abstracts
without a location entity, at least one location entity has been missed. This seems like a relatively high number.
We therefore further evaluated the influence of missing and wrong locations on the research distributions. In total
we identified 202 missed locations. 19% of these missed locations could not be found on OSM by the evaluators
either and therefore could not be geolocated. This result reflects the limits of the OSM database. For all abstracts
with missing and wrong locations that could be located (120 abstracts, Figure S2c in Supporting Information S1),
we test if adding or correcting the locations influences the extent of the covered grid cells to evaluate the reliability
of the final research distributions. We find that for 76% of the abstracts, the extent does not change, meaning that
missed or wrong locations fall within the already identified locations (e.g., the town “Wakkanai” has been missed,
but is contained within the larger entity the island of “Hokkaido,” which has been identified). Additionally, the
average Pearson correlation between original and corrected abstract density grids is on average 0.89, suggesting a
low impact from the additional location entities. We further analyzed if the distribution of evaluated locations
across country income groups differs between all evaluated locations as well as missed or wrong locations (Figure
S3 in Supporting Information S1). A larger share of missed or wrong locations in low‐income countries would
indicate a bias in our analysis due to a bias in our location dictionary or OSM. However, Figure S3 in Supporting
Information S1 reveals that this is not the case.

2.4. Bias Analysis

Biases in research distributions were determined by comparing the distributions of four data categories: 1. Impact
data, 2. Hydro‐meteorologic measurement stations, 3. Socio‐economic data, 4. Natural and anthropogenic fea-
tures of the landscape. All data sets were transformed to the same grid as the abstract data. For impact data, the
international disaster database EM‐DAT (CRED, 2023b) was combined with the Geocoded Disasters Database
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(GDIS) (Rosvold & Buhaug, 2021a) to create geolocated impact data. Hazard events are only considered for EM‐
DAT if certain impact criteria based on severity are met, such as more than 10 dead, more than 100 affected, a
state of emergency was declared, or international assistance was called. However, getting accurate impact
numbers for disaster events can be a challenge (Guha‐Sapir & Below, 2006), and many events are missing in-
formation in EM‐DAT, for example, information on the number of deaths and the number of people affected
(Jones et al., 2022). Other impact databases exist but have their own biases. A consolidated impact database from
different sources is currently missing (Wyatt et al., 2023). We therefore supplement our analysis by comparing
our outcomes to three additional disaster‐specific, continually updated data sets commonly utilized by their
respective communities: the Dartmouth Flood Observatory (Brakenridge, 2023), the NASA global landslide
catalog (Kirschbaum et al., 2010), and the Global Fatal Landslide Database (Froude & Petley, 2018). Both
landslide databases focus on rainfall‐induced landslides and are widely used within the landslide research
community.

We compared measurement station data to the identified research distributions to determine where a lack of
data might be a factor in contributing to research gaps. We considered the distribution of stations from the WMO
Integrated Global Observing System (called OSCAR) (World Meteorological Organization (WMO) & Federal
Office of Meteorology and Climatology (MeteoSwiss), 2023), Global Precipitation Climatology Center (GPCC)
stations (Rustemeier et al., 2022), the international soil moisture network (ISMN) (Dorigo et al., 2011), and a
global streamflow stations data set (GSIM) (Do et al., 2018). We mainly refer to the World Development In-
dicators and Worldwide Governance Indicators (Kaufmann & Kraay, 2022; World Bank, 2023) from the World
Bank Open Data Catalog for socio‐economic data accessed via the “wbstats” R package (Piburn, 2020).
Additional socio‐economic indices are population (WorldPop, 2023), human development index (Kummu
et al., 2018), and the adaptive capacity measure by the Notre Dame Global Adaptation Initiative (ND‐GAIN) (C.
Chen et al., 2015). We considered human footprint as a general measure of anthropogenic impact (Venter
et al., 2016), and travel time to the nearest city above 100,000 inhabitants as a measure of closeness to urban
centers (Hijmans et al., 2023; Nelson et al., 2019a). We used ESA World Cover for forest and crop coverage
(Zanaga et al., 2021), and precipitation (P), potential evapotranspiration (PET), and aridity (PET/P) as measures
of climate zone (Karger et al., 2017). A full list of data sets used, including details and their references, can be
found in Supporting Information S1 (Table S1).

We used the Wasserstein distance (Kantorovich, 1960; Krabbenhoft et al., 2022; Schuhmacher et al., 2023) to
determine differences in variable distributions between regions of high research density (>75th percentile) and
the entire world as a measure of bias. The Wasserstein distance is a measure of the absolute difference between
cumulative distributions and does not indicate the direction of bias. We therefore combine Wasserstein difference
with a second statistic to calculate the direction of bias. For that we used the summarized difference between
cumulative distribution functions (Stein et al., 2021). A positive difference between distributions indicates that an
increase in variable value leads to an increase in research density. Where country‐averaged values were used (e.g.,
for research density or impact calculation, Figure 6), we used a weighted mean average based on the fraction of
cells covered by each country polygon. Country averages instead of total sums are used to compensate for
different country sizes.

3. Results
3.1. Global Distribution of Hydro‐Hazard Research

Out of 610,000 abstracts that include variations of the search terms “drought,” “flood,” and “landslide,” further
screening (Figure S1 in Supporting Information S1) leaves us with 293,156 abstracts for analysis. We calculated
research density as research per cell weighted by the size of the location entity (Callaghan et al., 2021). We define
highly researched regions as all locations with a research density above the 75th quantile of all land cells. The
exact regions are shown in Figure S5 in Supporting Information S1.

The global distributions of hydro‐hazards research densities depicted in Figures 3a, 3d, and 3g show distinct
patterns for each hazard. A noticeable hotspot for drought research is the west coast of the USA, while further
highly researched areas can be found across much of Europe (UK, Switzerland, Italy, and Spain) and Asia (South
Korea, Bangladesh). Other highly researched regions are located in Africa. Ethiopia, for example, is among the
five most highly researched countries for droughts (Figure S13 in Supporting Information S1). Other African
countries that are highly researched are Kenya, Nigeria, Tanzania, and Zimbabwe (Figure S5 in Supporting
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Information S1). Drought study numbers are low for Latin America, Central Africa, Russia, Kazakhstan,
Mongolia, and Canada. In absolute numbers, Russia is mentioned often (Figure S6 in Supporting Information S1),
but the size of the country makes individual cell weights low and we found no small‐scale studies. Flood research
density is generally higher due to larger number of articles than for the other hazards. Flood research has several
clusters around Europe, the USA, and Asia, such as Bangladesh, eastern China, Japan, and South Korea. The cell
with the highest flood study count is located in the south of England (a cell including London and the Thames).
About 5% (8,616 in total) of all flood abstracts target the UK. For comparison, Nigeria is the country with the
largest number of flood studies in Africa, with 2,595 abstracts. Flood research in South and Central America and
most of Africa is low. Landslide research has distinct hotspots, especially in the Alps, Italy, Taiwan, Hong Kong,
the Himalayas, Central China, and Japan. Taiwan is the cell with the highest research count overall. In terms of
absolute numbers, China is the country with the largest number of abstracts about landslide research, with 6,571
abstracts in total.

3.2. Research Distribution Across Climate Zones

We analyze the research bias between climate zones by comparing study numbers against the number of hazard
events and population numbers in each climate zone. Temperate regions have, on average, the highest research

Figure 3. For each water extreme, the research distribution is displayed in three panels. A global map of weighted research count, a detailed map for the highest cell count
(marked by x), and a histogram across all raster cells for droughts (a–c), floods (d–f), and landslides (g–i).
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count for all three hazards (Figure 4a). In terms of hazard event counts (Emergency Management Database, EM‐
DAT, Figure 4c, upper panel), that distribution is mirrored by flood event occurrences, but not drought or landslide
events. Most flood events (mean 28.8 per cell) also occur in temperate regions. The average flood count in tropical
regions is about half that of temperate regions (mean 15.2 per cell), yet the research density is only about a third.
This result suggests a flood research bias against tropical regions. A large share of flood events (mean 11.8 per cell)
also occurs in polar regions, showing the lowest research density by far. Drought events are evenly distributed
among climate zones. Drought research effort is much higher in temperate regions than in arid and tropical regions
though, indicating a bias toward temperate and against tropical and arid regions. For landslides, the identified bias
strongly depends on the choice of the event count data set (e.g., EM‐DATvs.NASA landslide catalog vs. theGlobal
Fatal LandslideDatabase—GFLD, Figure 4c, lower panel). The comparison suggests biases in the event count data
sets themselves. Additionally, we compare the research distribution across climate zones with the population
distribution across climate zones. The dominance of research in temperate regions matches the higher share of the
population in that climate zone (36%, Figure 4b). Yet, tropical regions with only 22% fewer people than temperate
regions have 60% (drought), 70% (floods), and 74% (landslides) lower research densities.

3.3. Environmental and Socio‐Economic Controls on Research Distributions

We further analyze how these research study distributions co‐vary with different environmental and socio‐
economic characteristics and with the availability of hydro‐meteorologic measurements. Hence, we extract the
land surface with high research density (>75th quantile, Figure S5 in Supporting Information S1) and compare its
characteristics with those of the whole land surface. Differences between distributions are quantified using the
Wasserstein metric (Kantorovich, 1960; Krabbenhoft et al., 2022). Figure 5 shows Wasserstein distances for
selected variables (all variables: Figure S8 in Supporting Information S1).

Multiple variables indicate a strong positive bias in research density towards regions that are highly influenced by
human activity. Human footprint, representing aspects of human pressure on the environment (Venter
et al., 2016), as well as the variables irrigated land, population count, cropland, and travel time to the nearest city
as an indicator of urbanization all exhibit high Wasserstein values (>0.5). Wasserstein values are lower (on
average <0.4) for climatic indices such as potential evapotranspiration, precipitation, and aridity. Average annual
precipitation is the only climatic variable that has a large spread of Wasserstein values across hazards (0.14 for
drought, 0.24 for flood, and 0.36 for landslide research). Furthermore, we observed opposing distribution

Figure 4. (a) Mean research density across broad climate zones according to Koeppen‐Geiger (H. E. Beck et al., 2018), (b) population count (WorldPop, 2023) by
climate zone, (c) mean number of events per cell and climate zone for EM‐DAT event counts as well as one flood and two landslide data sets (Dartmouth Flood
Observatory, Global Fatal Landslide Database (GFLD), NASA landslide catalog), (d) world map depicting the climate zones.
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differences between hazards. While flood and landslide research densities increase with increasing precipitation,
drought research density decreases. However, this negative relationship reflects only the average distribution.
When examining detailed cumulative distributions (Figure S9 in Supporting Information S1), we observe
decreasing research density with increasing precipitation from precipitation values >1250 mm. We also find
biases related to data availability, that is, the research density is higher in regions with more measurement stations.

Besides human influence, further biases in hydro‐hazard research activity can be found in other socio‐economic
dimensions. There is a positive bias in research density towards countries with a high gross domestic product
(GDP) (Wasserstein distance of 0.65 for drought, 0.72 for flood, and 0.74 for landslides). The variable “Scientific
and technical journal articles” from the World Bank refers to the number of articles published within the fields of
science and engineering per country. Due to measuring the quantity of research similar to our study, it can be
regarded as a control variable that is expected to exhibit a strongly positive value, which we confirm with an
averageWasserstein distance of 0.75 across hazards. Research densities are much less biased towards other socio‐
economic indices than GDP and population. Income inequality (Gini Index), the ability to adapt to climate
change, including hazards (adaptive capacity), and the human development index show only small biases
(Wasserstein averaged across hazards: 0.25, 0.24, and 0.19, respectively).

3.4. Country Income‐Level, People Affected, and Research Density

We investigate the interactions between research density and the number of affected people to analyze whether
more impacted regions are also more intensely studied. In Figure 6a, we see that more research is conducted in

Figure 5. Comparison of climate, land, gauging data, and socio‐economic characteristics between regions of high research (>75th quantile) and the entire land area.
Distribution difference measured as Wasserstein distance (Krabbenhoft et al., 2022). Higher values indicate a stronger bias. Wasserstein distance only indicates the
strength of bias. We infer the direction of bias from the difference between variable distributions (Stein et al., 2021). A positive (negative) distribution difference
indicates more (less) research with increasing characteristics.
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high‐income countries for all hazards, indicated by the higher baseline and earlier onset of the respective curve
compared to all other income groups. For some high‐income countries (e.g., for droughts in Germany, France, and
Japan; or for landslides in the UK, Slovenia, and Uruguay), no people have been recorded as being affected in the
EM‐DAT database (CRED, 2023a), even though research has been conducted, as indicated by the distribution
offset in y‐direction. There is no visible offset for the distribution of flooding, given that Malta is the only country
for which no affected people are recorded. Low, low‐middle, and upper‐middle‐income countries all report higher
numbers of people affected for the same research density than high‐income countries. However, for nearly all of
these countries, hazard research densities never reach the same level as for high‐income countries. The only
exception is drought research in lower‐middle‐income countries, which is largely due to the large amount of
drought research in India (Figure S13 in Supporting Information S1).

There is a distinct difference in how many people need to be affected before research activity visibly increases for
the different income groups. These thresholds are much lower for high‐income countries across all hazards. Flood
and drought research seems to be triggered when about 100 people are affected in high‐income regions, for
landslides it is less than 100 people. Flood and drought research activity in low‐income countries only starts
increasing if more than 10,000 people have been affected. Across all hazards, research density rises with the
affected number of people (Figure S15 in Supporting Information S1).

4. Discussion and Conclusion
4.1. Wealth Over Woe—Poorer Countries Are Less Researched Despite Higher Hazard Impact

Low‐income countries are disadvantaged across all aspects of disaster risk management. They are already
strongly impacted by hydro‐hazards (Hallegatte et al., 2020) and by climate change, with accelerating risk in
many regions (IPCC, 2022). The need for equality across all aspects of disaster risk management has been
recognized by the United Nations Office for Disaster Risk Reduction (UNDRR) and in the Sendai Framework,
which aims to increase knowledge and disaster risk reduction with a particular focus on low‐income countries
(https://www.undrr.org/disaster‐risk‐reduction‐least‐developed‐countries). Our study can contribute to achieving
a more equal and sustainable research landscape, especially when local scientists and communities from target
regions are involved in the research (Odeny & Bosurgi, 2022) or are being involved in sustainable research
partnerships (Gill et al., 2021). Importantly, addressing these knowledge gaps will help the international com-
munity reach the Sustainable Development Goals (SDGs), many of which have synergies with current efforts in
disaster risk reduction (Aitsi‐Selmi et al., 2016).

Hallegatte et al. (2020) conclude that “Poor people are disproportionately affected by natural hazards and di-
sasters.” We find that low‐income countries are not just disproportionately affected, but also have a dispropor-
tionately lower research density for hydro‐hazards. Even though research is more prevalent in all countries where
high‐impact hazard events occur, the threshold for what constitutes “high” is much lower in wealthier countries
(Figure 6). For flood and drought research, 100 times more people need to be affected in low‐income countries

Figure 6. Country‐averaged number of affected people against the cumulative distribution of the research density, averaged over all cells per country and separated by
World Bank income levels (according to 2021 income classes) (World Bank, 1978). Each dot corresponds to one country.
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compared to high‐income countries for research densities to reach the same level. Hazard impact therefore has a
relatively small influence on research activity, while country wealth is much more influential (hence Wealth over
Woe). This disparity is likely due to highly unequal research funding, data availability, and research capacities
between high‐income and low‐income countries (Skupien & Rüffin, 2020).

Our results show that low‐income countries currently need to base risk assessment decisions, adaptation, and
policy changes on less research than wealthier countries. Even if research findings can be transferred from hydro‐
climatically similar regions, socio‐economic and governance conditions will most likely be very different
(Figure 6). Yet, local scientific and community knowledge is highly relevant for the effectiveness of disaster risk
management (Gaillard & Mercer, 2013) and can reduce disaster impact if combined with resources to implement
solutions (Kreibich et al., 2022). Less research in low‐income countries thus means that there is less knowledge on
how the current impact imbalance might be rectified in the future. Global overviews of research distribution, such
as ours, can provide valuable guidance by suggesting future research focus regions to international funding
agencies including the World Bank, the UN, and the European Union. Or they can guide international research
investments of individual nations, like the Global Challenges Research Fund (GCRF) of the UK Research and
Innovation non‐departmental body of the UK government.

4.2. How Can We Address Current and Future Hydro‐Hazard Knowledge Gaps?

We assess research focus regions based on past impact and identify gaps in socio‐hydrological variations covered
by research activity. For an impact‐based assessment, we define regions that should become research focus areas
as those with combinations of a high number of people affected (>75th percentile) and low rates of research
activity (<75th percentile). For droughts, regions with high research needs are predominantly the Sahel zone, the
Horn of Africa, eastern Brazil, and Afghanistan (Figure 7). For floods, the areas are more scattered, but relevant
regions are large areas in South and Central America as well as in eastern Africa (e.g., Somalia, Zambia, and
Mozambique). In contrast to floods and droughts, which affect multiple spatial grid cells, a single landslide event
will only be recorded in one cell due to its limited spatial extent. As a consequence, landslide research focus cells
include major cities, for example, Freetown in Sierra Leone and Abidjan in Côte d’Ivoire (Figure 7). Under‐

Figure 7. Research focus regions. Each cell is categorized by whether it falls into the high (>75th quantile) or low research category and high or low impact category,
based on the number of people affected. Most relevant for future research are regions with low research and high impact (dark red). Classification based on 75th quantile
of research and impact (number of people affected, EM‐DAT).

Earth's Future 10.1029/2024EF004590

STEIN ET AL. 11 of 19

 23284277, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F004590 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [14/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



researched landslide regions are mainly located in South America, particularly in Bolivia and Brazil. We find that
all of the locations mentioned remain research focus regions even when different impact data sets are used.
Though with more data, some additional regions can be added as focus regions, as shown and discussed in
Supporting Information S1.

Some knowledge gained in highly researched regions may be transferable to less studied regions if similar hydro‐
climatic and landscape characteristics allow the assumption of process similarity (Bertola et al., 2023; Stein
et al., 2021; West et al., 2022). We do find several promising hotspots of highly researched regions where flood,
drought, and landslide hazards have been intensely studied. These cover mainly the US, Europe, and parts of Asia.
Still, an increase in research will be particularly necessary in regions where increasing hazards and impacts are
already noticeable or will likely increase in the future. For example, diminishing water availability in the Southern
Hemisphere (Y. Zhang et al., 2023) indicates a need for water management and drought adaptation research,
which is currently lacking. Landslide research is predominantly conducted in mountainous and temperate regions
in Europe, China, and the USA (Figure 4). Yet, tropical regions, especially tropical cities, have been projected to
be future hotspots of landslide risk given both population growth and climate change (Ozturk et al., 2022). While
both floods and landslides are well studied in more humid regions, drought research activity is lower in very
humid regions and is underrepresented in tropical regions (Figure 4). Hence, we argue that the drought risk for
rainforests is likely inadequately studied, despite its importance. For example, recurrent extreme droughts in the
sensitive Amazon rainforest (Lewis et al., 2011) define a potential critical tipping point for the earth system
(Lenton et al., 2008). Additionally, some poorly explored regions with distinct characteristics, too dissimilar for
knowledge transfer, need further exploration from a hazard process understanding viewpoint. A location‐specific
aspect of risk research is vulnerability since it is dependent on culture, socio‐economic settings, and governance
systems (King‐Okumu et al., 2020). Therefore, it is paramount to ensure vulnerability to hydro‐hazards is studied
across different socio‐hydrological settings.

Wealthier countries also collect and share more data (L. Beck et al., 2008), which further adds to the research bias
towards data‐rich regions (Figure 5). Some countries, such as the US, are likely highly studied simply because
they collect large amounts of data through public funding and then make them freely available. In addition to
increased research funding, extended data collection and data sharing are necessary. The Sendai framework and
UNDRR are targeting gaps in disaster data (Aitsi‐Selmi et al., 2016). However, in addition to disaster infor-
mation, basic and long‐term monitoring of variables such as streamflow, soil moisture, precipitation, etc. are
equally necessary to improve hazard research, particularly in periods of strong climate change. Closing the data
gap can be achieved by funding targeted extension of monitoring networks (Krabbenhoft et al., 2022), or by
collecting and combining available data into systematic databases (e.g., Gerbens‐Leenes et al., 2024). The most
important point is that the data is made open‐access for the most effective use (Aitsi‐Selmi et al., 2016).

4.3. Limitations

We have studied the distribution of knowledge within published scientific abstracts as these are the only sources
of scientific literature compiled as data sets. Therefore our approach cannot adequately recognize that at least
some research might only be accessible through technical reports (i.e., gray literature) or in unpublished Master's
and PhD theses. Importantly, we currently do not consider the wealth of knowledge gathered by local citizens and
Indigenous people, which is often ignored or overlooked by the scientific community (Chief, 2018), but would
require a different type of study to be utilized. Some research might also be overlooked due to the choice of
English as the language of analysis. However, Orimoloye et al. (2021) found that 95% of disaster risk man-
agement articles are published in English. We therefore assume this limitation to be minor. Similarly, the choice
of dictionaries used for geolocation might introduce a bias toward larger entities, high‐income countries, and non‐
natural features (Acheson et al., 2017). We find that this bias did not impact the accuracy of our geolocation
(Figure S2 in Supporting Information S1). Our evaluation of 418 abstracts showed, that for 26% of the abstracts,
one or more locations were missed. However, the impact of missed and wrongly geolocated locations is small, as
in 76% of cases the identified location extent does not change when the missing and wrong locations are added.
Additionally, location extraction is biased by the limited description contained within abstracts. Although full‐
text analysis might have yielded more information (Westergaard et al., 2018), it would dramatically reduce the
number of articles available. Fortunately, open access is rapidly growing (Björk, 2017), which means that. Hence,
reviews like ours will likely become more informative in the future.
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4.4. Looking Forward

In this study, we were able to map hydro‐hazard literature and reveal biases related to where and how often
hazards are studied in a specific location. We find that high‐income countries experience much higher levels of
research activity compared to lower‐income countries, despite being less affected. Thresholds for numbers of
people affected in relation to increased research activity appear to be significantly higher for lower‐income
countries compared to wealthier regions. Furthermore, the uneven distributions suggest knowledge gaps in
hazard understanding since not all relevant hydro‐climatic landscapes are covered equally. Where hazard events
occur and where they are researched does currently not align. Tropical regions, for example, are studied less than
distributions of flood, drought, and landslide events would suggest. Even more importantly, focusing research on
high‐income regions means that socio‐economic and governance structures found in low‐income countries are
underrepresented. Such biases reveal where future research might be needed to cover a broad spectrum of hazard
research across different environmental and socio‐economic characteristics. Additionally, regions where many
people have been affected by hazards in the past, but where less research has been conducted yet, offer themselves
as future study regions and can thus guide research funding efforts. Specifically, Central and South America
should receive more attention for flood and landslide research. In Central and Eastern Africa, more drought and
flood research should be conducted.

An analysis of this scale would not have been possible without automated tools to analyze text‐based data. Large
language models and other text‐mining tools are increasingly necessary to keep up with the vast amounts of
research published (Stein et al., 2022). For comparison, based on the person‐hours our manual evaluation took, an
on par non‐automated study would have taken about 2 years of round‐the‐clock work for one person to screen all
the abstracts in contrast to a few hours of runtime it took us instead (not counting the time it took to develop the
approach in the first place). The speed at which text analysis methods are improving will advance opportunities in
research analysis. For example, we could add automatically extracted information as “hydrologic” metadata to
each article, which could include location, time scale, climate regime, methods used, and more. Research could
then easily be found and synthesized along these metadata (Stein et al., 2022). Authors would only need to
quality‐check the automatic annotations during the submission process, after which their research would
immediately be mapped. Beyond search and synthesis, one could additionally generate a training data set to
continuously improve and specialize automation tools. Progress in fair research distributions could thus be
tracked and local research made visible.

Overall, our findings provide research funding agencies with the necessary maps to develop programs that target
research inequality. Policymakers can use these maps to determine where knowledge gaps might affect their
decisions. Researchers should be encouraged to develop collaborative networks with and within under‐researched
regions to build observational and research capacity where it is most needed. Funding agencies need to develop
new funding mechanisms to support such efforts, which often fall outside current funding schemes that focus on
funding researchers residing in the country of the funding agency, rather than building capacity abroad. We
currently only show the state of historical research and its impact to date. However, with climate change altering
hazard occurrences around the world and with rapidly changing socio‐economic conditions in many places,
research relevance shifts as well. If we, as a community, want to preemptively address possible future disasters
(Ozturk et al., 2022), we need to map current research activities to highlight knowledge gaps in regions that are at
risk in the future.

Data Availability Statement
All data sets used in this study are free and publicly available. A full detailed overview of all data sets used is
provided in Supporting Information S1. The results and evaluation data on which this article is based are available
in Stein et al. (2024). Due to license restrictions, the Semantic Scholar abstract data cannot be shared directly.
However, the Semantic Scholar Academic Graph data set can be accessed via the Semantic Scholar API (Kinney
et al., 2023). The created hazard and geo‐annotations are made available and can be linked to their respective
abstracts using the Semantic Scholar ID. The research density raster grids are part of the data repository.

Open Street Map data was accessed using the Nominatim API (OpenStreetMap, 2023). We use Natural Earth
Data (Patterson & Kelso, 2023) accessed via the “rnaturalearth” R package (South, 2017). Impact data is sourced
from the Emergency Management Database (CRED, 2023b). Geolocations for EM‐Dat were taken from the
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Geocoded Disasters (GDIS) Data set (Rosvold & Buhaug, 2021b). Other impact data was sourced from the
Dartmouth Flood Observatory (Brakenridge, 2023), the NASA global landslide catalog (Kirschbaum et al., 2010)
and the Global Fatal Landslide Database (Froude & Petley, 2018). Measurement station data was taken from the
following sources: Precipitation stations—Global Precipitation Climatology Centre (GPCC) (Rustemeier
et al., 2022); streamflow stations—Global Streamflow and Metadata Archive (GSIM) (Do et al., 2018); soil
moisture stations—International Soil Moisture Network (ISMN) (Dorigo et al., 2011, 2013, 2021); climate
stations—WMO Observing Systems Capability Analysis and Review Tool (WMO OSCAR) (World Meteoro-
logical Organization (WMO) & Federal Office of Meteorology and Climatology (MeteoSwiss), 2023). Precip-
itation and evapotranspiration data was taken from CHELSA (Karger et al., 2018). Human footprint data was
published here (Venter et al., 2017). The fraction of cropland was taken from the ESA World Cover data set
(Zanaga et al., 2021). Data on travel time from the nearest city was published here (Nelson et al., 2019b) and
accessed via the “geodata” R package (Hijmans et al., 2023). Socio‐economic and other indices were taken from
the World Development Indicators and Worldwide Governance Indicators (Kaufmann & Kraay, 2022; World
Bank, 2023) accessed via the World Bank Open Data Catalog and “wbstats” R package (Piburn, 2020).
Vulnerability and adaptive capacity data were taken from the Notre Dame Global Adaptation Initiative (C. Chen
et al., 2015). Population data was taken fromWorldPop (2023). We additionally used Human Development Index
data (Kummu et al., 2019).

Deep Search is a commercial platform and is available with limited features. The Deep Search Toolkit is a Python
Software Development Kit (SDK) and Command Line Interface (CLI) allowing users to interact with the Deep
Search platform (Staar et al., 2020). The Deep Search Toolkit codebase is under MIT license. For individual
model usage, please refer to the model licenses found in the original packages (https://github.com/DS4SD/
deepsearch‐toolkit). Wasserstein distance was calculated using the “transport” R package (Schuhmacher
et al., 2023). The codes to process, analyze, and plot the data and annotated abstracts are available in Stein
et al. (2024).
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