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A B S T R A C T

Above-Ground Biomass (AGB) is an important parameter in the conservation of mangrove ecosystem owing to 
their ecological and economic benefits. LiDAR technologies in forest studies have become popular, due to its 
highly accurate 3D spatial data acquisition. In this study, we propose an end-to-end framework for estimating 
AGB of mangroves from Terrestrial Laser Scanner (TLS) point clouds. The framework includes pre-processing of 
data, segmenting the wood and foliage at tree level using Weighted Random Forest (WRF) classifier and con-
structing Quantitative Structure Model (QSM) of the wooden components to estimate its biomass. The flow was 
extended to AGB estimation of 33 x 33 m plot by integrating tree level framework. The study also finds a unique 
solution to estimate the contribution of pneumatophores in the AGB. Segmentation of wood/foliage of tree point 
cloud using WRF yielded better results with an increment of 15.27 % in Balanced accuracy, 0.2 of Cohen’s Kappa 
coefficient, and 7.45 % in F1score than RF classifier. AGB estimation of mangroves using our approach using TLS 
data is 47.54 T/ha which has a mean bias of 0.0044 T/ha and RMS variation of 0.026 T/ ha when compared with 
the allometric methods. A Breadth-first graph-search segmentation approach was used to count the pneumato-
phores, aerial roots seen in few mangrove species (R2 

= 0.94 with manual counting) and estimate its contribution 
to AGB of mangroves which is first of its kind using TLS point cloud. This outcome could also aid future studies in 
modeling the underlying root network and estimating the below-ground biomass.

1. Introduction

Forest’s biomass is the principal indicator of the carbon stock and 
potential of carbon sequestration of a terrestrial ecosystem (Le Toan 
et al., 1992). Optical and SAR remote sensing data have been employed 
extensively to study the structural and biophysical parameters of forests 
using various regression methods (Leboeuf et al., 2012; Le Toan et al., 
1992). However, recent studies on remote sensing based estimation of 
AGB exhibit noticeable variability in the accuracy on the estimate 
depending on the forest environment and type of remote sensing data 
used (Zolkos et al., 2013). Additionally, optical remote sensing can only 
cover the forests canopy and SAR can penetrate only crown height but 
not the sub-canopy vegetation contributing greatly to the total AGB of 
the forest.

Recently, LiDAR technology has shown great potential for forest 

inventory studies at very high resolutions (Nelson et al., 1988; van 
Leeuwen and Nieuwenhuis, 2010). Ground based Terrestrial Laser 
Scanning (TLS) appears to deliver the most detailed and precise char-
acterization of forest structures including understory vegetation. Man-
groves have special adaptations like, pneumatophores and stilt roots 
(structures above the ground that resemble inverted roots and are spe-
cifically adapted for gaseous exchange in marshy environments) that 
also have significant contribution in the AGB estimation (Kauffman and 
Donato, 2012). We strongly believe that TLS techniques will be able to 
meet this requirement very efficiently with more accuracy.

In terms of spatial and time complexity, it was observed that the 
techniques that directly process the point clouds outperformed vox-
elation methods (Charles et al., 2017; Niemeyer et al., 2013; Sedlacek 
and Zara, 2009; Wang et al., 2019). The methods that involve abstrac-
tion of raw point cloud data into rasterised forms, like multi-view stereo 
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raster or voxel grids, are view-based (Chen et al., 2016; Pang and Neu-
mann, 2016) and volumetric (Huang and You, 2016; Xu et al., 2018). 
These techniques, however, lose the inherent geometry of point clouds, 
making them inefficient. Hence, point clouds were directly processed in 
this work without any transformation.

To separate wooden points from foliage points, algorithms relying on 
radiometric features of points (Béland et al., 2014) were found to be 
largely dependent on sensor-specific characteristics. Whereas, algo-
rithms based on geometric features such as spatial coordinates and their 
geometry were found to be more robust (Tao et al., 2015) and also 
proven in combination with shortest path analysis, multiple scaled 
features etc. (Vicari et al., 2019; Krishna Moorthy et al., 2020; Wang 
et al., 2020). Review of the specified methods shows that computing 
geometric features for each point at multiple local neighborhood scales 
made the classifier invariant to point clouds having highly varying point 
densities. Thus geometric based features were used in this study to 
separate wooden from foliage points.

The random forest algorithm reduces overfitting and variance for 
both pixel-based and voxel-based approaches to classify the foliage, 
wooden, and ground points. It can be used to combine geometric and 
radiometric features (Zhu et al., 2018), integrate with XGBOOST clas-
sifiers (Wang et al., 2019), and use features derived from clump variance 
eigenvalues and recursive elimination (Ma et al., 2019). These tech-
niques improve the classification accuracy of point clouds based on 
satellite data (W. Li et al., 2020), aerial platforms (Xue et al., 2020), 
UAVs, and mobile (Zeybek, 2021). When classes in a dataset lead to a 
quantitative imbalance, SMOTE was used to simulate additional samples 
of the minor dataset (Zulfiker et al., 2021). Sometimes weights are 
assigned to the classes based on their frequency distribution (Pedregosa 
et al., 2012).

Of the available methods for individual tree segmentation from laser 
scans of forests, the region-growing methods (Dalponte and Coomes, 
2016; Li et al., 2012; Silva et al., 2016) required that the forest stand be 
relatively simple with well-spaced near-vertical trees for good perfor-
mance. They may not perform well on terrestrial laser scans of mangrove 
forest stands which are characterised by a more complex branching 
structure and overlapping tree crowns. The graph-cut approach for in-
dividual tree segmentation proposed by Yang et al., (2016), was not able 
to perform satisfactorily on point clouds of complex forest stands with 
many misclassifications of branches of one tree as that of another. Later, 
Zhang et al., (2019) proposed a segment-based approach that involved 
thinning of dense TLS point clouds using the curvature points followed 
by a connected components segmentation to delineate the individual 
trees.

When the point clouds are classified, polygonal representation of the 
tree, called a quantitative structure model (QSM) is constructed from 
wooden points so that the structural and biophysical parameters of the 
tree can be reliably measured. (Boudon et al., 2014) developed an al-
gorithm called “PlantScan3D” to generate QSMs by constructing a 
Branch Structure Graph (BSG) from neighboring points and fitting cyl-
inders to reconstruct the 3D polygonal tree. Landes et al., (2015)
developed a tool called ‘TreeArchitecture’ on output of skeletonization 
process developed by Cao et al., (2010) to create the tree structure. 
‘TreeArchitecture’ involved the development of Delaunay triangulation 
and cylinder fitting on the skeletonization. “SimpleTree” is another 
technique created by Hackenberg et al. (2015) that involves fitting 
cylinders to the segments of skeletal nodes that are extracted by cutting 
spheres from the point cloud.

Indian mangroves have been widely studied for the estimation of 
biophysical parameters such as height, biomass, basal area and Leaf 
Area Index (LAI) using varied remote sensing data such as multispectral, 
hyperspectral and microwave data which are purely based on the 
radiometric and scattering properties of the canopy cover. Vaghela et al., 
(2021) regressed allometry based biomass against Sentinel 1A Synthetic 
Aperture Radar (SAR) to model the biomass of Gulf of Kutch mangroves; 
Spectral indices of EO1 Hyperion hyperspectral data to model the AGB 

of Bhitarkanika mangroves (Anand et al., 2020; Prasad and Gna-
nappazham, 2018). Later, the integration of radiometric properties op-
tical data and geometric properties like height from stereo 
photogrammetry were found to improve the accuracy (Almeida et al., 
2020). Recently Singh et al., (2023) have integrated TLS and ALOS 
PALSAR to estimate the AGB for a terrestrial forest environment of 
Uttarakhand. While Indian mangroves are yet to be explored for the 
potential of TLS in the estimation of AGB in the context of upscaling to 
aerial or space scale. Based on the above literature survey, the present 
study aims to develop an end to end pipeline from the segmentation of 
3D point cloud of terrestrial laser scans into foliage, wooden and ground 
points using Random Forest (RF) algorithms followed by the generation 
of quantitative structure model of the trunks from the classified wooden 
points for a tree level, plot level including the pneumatophores incor-
porating graph theory (Adimoolam et al, 2022).

2. Study area and field data collection

2.1. Study area

Maharashtra, the third-largest state in India accounts for a coastal 
length of 720 km running from North to South (Jagtap et al., 1994). 
Most of the mangrove forests are spread across the districts of Mumbai 
City and Mumbai Suburban, Raigad, Ratnagiri, Sindhudurg, and Thane 
(FSI 2021) accounting to 320 sq.km. The region was experiencing a 
constant increase in environmental stress due to various anthropogenic 
activities during the 1980 s to 2010 s (Kulkarni et al., 2010). Later, about 
134 sq.km of increase in forest cover was noticed between 2009 and 
2019. It is very important to monitor the mangrove forest stock even 
with increasing trend of the urban environment of Mumbai for the 
sustainable conservation and management that motivated the present 
study on estimating the Above Ground Biomass of the mangroves. The 
area chosen for this study is bounded by the latitudes 19.029080◦ N to 
19.164466◦ N and the longitudes 72.922204◦ E to 73.02001◦ E. This 
study area is also characterized by extensive adjoining urban cover 
where the main contributing rivers are the Ulhas and the Vaitarna rivers 
(Fig. 1).

The study area is dominated by Avicennia marina. Other mangrove 
species in the region include Avicennia officinalis, Sonneratia apetala, 
Aegiceras corniculatum, Bruguiera cylindrica, Rhizophora mucronata, Rhi-
zophora apiculata, Excoecaria agallocha and associated species like 
Acanthus ilicifolius, Salvodora persica (Mugade and Sapkale, 2014). The 
data used for this study was collected from the mangrove forests of 
Thane Creek, Mumbai (Fig. 1) to develop the process of biomass 
estimation.

2.2. Field data collection

The primary data used in this study was acquired from field surveys 
and terrestrial laser scans of the mangrove forests. Tree level and plot 
level laser scans of the mangrove forests are acquired using the FARO 
Focus S 350 (SM1) terrestrial laser scanner (Fig. 2). Two modes of 
terrestrial laser scans were acquired in this study: (i) Plot level of size 33 
m x 33 m (Fig. 3a) from nine scan positions with an average of 80 trees 
per plot, (ii) individual trees from 3 positions to avoid occlusion 
(Fig. 3b). Measured Biophysical parameters include (i) diameter at 
Breast Height (DBH) using measuring tape (ii) height of each tree in the 
plot using Laser distometer and (iii) wood core specimen from sample 
trees using a borer and (iv) the total tree count in each plot.

The plots chosen for the study were dominated by Avicennia marina. 
Individual tree scans were taken from three girth classes namely Large 
(girth greater than 90 cm), Medium (girth between 40–––90 cm), and 
Small (girth between 29.5 – 40 cm) measured at breast height to esti-
mate the above ground biomass. Six white spherical targets were placed 
inside every plot in such a way that at least four of the six targets were 
visible from all the scan positions for further registration of the scans. 
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Similarly, fours targets were placed for individual tree scans. These 
scans were later registered, exported and preprocessed to a single point 
cloud for both the plot-level and tree-level scans.

3. Methodology

The above-ground biomass (AGB) estimation was carried out 
through three stages using terrestrial LiDAR scanned data at individual 
tree levels and for forest plots (Fig. 4).

Fig. 1. Study Area showing the mangroves of Mumbai, its surroundings and the sample locations of TLS data collection.
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3.1. Preprocessing of the TLS scans

The TLS scans from each of nine or three scan positions were regis-
tered to form the complete point cloud of the tree or plot using auto-
matic target-based registration provided by the FARO SCENE software. 
This was then converted to ASCII (.xyz) format and further analysed 
using an open-source CloudCompare software.

The resultant point cloud was found to be noisy due to the ghosting 
effect of moving leaves during scanning. Hence, the point cloud was 
subjected to a statistical outlier removal tool. The tool computes the 
average distance of each point to its nearest ‘k’ neighbours and removes 
points that are farther than the sum of the average distance and a 
multiple of the standard deviation. A ‘k’ value of 6 and a standard de-
viation multiplier threshold of 1.0 were chosen. The resulting point 
cloud of a tree or forest plot was filtered for background objects by visual 
inspection and exported to ASCII format (.xyz) which forms the input for 
the subsequent stages of the AGB estimation.

3.2. Segmentation

The preprocessed terrestrial LiDAR point cloud data was subjected to 
segmentation of (i) ground and non-ground points (ii) non-ground 
points into either wood or foliage points, (iii) Generation of the Quan-
titative Structure Model (QSM) and (iv) Estimation of the above-ground 
volume of wooden structure of individual trees and plots. Ground points 
above the ground were removed using the cloth simulation filter (Zhang 
et al., 2016) which is commonly used to generate the approximate 
ground surface for the objects or features when point clouds are absent 
or very less by inverting the point clouds.

The resultant non-ground point cloud consisted of foliage (leaves) 
and wooden parts (stem, branches and other wooden components). 
Points of wooden components are considered the most essential in 
estimating the AGB as they contribute more than 97 % of the AGB of 
mangroves (Tran et al., 2017). We used a supervised random forest 
classifier to classify non-ground point clouds into leaves and wood using 
a total of 30 features. This includes three eigenvalues (λ1, λ2, λ3) and 
three zenith angles (θ1, θ2, θ3) of the corresponding eigenvectors of the 
covariance matrix are computed for each point. These six features were 
computed at five spatial scales (0.1 m, 0.25 m, 0.5 m, 0.75 m and 1 m) 
using Python resulting into 30 features (Krishna Moorthy et al., 2020). 
The covariance matrix for x value of 3D points in a neighbourhood (N) is 
computed from Equation 1 and the azimuth (θ) of the eigenvectors, V 
can be calculated as in Equation (2).

Covx =
∑N

i=1(Xi − X)(Xi − X)T(1) 

θ = arctan
(

V2

V1

)

(2) 

where, V1 and V2 are the first and second elements of the eigenvector 
respectively.

The scatter plot of the first three features among these (Fig S1) 
clearly depicts the separability achieved from these features. The plot 
also shows a class imbalance between the foliage and wooden point 
clouds as noticed by earlier researchers (Zulfiker et al., 2021). Hence, we 
used weighted RF classifier also to handle the class imbalance. The 
weighted random forest classifier is essentially the’balanced’ variant of 
the standard random forest classifier in the scikit-learn (Pedregosa et al., 
2011) python library. This classifier assigns weights to each class 
inversely proportional to the corresponding class’ frequency in the input 
dataset. To validate the classification results we used the standard 
classification metrics such as Balanced Accuracy Score, Cohen’s Kappa 
Score, F1 Score and Area under Receiver Operator Characteristics (ROC- 
AUC) Curve and it was made by performing 10-fold cross-validation on 
point clouds of ten mangrove trees of large, medium and small diameters 
which are manually labelled.

3.3. Development of quantitative structure model

After classifying the tree point cloud into leaves and wood, the 
Quantitative Structure Model (QSM) of the tree was constructed from 

Fig. 2. Laser scanning using FARO Focus S 350 Terrestrial Laser Scanner.

Fig. 3. Multi-station Terrestrial Laser Scanner Survey Layouts of (a) a plot and (b) a single tree.
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the wooden points as a hierarchical collection of cylinders using Sim-
pleTree of Computree (Hackenberg et al., 2015). The output of this 
procedure is a polygonal mesh file accompanied by information such as 
cylinder descriptions, the volume of the tree, the number of branches in 
each level of the branching hierarchy, etc. Later, the above-ground 
biomass of the tree was estimated as a product of the estimated vol-
ume and wood density. The wood density of the tree was obtained by 
collecting core wood samples of that tree and estimating by a simple 
oven-drying experimental setup. Our study assumed a uniform density 
for the tree A. marina to calculate AGB as reviewed through the litera-
ture (Fajardo, 2018). The density was estimated as 513 kg/m3 by col-
lecting wooden core samples collected from 10 trees of varying DBH. 
The TLS based estimation of AGB was compared against the AGB esti-
mated using conventional allometric methods (Komiyama et al., 2005) 
(SM2).

3.4. Above-ground biomass estimation of forest plots

Analogous to the estimation of AGB from individual tree point 
clouds, the ground and non-ground points of the forest plot were sepa-
rated followed by classification of non-ground to wooden and foliage 
using WRF by deriving geometric features. In addition, a parallel 
workflow was carried out to segment the pneumatophores and estimate 
their contribution to AGB of forest plots.

To segment and separate the individual trees from plot-level wooden 
point clouds, the connected components segmentation tool of Cloud-
Compare was used (Lumia et al., 1983). QSM for each tree was con-
structed on the point clouds of the individual trees stored as a polygonal 
mesh file along with biophysical parameters as explained in section 3.3.

In the case of plot-level point clouds, it is also important to estimate 
the overall contribution of the pneumatophores to the above-ground 
biomass of the forest plot. Since, pneumatophores are present just 
above the ground surface up to a few centimeters height depending on 
the species type, first, a set of hierarchical layers based on elevation were 
created from the ground points containing the pneumatophores. These 
ground points were one of the results of the first segmentation to sepa-
rate the entire point cloud into ground and non-ground point clouds. 
Then, the layer having the median elevation of 7.5 cm was extracted (it 
was chosen based on the height of pneumatophores specific to species, in 
this study it is Avicennia marina) and exported as a separate ASCII file. 
This median layer of the ground points was then converted to an undi-
rected graph. In this graph of median layer ground points, an unlabeled 
point was selected at random as the root node, a label was assigned to 
this root node and a breadth-first search was conducted to identify all 
points connected to the current root node. Based on field observations, a 
threshold of 3 cm for the horizontal distance between the root node 
(based on the species Avicennia marina) and the visited node was chosen 
as the connectivity criteria. If a visited node satisfied the connectivity 
criteria, then it was assigned the same label as the root node. After all the 
nodes are visited, a new root node from the remaining unlabelled points 
was chosen and the process was repeated until all points in the input 
point cloud were assigned a label. The result of this procedure was a 
point cloud where points belonging to each pneumatophore of the plot 
were assigned a unique label. To validate the count of pneumatophores 
by this method, five test patches of size 2 m x 2 m were extracted from 
across several plots and the pneumatophores in these patches were 
manually counted. This manually counted number of pneumatophores 
was used as a reference to validate the estimated count of 

Fig. 4. Methodology of the steps involved in estimating above ground volume of a tree, groups of trees in a plot and pneumatophores.
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pneumatophores.
Once the count of pneumatophores in a plot was obtained with 

reasonable accuracy, each pneumatophore was modelled as a cone to 
estimate its volume. The maximum height of each of the segmented 
pneumatophores is considered as the height of the cone. Since the 
number of horizontal points was not sufficient to correctly estimate the 
diameter of each pneumatophore unlike the vertical points for height, 
the diameter of the cone was chosen based on the in situ sample ob-
servations in the plot, as 1 cm. Once the plot level above-ground volume 
of pneumatophores was obtained using conical construction, the 
contribution of pneumatophores to AGB at the plot level was calculated 
as the product of the estimated volume and the wood density 513 kg/m3 

for Avicennia marina as mentioned in Sec 3.3.

4. Results

The first set of the study results include (i) registered and pre-
processed point clouds of plots (Fig. 5a) and single trees (Fig. 5b) 
scanned through TLS followed by classification of wood and leaves, and 
construction of QSMs (Figs. 8 & 9).

4.1. Construction QSM fora tree and a plot

The foliage points in the tree point clouds are filtered from the tree 
point cloud to improve the accuracy of the tree volume estimates. As the 
class imbalance between foliage and wood point clouds was evident 
from the scatter plot of the first three features (Fig. 6), the performance 
of the RF classifier was compared against a weighted RF classifier and 
compared using standard accuracy metrics on 10-fold cross validation.

It was observed that there was an average increase of 20 % in the 
balanced accuracy score, 0.3 in Cohen’s Kappa score, 20 % in the ROC 
AUC score and 21 % in the F1 score when using the weighted RF clas-
sifier over the RF classifier (Fig. 6). From these results, it is apparent that 
the weighted RF classifier performs consistently better than the RF 
classifier in all cases of foliage vs wood classification and also illustrated 
by Fig. 6. The visual comparison of classified points using WRF and RF 
against labelled points of the leaves and the wood of Avicennia marina 
tree (Fig. 7) shows the overestimation of wooden points using RF than 

WRF as indicated by circles and arrow in the figure.
After filtering the foliage points from a tree point cloud, the 

remaining wood points in the point cloud were used to generate a QSM. 
Since the mangroves are protected and prohibited for destructive sam-
pling, we used bench mark dataset (Gonzalez de Tanago et al., 2018, 
Figure S2) to validate both the RF and WRF classifiers and used best out 
of them to generate QSM for mangroves.

These results clearly show that the tree volumes estimated from the 
weighted RF classifier’s results correlate better with the ground truth 
volumes than do the tree volumes estimated from the RF classifier’s 
results. Based on the accuracy level achieved, the results of the QSM 
reconstruction of A. marina of three DBH (Fig. 8) were used to obtain the 
total above-ground volume and in turn estimate the above-ground 
biomass.

It is observed that the misclassified foliage points of RF classifier 
causing the overestimation of the branches during QSM reconstruction. 
When the misclassification was reduced by addressing the issue of class 
imbalance using WRF classifier, the overestimation of branches in the 
QSMs generated was also reduced and was more representative of the 
actual tree structure.

4.2. Estimated vs measured structural parameters

The structural parameters estimated from QSM were compared with 
field measurements. The structural parameter estimation based on TLS 
point clouds was comparable with the height measured in the field 
however, it is varied for DBH measurement (Fig. 10). The huge variation 
in DBH was due to the omission of thin trees during field survey below 
0.07 m and a varied number of samples. DBH ranges from 0.08 to 0.29 m 
and tree height from 5.7 to 9.5 m from field measurements while they 
range from 0.04 to 0.24 m and 2.6 to 9.8 m respectively from TLS based 
estimation. As such there are no allometric formulae available to esti-
mate tree volume using height and DBH rather than biomass for man-
groves, our comparison is restricted to the tree height and biomass 
estimation only. From the QSM output of each tree, it was then possible 
to obtain the above-ground volume of all trees in the plot (0.01 m3 −

0.53 m3), which in turn was used to compute the above-ground biomass 
of the trees with an average wood density of 513 kg/m3 resulting into an 

Fig. 5. The preprocessed point cloud obtained from TLS scans of (a) top view of a plot of size 33mx33m and (b) a single A marina tree of large DBH.

Y. Kumar Adimoolam et al.                                                                                                                                                                                                                  The Egyptian Journal of Remote Sensing and Space Sciences 28 (2025) 1–11 

6 



average of AGB of 44.11 kg/tree with a range of 2.3–253.89 kg/tree 
using allometric methods and 46.16 kg/tree with a range of 2.44–276.9 
kg/tree using TLS based estimation (Fig. 11). The average density of 
AGB estimated using allometric and TLS based methods was 42.14 T/ha 
and 47.54 T/ha respectively.

Furthermore, from the ground points of the plot level point cloud, the 
contribution of pneumatophores (Fig. 12 a) to plot-level AGB was also 
calculated. This was done by performing a breadth-first graph search 
based segmentation of the ground points of the plot-level point cloud, to 
segment each pneumatophore shown in multiple colors (Fig. 12 b) and 
obtain their total count from the plot level point cloud (Figure S4)). The 
results of the estimation of pneumatophores in the forest plot shows an 
RMSE of 31.5 counts and a best bit of 0.91 between the actual and 
estimated count. However, there exists a small overestimation of count 

that would have been resulted due to the point clouds acquired from 
closely spaced pneumatophores and omitting few in manual count. 
Because of the presence of very dense pneumatophores and very few 
points for each pneumatophore, construction of the QSM from the point 
clouds was not yielding meaning full result. Hence, each pneumatophore 
was constructed into a conical shape with a base diameter of 1 cm and 
the height of each pneumatophore stand measured using segmentation 
process (Fig. 12. c). The average volume of constructed pneumatophores 
is estimated as 0.001 m3/ m2 contributing to increase the AGB density by 
5.64 T/ha which is comparable with the estimation of 4.53 T/ha of 
(Torres et al., 2019).

Fig. 6. Balanced Accuracy (%), Cohen’s Kappa coefficient, ROC AUC (%) and F1 Scores (%) of RF Classifier vs WRF Classifier.

Fig. 7. Labelled Point Cloud of A. marina tree (a), Classified output of the same tree using Weighted Random Forest (b) and Random Forest algorithms(c).
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Fig. 8. QSMs of Avicennia marina trees generated from points clouds classified using WRF and RF Classifiers.

Fig. 9. Point cloud outputs of the Sequence of Steps followed for the estimation of QSM of an entire Forest Plot. (a) Preprocessed. (b) Ground Segmented. (c) Foliage 
Filtered. (d) Individual Tree Segmentation of the Foliage Filtered (e) QSM Reconstruction of each tree in the Plot.

Fig. 10. Comparison of (a) Diameter at Breast Height (DBH) and (b) Height estimated for the trees of sample plot using TLS derived tree structure and the field 
survey measurements.
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5. Discussion

The random forest classifier used in this study for foliage filtering 
performed noticeably better when adding a weight factor to each of the 
input classes. This is due to the number of foliage points is several times 
higher than the wood points due to the multifold surface of the leaves.

Above ground volume estimation using the proposed approach 
resulted with a lesser RMSE for weighted RF classifiers output (1.543 
m3) than RF (2.037 m3) due to the significant improvement (20 %) in the 
classification accuracy of weighted RF. The structural parameter esti-
mation based on TLS point clouds was comparable with height measured 
in the field however, it is varied for DBH measurement. Significant 
variation in DBH was noticed because thin trees (below 7 cm DBH) were 
omitted during field survey. While comparing of AGB using allometric 
equation and TLS approach of our study shows a mean bias of 4.4 kg and 

RMS variation of 25.86 kg respectively for the plot. Also it shows a 
significant correlation between them with the value of 0.53. With the 
support of concerned authorities, if true biomass are estimated by 
destructive sampling, the established potential of the techniques could 
be proved for mangroves also.

Segmentation of individual pneumatophores of the forest plot was 
successfully carried out from TLS point clouds from the study. This could 
help in the quantification of pneumatophores and in turn their contri-
bution to above-ground biomass in inventory studies of mangrove for-
ests. Further, the contribution of pneumatophores, especially for the 
species with large pneumatophores like Sonneratia apetalla would be 
most significant component of above ground biomass (Kauffman and 
Donato, 2012).. Based on the observations and inferences drawn in this 
study, further research can be carried out to explore the potential of 
deep learning algorithms to achieve better results in the leaf vs. wood 
classification of point clouds, to develop a robust QSM reconstruction 
including the presence of foliage points in the point cloud. Recent ad-
vancements in laser technology enable the accurate and precise field 
survey that pave way to upscale the satellite and aerial remote sensing in 
vegetation studies by optimizing the acquisition parameters (Levick 
et al., 2021).

6. Conclusions

The primary objective of this study was to develop a frame work for 
the estimation of above-ground biomass (AGB) from the terrestrial 
LiDAR point clouds of mangrove forests at tree level and plot level. That 
was successfully met by classifying foliage and woody points using RF 
and WRF and construction of tree structure of woody points into tree 
trunk and pneumatophores using 3D polygonal shapes. The accuracy of 
classifying the point clouds of foliage and wood could be significantly 
improved using weighted RF algorithm in comparison with RF by 
assigning weights as balanced variants to overcome the error due to class 
imbalance. The mangroves of the plots having varying height and 
overlapping canopy have very noisy point clouds and segmentation of 
individual trees and QSM construction was challenging part of the study, 
however, we could get the near real tree distribution using visualization 
tools. The pipeline developed in this study achieved satisfactory per-
formance on the benchmark dataset also used for validation in this 
study. The methodology proposed in this study could be generalised to 
predict the AGB of forest plots of any tree species. This study also pro-
poses a method to estimate the contribution of pneumatophores to AGB, 
which are specially adapted aerial roots characteristic to mangrove 
forests that are generally neglected in AGB estimation using point cloud 

Fig. 11. Comparison of above ground biomass estimated for the sample plot using allometric equation and TLS method using (a) scatter plot and Deviation metrics 
and (b) box plot chart showing their distribution.

Fig. 12. Detection of Individual Pneumatophores of a Plot (a) Point Clouds of 
Pneumatophores (b) Individually Segmented Pneumatophores and (c) Con-
structed pneumatophores.
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data. The proposed pipeline will be a pre-runner and would form a 
baseline ground truth information for the effective utilisation of the 
recent space borne laser data like GEDI and MOLI for upscaling the 
biophysical characterization of inaccessible and ecologically important 
mangrove ecosystem in a larger extent. The use of TLS sampling can 
expand the options for the calibration and validation of multiple 
spaceborne LiDAR, SAR, and optical missions in studies over larger area. 
The development of LiDAR techniques enabled the assessment of three 
dimensional structure of the tree cover to replicate the actual tree 
structure for modelling the biophysical parameters as close to real.
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