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Aboveground biomass density (AGBD) estimates from Earth Observation (EO) can be presented 
with the consistency standards mandated by United Nations Framework Convention on Climate 
Change (UNFCCC). This article delivers AGBD estimates, in the format of Intergovernmental Panel on 
Climate Change (IPCC) Tier 1 values for natural forests, sourced from National Aeronautics and Space 
Administration’s (NASA’s) Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud and land 
Elevation Satellite (ICESat-2), and European Space Agency’s (ESA’s) Climate Change Initiative (CCI). 
It also provides the underlying classification used by the IPCC as geospatial layers, delineating global 
forests by ecozones, continents and status (primary, young (≤20 years) and old secondary (>20 years)). 
The approaches leverage complementary strengths of various EO-derived datasets that are compiled 
in an open-science framework through the Multi-mission Algorithm and Analysis Platform (MAAP). This 
transparency and flexibility enables the adoption of any new incoming datasets in the framework in 
the future. The EO-based AGBD estimates are expected to be an independent contribution to the IPCC 
Emission Factors Database in support of UNFCCC processes, and the forest classification expected to 
support the generation of other policy-relevant datasets while reflecting ongoing shifts in global forests 
with climate change.
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Background & Summary
Aboveground dry woody Biomass Density (AGBD) maps produced with Earth Observation (EO) data have 
a large potential to periodically provide a transparent, consistent and replicable picture of the state of the 
world’s forests. Such map estimates, calibrated and validated with in situ forest data, may provide crucial sup-
port to nations and stakeholders reporting to the United Nations Framework Convention on Climate Change 
(UNFCCC). They may, for example, serve as regular contributions of complete and comparable aggregate for-
est biomass estimates in the Global Stocktake (GST) under the Paris Agreement1,2. Yet, a recent synthesis of 
national-level reporting has concluded that only a handful of countries currently (as of 2024) use EO-based 
AGBD maps in their assessments for UNFCCC reporting3, highlighting a gap that is partially attributed to the 
lack of provision of map estimates in line with policy guidance4.

To overcome this challenge, as part of the Committee on Earth Observing Satellites (CEOS) Agriculture, 
Forestry and Other Land Use (AFOLU) Roadmap5,6, a Biomass Harmonization activity7 was initiated. The activ-
ity is an effort to release EO-based forest AGBD estimates in a manner comparable and consistent with those 
required for policy. The provision of mono-temporal estimates of default Tier 1 AGBD in natural forests, as in 
the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories 
(NGHGIs)8,9,see Table 4.7], forms the first of the objectives under this activity. The current IPCC Tier 1 defaults were 
developed for countries lacking domestic data for national/sub-national assessments of carbon stock and fluxes, 
and as independent reference for use in technical assessment of NGHGIs. These default values are the most com-
prehensive assessment of AGBD for various ecoregions across most continents, compiled primarily from in-situ 
forest plots available until 2019. However, the paucity and uneven distribution of field plots implies that some 
ecoregions remain under-sampled, particularly in the tropics and subtropics, and are hence provided with crude 
average AGBD estimates (e.g. tropical dry forests in Africa), or are sourced from only a handful of references 
(e.g. primary, tropical moist deciduous forests in Africa)10. Ecoregions for which estimates are sourced from EO 
data (e.g. subtropical humid and dry forests in Africa) are currently based on a single version of an AGBD map11 
representing forest conditions in 2010.

The timely provision of EO-based AGBD estimates from recent, ongoing and upcoming space missions, 
which are modeled with the calibration of their data using ground plots, can synchronously enable the release 
of worldwide up-to-date values for the IPCC Tier 1 defaults12. Estimates can now be routinely derived from 
various spaceborne instruments that are specifically optimized to characterize carbon-relevant differences in 
vegetation height and structure. For example, the National Aeronautics and Space Administration’s (NASA) 
Global Ecosystem Dynamics Investigation (GEDI)13 has been used to estimate AGBD in ecoregions ranging 
from tropical rainforests to low-latitude boreal forests with data collected up to 202314. Where coverage is 
absent, i.e. in high-latitude boreal forests, AGBD estimates based on the Ice, Cloud and land Elevation Satellite 
(ICESat-2) lidar15 combined with Harmonized Landsat Sentinel-2 optical data16 and topographic data from 
Europe’s Copernicus Programme17, are available18. Further, data from these lidar missions, as a part of ongo-
ing research, can be exploited for AGBD gain/loss assessments. Similarly, the European Space Agency’s (ESA) 
Climate Change Initiative (CCI) releases gridded estimates of global annual AGBD19. These maps are generated 
by first calibrating ICESat-2 data with (sub)national AGBD averages from field plots or published by national 
forest inventories, and then relating AGBD to data from current earth-orbiting synthetic aperture radar (SAR) 
sensors20. In contrast to the static snapshot of forest status/conditions in the current IPCC guidelines8,9,see Table 4.7], 
such periodically updated EO-based datasets calibrated with in situ data can reflect dynamic forest conditions, 
including the effects of land use change and climate change on forest AGBD with time.

This article develops and demonstrates a framework to estimate IPCC’s Tier 1 AGBD from data from space-
borne instruments as part of an international coordination effort. Specifically, it aims to provide (1) a complete 
dataset of EO-derived AGBD estimates (years circa 2020-2022) in the same practical and concise format of the 
IPCC Tier 1 table for natural forests9,Table 4.7], derived from GEDI and ICESat-2, and ESA CCI Biomass, and (2) 
the underlying global stratification used in the IPCC table, classifying forests by Geographic Ecological Zones 
(GEZ)21, continents and forest status/condition, i.e. primary (intact old growth or with no active anthropogenic 
intervention), young secondary (≤20 years) and old secondary (>20 years) forests. Dataset (1) is designed to 
contribute to the IPCC’s Emission Factors Database22, as a further step towards supporting UNFCCC-related 
estimation and reporting processes. The dataset is relevant to both compilers of NGHGIs and technical expert 
reviewers of submissions to the UNFCCC, as it is presented in a manner directly comparable to that used in 
IPCC generic methodologies. Dataset (2) is derived through a synthesis of existing EO-derived forest tree 
cover, height, age and land-use classification maps, such that their synergistic and combinatorial information 
is reduced to a single layer of forest status/condition9,as in Table 4.7]. This layer is expected to support the derivation 
of mono-, bi- and multi-temporal EO-based AGBD loss/gain estimates, which will be enabled by forthcoming 
data from several ongoing (e.g. GEDI, ICESat-2, Sentinel and Advanced Land Observing Satellite (ALOS)) and 
planned (e.g. ESA BIOMASS23 and NASA-ISRO Synthetic Aperture Radar (NISAR)24) missions. Overall, as and 
when improvements in EO-based AGBD estimates are available (e.g. with the use of national or global validation 
sites25,26 and/or open-access in situ plots27), the framework presented in this study allows for timely updates to 
IPCC’s Tier 1 AGBD values for natural forests.

Methods
Forest definitions. The IPCC, with the aim of ensuring consistency to NGHGIs, defines forests as “all land 
with woody vegetation consistent with thresholds used to define Forest Land” in the respective NGHGI, as well as 
lands with potential to “reach the threshold values”28. The UNFCCC provides a more specific explication, defining 
forests as areas of “minimum 0.05-1 ha, with minimum crown closure at maturity of 10–30%, and minimum tree 
height at maturity of 2–5 m”29. Young growing stands and areas expected to revert to these minima thresholds are 
also included under the definition of forests. Under this umbrella of definitions, the default IPCC Tier 1 AGBD 
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values include forests with at least 10% tree cover, classified in a combination of GEZ21, continental boundaries 
and status/condition age classes, i.e. primary forests, young secondary forests (≤20 years) and old secondary for-
ests (>20 years)9,Table 4.7]. A single mean AGBD estimate and associated uncertainty is provided for most classes, 
derived from a meta-analysis of existing plot-level ground reference data where available, and the GlobBiomass 
product11,30 where unavailable10.

To replicate the IPCC Tier 1 table with AGBD estimates derived from data collected from spaceborne instru-
ments, it was first required to stratify global forests into the same classes as the IPCC. Three considerations were 
required here - (1) the underlying classifications be produced independent of any existing EO-based AGBD map 
products, (2) information from the data used to create the classifications be harnessed to most closely match 
IPCC definition of forested lands, and (3) emphasis be placed on the reduction of potential commission errors 
rather than omission errors in the classification, since a single, and as precise as feasible, AGBD value is required 
for each class. Importantly, we do not formulate any new definitions of forested land, but leverage definitions 
from datasets to most closely align with the IPCC definition. Finally, EO-based estimates of mean AGBD from 
the GEDI and ICESat-2, and ESA CCI Biomass map, are derived for each delineated class. The following meth-
ods describe the generation of IPCC global forest classification, and the derivation of AGBD estimates for each 
class from the GEDI and ICESat-2 space mission data, and the ESA CCI Biomass map.

IPCC global forest classification. To establish a global map of forest status/condition classes, we conduct 
a Boolean analysis of a suite of existing datasets, including satellite-derived forest tree cover, height, age and land 
use classification layers (described in Table 1). In this approach, first, layers that identify a potential forest status/
condition class (e.g. primary forests) are merged, and second, layers that identify sources of disagreement (e.g. 
presence of plantations or deforestation detected in the delineated primary forests) are used to remove areas of 
potential commission errors. Most of the maps capture conditions in the years between circa 2000 and 2020, 
allowing the distinction of young (≤20 years) and old secondary forests (>20 years). Due to the diverse sources 
of these independently-created layers, cases of duplicity in their native data is inevitable; for example, Landsat 
time-series are used frequently in products that detect disturbances to tree cover, albeit with different underlying 
definitions and assumptions31. This, however, has no impact on our analysis. Since our objective stresses on the 
reduction of commission errors, we simply take a stringent conservative approach that eliminates any area that 
is unlikely to be a forest in any given dataset. In this way, the approach exploits the combinatorial strength of 
multiple layers affirming that a patch of land must be either a primary, young secondary or old secondary forest, 
or else be eliminated from the classification. The global classification is run on the collaborative open-science 
could-computing system, the ESA-NASA Multi-mission analysis and algorithm platform (MAAP). MAAP has 
capabilities to host relevant data, processing algorithms, and computing capabilities in a common cloud environ-
ment, linked to a public GitHub repository (see Code Availability section).

For this study, layers were sourced from various host servers onto the MAAP (see references in Table 1), 
spatially aligned and overlaid by resampling to 10°×10° tile extents, with pixel sizes of 1 arc-second per pixel 
(~30 m per pixel at the equator) in EPSG:4326 projection (geographic latitude/longitude). Datasets provided 
as vectors were rasterized to this resolution. Table 1 provides the resampling techniques, dataset descriptions 
and abbreviations used to denote the inputs, and the index or pixel value of relevant classes within, merged as 
elaborated in the following sections:

Primary forests. The primary forest class (PF) was established using datasets identifying intact/primary forests, 
with a high forest integrity index, the presence of tree cover and forests heights of 5 m or more, and no known 
forest loss events, planted forests or plantations (Eq. (1)).

= ∧ > . ∨ ∨ ∨ = ∧ ≥ ∧ ≥
∧ = ∧ = ∧ ¬ > ∧ ¬ ≥ ∧ ≤
∧ ¬ = ∨ = ∨ = (1)

PF EWC FLII PHTF IF JRCFT FH FH
TCLY JRCFC SDPT JRCFT JRCFT

GFM GFM GFM

(( 9 6) ( 10) ( 5 m) ( 5 m)
( 0) ( 0) ( 0) ( 81 86)

( 32 40 53))

2000 2020

where ∧ is “and”, ∨ is “or” and ¬ is “not” in Boolean notation. Abbreviations of the layers in Eq. (1) are provided 
in Table 1 and logical function illustrated in Fig. 1a.

Young secondary forests. The young secondary forest class (YS) captured pixels that were estimated to have had 
changes in forest height or cover between 2000 and 2020, excluding planted forests and plantations. It was estab-
lished using datasets indicating heights of 5 m or more in 2020 and with either heights shorter than 5 m in 2000, 
or heights of 5 m or more in 2000 but having experienced tree cover loss after year 2000. These conditions ensure 
that various forest change dynamics that can occur in a 20-year period are captured, albeit pixels with tree cover 
loss occurring after year 2018 were ignored to minimize the risk of commission errors. Areas previously clas-
sified as primary forests (Eq. (1)) are also excluded. For the boreal ecoregions, where a separate Landsat-based 
dataset of stand ages is available (BFA in Table 1), forests younger than or equal to 20 years in 2020 were added 
to this class (Eq. (2), with abbreviations in Fig. 1b and Table 1).
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where ∧ is “and”, ∨ is “or” and ¬ is “not” in Boolean notation. Abbreviations are provided in Table 1 and the 
logical function illustrated in Fig. 1b.

Old secondary forests. The old secondary forest class (OS) captured the remainder of pixels with forests upon 
excluding the primary and young secondary forest classes (Eq. (3)). These pixels must have been observed 
to have forest heights of 5 m or more in both 2000 and 2020, with no tree cover loss nor forest disturbances 
detected after 2000, nor any planted forests or plantations. Areas previously classified as primary forests or 
young secondary forests (Eqs. (1) and (2)) were also excluded. For the boreal ecoregions, forests between 20–36 
years of age were added to this class.

OS EWC FH FH JRCFT
TCLY JRCFC BFA BFA

SDPT JRCFT JRCFT
GFM GFM GFM

( 5 m) ( 5 m) ( 31)
( 0) ( 2000) ( 20 years 36 years)

( 0) ( 81 86)
( 32 40 53), (3)

2020 2000= ∧ ≥ ∧ ≥ ∨ =
∧ = ∧ ≤ ∨ > ∧ ≤
∧ ¬ > ∧ ¬ ≥ ∧ ≤
∧ ¬ = ∨ = ∨ =

where ∧ is “and”, ∨ is “or” and ¬ is “not” in Boolean notation. Abbreviations are provided in Table 1 and the 
logical function illustrated in Fig. 1c.

Dataset
Abbreviation  
(in eqs. (1)–(3)) Description

Native pixel/unit size (resampling 
method)

Year(s) 
represented

ESA World Cover 202145 EWC
Global classification of land use, derived by the integration of Sentinel 
1 and Sentinel 2 imagery. For this study, the class with values of 10.0 
is used to mask areas with tree cover.

~10 m (resampled to ~30 m using “mode” 
function) 2021

Global Forest Landscape 
Integrity Index69 FLII

The degree of anthropogenic modification in forests, provided on a 
continuous scale of 0 to 10. Values of high forest integrity (scores ≥ 
9.6) define “interiors and natural edges of more or less unmodified 
naturally regenerated (non-planted) forest ecosystems, comprised 
entirely or almost entirely of native species.”

~300 m (resampled to ~30 m using 
“average” function) 2019

Intact Forest 
Landscapes70 IFL

The extent of forest landscapes that exhibit no signs of human activity 
or habitat fragmentation, large enough to maintain native biological 
diversity, derived from Landsat imagery.

Vector, delineating contiguous blocks of 
a minimum size of 500 km2, at least 10 
km broad and 2 km wide in corridors/ 
appendages (rasterized to ~30 m)

2020

Primary Humid Tropical 
Forests71 PHTF

The extent of primary forests, including primary forest fragments 
and forests close to and within areas of human activity, derived from 
Landsat imagery.

~30 m (no resampling necessary) 2001

Global Forest Height44 FH
Global forest canopy height and height change estimates (in meters), 
developed through the integration of the GEDI lidar forest structure 
metrics and Landsat analysis-ready data time-series.

~30 m (no resampling necessary) 2000 and 2020

Joint Research Centre 
Tropical Moist Forest 
transition map47

JRCFT

Status and transition stages in tropical moist forests derived using 
the Landsat time series. The map provides a classification of closed 
evergreen or semi-evergreen forest without observed disturbance 
(value 10), old forest regrowth (deforested before 2002 followed by 
permanent vegetative regrowth, value 31) and young forest regrowth 
(deforested between 2002 and 2018 followed by 3 years minimum of 
vegetative regrowth, values 32 and 33). Plantations (mainly rubber 
and oil palm, values 81–86) are identified by visual interpretation of 
high-resolution imagery47 and various external data sources72–77.

~30 m (no resampling necessary, aligned to 
grid using “nearest neighbour”) 1982 to 2022

Boreal Forest Age78 BFA
For Boreal regions (47° to 73° north), estimates of forest stand age (up 
to 36 years since year 2000) from Landsat-derived locally-calibrated 
estimates of tree canopy cover.

~30 m (no resampling necessary, aligned to 
grid using “average” function)

Annual, 1984 
to 2020

Global Tree Cover Loss 
Year79 TCLY Spatially explicit areas of forest loss, with pixel values denoting the 

year of occurrence of loss, derived using Landsat time-series imagery. ~30 m (no resampling necessary) Annual, 2000 
to 2020

Joint Research Centre 
Tropical Moist Forest 
change map47

JRCFC

Spatially-explicit areas of deforestation and forest degradation 
in tropical moist forests, with pixel values denoting the year of 
occurrence, derived using Landsat time-series imagery. Forest 
degradation from selective logging, fire or natural events is defined 
as temporary disturbances occurring for up to 2.5 years, while 
deforestation is a longer-term disturbance where disruptions to tree 
cover (absence of tree foliage cover within a 30-m pixel) are visible for 
more than 2.5 years.

~30 m (no resampling necessary, aligned to 
grid using “nearest neighbour”)

Annual, 1982 
to 2022

Spatial Database of 
Planted Trees (v2.0)46 SDPT

Global differentiation of planted forests and tree crops from natural 
and seminatural forests, compiled from national governments, 
nongovernmental organizations, independent researchers, or a 
combination of sources.

~30 m (no resampling necessary) 2020

Global Forest 
Management52 GFM

Spatially explicit information on forest management, including short 
rotation plantations for timber (value 32), oil palm plantations (value 
40) and agroforestry (value 53), generated with PROBA-V satellite 
imagery, expert and crowdsourcing campaigns.

~100 m (resampled to ~30 m using 
“nearest neighbour”) 2015

Table 1. Datasets compiled to determine global forest status/condition classes, i.e. primary forests, young 
secondary forests (≤20 years) and old secondary forests (>20 years). Datasets in geographic latitude/longitude 
coordinates are reported with approximate pixel sizes at equator.
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Biomass estimates based on spaceborne lidar. NASA GEDI estimates of forest aboveground bio-
mass. The GEDI mission is a spaceborne lidar instrument mounted on the International Space Station (ISS) 
to acquire high-precision estimates of forest height and structure globally. Its data is provided as discrete ~25-m 
footprint-level samples of waveform lidar over the globe up to ±~51.6° latitude. Relative height metrics extracted 
from these data are calibrated with field and airborne lidar to model AGBD and associated uncertainty. These 
footprint-level AGBD estimates are provided in the publicly-available Level 4A (L4A) product, which is 
cross-validated with plot-level data in various geographic regions of the world32,33. For estimation of mean AGBD 
for any grid cell (e.g. 1 × 1 km), a closed-form statistical estimation approach called hybrid inference is used, 
where GEDI L4A predictions are combined within the frame of a designed sample to infer both mean AGBD and 
the variance around that estimated mean34. The statistical variance estimators used in this approach are composed 
of terms representing both sampling uncertainty (on the basis of sampling theory applied to the spatial distribu-
tion of GEDI footprints) and model uncertainty (derived from the covariance matrix produced around the terms 
in the parametric models used to predict footprint-level AGBD)35. GEDI’s hybrid inference estimators do not 
account for non-uniform sampling probability caused by the variations in the ISS orbit or cloud cover. Hence, for 
estimation of mean AGBD over a large arbitrary shaped region (e.g., a country or forest class in this study), esti-
mates are aggregated from smaller area grid cells (6 × 6 km) where the probability of sampling can be considered 
constant. In the aggregation of these grid cells, additional uncertainty terms (expressed as the sum of covariances) 
are derived to account for spatially correlated model and sampling errors introduced by the same L4A model used 
in multiple grid cells and the same GEDI tracks crossing multiple grid cells, respectively36.

The GEDI AGBD estimates (in the latest product at the time of writing) are based on observations from 
mission week 19 to 223, i.e. April 2019 to March 202314,37. For these AGBD estimates, as well as those generated 
in this study, only high-quality waveforms to which the L4A models are applicable (e.g. leaf-on conditions for 
deciduous broadleaf forests) are selected for inclusion in the sample for a region34,36. The total uncertainty of 
GEDI AGBD estimates are expressed as the standard error (SE) of the mean.

High northern latitude estimates of forest aboveground biomass. High northern latitude estimates of forest 
aboveground biomass density are compiled for the circumpolar boreal forest north of ~51. 6° using a data-
set built specifically for this domain. These estimates were mapped using a suite of spaceborne data products 
derived from lidar (ICESat-2), multi-spectral and SAR sensors18. The multi-spectral and SAR-derived data prod-
ucts were assembled from open source archives of Harmonized Landsat Sentinel-2 (HLS)16 and Copernicus 
GLO3017 datasets. The final map resolves mean and uncertainty of modelled AGBD as 30-m gridded estimates 
continuously across North America and Eurasia.

The procedure to derive the gridded map involved multiple model building and application steps. These 
first included (1) a calibration of NASA’s ICESat-2 30-m lidar samples collected from 2019 to 2021 using field 
plot measurements of AGBD and simulations of ICESat-2’s ATL08 canopy heights from coincident airborne 
lidar, following32. This yielded models of AGBD from ICESat-2 forest heights, which were (2) applied to all 
quality-filtered ICESat-2 lidar canopy height estimates, which yielded samples of AGBD across the circumbo-
real domain. Data are filtered to include only growing season nighttime data, which can significantly reduce the 
sample for high northern latitudes where much of the growing season is in near 24 hours of daylight. In areas 
with low availability of quality (low sun angle) data, data were sampled from across the boreal domain. Then, 
(3) gridded models are then developed predicting 30 m AGBD as a function of a suite of optical and SAR-based 
covariates, with ICESat-2 estimates of AGBD serving as training data in 90 km local random forests models. 
ICESat-2 training data are filtered to include only growing season nighttime data, which can significantly reduce 
the sample for high northern latitudes where much of the growing season is in near 24 hours of daylight. In areas 
with low availability of quality (<5° sun angle) data, ICESat-2 data were sampled from across the full boreal 
domain. Finally, (4) these models were applied to each 90 km tile across the circumboreal and north of ~51. 6° 
to predict spatially-continuous 30-m estimates of AGBD. Uncertainties were estimated per pixel by propagating 
uncertainties from models in steps 1 and 3 through large-compute bootstrapping. The per pixel uncertainty is 
the standard error of a suite of predictions based on model refitting from random samples in steps (1) and (3).

Combining GEDI and high northern latitudes estimates. For each forest class that overlaps both the domain of 
GEDI (up to 51.6° latitude) and the high northern latitudes, only a heuristic of the mean and associated error is 
estimated for the purposes of this study.

=
⋅ + ⋅

+
�

� �
y

y A y A

A A (4)T
G G H H

G H
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where Tσ�  is the estimated standard error of mean AGBD over the entire area of the forest class, �σG is the GEDI 
estimated standard error over area AG, and �Hσ  is the high northern latitude estimated standard error over area AH.
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Biomass estimates based on spaceborne radar. ESA CCI estimates of forest aboveground bio-
mass. The CCI Biomass dataset consists of annual estimates of AGBD of woody vegetation with a pixel size 
of 1 ha. This study uses the map product of the year 2020 available in version 4 of the Climate Research Data 
Package19. AGBD was estimated from synthetic aperture radar (SAR) observations of the backscattered intensity, 
recorded by the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array L-band SAR 2 (PALSAR-2) and the 
Sentinel-1A and -1B satellite units20. A physics-aware model of SAR backscatter was inverted for each observation 
to obtain estimates of AGBD (ibid.). These estimates were then synthesized to a single value with a weighted aver-
age that exploited the sensitivity of the radar backscatter to AGBD, which depended on seasonal conditions and 
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transition map undisturbed forest (JRCFT)

Forest height 2000 (FH2000) ≥ 5 m 
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Boreal Forest Age (BFA) ≤ 20 years
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Joint Research Centre Tropical Moist Forest 
transition map plantations (JRCFT)
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Fig. 1 Boolean circuit board diagram illustrating the logical combinations of various datasets and layers used 
to delineate (a) primary, (b) young secondary, and (c) old secondary forests. The approach is further outlined in 
Eqs. (1)–(3), with the datasets described in Table 1.
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wavelength of the SAR system. The retrieval was aided by auxiliary data layers acting as a constraint to the inver-
sion (structural models and maximum AGBD based on spaceborne lidar observations from ICESat-2, land cover, 
tree canopy density etc.). The precision of an AGBD estimate was quantified by an standard error, obtained by 
propagating individual errors of the SAR backscatter measurements and the retrieval model parameters through-
out the retrieval approach. Few studies have assessed the CCI map accuracy to AGBD estimates from a global 
collection of National Forest Inventories and research plots, highlighting that networks of regularly monitored 
forest biomass reference sites may better reflect regional performance38,39.

For each forest class delineated in this study, the uncertainty of average AGBD accounted for both the spatial 
variance and the spatial covariance of the retrieval error (equation (6)).
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In equation (6), AGB( )ave
2δ  and δ AGB( )i

2 represent the variance of the average AGBD and the AGBD estimate 
at a given pixel within the averaging window, respectively. Variable rspat,ij represents the correlation of errors 
between the estimates of AGBD from pixel i and pixel j within the averaging window. The error correlation was 
modelled with an exponential function based on experimental assessment that used several local AGBD maps 
derived from airborne lidar as reference (Eq. (8)) 

r e1 (8)k D= − − ⋅

Because of the non-uniform distribution of these reference AGBD maps across landscapes and biomes, a single 
global value corresponding to an average exponential was eventually used (k = 0.0445).

Comparison of IPCC and EO estimates of AGBD. The two sets of AGBD estimates (IPCC Tier 1 
defaults, and EO-based estimates from GEDI/ICESat-2 and CCI) are a priori independent, derived using dif-
ferent sources of inputs and methods. None can be considered to be the true value of global forest AGBD. The 
standard deviation of the IPCC values captures the variability in the many compiled datasets to generate Tier 1 
defaults9,Table 4.7], and the uncertainty of the EO-based estimates captures variance resulting from the finite set of 
training data in their underlying models and AGBD samples for each forest class. Hence, the comparisons of the 
two sets of estimates, while accounting for their uncertainties, is limited to the following: 

•	 Identifying whether there are systematic differences between the AGBD estimates when grouped by either 
continent, GEZ or forest status/condition. For each such group, we use a regression model (Eq. (9)), with the 
response variable equal to the difference in AGBD estimates (for example, EO-based mean AGBD estimate 
minus the IPCC value) in ith forest class, such that 

α δ ε ε σ= + + ∈ … .y N i n; (0, ); {1, , } (9)i i i i
2~�

Variable �yi is the difference in estimated AGBD. Parameter α is the unknown constant systematic difference 
between the two estimates, and is the primary parameter of interest. Variable δi is the sampling error, i.e. the 
variation in the two estimates as a result of their finite respective samples. The variance of δi is fixed at the sum 
of the respective estimate variances. Finally, εi is the inherent error, depicting the random (but mean zero) 
discrepancies that would exist between the two estimates even with limitless respective samples. Variable εi 
has unknown variance σ2. This mixed effects model is a simple form of a Fay-Herriot regression40,41, contain-
ing both the sampling and inherent error. By accounting for the sampling error, inference is based on under-
lying systematic deviations between the two sets of AGBD estimates and not on random deviations occurring 
simply due to finite sampling. We are interested in the estimate of α, its associated error and its significance 
(p-value), which would indicate whether there is sufficient evidence to infer that systematic differences exist 
between the two sets of AGBD estimates.

•	 Identifying individual forest classes with potentially significant differences between the sets of AGBD esti-
mates. For each ith class, we compute a test statistic (t) as the ratio of difference in mean estimates (for exam-
ple, EO-based mean AGBD estimate minus the IPCC value) to the total estimated variance (Eq. (10)), 
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where �yEO i( ) and �yIPCC i( ) are the EO-based estimates and IPCC values, with variance of yVar[ ]EO i( )��  and 
�� yVar[ ]EO i( )  respectively. Instead of setting a single cut-off threshold confidence level (e.g. 95% confidence 

interval), which would conclusively demarcate which classes are and are not systematically different, we sim-
ply report the t value. Large absolute t values indicate the differences in mean are large relative to the sampling 
uncertainties of the estimates.
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Various forms of estimates of uncertainty in AGBD are provided by the IPCC, i.e. SD, confidence intervals 
and default values9,see Table 4.7]. For the above comparisons, if no other information is provided, the IPCC default 
of ±90% confidence interval is used, but converted to one SD by dividing by 1.9642.

Data Records
The AGBD in natural forests as reported by the IPCC9,Table 4.7], and estimated by EO in this study, are provided 
as a Microsoft Excel table in Supplementary Table 1 and presented more concisely in Supplementary Table 2. 
The global forest status/condition produced published at NASA’s Oak Ridge National Laboratory (ORNL) 
Distributed Active Archive Center (DAAC) with open access to the public43. The dataset is provided as Cloud 
Optimized GeoTIFFs (COGs) in 10°×10° tiles, with unsigned 16-bit values and a spatial resolution of 1 
arc-second per pixel (~30 m per pixel at the equator) in EPSG:4326 projection (geographic latitude/longitude 
coordinates). Data may be viewed and analyzed in any common Geographic Information System (GIS) software 
that can read and display COGs. The data is also accessible through a SpatioTemporal Asset Catalogs (STAC) 
endpoint on the NASA-ESA Multi-mission analysis and algorithm platform (MAAP).

technical Validation
Overview of key results. Global forest classification. Our approach to delineating primary, young sec-
ondary (≤20 years) and old secondary (>20 years) forests is stringent. It is a conservative combination of many 
underlying layers (Table 1) with an emphasis on the reduction of potential false positives, thereby reducing the 
inclusion of ambiguous areas in any class (see Methods, Fig. 1 and Eqs. (1)–(3)). Across the world’s natural for-
ests (excluding planted forests), approximately 1678 Mha of primary forests, 1265 Mha of old secondary forests 
and 316 Mha of young secondary forests were identified (examples in Fig. 2). Of these, primary forests were 
most abundant in South America (~565 Mha) and Asia (~557 Mha), while young secondary forests were most 
widespread over Asia (~108 Mha) and North America (~71 Mha) (Fig. 3, and Supplementary Table 1 provides 
area estimated per class). By ecozones, in line with expectations, tropical rainforests and the boreal mountains/
woodlands, included some of the largest fractions of primary forests, while various temperate and subtropical 
ecozones included the largest fractions of old secondary forests. The largest fractions of young secondary forests 
were found in tropical shrublands and rainforests, as well as subtropical humid forests. The implications of our 
choice of method for delineating the world’s forests, and the adverse aspects of not validating these delineations 
due to the unavailability of any suitable validation datasets, are addressed in the Limitations section.

Global estimates of forest AGBD. The global coverage of the two EO-based datasets (i.e. the GEDI/ICESat-2 
and ESA CCI Biomass map) allows the estimation of AGBD for every combination of continent, GEZ and forest 
status/condition, filling gaps in the current IPCC Tier 1 default values (Supplementary Table 1 and 2). The com-
parisons of these estimates to the IPCC values is, logically, limited to only those forest classes where the latter 
dataset has values. Generally, the trends of AGBD across all classes are captured well by the EO-datasets; like the 
IPCC values, the GEDI/ICESat-2 dataset estimates that primary Asian tropical rainforests and mountain systems 
harbour some of the highest AGBD globally, while the CCI dataset estimates that primary African rainforests 
harbour the highest AGBD. Both datasets estimate that young secondary tropical/subtropical dry forests, steppe 
and shrublands harbour the least AGBD on average. Kernel density estimates of footprint/pixel-level mean 
AGBD across the geographical extents of tropical rainforests and subtropical dry forests are displayed in Fig. 4, 
and the standard deviation (and range quartiles) for all forest classes are provided in Fig. 5 and Supplementary 
Table 1. Most classes display a wide range of estimates, which is expected from the vast continental-scale cov-
erage of these ecoregions. A notable observation upon the examination of these ranges, however, is that often 
the estimated AGBD in young secondary forests approximately equals or exceeds that of old secondary forests. 
Possible reasons for this are addressed in the Limitations section.

Separately, to examine the statistical differences between the two sets of AGBD, i.e. IPCC values and 
EO-based estimates, a mixed-effect model was used (allowing inference while accounting for the variance in 
the compared datasets as well as the model’s parameters (Eq. (9))). Here, in the case of the EO-based AGBD 
estimates, the “variance” is a descriptor of uncertainty in the mean; it refers to the error in a single mean AGBD 
for a forest class resulting from estimation by modeling with EO data. It is compared to the list of mean AGBD 
of classes provided by the IPCC and their associated uncertainty9,see Table 4.7], with the objective of identifying sys-
tematic differences (if any) with the data available at hand. Results of the mixed-effect model are discussed for 
each of the two EO-based estimates (GEDI/ICESat-2 and ESA CCI Biomass) separately. 

•	 GEDI/ICESat-2 Tier 1 estimates: Broadly, our model results show that there is not sufficient evidence to 
indicate that GEDI/ICESat-2 estimates exhibit significant systematic differences to the IPCC values over all 
forest classes globally (p > 0.05). Similarly, for most groups of forest classes (i.e. the classes grouped by either 
continent, GEZ or forest status/conditions), there is not sufficient evidence to suggest that there are significant 
systematic differences to IPCC values (Table 2). The exception to this result is the group of classes including 
young secondary forests, where the GEDI/ICESat-2 estimates are on average 12.08 ± 4.95 Mg/ha higher than 
those of the IPCC and found to be significantly different (p = 0.018, see �α and associated error in Table 2, 
estimated from Eq. (9)).

•	 ESA CCI Biomass Tier 1 estimates: Broadly, model results indicate that the ESA CCI Biomass estimates 
exhibit systematic differences to the IPCC values at the confidence level of 95% (p = 0.03), although with an 
estimated mean difference of only 10.29 ± 4.77 Mg/ha over all forest classes globally. Significant differences 
are observed when forest classes are grouped in (1) the continents of Africa, Asia and South America, (2) old 
secondary forests, or in (3) subtropical dry forests and temperate continental forests, although estimates differ 
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by less than 37 Mg/ha, often with a large associated uncertainties in these groups (see α� and associated error 
in these groups, Table 2 and Eq. (9)).

The general global trends mentioned above must be interpreted carefully. Since the EO-based estimates are 
derived from modeling EO data, they are relatively precise owing to the dense samples of lidar footprints in the 
case of GEDI, and wall-to-wall pixels’ coverage of each forest class in the case of the circumboreal ICESat-2 and 
CCI Biomass map. Such high precision could cause our comparisons to return statistically significant deviations 
between EO-based and IPCC based values, despite the differences in means being as low as 15 Mg/ha. However, 
compare also the high precision of the EO-based estimates to the reported IPCC values. Mean AGBD values in 
the latter are reported only with a standard deviation or confidence interval, which is a best-effort representation 
of the wide distribution of estimates within classes, compiled from various literature and datasets that may or 
may not be fully representative of the underlying population12. Hence, conversely, for groups with wide intervals 
of reported uncertainty, there is often insufficient evidence to infer that there are significant differences between 
IPCC Tier 1 values and EO-based estimates. This interpretation is important; for groups where p-values are 
insignificant (see Table 2), we cannot draw any definitive conclusions on how the EO-based estimated AGBDs 
compare to the IPCC Tier 1 defaults.

The individual, class-wise, departures of the EO-based mean AGBD estimates from the IPCC values are 
displayed in Fig. 6a-b. The wide intervals with which IPCC values are reported are also important when inter-
preting these differences. For example, the mean GEDI estimates of AGBD in primary African tropical rain-
forests are approximately 200 Mg/ha lower than those reported by the IPCC (Fig. 6a), but the wide interval of 
the IPCC value (404.2 ± 120.4 Mg/ha) implies that we cannot conclusively infer that this difference is statically 
significant (t = 1.73, Eq. (10), visualized in Fig. 6c). In fact, only a handful of forest classes individually exhibit a 
test statistic (t) that is likely to indicate a significant difference of the GEDI/ICESat-2 estimates to IPCC values. 
For example, if a significance level of α = 0.05 is chosen, only a few areas of fragmented forest classes (such as 
North American Boreal mountain system of young secondary forests) will exhibit statistically significant devi-
ances. Similarly, between the CCI estimates and IPCC values, mean class-wise differences are low (Fig. 6b) and 
significant differences are most likely to occur in small areas of fragmented forests in Asia and Oceania (Fig. 6d).

Limitations. Currently, satellite data are well positioned to provide estimates of forest AGBD that are con-
gruent with the IPCC guidelines and the reporting requirements of the UNFCCC. This research, under the CEOS 
Biomass Harmonization effort, has developed and demonstrated an EO-based framework for providing estimates 
of IPCC Tier 1 default AGBD for primary, young secondary (≤20 years) and old secondary (>20 years) natural 
forests globally. By using the latest available satellite datasets (Table 1), it establishes the groundwork to provide 
regular, up-to-date, policy-relevant information on the state of the world’s natural forests, adaptable to new data-
sets as they become available. Below, we first discuss the shortcomings of the underlying forest classes, and then 
those related to the generation of EO-based Tier 1 AGBD estimates.

Reflection on the global forest classification. The approximately 3.26 billion ha of delineated forest is likely to be 
a conservative estimate of the true global forested land, resulting from the conservative combination of underly-
ing datasets and layers to acquire a single and, to the extent possible, precise mean AGBD in each IPCC-defined 
forest class. We present a few examples to illustrate this point. First, although the Global Forest Height dataset44 
(see Table 1) delineates ~4.02 billion ha of forest with height ≥5 m, only 91.5% of this area overlaps with the 
ESA World Cover 2021 (EWC)45 forest class with >10% tree cover. Our use of a 5 m height threshold together 
with the ESA tree cover mask (to minimize potential commission errors) hence willfully eliminates ~338 Mha 
from our classification. This also implies that the inclusion of areas with tree cover <20% (varying in different 
ecozones) cannot be assured in our classification. Second, our approach also purposefully excludes planted 
forests, which are treated separately from natural forests in the IPCC guidelines9,see Table 4.8]. Simply the use of the 
Spatial Database of Planted Trees (SDPT)46, not considering the other layers identifying plantations, eliminates 
329 Mha of planted trees across the globe from our classification. Third, young growing stands or areas expected 
to revert to forests, which would fall under the UNFCCC and IPCC definition of “forests” (see Methods, Forest 
definitions), are also likely to be eliminated because of the lack of reliable underlying datasets/layers that would 
identify such lands. Similarly, although anthropologically degraded forests defined and identified by the Tropical 
Moist Forest change map47 are excluded, naturally disturbed areas (e.g. by fires, windbreaks, drought etc.) may 
have also been eliminated by this layer (see Table 1). Natural fires in tropical regions are relatively rare in com-
parison to anthropogenic disturbances48, and distinguishing the two remains an ongoing EO-related research 
topic49–51. Natural fires in the boreal ecozones may as well be problematic in this regard. Finally, conversely, some 
areas that may not precisely fall under natural forests may be included in our study. For example, we cannot 
assure the exclusion of planted trees (e.g. agroforestry) from secondary forests, which are present in the other 
layers but not identified by the SDPT46, by the Tropical Moist Forest Transition map47 or by the Global Forest 
Management map52.

Within the lands demarcated as forests in this study, old secondary forests posed the biggest challenge due 
to the lack of any ancillary datasets that specifically identify this status/condition. Hence, instead, the old sec-
ondary forest classes comprise mostly of areas that default to this category because they are neither primary nor 
young secondary forests (see Methods, Eqs. (1)–(3)). The expected consequence, therefore, is that this group of 
forest classes may contain a large variation of forest statuses/conditions and may potentially be the least accurate 
and reliable group. But, this accuracy itself remains untested; despite our analysis presenting a comprehensive 
compilation of the latest published datasets on forest conditions, the nonexistence of any independent sample 
of global data (let alone that from a probabilistic distribution), that would enable the validation of these delin-
eations, is a major constraint. Our approach relies purely on the accuracy of the sourced underlying layers, 
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strengthened by the condition that multiple layers must affirmatively indicate that a forest is either primary, 
young secondary or default to the old secondary group. Worth noting is that even the broader definitions of 

Tropical rainforest, Mato Grosso, Brazil 

Tropical dry forest, Manica, Mozambique 

Temperate oceanic forest, Aysén, Chile 

Temperate mountain system, Vancouver Island, Canada 

Primary forests Young secondary forestsOld secondary forests

Fig. 2 Visualizations of forest status/condition classes in selected Geographic Ecological Zones (GEZ). The left 
column displays high resolution optical images (Planet80 or ESRI World Imagery81), overlaid by the forest classes 
delineated in this study in the right column. Mato Grosso (Brazil) is dominated by cattle ranches and large-scale 
agriculture, Manica province (Mozambique) is dominated by shifting agriculture in dry miombo woodlands, 
Aysén (Chile) is dominated by undisturbed temperate evergreen and deciduous forests, and Vancouver Island 
(Canada) is dominated by areas of active logging and old secondary forests, as well as vast expanses of temperate 
old-growth forests.
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these classes remain debated in literature; for example, whether forests are “primary” may relate to their biodi-
versity and ecological function, structural complexity, endemism, age, and/or the lack of habitat fragmentation, 
which in in turn influences which and how EO-based biophysical predictors may be used to identify these 
forests53. Currently, the lack of training or validation data precludes the rigorous testing of conformation to any 
such definitions, the testing of the accuracy of the forest classification (i.e. how representative the classes are of 
true global forest conditions), or a sensitivity analysis of the subsequent EO-based estimated AGBD to changing 
forest conditions/statuses.

Fig. 3 (a) Relative area (as % of total area) of forest status/condition classes in each Geographic Ecological Zone 
(GEZ) and continent. (b) Total and relative area of each forest status/condition class by continent.
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Reflection on IPCC and EO-based Tier 1 AGBD estimates. Several challenges were faced simply in the presenta-
tion of this first iteration of EO-based Tier 1 AGBD estimates. Some of these challenges stem from limitations 
in the current formulation and values of the IPCC Tier 1 table9,Table 4.7], which complicate their comparison to 
any newer estimates. First, as reported in the overview of key results, the wide confidence intervals with which 
the IPCC Tier 1 values are currently reported can render tests to identify systematically significant departures to 
the EO-based datasets insufficient. The large variability in the population, and the unassessed representativeness 

Fig. 4 Kernel density estimates of mean aboveground biomass density (AGBD) at footprint/pixel-level from 
EO across the geographical extents of tropical rainforests and subtropical dry forests of Africa, Asia and South 
America (interquartile ranges are provided in Supplementary Table 1). Mean IPCC Tier 1 AGBD values are 
shown for reference.
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of limited samples used to derive the Tier 1 defaults, implies that our statements on systematic deviations of 
EO-based estimates must be interpreted with caution; they are a best effort of a global-scale comparison based 

Fig. 5 IPCC Tier 1 default and Earth Observation (EO) estimates of mean aboveground biomass density 
(AGBD). Bars denote standard deviation reported for the IPCC values, and standard deviation of footprint/
pixel-level mean AGBD estimated from EO across the geographical extents of each ecozone. Abbreviations are 
as follows: Primary=“P”, Young Secondary =“YS”, Old Secondary = “OS”, tropical=“Tr.”, subtropical=“St.”, 
temperate=“Tm.”, boreal=“Bo.”, mountain=“m.”, deciduous=“d.”, continental=“c.”, coniferous=“con.”, 
oceanic=“o.”, tundra=“t.” and humid=“h.”Abbreviations are as follows: Primary=“P”, Young Secondary =“YS”, 
Old Secondary = “OS”, tropical=“Tr.”, subtropical=“St.”, temperate=“Tm.”, boreal=“Bo.”, mountain=“m.”, 
deciduous=“d.”, continental=“c.”, coniferous=“con.”, oceanic=“o.”, tundra=“t.” and humid=“h.”.
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on the data at hand, which in some classes have untraceable sources and/or estimation approaches10,12. Second, 
and more importantly, while the comparison of IPCC Tier 1 defaults to EO-based estimates highlights ecoz-
ones with the largest discrepancies, it cannot be interpreted as a validation of any dataset; the accuracy, i.e. the 
closeness to the true value of global forest AGBD, even of the IPCC values, remains unknown and untested 
without an independent sample of reference data from ground-measured plots. These shortcomings are further 
compounded if all lands with at least 10% tree cover canopy9,see footnote of Table 4.7] have not been included for all 
forest classes, nor the true population probabilistically sampled, for the generation of IPCC Tier 1 AGBD values. 
In fact, regardless of how diligently any new estimates (whether EO-based or not) attempt to generate Tier 1 
estimates, any comparisons to current IPCC values will inevitably be hindered by these inherent limitations.

Similarly, there are limitations in the EO-based AGBD estimates; the two EO-based datasets used in this 
study are known to themselves have disagreements, both in their estimates of AGBD and associated variance, 
and in their uncertainty assessment frameworks. An in-depth comparison of the two is outside the scope of this 
work, and interested readers are referred to Hunka et al.4. Here, we point out limitations relevant to the manner 
in which global forests are classified in this study. Take, for example, the observation of nearly equal or higher 
estimates in young secondary forests compared to old secondary forests in some ecoregions (seen in Fig.4). This 
could be the result of the lack of accuracy of the demarcated classes (particularly old secondary forests), or that 
of the fact that a 20-year difference is too short a duration in the life-cycle of forest recovery after disturbance54. 
But, it could also be a result of the systematic overestimation of EO-based AGBD known to occur in forests with 
low AGBD ranges38,39. For biomass maps based on satellite radar, for example, the influence of soil moisture 
and surface roughness can cause models to overestimate AGBD55. This, in turn, might have resulted in system-
atically higher AGBD in young secondary tropical rainforests in the ESA CCI Biomass map. Such drawbacks 
must be viewed under the context that newly available EO-based AGBD estimates posit not only relatively new 
scientific advancements, but also expose exploratory findings and previously unknown challenges in biomass 
estimation from space. We take another example of the GEDI AGBD estimates to elaborate this point. The GEDI 
mission was designed around a statistical framework to enable both precise and accurate estimates of AGBD 

Group N GEDI and ICESat-2 ESA CCI

All classes α� SE[�α] t p �α SE[α�] t p

— 140 −1.66 4.46 −0.37 0.71 −10.29 4.77 −2.16 0.03*

Continent α� SE[�α] t p α� SE[�α] t p

Africa 26 −4.41 7.77 −0.57 0.575 −22.04 6.19 −3.56 0.002*

Asia 30 10.09 10.12 1.00 0.327 −31.94 11.23 −2.84 0.008*

Europe 9 15.88 9.07 1.75 0.118 22.66 10.22 2.22 0.057

North America 39 5.29 6.93 0.76 0.450 −9.35 8.03 −1.16 0.252

Oceania 3 −55.02 60.18 −0.91 0.457 16.34 42.05 0.39 0.735

South America 33 −1.19 8.82 −0.13 0.894 22.70 7.85 2.89 0.007*

Forest status/condition �α SE[�α] t p α� SE[α�] t p

Primary 40 −3.46 11.58 −0.30 0.767 −11.29 9.83 −1.15 0.258

Old secondary 50 −5.97 5.62 −1.06 0.294 −22.83 8.15 −2.80 0.007*

Young secondary 50 12.08 4.95 2.44 0.018* −0.04 7.06 −0.01 0.996

Geographic Ecological Zones α� SE[�α] t p �α SE[�α] t p

Tropical dry forest 12 −9.81 14.86 −0.66 0.523 −19.61 13.41 −1.46 0.172

Tropical moist deciduous forest 12 −13.61 14.22 −0.96 0.359 −15.25 13.76 −1.11 0.292

Tropical mountain system 12 25.00 25.92 0.96 0.355 −11.99 22.92 −0.52 0.611

Tropical rainforest 12 −0.36 15.13 −0.02 0.982 −10.46 25.04 −0.42 0.684

ropical shrubland 11 25.39 13.53 1.88 0.090 4.12 12.47 0.33 0.748

Subtropical dry forest 12 −1.90 11.26 −0.17 0.869 −22.20 9.51 −2.34 0.039*

Subtropical humid forest 12 −0.85 11.11 −0.08 0.940 −5.00 9.79 −0.51 0.619

Subtropical mountain system 12 15.30 12.33 1.24 0.241 −18.33 16.83 −1.09 0.299

Subtropical steppe 11 13.91 10.24 1.36 0.204 −16.25 7.65 −2.12 0.060

Temperate continental forest 7 −2.24 9.84 -0.23 0.828 −36.86 7.94 −4.64 0.004*

Temperate mountain system 8 −32.91 30.20 −1.09 0.312 −22.75 33.13 −0.69 0.514

Temperate oceanic forest 10 −49.60 33.14 −1.50 0.169 0.08 26.74 0.00 0.998

Temperate steppe 4 −12.23 56.70 −0.22 0.843 −4.63 53.50 −0.09 0.937

Boreal tundra woodland 3 −47.63 22.87 −2.08 0.173 −22.68 22.49 −1.01 0.419

Table 2. Results of mixed-effects models that compare the IPCC Tier 1 default to the EO-based mean 
aboveground biomass density (AGBD), while filtering the variance associated with each estimate in both 
datasets. Results are provided for all forest classes, and separately per continent, per forest status/condition and 
per Geographic Ecological Zone (GEZ). N is the number of samples, α is the estimate of the intercept, and SE is 
the standard error of α (Eq. (9)). Values of p < 0.05* indicate a significant systematic difference between IPCC 
values and EO-based estimates.
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(for areas >1 km) through its use of hybrid estimation36,56. In incorporating multiple sources of uncertainty in 
its variance estimation approach, it is congruent with the various components of uncertainty covered by the 
IPCC guidelines57. However, Dubayah et al. (2022) caution that the accuracy of their mean estimates rests on 
the assumption that model-training data apply to the area where AGBD is being predicted, and note that as 
new training data allows model refinement, AGBD confidence intervals may or may not overlap with those of 

Fig. 6 (a) GEDI/ICESat-2 and (b) ESA CCI estimates minus the IPCC Tier 1 default values of aboveground 
biomass density (AGBD) for each combination of continent, forest status/condition and Geographic Ecological 
Zone (GEZ21, black boundaries). (c-d) Spatial distribution of the estimated test statistic (t, Eq. (10), i.e. ratio 
of difference in the mean estimates of AGBD to the total variance of the two datasets. Grey values on the maps 
show areas classified as forests in this study, for which IPCC Tier 1 defaults are missing9,Table 4.7]. Scatter plots 
show mean AGBD estimates of the datasets, with error bars denoting standard deviation (in the case of IPCC), 
standard error on mean (in the case of EO estimates) and colours corresponding to t.
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previous estimates. Recently, Ståhl et al. (2024) have argued that EO-based estimates of forest AGBD may be, 
paradoxically, model-unbiased but design-biased, i.e. they may be unbiased compared to their expected values 
but biased compared to true, and fixed but unknown, values of forest AGBD58.

Discussions such as these notably highlight the continuing research effort towards the improvement of 
AGBD estimation from remotely sensed data. The differences in the EO-based AGBD estimates do not render 
them inapt for policy by default; instead, they have spurred dedicated research on optimizing their accura-
cies13,38,59, integrating them with national forest inventories60–62, and encouraged transparency and harmonizing 
approaches in their dissemination for policy-relevant uses4,5. As aforementioned, it is not currently possible 
to assess the relative improvement in EO-based AGBD over time without a globally representative biomass 
reference network, and thus this limits the scope of current efforts. However, several efforts are working toward 
a fiducial reference system for biomass (e.g. GEO-TREES25,26), which would enable a step change toward true 
product validation and thus accelerate progress in AGBD mapping and associated uptake for policy applications. 
Recommendations in this regard are provided in the Future Work and Dataset Iterations section.

Future work and dataset iterations. The analyses presented in the article focus on replicating a rather 
prescriptive delineation of global natural forests that matches the classes in the IPCC Tier 1 defaults9. This 
need not be a restriction for subsequent research. In future work, the EO-based Tier 1 AGBD estimates must 
be routinely updated with new and incoming data, and can be further refined to country-level estimates with 
nationally-delineated ecozones, initiating practicality and consistency for use in various National Greenhouse 
Gas Inventories (NGHGIs). The current limitations of the underlying global forest classification stem primarily 
from area mismatches between the various input datasets, or simply the lack of datasets that demarcate naturally 
disturbed areas, sparse vegetation or old secondary forests. What may be done to overcome these limitations if 
policy reporting continues to demand the use of similarly prescriptive forest classes?

Besides the improvements in the accuracy and algorithms to produce the various input datasets, the critical 
constraint of an absence of independent global validation datasets must be overcome. The launches of new satel-
lite missions (ESA BIOMASS23 and NISAR24), and the expectation of improved EO-based AGBD estimates with 
their data alongside a globally-distributed forest biomass reference system through GEO-TREES25,26, hold some 
promise that validation datasets may be available in the near future. To support this, the open-science frame-
work presented in this study may offer an additional opportunity - areas of disagreement between the various 
input datasets can be identified and targeted for validation, or areas with sparse vegetation or uncertain classes 
of old secondary forests can be prioritized in ground reference data collection. Open access to the in situ plot 
reference datasets is crucial27, it should contain information on observed forest ages, disturbance history and 
estimated AGBD across a range of ecological regions, and be used with consistent validation protocols63,64. Such 
reference information will be a valuable dataset for validating the EO-based IPCC Tier 1 estimates, and sub-
sequently contribute to the generation of other policy-relevant datasets. As and when input datasets or AGBD 
estimates improve and align, future work may separately present EO-based estimation of biomass in the ~800 
Mha of the remainder of the world’s forests, hence providing a holistic assessment that covers the entirety of 
the ~4 billion ha of forests identified globally65. Such an effort would also initiate alignment with the 2020 Global 
Forest Resources Assessments of the UN Food and Agriculture Organization (FAO)65, hence releasing a more 
consistent and clear overview of space-based AGBD estimates to the public.

Under the CEOS Biomass Harmonization objectives, we expect that regularly updated and validated 
EO-based datasets will effectively aid nations and policy, and can potentially contribute to UNFCCC pro-
cesses6,66. This is especially relevant as newer datasets are likely to capture ongoing biome shifts associated with 
climate change. With this foresight, the methodology and data processing for the forest classification produced 
in this study are designed in a simple, open-science, Boolean scheme that may be revised as new versions of any 
underlying maps or new geospatial datasets are publicly released (see Code Availability and associated scripts 
for full details). Transparency and the replicability of this methodology are given utmost importance; not only 
does it enable trust in the global forest classification but also allows the receipt of feedback on potential areas of 
improvement for better alignment with scientific and policy needs. Furthermore, as new EO-based AGBD map 
estimates are generated, or if the IPCC were to adopt new global ecological zoning67, open access to the frame-
work and codes for generation of forest age classifications eases computation, and thereby, the presentation of 
the new EO-based AGBD estimates in line with IPCC guidelines. The presented framework and results of this 
article are a pioneering international effort from CEOS, presenting AGBD maps in a format practical for policy 
and potentially adoptable, upon review, in the IPCC Emissions Factors Database22.

Code availability
Data was processed on the NASA-ESA Multi-mission Algorithm and Analysis Platform (MAAP), which has 
public code repositories. The associated code for this article can be accessed in the Biomass Harmonization folder 
and is published on Zenodo68. A “README.txt” file is provided as an introduction to the steps followed for the 
classification of global forests. For a single example tile extent of 10 × 10 degrees (tile 00N_000E), the web-links 
of all input data sources and their pre-processing (resampling, gridding and alignment) is provided. A script 
for their classification into primary, young secondary and old secondary forests is provided separately. Batch 
processing is supported by Amazon Web Services (AWS) on the NASA MAAP. On local machines (without 
cloud-computing capabilities), single tile extents of 10 × 10 degrees can be run in sequence following the single-
tile example provided in the repository.
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