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Abstract— Accurate tropospheric delay forecasts are impera-
tive for microwave-based remote sensing techniques, playing a
pivotal role in early warning and forecasting of natural disasters
such as tsunamis, heavy rains, and hurricanes. Nevertheless,
conventional methods for forecasting tropospheric delays entail
substantial computational resources and high network trans-
mission speeds, thereby restricting their real-time applicability
in remote sensing operations. In this study, we introduce a
novel approach to derive forecasted tropospheric delays using
artificial intelligence (AI) weather forecast foundation models
(FMs), exemplified by Huawei Cloud Pangu-Weather, Google
DeepMind GraphCast, and Shanghai AI Lab FengWu. We assess
the accuracy of these forecasts on a global scale employing
fifth-generation ECMWF atmospheric re-analysis of the global
climate (ERA5) (European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5), ground-based Global Nav-
igation Satellite System (GNSS), and in situ radiosonde (RS)
measurements as reference data. Our results show that the
FM-based scheme outperforms traditional methods in both
forecast accuracy and length, with the ability to provide
high-accuracy tropospheric delay parameters locally for 15-day
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forecasts at any location within minutes. Furthermore, the FM
scheme still maintains accuracy better than empirical models
when forecasting up to ten days in advance. This research demon-
strates the potential of AI weather forecast FMs in delivering
high-precision tropospheric delay medium-range forecasts and
improvements for real-time remote sensing applications.

Index Terms— Artificial intelligence (AI), foundation models
(FMs), global model of pressure and temperature 3 (GPT3),
high accuracy, Vienna mapping functions 3 forecast version
(VMF3_FC).

NOMENCLATURE
3DEST 3-D Earth-specific transformer.
4D-Var 4-D variational data assimilation.
ACC Anomaly correlation coefficient.
AI Artificial intelligence.
BIAS Mean of bias.
ECMWF European Centre for Medium-Range

Weather Forecasts.
ERA5 Fifth-generation ECMWF atmospheric

re-analysis of the global climate.
FLOPS Floating-point operations per second.
FM Foundation models.
Ge East gradient.
Geh Hydrostatic east gradient.
Gew Wet east gradient.
Gn North gradient.
Gnh Hydrostatic north gradient.
GNN Graph neural network.
GNSS Global Navigation Satellite System.
Gnw Wet north gradient.
GPT3 Global model of pressure and temperature 3.
HRES High-resolution forecasting.
IFS Integrated forecasting system.
IGRA Integrated Global Radiosonde Archive.
InSAR Interferometric synthetic aperture radar.
MSLP Mean sea-level pressure.
NCAR National Center for Atmospheric Research.
NGL Nevada Geodetic Laboratory.
NOAA National Oceanic and Atmospheric Admin-

istration.
NWM Numerical weather model.
NWP Numerical weather prediction.
RMSE Root-mean-square error.
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RS Radiosonde.
SA Satellite altimetry.
SP Surface pressure.
T2M 2-m temperature.
TCWV Total column water vapor.
TP Total precipitation.
TPUv4 Fifth Google domain-specific architecture

and its third supercomputer for such machine
learning models.

U10 10-m u wind component.
V10 10-m v wind component.
VLBI Very long baseline interferometry.
VMF3_FC Vienna mapping functions 3 forecast ver-

sion.
ZHD Zenith hydrostatic delay.
ZTD Zenith tropospheric delay.
ZWD Zenith wet delay.

I. INTRODUCTION

THE propagation of electromagnetic waves through the
neutral atmosphere is subject to delays and bending

caused by gas molecules, leading to a measurement error
known as tropospheric delay [1], [2]. This delay cannot be
mitigated by multifrequency signals due to the nondispersive
nature of the neutral atmosphere—unlike the ionosphere—
thus necessitating the use of models or observational estimates
to correct its effects [3], [4], [5]. Inaccurate tropospheric
delay models can lead to distorted remote sensing images [6],
misleading crustal deformation signals [7], and biases in
navigation and positioning [8] on one hand. Its accurate
determination on the other hand can enhance estimation and
understanding of the spatial–temporal distribution of water
vapor, a greenhouse gas [9], [10], [11], [12], [13]. Therefore,
highly accurate tropospheric delay models are essential for
microwave-based remote sensing applications.

The accuracy of tropospheric delay models depends on the
quality of meteorological data, with NWMs being the pri-
mary source for generating high-accuracy tropospheric delay
models. For example, the GPT series models are empirical
models [14], [15], [16] of tropospheric delay based on the
NWM and the series products [16], [17], [18] are discrete
tropospheric delay products based on the NWM [19], [20].
Tropospheric delays derived from NWMs are utilized in var-
ious Earth observation techniques, including SA [21], [22],
InSAR [23], [24], VLBI [25], [26], and GNSSs [27], [28],
[29], contributing to improved precision and reliability in
these applications [30], [31]. In addition, NWM-derived tro-
pospheric delays play a crucial role in early warning systems
for geodynamic disasters such as volcanic eruptions [32] or
earthquakes [33], [34], and weather-related disasters such as
hurricanes [35] and floods [36].

NWM-derived tropospheric delays play an important role
in the postprocessing and real-time Earth observation appli-
cations mentioned above [20], [37], especially for real-time
applications, e.g., extreme weather monitoring and disaster
assessment require forecasted tropospheric delays, which are
typically obtained from empirical models or NWP mod-
els [18]. Empirical models extract the spatial and temporal

patterns of a large amount of historical atmospheric states
and then express them as functions and/or grids. Empirical
models are very easy to use but usually do not contain detailed
information on atmospheric changes on one hand, and the
achievable accuracy is limited on the other hand [38], [39].
The generation of NWP is based on computer simulations
that require complex calculations using supercomputers, usu-
ally provided by large meteorological agencies such as the
ECMWFs and the NCAR [40], [41]. Users need to continu-
ously download these NWP data to apply them in real-time
settings. This process of acquiring real-time tropospheric delay
places significant demands on the user’s network transmis-
sion speed. The existing tropospheric delay forecast products
VMF1_FC and VMF3_FC (forecast version of VMF1 and
VMF3), for example, provide data for only four epochs
(H00, H06, H12, and H18) per day for the next day and at
specific grid points or station sites [16], [18]. Because of these
reasons, the broad application of forecast tropospheric delays
in real-time remote sensing is restricted.

Recently, the largest and most dominant companies in the
information technology (IT) industry, such as Nvidia, Huawei,
and Google, have used AI technology to spearhead the devel-
opment of more efficient weather forecasting FMs [42], [43],
[44]. Based on the enormous computational prowess of the
tech giants, these AI FMs are trained on decades of global
NWM reanalysis data; however, once trained, inference fore-
casting using these models requires very little computational
work. Forecasts from these models have shown the potential
to exceed traditional methods by orders of magnitude in
efficiency, allowing users to locally generate 15-day or longer
forecasts in a short period. These forecasts have been shown
to display comparable or better severe events prediction for
tropical cyclones, atmospheric rivers, and extreme temper-
atures [44], [45]. Since the primary goal of these FMs is
medium-range weather forecasting, only a small number of
NWM meteorological variables are involved in the training of
the models. Fortunately, the variables needed to calculate the
refractive index to generate tropospheric delays are included in
some of the abovementioned FMs. Therefore, this technolog-
ical revolution presents an opportunity for microwave-based
remote sensing techniques to benefit from the use of FMs for
tropospheric delay forecasting.

Despite the great potential of the FMs for natural language
processing, computer vision, and weather forecasting, to the
best of the authors’ knowledge, there are no relevant studies
on tropospheric delays. In an attempt to fill this gap, this
contribution proposes a scheme for obtaining high-accuracy
forecasted tropospheric delays based on the FMs and compre-
hensively evaluates the accuracy of the forecasted tropospheric
delay parameters, including zenith delay ZHD and ZWD,
mapping function [hydrostatic mapping function coefficient
(ah) and wet mapping function coefficient (aw)], tropospheric
gradient (Gnh, Geh, Gnw, and Gew), and three meteorolog-
ical parameters of pressure (P), temperature (T ) and water
vapor pressure (e). In the experiments, the ERA5, global
ground-based GNSS tropospheric delays, and in situ RS obser-
vations are used as references, and the results from the existing
forecasted tropospheric delay products VMF3_FC as well as
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TABLE I
PROPERTIES OF WEATHER FORECAST MODELS

the results calculated by employing the empirical model GPT3
are included in the comparison and evaluation.

II. DATA AND METHODOLOGY

This section provides an overview of the traditional weather
forecasting model and AI weather forecasting FMs used to
infer the forecasted Earth’s atmospheric states and describes
the tropospheric products used for validation and comparison,
including discrete and empirical models. In addition, two
sources of tropospheric delay used as a reference are discussed.

A. Weather Forecasting Models

The ECMWF’s IFS is at the forefront of traditional weather
forecasting. As a component of the IFS, ECMWF’s HRES
is the top deterministic operational system in the world,
providing global weather forecasts every 6 h with exceptional
accuracy [44], [46]. These models are based on extensive data
assimilation and high-performance computing, enabling the
generation of ten-day forecasts in hours.

In addition to traditional models, AI-based weather fore-
casting models have emerged as powerful tools for predicting
weather patterns. FourCastNet, developed by Nvidia, is the
first deep learning model to predict surface winds globally.
While slightly less accurate than IFS, FourCastNet offers sig-
nificantly faster predictions and energy savings [43], making
it a valuable addition to the forecasting landscape.

Pangu-Weather, proposed by Huawei Cloud, is another
noteworthy global AI weather forecasting system. Constructed
based on 3DEST, Pangu-Weather has surpassed traditional
numerical forecasting methods in accuracy and prediction

trends for extreme weather events. Its performance in predict-
ing tropical storm paths is particularly notable, showcasing
the potential of FM-based models in weather forecasting [43].
Note that the vertical resolution of Pangu-Weather is only
13 layers. The meteorological variables at these pressure levels
can be used to calculate the tropospheric delay, but the coarse
resolution may lead to accuracy degradation, which is analyzed
and discussed in detail in this study.

GraphCast, developed by Google DeepMind, is a state-of-
the-art weather forecasting FM based on GNN technology.
Its “encode-process-decode” configuration with GNN as the
backbone has demonstrated superior performance, outperform-
ing Pangu-Weather on 99.2% of its targets [44]. GraphCast
supports ERA5’s highest 37 pressure-level atmospheres as
inputs, one of the most important to assess in our study.

FengWu, proposed by Shanghai AI Laboratory, is another
advanced weather forecast FM. FengWu is built based on
multimodal and multitask deep learning methods and performs
better than GraphCast in predicting 80% of the 880 reported
predictands [45]. FengWu also supports ERA5’s highest
37 pressure-level atmospheres, which is an important aspect
for the objectives of this study. The affiliation, technology,
variables, and cost of traditional weather forecasting model
HRES and the FMs used in this study are listed in Table I.
The surface variables at the single level and atmospheric
variables at the pressure level for each model are shown
in Table II.

B. Tropospheric Reference Models

This section provides a brief description of the following
three models: ERA5, the NWM used as the input to the FM’s
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TABLE II
WEATHER VARIABLES AND LEVELS MODELED BY FourCastNet ∗, PANGU, FENGWU, GRAPHCAST, AND VMF3_FC

initial atmospheric state; VMF3_FC, a discrete tropospheric
delay forecast product; and the empirical model GPT3, which
is used as a reference to evaluate the FMs’ decline in precision
with forecast duration. These models were chosen based
on their representative accuracy and widespread acceptance
within the scientific community.

1) Numerical Weather Model: ERA5 is the fifth-generation
ECMWF atmospheric reanalysis of the global climate, provid-
ing hundreds of static, surface, and atmospheric variable values
for the period from January 1940 to the present at a resolution
of 0.25◦ latitude/longitude in 1-h increments. The dataset is
based on reanalysis using ECMWF’s HRES model (cycle
42r1) within ECMWF’s 4D-Var system [44], [47]. Numerous
studies have demonstrated the superior accuracy of the ERA5
dataset in describing the actual atmospheric situation [10],
[48], [49]. The AI FMs mentioned in this research are trained
based on ERA5 data.

2) Discrete Troposphere Delay Model: VMF3_FC is a
forecast tropospheric delay product produced by Technische
Universität Wien using forecast ECMWF data [16]. It provides
zenith delays, mapping functions, and gradients for different
forecast lengths. The model has been shown to adequately
predict and capture changing ZHD, significantly improving
positioning accuracy and retrieving high-precision precipitable
water vapor (PWV) [12], [50], [51], [52], [53], [54]. We used
the VMF3_FC forecasts from 2022 as the latest year is only
available under a separate license agreement. In this study,
00z, 06z, 12z, and 18z refer to the epochs 00:00, 06:00, 12:00,
and 18:00, respectively; these four moments correspond to dif-
ferent forecast lengths. In the VMF series products, they have
H00, H06, H12, and H18 as file name suffixes. Table III shows
the properties of forecast length of the VMF3_FC products
and the forecast steps of different FMs when comparing them
with VMF3_FC.

3) Empirical Troposphere Delay Model: GPT3 is an empir-
ical model released by the Technische Universität Wien and
based on more than ten years of monthly averaged data
from ECMWF [16]. The model has achieved a global-scale

TABLE III
PROPERTIES OF THE FORECAST LENGTH OF DIFFERENT

FORECAST MODELS

Fig. 1. Graphical representation of 15-day forecast using 2022 data. Each
small square represents an epoch; the red square represents the initial epoch,
which is obtained from ERA5; and the green square represents the forecast
epoch, which is obtained from the forecast.

ZTD accuracy of 4.41 cm [55] and has been continu-
ously refined in subsequent studies [56], [57], [58], [59].
While these refinements have achieved numerical improve-
ment, the model primarily outputs zenith delays and rarely
includes parameters such as gradient and mapping func-
tions. The inclusion of GPT3 results in the comparison
allows for the assessment of the accuracy of AI FMs,
particularly as the accuracy deteriorates with longer fore-
casting horizons. This is an important comparison because
when the predictive performance is worse than that of the
empirical model, it becomes meaningless to continue with
the forecast.
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Fig. 2. Graphical representation of selection strategy of active GNSS
and RS stations. The graph shows the missing or active data records for
a ground-based or in situ measurement. For example, there is available data
for all 24 epochs corresponding to steps 1 and 10, and this station participates
in the calculation of RMSE for steps 1 and 10, whereas in step 60, there is
one missing data point, i.e., the data for the 00z epoch of December 31; then,
this station does not participate in the calculation of RMSE for step 60.

TABLE IV
PROPERTIES OF TROPOSPHERIC DELAYS FROM NWMS

C. Tropospheric Reference Observations

NWMs combine dozens of types of sensor observation data
and are the optimal reflection of the atmospheric state under
the minimum error initial field; it is, however, not a “true”
reflection [20]. In situ measurements are considered to be
the most accurate reflection of atmospheric conditions; hence,
it is necessary to use actual measured data as a reference to
evaluate the performance of the AI model. The measured data
are affected by factors such as weather conditions, sensor
failures, and operator errors, so the data quality is uneven
and there are varying degrees of missing data. Therefore,
we have selected data from over 19 000 GNSS stations from
the NGL and over 2800 RS stations from the IGRA to obtain
a representative amount of data for our evaluations [60], [61].
It is important to note that the GNSS data from NGL only
provide ZTD, Gn, and Ge, where Gn is the north gradient
and Ge is the east gradient. The gradients do not differentiate
between hydrostatic and wet components. The stations that
fulfill the experimental conditions are not the same under
different subexperiments. The distribution of the selected
stations for each subexperiment is given together with the

TABLE V
MEAN BIAS (BIAS) AND RMSE OF TROPOSPHERIC DELAYS DERIVED

FROM 13-PRESSURE-LEVEL ERA5 AND 25-PRESSURE-LEVEL ERA5
DATA WITH THOSE DERIVED FROM 37-PRESSURE-LEVEL ERA5

DATA IN 2022 AS A REFERENCE

TABLE VI
MEAN BIAS (BIAS) AND RMSE OF ZTD, GN, AND GE DERIVED

FROM 13-, 25-, AND 37-PRESSURE-LEVEL ERA5 DATA WITH TRO-
POSPHERIC PRODUCTS FROM 338 NGL GNSS STATIONS IN 2022

AS A REFERENCE

experimental results in Section III. The graphical represen-
tations (Figs. 1 and 2) are provided to help better understand
the details of the experimental setup, including the selection of
forecast epochs and the selection strategy for the ground-based
or in situ measurements.

D. Experimental Setup and Experimental Methodology

This study comprises three distinct experiments. The first
experiment aims to investigate the differences in tropospheric
delays calculated from an NWM using different pressure-level
configurations. Tropospheric delays in this experiment are all
computed using ERA5 in 2022 with a temporal resolution of
6 h and a total of 1460 epochs. The second experiment is
focused on determining the accuracy of forecasted troposphere
delays using AI FMs, computed on a 1◦

× 1◦ grid. The
experiment involves two inference steps: 60 steps (15 days)
and eight steps (two days). The former aims to access the
rate of decrease of the FM precision with an increasing
forecast length, while the latter assesses the performance in
comparison with VMF3_FC. The third experiment parallels
the second but is computed at GNSS and RS sites, using the
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Fig. 3. RMSE of global zenith delays (ZHD and ZWD), mapping function coefficients (ah and aw), gradients (Gnh, Gnw, Geh, and Gew), pressure (P),
temperature (T ), and water vapor pressure (e) from the Pangu-Weather, GraphCast, and FengWu FMs for 15-day (60 steps, times of 00z, 06z, 12z, and 18z)
forecasts and the GPT3 empirical model on 1◦

× 1◦ grid. Note that due to the spatial convergence of the grid, the above RMSE is latitude-weighted.

respective measurements as ground truth. The specific details
of these experimental setups are provided in Table IV and
Figs. 1 and 2.

III. RESULTS AND ANALYSES

In this section, we present the comprehensive results and
analyses of our study on tropospheric delays derived from
different pressure-level layers and forecast models.

A. Effect of the Number of Pressure Levels on the
Experimental Results

GraphCast and Pangu-Weather do not have the same maxi-
mum supported output pressure-level layers, and the number of
NWM layers used by the VMF3_FC products is also different
compared to the former two. Therefore, the impact of the
different number of pressure layers on the results needs to
be determined first. In this section, tropospheric delays are
derived from ERA5 data with 13, 25, and 37 utilized layers
(corresponding to Pangu-Weather, VMF3_FC, and GraphCast,
respectively). Subsequently, internal and external comparisons
are carried out using the results from using 37 pressure levels
and the GNSS measurements as a reference.

1) Internal Comparison at Grid Points: The internal com-
parison was performed on a global 1◦

× 1◦ grid using
the tropospheric delays derived from 37-level ERA5 as a

reference. We calculated the bias and RMSE for the results
of the l3- and 25-level configurations. The statistical results
in Table V show that the lack of pressure-level layers mainly
introduces a negative bias to the tropospheric delay, where
the hydrostatic part of the bias was an order of magnitude
larger for the 13-level results, compared to using 25 layers.
The difference in the wet part was not as significant as in
the hydrostatic part, with the bias of the 25-level delays
being about one-third smaller than with 13 levels. The RMSE
analysis revealed that the ZHD RMSE for 13 levels exceeded
1 cm and was about 20 times higher than the 25-level result.
Also, the difference in the mapping function coefficients ah
was very large. This suggests that for applications that require
precise hydrostatic delays such as high-precision GNSS PWV
determination, the Pangu-Weather model may not be suitable.
The gradients are not significantly affected by the difference in
the number of layers due to their relatively small values. The
spatial distributions of bias and RMSE for the 11 tropospheric
delay parameters in Table V are shown in Figs. A1–A3.

2) External Comparison With GNSS ZTD as a Reference:
We further examined the external accuracy of tropospheric
delays derived from ERA5 with different layers with GNSS
measurements as a reference. Not all tropospheric delay
parameters (see Table V) have corresponding measured data
references, and ground-based GNSS measurements yield
only ZTD, Gn, and Ge. We selected the data from 338
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Fig. 4. RMSE of global zenith delays (ZHD and ZWD), mapping functions (ah and aw), and gradients (Gnh, Gnw, Geh, and Gew) derived from VMF3_FC,
Pangu-Weather, GraphCast, and FengWu FMs. Note that due to the spatial inhomogeneity of the grid, the above RMSE is latitude-weighted, and the different
forecast epoch corresponds to different forecast lengths, as shown in Table III.

GNSS stations (stations were selected according to a thresh-
old of more than 95% data completeness as proposed by
Ding et al. [62]) and calculated the bias and RMSE of ZTD,
Gn, Ge, with the results depicted in Table VI. Table VI shows
that the accuracy of the gradients is essentially unaffected by
the number of layers and that the ZTD difference between the
25- and 37-levels is rather small. The RMSE is almost 1 cm for
each, while the 13-level results were almost 2 cm. This result
suggests that it is preferable to use NWMs with 25 layers
and above in high-precision tropospheric delay calculations to
avoid introducing errors. The distribution of the 338 GNSS
stations that participated in the statistical results in Table VI,
as well as their BIAS and RMSE, is shown in Figs. A4–A6.
In addition, as of July 2024, additional FMs, such as ClimaX,
CliMA, FuXi, and AIFS, have emerged; however, none support
37-layer pressure level inputs, and GraphCast and FengWu are
the only two models that do not introduce additional errors due
to the number of pressure level.

B. Comparison With Grid-Wise Model Products
In evaluating the precision and longevity of highly precise

tropospheric delays produced from the AI FMs, it is important
to consider the potential diminishing forecast model precision
with forecast length. To assess this, we computed and analyzed
the RMSE of the Pangu-Weather and GraphCast forecasts for
15 days, using the ERA5 37-level tropospheric delay as a
reference. We also included the empirical model GPT3 and
discrete product VMF3_FC in the comparison at the same
forecast length to examine the benefits of the AI results over
the current forecast scheme.

1) Comparison With Empirical Model GPT3: Empirical
modeling, which relies on position and time as inputs to
determine tropospheric delays, is widely utilized for real-time
remote sensing applications, especially in the absence of
prediction products. In our analysis, we utilized the results
of the empirical model GPT3 as a control and calculated the
RMSEs of zenith delays, mapping functions, gradients, and
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Fig. 5. RMSE of pressure (P), temperature (T ), and water vapor pressure (e) from ERA5, empirical model GPT3, Pangu-Weather, GraphCast, and FengWu
FMs for 15-day (60 steps, step length is 6 h) forecasts on 457 IGRA2 RS sites, with in situ RS measurements as a reference. The solid lines in the figure
show the fit of the scatter and the translucent areas represent the uncertainty (standard deviation) of the values. The bottom-right subplot shows the distribution
of the RS stations involved in the calculation.

surface meteorological parameters for the AI model forecasts
over a 15-day period. The results are presented in Fig. 3.

Our findings show that the RMSE of the tropospheric
parameters from AI models increases with the forecast length
and eventually approaches or exceeds that of GPT3. The
RMSE of the Pangu-Weather scheme is greater than that of the
GraphCast and FengWu schemes for all forecast lengths and
parameters. This is attributed to the fact that Pangu-Weather
outputs only 13 layers of maximum pressure level, limiting
its accuracy. Both GraphCast and FengWu are AI models that
support the maximum 37-layer pressure level, and FengWu
outperforms GraphCast in all the comparisons of tropospheric
parameters. The RMSE of FengWu forecasts is significantly
smaller than that of GraphCast, especially after the forecast
length exceeds seven days. Overall, the wet part of all tropo-
spheric delay parameters degrades faster than the hydrostatic
part, and the gradient parameters also degrade faster than other
parameters.

We also observed jagged fluctuations in the RMSEs of
Pangu-Weather for certain tropospheric delay parameters, par-
ticularly Gnw, Gew, T , and e. This is due to the use of
different sets of forecasting parameters with varying time
intervals (1, 3, 6, and 24 h, with only 6 and 24 h used in this
research, see Table III), and the greedy algorithm employed
by Pangu-Weather to minimize error accumulation. Therefore,
the accuracy is better at a forecast length of 24 h and multiples
thereof. The fluctuations are more pronounced in the wet part
of the tropospheric delay parameters, indicating that errors due
to water vapor changes are more likely to accumulate.

2) Comparison With Discrete Model VMF3_FC: The uti-
lization of AI FMs to obtain tropospheric delays offers the
advantage of being able to generate a 15-day global forecast
within minutes, provided that sufficient processing resources,
such as one Nvidia V100 or one TPUv4, are available.
To determine whether the forecast results are more accurate
than those of existing products, we used the ERA5 results as
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Fig. 6. RMSE of ZTD, Gn, and Ge from the Pangu-Weather, GraphCast, and FengWu FMs for 15-day (60 steps, step length is 6 h) forecasts, and ERA5
and GPT3 empirical model on 8323 NGL GNSS sites, with ground-based GNSS measurements as references. The solid lines in the figure show the RMSE
values of the forecasts and the translucent area represents the uncertainty (standard deviation) of these values. The bottom-right subplot shows the distribution
of the GNSS stations involved in the calculation.

a reference to calculate the RMSEs of Pangu-Weather, Graph-
Cast, FengWu, and VMF3_FC. The results are presented in
Fig. 4, and the global distribution of RMSE for each parameter
under different forecast models is shown in Figs. A9–A12. It is
important to note that the VMF3_FC product’s most recent
year is restricted to authorized users only; thus, we selected
data for the entire year 2022. In addition, the different hours
of each day of the VMF3_FC products correspond to different
forecasting hours, with details provided in Table III.

Fig. 4 displays subplots showing the zenith delay, mapping
function coefficients, north gradient, and east gradient, with
the left panels representing the hydrostatic part and the right
panels representing the wet part. Each subplot is further
divided into four groups (H00, H06, H12, and H18) based
on the forecast length, with different models represented by
different colors. The comparison reveals that in the hydrostatic
part, Pangu-Weather exhibits lower accuracy than VMF3_FC

in zenith delay, mapping function, and gradients, particularly
in zenith delay where the RMSE of Pangu-Weather is sig-
nificantly higher. This is attributed to the limited number of
pressure-levels in Pangu-Weather, particularly the absence of
pressure layers above 50 hPa (see Table II). GraphCast and
FengWu demonstrate superior accuracy in computing mapping
function coefficients, indicating their strength in capturing
atmospheric structural details. The comparison of the wet
part is more consistent, with a relatively small difference
between the four models, as the missing pressure levels in the
Pangu-Weather model are primarily in the upper atmosphere
where there is minimal water vapor. Overall, FengWu sur-
passes GraphCast, while they both outperform the traditional
approach VMF3_FC in all parameters. This suggests that
AI schemes, such as GraphCast and FengWu, hold promise
for improving the accuracy of global forecast models for
tropospheric delays.
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Fig. 7. RMSE of zenith tropospheric delays (ZTD), north gradient (Gn), east gradient (Ge) from VMF3_FC, Pangu-Weather, GraphCast, FengWu, and ERA5,
with 88 ground-based GNSS measurements as references. The different forecast epoch corresponds to different forecast lengths, as shown in Table III. The
bottom-right subplot shows the distribution of the GNSS stations involved in the calculation.

C. Comparison Using Ground-Based or In Situ
Measurements as a Reference

In this section, we delve into a comprehensive comparison
of the accuracy of the Pangu-Weather, GraphCast, and FengWu
models for 15-day forecast durations using ground-based
GNSS and in situ RS measurements as reference. In addition,
we include the results from the ERA5 reanalysis data and
the empirical model GPT3 for a thorough comparison and
analysis. Note that the ERA5 results here all use 37 pressure
levels.

1) Comparison of Meteorological Parameters Using RS
Data as a Reference: The accuracy of tropospheric delay is
directly impacted by the accuracy of pressure (P), temperature
(T ), and water vapor pressure (e), which are crucial for
computing hydrostatic and wet delays. To assess the forecast
outcomes, we utilized RS data for these three parameters
from IGRA2 (IGRA V2) as a reference to assess the FM’s
forecast performance. However, the RS data are limited, with
observations only twice a day and incomplete records due to
various factors. After selecting more than 400 RS stations with
complete data at each forecast length, we analyzed the RMSEs
of pressure, temperature, and water vapor pressure computed
by each model. The distribution of these stations is shown in
Fig. 5, with the majority containing pressure and temperature

data, and only around 50 stations also containing water vapor
pressure records. Note that the original record in the RS
record is relative humidity, which we converted to water vapor
pressure by obtaining saturated water vapor pressure via the
Wexler formulation with new coefficients adjusted for ITS-90
[63], [64], [65].

The variation of the RMSEs of pressure, temperature, and
water vapor pressure computed by each model with forecast
length is depicted in the top and bottom left of Fig. 5.
The results show that the RMSEs of pressure, temperature,
and water vapor pressure for the empirical model GPT3 and
reanalysis data ERA5 remain stable. The RMSEs of P , T , and
e for ERA5 are about 3.4 hPa, 2.5 K, and 1.8 hPa, respectively,
and the RMSEs of P , T , and e for GPT3 are about 7.3 hPa,
4.8 K, and 3.3 hPa, respectively. On the other hand, the
FM’s RMSEs and uncertainties for pressure, temperature, and
water vapor pressure increase as the forecast length grows.
In the accuracy comparison of all three parameters, FengWu
is better than GraphCast, which in turn outperforms Pangu-
Weather. Especially for the pressure, the accuracy of FengWu
is much higher than the other two. It is worth noting that
in the comparison of temperature, the results of FengWu are
still better than GPT3 for the 15-day forecast. As the forecast
length increases, the uncertainty of the AI results grows,
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becoming comparable or even greater than the GPT3 model
for medium-term forecasts.

2) Comparison of Tropospheric Delay Parameters Using
GNSS Data as a Reference: The GNSS troposphere products
offer accurate ZTD measurements, in addition to the northward
gradient Gn and eastward gradient Ge. In our study, we evalu-
ated the accuracy of Pangu-Weather, GraphCast, and FengWu
forecasts using ZTD, Gn, and Ge from GNSS sites as reference
data. We also included results from the empirical model GPT3
and reanalysis data ERA5 as controls. Tropospheric delays
from more than 8000 GNSS stations from NGL were first
downsampled to 6 h and then computed according to the same
methodology as for the RS data. The distribution of selected
stations is depicted in Fig. 6, along with the RMSEs of ZTD,
Gn, and Ge derived from each model.

The RMSE of ZTD for GPT3 and ERA5 fluctuates around
4.6 and 1.0 cm, respectively. The RMSEs of Pangu-Weather,
GraphCast, and FengWu increase with forecast length, starting
from about 1.8, 1.0, and 1.0 cm at the 6-h forecast, and
becoming comparable to the results of GPT3 at the forecast
of about ten days. It is worth noting that FengWu, the best
performer, continues to outperform GPT3 in terms of ZTD
accuracy for a 15-day forecast. The uncertainties of the three
AI models also increase with forecast time, but the rate of
increase slows down after 12 days, indicating that weather
variables may converge to a climate-averaged state on longer
time scales. The gradients exhibit similar variability to ZTD,
with larger uncertainties resulting in a nonsignificant increase
in their RMSE with forecast length. However, after about seven
days of forecasting, the AI results degrade to the level of
GPT3. In addition, a daily cycle is evident in the gradient
results, possibly due to the updating of the initial value of
the troposphere in the NGL processing strategy for its daily
products (http://geodesy.unr.edu/gps/ngl.acn.txt). In addition to
being provided on grid points, VMF3_FC is also provided
on more than 500 GNSS sites, and of them, 88 met the
conditions of this experiment. The number of these stations is
small, but they are evenly distributed globally and their results
are representative. Fig. 7 shows the accuracies of VMF3_FC,
Pangu-Weather, GraphCast, and FengWu with ground-based
GNSS measurements as a reference. GraphCast and FengWu
outperform VMF3_FC for both ZTD and gradients, while
Pangu-Weather lags due to a lower number of pressure levels,
although this disadvantage is less significant in the gradient
comparisons.

IV. CONCLUSION AND PERSPECTIVE

In conclusion, the study presents a novel approach to fore-
casting tropospheric delay parameters using the AI weather
forecasting FMs Pangu-Weather, GraphCast, and FengWu. The
approach aims to efficiently derive forecasted zenith delays,
mapping function coefficients, gradients, and other meteoro-
logical parameters for real-time remote sensing applications.
Our study thoroughly evaluates the accuracy and precision
of these forecasted parameters. The proposed scheme has the
potential to generate tropospheric delay forecasts for 15 days
locally for any location within minutes, marking a significant
advancement in the field of atmospheric science and geodesy.

Based on our investigations, the following three key findings
stand out.

First, the study reveals that the AI FM Pangu-Weather,
which supports only 13 pressure levels, introduces a significant
error in the computed tropospheric delay, particularly in the
hydrostatic component. This discrepancy is attributed to the
limited number of layers. As a recommendation for future AI
weather forecast models, the study proposes the utilization of
a minimum of 25 layers during model training, with the ideal
scenario being the use of all 37 layers for training purposes
to further enhance the model accuracy.

Second, the study demonstrates that the AI schemes utilizing
GraphCast and FengWu outperform the existing VMF3_FC
product in terms of accuracy for all forecast durations for
all tropospheric delay parameters. This finding underscores
the potential of AI FMs to provide high-precision mid-range
forecasts of tropospheric delays and to autonomously maintain
their precision, which is a significant advancement in the field
of atmospheric science and remote sensing.

Third, the study reveals that the accuracy of tropospheric
delay forecasts from the AI scheme declines to a level compa-
rable to that of the empirical model GPT3 after about ten days.
This finding, valid for about half of the parameters, suggests
that while the AI scheme offers substantial improvements in
forecast accuracy, there are limitations to the forecast length,
and it is recommended that remote sensing users only rely on
forecasts within ten days for best accuracy.

The proposed scheme surpasses existing tropospheric delay
forecasting products in terms of both forecast length and
precision, with potential benefits for various microwave-based
real-time applications, particularly in geodesy and remote
sensing. Furthermore, as AI technology continues to improve,
the advantage in prediction performance of our scheme is
expected to strengthen, offering even greater potential for
advancements in atmospheric science and remote sensing
applications. We recommend replacing the generation method
of existing tropospheric delay forecast products with our
scheme to eliminate the limitations of network transmission
rates and computational resources. However, it is important
to note that the accuracy of forecasted tropospheric delay is
still dependent on the accuracy of the initial NWM. There-
fore, efforts to increase the weight of high-accuracy geodetic
products in NWM generation are crucial for further enhancing
the precision of tropospheric delay forecasts. In the future,
the study plans to further explore the potential of AI FMs by
using high-accuracy geodetic tropospheric delay products as
training data and initial input, which will allow us to continue
improving the precision and accuracy of our scheme.

APPENDIX

To help more readers better comprehend this research,
we provide the following supporting materials that describe
more background as well as experimental details.

A. Platforms, Software, and Algorithms

1) “FM”: “FM” is a term used to describe a new paradigm
for building AI systems based on a general class of models,
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as outlined in a comprehensive review by Percy Liang of
Stanford University and over 100 leading scholars in the field
of AI. This review, titled “On the Opportunities and Risk
of Foundation Models” [66], provides an in-depth overview
of the current opportunities and challenges of large-scale
pretrained models, and the term “ FM” is adopted from this
work.

2) Open-Source Ray-Tracing Software RADIATE: RADI-
ATE is an open-source ray-tracing software package, devel-
oped by the Vienna University of Technology, and the
latest VMF3 products are currently generated by this soft-
ware [16], [26]. Program RADIATE uses the Euler radius
of curvature and the gravity acceleration is determined by
the more accurate Kraus formula [67]. More than half of
the baselines have a better baseline length repeatability
(BLR) at submillimeter difference compared to the NSSA
GSFC ray-tracing software [26]. This research performs ray
tracing using the modified RADIATE software to achieve
efficient processing of the data-heavy NWM in experiments
[62], [68].

The NWM used for the experiments is capable of providing
pressure level data up to 1 hPa, and results for locations below
1 hPa need to be extrapolated. RADIATE uses increment inter-
vals ranging from 10 to 500 m at different heights according
to Rocken et al. [69] for the vertical interpolation. The upper
limit for vertical interpolation is where the atmospheric density
is zero, i.e., where the refractive index is almost exactly 1
[70]. RADIATE sets this upper limit at 84 km, which is taken
from the U.S. Standard Atmosphere 1976 [71]. This altitude
is almost twice as high as the altitude at which the 1-hPa
pressure-level atmosphere is located, and it is high enough to
cover the entire neutral atmosphere.

The acquisition of mapping functions and gradients
requires the use of NWM for ray-tracing. In RADIATE,
the meteorological parameters at the station locations are
obtained by interpolation (both interpolation and extrap-
olation), where the pressure is interpolated according to
the exponential method of Wallace and Hobbs [72], Klei-
jer [73], and Nafisi et al. [70]; temperature is interpolated
according to the liner method of Nafisi et al. [70] and
Hobiger et al. [74]; and water vapor pressure is interpolated
according to the exponential method of Böhm et al. [75]. The
reasons why these methods were chosen and other detailed
descriptions can be found in [76] (https://www.vlbi.at/data/
publications/2016_hofmeister_thesis.pdf).

3) Evaluation Metrics: In this research, the evaluation of
the model tropospheric parameters is conducted using the
RMSE. In addition, the ACC is employed to gauge the level
of agreement between the model predictions and observed
data. The ACC, commonly utilized in the assessment of
climate or weather models, serves as a reliable measure of
accuracy. A higher ACC value, approaching 1, signifies a more
precise prediction. To ensure accuracy in the calculations,
both RMSE and ACC incorporate latitudinal weighting. This
is essential because the spatial distribution of latitudinal and
longitudinal grid points across the Earth’s surface is not
homogenous. The computation of these two metrics is outlined

as follows:

RMSE(v)

=

√∑Nlat
i=1

∑Nlon
j=1 P(i)

(
Av

i, j − Bv
i, j

)
Nlat × Nlon

(A1)
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×
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(
Bv

i, j

)2
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where v is any tropospheric parameters; Av
i, j and Bv

i, j are the
two latitude/longitude grid sequences used for the comparison,
respectively; and P(i) is the weights, and it is defined as
follows:

P(i) = Nlat ×
cosφi∑Nlat

i ′=1 cosφi ′

(A3)

where φi is the latitude of the grid point. The RMSEs and
ACCs displayed in Figs. A7 and A8 are calculated by weighted
averaging the aforementioned equations, and they represent the
RMSEs and ACCs of the global grid series at a specific epoch
moment. In contrast, the RMSEs displayed in other figures are
the RMSEs of the time series at each site.

4) Relationships Between Tropospheric Delay Parameters:
The tropospheric delay parameters that appear in this research
include meteorological parameters (pressure, temperature, and
water vapor pressure), zenith delay (ZHD and ZWD), mapping
function (ah and aw), and gradients (Gnh, Gnw, Geh, and
Gew). These parameters are briefly described as follows.

Due to different atmospheric compositions, the refractivity
of a radio wave traveling through any position in space is
different. The refractivity N can be determined according to
Smith and Weintraub [77] as

N = k1
pd

T
+ k2

pw

T
+ k3

pw

T 2 (A4)

where pd and pw are the partial pressure of dry air in hPa and
the partial pressure of water vapor in hPa, respectively; T is
the temperature in kelvin. The variables k1–k3 denote refrac-
tivity coefficients determined by numerous different laboratory
measurements [2], and they are equal to 77.6890, 71.2952,
and 375 463 K/hPa, respectively, according to Rueger [78]
and [79].

The refractivity N can be divided into a hydrostatic part Nh

and a nonhydrostatic part Nw (the wet part)

N = Nh + Nw. (A5)

The hydrostatic refractivity is mainly related to the total
pressure; the wet refractivity is mainly related to the water
vapor pressure. The hydrostatic delay in the zenith direction
(ZHD) and the wet delay in the zenith direction (ZWD) can
be obtained by the following integrals [2]:

ZHD = 10−6
∫

∞

h0

Nh(z)dz (A6)

ZWD = 10−6
∫

∞

h0

Nw(z)dz (A7)

where h0 is the station height.
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Fig. A1. RMSE of ZHD/ZWD/ah/aw derived from 13-pressure level ERA5
and 25-pressure level ERA5 data with 37-pressure level ERA5 data as a
reference at grid-wise VMF3 of 1◦

×1◦ horizontal resolutions (00z, 06z,
12z, and 18z hours on every day in 2022). Note the different color bar scales
of the panels.

Chen and Herring [80] proposed the following formula for
the troposphere delays:

1L(α, ε) = 1L0(ε) + m fg(ε) · [Gn · cos(α) + Ge · sin(α)]
(A8)

where α and ε are azimuth and elevation angles respectively,
1L0 (ε) is the isotropic part:

1L0(ε) = ZHD · m fh(ε) + ZWD · m fw(ε) (A9)

where m fh and m fw are hydrostatic and wet mapping function,
respectively. The mapping function is built based on three
coefficients a, b, and c

m f (ε) =

1 +
a

1+
b

1+c

sin(ε) +
a

sin(ε)+ b
sin(ε)+c

(A10)

where the coefficient a is the determining part, while b and c
are usually set to empirical values. The mapping functions ah
and aw in this research are the hydrostatic and wet parts of
coefficients a, respectively.

Following 1L0(ε) is the anisotropic part of 1L(α, ε),
and Gn and Ge are the north gradient and east gradient,
respectively. The mapping function of gradient can be written
as

m fg(ε) =
1

sin(ε) · tan(ε) + C
. (A11)

Fig. A2. RMSE of tropospheric gradients derived from 13-pressure level
ERA5 and 25-pressure level ERA5 data with 37-pressure level ERA5 data as
a reference at grid-wise VMF3 of 1◦

× 1◦ horizontal resolutions (00z, 06z,
12z, and 18z hours on every day in 2022). Note the different color bar scales
of the panels.

Fig. A3. RMSE of meteorological parameters derived from 13-pressure level
ERA5 and 25-pressure level ERA5 data with 37-pressure level ERA5 data as
a reference at grid-wise VMF3 of 1◦

× 1◦ horizontal resolution (00z, 06z,
12z, and 18z hours on every day in 2022). Note the different color bar scales
of the panels.

The gradient mapping function coefficient C can be written
as

C =
3H
Re

(A12)
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Fig. A4. Mean bias (BIAS) and RMSE of ZTD derived from
13-/25-/37-pressure level ERA5 data with GNSS data as a reference at 338
NGL stations (daily at 00z, 06z, 12z, and 18z in 2022).

Fig. A5. Mean bias (BIAS) and RMSE of Gn derived from
13-/25-/37-pressure level ERA5 data with GNSS data as a reference at 338
NGL stations (daily at 00z, 06z, 12z, and 18z in 2022).

where Re is the Erath radius and H is the height of the
neutral atmosphere assuming constant density with height and
conservation of the total mass [2]. Chen and Herring [80] get
values of Ch = 0.0031 and Cw = 0.0007 for the gradient
mapping function coefficient.

B. Experimental Details

1) Global Distribution (Grid-Wise) of RMSE of Different
Pressure-Level Layers: We compare the differences in tropo-
spheric delay parameters calculated from NWMs with different
pressure-level layers in Section III-A. Since comparing the
differences is not among the most important tasks of this study,
only the final statistical result is given in the main text, which
represents a global average. We give the global distribution of

Fig. A6. Mean bias (BIAS) and RMSE of Ge derived from
13-/25-/37-pressure level ERA5 data with GNSS data as reference at 338
NGL stations (daily at 00z, 06z, 12z, and 18z in 2022).

Fig. A7. RMSE of global zenith delays (ZHD and ZWD), mapping functions
(ah and aw), gradients (Gnh, Gnw, Geh, and Gew), pressure (P), temperature
(T ), and water vapor pressure (e) from the Pangu-Weather, GraphCast, and
FengWu FM for 15-day (60 steps, times of 00z, 06z, 12z, and 18z) forecasts
and GPT3 empirical model on 1◦

× 1◦ grid. Note that due to the spatial
inhomogeneity of the grid, the above RMSE is latitude-weighted.

the differences in the number of layers for different parame-
ters in Figs. A1–A3. Readers, especially those who perform
AI weather forecasting, may be able to get enlightening
information from this for improving the selection of layers for
training data, as well as focusing on optimization specifically
for regions with poorer accuracy. Since tropospheric delays
reflect the cumulative effects of all meteorological data layers
combined, they may be better indicators of model performance
than the evaluations in existing papers on AI base models that
only result in some individual pressure-level.

2) Global Distribution (Site-Wise) of RMSE of Different
Pressure-Level Layers: GNSS is one of the technologies
with the highest accuracy in obtaining ZTD, and accuracy
assessments referenced to measurements from GNSS stations
are more reliable and robust at the station location than results
from ERA5. We give in Figs. A4–A6 the global distribution
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Fig. A8. ACC of global zenith delays (ZHD and ZWD), mapping functions
(ah and aw), gradients (Gnh, Gnw, Geh, and Gew), pressure (P), temperature
(T ), and water vapor pressure (e) from the Pangu-Weather, GraphCast, and
FengWu FM for 15-day (60 steps, times of 00z, 06z, 12z, and 18z) forecasts
and GPT3 empirical model on 1◦

× 1◦ grid. An ACC value close to 1 indicates
a higher correlation between forecast anomalies and actual anomalies.

Fig. A9. Comparison of VMF3_FC, Pangu-Weather, GraphCast, and FengWu
zenith tropospheric delay accuracy. Note the different color bar scales of the
panels.

of the BIAS and RMSE results for the 338 GNSS stations
participating in the assessment.

3) RMSE and ACC of Tropospheric Delay Parameters of 15-
Day Forecasting: Note that there are two different algorithms
for RMSE in this research. The first algorithm, which is shown
in Eq. (A1), is to compute the weighted RMSE between
two different grids and then calculate the average at different
epochs to get the average RMSE. This algorithm is the one
that has been used in the field of weather forecasting, and it
is also the method used by AI FMs such as Pangu-Weather,
and this method is unified with ACC. The other is the RMSE

Fig. A10. Comparison of VMF3_FC, Pangu-Weather, GraphCast, and
FengWu mapping function accuracy. Note the different color bar scales of
the panels.

Fig. A11. Comparison of VMF3_FC, Pangu-Weather, GraphCast, and
FengWu hydrostatic gradient accuracy. Note the different color bar scales
of the panels.

in the field of geodesy, which is to find the RMSE between
two time series of points on each grid point and then do a
latitude-weighted average of these grid point RMSEs, which
is the method used for the plots in the main text. We put
the results calculated by the first method next [see Fig. A7
(RMSE) and Fig. A8 (ACC)].
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Fig. A12. Comparison of VMF3_FC, Pangu-Weather, GraphCast, and
FengWu wet gradient accuracy. Note the different color bar scales of the
panels.

4) Comparison of GraphCast and VMF3_FC Precision:
In the comparison in Section III-B2, GraphCast and FengWu
comprehensively outperforms VMF3_FC from the global
mean scale in all parameters. We give in Figs. A9–A12 the
differences between the four types of models for forecasting
24 h results. Information about Pangu-Weather, GraphCast
and FengWu comparison with VMF3_FC, the main areas of
improvement, etc. can be obtained from Figs. A9–A12.
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