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Abstract We explore the concept of maximum possible earthquake magnitude, M, in a region
represented by an earthquake catalog from the viewpoint of statistical testing. For this aim, we assume that
earthquake magnitudes are independent events that follow a doubly truncated Gutenberg-Richter
distribution and focus on the upper truncation M. In earlier work, it has been shown that the value of M
cannot be well constrained from earthquake catalogs alone. However, for two hypothesized values M and
M′, alternative statistical tests may address the question: Which value is more consistent with the data? In
other words, is it possible to reject a magnitude within reasonable errors, i.e., the error of the first and the
error of the second kind? The results for realistic settings indicate that either the error of the first kind or the
error of the second kind is intolerably large. We conclude that it is essentially impossible to infer M in terms
of alternative testing with sufficient confidence from an earthquake catalog alone, even in regions like Japan
with excellent data availability. These findings are also valid for frequency-magnitude distributions with
different tail behavior, e.g., exponential tapering. Finally, we emphasize that different data may only be
useful to provide additional constraints for M, if they do not correlate with the earthquake catalog, i.e., if they
have not been recorded in the same observational period. In particular, long-term geological assessments
might be suitable to reduce the errors, while GPS measurements provide overall the same information as
the catalogs.

1. Introduction

The title as it stands is provocative since tests always exist. The central question, however, concerns the qual-
ity of their performance. This is of uttermost importance in view of applications related to large-earthquake
hazard, since decisions can be based only on sufficiently powerful tests with a tolerable error. The maximum
possible magnitude M enters into probabilistic seismic hazard assessment, although it might be less influen-
tial than other components, e.g., the choice of the ground motion model. Nevertheless, the knowledge of M
is crucial for various purposes related to worst case scenarios. In two previous publications, we have consid-
ered the problem of estimating M from earthquake catalogs in the context of a doubly truncated Gutenberg
Richter law [Holschneider et al., 2011; Zöller et al., 2013]. It was shown that with high probability no finite con-
fidence intervals exist. In a Bayesian setting it was shown that the posterior distribution is not normalizable
unless strong prior assumptions are made.

In the present manuscript, we change the focus from the estimation of M in terms of a point estimator or a
posterior distribution toward statistical testing to discriminate between alternatives. In particular, we
hypothesize two values M and M′ and address the question, which value is more consistent with a given
earthquake catalog. The precise meaning of this statement will be explained below. We do not claim
that one of the values is “correct.” The tests are characterized by two errors, the error of the first kind and
the error of the second kind. If both errors are small in the context of a particular application, M and M′

can be distinguished by the data; otherwise, the earthquake catalog is too short. Therefore, we will also
derive estimates for the required length of an earthquake catalog in order to perform tests with reasonable
small errors.

This paper is structured as follows: In the next section, we describe the statistical model and the alternative
statistical test in detail. Then we argue that this test is optimal; i.e., alternative tests leading to smaller errors
do not exist. After discussing the trade-off between testing size and testing power (or between the error of
the first and of the second kind) for seismicity in Japan, we present a case study for Switzerland. Finally, we
explicitly compute confidence intervals and summarize our findings.
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2. Alternative Statistical Testing of M Against M′

We assume independent random events for which magnitudes are drawn from the density of a doubly
truncated Gutenberg-Richter (GR) distribution [Gutenberg and Richter, 1956]:

pM(m) = 𝜒[m0 ,M](m) 𝛽e−𝛽m

e−𝛽m0 − e−𝛽M
, (1)

where 𝜒[m0 ,M](m) is the indicator function that is 1 if m ∈ [m0,M] and 0 otherwise. The unknown parameter
M is the maximum possible magnitude and is to be inferred from a catalog which consists of N events with
magnitudes mi, for i = 1,…N. The magnitude of completeness, m0, is supposed to be known. Here we
set 𝛽 = b log (10), where b is the Gutenberg-Richter b value, is also known.

We are concerned with the following pairs of hypotheses for which we will derive optimal testing strategies.
The simplest one would be to test

H1: the maximum possible magnitude is M (2)

against the alternative

K1: the maximum possible magnitude is M′ (3)

for fixed M < M′. We will build a test which allows M′ = ∞. Surprisingly, this physically absurd hypothesis is
not rejected by the catalogs we have at hand. Since the tests we develop are uniformly most powerful, the
same procedures can be applied for the following compound hypothesis:

H2: the maximum possible magnitude ≤ M (4)

against the alternative

K2: the maximum possible magnitude is > M. (5)

For convenience, we give here a very short testing primer, which allows us to introduce the necessary nota-
tion; more information can be found in Lehmann and Romano [2005]. A test is a mapping that takes the
observed N magnitudes

m = [m1,m2 …mN] (6)

and assigns to them a number 𝜙 = 𝜙(m) in [0, 1]. This number is the probability with which we should
reject H. Concretely, we need to draw a random number u uniformly in [0, 1] and if, for an observed catalog,
this number is u > 𝜙, we reject the hypothesis, otherwise we do not reject it. In the case that this mapping
takes only the values 0 or 1, we have a nonrandomized test, since for every outcome m we either reject H for
𝜙(m) = 1 or do not reject H for 𝜙(m) = 0. Psychologically, nonrandomized tests are preferable, although
their performance in the long run is not better than randomized tests. A test has size 𝛼 if the probability with
which we reject the hypothesis H, even if it is true, is bounded by 𝛼:

E(𝜙(m)|H) = probability of erroneously rejecting H ≤ 𝛼. (7)

Thus, 𝛼 is an upper bound of the error of the first kind, which means to erroneously reject the hypothesis
H. The error of the second kind consists of failing to reject H even though it is false. We will rather use the
equivalent notion which is the power of the test:

𝜅 = E(𝜙(m)|K) = probability of correctly not rejecting K , (8)

so that 1− 𝜅 measures the probability of failing to reject H even though K is true. The above definition holds
for a simple alternative K . In case of a compound alternative, we obtain a power for each model in K . In the
context of maximum possible magnitude both types of errors have obviously very different consequences.
This can be illustrated in the framework of earthquake safety requirements for critical facilities. A large error
of the first kind would make us spend unnecessary money on safety, whereas a large error of the second
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kind bears the risk of underestimating devastating catastrophes. In a further step the mere probability con-
siderations should be equipped with loss functions, which allow us to trade off between the two kinds of
consequences in a systematic way. In this study, however, we will stick to the probability considerations only.

A test 𝜙 is said to be optimal if, for a size 𝛼 ∈ [0, 1], it is as powerful as possible:

E(𝜙(m)|K) → maximum under constraint E(𝜙(m)|H) ≤ 𝛼. (9)

For a nonsimple hypothesis, the difficulty may arise that there is not a single strategy 𝜙, which is optimal for
all parameter values that constitute the hypothesis K . It may happen, however, that there is a test 𝜙 which
is optimal for all possible members of the hypothesis K . In that case we speak of a uniformly most powerful
test. The tests used in the remainder of this manuscript will be uniformly most powerful.

3. The Uniformly Most Powerful Tests

The key to testing is to consider the simple hypothesis H1 against K1. That is, we want to test, if the maximum
magnitude is M, against the alternative that it is M′, for fixed m0 < M < M′ ≤ ∞. In this case, the likelihood
ratio defines an ordering of the observations m. The likelihood of observing m under the assumption of
independent events is

pM(m) =
N∏

i=1

pM(mi) = 𝜒[m0 ,M](𝜇)
𝛽Ne−𝛽Nm̄

(e−𝛽m0 − e−𝛽M)N
, (10)

with

𝜇 = max{mi}, m̄ = mean{mi}. (11)

Here this ratio is given by

r(m) =
pM′ (m)
pM(m)

= (e−𝛽m0 − e−𝛽M)N

(e−𝛽m0 − e−𝛽M′ )N

𝜒[m0 ,M′](𝜇)
𝜒[m0 ,M](𝜇)

. (12)

It therefore takes on only two values, depending on whether 𝜇 ≤ M or M < 𝜇 ≤ M′. According to the general
theory of testing, an optimal test is then any test for which we always reject H1 if 𝜇 > M and for which we fail
to reject H1 for 𝜇 < M for a fraction 𝛼 of times. A randomized version of this test could therefore be designed
by simply throwing a dice to decide if in the event of 𝜇 < M we reject, or we do not reject the hypothesis M.
A nonrandomized version of the test can be achieved by fixing a threshold such that under H1 this threshold
is not reached with probability 𝛼. In formulas, we choose mc defined through

P(𝜇 < mc|H1) = 1 − 𝛼. (13)

An optimal nonrandomized testing procedure would then read

optimal test: if 𝜇 ≤ mc do not reject H1, otherwise reject it.

Since the cumulative density of a single event reads, for m ≥ m0,

FM(m) = min
{

e−𝛽m0 − e−𝛽m

e−𝛽m0 − e−𝛽M
, 1
}
, (14)

we need to solve

[FM(mc)]N = 1 − 𝛼. (15)

This has the explicit solution

mc = m0 −
1
𝛽

log
{

1 − (1 − 𝛼)1∕N [1 − e−𝛽(M−m0)]
}
. (16)

The power of the optimal tests (randomized or not) is then, for 0 < 𝛼 < 1,

𝜅 = 1 − [FM′ (mc)]N = 1 − [FM′ (M)]N(1 − 𝛼). (17)
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Figure 1. The performance rates of all possible test for testing M
against M′. The optimal tests, i.e., the tests with highest power for a
given size 𝛼 are on the upper edge. The space of possibilities is param-
eterized by a parameter 𝛿, which is the probability to observe at least
one event with magnitude > M among the N magnitudes in a catalog
if M′ is the true upper bound. Unless N is very large, this number 𝛿 is
small and high power can only be achieved through high 𝛼.

In equation (17) we have used the fact
that for m0 ≤ m ≤ M ≤ M′,

FM′ (m)
FM(m)

= constant = FM′ (M). (18)

In equation (17) the right-hand side is
actually the power of the test, which
can be understood as follows: The only
possibility not to reject M under hypoth-
esis M’ requires first to have all events
below M, which has probability [F′

M(M)]N,
and second to draw a random number
above 𝛼.

In the case of a compound hypothesis as
H2 against K2 (maximum magnitude ≤ M
against > M), the same tests are opti-
mal for all parameters in K2. The optimal
testing procedure would therefore con-
sist in rejecting as soon as the maximum
observed event is above mc as defined
above. The power, however, becomes
now a function of the true magnitude.

4. Testing M′ Against M:
Trade-Off Between Testing
Size and Power

In this section, we will explicitly discuss the trade-off between the testing size and power or between the
error of the first kind and the error of the second kind when testing a maximum magnitude M against M′.
In practical situations, it is required that both errors must not exceed a predefined size depending on the
desired degree of safety. This requirement can, however, only be met for a large enough earthquake cata-
log in terms of event number N. For this aim, relations between 𝛼, 𝜅, and N will be derived and applied to a
hypothetical example.

To get an insight into the orders of magnitude involved, let us consider the 𝛼-𝜅 diagram. The set of possible
(𝛼, 𝜅) combinations is always a convex set which is point symmetric at the point (1∕2, 1∕2). This follows by
realizing that random guessing would produce the diagonal, any convex combination of two tests can be
realized by suitable random choice between both decisions, and exchanging the rejection and the failure of
rejection of the null hypothesis would produce the mirrored test [e.g., Lehmann and Romano, 2005]. The sit-
uation of our problem is depicted on Figure 1. The blue area consists of all possible realizable combinations
of 𝛼 and 𝜅 values. On the upper boundary (marked in red) are the optimal tests; i.e., the tests with the high-
est power for a given 𝛼, on the lower boundary are the worst performing tests. The area of possible tests is
delimited by a parallelogram of height 𝛿, where

𝛿 = 1 − [FM′ (M)]N = P(𝜇 > M|M′). (19)

Therefore, we have

𝛿 ≤ 1 − [1 − e−𝛽(M−m0)]N. (20)

As can be seen graphically on Figure 1, in order to achieve a high enough power, the value of 𝛼 must be
driven close to 1 unless N is extremely high. This is so, since only for large N we can get 𝛿 close to 1 in which
case high power could be achieved with moderate values of 𝛼. Concrete numbers will be provided below.

On the other hand, the power of the test is measuring the probability that we do not erroneously fail to
reject H although K is true. It is this error that should be very small, say 𝜖 = 10−4 requiring 𝜅 ≥ 1 − 𝜖. The
values 𝛼 at which we need to run the test are therefore necessarily:

𝛼 ≥ 1 − 𝜖

[FM′ (M)]N
> 1 − 𝜖

[1 − e−𝛽(M−m0)]N
. (21)
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Figure 2. The power for testing against M′ for M = 6. Here N refers to
the number of events in the last magnitude bin [5, 6]. The size of the
test has been fixed at 𝛼 = 0.05. Note that even for 25 events in the
last bin essentially no power can be achieved not even when testing
against M′ = ∞.

The last inequality corresponds to the
end-member case of testing against an
unlimited GR law: M′ = ∞. In order
to achieve this high size of the test,
the region where H is not rejected, as
controlled by mc, will be small since
we have

mc ≤ m0 −
1
𝛽

log

[
1 − 𝜖1∕N

FM′ (M)
e−𝛽(M−m0)

]
.

(22)
Again, for the most testable case where
we only want to test against M′ = ∞, we
obtain the inequality

mc ≤ m0 −
1
𝛽

log
[

1 − 𝜖1∕N

e𝛽(M−m0) − 1

]
.

(23)
If we fix 𝛼 (or mc) and 𝜖, we still have
N, the size of the earthquake catalog.
Solving for N yields, for the required
number of observed events,

N ≥
log[𝜖∕(1 − 𝛼)]

log FM′ (M)
>

log[𝜖∕(1 − 𝛼)]
log[1 − e−𝛽(M−m0)]

. (24)

To further simplify the setting, we focus on the last magnitude bin, that is, we choose m0 = M − 1. Then N
is the number of events in the last magnitude bin before the limiting magnitude for which we want to test.
Corresponding values for lower m0 can be calculated by the GR law in straightforward manner. Under the
optimistic assumption of N = 10, we have shown on Figure 2 the power of testing M against M′ > M. The
size of the test was fixed at 𝛼 = 5%. As can be seen, no testing power is achieved, and the probability of erro-
neously rejecting the larger magnitude remains above 0.999. The only way to remedy this problem with as
little as 10 events in the last magnitude bin is to accept 𝛼 values which are close to 1. This means, however,

Figure 3. The number of events in the last magnitude bin as a function of
the error of the second kind. The error of the first kind was fixed at 𝛼 =
0.05. For realistic acceptable values of 𝜖 we need a catalog that would have
in the average about 90 events in the last magnitude bin. If we want to
test for M = 7 and we have the magnitude of completeness m0 = 4, the
size of the catalog should be about (1 + 10 + 100) × 90 = 9990 events
with magnitude ≥ 4 (assuming 𝜖 = 10−4 and b = 1). If we want to test for
m = 8, the size of the catalog has to be 99990 events of magnitude ≥ 4.

we reject with very high probability
the hypothesis M and take the alter-
native M′. In concrete numbers, in
order to fail to correctly choose the
larger magnitude in a fraction of cases
of at most 𝜖 = 10−4, we must reject
the lower magnitude with probability
𝛼 > 0.999.

We now consider the dependency on
N. Figure 3 shows the required num-
ber of events in the last magnitude
bin for testing M against M′ for 𝛼 =
0.05 and 𝜖 in the range from realistic
10−5 to careless 10−1. The number in
the last bin can be scaled to the size
of the needed catalog in the case that
a lower completeness cutoff is used
in the catalog. As a result, the num-
ber of events, even for testing against
M′ = ∞ and for the highly insufficient
value of 𝜖 = 0.01, is at least 20. The
best catalogs nowadays do not have
as many large magnitude events close
to the critical value. As one of the best
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Figure 4. Case study Japan: Testing power of M against M′ for three
values of M. For the Gutenberg-Richter b value we have used b = 0.92
[Toda and Enescu, 2011].

study regions in terms of earthquake cat-
alog quality, we refer to Japan. Following
the NOAA catalog, 180 earthquakes with
magnitudes 7 ≤ m ≤ 9 (35 earthquakes
with magnitudes 8 ≤ m ≤ 9) occurred
between the years 684 and 2012. Fixing
the size of the test at 5% means that we
reject erroneously the lower magnitude
with a probability of 0.05. The largest
observed event is the m = 9.0 Tohoku
earthquake that occurred on 11 March
2011 [Peng et al., 2012]. Results for the
testing power are shown on Figure 4. The
end-member, where M is tested against
M′ = ∞, results in the testing power
𝜅 = 0.97 for M = 9, 𝜅 = 0.91 for M = 9.2,
and 𝜅 = 0.74 for M = 9.5. Even in the
“best” situation (M = 9 and M′ = ∞),
the lower magnitude is erroneously not
rejected in about 7% of cases, which is
hardly tolerable. This value has been
calculated with the Gutenberg-Richter

b value of 0.92 [Toda and Enescu, 2011]. For b = 0.92 ± 0.05 the lower magnitude is not rejected in
12% (b = 0.97) and 3% (b = 0.87) of cases, respectively. All of these numbers are far from being tolerable
in practice. We emphasize that the data availability in Japan is probably the best in the world, at least in this
magnitude range. In order to achieve an acceptable safety, i.e., for the power 𝜅 = 1−10−4, we would need to
adapt the size to values of 𝛼 = 0.9968. In other words, to achieve the required safety, we essentially always
need to account for the larger magnitude. These numbers illustrate that even for excellent data and weak
hypotheses (M′ = ∞), there is no tractable strategy that can balance the error of the first and the second
kind toward acceptable values.

5. Case Study: Switzerland

In the previous section, we focused on Japan as a region with excellent data coverage even for very large
earthquakes. Now we study an area with moderate to low seismicity, Northwestern Switzerland. However,
due to enormous loss potential including four nuclear power plants, this is clearly a high-risk area. In the
framework of the project PEGASOS (“Probabilistische Erdbeben-Gefährdungs-Analyse für KKW-Standorte
in der Schweiz”), a comprehensive seismic hazard study has been carried out for Northwestern
Switzerland. Burkhard and Grünthal [2009] consider a large-scale seismic source zone (SSZ) model, which
includes parts of adjacent countries, and estimate maximum magnitudes using the Electric Power Research
Institute (EPRI) approach [Johnston et al., 1997]. Although this is only one out of four models used in the
PEGASOS project, it is suitable for testing purposes, because the maximum magnitude is provided by
a sequence of values with individual probability weights for each SSZ. This allows us to test one value
against another one. As an end-member, we also include M = ∞ in our analysis. The EPRI approach is
a standard Bayesian approach as in Holschneider et al. [2011] with the difference that informative prior
distributions containing various types of empirical knowledge are used. Based on crustal structure and
tectonic arguments, the SSZs are associated with either a prior for the “stable continental” crust or a prior
for the “extended continental crust.” The result is a posterior probability distribution for the maximum
magnitude M, which is truncated for the largest earthquakes in order to avoid unrealistically large events.
The truncation point is subject to geological and “common sense” arguments. The posterior distribution
is then discretized with respect to M: Ml = M1,M2,…Mn = Mu, and the probability content of a bin
[Mi+1,Mi] is considered to be a “weighting factor” for the estimate Mi. The most important earthquake
recurrence parameters which enter in the analysis are listed in Table 1. We note that the parameters of the
Gutenberg-Richter recurrence relationship

log [N(m)] = a − bm (25)

HOLSCHNEIDER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2024
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Table 1. Results of Hypothesis Testing for Northwestern Switzerlanda

Label Name m0 N(m ≥ m0) b Ml Mu T(Ml;Mu) T(Ml;∞)
EF Eastern France 2.3 7.0190 1.0470 6.0 7.2 3322 3138
RG Rhine Graben 2.3 2.8950 0.8580 6.0 7.7 1575 1520
SG South Germany 2.3 5.1890 0.7750 6.0 6.7 586 418
BG Bresse Graben 2.3 0.8781 0.6730 5.5 7.5 498 476
AE Alps External 2.3 4.4160 0.7720 7.0 7.8 3734 2833
AC Alps Central 2.3 15.720 0.7720 6.5 7.0 556 327
AI Alps Internal 3.3 1.3520 0.9170 6.0 7.9 662 650
PP Po Plain 3.3 0.4511 1.0750 5.5 7.6 1518 1509

aThe first two columns refer to the seismic source zone; m0 is the magnitude of complete-
ness, N(m ≥ m0) is the estimated annual number of earthquakes with m ≥ m0, and b is
the estimated Richter b value. Fur further details, e.g., uncertainties, see Burkhard and Grünthal
[2009]. The magnitudes Ml and Mu refer to the lowest and the highest magnitude values in the
posterior distribution as used by Burkhard and Grünthal [2009]. T(Ml;Mu) and T(Ml;∞) are the
respective number of years to achieve the testing power 𝜅 = 0.95 given 𝛼 = 0.05 for the
alternative tests Ml against Mu and Ml against ∞.

are provided in Burkhard and Grünthal [2009]. Here N(m) is the annual number of earthquakes with mag-
nitude ≥ m, b is the Gutenberg-Richter b value, and the Gutenberg-Richter a value is given by a = bm0 +
log [N(m0)]. We are thus able to estimate the time, in units of years, that is required to achieve a given testing
power, say 𝜅 ∈ [0.9; 1.0), when testing a magnitude M′ against M ≤ M′. For these calculations we impose
the error of the first kind to be 𝛼 = 0.05. Results for three values of M are shown on Figure 5.

In the last two columns of Table 1, we provide the number of years which is required to achieve the testing
power 𝜅 = 0.95, given the error of the first kind 𝛼 = 0.05. For each SSZ we consider two alternative tests
based on the smallest (Ml) and the largest magnitude (Mu) values in Burkhard and Grünthal [2009]. First, we
test M = Ml against M′ = Mu, and second M = Ml against M′ = ∞. We emphasize that because of the
relatively high difference of M and M′ and the low value imposed for the testing power, the given setting
includes hypotheses which should be easily distinguishable. However, even in this situation, the number of
years varies between hundreds to thousands of years. If we go to higher values of the testing power, which
are more appropriate for engineering purposes (𝜅 > 0.99), we observe a drastic increase of the required
time to achieve this power; see Figure 5 for the Eastern France zone.

In summation, we find that rigorous statistical testing requires periods which are unacceptably long,
even if “weak” hypotheses are considered. Facing the presence of nuclear power plants in the study
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Figure 5. Seismic source zone Eastern France (EF): Number of years that is
required to achieve the testing power 𝜅 for 𝛼 = 0.05 and three alternative
tests labeled in the legend.

region, acceptable errors will require
𝛼 close to zero and 𝜅 close to
unity, leading to essentially absurd
testing periods.

6. Confidence Intervals
Revisited

Now that we have a uniformly most
powerful test for M against M′ > M
at hand, we can use a standard
argument to obtain confidence inter-
vals for a given level 𝛾 . For any M we
construct, a region, where the null
hypothesis H that the maximum mag-
nitude is M, is not rejected. It is given
by the following set of catalogs m
of length N,

AM = {𝜇(m) ≤ mc(M, 𝛾)}, (26)

with mc(M, 𝛾) the critical magnitude
given by equation (16) with 𝛾 = 1 − 𝛼.

HOLSCHNEIDER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2025



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010319

0.80 0.84 0.88 0.92
9.

5
10

.0
10

.5
11

.0

confidence level γ

up
pe

r 
bo

un
d 

Ψ

Figure 6. The upper bound of the optimal (i.e., smallest) confidence interval as a function of the confidence level 𝛾 for
the parameters of Japan (b = 0.92, N = 180, m0 = 7, 𝜇 = 9.0). For confidence levels above 𝛾c ≃ 0.93 the upper bound
becomes ∞ and no finite confidence interval exists anymore (dashed line).

We now define I𝛾 for a catalog m to be the set of maximum magnitudes, for which we would not reject
hypothesis H at the level 𝛾

I𝛾 (m) = {M|m ∈ AM} = {M|𝜇 ≤ mc(M, 𝛾)}. (27)

This is then a confidence set at level 𝛾 :

P(M ∈ I𝛾 (m)|M) ≥ 𝛾. (28)

Explicit computation yields the result published in Holschneider et al. [2011], namely,

I𝛾 (m) = [𝜇, 𝜓], 𝜓 =
⎧⎪⎨⎪⎩

m0 −
1
𝛽

log
[

exp (−𝛽(𝜇−m0))−1

(1−𝛾)1∕N + 1
]

𝜇 < 𝜇c

∞ 𝜇 ≥ 𝜇c

. (29)

The critical value 𝜇c is given by

𝜇c = m0 − 𝛽−1 log[1 − (1 − 𝛾)1∕N]. (30)

If the maximum observed magnitude is above this value, no finite confidence interval for M at the level 𝛾
can be given. Since our tests are most powerful, these confidence intervals are optimal in the sense that
any other confidence interval of the form [𝜇, 𝜙] will contain our confidence interval [see, e.g., Lehmann and
Romano, 2005]. Note that in the present paper 𝛾 denotes the probability of finding M in the confidence inter-
val, whereas in Holschneider et al. [2011] we used 𝛼 = 1 − 𝛾 . In the case of Japan, we see on Figure 6 that no
confidence levels of higher probability than 0.93 exist.

7. Discussion and Conclusion

In this manuscript, we have performed alternative statistical tests for the maximum earthquake magni-
tude. Our findings are solely based on a statistical model for earthquake magnitudes (doubly truncated
Gutenberg-Richter law) and on earthquake catalogs as “hard quantitative” data representing a seismically
active region. Other information, e.g., from geology or paleoseismology, are not taken into account in this
stadium of development. Future work will focus on the reduction of uncertainties from such long-term data,
which are not correlated with the earthquake catalog.

As in previous publications on the maximum possible magnitude of earthquakes, we come to the conclu-
sion that from earthquake catalogs alone, no useful information about the size of the maximum possible
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magnitude can be gained, at least from the amount of data that is available in earthquake catalogs. If it is
true that the largest events are independently drawn from a doubly truncated Gutenberg-Richter (GR) distri-
bution, no other method of estimating the maximum magnitude, as complicated and sophisticated it might
be, will perform better than our optimal tests. This, however, requires unrealistically many large events in
order to allow differentiation between ultimate magnitudes that are at least one unit apart. Alternatively,
in order to prevent the devastating impact of the error of the second kind, we need to accept very high
rejection rates, which leads in practice always to the rejection the lower magnitude. This points to a serious
problem in all fields dealing with maximum magnitudes, since this conclusion applies to all procedures, how
complex they may be, which as the only “hard observational fact” have earthquake catalogs as input data.
There are only four ways to “escape” from this conclusion:

1. A lot of data are available.
2. Earthquakes occur according to some other law [Wesnousky, 1994].
3. The maximum possible magnitude is a questionable quantity and may be replaced by the maximum

magnitude in a predefined time interval for particular applications.
4. Other information, such as maximum rupture length, is independently available

[Wells and Coppersmith, 1994].

In the first case, the modeling context of a doubly truncated GR law allows the inference of the maximum
possible magnitude, only if unrealistically large catalogs are available. For the second road, this is clearly not
covered by the results of this study. However, when it comes to such a serious question as evaluating the
seismic risk for high-risk industrial plants, the community should be clear about what part of our models are
really known and beyond the stadium of speculative or toy models. The third road suggests that we have to
live with the risk of devastating earthquakes, but probably not during our lifetime. This has been elaborated
in Zöller et al. [2013]. Here the maximum magnitude assessments rely on proper estimates of a and b values
for a region.

The last escape road seems to be the most promising one, because recent studies and initiatives like the
“Global Earthquake Model” (GEM) and the European project “Seismic Hazard Harmonization in Europe” pro-
vide new data and insights that might help to constrain M from a physical point of view [see, e.g., Basili et al.,
2013; Haller and Basili, 2011; Holt et al., 2005; Stirling et al., 2012, and references therein]. However, regard-
ing rupture length, we must be aware that the actual length of the largest possible rupture is, in general,
not available. Even if rupture lengths are recorded, the errors have considerable size. Moreover, informa-
tion like average slip rates [Kagan, 2002] or estimated energy flux into a fault zone is often obtained from
observations which are intimately related to the earthquakes that actually occurred, and we face the same
problem of rare events again. In relation to such cases, our results can be considered as optimal, because we
directly use earthquake information, while other quantities like slip rates are only for proxies for earthquakes
and are therefore subject to additional uncertainties of unknown size. For this reason, new information
together with uncertainties have to be examined carefully with respect to possible functional dependencies
on earthquake catalogs, before using them as additional constraints for M.

At a first glance it seems that the difficulties to estimate M might be due to the sharp singular behavior of
the distribution function at M. Therefore, tapered versions of the GR model have been proposed [see, e.g.,
Kagan and Schoenberg, 2001]. This is, however, misleading. The corner magnitude in such a tapered law,
which plays the same role as M, bares exactly the same difficulties. The reason is that in the light of the
observed magnitudes, the parameter M has only a very small influence on the probability density. There-
fore, the likelihood function does essentially not depend on the parameter M. For that reason, the different
values of the parameter become indistinguishable from the data alone. In other words, the parameter M
that describes the shape near the upper cutoff is sensitive only to the large events, and there are only a few.
This difficulty has already been mentioned in Kagan and Schoenberg [2001], where the authors question
the usefulness of standard asymptotic arguments for the construction of confidence intervals. Besides this,
it is not clear on which evidence we could base the choice of one of these tapered distribution. One might
argue that for a given earthquake catalog, the best fitting distribution will be favorable. However, following
Schoenberg and Patel [2012], different distributions can provide reasonable fits to the bulk of small earth-
quakes and are only distinguishable in the upper tail, where few, if any, earthquakes have been observed.
The choice of the “best fitting model” becomes, therefore, to some extent arbitrary.
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The results of this study complete the picture that it is impossible to get hold of the maximum possible mag-
nitude M from earthquake catalogs using statistical methods. Moreover, it is questionable, which other hard
quantitative information, except from earthquake catalogs, is available that might allow us to constrain the
maximum possible magnitude. Of course, estimators of M can be constructed and will perform better with
increasing data amount. If the imposed error one is willing to accept is not too small such estimators might
be feasible for certain applications. On the other hand, for high levels of confidence, the range of values for
possible values for M becomes unlimited in most cases [Holschneider et al., 2011].

This prohibits to estimate M properly, even if time progresses within a human time scale and the amount of
data grows. In contrast, alternative tests based on other models of seismicity and different observables as
the total number of events and the maximum observed event as proposed in the present study are always
possible, but reasonable error values may be achieved in hundreds to thousands of years at least. A careful
analysis has to be carried out in these cases. In summary, all studies that estimate the maximum magnitude
for all times from earthquake catalogs alone become highly questionable. These problems can be solved, if
the maximum magnitude in a predefined finite time window is considered [Zöller et al., 2013]. The introduc-
tion of such a time window leads of course to a different concept as it is used in probabilistic seismic hazard
assessment. This allows at least to perform particular investigations, e.g., if the earthquake hazard is related
to the lifetime of a specific building or infrastructure. In this case, the time window will be set to the lifetime
of the infrastructure and the maximum magnitude for this time horizon can be estimated properly. As soon
as the time horizon tends to infinity, the concept will fail again. We suggest that future work should focus
on constraining the maximum magnitude using additional data and information that are independent of
earthquake catalogs.

8. Data and Resources

NOAA earthquake catalog (684–2013) of Japan available via http://www.ngdc.noaa.gov, last accessed
7 January 2014.
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