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The Largest Expected Earthquake Magnitudes

in Japan: The Statistical Perspective

by Gert Zöller, Matthias Holschneider, Sebastian Hainzl, and Jiancang Zhuang

Abstract Earthquake catalogs are probably the most informative data source about
spatiotemporal seismicity evolution. The catalog quality in one of the most active
seismogenic zones in the world, Japan, is excellent, although changes in quality aris-
ing, for example, from an evolving network are clearly present. Here, we seek the best
estimate for the largest expected earthquake in a given future time interval from a
combination of historic and instrumental earthquake catalogs. We extend the tech-
nique introduced by Zöller et al. (2013) to estimate the maximum magnitude in a
time window of length Tf for earthquake catalogs with varying level of completeness.
In particular, we consider the case in which two types of catalogs are available: a
historic catalog and an instrumental catalog. This leads to competing interests with
respect to the estimation of the two parameters from the Gutenberg–Richter law, the
b-value and the event rate λ above a given lower-magnitude threshold (the a-value).
The b-value is estimated most precisely from the frequently occurring small earth-
quakes; however, the tendency of small events to cluster in aftershocks, swarms,
etc. violates the assumption of a Poisson process that is used for the estimation of λ.
We suggest addressing conflict by estimating b solely from instrumental seismicity
and using large magnitude events from historic catalogs for the earthquake rate es-
timation. Applying the method to Japan, there is a probability of about 20% that the
maximum expected magnitude during any future time interval of length Tf � 30 years
is m ≥ 9:0. Studies of different subregions in Japan indicates high probabilities for
M 8 earthquakes along the Tohoku arc and relatively low probabilities in the Tokai,
Tonankai, and Nankai region. Finally, for scenarios related to long-time horizons and
high-confidence levels, the maximum expected magnitude will be around 10.

Introduction

The devastating Tohoku earthquake occurred on 11
March 2011 and triggered a tsunami leading to the nuclear
catastrophe in Fukushima. The economic loss has been esti-
mated between $250 and $500 billion (USD). In the after-
math of this event, the question has been raised as to
whether or not this event, or in particular the size of this
event, happened as a surprise. It is a well-known fact that
subduction zones produce large or mega-earthquakes, but the
frequency of such events is generally assumed to be low. In
fact, the Tohoku earthquake was the largest event since A.D.
684 in Japan, that is, in a time window of 1329 years. The
conclusion that the probability of occurrence of such an
event is simply 1=1329 per year fails, of course: Large events
are rare events, and uncertainties related to rare events are
enormous. Therefore, earthquake occurrence is usually mod-
eled as a random process based on empirical probability dis-
tributions. This allows estimation of maximum expected
magnitudes in time windows with a straightforward uncer-
tainty management based on a predefined significance level.

The significance level, which reflects the error probability
that one is willing to accept, is subject to the individual re-
quirements: the higher the loss potential is, the lower the er-
ror probability should be. For example, a higher error might
be tolerable for individual residences than for nuclear power
plants. In this study, we calculate probability distributions of
large earthquake magnitudes, which might be useful for de-
cision makers. However, we do not contribute to decision-
making issues in terms of economical, social, or political
consequences of earthquake occurrence. The trade-off be-
tween investments for safety on one hand and potential dam-
age on the other hand may be further quantified by methods
of insurance mathematics (Embrechts et al., 2001).

Estimations of the maximum earthquake magnitude
based on the classical Gutenberg–Richter model, as carried
out in Holschneider et al. (2011) and Zöller et al. (2013),
require complete earthquake catalogs. The estimate of the
absolute maximum magnitude M depends predominantly
on the largest observed events in the catalog, whereas the

769

Bulletin of the Seismological Society of America, Vol. 104, No. 2, pp. 769–779, April 2014, doi: 10.1785/0120130103



maximum expected magnitude in a predefined future time
horizon is driven by the parameters of the Gutenberg–Richter
law, namely theRichtera- andb-values. In these studies, how-
ever, a global level of completeness has been used; that is, for a
magnitude of completeness, which changes with time, the
highest value has been chosen for the whole time interval. As
a consequence, important information that is coded in small
events and helps to constrain the b-value is not taken into ac-
count. In the present study, we overcome this drawback by
explicitly allowing for changes in the magnitude of complete-
ness without dropping earthquakes. As in Zöller et al. (2013),
we assume that the temporal occurrence of earthquakes fol-
lows a Poisson process, with an annual rate of earthquakes λ
withm ≥ m0 (or the Richter a-value a � log10 λ� bm0). The
presence of smaller earthquakes now results in a conflict with
the b-value estimation: using small magnitude events for ac-
curately estimating b leads to a violation of the Poisson
assumption, because small earthquakes are usually subject
to strong temporal clustering (e.g., aftershock clusters) and
thus to non-Poissonian event statistics.

In many applications, one faces the situation in which
the magnitude of completeness varies with time (Woessner
and Wiemer, 2005). This is typical for long earthquake
histories, including historical and instrumental records. In
Japan, knowledge about large earthquakes is available from
684 to the present; however, in some parts of Japan, com-
pleteness since 684 at best can only be assumed. The instru-
mental catalog of the Japan Meteorological Agency (JMA
catalog) also shows various changes of the completeness
level, beginning in 1923; however, due to the overall high-
seismicity level in Japan, it is generally possible to find peri-
ods with complete reporting and a reasonable number of
events. Holschneider et al. (2011) demonstrate that the ab-
solute maximum magnitude M cannot be constrained in
terms of confidence intervals, as long as only earthquake cat-
alogs are available. The estimation of M leads to unbound
confidence intervals in most cases, that is, the upper bound
of the confidence interval isM � ∞. In contrast, Zöller et al.
(2013) show that confidence intervals are well constrained if
the maximum expected magnitude in a finite-future time
horizon is considered. In the present study, we follow the
line of these publications and extend the methodology de-
rived in Zöller et al. (2013) to earthquake catalogs that in-
clude periods with different levels of completeness. We
address the problem that accurate b-value estimation is in
conflict with the validity of the Poisson assumption. Next,
we perform a case study of the devastating M 9 Tohoku
earthquake on 11 March 2011 and estimate the posterior den-
sity for the maximum magnitude within Tf � 30 years. We
discuss the question to which degree the size of this event
was expected and elaborate on the consequences for long-
time horizons and high levels of confidence. Finally, we
compare probabilities for large earthquakes in different sub-
regions of Japan.

Bayesian Estimation of the Maximum Magnitude

Bayesian analysis is a mathematical tool that allows us
to infer knowledge (e.g., estimates, confidence intervals)
about parameters from available data and a given model. The
starting point is a prior probability density function of the
parameters to be estimated. This distribution can assimilate
prior knowledge of the parameters independently of the
given data and the model; in the case that no such knowledge
is available, the prior can be chosen as uninformative, or flat.
By multiplying the prior density with the likelihood function
of the data (i.e., the statistical model), the prior density is
updated and the posterior probability density function is
obtained and can eventually be used to obtain confidence
intervals and other quantities. The fact that the information
about the parameters is represented by a full probability func-
tion rather than by a point estimate allows for a straightfor-
ward uncertainty assessment. In this section, we present the
Bayesian posterior distribution for the maximum expected
magnitude in a time window of length Tf ; the derivation
of this result is provided in Appendix A.

Here, we consider an earthquake catalog with N events
and total duration T. The catalog can be decomposed into k
subcatalogs, each defined by the index i∈ f1;…; kg with
individual magnitude of completeness m�i�

0 , number of earth-
quakes ni, duration Ti, and magnitudes fm�i�

j g�j � 1;…; ni�.
We have

N �
Xk
i�1

ni and T �
Xk
i�1

Ti: �1�

In this study, earthquake magnitudes are assumed to be
known exactly (e.g., without errors); the Bayesian handling
of magnitude errors is left for future studies. First, the stat-
istical model includes the doubly truncated Gutenberg–
Richter distribution for earthquake magnitudes:

Fβ�m� � e−βm0 − e−βm

e−βm0 − e−βM
; m0 ≤ m ≤ M; �2�

with probability density function fβ�m� � dFβ=dm m� �,
minimum magnitude m0, absolute maximum magnitude M,
and rescaled Richter b-value β � b ln�10�. Second, we as-
sume a stationary Poisson process with rate λ, which is re-
lated to the Richter a-value by a � log10 λ� bm0. The
expected number of events in a future time interval Tf will
be denoted hereinafter as Λ � λTf .

In Appendix A, we show that the Bayesian posterior dis-
tribution for the maximum magnitude in the future time hori-
zon Tf with unknown Gutenberg–Richter values a and b (or
Λ and β) depends on two probability density functions
p1�β; catalogjm� and p2�βjcatalog�, according to

posterior�mjcatalog�

∝
Z ∞
0

dβp1�β; catalogjm�p2�βjcatalog�p0�m�; �3�
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in which p0�m� is the prior distribution ofm, which is chosen
to be flat. Because in p1�β; catalogjm� the catalog enters only
through the total event number N, the observation times
Ti, and the magnitudes of completeness m�i�

0 for the subca-
talogs i � 1;…; k, we can write p1�β; catalogjm� �
p1�β; N; Ti; m

�i�
0 jm�. The density of this extreme value

distribution

p1�β; N; Ti; m
�i�
0 jm�

� Tf�N � 1�fβ�m�fPk
i�1 Ti�1 − Fβ�m�i�

0 ��gN�1

fTf �1 − Fβ�m�� �P
k
i�1 Ti�1 − Fβ�m�i�

0 ��gN�2
�4�

also is derived in Appendix A (equation A7).
The probability density p2�βjcatalog� is the Bayesian

posterior density of β with a flat prior distribution for β; here
the catalog enters through N, the event numbers ni, the mag-
nitudes of completeness m�i�

0 , and sample means hmii of
magnitudes in the subcatalogs i � 1;…; k (see equations A9
and A10):

p2�βjcatalog� � p2�βjN; ni; m
�i�
0 ; hmii�

∝ βN exp
�
−β

Xk
i�1

nihmii
�Yk

i�1

1

�e−βm�i�
0 − e−βM �ni

: �5�

Using equation (3), the probability that the maximum magni-
tude μ in a future time interval of length Tf is ≤m is given by

Pr�μ ≤ mjcatalog� �
Z

m

−∞
posterior�m′jcatalog�dm′: �6�

Wenote that Pr�−∞ < μ ≤ m0jcatalog� represents the case in
which no earthquake occurs in the time interval.

As described explicitly in Appendix A, we solely use
flat Bayesian priors ∝ 1 for m, Λ, and β. These prior distri-
butions are improper, that is, formally they cannot be con-
sidered as (normalized) probability density functions. The
choice of prior distributions is always a weak point in
Bayesian analysis, because it is to some degree subjective.
However, flat priors represent a standard in the case in which
no a priori information on the variable to be estimated is
available. One could also use boxlike priors, for example,
by constraining the b-value to 0 ≤ b ≤ 3; this will have little
influence on the results, because the likelihood function for
b ≥ 3 is essentially zero.

The functions in equations (3)–(5) provide a framework
for a straightforward estimation of the maximum expected
magnitude in a future time window based on earthquake
catalogs with a varying level of completeness. However, the
b-value is mainly determined by frequently occurring small
earthquakes. Using instrumental seismicity will thus improve
the b-value estimation. On the other hand, small events are
affected by temporal clustering, especially by aftershock ac-
tivity leading to a violation of the Poisson assumption. In
general, the catalog selection is characterized by a trade-off
between the estimation of the b-value and the estimation of
the Poisson parameter, which is dominated by large earth-

quakes and biased by small events because of the violation of
the Poisson assumption. In the following, we consider the sit-
uation in which a historic catalog as well as an instrumental
catalog is available. For convenience, we define the historic
catalog as the complete catalog of earthquakes from the first
event until the end of the observation period. In particular, it
overlaps with the instrumental catalog. Because the Guten-
berg–Richter parameters a and b are estimated in different
ranges of magnitudes, we assume in this study that the func-
tions p1�β; catalogjm� and p2�βjcatalog� in equation (3) can
be approximated reasonably well from the historic
and instrumental catalogs such that p1�β; catalogjm�≈
p1�β; historic catalogjm� � p1�β; Nhist; T;mhist

0 jm�; the
function p2�βjcatalog� accounts for the uncertainties in the
estimation of β and is approximated from the instru-
mental catalog as p2�βjcatalog� ≈ p2�βjinstrumental
catalog� � p2�βjNinst; minst

0 ; hmiinst�. In particular, although
we assume a Poisson process from the beginning, we can take
advantage of the small clustered events in the instrumental
catalog without directly violating the Poisson assumption. In
Figure 1 we illustrate the log-likelihood function,

log�L�b�� � n�log�b log�10�� − b log�10��hmi −m0��; �7�
for the JMA catalog with two lower-magnitude cutoffs:m0 � 5

andm0 � 7. The comparison of both curves illustrates the dif-
ferent degrees of uncertainty in the b-value estimation.

An illustration of the method using synthetically
generated earthquake catalogs is given in Appendix B.

Application and Results

In the previous section, we have demonstrated how dif-
ferent levels of completeness in earthquake catalogs can be
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Figure 1. Log likelihood of b-value estimation for the JMA
catalog. Solid, m0 � 5; dashed, m0 � 7. The units of the log like-
lihood are arbitrary because the curves have been shifted to the same
domain for a better comparison.
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accounted for in an effective way to estimate the maximum
possible magnitude in a future time interval. One of the most
interesting study areas for such estimations is probably
Japan, where a historic catalog beginning in A.D. 684 and a
high-quality instrumental catalog (the JMA catalog) are avail-
able. Both catalogs include numerous large events; the most
recent one is theM 9 Tohoku earthquake, which occurred on
11 March 2011 and triggered a devastating tsunami. From
the viewpoint of magnitude estimation, the data situation is
excellent, because several earthquakes, which are probably
close to the absolute maximum magnitude, have been
observed. Although the absolute maximum magnitude is un-
known, it is likely that it is not much higher than 10, and the
difference to the maximum observed earthquake (m � 9) is
therefore about one unit. Hence, the range of magnitudes,
which is not supported by data, is relatively small.

In this section, we will discuss three issues. First, we
study which maximum magnitude was expected within 30
years, given the data 30 years before the Tohoku earthquake;
this is an update of a result presented in Zöller et al. (2013)
using the improved magnitude estimation technique. Second,
we calculate the maximum expected earthquake magnitude
using the most current data. In contrast to the absolute maxi-
mum magnitude, which is predominantly affected by the
largest observed event, the magnitude of the maximum
expected earthquake in a time window is driven by the
Gutenberg–Richter parameters a (or Λ) and b. Third, we es-
timate the maximum expected magnitude in eight subregions
of Japan in order to account for spatial variability.

For the following studies, we use the JMA catalog to cal-
culate the Bayesian posterior distribution p2�βjcatalog� in
equation (3). We note that the magnitude of completeness
m0 is subject to changes in space and time. In the first part
of this study, we are interested in time periods with complete
reporting for the whole of Japan. As in Nanjo et al. (2010),
we do not take into account earthquakes before 1970 and
define two time periods: we consider seismicity between
1970 and 1981 (30 years before the Tohoku event) for earth-
quakes with m ≥ 5:0 and from 2003 until mid-2012 for
earthquakes withm ≥ 4:7. Both periods cover about 10 years
with approximately homogeneous reporting. The second
period was selected to begin after the new Hi-net stations
were installed. During the installation period, the monitoring
quality improved continuously. For the lower-magnitude cut-
offs, conservative values have been used, because the number
of earthquakes remains high: more than 1000 events in
period 1 and more than 4000 events in period 2. The param-
eters entering into the function p2�βjcatalog� in equation (3),
N and the observational period T, are drawn from the historic
catalog beginning in the year 684, which is provided by the
National Oceanic and Atmospheric Administration (NOAA)
catalog online. Figure 2 shows the distribution of earth-
quakes with M ≥6 in Japan and the subdivision into eight
zones that will be used later in this section. It must be noted
that completeness of this catalog strongly depends on space
and time. For example, the regions of Hokkaido and Tohoku

(regions 1 and 2 in Fig. 2) were especially underpopulated in
the early part of the observational period, and region 8 (Ryu-
kyu) is mostly offshore. In light of the small number of
events, the application of statistical methods for mapping
periods of homogeneous reporting is not feasible. Therefore,
for each subregion, we determine a starting point T0 by the
condition of homogeneous earthquake occurrence (constant
earthquake rates in time) based on visual inspection. The
lower-magnitude cutoff for the NOAA catalog is set to
m0 � 7, because the number of earthquakes with m < 7 is
apparently smaller than a scaling relation would suggest. The
calculations for all of Japan are carried out for seismicity
after 1901, in which all subcatalogs are assumed to be ap-
proximately complete. This involves 92 earthquakes with
m ≥ 7 from 1901 to the present. The use of historic earth-
quakes introduces additional uncertainties that are difficult or
impossible to quantify. Earthquakes may be missed, and
magnitude values may be questionable (Hough, 2013).
Epicenter locations are also to some extent imprecise, but the
locations enter only in the later part of this study, in the as-
signment of each earthquakes to one of the eight subregions
of Japan. For simplicity, we handle historic seismicity in the
same way as instrumental seismicity; in particular, it is as-
sumed that all catalog data are exact.

We present the Bayesian posterior distributions based on
equation (3) and using data from 1970 to 11 March 1981
(i.e., up to 30 years before the Tohoku earthquake; Fig. 3a)
and data until mid-2012 (Fig. 3b). For both cases, we used an
uninformative flat prior for the magnitude and the unlimited
Gutenberg–Richter law (M → ∞). The probability that no
earthquake occurs during Tf � 30 years is nonzero and
could be illustrated by a δ-like peak left of m0. Confidence
intervals for 1 − α � 0:50, 0.90, 0.95, and 0.99 are high-
lighted by color. It is obvious that high levels of confidence
(e.g., 1 − α > 0:99) may result in unrealistically high mag-
nitudes (m ≫ 10) because the distribution of magnitudes is
unlimited. This problem leads again to the crucial question of
the absolute maximum magnitude M. For comparison, we
have repeated the calculations with the conservative value
M � 10 (Bird and Kagan, 2004; Kagan and Jackson, 2013);
results are given in Figure 4, and values for the upper bound
of the (1 − α)-confidence interval are provided in Table 1.
The results show first that the introduction of the absolute
maximum magnitude M � 10 has little influence on the re-
sults here, because the probability content in this range of
magnitudes is small; this will, however, be different for
longer time horizons. Second, we find almost identical mag-
nitudes for the two observational periods, indicating overall
stability of the results with respect to time. Changes would be
expected only if the parameters of the Gutenberg–Richter
law were changing or problems with incomplete reporting,
other man-made seismicity changes, or low earthquake num-
bers were present.

Zöller et al. (2013) argue that for short-time horizons
(Tf < 1000 years), the truncation point usually has little in-
fluence on the estimated maximum magnitudes, as long as
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earthquakes close to the truncation magnitude have low
probability. In Japan, the situation is different, because earth-
quakes with m � 9;…; 10 are not as unlikely as in other
regions. FollowingHolschneider et al. (2011) and Zöller et al.
(2013), the absolute maximum magnitude cannot be
estimated solely from catalogs. Kagan and Jackson (2013)
assume the Pareto distribution and use the moment conser-
vation principle in combination with tectonic data as an addi-
tional constraint for this parameter; they find corner
magnitudes around mc � 9:6 for subduction zones, which,
however, involve some uncertainties. For Japan, we therefore
suggest using the conservative estimate ofM � 10. For stud-
ies such as ours, we might also use the tapered Pareto dis-
tribution with a corner magnitude at around 10 (Bird and
Kagan, 2004), which reduces the effect of the unphysical

sharp truncation. However, the general inability to estimate
the absolute maximum magnitude (or corner magnitude)
from catalogs alone also holds for this distribution.

The results presented in Table 1 indicate that for high-
confidence levels an earthquake of a size greater than the
Tohoku event has to be considered, even within a short-time
interval of 30 years, in which the probability of occurrence is
around 20%. We may compare this number with a result
from the simple extrapolation of the Gutenberg–Richter law.
Using equation (B1), the number of earthquakes Λ�m ≥ 9;

Tf � 30 years� with magnitude ≥9 within 30 years can
be calculated:

Λ�m ≥ 9;Tf � 30 years� � 30 × λ�1 − Fb�9��; �8�
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in which λ � 411:9 year−1 is the annual rate of earthquakes
above the level of completeness (m0 � 4:7), b � 0:89 is the
Richter b-value, both estimated for period 2 (2003–2012) of
the JMA catalog; Fb�m� is the unlimited Gutenberg–Richter
distribution. As a result, we get 1.8 earthquakes with m ≥ 9

within 30 years—or 82 earthquakes with m ≥ 9 within 1328
years, the length of the historic catalog that actually includes
only one event with m � 9. For period 1 (1970–1981), we
have λ � 104:6 year−1 for m0 � 5:0 and b � 0:90 and get
0.8 earthquakes with m ≥ 9 within 30 years, corresponding
to 35 events in 1328 years. Although the true parameters as
well as the number of future earthquakes are unknown, these
rates appear to be an overestimation. A main problem related
to the simple extrapolation of the Gutenberg–Richter law is
related to the fact that the number of future earthquakes is
assumed to be known, as soon as a and b are known.
Although these parameters are replaced here by their point

estimates, our model for the maximum magnitude in a time
window is fully probabilistic; that is, it accounts for all pos-
sible values of a and b and all resulting scenarios for future
seismicity.

We note that all findings in this section are based purely
on statistics and on earthquake catalogs; earthquakes are
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Table 1
Upper Bounds of 1 − α Confidence Intervals for Results in

Figures 3 and 4

1 − α
1970 until 1981

(M � ∞=M � 10)
2003 until Mid-2012
(M � ∞=M � 10)

0.50 8:6=8:5 8:6=8:6
0.90 9:4=9:3 9:4=9:3
0.95 9:7=9:5 9:7=9:5
0.99 10:4=9:9 10:4=9:9
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assumed to occur independently of each other according to a
Poisson process without memory. No physical processes,
such as time-dependent evolution of stress, are taken into ac-
count here. However, earthquake catalogs probably represent
the most precise database for seismic hazard, and the use of
basic assumptions on seismicity will keep the uncertainties
manageable. Note also that the estimated maximum magni-
tudes for the two time periods provided in Table 1 are
very close.

We emphasize that the relatively short-time horizon,
Tf � 30 years, already leads to a high probability for large
earthquakes. In Figure 5, we show posterior probability den-
sities for Tf � 100 and Tf � 1000 years, both calculated
with M � 10. The functions are located around magnitudes
between 9 and 9.5, with almost vanishing probability that no
earthquake with m ≥ 7 occurs. For requirements related to
specific critical infrastructures, in which high-confidence
levels and long-time horizons might be relevant, the maxi-
mum expected magnitude will be essentially identical with
the absolute maximummagnitude (Fig. 5b). We note that this
absolute maximum magnitude will certainly exist due to
physical constraints such as energy conservation, although
it cannot be estimated from earthquake catalogs alone.

Finally, we focus on different regions in Japan. The sub-
division shown in Figure 2 is similar to those used in the
monthly reports for the evaluation of seismic activities in
Japan by the Headquarters of Earthquake Research Promo-
tion. For each of the eight subregions, we use the JMA catalog
after 2003 with individual lower-magnitude thresholds and
the NOAA catalog with individual starting points T0.
Although T0 is set to ensure homogeneous reporting, we
introduce two conditions for the choice ofm0 in the JMA cata-
log: first,m0 should be at least the magnitude of completeness
indicated by scaling behavior in the frequency-size distribu-
tion; second, all subcatalogs should have a similar number of
earthquakes for the b-value estimation, which is chosen to be
around 2500. Because of the overall large number of earth-
quakes in each subregion, and the resulting small degree of

uncertainty with respect to the b-value estimation, the choice
of m0 is of minor influence as long as completeness is given.
The absolute maximum magnitude is again set to M � 10.
Table 2 summarizes the parameters and results for the eight
subregions. Maximum expected magnitudes are then esti-
mated for Tf � 30 years and Tf � 100 years.

The results for the subregions indicate that the Tohoku
region has the highest potential for large earthquakes. The
magnitude of the 2011 event (m � 9) can be expected in a
time frame of only 55 years, when 1 − α � 0:95 is assumed.
For the same confidence level and a time horizon of around
10,000 years, the maximum expected magnitude is almost
similar to the absolute maximum magnitude M � 10.
Although the magnitudes for time horizons of 30 and 100
years are overall high, we find smaller values in regions
3–6. Additionally, probabilities for earthquakes with m ≥ 8

within 30 years are provided. Interestingly, according to the
national seismic hazard map of Japan, the probabilities are
relatively low in high-hazard regions, for example, as shown
in Geller (2011) for the regions of Tokai, Tonankai, and
Nankai. On the other hand, we find the highest probabilities
forM 8 earthquakes along the Tohoku arc, where overall low
hazard is indicated. Our result is similar to recent findings of
Zhuang (2012), inferred from the epidemic-type aftershock
model (Ogata and Zhuang, 2006). His results also indicate
much higher probabilities for large earthquakes at the
Tohoku and Kuril arcs than in the Tokai and Nankai region.
Our future work will study how sensitively these results
depend on the assumed statistical model, for example, on the
specific frequency–magnitude distribution and the temporal
characteristics of earthquake occurrence.

Conclusions

What can be inferred from earthquake catalogs with re-
spect to the largest earthquake magnitudes? From a statistical
point of view, for the absolute maximum magnitude in a
truncated frequency-size distribution or the corner frequency
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Figure 5. Same as Figure 4b, with (a) Tf � 100 years and (b) Tf � 1000 years.
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in a tapered distribution, the valueM � ∞ has to be consid-
ered (Holschneider et al., 2011). If, however, finite-time hori-
zons are studied and a statistical model for earthquake rates
and magnitudes is given, maximum expected magnitudes can
be estimated properly (Zöller et al., 2013). In particular, using
statistical methods, we can calculate reference scenarios for a
seismically active region in a given future time horizon, which
might range from days to thousands of years, depending on
the scenario under consideration. The focus of this work is the
estimation of the maximum magnitude in a future time hori-
zon from earthquake catalogs with different degrees of com-
pleteness. This allows assimilation of information from
historic seismicity, as well as from instrumental earthquake
catalogs of the same region. The underlying seismicity model
is based on (1)Gutenberg–Richter distributedmagnitudes and
(2) a Poisson process in time (Epstein and Lomnitz, 1966).
The validity of the Gutenberg–Richter distribution is usually
fulfilled for small earthquakes, whereas it is uncertain for
large events. The approximate validity of a Poisson process
for large enough earthquakes is a subject of discussion (Gard-
ner and Knopoff, 1974; Kagan and Jackson, 1991). Although
Lombardi and Marzocchi (2007) suggest a branching model
exhibiting long-term clustering for worldwide earthquakes,
Michael (2011) shows that worldwide earthquakes since
1900 with magnitudesm ≥ 7 can be explained within the un-
certainties of a memory less Poisson process. In our study, we
argue that the Poisson approximation is always reasonable for
the long term average of a stationary point process, if the cor-
relation between events in the process is of relatively shorter
ranges. For small earthquakes, however, temporal clustering
arising from aftershocks and swarms clearly violates the
Poisson assumption. In other words, the simultaneous estima-
tion of the Richter b-value and the Poisson parameter Λ (cor-
responding to the Richter a-value) and their uncertainties
produces a trade-off: a precise b estimation requires small
earthquakes, whereas the Λ estimation works best in the ab-
sence of small events (Poisson assumption).

Here, we take advantage of the fact that the Gutenberg–
Richter parameters a and b are estimated essentially from
data in different magnitude domains and calculate the pos-

terior probability density function with respect to b from the
instrumental catalog, whereas the Poisson parameter is then
estimated from the historic catalog. We note that this
approximation is related to the additional assumption that
aftershocks and other types of clustered seismicity have the
same b-value as mainshocks (unclustered seismicity). Other-
wise, the presence of aftershocks in the instrumental catalog
would bias the b-value. This problem could be addressed by
one of the two following methods: first, both historic and
instrumental catalogs are used for the estimation of the
Gutenberg–Richter parameters, leading to increasing estima-
tion errors as discussed in the Bayesian Estimation of the
Maximum Magnitude section; second, the instrumental cata-
log is declustered (Gardner and Knopoff, 1974; Reasenberg,
1985; Zhuang et al., 2002). However, this is a delicate issue,
because new parameters and assumptions are introduced; the
results eventually depend on the declustering algorithm.
Additional assumptions, which will be addressed in more de-
tail in future work, include the consideration of magnitude
errors and the possible effect of missing historic earthquakes
(Hough, 2013). Both corrections predominantly will affect
the estimation of the a-value from the historic catalog.

Applying the seismicity model described above to seis-
micity in Japan leads to the conclusion that an earthquake
such as the 2011 Tohoku event can be expected with more
than about 20% probability within a time window of 30 years
length. In the same time window, a magnitude 8.6 or larger
earthquake is expected with about 50% probability, which is
the probability of success when tossing a coin. We note that
the time horizon must not be confused with the return period
of such an event; in particular, due to the assumed Poisson
process, this result holds for any 30 year time window in the
future.

From a purely statistical point of view, we confirm the
conclusion of Stein and Okal (2011) and Kagan and Jackson
(2013) that theM 9 Tohoku event in 2011 was not a surprise.
Although this earthquake is the first magnitude 9 event in
1329 years, the catalogs suggest that the probability of occur-
rence within only 30 years is around 20% and thus is not
negligible. If the Tohoku region is singled out of the JMA

Table 2
Upper Bound m1−α of 1 − α Confidence Interval and Probability of Occurrence of an

Earthquake with m ≥ 8 within 30 Years

m95 (m50) m95 (m50) p�m ≥ 8�
Number Zone m0 T0 Tf � 30 years T f � 100 years T f � 30 years

1 Hokkaido 3.7 1839 9.0 (7.8) 9.5 (8.4) 0.35
2 Tohoku 4.3 1611 9.0 (7.8) 9.5 (8.4) 0.38
3 Kanto 4.0 1241 8.5 (7.1) 9.0 (7.7) 0.12
4 Central Japan 3.2 684 8.3 (7.1) 8.8 (7.6) 0.09
5 Kinki 3.0 684 8.1 (<7) 8.6 (7.5) 0.06
6 Chugoku–Shikoku 2.3 1361 8.1 (<7) 8.5 (7.3) 0.06
7 Kyushu 2.8 1662 8.5 (7.3) 9.0 (7.8) 0.14
8 Ryukyu 3.6 1901 8.8 (7.6) 9.2 (8.1) 0.15

Results are given for two values of α and two values of Tf for the eight subregions shown in Figure 2.
The lower-magnitude cutoff m0 is also provided. The results are based on M � 10.
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catalog, the time horizon where an earthquake like the 2011
event can be ruled out is only 55 years, allowing for 5% error
probability. On the other hand, we can address the question of
how long do we have to wait until an earthquake withm ≈ 10

must be considered. For this aim, we fix the significance level
α � 5% and increase Tf until M1−α ≈ 10. In the Tohoku re-
gion, this time horizon is around 10,000 years. The evaluation
of space-dependent large earthquake probabilities is in agree-
ment with other recent findings based on statistical modeling
(Zhuang, 2012) and identifies Tokai as a regionwith relatively
low potential for an event with m ≥ 8, although Tokai is a
hotspot in the national seismic-hazard map of Japan.

For very long time horizons the situation becomes even
more dramatic. In recent studies, we demonstrated that the
absolute maximum magnitude M cannot be estimated prop-
erly from earthquake catalogs alone (Holschneider et al.,
2011). On the contrary, M enters in the frequency–size dis-
tribution and must be set to some value (Pisarenko et al.,
1996; Kijko, 2004) in order to allow the calculation of the
seismic hazard. Although the influence of M for short-time
horizons is usually limited, it cannot be neglected for long-
time horizons. Although M remains an unknown parameter,
it can be assumed for physical reasons that M is not much
higher than 10 (Bird and Kagan, 2004; Kagan and Jackson,
2013). Scenarios for specific critical infrastructure can
include high levels of confidence and long future time hori-
zons. Whatever the precise value of M is, we have to con-
clude that for such scenarios, the maximum expected
magnitude will be close to the absolute maximum magni-
tude, that is around 10.

Data and Resources

The instrumental earthquake catalog of Japan has been
provided by the Japan Meteorological Agency (JMA). The
National Oceanic and Atmospheric Administration earth-
quake catalog (684–1925) of Japan is available at http://
www.ngdc.noaa.gov (last accessed January 2014). Figure 2
was made using Generic Mapping Tools, version 4.2.1
(www.soest.hawaii.edu/gmt, last accessed January 2014;
Wessel and Smith, 1991).
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Appendix A

Derivation of the Bayesian Posterior Distribution

With the notation of Bayesian Estimation of the Maxi-
mum Magnitudes section, we derive the formula for the
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Bayesian posterior density in equation (3), as well as the ex-
pressions of the functions p1 and p2 in the integrand.

The following assumptions are used for earthquake
magnitudes: (1) The distribution of magnitudes follows the
Gutenberg–Richter law (equation 2), with a minimum mag-
nitude m0 that is smaller than the smallest earthquake in the
catalog; (2) magnitude values are exact (i.e., they have no
error); and (3) the earthquake rate at any magnitude is con-
stant with time. If Λ denotes the Poisson intensity for the
future interval of length Tf , the corresponding intensity for
the ith subcatalog is

Λi �
Λ
Tf

Ti�1 − Fβ�m�i�
0 ��; �A1�

with Fβ�m� from equation (2). For known β and Λ, the prob-
ability that the maximum magnitude μ in the future is ≤m
becomes

Pr�μ ≤ mjcatalog�

�
�Yk
i�1

Λni
i

ni!
e−Λi

�
expf−Λ�1 − Fβ�m��g

�
�Yk
i�1

�Ti�1 − Fβ�m�i�
0 ���ni

ni!

��
Λ
Tf

�
N

× exp
�
−Λ

�
1

Tf

Xk
i�1

�Ti�1 − Fβ�m�i�
0 ���

� �1 − Fβ�m��
��

; �A2�

in which the catalog is represented by the values N, Ti, and
m�i�

0 for i � i;…; k.
In the next step, we use Bayes theorem in order to

update a prior distribution p0�m; β;Λ� by means of
equation (A2) to a posterior distribution p�m; β;Λjcatalog�:

p�m; β;Λjcatalog� ∝ p�catalogjβ;Λ; m�p0�m; β;Λ�:
�A3�

Assuming factorizing priors, namely p0�m;Λ; β� �
p0�m�p0�Λ�p0�β�, and taking into account all possible
values of the unknown parameters β and Λ leads to

p�mjcatalog�

∝
Z ∞
0

dβ
Z ∞
0

dΛp�catalogjβ;Λ; m�p0�Λ�p0�β�p0�m�:

�A4�

Now, we show that the integration with respect to Λ can
be carried out analytically, if a flat prior p0�Λ� is assumed.
The likelihood p�catalogjβ;Λ; m� is essentially the deriva-

tive of equation (A2) with respect to m. For convenience,
we first integrate equation (A2) with respect to Λ:
Z ∞
0

Pr�μ ≤ m�p0�Λ�dΛ

�
� Pk

i�1 Ti�1 − Fβ�m�i�
0 ��

Tf �1 − Fβ�m�� �Pk
i�1 Ti�1 − Fβ�m�i�

0 ��

�
N�1

: �A5�

Here, we have used the relation

Z ∞
0

ΛNe−ΛdΛ � Γ�N � 1� � N!; �A6�

for the Γ− function Γ�x� � R∞
0 tx−1e−tdt. Then, the deriva-

tive of equation (A5) with respect tom is the probability den-
sity function p1 in equation (4):

p1�catalogjβ; m�
� p1�N; Ti; m

�i�
0 jβ; m�

� Tf�N � 1�fβ�m�fPk
i�1 Ti�1 − Fβ�m�i�

0 ��gN�1

fTf �1 − Fβ�m�� �Pk
i�1 Ti�1 − Fβ�m�i�

0 ��gN�2
: �A7�

Now, equation (A4) is reduced to

p�mjcatalog� ∝
Z ∞
0

dβp1�catalogjβ; m�p0�β�p0�m�:

�A8�
Finally, we focus on the function p0�β�, which is formally a
prior for β in equations (A4) and (A8). For the estimation of
β, the information provided by the catalog in terms of the
sample likelihood should be taken into account:

p0�β� ∝
Yk
i�1

�Yni
j�1

fm�i�
o
�m�i�

j �
�

with

fm�i�
o
�m� � βe−βm

e−βm
�i�
0 − e−βM

: �A9�
Although p0�β� acts as a prior distribution in equation (A8),
it is at the same time a posterior distribution of an initial es-
timation of β, arising from an update of a flat prior for β.
Therefore, p0�β� in equation (A9) is identical with
p2�βjcatalog�, or p2�βjN; ni; m

�i�
0 ; hmii�, in equation (5):

p2�βjcatalog� � p0�β�: �A10�

Combining equations (A8) and (A10), we eventually get the
Bayesian posterior distribution in equation (3).

posterior�mjcatalog�

∝
Z ∞
0

dβp1�β; catalogjm�p2�βjcatalog�p0�m�: �A11�
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Appendix B

Illustration of the Method with Synthetic Data

The method described in the Bayesian Estimation of the
Maximum Magnitudes section can be illustrated with syn-
thetic data. For this aim, we generate various synthetic earth-
quake catalogs based on a Poisson process for earthquake
times and a Gutenberg–Richter distribution of magnitudes.
The synthetic data resemble instrumental and historic seis-
micity in the following ways:

1. A 20 year synthetic instrumental catalog with magnitude
of completeness m0 � 5 is generated by randomly draw-
ing earthquake recurrence times from an exponential dis-
tribution (Poisson process) with an expected values of
100 events per year. Magnitudes are produced randomly
using an unlimited Gutenberg–Richter distribution (equa-
tion 2) with M � ∞ and b � 1. The corresponding
Richter a-value is a � 7.

2. A synthetic historic catalog with two levels of complete-
ness is generated: 1000 years with m�1�

0 � 7:0 and 100
years with m�2�

0 � 6:0. The corresponding earthquake
rates per year are

Λi � Λ
1 − Fβ�m�i�

0 �
1 − Fβ�m0�

; i � 1; 2; �B1�

in which Fβ�m� is the Gutenberg–Richter distribution
(equation 2) with b � 1.

3. We generate 1000 catalogs, each consisting of an instru-
mental and a historic subcatalog as described in items 1
and 2. First, we estimate β using the formula

β̂ � 1

hmiinst −minst
0 � Δm

; �B2�

(Marzocchi and Sandri, 2003; Zöller et al., 2010). Sec-
ond, for Tf � 50 years and various values of α∈ �0; 1�,
we calculate the mean value (averaged over 1000 cata-
logs) of the estimated magnitude hm1−αi, for which the
(1 − α)-quantile m1−α is obtained from inverting
equation (4).

4. For 1000 future catalogs with Tf � 30 years duration and
m0 � 5, the 1 − α quantile m1−α

max obs of the maximum
observed magnitude is calculated and plotted against
hm1−αi from the previous point.

The quantile plot given in Figure B1 illustrates that the
estimated values of m1−α indeed resemble the corresponding

results of Monte Carlo simulations; perfect agreement would
be given on the diagonal (dashed line).
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Figure B1. Quantile plot for synthetic seismicity: a comparison
of estimated maximum magnitude m1−α (mean value) for Tf � 50
years with results m1−α

max obs from Monte Carlo simulations. Each
point represents a value of the significance level α∈ �0; 1�.
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