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Introduction 1
1.1 Introduction to this Scientific Technical Report (STR)

In recent years a whole series of reports (STR) was published, which present a consistent theoretical
description of the individual core-mantle coupling torques. In addition to a brief summary of the derivation
of the theoretical description, the concept for the numerical determination was presented. The published
STR treated the electromagnetic (Hagedoorn & Greiner-Mai, 2008) and the topographic core-mantle
coupling (Greiner-Mai & Hagedoorn, 2008). Like in the previous STR, our aim is to derive a theoretical
description of the gravitational coupling torques acting between the solid inner core and the Earth’s
mantle in a semi-analytical form, based on spherical harmonic representation.

The presented approach is based on certain assumptions, which are explained in the following para-
graph. In Sec. 2, we present the derivation of the analytical expression for the gravitational coupling
torques and the related Cartesian components. Moreover, we illustrate the determination of the orien-
tated surface element for an arbitrary inner-core boundary (ICB) topography. For the calculation of the
gravitational coupling torque, we need also to determine the gravitational potential of the mass distri-
bution in the Earth’s interior. This problem is discussed in detail in Sec. 3. In Sec. 4 are presented a
simplified theoretical description and its application under additional assumptions as well as the estima-
tion of the gravitational coupling torques for a set of certain core-mantle boundary topographies which
deviate from elliptical shape.

1.2 Basic concept for the determination of the gravitational
coupling torque

Earth!s mantle

Outer core (OC)

Inner core (IC)

Figure 1.1: Sketch of the basic geometrical set-up
for the prescribed model structure of the
Earth. Details are given in the text.

The density structure of the Earth’s mantle de-
viates from a simple radially dependent stratifi-
cation, which causes an inhomogeneous gravita-
tional potential. The geometry of the solid inner
core is not a sphere and, therefore, the inhomoge-
neous gravitational potential of the Earth’s mantle
causes a gravitational torque onto the inner core
(IC).

The basic geometrical set-up for the descrip-
tion of the gravitational coupling torque is shown
in Fig. 1.1 . Beside the inhomogeneous den-
sity stratification in the Earth’s mantle, constant
densities for the fluid outer core (OC), ρOC, and
the solid inner core (IC), ρIC, are assumed. The
core-mantle boundary (CMB) between the Earth’s
mantle and the (outer) core, and the inner-core
boundary (ICB) between fluid and solid cores are
in principle non-regular surfaces, which deviate
from spherical or ellipsoidal surfaces. To describe
this derivation, we choose a mantle-fixed coordi-
nate system. Any relative rotation of the IC with respect to the Earth’s mantle yields to a time-dependent
ICB, SICB(Ω, t). In general, the inner core should take a position in which the gravitational torque vanishes.
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2

Any displacement of the IC out of this position yields to a torque driving the IC back to this position, which
is counter balanced by a similar torque acting on the Earth’s mantle. The widely discussed oscillation of
the inner core (see e.g. Buffett, 1996; Dumberry, 2010) is also based on this basic physical principle. In
addition to those geometrical settings, we assume for the derivations in this report that any change of
the gravity potential do not lead to a redistribution of the masses within the particular components con-
sidered (e.g. inner core), i.e. we ignore any dynamic effects caused by the self-gravitation. For a more
realistic model, any change of the gravity potential leads also to a deformation of a (visco-)elastic body. If
the actual density distribution and the shape of the related interfaces are known, the presented formulae
for the calculation of the gravitational coupling torques could be applied to compute the instantaneous
acting gravitational torque.
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Derivation of the gravitational
coupling torques 2

2.1 Basic equation for the gravitational coupling torque

In this study, we do not consider external gravitational forcing by the sun, moon or other planetary bodies.
The gravitational coupling torque then describes the torque which is caused by the attraction of the mass
of the inner core by the gravitational potential due to the mass of the Earth’s mantel and outer core. The
general integral form of the gravitational torque on the inner core is given by (e.g. Smylie et al., 1984)

L = −
∫

VIC(t)

[
r × ρIC∇φ(r)

]
dVIC(t). (2.1)

In addition, any displacement of the inner core (which deviates in general from a rotational ellipsoid)
relative to the mantle creates a pressure torque on the ICB due to the hydrostatic fluid pressure of the
outer core. The consideration of this fluid pressure torque leads for a rigid inner core to (e.g. Dumberry,
2008)

L = −
∫

VIC(t)

[
r ×

(
ρIC − ρOC

)
∇φ(r)

]
dVIC(t). (2.2)

We introduce the density difference, ρ∆ = ρIC − ρOC, because we assume a homogeneous inner-core
density ρIC and a fluid layer with homogeneous density ρOC, which surrounds the solid inner core. Here,
the integration volume, VIC(t), is time-dependent, expressed by a relative rotation of the inner core in the
chosen mantle-fixed coordinate system (see Sec. 2.3.2).

2.2 Derivativon of the surface integral of the gravitational
coupling torque

In eq. (2.2), we give the basic volumen integral expression for the gravitational coupling torque, which
reads for the described assumption of a difference density, ρ∆, as follows

L = −ρ∆

∫
VIC(t)

r ×∇φ(r) dVIC(t) ,

which can be transformed by Gauss integral theorem (e.g. Smirnow, 1964) into the surface integral

L = −ρ∆

∫
SICB(t)

r × φ(r) dSICB(t) ,

where dSICB(t) is the orientated and time dependent surface element of SICB, which is the enclosing
surface of the volume VICB(t).

For the determination of this surface integral, we follow Heuser (1993, Sec. 208) to substitute the
integration domain of the orientated surface SICB by the unit sphere, Ω. Therefore, we have to consider
the surface normal N , defined by

N(Ω, t) =
∂SICB(Ω, t)

∂ϑ
× ∂SICB(Ω, t)

∂ϕ
, (2.3)
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where the surface of the inner core is given by

SICB(Ω, t) = eraICBE(Ω, t) . (2.4)

Here, er is the unit basis vector in radial direction in spherical coordinates and the scalar function E(Ω, t)

describes the departure of the inner core from a sphere with radius aICB. For a simplified notation, we
suppress the variable t in the following derivation. In the surface integral of the gravitational coupling
torque, we can now substitute the integration domain SICB by its defining space Ω by considering eq. (2.3)

L = −ρ∆

∫
Ω

φ(r)
[
rICB(Ω)×N(Ω)

]
dϑdϕ . (2.5)

Applying the angular partial derivatives on the orientated surface SICB, which are summarized in Ap-
pendix B.1, leads to the following expression for the gravitational coupling torque

L = ρ∆aICB
3

∫
Ω

E(Ω)E(Ω)φ(Ω)
[
er ×∇ΩE(Ω)

]
dΩ . (2.6)

This way, we have reduced the problem of solving an integral over an arbitrary surface to the integration
of a product of scalar function and a vector differential operator over the unit sphere. For the further
derivation, we express all scalar field quantities by spherical harmonics and use their orthogonality to
solve the integral. This is shown in the following Sec. 2.3.

2.3 Spherical harmonic representation

2.3.1 SH representation of different field quantities

In eq. (2.6), the gravitational coupling torque is given by a surface integral over the time-dependent
ICB and the gravitational potential. The scalar function E(Ω), defined in eq. (2.4), and the gravitational
potential φ(Ω) at the ICB are represented by spherical harmonics (SH)

E(Ω) =
∑
jm

Ejm(t) Yjm(Ω) , (2.7)

φ(Ω) =
∑
jm

Φjm(t) Yjm(Ω) . (2.8)

Considering the definition of the vector spherical harmonic S
(0)
jm(Ω) given in eq. (A.18) the gravitational

coupling torque can be expressed by

L = ρ∆a3
ICB

∫
Ω

(∑
j1m1

Ej1m1
Yj1m1

(Ω)

)(∑
j2m2

Ej2m2
Yj2m2

(Ω)

)(∑
j3m3

Φj3m3
Yj3m3

(Ω)

)(∑
jm

EjmS
(0)
jm(Ω)

)
dΩ ,

(2.9)
Moreover, it is possible to combine the product of the first three coefficients and related spherical har-
monic basis functions and define a new combined coefficient, whose derivation is summarized in Ap-
pendix B.2:

Θj′m′ =
∑

j1m1j2m2
j3m3j4m4

Ej1m1
Ej2m2

Φj3m3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

(4π)2(2j′ + 1)
· Cj40

j10 j20 Cj
′0
j40 j30 Cj4m4

j1m1 j2m2
Cj
′m′

j4m4 j3m3
.

(2.10)

Here, C denotes the Clebsch-Gordan coefficients as introduced in Varshalovich et al. (1989, Sec. 8.1).
The resulting expression for the gravitational coupling torque is reduced to the integral of the product of
a scalar and vector spherical harmonic basis function:

L = ρ∆a3
ICB

∑
j′m′ jm

Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)S
(0)
jm(Ω) dΩ . (2.11)
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It is possible to solve this remaining integral analytically. For our investigation of the gravitational cou-
pling torque, it is necessary to transform this expression from the spherical coordinates into Cartesian
components of the coupling torque, which is prescribed in Sec. 2.4. Prior to this derivation, we have
to provide a relation between SH coefficient Ejm of the ICB topography in the reference state and in
another rotated state for an arbitrary new orientation.

2.3.2 Rotation of the SH representation of the ICB for arbitrary Euler angles

Figure 2.1: Illustration of the Euler angles α,
β and γ, which rotate the mantle-
fixed coordinate system CM{x, y, z} into
the inner-core-fixed coordinate system
CI{X,Y, Z}.

In eqs. (2.10)–(2.11) the time-dependent topogra-
phy of the ICB is represented by SH coefficients,
where the time-dependence is realized by a solely
rotation of the ICB topography with respect to the
mantle. This rotation is prescribed by the three
Euler angles, α(t),β(t) and γ(t), which describe
the rotation of the mantle-fixed coordinate sys-
tem, CM{x, y, z}, into the inner-core-fixed coordi-
nate system, CI{X,Y, Z}, as illustrated in Fig. 2.1.
In CI{X,Y, Z} the ICB is represented by

SICB = aS

∑
jm

EIjm Yjm(ΩI) . (2.12)

According to (Varshalovich et al., 1989, Sec. 5.5.1
Eq. (1)), we can express the SH in CI{X,Y, Z} by

Yjm(ΩI) =
∑
n

Djnm(α(t), β(t), γ(t))Yjn(ΩM) ,

(2.13)
where Yjn(ΩM) are the scalar SH defined in
the mantle-fixed coordinate system CM{x, y, z}.
Moreover, we use here the Wigner D-function,
defined by (Varshalovich et al., 1989, Sec. 4.3
eq. (1) )

Djnm(α(t), β(t), γ(t)) = e−i nα(t) djnm(β(t)) e−imγ(t). (2.14)

The explicit form for the function djnm is given by
(Varshalovich et al., 1989, Sec. 4.3 Eq. (2))

djnm(β(t)) = (−1)(j−m)
√

(j + n)! (j − n)! (j +m)! (j −m)!

·
∑
k

(−1)k
(
cos β(t)

2

)(n+m+2k) (
sin β(t)

2

)(2j−n−m−2k)

k! (j − n− k)! (j −m− k)! (n+m+ k)!
. (2.15)

The index k in the eq. (2.15) runs over all integer values for which the arguments of the four factorials
in the nominator are non-negative. For each index combination of j,m and n, there exist (N + 1) terms,
where N = min{(j +m), (j −m), (j + n), (j − n)}.

We can now express the ICB in eq. (2.12) in terms of SH defined in CM{x, y, z}, which leads to

SICB = aS

∑
jm

EIjm

∑
n

Djnm(α(t), β(t), γ(t))Yjn(ΩM) ,

SICB = aS

∑
jn

EM(t)jn Yjn(ΩM) . (2.16)
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The time-dependent SH coefficients of the ICB in the mantle-fixed coordinate system CM{x, y, z} are

EM(t)jn =
∑
m

EIjm Djnm(α(t), β(t), γ(t)) ,

EM(t)jn =
∑
m

EIjm e
−i nα(t) djnm(β(t)) e−imγ(t). (2.17)

The relation in eq. (2.17) allows us to represent the time dependency of the ICB topography in the
mantle fixed coordinate system by the Euler angles and to calculate the necessary SH coefficients
EM(t)jn, required in eqs. (2.10)–(2.11).

2.4 Cartesian components of the gravitational coupling torque

Based on the definition of the vector spherical harmonic basis function S
(0)
jm(Ω), given in eq. (A.18), and

the transformation between spherical and Cartesian coordinates, given by

eϑ = ex cosϑ cosϕ+ ey cosϑ sinϕ− ez sinϑ, (2.18)

eϕ = −ex sinϕ+ ey cosϕ, (2.19)

we can derive the Cartesian components of the gravitational coupling torque according to eq. (2.11):

Lx = ρ∆a3
ICB

∑
j′m′ jm

Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)

[
− sinϕ

∂

∂ϑ
Yjm(Ω)− cosϕ cotϑ

∂

∂ϕ
Yjm(Ω)

]
dΩ , (2.20)

Ly = ρ∆a3
ICB

∑
j′m′ jm

Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)

[
cosϕ

∂

∂ϑ
Yjm(Ω)− sinϕ cotϑ

∂

∂ϕ
Yjm(Ω)

]
dΩ , (2.21)

Lz = ρ∆a3
ICB

∑
j′m′ jm

Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)
∂

∂ϕ
Yjm(Ω) dΩ . (2.22)

More details of the derivation are given in Appendix B.3. The further derivation is split into the axial (z)
and the equatorial components, summarized in the following sub-sections.

2.4.1 Axial component of the gravitational coupling torque

Considering the partial derivative with respect of ϕ in eq. (2.22), which is given in eq. (A.13), leads to
the expression

Lz = i ρ∆aICB
3
∑

j′m′ jm

mΘj′m′ Ejm

∫
Ω

Yj′m′(Ω)Yjm(Ω) dΩ .

We apply now the relation between spherical harmonics and its complex conjugate, as given in eq. (A.7),
and the relation for the coefficients, which allow us to solve the surface integral by the orthonormality
condition (A.6). We find the analytical expression for the axial component of the gravitational coupling
torque

Lz = −i ρ∆aICB
3
∑
jm

mΘjmE
∗
jm . (2.23)

The superscript ∗ denotes the complex conjugate of the related quantity (see eq. (A.7) in Appendix A.1).

2.4.2 Equatorial components of the gravitational coupling torque

In the theoretical description of the variation of the Earth’s rotation, it is common to combine the non-axial
components, the Cartesian x- and y-component by the following complex quantity:

L = Lx + i Ly . (2.24)
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According to this rule, we combine eqs. (2.20) and (2.21) to

L = −ρ∆aICB
3
∑

j′m′ jm

Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)

[(
sinϕ− i cosϕ

) ∂
∂ϑ
Yjm(Ω)

+
(
cosϕ+ i sinϕ

)
cotϑ

∂

∂ϕ
Yjm(Ω)

]
dΩ

For further simplification of this expression, we transform the complex combination of trigonometric
functions into exponential functions according to

ei ϕ = cosϕ+ i sinϕ , (2.25)

−i ei ϕ = sinϕ− i cosϕ , (2.26)

which leads to

L = −ρ∆aICB
3
∑

j′m′ jm

Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)

[
−i ei ϕ ∂

∂ϑ
Yjm(Ω) + ei ϕ cotϑ

∂

∂ϕ
Yjm(Ω)

]
dΩ . (2.27)

Applying the relations for partial derivatives of spherical harmonics in eqs. (A.13)–(A.14) and the com-
bination with cotϑ in eq. (A.15) leads after some algebraic transformations, which are summarized in
Appendix B.4, to the expression

L = i ρ∆aICB
3
∑

j′m′ jm

√
j(j + 1)−m(m+ 1) Θj′m′ Ejm

∫
Ω

Yj′m′(Ω)Yj(m+1)(Ω) dΩ . (2.28)

The surface integral can again solved analytically with help of the orthonormality condition (A.6). In
addition, the relation for complex conjugate spherical harmonics in eq. (A.7) is considered and the final
expression reads:

L = −i ρ∆aICB
3
∑
jm

√
j(j + 1)−m(m+ 1) ΘjmE

∗
j(m+1) . (2.29)

2.4.3 Uniform coupling coefficient

The expressions for the axial and equatorial coupling torques given by eqs. (2.23) and (2.29) combine
the product coefficients Θjm (see eq. (2.10) and Sec. ??) with coefficients of the ICB Ejm. The idea
for the following derivation is based on a simplification for the implementation by the construction of
a uniform coupling coefficient for both coupling torque expressions. For this purpose, we split up the
coefficient Θjm again according to eq. (2.10) and define the coupling coefficient:

Γjmj1m1j2m2j3m3
=

j′max∑
j′=0

j′∑
m′=−j′

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

(4π)2(2j + 1)
Cj
′0
j10 j20 Cj0j′0 j30 Cj

′m′

j1m1 j2m2
Cjmj′m′ j3m3

. (2.30)

With this coupling coefficient, we can reformulate the eqs. (2.29) and (2.23) into

L = −i ρ∆aICB
3

∑
jm ∀j 6=m

j1m1j2m2j3m3

√
j(j + 1)−m(m+ 1) Ej1m1

Ej2m2
Φj3m3

E∗j(m+1) Γ
jm
j1m1j2m2j3m3

, (2.31)

Lz = −i ρ∆aICB
3

∑
jm ∀m6=0

j1m1j2m2j3m3

mEj1m1
Ej2m2

Φj3m3
E∗jm Γjmj1m1j2m2j3m3

. (2.32)

This expressions enable us to implement the gravitational coupling torque for the same coupling coeffi-
cients in the equatorial and axial components. Moreover, if the inner core rotates relative to the mantle
the coefficients of its surface, Ejm, and the gravitational potential, represented by Φjm, are time depen-
dent, but not the uniform coupling coefficients Γ. Therefore, the uniform coupling coefficients can be
calculated by eq. (2.30) once and can be used for the calculation of the whole time series.
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Internal gravitational potential 3
3.1 Geometrical settings for the determination of the gravitational

potential at the inner-core boundary

CMB

Inner Core

ICB

an

an-1

Bi

Bn

Figure 3.1: Geometrical settings for the determina-
tion of the internal gravitational potential
at the ICB. For further details, we refer
to the text.

A layered density structure is assumed to de-
rive the internal gravitational potential. Between
certain boundaries, the layer Bn has a constant
volume mass density, ρn = const. These sur-
faces reflect the depth-dependent hydrostatical
flattening, i.e. the degree-two SH coefficient is
determined by the flattening, but all other SH
coefficients are arbitrary. There exist two spe-
cial boundary surfaces, the core-mantle boundary
(CMB) and the inner-core boundary (ICB), which
are physical boundaries in the Earth. The largest
density jump in the Earth is located at the CMB
of about 4400 kg m−3. Moreover, the outer core is
fluid, whereas the Earth’s mantle is assumed here
to be solid. The related density jump from the liq-
uid outer core to the solid inner core at the ICB is
much smaller (about 600 kg m−3). In Fig. 3.1, this
geometrical settings are illustrated by introducing
such boundary surfaces ∂ Bn between layers of
constant density. For the determination of the in-
ternal gravitational potential, we use a similar SH representation of these boundaries as given for the
ICB in eq. (2.12)

∂ Bn(r,Ω) = an
∑
jm

Bjm(an) Yjm(Ω) , (3.1)

where an is the reference radius of the related boundary. The related SH coefficients of this representa-
tion are denoted by Bjm(an).

3.2 Internal gravitational potential for layers of constant density

The gravitational potential φ(P ) at the point P is given by

φ(P ) = −G
∫
B

K(P, P ′) ρ(P ′) dV ′ , (3.2)

where G denotes the gravitational constant and ρ(P ′) is the density at the integration point P ′. The
integration kernel, K(P, P ′), which is the reciprocal of the distance between P and P ′, is expressed by
SH base functions differently for r > r′ and r < r′. For the further derivation, we split the integration
volume B into two domains, where Bi is the volume of the inner core and Bo is the remaining volume
without the dividing ICB, which reads

B = Bi ∪ ∂ BICB ∪Bo . (3.3)
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We choose such a splitting of the integration volume, because we want to determine the gravitational
potential at the ICB and for any point P of the ICB we find

P ∈ ∂ BICB ⇒ P /∈ Bi ∧ P /∈ Bo . (3.4)

Moreover, for the integration point P ′ we find the relations

P ′ ∈ Bi ⇒ r′ < r , (3.5)

P ′ ∈ Bo ⇒ r′ > r . (3.6)

For the kernel, we find for each of the domains a different representation by SH base functions (e.g.
Arfken, 1985, eqs. 12.207 ff):

K(P, P ′) =
1

r

∞∑
j=0

(
r′

r

)j
4π

2j + 1

j∑
m=−j

Y ∗jm(Ω′)Yjm(Ω) ∀ P ′ ∈ Bi , (3.7)

K(P, P ′) =
1

r′

∞∑
j=0

(
r′

r

)j
4π

2j + 1

j∑
m=−j

Y ∗jm(Ω′)Yjm(Ω) ∀ P ′ ∈ Bo . (3.8)

For each of the domains, we determine the contribution to the gravitational potential

φ(P ) = φi(P ) + φo(P ) , (3.9)

and represent this contributions by SH basis functions and related coefficients according to

φi(P ) = −G
r

∑
jm

(
aICB

r

)j
Ai
jmYjm(Ω) ∀ P ′ ∈ Bi , (3.10)

φo(P ) = −G
∑
jm

(
r

aICB

)j
Ao
jmYjm(Ω) ∀ P ′ ∈ Bo . (3.11)

In the following subsections, we present the derivation for the determination of the coefficients Ai
jm and

Ao
jm.

3.2.1 Contribution from below the ICB

The contribution from the mass distribution in Bi, i.e. below the ICB, to the gravitational potential is
prescribed by eq. (3.10), which defines also the SH coefficient Ai

jm by

Ai
jm =

4π

2j + 1
a−jICB

∫
Bi

r′jρ(P ′)Y ∗jm(Ω′) dV ′ . (3.12)

We reformulate this expression in spherical coordinates and introduce the following substitution for the
angular-depending radial distance r′,

r′ = rICB(Ω′)x , dr′ = rICB(Ω′)dx , (3.13)

which leads to

Ai
jm =

4π

2j + 1
a−jICB

∫
Ω

rj+3
ICB (Ω′)Y ∗jm(Ω′)

1∫
x=0

ρ(x,Ω′)xj+2 dxdΩ′ . (3.14)

Furthermore, we assume a constant density for the whole inner core, i.e. ρ(x,Ω′) = ρICB = const. Hence,
the integral over x can be solved analytically:

Ai
jm =

4π

2j + 1
a−jICB

∫
Ω

rj+3
ICB (Ω′)Y ∗jm(Ω′) ρICB

[
1

j + 3
xj+3

]1

0

dΩ′ . (3.15)
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This equation shows that we need an expression for a power of rICB for the further evaluation. Similarly
to eq. (3.1), the ICB is represented by

rICB(Ω) = aICB

∑
jm

Ejm Yjm(Ω) . (3.16)

Based on this representation, we derive an approximation of the p th power of the radial distance by

rpICB(Ω) ≈ apICB

∑
jm

E
〈p〉
jm Yjm(Ω) , (3.17)

where the related SH coefficients E〈p〉jm are defined in Sec. 3.3. For the integral in eq. (3.15), we find by
applying the condition of orthonormal SH basis functions (A.6)

Ai
jm =

4π

(2j + 1)(j + 3)
a3

ICB ρICB E
〈j+3〉
jm . (3.18)

The gravitational potential φ has to be expressed by SH for the determination of the gravitational coupling
torques in eqs. (2.31) and (2.32). Therefore, we have to express also the contribution φi by SH coeffi-
cients and to take into account that the potential must be determined on the ICB, i.e. for all P ∈ ∂ Bicb.
According to eqs. (3.10) and (3.18), we find

φi(rICB,Ω) = −G
∑
jm

ajICB

(
aICB

∑
j′m′

Ej′m′ Yj′m′(Ω)

)−(j+1)

Ai
jm Yjm(Ω) ,

which transforms with eq. (3.17) to

φi(rICB,Ω) = − G

aICB

∑
j1m1j2m2

Ai
j1m1

E
〈−(j1+1)〉
j2m2

Yj1m1
(Ω)Yj2m2

(Ω) . (3.19)

The related SH coefficients of the potential φi at the ICB are determined by

Φi
jm = − G

aICB

∑
j1m1j2m2

Ai
j1m1

E
〈−(j1+1)〉
j2m2

∫
Ω

Yj1m1
(Ω)Yj2m2

(Ω)Y ∗jm(Ω) dΩ .

The surface integral has an analytical solution in terms of Clebsh-Gordan coefficients, as given in Var-
shalovich et al. (1989, see 5.9.1) and applying those leads to

Φi
jm = − G

aICB

∑
j1m1j2m2

Ai
j1m1

E
〈−(j1+1)〉
j2m2

√
(2j1 + 1)(2j2 + 1)

4π(2j + 1)
Cj0j10j20 Cjmj1m1j2m2

. (3.20)

3.2.2 Contribution from above the ICB

The contribution from the mass distribution in Bo, i.e. above the ICB, to the gravitational potential is given
in eq. (3.11), which defines also the SH coefficients Ao

jm by

Ao
jm =

4π

2j + 1
ajICB

∫
Bo

r′−(j+1) ρ(P ′)Y ∗jm(Ω′)dV ′ . (3.21)

For the further derivation, we split the volume Bo into N sub-domains with constant densities ρn in each
of the concentric layered domains, as illustrated in Fig. 3.1. The expression for the coefficients Ao

jm

reads then

Ao
jm =

4π

2j + 1
ajICB

N∑
n=1

ρn

∫
Ω

rn(Ω′)∫
rn−1(Ω′)

r′−(j−1)(Ω′)Y ∗jm(Ω′) dr′dΩ′ .
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To solve the integral in the equation above, we introduce the following substitution for the angular de-
pending radial distance r′

r′(Ω′) = (rn − rn−1)x+ rn−1 , dr′ = (rn − rn−1)dx . (3.22)

Applying this substitution for the radial distance leads to

Ao
jm =

4π

2j + 1
ajICB

N∑
n=1

ρn

∫
Ω

1∫
0

[
(rn − rn−1)x+ rn−1

]−(j−1)
(rn − rn−1) dxY ∗jm(Ω′) dΩ′ . (3.23)

The different solutions of the x-depending integral in eq. (3.23) are j-dependent. Therefore, we define

Ao
jm =

4π

2j + 1
ajICB

N∑
n=1

ρn Ij ,

with

Ij =

∫
Ω

1∫
0

[
(rn − rn−1)x+ rn−1

]−(j−1)
(rn − rn−1) dxY ∗jm(Ω′) dΩ′ . (3.24)

For j = 0 we find the solution (details are given in Appendix C)

I0 =
1

2

∫
Ω

[
r2
n − r2

n−1

]
Y ∗00(Ω′) dΩ′ .

The radial distances rn are angular depending and belong to the boundaries between constant densities
rn ∈ ∂Bn. Its SH representation reads according to eq. (3.1)

rn(Ω) = an
∑
jm

Bjm(an)Yjm(Ω) . (3.25)

Analogous to eq. (3.17), we approximate the p th power of rn by

rpn(Ω) = apn
∑
jm

B
〈p〉
jm(an)Yjm(Ω) , (3.26)

where the related SH coefficients B〈p〉jm are defined in Sec. 3.3. For I0, we find by applying the condition
of orthonormal SH base functions (A.6)

I0 =
1

2

[
a2
nB
〈2〉
00 (an)− a2

n−1B
〈2〉
00 (an−1)

]
.

With the last expression for I0, the zero-degree coefficient reads

Ao
00 = 2π

N∑
n=1

ρn
[
a2
nB
〈2〉
00 (an)− a2

n−1B
〈2〉
00 (an−1)

]
. (3.27)

For j = 1, the integral I1 has the analytical solution

I1 =
[
anB1m(an)− an−1B1m(an−1)

]
,

which yields

Ao
1m =

4π

3
aICB

N∑
n=1

ρn
[
anB1m(an)− an−1B1m(an−1)

]
. (3.28)
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For the case j = 2, an analytical solution for I2 can not be derived, but an approximate solution,
accurate upon the fourth-order of the flattening of the Earth. The related derivation of the approximate
solution is summarized in Appendix C. We find for I2 (see eq. (C.9))

I2 ≈
4∑
p=1

(−1)p+1

p

[(
1

B00(an)Y00

)p
B
〈p〉
2m(an)−

(
1

B00(an−1)Y00

)p
B
〈p〉
2m(an−1)

]
.

The degree-two coefficient of the gravitational potential due to the mass distribution in Bo reads then

Ao
2m =

4π

5
a2

ICB

N∑
n=1

ρn

4∑
p=1

(−1)p+1

p

[(
1

B00(an)Y00

)p
B
〈p〉
2m(an)−

(
1

B00(an−1)Y00

)p
B
〈p〉
2m(an−1)

]
. (3.29)

For all j ≥ 3, we can find an analytical solution again for Ij . In Appendix C the derivation is summa-
rized, which leads to eq. (C.10), which reads

Ij = − 1

j − 2

[
a−(j−2)
n B

〈−(j−2)〉
jm (an)− a−(j−2)

n−1 B
〈−(j−2)〉
jm (an−1)

]
.

Using this analytical expression of Ij for j ≥ 3, the related SH coefficients reads

Ao
jm = − 4π

(2j + 1)(j − 2)
ajICB

N∑
n=1

ρn
[
a−(j−2)
n B

〈−(j−2)〉
jm (an)− a−(j−2)

n−1 B
〈−(j−2)〉
jm (an−1)

]
. (3.30)

Based on eq. (3.11), we can calculate the gravitational potential, φo, due to the mass distribution in
Bo on the ICB for the prescribed geometrical settings. Analogously to eq. (3.20), we derive now the SH
coefficient of φo considering the SH representation of the ICB, which is given in eq. (3.16)

φo(ricb,Ω) = −G
∑
jm

a−jICB

(
aICB

∑
j′m′

Ej′m′ Yj′m′(Ω)

)j
Ao
jmYjm(Ω) ,

and the p-th power of the radial distance, given in eq. (3.17), which leads to

φo(ricb,Ω) = −G
∑

j1m1j2m2

Ao
j1m1

E
〈j1〉
j2m2

Yj1m1(Ω)Yj2m2(Ω) . (3.31)

The SH coefficients of φo on the ICB are determined by

Φo
jm = −G

∑
j1m1j2m2

Ao
j1m1

E
〈j1〉
j2m2

∫
Ω

Yj1m1(Ω)Yj2m2(Ω)Y ∗jm(Ω) dΩ .

We consider here again Varshalovich et al. (1989, eq. (4) §5.9.1), and find a solution in terms of Clebsh-
Gordan coefficients

Φo
jm = −G

∑
j1m1j2m2

Ao
j1m1

E
〈j1〉
j2m2

√
(2j1 + 1)(2j2 + 1)

4π(2j + 1)
Cj0j10j20 Cjmj1m1j2m2

. (3.32)

3.2.3 Combined SH coefficients of the gravitational potential

The summation of the contributions of the gravitational potential from mass distributions below and above
the ICB, as it is expressed in eq. (3.9), leads to the combined SH coefficient based on Ai

jm in eq. (3.18),
Ao
jm in eqs. (3.27)–(3.30), and E〈p〉jm in eq. (3.17),

Φjm = −G
∑

j1m1j2m2

[
1

aICB

Ai
j1m1

E
〈−(j1+1)〉
j2m2

+Ao
j1m1

E
〈j1〉
j2m2

]√
(2j1 + 1)(2j2 + 1)

4π(2j + 1)
Cj0j10j20 Cjmj1m1j2m2

.

(3.33)

By eq. (3.33), the SH coefficients of the gravitational potential on the ICB are determined, which are
required in eqs. (2.31)–(2.32) for the calculation of the gravitational coupling torque components.
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3.3 Determination of the p-th power of the radial distance

To determine the p-th power of the radial distance by the coefficients B〈p〉jm given in eq. (3.25) and re-
peated here

rpn(Ω) = apn
∑
jm

B
〈p〉
jm(an)Yjm(Ω) ,

we follow here the idea of Pěč & Martinec (1984). Therein, the approximation of the coefficients B〈p〉jm up
to the fourth order of the flattening is given in detail. We have summarized the ideas and basic steps
of the derivation in the Appendix D. An application for the gravitational potential of an irregular shaped
body is presented by Pěč & Martinec (1988). We follow the notation therein and introduce

Qjm
j1m1j2m2

=

√
(2j1 + 1)(2j2 + 1)

4π(2j + 1)
Cjmj10j20 Cjmj1m1j2m2

, (3.34)

which realises the expansion of the product of two scalar spherical harmonics

Yj1m1(Ω)Yj2m2(Ω) =
∑
jm

Qjm
j1m1j2m2

Yjm(Ω) , (3.35)

where C denotes the Clebsh-Gordan coefficient as defined in Varshalovich et al. (1989, Sec. 8.1). Based
on such combination of Clebsh-Gordan coefficients, B〈p〉jm can be approximated in terms of Bjm retaining
the terms of the order of magnitude α4, where α is the flattening at the radial distance. The approximation
then reads

B
〈p〉
jm(an) ≈

(
B00√

4π

)p[
B0 +

(
p

1

)
B1 +

(
p

2

)
B2 +

(
p

3

)
B3 +

(
p

4

)
B4

]
, (3.36)

The terms Bi are defined by

B0 =

{√
4π for j = 0

0 for j 6= 0
, (3.37)

B1 =


0 for j = 0√

4π

B00
Bjm for j 6= 0

, (3.38)

B2 =

(√
4π

B00

)2 ∑
j1m1j2m2
j1,j2≥1

Bj1m1
Bj2m2

Qjm
j1m1j2m2

(3.39)

B3 =

(√
4π

B00

)3[
B3

20

∑
j1≥1

Qj10
2020Qjm

j1020 + 3B2
20

∑
j1j2m2
j1,j2≥1
j2 6=2

Bj2m2
Qj10

2020Qjm
j10j2m2

]
, (3.40)

B4 =

(√
4π

B00

)4

B4
20

∑
j1j2

Qj10
2020Qj20

j1020Qjm
j2020 . (3.41)

In eq. (3.36) the parentheses in front of the B-coefficients denote binomial coefficients. The eqs. (3.36)–
(3.41) can be implemented into numerical code to approximate the p-th power of the radial distance for
any integer p.
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3.4 Internal gravity potential

In the gravitational coupling torque the acting potential φ is the gravity potential. Therefore, we have to
consider beside the gravitational potential also the centrifugal potential at the ICB, where this torque is
determined. We chose a similar SH representation as for the gravitational potential in eq. (2.8), given by

ψ(r) =
∑
jm

Ψjm(r)Yjm(Ω) . (3.42)

We neglect the time dependency of the centrifugal potential, because its time depending increment is at
least six orders of magnitude smaller as the first order contribution. The centrifugal potential is given by
(e.g. Kertz, 1995, eq. (6.11)),

ψ(r) = −1

2
ω2

0 r
2 sin2 ϑ , (3.43)

which can be expressed by SH basis functions, as defined in eq. (A.1):

ψ(r) = −ω2
0 r

2

√
4π

9

(
Y00(Ω)− 1√

5
Y20(Ω)

)
. (3.44)

A comparison of both expressions for the centrifugal potential leads to the following SH coefficients,
according to eq. (3.42)

Ψ00(r) = −2

3

√
πω2

0 r
2 , (3.45)

Ψ20(r) =
2

3

√
π

5
ω2

0 r
2 . (3.46)

These two SH coefficients are the only non-zero ones, which have to be added to the related degree
and orders SH coefficients of the gravitational potential to achieve the gravity potential.

In Martinec & Hagedoorn (2005, eqs. (94)–(95)) the Eulerian increment of the centrifugal potential is
given in dependency of the vector of the variation of the Earth’s rotation, m. The degree zero and two
related SH coefficients read

ΨE
00(r, t) = −4

3

√
πω2

0 r
2m3(t) , (3.47)

ΨE
20(r, t) =

4

3

√
π

5
ω2

0 r
2m3(t) . (3.48)

The Eulerian increments differ from the related SH coefficients of the centrifugal potential by the factor
2m3(t), where O(m3(t)) = 10−7, which supports neglecting these contributions, due to the difference to
the related coefficients of at least six orders of magnitude.
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Examples of gravitational
coupling torques 4

4.1 Simplified example for misaligned ellipsoid

In this section, we derive an analytical expression for the gravitational coupling torque for simplified
geometrical settings. The basic assumption for the geometrical setting is the ellipsoidal shape of all
boundaries within the Earth with the same origin and a depth-dependent flattening. The density is also
depth-dependent and the surfaces of same density are given by the introduced ellipsoids.

Z

X

!

!
N

Y

Figure 4.1: Simplified geometrical settings for the
approximative description of the gravita-
tional coupling torque in dependency of
the angles of misalignment α and β as
indicated in the sketch.

The basic idea is to use an approximation for
the expression of the normal vector on the ellipti-
cal ICB (similar to Sec. 2.1 Greiner-Mai & Hage-
doorn, 2008), where the ICB can be described by
the following expression

rICB = er
[
aICB + Ẽ(Ω)

]
. (4.1)

Herein, Ẽ denotes the deviation from a sphere
with the radius aICB. The normal on this sur-
face can by approximated by (see Greiner-Mai
& Hagedoorn, 2008, eqs. (2.4)–(2.10))

nICB ≈ er −
1

aICB

∇Ω Ẽ(Ω) . (4.2)

These approximations of the ICB surface and the
normal vector are given with respect to the unit
sphere Ω. Thus, the gravitational coupling torque
can be prescribed by a surface integral over the
sphere Ω, which is derived from eq. (2.5):

L ∼= −ρ∆

∫
Ω

rICB × nφ(Ω) aICB
2 dΩ . (4.3)

Performing the vector product in eq. (4.3) and considering eqs. (4.1) and (4.2) yields

L ∼= ρ∆ aICB
2

[∫
Ω

(
er ×∇Ω Ẽ(Ω)

)
φ(Ω) dΩ +

1

aICB

∫
Ω

Ẽ(Ω)

(
er ×∇Ω Ẽ(Ω)

)
φ(Ω) dΩ

]
. (4.4)

The second term is at least two orders of magnitude smaller (∼ Ẽ/aICB) then the fist one, considering
the approximation in eq. (4.2). Therefore, we derive here an estimation for the first term and neglect the
second term. Moreover, we introduce the SH of Ẽ and φ by

Ẽ(Ω) =
∑
jm

Ẽjm Yjm(Ω) , (4.5)

φ(Ω) =
∑
jm

Φjm Yjm(Ω) . (4.6)

We introduce now the Cartesian components of L according to eqs. (2.18) and (2.19), which are given
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by

Lx ∼= ρ∆ aICB
2

∫
Ω

∑
jmkl

ẼjmΦkl

[
− sinϕ

∂

∂ϑ
Yjm(Ω)− 1

sinϑ
cosϑ cosϕYjm(Ω)

]
Ykl(Ω)dΩ , (4.7)

Ly ∼= ρ∆ aICB
2

∫
Ω

∑
jmkl

ẼjmΦkl

[
cosϕ

∂

∂ϑ
Yjm(Ω)− 1

sinϑ
cosϑ sinϕ

∂

∂ϕ
Yjm(Ω)

]
Ykl(Ω)dΩ , (4.8)

Lz ∼= ρ∆ aICB
2

∫
Ω

∑
jmkl

ẼjmΦkl sinϑ
1

sinϑ

∂

∂ϕ
Yjm(Ω)Ykl(Ω) dΩ . (4.9)

Analogous to the derivation in Sec. 2.4.2, we use the complex combination of the equatorial compo-
nents, L (see eq. (2.24)), of the coupling torque, expressed by

L ∼= ρ∆ aICB
2
∑
jmkl

ẼjmΦkl

∫
Ω

ei ϕ
[
i
∂

∂ϑ
Yjm(Ω)− cotϑ

∂

∂ϕ
Yjm(Ω)

]
Ykl(Ω) dΩ . (4.10)

We apply now the partial derivatives on the SH basis functions according to eqs. (A.13)–(A.14) and
consider the expression (A.15) for cotϑYjm(Ω). Furthermore, the orthogonality of the SH basis functions
in eq. (A.6) and the relation for the complex conjugate of SH coefficients are taken into account. We
obtain

L ∼= i ρ∆ aICB
2
∑
jm

√
j(j + 1)−m(m+ 1) ẼjmΦ∗j(m+1) . (4.11)

Applying the orthogonality condition (A.6) on eq. (4.9) leads to the following form for the z-component of
the coupling torque:

Lz ∼= i ρ∆ aICB
2
∑
jm

mẼjmΦ∗jm . (4.12)

To derive simplified expressions for the gravitational coupling torques, we have now to determine the
SH coefficients of the gravitational potential at the ICB and the ICB itself in a mantle-fixed coordinate
system. For the assumed geometrical case and ellipsoidal surfaces of constant density, their exist only
two non-zero SH coefficients Φ00 and Φ20, which are computed numerically according to eq. (3.33). In
the reference state of an aligned inner core to the mantle equatorial plane (labeled by REF), the ICB is
described by the following two coefficients

ẼREF
00 =

√
4π

9
aICB ε

2 and ẼREF
20 = −

√
4π

45
aICB ε

2 . (4.13)

A detailed derivation of these expression is given in Greiner-Mai & Hagedoorn (2008, Sec. 3). Therein
is also defined ε2 = (b2 − aICB

2)/b2, where b = (1 + f)aICB is valid for a given flattening f .
Taking into account that only Φ00 and Φ20 differ from zero, we find that Ẽ2−1Φ∗20 is the only combi-

nation which contributes to the equatorial coupling torque given in eq. (4.11). Therefore, we need to
express Ẽ2−1(α, β) by the related coefficients of the reference state. According to eq. (2.17), we find

Ẽ21(α, β) = e−i αd2
10(β(t)) ẼREF

20 ,

which leads with eq. (2.15) to

Ẽ21(α, β) = e−i α
√

6

[
cos

(
β

2

)
sin

(
β

2

)(
sin2

(
β

2

)
− cos2

(
β

2

))]
ẼREF

20 ,

Ẽ21(α, β) = −e−i α
√

3

2

[
2 cos

(
β

2

)
sin

(
β

2

)(
cos2

(
β

2

)
− sin2

(
β

2

))]
ẼREF

20 ,

Ẽ21(α, β) = −e−i α
√

3

2
sin(β) cos(β) ẼREF

20 , (4.14)
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where α and beta are Euler angles as illustrated in Fig. 4.1. Herein, we have considered the following
relations (e.g. Bronstein et al., 1997, eqs. (2.97) & (2.99))

sin(2β) = 2 sin(β) cos(β) , (4.15)

cos(2β) = cos2(β)− sin2(β) . (4.16)

Moreover, we have to consider that Ẽ2−1 = −Ẽ∗21, which leads to the equatorial coupling torque

L(α, β) ∼= 3 ρ∆ aICB
2
(
i cos(α)− sin(α)

)
sin(β) cos(β) ẼREF

20 Φ20 . (4.17)

The individual Cartesian components read

Lx(α, β) ∼= −Γ sin(α) sin(β) cos(β) , (4.18)

Ly(α, β) ∼= Γ cos(α) sin(β) cos(β) , (4.19)

where Γ considering eq. (4.13) is given by

Γ = 3 ρ∆ aICB
2ẼREF

20 Φ20 ,

Γ = −2 ρ∆ aICB
3

√
π

5
ε2Φ20 . (4.20)

The determination of the gravitational coupling torques for the simplified geometrical settings allow us
also to derive inverse expressions. For the further assumption of small misalignment angle β � 1 it
follows that sinβ ≈ β, which leads to

α ≈ arctan

(
−Lx
Ly

)
, (4.21)

β ≈ arcsin

(
−Lx

Γ

1

sinα

)
. (4.22)

For given equatorial coupling torque components, eqs. (4.21) and (4.22) give estimations for the nec-
essary misalignment of an elliptical inner core out of the equatorial plan of the mantle, to produce such
torques. For PREM density profiles (Dziewonski & Anderson, 1981) and the related values of the hydro-
static flattening the numerical value of the coupling coefficient is approximately

Γ ∼= −1.09892 1023 Nm . (4.23)

4.2 Consideration of CMB topography models

The theoretical description in the Sec. 3 allows us to determine the gravity potential on the ICB consid-
ering an arbitrary CMB topography. To illustrate the effect of a CMB topography which deviate from a
hydrostatic ellipsoid, we determine for two published CMB topography models the gravity potential on
the ICB. Moreover, we compare the equatorial gravitational coupling torques for an elliptical structure
with those for the prescribed CMB topographies.

4.2.1 Gravitational potential at the ICB

The both chosen examples of CMB topography models published in the last decades are based on
seismic wave travel-time differences between different core phases. The model of Morelli & Dziewonski
(1987) is denoted with M and the model of Tanaka (2010) is labeled with T. For further details of the
estimation of the individual models of the CMB topography we refer to the cited publications. The SH
representation of the CMB models are truncated at degree and order four and are reduced by the
degree one term (no shift of the whole CMB with respect to the mass center of the Earth is allowed).
The resulting spatial distribution of the CMB topography with respect to the hydrostatic ellipsoid are
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(a) Morelli & Dziewonski (1987) CMB topography M

−5

−4

−4

−3

−3

−3

−3

−2

−2

−2

−2

−1

−1
−1

−1

−1

0
0

0

0
1

1

1
1

1

2

2

3

3

3

4

4

5

5

6

−4 −2 0 2 4

CMB topography (km)

(b) Tanaka (2010) CMB topography T
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Figure 4.2: For comparison is shown the deviation from the hydrostatic ellipsoid of the CMB topography.
(a) model M (Morelli & Dziewonski, 1987), (b) model T (Tanaka, 2010).
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Figure 4.3: For comparison is shown the deviation of the gravity potential on an elliptical ICB for a model
with ellipsoidal CMB from (a) a model with CMB topography M and (b) from a model with
CMB topography T, which are presented in Fig. 4.2

compared in Fig. 4.2. The model M shows peak-to-peak variations of up to 10 km, whereas the model
T varies between −1 km and 1.5 km. A possible explanation of such different CMB topographies are
the different data basis for the individual computations, due to the enlarged number of seismic events
throughout the years, the pre-processing and/or improved data selection.

The dominant spatial pattern of the gravity potential on the ICB is produced by the depth-depending
flattening of the surfaces of equal density and the centrifugal potential. To highlight the influence of
the chosen CMB topography model, we compute the gravity potential on the elliptical ICB according to
eq. (3.33) for the individual CMB models and subtract in the spatial domain the related gravity potential
of an Earth model with purely elliptical surfaces of equal density. Fig. 4.3 shows those differences in
the gravity potential on the ICB considering the CMB topography models M and T, respectively. The
presented differences in the gravity potential for the CMB model M are one order of magnitude larger
than the differences for the CMB model T. Also the spatial pattern show no similarities, even both models
are truncated at degree and order four. For the further discussion we have to recall that the absolute
value of the gravity potential on the ICB is in the order of 108 m2s−2, which leads us to the conclusion,
that the CMB topography has only an very minor influence on the gravity potential on the ICB.
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Figure 4.4: Equatorial coupling torques for a model with elliptical equal-density surfaces. Contour lines
are plotted for every 5 · 1018 Nm.

4.2.2 Gravitational coupling torques for elliptical ICB

The equatorial gravitational coupling torques are calculated according to eq. (2.31) for α ∈ [0◦; 360◦] and
β ∈ [−60 arcsec; +60 arcsec] (’arcsec’ denotes arc-seconds), whereas the ICB topography coefficients
are computed using eq. (2.17) and the related gravity potential at the ICB is determined by eqs. (3.33)
and (3.45)–(3.46). Fig. 4.4 shows the equatorial coupling torque components Lx and Ly for the different
inner core misalignment, whereas β prescribes the tilt of the ellipsoidal inner core with respect to the
equatorial plane and α prescribes the direction of the tilt projected onto the equatorial plane with respect
to the zero-meridian (see Fig. 4.1). Both equatorial torque components are in the order of 1019 Nm.
For the first calculation, it is assumed that all boundaries between layers of equal-density have elliptical
shape. Due to this assumption there is no γ-dependency (see eq. (2.17)). The zero-contour line of
the other equatorial torque component is drawn in green to highlight the positions (α, β), for which both
components vanish. For β = 0 arcsec both equatorial components vanish for any α, i.e. it does not
exist a specific torque-free (α, β) combination. In Fig. 4.4, the basic pattern of the components of the
gravitational torque reflect the combination of trigonometric functions, as illustrated in the approximate
solution of the equatorial components in eqs. (4.18)–(4.19).

We perform additional calculations of the equatorial torque components considering the CMB models
M and T introduced in Sec. 4.2.1. Fig. 4.5 compares the resulting Lx and Ly for the same interval of
misalignment angles as in Fig. 4.4. The amplitudes of the equatorial coupling torques are all in the same
order of magnitude for the different CMB models. The overlay (green dashed lines) of the zero-contour
of the other component highlights specific (α, β) combinations, for which Lx = Ly = 0 Nm. Those
differ from each other for model M and T. In contrast to the elliptical CMB model both components do
not vanish for any α and β = 0 arcsec. This is caused by the asymmetric gravity potential (Fig. 4.3)
due to the asymmetric CMB topography models M and T. As a consequence, the inner core would
rotate into such a position, which would not cause any torque, if no other forces act on it. Therefore, a
specific reference position exist for each CMB topography even for an elliptical inner core. This has to
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be considered in any joint core-mantle coupling model, because any coupling torque acting on the CMB
will change the actual rotation of the mantle but not necessarily the inner core rotation. Such a relative
rotation between mantle and inner core would cause gravitational coupling torques, which is described
in Sec. 2.

Moreover, the comparison of Figs. 4.4 and 4.5 shows the pattern dominated of the elliptical Earth
model, which is altered by the influence of the CMB topography models M and T. In contrast to the
results for the pure elliptical model in Fig. 4.4, the zero-contour lines in the results for model M and T
are curved. The x-component for model M is slightly shifted by around 1.1 · 1018 Nm with respect to the
results of the elliptical model, whereas the y-component is reduced by approximate 1.6 · 1018 Nm (see
Fig. 4.5 (a)). The influence of the CMB topography model T results in an slightly positive offset of about
0.75 · 1018 Nm in both equatorial components (see Fig. 4.5 (b)). This comparison leads to the conclusion
that the influence of the chosen CMB topography model is about one order of magnitude smaller than
the dominant contribution of an elliptical Earth model, which means still an variation by about 7 − 10 %
due to the considered CMB topography models.
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(a) Equatorial torques for CMB model M
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(b) Equatorial torques for CMB model T
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Figure 4.5: Equatorial coupling torques considering an elliptical ICB and (a) CMB model M and (b) CMB
model T, respectively.
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Spherical harmonics and related
derivations A

A.1 Definition of scalar spherical harmonics and basic relations

In this section, we shortly summarize the definition and basic relations of spherical harmonics (SH). The
most definitions are according to Varshalovich et al. (1989, Chap. 5), and we follow their notation, where
Yjm are the scalar spherical harmonics of degree j and order m, which are defind by:

Yjm(Ω) := Pjm(cosϑ)eimϕ. (A.1)

Here are i =
√
−1, Ω = (ϑ, ϕ) and Pjm the associated Legendre functions, which are defined as follows:

Pjm(cosϑ) := (−1)m

√
2j + 1

4π

(j −m)!

(j +m)!
(sinϑ)m

dm

(d cosϑ)m
Pj(cosϑ), (A.2)

Pj(cosϑ) :=
1

2jj!

dj(cos2 ϑ− 1)j

d(cosϑ)j
. (A.3)

For the degree and order of the SH and Legendre functions the co-domains

j = 0, 1, 2, 3, . . . ,∞, (A.4)

m = −j, . . . , 0, . . . , j (A.5)

are valid. The SH basis functions are orthonormal on the unit sphere (Varshalovich et al., 1989, Chap. 5):∫
Ω0

Yjm(Ω)Y ∗j′m′(Ω) dΩ = δjj′δmm′ . (A.6)

Here, ∗ denotes the complex conjugate, and δij is Kronecker’s symbol. For the complex conjugate SH
basis functions the following relation holds:

Y ∗jm(Ω) = (−1)mYj−m(Ω). (A.7)

We summarize here also the differential operators in spherical coordinates and the related splitting
into angular and radial parts, which are given for the Nabla operator by

∇ =

[
∂

∂r
er +

1

r
∇Ω

]
, (A.8)

∇Ω =

[
∂

∂ϑ
eϑ +

1

sinϑ

∂

∂ϕ
eϕ

]
, (A.9)

and for the Laplace operator by

∆ =
1

r2

[
∂

∂r

(
r2 ∂

∂r

)
+ ∆Ω

]
, (A.10)

∆Ω =

[
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2

]
(A.11)

The SH basis functions are eigenfunctions of the angular part of the Laplace operator, so that

∆Ω Yjm(Ω) = −j(j + 1)Yjm(Ω) (A.12)
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is valid.
Moreover, we show here the used derivative of SH with respect to the spherical coordinates ϕ and ϑ

(Varshalovich et al., 1989, Sec. 5.8):
∂

∂ϕ
Yjm(Ω) = imYjm(Ω), (A.13)

∂

∂ϑ
Yjm(Ω) =

1

2

[√
j(j + 1)−m(m+ 1)Yj (m+1)(Ω) e−iϕ

−
√
j(j + 1)−m(m− 1)Yj (m−1)(Ω) eiϕ

]
. (A.14)

In addition, we present here the recursion formula for the following product of a trigonometric function
and a SH as given in Varshalovich et al. (eq. (1) 1989, Sec. 5.7)

cotϑYjm(Ω) = − 1

2m

[√
j(j + 1)−m(m+ 1)Yj (m+1)(Ω) e−iϕ

+
√
j(j + 1)−m(m− 1)Yj (m−1)(Ω) eiϕ

]
. (A.15)

A.2 Vector spherical harmonics

The vector spherical harmonics (VSH), we have chosen here, are defined as follows (Varshalovich et al.,
1989)

S
(−1)
jm (Ω) = erYjm(Ω) , (A.16)

S
(+1)
jm (Ω) = ∇Ω Yjm(Ω) , (A.17)

S
(0)
jm(Ω) = LΩ Yjm(Ω) , (A.18)

where er, eϑ and eϕ are the spherical basis vectors and the differential operator∇Ω is given in eq. (A.9).
The operator LΩ is defined by

LΩ = er ×∇Ω =

[
∂

∂ϑ
eϕ −

1

sinϑ

∂

∂ϕ
eϑ

]
. (A.19)

Two vector spherical harmonics S
(λ)
jm (Ω) and S

(λ′)
j′m′(Ω), with different degree, j 6= j′, and different

order, m 6= m′, as well as with different indices, λ 6= λ′, are orthogonal, expressed by∫
Ω0

S
(λ)
jm (Ω) ·

[
S

(λ′)
j′m′(Ω)

]∗
dΩ = 0, (A.20)

where the dot denotes the scalar product of vectors. Moreover, we summarize the following expressions
for orthogonal vector spherical harmonics:∫

Ω0

S
(−1)
jm (Ω) ·

[
S

(−1)
j′m′ (Ω)

]∗
dΩ = δjj′δmm′ , (A.21)

∫
Ω0

S
(1)
jm(Ω) ·

[
S

(1)
j′m′(Ω)

]∗
dΩ = j(j + 1)δjj′δmm′ , (A.22)

∫
Ω0

S
(0)
jm(Ω) ·

[
S

(0)
j′m′(Ω)

]∗
dΩ = j(j + 1)δjj′δmm′ . (A.23)

For the vector spherical harmonics, as defined here, we can easily derive the following expressions:

S
(λ)
j−m(Ω) = (−1)m

[
S

(λ)
jm

]∗
, (A.24)

er × S
(0)
jm(Ω) = −S(1)

jm(Ω), (A.25)

er × S
(−1)
jm (Ω) = 0, (A.26)

er × S
(1)
jm(Ω) = S

(0)
jm(Ω). (A.27)
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Additional derivation for the
calculation of the torques B

B.1 Surface integral with respect to the unit sphere

In eq. (2.5), the gravitational coupling torque is given by a surface integral with the kernel rICB(Ω)×N(Ω).
For the further derivation, we have to execute the vector product considering the definition in eqs. (2.3)
and (2.4). For the outward normal of the ICB we find

N(Ω) =
∂

∂ϑ

[
eraICBE(Ω)

]
× ∂

∂ϕ

[
eraICBE(Ω)

]
N(Ω) = a2

ICB

[(
∂

∂ϑ
er

)
E(Ω) + er

(
∂

∂ϑ
E(Ω)

)]
×
[(

∂

∂ϕ
er

)
E(Ω) + er

(
∂

∂ϕ
E(Ω)

)]
N(Ω) = a2

ICB E(Ω)

[
er sinϑE(Ω)− eϑ sinϑ

∂

∂ϑ
E(Ω)− eϕ

∂

∂ϕ
E(Ω)

]
. (B.1)

For the surface integral of the gravitational torque, applying these expressions and considering rICB(Ω) =

eraICBE(Ω) yield

L = −ρ∆a3
ICB

∫
Ω

E(Ω)E(Ω)φ(Ω) er ×
[
erE(Ω)− eϑ

∂

∂ϑ
E(Ω)− eϕ

1

sinϑ

∂

∂ϕ
E(Ω)

]
sinϑ dϑdϕ .

We apply the vector product of the spherical base vectors and consider the definition of the surface
element of the unit sphere dΩ = sinϑ dϑdϕ, which leads to the expression

L = −ρ∆a3
ICB

∫
Ω

E(Ω)E(Ω)φ(Ω)

[
−eϕ

∂

∂ϑ
E(Ω) + eϑ

1

sinϑ

∂

∂ϕ
E(Ω)

]
dΩ .

This can by simplified using the definition of the angular part ∇Ω as defined in eq. (A.9) to

L = ρ∆a3
ICB

∫
Ω

E(Ω)E(Ω)φ(Ω) er ×∇ΩE(Ω) dΩ . (B.2)

B.2 Derivation of the combined coefficient

In eq. (2.9) the gravitational torque is given as a product of four quantities expressed by scalar and vector
spherical harmonics. The triple product of scalar spherical harmonics can be combined by applying a
special relation for triple product of spherical harmonics. We rewrite eq. (2.9)

L = ρ∆a3
ICB

∫
Ω

∑
j1m1j2m2
j3m3jm

Ej1m1Yj1m1(Ω)Ej2m2Yj2m2(Ω) Φj3m3Yj3m3(Ω)EjmS
(0)
jm(Ω) dΩ , (B.3)

and consider eq. (11) from Varshalovich et al. (1989, Sec. 5.6.2), which is repeated here,

Yj1m1
(Ω)Yj2m2

(Ω)Yj3m3
(Ω) =

∑
j4m4 j′m′

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

(4π)2(2j′ + 1)

· Cj40
j10 j20 Cj

′0
j40 j30 Cj4m4

j1m1 j2m2
Cj
′m′

j4m4 j3m3
Yj′m′(Ω) , (B.4)
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and leads to

L = ρ∆a3
ICB

∫
Ω

∑
j1m1j2m2
j3m3j4m4

j′m′jm

Ej1m1 Ej2m2 Φj3m3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

(4π)2(2j′ + 1)

· Cj40
j10 j20 Cj

′0
j40 j30 Cj4m4

j1m1 j2m2
Cj
′m′

j4m4 j3m3
Yj′m′(Ω)EjmS

(0)
jm(Ω) dΩ . (B.5)

If we now introduce the combined coefficients

Θj′m′ =
∑

j1m1j2m2
j3m3j4m4

Ej1m1Ej2m2Φj3m3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

(4π)2(2j′ + 1)
· Cj40

j10 j20 Cj
′0
j40 j30 Cj4m4

j1m1 j2m2
Cj
′m′

j4m4 j3m3
,

as in eq. (2.10), the integral for the gravitational torque becomes

L = ρ∆a3
ICB

∫
Ω

∑
j′m′ jm

Θj′m′ Ejm Yj′m′(Ω)S
(0)
jm(Ω) dΩ .

This relation is identical with eq. (2.11) in Sec. 2.3.

B.3 Derivation of the Cartesian components

Based on the definition of the vector spherical harmonic S
(0)
jm(Ω) given in eq. (A.18), its Cartesian com-

ponents are deduced by considering the relation between spherical and Cartesian basis vectors in
eqs. (2.18) and (2.19). In a first step we find for the vector spherical harmonic

S
(0)
jm(Ω) = ex

[
− sinϑ

∂

∂ϑ
Yjm(Ω)− cosϑ cosϕ

1

sinϑ

∂

∂ϕ
Yjm(Ω)

]
+ ey

[
cosϕ

∂

∂ϑ
Yjm(Ω)− cosϑ sinϕ

1

sinϑ

∂

∂ϕ
Yjm(Ω)

]
+ ez

[
sinϑ

sinϑ

∂

∂ϕ
Yjm(Ω)

]
. (B.6)

In the next step, we substitute this expression into the integral equation of the gravitational coupling
torque, given in eq. (2.11):

L = ρ∆a3
ICB

∫
Ω

∑
j′m′ jm

Θj′m′ Ejm Yj′m′(Ω) ·
{
ex

[
− sinϑ

∂

∂ϑ
Yjm(Ω)− cosϑ cosϕ

1

sinϑ

∂

∂ϕ
Yjm(Ω)

]

+ ey

[
cosϕ

∂

∂ϑ
Yjm(Ω)− cosϑ sinϕ

1

sinϑ

∂

∂ϕ
Yjm(Ω)

]
+ ez

[
∂

∂ϕ
Yjm(Ω)

]}
dΩ . (B.7)

Splitting this expression into the three Cartesian components leads to eqs. (2.20)–(2.22).

B.4 Derivation of equatorial coupling torque

The complex combination of the equatorial components of the coupling torque, given in eq. (2.27),
contains products of exponential functions and partial derivatives of scalar spherical harmonics. The
related part of the integral kernel can be transformed into

−i ei ϕ ∂

∂ϑ
Yjm(Ω) + ei ϕ cotϑ

∂

∂ϕ
Yjm(Ω) = ei ϕ

[
− i

2

(√
j(j + 1)−m(m+ 1)Yj(m+1)(Ω)e−i ϕ

−
√
j(j + 1)−m(m− 1)Yj(m−1)(Ω)ei ϕ

)
+ cotϑ imYjm(Ω)

]
,
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by considering the partial derivatives of spherical harmonics given in eqs (A.13) and (A.14). Moreover,
we apply the recursion formula for cotϑ, given in eq. (A.15),

= i ei ϕ
[
−1

2

(√
j(j + 1)−m(m+ 1)Yj(m+1)(Ω)e−i ϕ −

√
j(j + 1)−m(m− 1)Yj(m−1)(Ω)ei ϕ

)
+m

−1

2m

(√
j(j + 1)−m(m+ 1)Yj(m+1)(Ω)e−i ϕ +

√
j(j + 1)−m(m− 1)Yj(m−1)(Ω)ei ϕ

)]
,

which can be simplified to

= −i
√
j(j + 1)−m(m+ 1) Yj(m+1)(Ω) . (B.8)

Inserting this relation in eq. (2.27) results in eq. (2.28).
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Solution for the j-depending
integral in eq. (3.24) C

In Section 3.2.2 the SH coefficients of the gravitation potential, caused by the mass distribution in Bo,
are determined. For this purpose, the j-depending integrals in eq. (3.24) have to be executed.

For j = 0, we have to evaluate the following expression

I0 =

∫
Ω

1∫
0

[
(rn − rn−1)x+ rn−1

]
(rn − rn−1)Y ∗00(Ω) dxdΩ ,

I0 =

∫
Ω

1∫
0

d

dx

[
1

2

[
(rn − rn−1)x+ rn−1

]2]
Y ∗00(Ω) dxdΩ .

First, we integrate over x, which leads to

I0 =
1

2

∫
Ω

[
r2
n − r2

n−1

]
Y ∗00(Ω) dΩ ,

where we have to consider the angular dependency of the radial distances rn, expressed by SH coeffi-
cients according to eqs. (3.25)–(3.26),

I0 =
1

2

∫
Ω

∑
j′m′

[
a2
nB
〈2〉
j′m′(an)Yj′m′(Ω)− a2

n−1B
〈2〉
j′m′(an−1)Yj′m′(Ω)

]
Y ∗00(Ω) dΩ .

Applying the orthogonality condition for SH basis functions, given in eq (A.6)

I0 =
1

2

[
a2
nB
〈2〉
00 (an)− a2

n−1B
〈2〉
00 (an−1)

]
. (C.1)

For j = 1, the integral reads

I1 =

∫
Ω

1∫
0

(rn − rn−1)Y ∗1m(Ω′) dx dΩ′ ,

where the execution of the integral over x leads to

I1 =

∫
Ω

(rn − rn−1)Y ∗1m(Ω) dΩ .

We express the angular depending radial distances rn by SH coefficients according to eq. (3.25),

I1 =

∫
Ω

∑
j′m′

[
anBj′m′(an)Yj′m′(Ω)− an−1Bj′m′(an−1)Yj′m′(Ω)

]
Y ∗1m(Ω) dΩ ,

and consider orthogonality condition given in eq (A.6), and we find

I1 =
[
anB1m(an)− an−1B1m(an−1)

]
. (C.2)
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For j = 2, an analytical solution of the integral can not be found. In the following, we summarize
the derivation of an approximate solution up to the fourth order of the normalized radial distance (this is
elucidated by the approximation of ln(1 + x) by a series). The integral for j = 2 reads

I2 =

∫
Ω

1∫
0

[
(rn − rn−1)x+ rn−1

]−1
(rn − rn−1) dxY ∗2m(Ω) dΩ ,

I2 =

∫
Ω

1∫
0

d

dx

[
ln
[
(rn − rn−1)x+ rn−1

] ]
dxY ∗2m(Ω) dΩ ,

I2 =

∫
Ω

[
ln
(
rn(Ω)

)
− ln

(
rn−1(Ω)

)]
Y ∗2m(Ω) dΩ . (C.3)

The remaining problem is the integration over the full solid angle of the products of SH basis functions
and the logarithm of the angular depending radial distances. For the further derivation we introduce an
SH representation of the radial distance, which differs from those in eq. (3.25)

rn(Ω) = an
∑
j′m′

Bj′m′(an)Yj′m′(Ω) = anB00(an)Y00

(
1 +

1

B00(an)Y00

∑
j′≥1m′

Bj′m′(an)Yj′m′(Ω)

)
.

We use this representation to split the logarithm as follows

ln
(
rn(Ω)

)
= ln

(
anB00(an)Y00

)
+ ln

(
1 +

1

B00(an)Y00

∑
j′≥1m′

Bj′m′(an)Yj′m′(Ω)

)
, (C.4)

and apply the series expansion (e.g. Bronstein et al., 1997, Tab. 21.3)

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 +O(5)

to the second term in eq. (C.4)

ln

(
1 +

1

B00(an)Y00

∑
j′≥1m′

Bj′m′(an)Yj′m′(Ω)

)
=

1

B00(an)Y00

∑
j′≥1m′

Bj′m′(an)Yj′m′(Ω)

− 1

2

(
1

B00(an)Y00

)2 ∑
j′≥1m′

B
〈2〉
j′m′(an)Yj′m′(Ω)

+
1

3

(
1

B00(an)Y00

)3 ∑
j′≥1m′

B
〈3〉
j′m′(an)Yj′m′(Ω)

− 1

4

(
1

B00(an)Y00

)4 ∑
j′≥1m′

B
〈4〉
j′m′(an)Yj′m′(Ω) +O(5) .

(C.5)

We reformulate I2, as given in eq. (C.3),

I2 =

∫
Ω

ln
(
rn(Ω)

)
Y ∗2m(Ω) dΩ−

∫
Ω

ln
(
rn−1(Ω)

)
Y ∗2m(Ω) dΩ . (C.6)

Herein, it is visible that the remaining problem is the determination of integrals of the type

I =

∫
Ω

ln
(
rn(Ω)

)
Y ∗2m(Ω) dΩ ,
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which reads with eq. (C.4) and the approximation in eq. (C.5)

I =

∫
Ω

ln
(
anB00(an)Y00

)
Y ∗2m(Ω) dΩ +

1

B00(an)Y00

∫
Ω

( ∑
j′≥1m′

Bj′m′(an)Yj′m′(Ω)

)
Y ∗2m(Ω) dΩ

− 1

2

(
1

B00(an)Y00

)2 ∫
Ω

( ∑
j′≥1m′

B
〈2〉
j′m′(an)Yj′m′(Ω)

)
Y ∗2m(Ω) dΩ

+
1

3

(
1

B00(an)Y00

)3 ∫
Ω

( ∑
j′≥1m′

B
〈3〉
j′m′(an)Yj′m′(Ω)

)
Y ∗2m(Ω) dΩ

− 1

4

(
1

B00(an)Y00

)4 ∫
Ω

( ∑
j′≥1m′

B
〈4〉
j′m′(an)Yj′m′(Ω)

)
Y ∗2m(Ω) dΩ +O(5) . (C.7)

The first integral in eq. (C.7) vanishes according to Varshalovich et al. (1989, Sec. 5.9.1 eq. 1), because
of the integration of Y2m over the full solid angle and ln(anB00Y00) = const. For the remaining four terms,
we find by considering the orthogonality condition in eq. (A.6) the approximation up to the fourth order

I ≈
4∑
p=1

(−1)p+1

p

(
1

B00(an)Y00

)p
B
〈p〉
2m(an) . (C.8)

Furthermore, we take into account the reformulation of I2 in eq. (C.6), which leads to the final expression
for the approximate solution of I2

I2 ≈
4∑
p=1

(−1)p+1

p

[(
1

B00(an)Y00

)p
B
〈p〉
2m(an)−

(
1

B00(an−1)Y00

)p
B
〈p〉
2m(an−1)

]
. (C.9)

This expression is used in Section 3.2.2 to derive the Ao
2m coefficients as given in eq. (3.29).

For j ≥ 3, an analytical solution for Ij can be derived, which is summarized in the following. The
integral Ij reads for all j ≥ 3

Ij =

∫
Ω

1∫
0

[
(rn − rn−1)x+ rn−1

]−(j−1)
(rn − rn−1)Y ∗jm(Ω) dxdΩ ,

Ij =

∫
Ω

1∫
0

d

dx

[
− 1

j − 2

[
(rn − rn−1)x+ rn−1

]−(j−2)
]
Y ∗jm(Ω) dx dΩ ,

where the intergration over x leads to

Ij =

∫
Ω

− 1

j − 2

[(
rn(Ω)

)−(j−2) −
(
rn−1(Ω)

)−(j−2)
]
Y ∗jm(Ω) dΩ .

Here, we express the angular depending radial distances rn and its pth power by the SH representation
given in eqs. (3.25) and (3.26), which leads to

Ij =
∑
j′m′

− 1

j − 2

[
a−(j−2)
n B

〈−(j−2)〉
j′m′ (an)− a−(j−2)

n−1 B
〈−(j−2)〉
j′m′ (an−1)

] ∫
Ω

Yj′m′(Ω)Y ∗jm(Ω) dΩ .

We consider additionally the orthogonality condition in eq. (A.6), which leads to the final expression used
in eq. (3.30)

Ij = − 1

j − 2

[
a−(j−2)
n B

〈−(j−2)〉
jm (an)− a−(j−2)

n−1 B
〈−(j−2)〉
jm (an−1)

]
. (C.10)
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Concept of derivation of the p-th
power of the radial distance D

In Section 3.3 the p-th power of the radial distance is expressed by the SH representation in eq. (3.26)
introducing the new coefficients B

〈p〉
jm. In this Appendix, we present the concept for the approximate

determination of these coefficients and summarize the detailed derivation given by Pěč & Martinec
(1984) and Pěč & Martinec (1988).

The basic idea is not to determine the coefficients B〈p〉jm precisely, but restrict an approximate solution
to terms equal or less than the fourth power of the Earth’s flattening α. The largest term in the expansion
of the radial distance is B00Y00 ∼ 1. In the order of their magnitude follow B20 ∼ O(α), B22 ∼ O(α2),
B30 ∼ B31 ∼ . . . ∼ B53 ∼ O(α3) and B1±1 ∼ B1±2 ∼ Bjm ∼ O(α4) ∀j ≥ 5. If the dominant terms B00

and B20 considered separately the binomial expansion for the pth power accurate to O(α4) is given by
(see Pěč & Martinec, 1984, eq. (16))

rpn(Ω) ≈ apn
[
B00Y00 +

∑
jm
j≥1

Bjm(an)Yjm

]p
.

Here and in the following the angular arguments (Ω) are suppressed. The binomial expansion leads to

rpn(Ω) ≈ apn

{(
B00Y00

)p
+
(
B00Y00

)p−1

(
p

1

)∑
jm
j≥1

BjmYjm

+
(
B00Y00

)p−2

(
p

2

)[
B20Y20 +

∑
jm
6=(2,0)

BjmYjm

][
B20Y20 +

∑
j1m1

6=(2,0)

Bj1m1
Yj1m1

]

+
(
B00Y00

)p−3

(
p

3

)[
B20Y20 +

∑
jm
6=(2,0)

BjmYjm

][
B20Y20 +

∑
j1m1

6=(2,0)

Bj1m1Yj1m1

]

·
[
B20Y20 +

∑
j2m2

6=(2,0)

Bj2m2
Yj2m2

]
+
(
B00Y00

)p−4

(
p

4

)
B4

20Y
〈4〉
20

}
. (D.1)

For the next step, the terms in eq. (D.1) are rearranged according to its order of magnitude in such
a way that the first terms in the parentheses are O(α), the second terms are O(α2) and so on. This
rearrangement yields

rpn(Ω) ≈ apn

{(
B00Y00

)p
+ p

(
B00Y00

)p−1∑
jm
j≥1

BjmYjm +

(
p

2

)(
B00Y00

)p−2 ∑
jmj1m1
j≥2,j1≥2

BjmBj1m1
YjmYj1m1

+

(
p

3

)(
B00Y00

)p−3
[
B3

20Y
〈3〉
20 + 3B2

20Y
〈2〉
20

∑
jm
6=(2,0)

BjmYjm

]
+

(
p

4

)(
B00Y00

)p−4
B4

20Y
〈4〉
20

}
. (D.2)

Here, Y 〈p〉20 denotes the result of the product of p degree-two SH base functions. To derive the Bi in
eqs. (3.37)–(3.41), we have to reformulate eq. (D.2) in terms of a SH expansion of only a single Yjm.
This requires to represent products of SH base functions according to eq. (3.35) in terms of Qjm

j1m1j2m2
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as defined in eq. (3.34). We find for the second order term (with renamed indices)∑
j1m1j2m2
j1≥2,j2≥2

Bj1m1
Bj2m2

Yj1m1
Yj2m2

=
∑
jm

j1m1j2m2
j1≥2,j2≥2

Bj1m1
Bj2m2

Qjm
j1m1j2m2

Yjm , (D.3)

For the third order terms, we first derive the second summand

B2
20Y

〈2〉
20

∑
j2m2

6=(2,0)

Bj2m2
Yj2m2

= B2
20Y20Y20

( ∑
j2m2

6=(2,0)

Bj2m2

)
,

which transforms with eq. (3.35) applied to degree-two SH base functions to

B2
20Y

〈2〉
20

∑
j2m2

6=(2,0)

Bj2m2
Yj2m2

= B2
20

(∑
j1m1

Qj1m1

2020 Yj1m1

)( ∑
j2m2

6=(2,0)

Bj2m2

)
. (D.4)

Only for m1 = 0 is valid Qj1m1

2020 6= 0, and a second time applying eq. (3.35) leads to

B2
20Y

〈2〉
20

∑
j2m2

6=(2,0)

Bj2m2Yj2m2 = B2
20

∑
jm

j1j2m2
j2 6=2

Bj2m2Qj10
2020Qjm

j10j2m2
Yjm . (D.5)

For the first summand of the third order term, the triple product of Y20 can be derived from eq. (D.4) in
the following way

Y
〈3〉
20 =

∑
j1

Qj10
2020Yj10Y20 ,

Y
〈3〉
20 =

∑
j1jm

Qj10
2020Qjm

j1020Yjm . (D.6)

In the last term in eq. (D.2) we have still to consider Y 〈4〉20 , which solution can easily be obtained by the
fourth multiplication of Y20 to eq. (D.6)

Y
〈4〉
20 =

∑
j1j2m2

Qj10
2020Qj2m2

j1020Yj2m2Y20 ,

where we apply again eq. (3.35)

Y
〈4〉
20 =

∑
jm

j1j2m2

Qj10
2020Qj2m2

j1020Qjm
j2020Yjm .

From the second coupling coefficient it is visible, that it is Qj2m2

j1020 6= 0 for m2 = 0, and the final expression
reads

Y
〈4〉
20 =

∑
jm
j1j2

Qj10
2020Qj20

j1020Qjm
j2020Yjm . (D.7)

Based on eq. (D.2) it is possible to derive eq. (3.36) considering the relations in eqs. (D.3)–(D.7) and
recalling that B〈p〉jm is defined for an individual base function Yjm.
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List of symbols L
Symbol Explanation Page

aICB radius related to the ICB 4
Ai
jm SH coefficient of the contribution to φi 10

Ao
jm SH coefficient of the contribution to φi 12

B volume of the Earth separated into Bi and Bo 9
Bi volume of the inner core 9
Bo remaining volume outside the inner core 9
Cjmklst Clebsch-Gordan coefficients defined in Varshalovich et al. (1989, Sec. 8.1) 4
dSICB orientated surface element of the ICB 3
dV infinitesimal volume element 3
∂Bn material interface between layers with homogeneous density 9
Djnm Wigner D-function defined in Varshalovich et al. (1989, Sec. 4.3 eq. (1) ) 5
ex, ey, ez Cartesian basis vectors 6
er, eϑ, eϕ spherical basis vectors 6
E ICB deviation from a sphere 4
Ẽ alternative representation of the ICB 17
Ejm SH coefficient of the representation of the ICB 11
E
〈p〉
jm SH coefficient of the p th power of the radial distance of the ICB 11

Ẽjm SH coefficient of the alternative representation of the ICB 17
ẼREF
jm Ẽjm coefficient in the reference state 18

L gravitational coupling torque 3
N outward normal vector 3
Qjm
klst coupling coefficient for the product of two scalar SH basis function 14

r position vector 3
rICB position vector of point on ICB 4
SICB inner-core boundary 4
S

(λ)
jm (Ω) vector SH basis function, defined in eqs. (A.16)–(A.18) 4

Yjm scalar SH basis function 4
α first Euler angle (see Fig. 2.1) 5
β second Euler angle (see Fig. 2.1) 5
γ third Euler angle (see Fig. 2.1) 5
Γjmklst uniform coupling coefficient defined in eq. (2.30) 7
ρIC volume-mass density of the IC 3
ρOC volume-mass density of the OC 4
ρ∆ difference of volume-mass densities between IC and OC 4
φ gravitational potential 3
φi gravitational potential caused by masses in Bi 10
φo gravitational potential caused by masses in Bo 10
Φi
jm SH coefficient of the gravitational potential φi 11

Φo
jm SH coefficient of the gravitational potential φo 13

Φjm combined SH coefficient of the gravitational potential 13
dΩ infinitesimal surface element of the unit sphere 4
ψ centrifugal potential 15
Ψjm SH coefficient of the centrifugal potential 15
Θjm combined SH coefficient defined in eq. (2.10) 4

39Scientific Technical Report STR 12/01 
DOI: 10.2312/GFZ.b103-12019

Deutsches GeoForschungsZentrum GFZ



40Scientific Technical Report STR 12/01 
DOI: 10.2312/GFZ.b103-12019

Deutsches GeoForschungsZentrum GFZ



Core-Mantle Coupling

Part III:
Gravitational coupling torques

Scientific Technical Report STR12/01

Jan M. Hagedoorn, Hans Greiner-Mai, Ludwig Ballani

www.gfz-potsdam.deISSN 1610-0956

Imprint

Telegrafenberg 
D-14473 Potsdam

e-mail: postmaster@gfz-potsdam.de
www: http://www.gfz-potsdam.de

Printed in Potsdam, Germany
April 2008

ISSN 1610-0956

This text is available in electronic form: 
http://www.gfz-potsdam.de/bib/zbstr.htm

J.
 M

. 
H

ag
ed

o
o
rn

 e
t 

al
.,
 C

o
re

-M
an

te
 C

o
u
p
lin

g
. 

Pa
rt

 I
II

: 
G

ra
vi

ta
ti
o
n
al

 c
o
u
p
lin

g
 t

o
rq

u
es

 S
T
R

1
2

/
0

1


	Table of Contents
	Introduction
	Introduction to this Scientific Technical Report
	Basic concept

	Gravitational coupling torques
	Basic equations
	Surface integral of the gravitational coupling torque
	Spherical harmonic representation
	SH representation of different field quantities
	Rotation of the SH representation of the ICB

	Cartesian components of the gravitational coupling torque
	Axial coupling torque
	Non-axial coupling torques
	Uniform coupling coefficient


	Internal gravitational potential
	Geometrical settings for the determination of the gravitational potential at the inner-core boundary
	Internal gravitational potential for layers of constant density
	Contribution from below the ICB
	Contribution from above the ICB
	Combined SH coefficients of the gravitational potential

	Determination of the p-th power of the radial distance
	Internal gravity potential

	Examples of gravitational coupling torques
	Simplified example for misaligned ellipsoid
	Consideration of CMB topography models
	Gravitational potential at the ICB
	Gravitational coupling torques for elliptical ICB


	References
	Spherical harmonics and related derivations
	Definition of scalar spherical harmonics
	Vector spherical harmonics

	Additional derivation for the calculation of the torques
	Surface integral with respect to the unit sphere
	Derivation of the combined coefficient
	Derivation of the Cartesian components
	Derivation of equatorial coupling torque

	Solution for the j-depending integral in eq. (3.24)
	Concept of derivation of the pth power of the radial distance
	List of symbols



