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SUMMARY 

The earth rotation and the geomagnetie field "are e learly eorrelated in the deeade 
period interval (10 y ... 100 y). A eonsiderable part of thi s eorrelation ean be ex­
plained by eore-mantle eoupling. The magnetie field influenees the mantle rota­
tion if the eleetrie eonduetivity of the mantle is suffieiently high (eleetromagnetie 
eoupling) or indieates variations in the veloeity field of the outermost eore whieh 
are related to topographie torques on the mantle if the shape of the eore-mantle 
boundary is irregular (topographie eoupling). Apart of the observed time lag be­
tween the variations of the geomagnetie field and the length of day is assoeiated 
with the inertia of the eoupled bodies. The other part is eaused by the diffusion 
of the time-variable geomagnetie field through the eleetrieally eondueting mantle. 
The investigation of the eore-mantle eoupling torques and the interpretation of 
the observed time lag require the ealclliation of the temporally variable magnetie 
field within the mantle and at the eore-mantle bOllnciary by solving the magnetie 
induetion equation. 

The earth mantle is assumed to be a two-layer spherieal shell, whose inner layer is 
eleetrieallyeondueting. We only eonsider the poloidal part of the magnetie field 
with boundary values whieh are eonventionally given by a spherieal harmonie ex­
pansion of the observed geomagnetie potential field on the earth sut·face. ThllS, we 
are eoncemed with a one-side-data supported problem (non-characteristie Callehy 
problem), whieh is weil known as an extremely ill-posed inverse bOllndary vaille 
problem in heat eonduction theory. Its solution requires a stabili zing teehnique 
whieh should be theoretieally based. 

We develop a regularizing solution procedure aceounting for reeent theoretieal 
stability estimates. The capabilities of the proeedure are shown for a single mag-, 
netie field component of the sphetieal harmonie field expansion beginning from 
the year 1900 by varying the mantle eonduetivity model and the degree of smooth­
ness in the regulari zation. As an example, the radial component of aglobai (5,5) 
eore-mantle boundary field is ealculated for two epoehs. 
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1. INTRODUCTION 

Various geophysical problems are strongly connected with the behaviour of the 
geomagnetic field within the mantle and on the core-mantle boundary (CMB). 
A particular problem, for wh ich the magnetic field behaviour is studied in this 
paper, is the origin of the deeade variations of the length of day (t.LOD). Other 
related problems are the detelmination of the boundary values for dynamo models, 
estimates of the velocity field in the outer eore according to the frozen-field theory, 
and the penetration of harmonie modes of the magnetic field through the mantle 
(geomagnetic induction). 

Several authors (e.g., Munk & Revelle 1952, Lambeck & Cazenave 1976, 
Jochmann & Greiner-Mai 1996) have shown that atmospheric processes can ex­
eite only a small part of decade t.LOD and have suggested that the larger part 
must be attributed to proeesses within the earth eore, which injiuellee the earfh 
rotation by exciting core-mantle coupling torques on. the mantle. This sugges­
tion is based on the strong cOiTelations between t.LOD and the geomagnetic field 
variations for periods of about 20, 30 and 70 years. 

The hypothesis that the eleetroll1agnetie eore-lI1antle eouplillg is responsible for 
the length of day variation has been suggested implicitely first by Bullard et al. 
(1950) and more thoroughly first by Roehester (1960). He proves that Lorentz 
torques of sufficiently high magnitude (about 1017 Nm) on the mantle can be pro­
dueed if the mean conductivity in a spherical shell of 2000 km thickness enclosing 
the core is in the order of 100 Sm- I. 

A different type of coupling is the topographie eoupling based on the interaction 
between the velocity field of the outer core and the irregularities of the CMB. 
Estimates of the associated pressure torques (about 1018 Nm) indicate that they 
may be responsible for the variation of polar motion but are too large for t.LOD 
(e.g. Hinderer ef al. 1990; Jault & Le Mouel 1990). The electromagnetic coupling 
torques are conventionally caIculated from the (non-potential) geomagnetic fjeld 
within the mantle. The pressure torques are derived from the velocity field of the 
outer core, whieh ean be estimated using the frozen-field approximation of the 
induction equation of the outer core (e.g . Baekus 1968; Braginsky 1984; Gire & 
Le Mouel 1990; Whaler & Davis 1997). A review of eoupling meehanisms is 
given by Le Mouel, Hulot & Poirier (1997) . The toroidal part of the geomagnetie 
field within the mantle determines an imp0l1ant part of the electromagnetic 
torques, but it cannot be observed on the earth surfaee. However, boundary values 
of the toroidal field aeeording to field adveetion ean be infelTed from the veloeity 
field at the CMB (e.g. Stix & Robel1s 1984). Thus, the poloidal geolllagnetie 
field ar fhe CMB enters both types of torques eonsidered and must be known there 
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as accurately as possible. 

The determination of the poloidal magnetic field in the mantle requires the solu­
tion of a paraboIic partial differential equation, which is derived from the vecto­
rial induction equation. The necessary boundary conditions are connected with 
magnetic observations on the earth surface. Traditionally, this problem is stud­
ied for a prescribed profile of the electric mantle conductivity and assurning a 
periodically oscillating field on the earth surface. The assumption of periodic be­
haviour replaces the inital condition which is normally required in the solution of 
the paraboIic differential equation. If fields with non-restricted time-behaviour are 
to be studied, then a full initial-boundary value problem has to be solved, i.e. the 
initial condition may not be dropped. However, the determination of the poloidal 
magnetic field is not a standard initial-boundary value problem as there are only 
data observed on one boundary (earth surface), but not on any other intelior sur­
face like the CMB. Therefore, this task can be classified as an inverse boundary 
value problem for a parabolic partial differential equation. (prom other points of 
view it is also synonymously addressed as non-characteristic Cauchy problem or 
non-halmonic down ward field continuation, respectively.) In contrast to this prob­
lem, the term "folWard problem" is used if a standard boundary value problem is 
given, i.e. input data on both boundaries are assumed to be known. 

For a simple radial dependence of the mantle conductivity, aM ~ r- a , and a pre­
scribed time dependence (e.g. periodic) of the magnetic field, analytical solutions 
of the forward problem were given, e.g., by McDonald (1957) and SmyIie (1965). 
Instead of analytical methods, numerical methods are also be applied in the for­
ward problem if the distribution of the conductivity is more complicated, e.g., as 
given by Rikitake (1973) and Shankland, Peyronneau & Poirier (1993) . 

Investigations and solutions related to the inverse boundary value problem (the 
down ward continuation of the poloidal magnetic field) are involved in those meth­
ods wh ich were developed for the calculation of electromagnetic core-mantle cou­
pIing torques or fluid outer core motions from magnetic surface data. For calcu­
lating the field on the CMB which enters into in the coupling torques mainly a 
pelturbation method was appIied. It replaces the unknown time derivat i ve by a 
gi yen time function. The unpelturbed field is then the time variable geomag­
netic potential field continued to the CMB, the perturbed field must be delived 
from the mantle induction equation according to the given time variations of the 
unperturbed field. The perturbation method is described, e.g. , by Braginsky & 
Fishman (1977) and Benton & Whaler (1983) . Greiner-Mai (1987, 1993, 1995) 
has continued these investigations with special emphasis on the consistency of the 
electromagnetic core-mantle coupling with 6.LOD for particular periods (e.g. the 
nearly 30-year period). Other authors - Gubbins & Bloxham (1985), Bloxham & 
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Gubbins (1986), Bloxham ( 1989), Bloxham & Jackson (1992) and Holme (1998) 
- who use the potential (harmonic) down ward continuation, gave CMB-fields so­
luti ons partly combined with fluid outer core motion determinations using, e.g., a 
stochastic inversion procedure. Voorhies & Nishihama (1994) considered differ­
ent conductivity models and searched for common least squares sol utions for the 
magnetic field and the velocity in the fluid outer core. 

Because of the fact that the inverse boundary value problem is severely ill-posed, 
the theoretical and numeri cal ills/abiLity should be taken into account in any case. 
Therefore, cons idering the noise of the data and its spectral structure the selecti on 
of a regulari zation strategy is necessary which forms the basis for a stable so lution 
procedure. In this connection the cJose analogy with the inverse heat conduction 
problem (i n the mathematica l literature often refelTed to as the non-characteristic 
Cauchy problem) is helpful. Some approaches and numerous results can be found, 
e.g. in Dinh Nho Hao & Gorenflo (1991) and Reinhardt & Seifm'th (1993). 

Besides the geophysical implications of the problem.s addressed here, the compre­
hensive mathematical aspects are of interest. These have been studied intensively 
since the end of the fifties particularly in tenns of the inverse heat conducti on 
problem and semi-conductor or other material research important, e.g., for heat 
effects on spacecraft or in steel production. A common problem in geosciences 
is the problem of neid continuation. It includes not onl y the determination of . 
the poloidal magnetic field in the lower mantle and on the core-mantle boundary 
but also such problems as the geodetic boundary value problem, the downward 
continuation of the gravity neid, the analogous problems for the static geomag­
netic field and also geothermal problems. Common to all these problems is the 
instability due to the compactness ("smoothing property") of the ruling integra l 
operator. A unifyi ng mathematical view of these problems is provided by modern 
mathematical frameworks. 

With respect to consistency, the problem of the core-mantle coupling appears as a 
multifold and coupled inverse problem which can be also understood as part ofthe 
general il/verse problelll of fhe earfh rotation (Ballani 1987). The parameters of 
the coupling model are not prescribed but have to be estimated by comparison of 
the electromagnetic torques with those necessary to excite the observed 6.LOD. 
This inverse problem can only be so lved stepwise by including additional informa­
tion about the parameters of the model, e.g. from additiona l geophysical processes 
or from parameters estimated by laboratory experiments. 

In this paper, one part of this general inverse problem, the non-harmonic down­
ward continuation of the magnetic field to the CMB, is solved numericall y. 

On the basis of results found in the literature we develop an adapted sol ution pro­
cedure (for an outline see Ballani, Greiner-Mai & Stromeyer 1995) which bases 
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on an inversion approach in geothermics (Stromeyer 1983, 1984) and which in­
cludes some of the theoretical elements presented in, e.g. EIden (1983). Some 
recent fundamental statements on stabilization are added. 

After the introduction into basic physieal and mathematieal problems (seetions 2.1 
and 2.2) we give some insight into the theoretieal properties of the non-harmonie 
downward eontinuation (seetion 3.1) and eontinue with the mathematieally sup­
ported description of the numerieal solution method (section 3.2). The method is 
applied to some models of eonduetivity eonneeted with a supposed layering near 
the eore-mantle boundary. The results are time series (one spherieal harmonie 
mode) and the (5,5) radial field eomponent ofthe poloidal field on the eore-mantle 
boundary (seetion 4). The study eoneludes with a diseussion of the properties of 
the proeedure and the results obtained (seetion 5). In the appendiees A and B an 
example for the analytieal solution of the forward problem, and, eonneeted with 
this, some remarks on the analytieally formulated inverse problem are given. 
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2. BASIC ASSUMPTIONS AND EQUATIONS 

2.1 Basic model 

First, the mantle is modelIed by a rigid shell (figure 1) with the outer radius RE 
(mean Em1h radius) and the inner radius Re (core radius). 

earth surface 

~nantle 

cr(r)=O 

f 
f 

cr (r);/oO 

fluid outer 

core 

solid 

inner core 

Figure 1: Geometrical assumptions in a spherically symmetric conducting earth 
model. o (r) is the electrical conductivity, RE = 6370km, Ra = 5400km, Re = 
3400km. 

The malllte COllductivity, 0M (r), is assumed 10 be a function of the radial distance r 
with 0M =J 0 for Re < r < Ra and OM = 0 for Ra :s; r :s; RE. The two analytical 
dependencies on r considered for Re < r < Ra are given by the semi-conductor 
formula and its first Taylor term, respectively 

(1) 

(2) 
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where 0"0 is the mantle conductivity at the CMB (r = RJ and 0< is the parameter 
determining the decrease of the conductivity with increasing distance from the 
CMB. 
Crude bounds on the values of the parameters can be obtained from geomagnetic 
induction studies. Rotanova el al. (1985) used the 30- and 60-year periods of 
the secular variation to determine the parameters 0< and 0"0 in (1), and obtained 
values of 0< of about 6-8 and values of 0"0 between 1500 and 4000 Sm- I. The 
parameter determining the magnitude of the electromagnetic torques is the ratio 
0"0/0<. According to Stix (1982) the ratio 0"0/0< must be in the order of 100 Sm- I for 
the electromagnetic coupling. He suggested that high values of both parameters 
0< and 0"0 are optimal, i,e. models are prefered in which the mantle conductivity 
is concentrated in a thin shell near the CMB. Stix & Roberts (1984) and Greiner­
Mai (1987, 1993) found that the magnitudes of the eleetromagnetic torques are 
consistent with LOD variations if 0"0 = 3000 S rn - I and 0< = 30, i.e. 0"0/0< = 
100. Greiner-Mai (1995) reduced the value of this ralio to about 30 by fitting the 
electromagnetic to the meehanical torques considering both the influence of the 
atmospheric excitation of 6LOD and longer time series. However, the value of 
O"M in the lower mantle is still under discussion (see also section 4.1). 

Second, the Earlh 's eore is assumed to be a "black box" in which the geomagnetic 
field is maintained by a dynamo process. The objective of our investigation is to 
determine the output of this "black box", i.e. the geomagnetic field at the CMB 
from observation at the Em1h 's slllface. The penetration of the magnetic field 
through the mantle can be studied by forward methods for particular values of 0"0 

and 0<. 

Third, the solutions of the mantle induction equation are derived for the poloidal 
magneliefield, B p . This is the part of the magnetic field that can be observed out­
side the sphelically symmetrie conductor. The other pan, the toroidal field is not 
considered in this paper. It can only be indirectly determined by a physical model 
of a process which invol ves the toroidal part, e.g, by comparison of the electro­
magnetic and mechanical torques delived from 6LOD. Fortunately, the equations 
for the poloidal and toroidal pal1s are decoupled for a radially distlibuted man­
tle conductivity. We use the representation of the field by poloidal and toroidal 
scalars. Thus, the vector induction equations (3) and (4) shown in the next sec­
tion can be transformed into two scalar equations, from which the poloidal induc­
tion equation is considered (for references see, e.g., Krause & Rädler 1980). The 
poloidal scalar field, S, is presented by a spherieal harmonie expansion, whose as­
sociated coefficients, S~';:'(r, t), are called (poloidal) harmonic modes. The spec­
tral range, considered here, comprehends the decadal time variations. 
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2.2 Basic equations 

The magnetic induction equations can be derived from the Maxwell equations by 
substituting for the current densi ty and the electric fie ld strength the magnetic /lux 
density Band its time derivative, respectively. The vector induction equations are 
then given by 

eurl [(/tO(7M) - leurl BJ -

eurl B 

div B 

- B , 
0, 

0, 

Re< r < 

r > Ra , 

V r , 

Ra , (3) 

(4) 
(5) 

where f.!o is the permeability of free spaee. The boundary conditions at r = Re, 
r = Ra and r = RE are the continuity of the /lux density, B+ = B - , where the 
signs + and - denote the outer and inner side of the boundary, respectively. For 
spherical symmetry of (7M and a solenoidal field (div B = 0), the /lux density 
can be decomposed Olthogonally into toroidal and po.Ioidal palts by 

with 

B, - eurl (rT), 

B p - eurl eurl (rS). 

The scalars are normed on the sphere by 

jj S dw = 0 and jj T dw = 0 , d w = sin-O d19 d<p . 

(6) 

(7) 

(8) 

For the poloidal scalar S, the induction equations thus have the fOlms of the diffu­
sion equation and the Laplace equation, respectively (see, e.g .. Krause & Rädler 
1980): 

(f.!O(7M) - I t.S = S 
t.S 0 

(9) 
(10) 

where t. is the Laplace Operator. The boundary (interface) conditions are given 
by the continuity of Sand its radial gradient according to the continuity of the 
radial component and the tangential components of the /lux density, respectively 
(see eq.(15) below). 
A setup for the scalar function S by means of spherical harmonics given by 

S = 2:: (S~rn(r,t)eosm<p +S~rn(r , t)sinm<p) Pnrn(eos19) (11) 
n,rn 
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cOITesponds to aseparation of the form [(I' , t) . g(19 , cp). Using the orthogonality 
of the spherical halTnonics, we obtain from eqs. (9) and (10) the fully decoupled 
one-dimensional induction equations for the harmonic modes S~',~,(r , t): 

O Se,s 
n nm 

O sc,, 
n 11m 

/l,oa M S~111~t 
o , 

where the operator On is defined by 

82 28 
On = 8r2 +r8r 

The interface conditions at I' = Ru are 

n(n + 1) 
1'2 

(S~',~) + - (S~;~) - , [!. rSe" J+ nm 
8 

[_ I'se ,s ]- . 
81' nm 

(12) 

(13) 

(14) 

(15) 

Eq. (13) is fulfilled with the usual potential solution for the field outside a conduc­
tor which is regular at infinity. From thi s solution the associated modes C~',~(t) 
are defined by 

Se,s (I' t) = C e,s (t) I·- n- I I' > R nm ) tim ) _ U' (16) 

The geomagnetic potential V and its secular variation on the Earth's surface 
I' = RE are delived from the scalar S by V = - g, (1'8). The geomagnetic po­
tential is conventionally given as an expansion into sphelical harmonics, whose 
coefficients are known as Gauss coefficients gnm and hnm (Mauersberger el al. 
1959). Therefore, we obtain on the Earth 's surface 

(17) 

where Anm are the Schmidt's normali zation coefficients defined by 

( 
(n - m)I)I/2 

Anm = (2 - OOm) (n + m)1 (18) 

with Oik Kronecker symbol. Solution (16) then determines the neid outside the 
conducting part of the mantle in dependence of the Gauss coefficients, hereafter 
sometimes called data. The conventional harmonic downward continuation of the 
radial field component Br can be obtained by substituting (16), (17) and (18) into 
(38) below (section 4.2). 

It follows also from eq.(13) that the secular varia/ion field can be obtained via 
the time derivatives i e s e,s = c e" r- n- I with C· e,s calculated by the secular 

1 •• nm. nm nm 

variation coefficients, gnm and hnm , instead of the Gauss coefficients. Thus, the 
boundary values of the harmonic modes and their time derivatives at r=Ru can be 
derived from the solution (16) in dependence on the Gauss coefficients and their 
time derivatives as given in the literature. 

10 

Scientific Technical Report STR 99/12 
DOI: 10.2312/GFZ.b103-99127

Deutsches GeoForschungsZentrum GFZ



3. SOLUTION OF THE INVERSE BOUNDARY 
VALUE PROBLEM 

3.1 Basic properties of inversion 

Let us return to the scalar induction equation (9). It can be decomposed into de­
coupled one-dimensional parabolic partial differential equations (12) describing 
the diffusion of the harmonic modes S~;;'(r , t) of S(r , t) through the electrically 
conducting spherical shell of the earth mantle. Dropping all subscripts and super­
scripts to simpli fy the notation (replacing S~';;' = u) the inverse boundary value 
problem for the determination of u(Re , t) can be formulated as folIows: 

with boundary conditions 

u(Ra, t) = ifJ(t) , 
au ar (Ra , t) 

n+l 
+ ~u(Ra, t) 

a 
= 0 (19) 

and an initial condition 

u(r,O) = 1jJ (r) . 

The first boundary condition is directly connected with the geomagnetic data on 
the earth surface, while the other one is derived by the second continuity condi­
tion in (15) applied to the transition between the non-conducting and conducting 
mantle shell. The boundary values in (19) are given only on one side of the radial 
interval in contrast to the stable (properly posed) standard two-side boundary­
value problems. There is a slight difference between the heat 01' diffusion problem 
and our case conceming the position of the temporally andlor spatially variable 
coefficient functions in the differential equation . However, this is only of nu­
merical importance as long as extreme situations (nearly vanishing 01' unbounded 
coefficient functions) can be avoided. Modem theory for the inverse he at conduc­
tion problem provides results which allow wide classes of coefficient functions 
with on ly weak assumptions . The tigorous mathematical study of the considered 
inverse problem (19) requires its embedding into weil defined function spaces. 
With appropriate specifications of those spaces, statements on COlTectness, i.e. 
existence, uniqueness and stability can be derived. The first two points can be 
usually satisfied (e .g., Tsutsumi 1965, Knabner & Vessella 1987, Dinh Nho Hao 
1995). 
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The instability of the problem has to be considered in greater detail. This 
is because several aspects are involved: data spacing, spectral contents, data 
errors, theoretical stability estimates and reconstruction behaviour, numerical­
algorithmic processing and geophysical constraints. The main two reasons for 
the instability can be seen bettel' if the inverse problem in the formulation (19) is 
transfOlmed into a Volten'a integral equation of the first kind (see (33) and (34) 
below): First, the compact integral operator has smoothing properties. Second, 
the unknown function cannot be reconstructed for time points ne ar the end of the 
time interval (effect of convolution property). Third, some direct inftuence on the 
instability comes from the effect of the magnitude of the electrical conductivity 
as a coefficient function in the differential equation. The spectral aspect of the 
instability, i.e. the increasing amplitude of periodic patts is discussed below in 
appendix B. 

Stable inversion can be forced mainly by means of constraints on the solution 
set. There are two possibilities which are studied here: Stability estinwtes and 
Tikhonov regularizatioll. 

Astability estillwte describes the influence of the enor bound E of the data rf> (t) 
(here the boundary values) 

and an a priOl'i bound E for the solution u 

on the solution of the inverse problem by means of an estimate of the following 
type: 

Ilull" ::; C f(E, E) . (20) 

The effect of the bound E is a selection of solutions, for which the stability 
estimate directly represents the local continuity of the inverse operator. In the 
case of Iinearity, the function u appearing in this estimate (20) can also be 
replaced by differences of functions, so that the estimate can also be interpreted 
as the effect of the data error (exact data minus real data) on the disturbance (01' 

error) of the solution (exact solution minus disturbed solution). These stability 
estimates can be found in the literature derived for the different situations: the 
function intervals considered (finite, half-infinite, infinite), the type of smoothness 
of the coefficients in the differential equation and the various norms or seminorms 
which reflect the smoothness of the solution itself. 

Because the assumed conductivity models to be tested cover a wide range of mag­
nitudes and are presented by different function types, their inftuence as a coef­
ficient in the induction equation with respect to stability should be checked first 
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theoretically. Let us briefty outline a general stability result from the literature 
(Knabner & Vessella 1988): 

For the paltial differential equation 

8 2u 8 u 8u 
a(x) 8x2 + b(x) 8x + c(x) u = 8t' ° ~ x < L, t 2: ° (21) 

having sufficiently smooth coefficients a(x), b(x), c(x), c(x) ~ 0, 
with boundary conditions u(O, t) = r/J( t), :x u(O, t) = 0, t 2: 0, 
and the assumptions 11r/J1I2 ~ f (data) and lIu(L, .) 11 2 ~ E (solution), 
and with the abbreviation 

x 

A(x) := ! a(s) - 1/2 ds 

o 

the stability estimate of Hölder type 

lIu(x, .)112 ~ C f 1- A(x)/A(L) (tA (x)/A(L) + EA(x)/A(L)) , ° ~ x < L, C > ° (22) 

can be deIived. 

Because (19) is a special case of eq.(21) we find from (22) after some simple 
calculations 

r 

A(r) = !(J,LOaM(r))1/2 dr, Re ~ r~Ru' (23) 

R. 

Thus, (23) and (22) describe the influence of the electrical conductivity a on the 
en'or behaviour in the inteIior of the radial interval. 

It is also of some interest that the assumption on the smoothness of the " Ieading" 
coefficient a(x) can be considerably relaxed without changing the validity of the 
estimate. Therefore very general bounded functions, including step functions for 
the conductivity function a(r) are allowed. Stability estimations even exist, if a(x) 
is only approximatively known. A further important point is: Only this leading 
coefficient of the differential equation (21) has to be considered as an exponent 
for the bounds E and t in the Hölder type estimation. 

It is important to mention that the,re exists one exception of the validity of (22): 
the (right) inner point L of the radial interval con'esponding to Re is excluded, 
which is just of pIime interest for our problem. To get stability estimates there at 
all, stronger bounds on the solution in this point are necessary. These are given by 
bounded radial or temporal derivatives of the function u(r, t). In every case (with 
bounded radial and bounded time deIivatives) the resulting estimate is no longer 
of the Hölder type but of the much weaker 10gaIithmic type. 
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Stability estimates using abound for the radial derivative ~~ (r , t) :::: E can be 
found in (Knabner & Vessella 1987). However, the radial function behaviour can­
not be accounted for in our approach because the input and output in the integral 
equation are pure time functions. From a physical point of view (smoothness 
constraints on the radial derivative of the unknown function on the core-mantle 
boundary) , it may even be reasonable, to construct an algorithm working with the 
derivative of the function instead of the unknown function itself. 

The problem of bounding the temporal behaviour of the solution on the core­
mantle boundary by using different degrees and types of derivatives to get sta­
bility estimates (e.g. Engl & Manselli 1989; Manselli & Vessella 1991) directly 
corresponds to our integral equation approach. However, as the time function to 
be determined exists at the lower bound Re of the radial interval, as mentioned, 
the stability estimates which can be reached are of much poorer quality than for 
any interior point of the radial interval. To demonstrate the characteristic features, 
we give two examples with different nonns for the apriori bounds and for the 
stabilityestimate: 

(1) The following general theorem (Manselli & Vessella 1991) shows clearly this 
logarithmic estimate under relatively weak assumptions on the function u and the 
coefficients of the pmtial differential equation, which in our application are only 
needed as radially variable functions (19). 

Theorem: 

Let u be a so lution of the parabolic equation 

02 U OU OU ox2 = a(x, t) ot + b(x, t) ox + c(x, t)u (24) 

oa ob 
with (x , t) E Q := [0, L] X [0 , T l and a, b, c, ot ' ox bounded functions in Q. 

We assume that fOrE > 0 lu(O, t)1 :::: E and I ~u (0, t) 1 :::: L - I E are satisfied 
uX 

and, with the apriori bound E > 0, 

is fulfilled for some {} E (0,1). 

Then, for a fixed T E (0 , 2/3{}), there exists a constant EI such that the estimate 

lu(L, t) 1 :::: 110gEI-T holds if E:::: EI ' (25) 
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(2) For the problem with the simpler di fferenti al equation 

Du 
Dt ' 0 ::; x < 1, 

Du 
Dx (0 , t) = 0, t E R, (26) 

with u (O, t) = g(t) given and u (l , t) = f(t) unknown, 
the L2 norm-bounds for the data IIg ll 2 < f and the solution 11% + 11 ~~ 11 2 < E 
respective ly, yields the following result (Engl & Manselli 1989) : 
For n > 2, there exist numbers K", with Iim,, -->oo K" = 00 , and exponents ß" with 
lim,,-->oo ß" = 0 such that the estimate 

E 1/4- P .. 

If(t) 1 ::; K" ( ) 
log~ 

(27) 

holds. 

These logarithmic estimates show that the data eITOr-f (or the di fference between 
exact and di sturbed data) can be estimated for the con esponding solutions within 
the order O (l/Iog( l /f)) . However, the constants involved are difficult to ca lcu­
late , the influence of the coeffi cient functi ons of the differenti al equation (e.g. the 
electri cal conductivity) can no longer seen explicitely as in the Hölder esti mates 
given above, and they only provide a very raw en or budget valid near the in terval 
end. 

The other possibility for a stable inversion, applied here, is the method of Tikhonov 
regularization. The plinciple of regularization is to change the mapping fro m the 
data to the solution from an operator of first kind to a more stable operator of 
second kind , i.e., the problem itself is changed to enable a controlled inversion. 

Fundamental results on regulmi zati on with many detai ls are published, e.g. in 
Plato (1 995) , Engl, Hanke & Neubauer (1996) and Hansen (1 992,1 998). 

The method of Tikhonov regul ari zati on, which is applied here (in a specific 
Tikhonov-Phillips variant, see secti on 3.2) to find so lutions in a constrain t so­
lution set, consists in constructing a solution f by weighted minimization of the 
fo llowi ng quantity via a suitable choice of the parameter A 

(28) 

The norms 11 .11" or seminorms 1I .lIp and the smoothing functi onal L have to be 
spec ified. While the first term in (28) measures the data approx imation at Rq the 
second term accounts for the smoothness of the solution at Re. The quant ity J* 
means an initi al guess . 
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We do not use the regularization in this general form in our procedure. There 
are other regularization variants that are nearly equivalent to (28) (e.g. Hansen 
1992,1 998). From these we use that type which accounts especially for the data 
elTor: 

minllL(fA - f ') II ß subject 10 IIAfA - <p li" = E. (29) 

T hus, a value of fA with optimal smoolhness on the core-mantle boundary must be 
fo und approximating the data within a fixed elTor range. 

In order to have a criterion for the regu larized solutions, the so-called L-curve 
analysis, measuring the typical trade-off between solution smoothness and the 
degree of approx imation to the data, is applied: The two contributions to the elTor 
pmts, i.e. the approximation to the da ta and the degree of smoothness of the 
solution, have to be balanced. 

The regularization method provides convergence even on weaker assumptions 
than those imposed for stabi lity estimations di scussed above. To prove and to 
reach convergence, some smoothness assumptions ane! bounds (specified below) 
combined with adapted parameter choice strategies are also necessary. 

There are "some useful results for our problem which take into account bounds 
on fand f, where f means the time derivative of f. Engl & Manselli (1989) 
show, that for the non-characteristic Cauchy problem (26) and for different de­
grees of smoothness for the solution f(t), its reconstruction from noisy data g" 
II g - g, 1I :<::: t, is possible with a reconstruction elTor wh ich depends Hölder­
continuously on the data elTor t. The exponents between 1/2 and 2/3 depend on 
the smoothness assumed for the solution. 

The results are L2 convergence 

(30) 

and uni form convergence 

For the derivative f, there was also L2 convergence found. If the second term in 
(28), responsible for the smoothness of f, is chosen as pure L2 norm without any 
furt her smoothness assumption for fA(, ) , L2 convergence can still be proved, but no 
Ion ger pointwise convergence and convergence of the derivatives. These resu lts 
refine and en large the logari thmic stability estimates shown above. 

In the inverse problem (19), an initial condition u(r, 0) = 'IjJ (r) has been included. 
T hi s is, however, not necessary for a sufficient amou nt of data 01' in other spe­
cial cases. Then this condition may be dropped (Dinh Nho Hao 1995; Reinhardt 
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& Seiffatth 1993). In general, the initial condition is a weak point in the so lu­
tion procedure because it introduces some degree of arbitrariness whose effect is 
strongest at the beginning of the reconstrllction time interva!. 

Regarding the mathematical assllmptions it should be kept in mi nd that these as­
sumptions should be supplemented by physical constrai nts consistent with the 
degrees of freedom of the mathematical prob lem. 

A practi cal aspect is that the measured data are always finite and discrete. For 
them, all function norms are equi valent and thus arbitrary estimates between these 
narms with suitab le constants are possible. However, theoretical considerati ons 
of the continuous case, as given here for stability estimates and regul ari zation , 
are nevertheless justified to guarantee stabi lity in the Iimiting case: the density 
of the data can increase and more and more disturbing higher frequencies can be 
caused by uncontrolled noi se. 

3.2 Construction of the solving algorithm 

Recentl y, far the solution of unstable non-characteri sti c Cauchy problems, several 
regulari zi ng procedures have been developed and applied: Mollification, hyper­
bolic regul ari zation, so lution of integral equations of the first kind, variational 
methods and sequenti al regul ari zation (for overviews see, e.g., Dinh Nho Hao & 
Gorenflo 1991 and Reinhardt & Seiffarth 1993). 

We have constructed a method which combines elements of two of these pro­
cedllres: We study the inverse problem for the differential equation (19) in the 
equivalent form of a Voltena integral equation of the first kind and solve an op­
timal control problem (a variational method) for the unknown boundary functi on 
("boundary control"): 
The quantity 11<p (.) - u(Ru , ·) 11 is minimized, where u is the solution of (19). 
11.11 is any fixed norm. <p(t), 0 <;:; t <;:; T, is the boundary function which is known 
on Ru. The unknown boundary fllnction u(Rc , .) is considered as the contro!. 

The algorithm statts with a shifting standard transform for (19): A stab le boundary 
value problem is so lved so that '1f; (r) == 0 (ini tial condition) is fulfilled . 
Havi ng modified the problem in this way, we want to specify the ex isting linear 
relationship 

A: <p [ (32) 

between the known boundary data functi on <p(.) on Ru and the unknown function 
f(.) := ll(Re,.) on Re . 
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Only for very simple cases (e.g. aM (r) = const.) the kernel k(T) in (33) below can 
be directl y determined from the differential equation via an integral (e.g. Laplace) 
transform techn ique. Then, the Volten·a integral equation of the first kind 

cf>(t) = fo' k(t - T) f(T)dT (33) 

can be obtained in explicit form. The convolution kernel k(t) is analyti call y 
known and can be described by an infinite series (Eiden 1983). 

However, in our case with aM (r) # const., i.e. for a partial differential equation 
wi th locally variable coefficients, the situation is more difficult. We know on ly that 
the conesponding relation is sti ll g iven by an abstract linear operator equation of 
the first kind 

cf> = A f, A Volten·a integra l operator, (34) 

but we cannot specify the kernel explicitely. However, it is known that thi s type 
of operator can be rep laced by a finite dimensional approximation. Thus, we 
introduce a time di screti zation {t = t;, i = 1, N} and" approximate the unknown 
boundary function f( t) by an appropriate set of base functions ek (t) : 

N 

f(t) "'" L fk ek(t). (35) 
k~ 1 

T hese steps contain some degree of freedom to account for physical constraints 
and also to restrict the resolution and to coarsen the final time di scre ti zation. With­
out loss of generality we adopt the simplest choice for the base functions: 
ek(t;) = 8k;. Then a matrix (a;k) describing the linear relationship and approxi­
mating the operator A in (34) can be detelmined in the fo llowing way: With the 
boundary functions 

uk(Re , t) = ek(t) , k = 1, .. . , N, 

(36) 
a stable so lution of the differential equation (19) can be found. This detelmines 
the kth column of (a;k) , so that the who le matrix is given by 

(a;k) = uk(Ra , t;), i = 1, ... ,N, k = 1, ... , N. (37) 

Because of its Toeplitz structure due to the convolut ion kernei, it is on ly necessary 
to calculate the first matri x column (k = 1). The other ones (k = 2, .. . , N) then 
are generated by shifting theirelements downward iteratively, which results in the 
known triangular matrix structure. The implementati on of this step thus requires 
on ly the numerica l so lution of one stable problem for the first matrix co lumn. 
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Having the matrix (aik) determined, the regulari zation procedure (the boundary 
contro l process) can be started. For our purposes, it is the proper inversion pro­
cedure with so me degrees of freedom left wh ich may be used to account for the 
geomagnetic aspects of the problem. The inversion algOli thm is based pmtly on 
some too ls found in (Hansen 1992,1998) connected with the theory described in 
section 3.1 . Thus, our approach can be adapted to the special problem considered. 
The algorithm ends with a standard trans form wh ich restores the original initial 
condi tion. 
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4. RESULTS 

4.1 Used magnetic data and electrical conductivity models 

The magneti c input data given on the earth surface are the Gauss coefficients 
g,,,n , h"m of the geomagneti c potenti al fj eld (see eg o (17)). With the geomagneti c 
potential V (secti on 2.2) given on the earth surface, the link to our parabolic di ffer­
ential eguati on is given via eg o (1 6) . By thi s relati on, the scalar guantiti es and the 
radial deri vati ves in (I 5) for R" , wh ich are necessary for the boundary conditi ons 
.p(t) in (I 9), can simply be calcul ated by means of the Gauss coeffi cients. 

A compari son between the Gauss coeFficients fm the time interval beginning in 
1550 , which were determined by di fferent authors, is given, e.g. by Mauersberger 
(1952). But for the down ward continuation we use time seri es beginn ing in 1900 
for reasons of accuracy. Befme thi s date, there are too many contradi ctions be­
tween the ti me series proposed by diffe rent authors. In addition, because of non­
regular and wide spacing, it is imposs ible to get sigJii fica nt spectral estimates. 
As an example of the situati on, the Gauss coeffi cient hll (t) is shown in fig ure 
2 (see nex t page) . The time span comprehends the whole measuring peri od and 
that interval wh ich starts at the beginning of thi s century which is used for our 
calcul ati ons. 

The seri es after 1900 were calcul ated by an integrati on procedure from the sec­
ul ar vari ati on coeffi cients of Hodder (1981) so that two year spaced series from 
1903 to 1975 resulted. These time se ries were extended by IGRF (Internati onal 
Geomagneti c Reference Field) values until 1987 givi ng data at 43 time points to­
tall y. By using these series, periods between about 10 years and slightl y more than 
30 years can be estimated. For the study of the 60 to 80-year periods, the series 
should be longer by about 50 years. 

Another as pect of the data to be addressed here concerns their elTors, which are 
di ffi cllit to estimate. Comparing different references it is reasonable to assurne 
that there is a monotonous decrease of errors (perh aps from about 100 nT down 
to 10 nT) for the interval from 1903 lIntil 1987. T hi s order of magnitude (the 
dec rease by a factor of 10) can also be fo und fo r the Gauss coeficcient gO I in 
(B loxham & Jackson 1992). The incompletely known elTor of the data on the 
earth sUlface is the most important reason for the necessity of studyi ng stability 
cstimates and stabili zing thc so lution by a regulari zati on process. 

The elecl rical COlldl/Clivily of the mantl e as prescribed input guantity in our al­
gorith m is, especially for the lower mantl e, not we il known and a subject of con­
tinued discuss ion. The tradit ional analytic fo rms (power law or exponenti al law 
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Figure 2: Example of a magnetie data time series: The Gauss eoeffieient hll (t) 
of the spherieal harmonie expansion of the geomagnetie potential field (Jeft di ­
agramme: all values avai lable aeeording to Barraelough (1978), Hodder (1981), 
IGRF). 

formu lae, ef. eqs. (1) and (2)) are largely eonsistent with the deep earth interiO!­
material investigations (semi-eonduetor propelty of the matelial, high-pressure 
experiments). During the last deeade, the studies resulted in eurves monotoni ­
eall y inereasing with depth in the mantle and ending with values of on ly some 
Sm- 1 at the eore-mantle boundary (e.g. Poitier & Le Mouel 1992; Shankland, 
Peyronneau & Poitier 1993). But with these values, the eleetromagnetie eoupling 
torques are not suffieiently high (e.g., Holme 1998). However, the D" layer at the 
bottom of the mantle supposedly eonsisting of eore-infiltrated material with about 
100 km to 200 km in thiekness and a eonduetivity of up to 4000 Sm - 1 eou ld 
generate the laeking torque. Thi s layered eonduetivity ean be modelIed by a step 
funetion . Of signifieanee to our study is also the large range of magnitudes of the 
assumed mantle eonduetivity. This is one reason for some destabilizing influenee 
on the numerieal solution of the inverse bOllndary value problem whieh exists in 
addition to the inherent theoretieal instability. One advantage of the numerieal 
algorithm lIsed is the possibility to work with arbitrary eondlletivity distlibutions. 
In partieular, there is no problem with (bounded) radial diseontinuities. Thus, our 
algorithm agrees with the theoretieal assumptions and estimates whieh guarantee 
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stability for a wide range of coefficient types in the differential equation . By this 
it is possible to study the effects of simply structured conductivity layers ne ar the 
core-mantl e boundary. An interesting additional appli cati on, to study the effec­
tiveness of our downward continuation algorithm, concerns the field behaviour in 
a proposed passive upper core layer in the fluid outer core wh ich is locked to the 
mantle and in which the conductivity jumps into the 105 Sm- 1 range (see, e.g., 
Lister & Buffett 1998). T hi s causes an instability (severely ill-conditioned matrix 
in the algorithm, see next section) wh ich is nearly out of numeIical contro!. 

Of course, also the non-conducting (haIIDonic) case aM == 0 should be favourab ly 
treated with the stabi li zing algorithm. This is because the algorithm can account 
for the influence of the data noise and stabilize the so lution. 
The partial aM models used here are given in tab le 1. 

Conductivity Model I 

upper main lower tower mantlc's . passive upper 
manlle mantle D" layer CQre layer 

r > Ra R, + 200 km < r $ R. Re $ r $ R, + 200 km R, - 50 km $ r < R, 

UM = 0 O"M,(r) = lOSm - I (~)' O"M, (r) = 3 x 103 Sm- I O"pul(r) = 2 x 10' Sm- I 

Conductivity Model 2 

r> Ra- R, + 3km < r $ R. R, $ r $ R, + 3km R, - 50km $ r < R, 

Uhl = 0 O" ~ I , (r) = 10Sm- I (~)5 O"M,(r) = 2 x 10' Sm- I O"pul(r) = 2 x 10' Sm- I 

Conductivity Model 3 

O"M = 0 Ui\'1 = 0 Uj\! = 0 --

Table 1: Models of the mantle conductivity aM (I') used for numerical ca lcul ati ons, 
R. = 5400 km and Re = 3400 km. The fie lds are calculated at the CMB and at 
the bottom of the passive upper core layer, respectively and are compared with the 
harmonic downward continuation (Mode l 3). 
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4.2 Downward continuation of magnetic field components 

In this seetion we consider how the down ward eontinuation algorithm works, 
whieh modifications and eriteria are possible and whieh mathematieal or numeri­
cal features are obtained. As our "model" component and boundary function q)(t) 
in (19) we choose the data function hll(t) (Gauss eoefficient) from the spherieal 
harmonie expansion of the geomagnetic potential V at the earth surfaee. Curves 
for hll(t) are presented in figure 2. As has been mentioned in seetion 4.1 a ho­
mogeneous en'or evaluation for each time point of the data series does not exist. 
Thus, as a first estimation, the minimum amplifieation of elTors ean be obtained by 
looking at the harmonie downward continuation giving a factor of at least 13 for 
n = 1. For the non-hmmonie down ward continuation, an ell"Or with an osci llating 
behaviour would have to be estimated exponentially by means of the estimate (51) 
(Appendix B). However, this raw estimate is already sufficient to get some insight 
into the effeet of the input data eharaeteristies in the regularization proeedure for 
our ill-posed inverse boundary value problem. 

The set of base funetions ek(t) for the boundary funetion (35) is speeified by self­
created triangle-Iike peak-functions to approximate the Kroneeker symbol eondi­
ti on in the time points tj. The numerieal integration of the stable two-side bound­
ary value problems with boundary eonditions (36) to determine the Toeplitz matrix 
A in eq.(37) is implemented by the eonventional Crank-Nieholson algorithm with 
a spacing for the radial interval of 0.2 km and time steps of 2 years eOITesponding 
to the data gi ven . 

For the regularization according to (29) the norms are taken as 

( 

T ) 1/2 

lIu(R.: , )lIo = lIu(Re, ·) 112 := ! lu(Re, tW dt 

and for II.II ß the norms 

and 
ou 

Ilu(Re, ·)llw l := lIu(Re, ·)11 2 + 11 -
0 

(Re, ·)11 2 
2 t 

are applied whieh is adapted to the results for the stability estimations and for the 
regularization. It should be pointed out that the derivative eonsidered here in the 
regularization by means of the W~ norm refers to the time variab le and not to the 
spatia l variable because the inversion approach construeted here applies on ly to 
time dependent funetions. 

The values of the different O"M models and so me other parameters are given in 
table 1. For the presentation of the results, we define the time funetions hrlM B and 
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hr~1 as eoeffieient of the solution analogously to the harmonie eontinuation (16), 
(17) as 

I CMB( ) 1 SS (R ) 111 t = Re II . e, t and h\,~I(t) = R 1 k S~ I (Re - 50km, t) , 
e - 50 m 

respeetively. 

The resulti1lg CMB-fi/!lctiolls ean be seen in the figures 4, 6 and 8 showing dif­
ferent eases of the regularized, down ward eontinued magnetic field eomponent 
hf;'vIB and h\,;>1 ealeulated with the different regularization norms. To emphasize 
the higher frequeney strueture and for better eomparison, a linear trend was re­
moved. Clearly, the typieal smoothness behaviour of the different norms is ob­
served, whieh, with a eertain degree of freedom, ean be selected eorresponding 
to the physiea l baekground. As expeeted, the regularization with the weaker 11. 112 
norm results in more oseillating so lutions. For eomparison the downward eontin­
uation is ealculated also for the harmonie ease (aM(r) == 0), so that the influenee 
of the presenee of the mantle conduetivity and of its distribution ean be studied. 
In addition, the speetrally founded effect of amplitude amplifieation and phase 
shifting appear in the figures , espeeially eompared with the harmonie downward 
eontinuation. 

The solutions were ealculated for two dept/l levels: First, the field is deseribed on 
the eore-mantle boundary. In addition, as an experiment, the down ward eontinu­
ation of the field eomponent due to h ll (t) is presented for a seeond level (50 km 
beneath the CMB) inside a supposed passive layer on top of the fluid outer eore. 
As the eore-mantle boundary solution for alvl, almost eompletely eoineides with 
the harmonie eontinuation, it is not shown. Thus , the effeet of thi s eonduetivity 
model at the deeper level (Re - 50km) is mainly due to the eonduetivity apul(r). 
With greater depth and suFfieiently high eonduetivity values the solution beeomes 
stronger modulated. 

The degree and the quality of the data approximation at Ru in the residual norm 

11. 11" = 11·112 aeeording to the first term in (28) is shown for eaeh solution (figures 
5, 7 and 9). Considering the assumed time-dependent errors of the h wdata for 
the past, a eompensatory matehing 5% bound was fixed a priOl·i. 

At this point, it should be stressed that - eoneerning the signi fieanee of the solution 
- the telllporally middle section of eaeh solution submits the best information on 
the input data, the boundary values on the earth surfaee. The beginning oithe time 
interval is dominated by the influenee of the arbitrary initial eondition whieh was 
taken here as the harmonie eontinuation. By means of the phase shift eompared to 
the harmonieally downward eontinued so lution thi s time interval ean be evaluated. 
Thejil/al part ofthe tillle il/terval is dominated by the regulari zation norm beeause 
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the curve is forced to fulfill the cOITesponding minimum condition at the end of 
interval and for thi s time interval no longer significant to the data on the earth 
sUl·face. 

Moreover, for each regulari zed solution, the trade-oJf between solution smooth­
ness at Re and Re - 50km ("solution nOlm") , respectively, and the data approxima­
tion achieved on the Ra level ("residual norm") is given using the "L-curves" (fig­
ures 10-13) (see Hansen 1992,1998). These are shown for the conductivity aM, 
on both levels and generated by means of both stabili zing regulari zation nOlms. 
In each case the 11.112 norm is used as residual norm measUling the data approxi ­
mation at Ra. 

To characterize the propelties and the limiting difficulties of the numerical proce­
dure a furthercriterion may be called: The condition numbers of the regularization 
matrix Areach the order of 1014 at the core-mantle boundary for the aM , solution 
and lO l9 , especially in the higher conducting case of the passive upper core layer 
above the Re-50 km level. It has to be mentioned that, with conductivity val ­
ues greater than those selected here, the regulrui zation process can no longer be 
numerically controlled. 

In addition to the study of the temporal character of the non-harmonic down ward 
continuation by means of a single Gauss coefficient, the spatial behaviour and the 
global effects can be demonstrated with the radial component Br of the magnetic 
field covering locally spectral components of different degree and order. By means 
of the Gauss coefficients gllm (t) and hnm (t) as boundary values taken up to degree 
and order 5, the field component Br( r , t): 

1 . 
Br = - ~ (S~m(r , t) cos mep +S~m(r , t) Sill mep) n(n+ 1) Pnm(costJ) (38) 

r n,m 

was calculated at the core-mantle boundary r = Re for two time points - 1930 and 
1960 - belonging to the middle part of the interval between 1903 and 1990 - and 
additionally for these time points at a depth of 50 km r = Re - 50km beneath 
the core-mantle boundary (see figures 14- 17). As conductivity models aM, and 
apul (see table 1) were applied. Because of the differing data quality, it was nec­
essary to control the regulari zati on of each component individually. The so lution 
presented here was calculated by means of regularization with the W~ norm. The 
comparison of our results with published CMB fields from other authors which 
were calculated for nearly the same epochs should take into consideration that our 
computations include the influence of the conductivity from the mantle and partly 
also from the fluid outer core. 

The propelties of the time structure, which can be deri ved from the couples of 
figures 14, 15 and 16, 17, respectively, confirm the results discussed for the down­
ward continuation of the single Gauss coefficient h ll (t) (increasing temporarily 
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modulation wilh depth, a kind of inlegral influence of the electrical conducti vity, 
phase shifting and amplitude amp li fication). If we consider those figures wh ich 
concem the same time point bul present different depths (e.g . figures 14 and 16 
for 1930) lhe anomalies with lheir spalial detai ls can be seen better, especially 
those around lhe south pole and beneath Siberia. Analogous observations con­
cerning the spalial structure can be also made for 1960 (figures 15 and 17). From 
these significant spatial modulations, it can be concluded that the veloc ity field in 
the top layer of the fluid ouler core musl have finer scales with increasing depth . 
Summarily, we find that highly conducting layers near the CMB can change the 
continuation results compared with lhe harmonic downward continuation consid­
erably. This should have conseqllences for the physical qllantiti es wh ich are aso­
cialed with the magnetic field at the CMB. 

26 

Scientific Technical Report STR 99/12 
DOI: 10.2312/GFZ.b103-99127

Deutsches GeoForschungsZentrum GFZ



5. CONCLUDING REMARKS 

The non-harmonic down ward continuation of the magnetic field presented here 
has consequences in two fie lds of investigation : 
(A) physical parameters associated with the magnetic field and 
(B) the further development of the inverse theory acco unting for the unceltai nty 
of input data 

Conceming (A) it is of high interest to know the magnetic field on the core-mantle 
boundary and in the earth lower mantle in the decadal time scale. One reason is 
the necessi ty to caJculate the electromagnetic core-mantle coupling, with which 
the cOlTelation between Earth rotation and magnetic field in thi s time scale can 
be explained. Our results suggest that computations of coupling torques by using 
the regu lari zation method in the downward continuation process and a sufficiently 
high conductivi ty may lead to new aspects. In particular, the magnetic field on the 
CMB is used for the determination of the velocity fields in the fluid outer core 
(frozen-field theory) which plays an important role in the caJculation of toroidal 
coupling torques. The results derived from the non-hatmonic down ward conti nu­
ation procedure can be differ from those basing only on the harmonic downward 
continuati on of the magnetic field components. 

Conceming (B) thi s problem of down ward continuati on is itself an inverse prob­
lem and, at the same time, part of a joint coupled inverse problem: As a down­
ward continuation problem it is connected with the assu mptions on the conductiv­
ity model for the lower mantle. Because in our down ward continuation problem 
data are given onl y on one side of the radi al interval and because nonvani shing 
electlical conductivi ty in the lower mantle has been assumed, the cOlTesponding 
mathematical problem can be characteti zed as an inverse boundary value problem 
which describes a non-harmonic downward continuation process . In thi s sense, 
the presented approach for the solution of thi s inverse problem can be seen in the 
continuity of papers by Benton & Whaler (1 983) and Bloxham (1989), who used 
aperturbation method or a stochastic inversion approach, respectively. We have 
solved the problem more extensively applying more recent mathematical too ls. 

The forma l identity with the inverse heat conduction prob lem (often also: non­
characteristic Cauchy problem) has led us to the construction of a regularizing 
numerical algori thm for thi s severely unstable inverse problem. With this, it has 
become possible to account for arbi trary conductivi ty models, for the composi ti on 
of the so lving function by certain base functions ("boundary control approach") 
and for different solution strategies, i.e. the assumption of norm bounds on the 
so lution to reach a certai n type of smoothness or to account for the degree of ap­
proximation 10 the data. The instability of the problem is not only influenced by 
the conductivity functi on but also by the spectral content of the data. Especially 
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because of the large ly unknown noise of the older data - we use a nearly one­
hundred year time span - stabilizing estimates are necessary. These estimates, 
given in the literature and adapted to our inverse problem, can be used to give 
Hölder type error estimates inside the lower mantle depending on the smoothness 
constraint adopted for the so lution, an elTQr estimate for the input data, and an 
exponent describing the integra l influence of the conductivity function. The nu­
merical construction of the time series of the magnetic field on the core-mantle 
boundary is ach ieved via a regularization procedure for which, dependent on the 
assumed smoothness of the solution connected with a parameter choice strategy 
for the minimization, also theoretical approx imation en or results of Hölder type 
exist. Because each regularization procedure - we apply a modification of the 
Tikhonov regularization - combined with special norms gives somewhat different 
resu lts, on ly a "synoptic" view leads to an approximative impression on the solu­
tion behaviour. These aspects of instability and its regularization should also be 
taken into considerati on if the harmonic downward continuation is to be applied. 

To evaluate the physical resu lts, the background of the. diffusion equati on should 
be kept in mind: Beyond of the question of smoothness, amplitude amplification 
and phase sh ifting, which can be seen in the examples (figures in section 4.2) the 
first and the last part of the reconstruction time interval should be excluded from 
the interpretation. 
Under these aspects, the epochs (1930, 1960) of the radial component of the (5,5) 
core-mant le boundary field were se lected (figures 14-17). This cutting of the time 
interval for a physically significant interpretation and the derivation of parameters 
of fluid matter velocity and coupling torques requires the search and the use for a 
longer span of the magnetic input data base. 

The method can be adapted to other questions, e.g. the further investigation of 
the spectral characteristics or the field continuation into the upper layers of the 
fluid outer core. But this appli cation of our formalism is limited by the numerical 
conditions. For reaching better en"Ol" estimations of the magnetic field on the core­
mant le boundary, it is neccessary to find more adequate time dependent error bars 
for the Gauss coefficients gnm and hnm fo r the beginning of the time interval and to 
have a theory which estimates the effect of time dependent enors on the construc­
tion of so luti ons of the unstable non-characteristic Cauchy problem. 
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APPENDIXA 

An example for the analytical solution of the forward problem 

In this appendix and the next one, we are concerned with the analytical solution 
of the forward problem (standard boundary vaille problem) and will describe the 
characteristic difficu lties of the inverse problem. We adopt eq.(2) for the conduc­
tivity di stribution in the conducting shell. 

In the forward problem, the time dependence must be prescribed on two bound­
aries: on the inner boundary, e.g., by a function derived from outer core dynamics 
(e.g. Braginsky 1984) and on the outer boundary by the time variations calclilated 
for Ru and given on RE determined via (15), (16) and (17). 

Using the abbreviation ll(r, t) = S~;~(r , t) we so lve the differential equation (12) 
with a separation ansatz 

u(r, t) = f(r) g(t) = f(x) g(t') (39) 

introducing the normalized variables x, t' defined by 

r = xRc and t = t' J.!oaoRc 2 , (40) 

respectively. The separation of eq. (12) leads to gjg = _ k2
, where k is a (com­

plex) constant. The governing equation for the radial modes denoted by f(r) is 
then given by 

f" 2 I" (k2 -Cl n(n + 1)) f 0 . I f' df + - + x - 2 =, wltl = -d 
x x x 

(41) 

where k2 must be prescribed in the forward problem. The solutions are 

(42) 

where Jp and L p are the Bessel functions of first kind (Ryshik & Gradstein 1963) 
with the argument and the index given by 

2k _ (0 - 2) 

Z = X 2 
a - 2 

p = 
2n + 1 

(a - 2) 
(43) 

(For the case a = 2, where z is singular, as weil as for some related references see 
Greiner-Mai 1986.) 

33 

Scientific Technical Report STR 99/12 
DOI: 10.2312/GFZ.b103-99127

Deutsches GeoForschungsZentrum GFZ



Next, we delennine C2 , in dependence on C l. Application of the boundary con­
di ti ons ( 15) to the so lutions ( 16) and (42) results in the va lidity of 

(44) 

at X u = Ru/Re. Using the condition (44) and the reC UITence fonnula for the 
Bessel functi ons, we obtain 

_l i () Jp+l(zu) ] 
f(x) = Cl X , Jp Z + L p-

l 
(Zu) Lp(z) , (45) 

where Zu = z(xu ) according to eg. (43). In the forward problem, the remainig 
complex constant is determined from the boundary conditions at the CMB, i.e. by 
the field model of the core. Here, fo r simplicity, we ass ume that the parameters 
of the solution, k and Cl, are prescribed. For periodic solutions with a presclibed 
freguency, /J , we get 

The Bessel functions then have the argument 

. /4 0-' Z f"V ko e
l7T x - -,- . 

(46) 

(47) 

For Cl< = 0, we obtain the half-integer Bessel functions, the real and imaginary 
parts of whic h are the Thomson functions (e.g. Ryshik and Gradstein 1963). 
The analytical so lution of the forward problem can be used to study the penetra­
tion of particul ar osc illations through the mantle. We show the example of the 
dipole field (n= l) with prescribed periodic time-dependence and Cl< = O. 

If we consider some constant factors by repl acing Cl by a new complex constant 
C3 (45) reads 

where Zu = Vi koxu . First, we decompose the Bessel fU llctions and tan z into 
real and imaginary parts using z = Vi kox = J;j kox and the conventional defi ­
nitions of the hyperboli c functi ons by the tli gonometric funct ions of an imaginary 
argument. After some algebraic operations, we obtain 

with Re, Im, Re, and Im, given by 

Re (x) = 
1 

yI21i (- [cos1)xch 1)x - sin 1)xsh l/X] + 
27rl/X 

34 

1 
- cos 1)X sh 1)x) , 
llX 

Scientific Technical Report STR 99/12 
DOI: 10.2312/GFZ.b103-99127

Deutsches GeoForschungsZentrum GFZ



1 . 1 . V2ii (+ [eOS1)Xeh 17X + s ll1 1)xsh 1)x] - - s ll1 1)xeh 1)x), 
2~1)x 1)x 

Im (x) 

~ ( - [sin 1)X eh 1)X + eos 1)X sh 1)x] + ~ sin 1)X sh 1)x), 
2~1)x 1)x 
1 1 V2ii (+ [sin17Xeh 1)x - eos1)xsh 1)x] + -eos1)x ch1)x) , 
2~1)x 1)x 

where 1) = ko/)2. The constant C3 and tan Za are decomposed as folIows : 

tan Zs = h + i q , 

with 

h = sin 1)xa cos 1)Xa q = sh 1)Xa eh 1)Xa . 

eos2 1)xa eh21)xa + sin21)xa sh21)xa ' COS2 1)Xa eh2 1)xa + sin21)xa sh217xa 

The so lution ((12), (39» u(x,t) == fex) g(t) ean be rewritten as 

u(x , t) = e Jw2(x) + v2(x) eq",(x) +ß- vt! , 

w(x) = R e(x) + h Re l (x) - q Iml (x) , v(x) = Im(x) + q Re l (x) + h Im I (x) , 

<p(x) = aretan v((x)) 
wx 

where e and ß are the preseribed eonstants. Without loss of generality, the phase 
of the solution is assumed to be zero at x = 1 for t = 0, so that 
ß = - <p (x = 1) = -<p(l) holds. Introdueing ')'(x) = <p(x) - <p( l ) the 
assoe iated solution is then given by 

u{X, t) 

')' (x) = 

= e Jw2(x) + v2(x) ei[7(X) - Vt! , 

v(x)w(l) - w(x)v(l) 
- ar eta n ----'c--',----'-c-'-,---_--'---'-'--'. 

w(x)w(l) + v(x)v(l) , 

whieh is suitable to study the penetration of a partieul ar osei lIation th rough the 
mantle . The so luti on at any x > 1 then beeomes phase-shifted by , (x). T he 
normali zed amplitude is given by 

Aa(x) = J[w2(x) + v2(x) ]/[w2(1) + v2(1)]. 

In the following we give numeriea l examples of the behaviour of the phase and 
the nonnalized amplitude of the poloidal dipo le mode as a funetion of x for the 
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10- and 60-year peri ods. For a she ll of 2000 km thi ekness and aM = ao = 
100 Sm - I, the assoeiated parameters of thi s mode l are ko "" 5.5 and "" 2.3, re­
speeti vely, and Xq "" 1.58. The results are shown in fi g. 3a and b. The attenuati on 
(geometri ea l and indueti ve) of the modes depends on the frequeney eonsidered, 
and the shape of the amplitude speetra of a parti eul ar spheri eal harmonie mode 
depends on x. For example, a speetrum whieh shows equal amplitudes fo r di f­
ferent periods at the CMB is transformed into a speetrum at r = R E where the 
amplitudes inerease with inereasing peri od, whieh is typical for a low-pass filter. 
The forward solution therefore shows that the mantle indueti on must be taken into 
aeeount if the observed amplitude di stribution is to be interpreted by, e.g., eore­
mantle eoupling. As shown in fi gure 3b, the eondueti vity also eauses a phase lag 
between x = 1 and x = X q , whieh is lower fo r the lli gher peri od, and beeomes 
negli gible if the period eontinues to inerease. In partieul ar, thi s will be important 
for the interpretati on of the phase lag between geomagnetie fi eld quantiti es and 
6LOD. Phase di fferenees ean also appear for magnetie vari ati ons, whieh have 
equal peri ods and are assoeiated with modes of di fferent number n. 
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Figure 3: (a) Relative amplitude As and (h) phase I of the poloidal dipole modes 
as a function of x = 1'/1'0 for the 10- and 60-year periods and UM = 100 Sm- 1 

in a shell of 2000 km thickness (1'0 core radius). 
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APPENDIXB 

Remarks on the inverse problem 

For the analylical forward problem (lwo-side standard boundary value problem) 
presented in Appendix A also an associated (analylical) inverse boundary problem 
can be sludied. With (15), (16) and (17) the time variation of the considered 
magnetic field eomponent at Ra, abbreviated here, as above, by 1>(t), is related 10 

the boundary values by 

1>(t) = S~~(Ra, t) = C~;~(t) Ru - 11 - 1 (48) 

and can be obtained from the observati ons. Eq.(45) eontinues to be valid, but now 
CI (k) is an unknown funetion and has to be determi ned from the eontinuity of 
the solutions (16) and (45) at x = x u . We obtai n as solution in our example with 
0: = 0 and n = 1 an integral representation for u(x, t) ~ f(r) g(t'): 

a+ib 

u (x,t' ) = lim J C1(k)e-k2t'(kx) - t [J dkx) + tankxuL~(kx)lclk (49) 
(a,b)-+oo 2 2 

- (a+;b) 

whieh deseribes the inverse problem for CI (k) as solution of a Fredholm integral 
equation of the first kind. 

The boundary eondition for x = X u then gives 

a+ib 

1>( t') = - fi!. !im J V 2" (a,b)--> oo 
- (a+;b) 

(50) 

lf we lake into aeeount higher modes (n=I ,2,3 .. . ) and 0: cl 0, the kerne I of thi s 
integral will be still more eomplieated (see eq. (45)). 

Let us write k2 = /-LI + ill l . A first physiea l eondition is then assoeiated with the 
observed slow deerease of the dipole field over a long period. Because the mantIe 
is a eonducting shell without internal dynamies, we eonelude that I.tl 2: 0 is valid 
with in the mantle. In addition, the values of /-L I must be finite . For a weakly 
eonducting mantle, the time-dependent potenti al field is usuall y assumed to be a 
first order approximation of the exaet solution. Consiclering the normali zed time 
seale and the deerease of the axial dipole field of aboul 20nTa- l

, we find that 
/-LI is in the order of 10- 3 if the potential so lution is applieable. So we have a 
first approx imation for /-L I . The frequeney VI is eonstrained by the assumption 
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of decade oscillations, so that VI is in the interval [0.3 , 3.0] for the conductivity 
model used. Therefore, we can assume that the area of integration is a small 
rectangle in the complex k plane. An additional constraint can be obtained if 
the conductivity is constant 01' decreases monotonously from the CMB towards 
Ru, e.g. according to the set ups (I) and (2). Because the magnetic field has no 
sources in the mantle, the f1ux density also decreases monotonously. The smallest 
decrease is shown by the potential field, which reflects the geometrical weakening 
of the field if the conductivity is zero. In reality, inductive weakening according to 
the loss of energy by ohmic dissipation is superimposed. In the inverse boundary 
value problem, the potential solution gives the lowest amp li fication of the field 
continued towards the CMB. If aM i- 0, then the upper bound of amplification 
of the modes cannot be specified. For example, modes of high frequencies are 
not observed because of their strong attenuation. However, they may exist at the 
CMB, so that the inverse solution cannot be applied to this frequency domain (the 
amplification will then be infinite). Finally, the modes of higher order can only be 
estimated with large statistical enors at the em1h surf~ce. These enors are strongly 
amplified when continued to the CMB . 

It can be estimated that arbitrarily small enors in the data function can result in ar­
bitrmily large disturbances in the unknown function on the core-mantle boundary. 
To show this, we consider here only the case Cl< = 0 and n = 1 for the conduc­
tivity law (2) and the differential equation (19) (section 3.1), respectively, i.e. the 
behaviour of the dipole field in a mantle with constant conductivity. 

We take IrP(t) - rP°(t) I ~ 0 with rP(t) as "exact" data and rP°(t) = rP(t) + 0 sinvt 
as "disturbed" data. Insel1ing this in the differential equation (19), we find the 
estimate (using also Appendix A) 

Thus, we see how a data elTor 0 is amplified in dependency of its frequency content 
v. Because high-frequency disturbances in the data cannot be excluded, large 
enors in the results are possible only limited by the Nyquist frequency. Therefore, 
additional mathematical and physical constraints of the inverse solution should 
be introduced in the future, e.g. constraints infened from the magnitude of the 
electromagnetic torques necessary to excite the 6LOD. 
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Figure 14: Radial component Br of the (5,5) magnetic fi eld on the CMB for 1930 
calculated with the conductivity model aMI and the boundary values gom and horn due 
to Hodder (1981) by means of downward continuat ion regularized with the lIu(Re , .)llwl 

2 

norm. Values are in units of 1000 nT. 
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Figure 15: Radial component Br of the (5,5) magnetic field on the CMB for 1960 
calculated with the conductivity model O"M, and the boundary values gnrn and hnrn due 
to Hodder (1981) by me ans of downward continuation regularized with the Ilu(Re, .) Il w, 

2 

norm. Values are in units of 1000 nT. 
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Figure 16: Radial component B, of the (5,5) magnetic field in the passive upper 
core layer (Re - 50km) for 1930 calculated with the conductivity models (TM" (Tpul 

and the boundary values gnrn and hnrn due to Hodder (1981) by means of downward 
continuation regularized with the Ilu(Rc, .)lIw' norm. Values are in units of 1000 nT. 
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Figure 17: Radial component B, of the (5,5) magnetic field in the passive upper 
co re layer (Re - 50km) for 1960 calculated with the conductivity models O"M" O"pu] 

and the boundary values gnrn and hnrn due to Hodder (1981) by means of downward 
continuation regularizecl with the Ilu(Rc , .)llwl norm. Values are in units of 1000 nT. 
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