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SUMMARY

The earth rotation and the geomagnetic field are clearly correlated in the decade
period interval (10 y...100 y). A considerable part of this correlation can be ex-
plained by core-mantle coupling. The magnetic field influences the mantle rota-
tion if the electric conductivity of the mantle is sufficiently high (electromagnetic
coupling) or indicates variations in the velocity field of the outermost core which
are related to topographic torques on the mantle if the shape of the core-mantle
boundary is irregular (topographic coupling). A part of the observed time lag be-
tween the variations of the geomagnetic field and the length of day is associated
with the inertia of the coupled bodies. The other part is caused by the diffusion
of the time-variable geomagnetic field through the electrically conducting mantle.
The investigation of the core-mantle coupling torques and the interpretation of
the observed time lag require the calculation of the temporally variable magnetic
field within the mantle and at the core-mantle boundary by solving the magnetic
induction equation.

The earth mantle is assumed to be a two-layer spherical shell, whose inner layer is
electrically conducting. We only consider the poloidal part of the magnetic field
with boundary values which are conventionally given by a spherical harmonic ex-
pansion of the observed geomagnetic potential field on the earth surface. Thus, we
are concerned with a one-side-data supported problem (non-characteristic Cauchy
problem), which is well known as an extremely ill-posed inverse boundary value
problem in heat conduction theory. Its solution requires a stabilizing technique
which should be theoretically based.

We develop a regularizing solution procedure accounting for recent theoretical
stability estimates. The capabilities of the procedure are shown for a single mag-
netic field component of the spherical harmonic field expansion beginning from
the year 1900 by varying the mantle conductivity model and the degree of smooth-
ness in the regularization. As an example, the radial component of a global (5,5)
core-mantle boundary field is calculated for two epochs.

Scientific Technical Report STR 99/12 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-99127



1. INTRODUCTION

Various geophysical problems are strongly connected with the behaviour of the
geomagnetic field within the mantle and on the core-mantle boundary (CMB).
A particular problem, for which the magnetic field behaviour is studied in this
paper, is the origin of the decade variations of the length of day (ALOD). Other
related problems are the determination of the boundary values for dynamo models,
estimates of the velocity field in the outer core according to the frozen-field theory,
and the penetration of harmonic modes of the magnetic field through the mantle
(geomagnetic induction).

Several authors (e.g., Munk & Revelle 1952, Lambeck & Cazenave 1976,
Jochmann & Greiner-Mai 1996) have shown that atmospheric processes can ex-
cite only a small part of decade ALOD and have suggested that the larger part
must be attributed to processes within the earth core, which influence the earth
rotation by exciting core-mantle coupling torques on.the mantle. This sugges-
tion is based on the strong correlations between ALOD and the geomagnetic field
variations for periods of about 20, 30 and 70 years.

The hypothesis that the electromagnetic core-mantle coupling is responsible for
the length of day variation has been suggested implicitely first by Bullard er al.
(1950) and more thoroughly first by Rochester (1960). He proves that Lorentz
torques of sufficiently high magnitude (about 10'” Nm) on the mantle can be pro-
duced if the mean conductivity in a spherical shell of 2000 km thickness enclosing
the core is in the order of 100 Sm™.

A different type of coupling is the topographic coupling based on the interaction
between the velocity field of the outer core and the irregularities of the CMB.
Estimates of the associated pressure torques (about 10'® Nm) indicate that they
may be responsible for the variation of polar motion but are too large for ALOD
(e.g. Hinderer et al. 1990; Jault & Le Mouél 1990). The electromagnetic coupling
torques are conventionally calculated from the (non-potential) geomagnetic field
within the mantle. The pressure torques are derived from the velocity field of the
outer core, which can be estimated using the frozen-field approximation of the
induction equation of the outer core (e.g. Backus 1968; Braginsky 1984; Gire &
Le Mouél 1990; Whaler & Davis 1997). A review of coupling mechanisms is
given by Le Mouél, Hulot & Poirier (1997). The toroidal part of the geomagnetic
field within the mantle determines an important part of the electromagnetic
torques, but it cannot be observed on the earth surface. However, boundary values
of the toroidal field according to field advection can be inferred from the velocity
field at the CMB (e.g. Stix & Roberts 1984). Thus, the poloidal geomagnetic
field at the CMB enters both types of torques considered and must be known there
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as accurately as possible.

The determination of the poloidal magnetic field in the mantle requires the solu-
tion of a parabolic partial differential equation, which is derived from the vecto-
rial induction equation. The necessary boundary conditions are connected with
magnetic observations on the earth surface. Traditionally, this problem is stud-
ied for a prescribed profile of the electric mantle conductivity and assuming a
periodically oscillating field on the earth surface. The assumption of periodic be-
haviour replaces the inital condition which is normally required in the solution of
the parabolic differential equation. If fields with non-restricted time-behaviour are
to be studied, then a full initial-boundary value problem has to be solved, i.e. the
initial condition may not be dropped. However, the determination of the poloidal
magnetic field is not a standard initial-boundary value problem as there are only
data observed on one boundary (earth surface), but not on any other interior sur-
face like the CMB. Therefore, this task can be classified as an inverse boundary
value problem for a parabolic partial differential equation. (From other points of
view it is also synonymously addressed as non-characteristic Cauchy problem or
non-harmonic downward field continuation, respectively.) In contrast to this prob-
lem, the term "forward problem” is used if a standard boundary value problem is
given, i.e. input data on both boundaries are assumed to be known.

For a simple radial dependence of the mantle conductivity, oy ~ 1%, and a pre-
scribed time dependence (e.g. periodic) of the magnetic field, analytical solutions
of the forward problem were given, e.g., by McDonald (1957) and Smylie (1965).
Instead of analytical methods, numerical methods are also be applied in the for-
ward problem if the distribution of the conductivity is more complicated, e.g., as
given by Rikitake (1973) and Shankland, Peyronneau & Poirier (1993).

Investigations and solutions related to the inverse boundary value problem (the
downward continuation of the poloidal magnetic field) are involved in those meth-
ods which were developed for the calculation of electromagnetic core-mantle cou-
pling torques or fluid outer core motions from magnetic surface data. For calcu-
lating the field on the CMB which enters into in the coupling torques mainly a
perturbation method was applied. It replaces the unknown time derivative by a
given time function. The unperturbed field is then the time variable geomag-
netic potential field continued to the CMB, the perturbed field must be derived
from the mantle induction equation according to the given time variations of the
unperturbed field. The perturbation method is described, e.g., by Braginsky &
Fishman (1977) and Benton & Whaler (1983). Greiner-Mai (1987, 1993, 1995)
has continued these investigations with special emphasis on the consistency of the
electromagnetic core-mantle coupling with ALOD for particular periods (e.g. the
nearly 30-year period). Other authors - Gubbins & Bloxham (1985), Bloxham &

4
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Gubbins (1986), Bloxham (1989), Bloxham & Jackson (1992) and Holme (1998)
- who use the potential (harmonic) downward continuation, gave CMB-fields so-
lutions partly combined with fluid outer core motion determinations using, e.g., a
stochastic inversion procedure. Voorhies & Nishihama (1994) considered differ-
ent conductivity models and searched for common least squares solutions for the
magnetic field and the velocity in the fluid outer core.

Because of the fact that the inverse boundary value problem is severely ill-posed,
the theoretical and numerical instability should be taken into account in any case.
Therefore, considering the noise of the data and its spectral structure the selection
of a regularization strategy is necessary which forms the basis for a stable solution
procedure. In this connection the close analogy with the inverse heat conduction
problem (in the mathematical literature often referred to as the non-characteristic
Cauchy problem) is helpful. Some approaches and numerous results can be found,
e.g. in Dinh Nho Hao & Gorenflo (1991) and Reinhardt & Seifarth (1993).

Besides the geophysical implications of the problems addressed here, the compre-
hensive mathematical aspects are of interest. These have been studied intensively
since the end of the fifties particularly in terms of the inverse heat conduction
problem and semi-conductor or other material research important, e.g., for heat
effects on spacecraft or in steel production. A common problem in geosciences
is the problem of field continuation. It includes not only the determination of
the poloidal magnetic field in the lower mantle and on the core-mantle boundary
but also such problems as the geodetic boundary value problem, the downward
continuation of the gravity field, the analogous problems for the static geomag-
netic field and also geothermal problems. Common to all these problems is the
instability due to the compactness (“smoothing property”) of the ruling integral
operator. A unifying mathematical view of these problems is provided by modern
mathematical frameworks.

With respect to consistency, the problem of the core-mantle coupling appears as a
multifold and coupled inverse problem which can be also understood as part of the
general inverse problem of the earth rotation (Ballani 1987). The parameters of
the coupling model are not prescribed but have to be estimated by comparison of
the electromagnetic torques with those necessary to excite the observed ALOD.
This inverse problem can only be solved stepwise by including additional informa-
tion about the parameters of the model, e.g. from additional geophysical processes
or from parameters estimated by laboratory experiments.

In this paper, one part of this general inverse problem, the non-harmonic down-
ward continuation of the magnetic field to the CMB, is solved numerically.

On the basis of results found in the literature we develop an adapted solution pro-
cedure (for an outline see Ballani, Greiner-Mai & Stromeyer 1995) which bases
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on an inversion approach in geothermics (Stromeyer 1983, 1984) and which in-
cludes some of the theoretical elements presented in, e.g. Eldén (1983). Some
recent fundamental statements on stabilization are added.

After the introduction into basic physical and mathematical problems (sections 2.1
and 2.2) we give some insight into the theoretical properties of the non-harmonic
downward continuation (section 3.1) and continue with the mathematically sup-
ported description of the numerical solution method (section 3.2). The method is
applied to some models of conductivity connected with a supposed layering near
the core-mantle boundary. The results are time series (one spherical harmonic
mode) and the (5,5) radial field component of the poloidal field on the core-mantle
boundary (section 4). The study concludes with a discussion of the properties of
the procedure and the results obtained (section 5). In the appendices A and B an
example for the analytical solution of the forward problem, and, connected with
this, some remarks on the analytically formulated inverse problem are given.
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2. BASIC ASSUMPTIONS AND EQUATIONS

2.1 Basic model

First, the mantle is modelled by a rigid shell (figure 1) with the outer radius Ry
(mean Earth radius) and the inner radius R. (core radius).

earth surface

fluid outer
core

solid
inner core

Figure 1: Geometrical assumptions in a spherically symmetric conducting earth
model. o(r) is the electrical conductivity, Ry = 6370km, R, = 5400km, R, =
3400km.

The mantle conductivity, oy (r), 1s assumed to be a function of the radial distance r
with oy # 0 for R < r < R, and oy = 0 for R, < r < Rg. The two analytical
dependencies on r considered for R, < r < R, are given by the semi-conductor
formula and its first Taylor term, respectively

r — R
onr) = avexp (—a |—|), (1)
Re
Re\“
om(r) = oo (T) ) (2)
7
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where oy is the mantle conductivity at the CMB (r = R.) and « is the parameter
determining the decrease of the conductivity with increasing distance from the
CMB.

Crude bounds on the values of the parameters can be obtained from geomagnetic
induction studies. Rotanova et al. (1985) used the 30- and 60-year periods of
the secular variation to determine the parameters v and o in (1), and obtained
values of « of about 6-8 and values of oy between 1500 and 4000 Sm~!. The
parameter determining the magnitude of the electromagnetic torques is the ratio
op/a. According to Stix (1982) the ratio o/ must be in the order of 100 Sm~! for
the electromagnetic coupling. He suggested that high values of both parameters
a and oy are optimal, i.e. models are prefered in which the mantle conductivity
is concentrated in a thin shell near the CMB. Stix & Roberts (1984) and Greiner-
Mai (1987, 1993) found that the magnitudes of the electromagnetic torques are
consistent with LOD variations if g = 3000 S m~! and o = 30, i.e. op/a =
100. Greiner-Mai (1995) reduced the value of this ratio to about 30 by fitting the
electromagnetic to the mechanical torques considering both the influence of the
atmospheric excitation of ALOD and longer time series. However, the value of
oM in the lower mantle is still under discussion (see also section 4.1).

Second, the Earth’s core is assumed to be a "black box™ in which the geomagnetic
field is maintained by a dynamo process. The objective of our investigation is to
determine the output of this "black box”, i.e. the geomagnetic field at the CMB
from observation at the Earth’s surface. The penetration of the magnetic field
through the mantle can be studied by forward methods for particular values of oy
and .

Third, the solutions of the mantle induction equation are derived for the poloidal
magnetic field, By,. This is the part of the magnetic field that can be observed out-
side the spherically symmetric conductor. The other part, the toroidal field is not
considered in this paper. It can only be indirectly determined by a physical model
of a process which involves the toroidal part, e.g. by comparison of the electro-
magnetic and mechanical torques derived from ALOD. Fortunately, the equations
for the poloidal and toroidal parts are decoupled for a radially distributed man-
tle conductivity. We use the representation of the field by poloidal and toroidal
scalars. Thus, the vector induction equations (3) and (4) shown in the next sec-
tion can be transformed into two scalar equations, from which the poloidal induc-
tion equation is considered (for references see, e.g., Krause & Ridler 1980). The
poloidal scalar field, S, is presented by a spherical harmonic expansion, whose as-
sociated coefficients, S2 (1, t), are called (poloidal) harmonic modes. The spec-
tral range, considered here, comprehends the decadal time variations.
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2.2 Basic equations

The magnetic induction equations can be derived from the Maxwell equations by
substituting for the current density and the electric field strength the magnetic flux
density B and its time derivative, respectively. The vector induction equations are
then given by

curl [(poom) ‘curl B] = —-B, R.<r < Ry, 3)
curl B = s > Hae 4)
div B = 0, Vr, (5)

where 19 is the permeability of free space. The boundary conditions at r = R,
r = R, and r = R are the continuity of the flux density, Bt = B~, where the
signs 4+ and — denote the outer and inner side of the boundary, respectively. For
spherical symmetry of oy and a solenoidal field (div B = 0), the flux density
can be decomposed orthogonally into toroidal and poloidal parts by

B = Bt + Bp (6)

with
B, = curl(rT), (7
B, = curlcurl (rS). (8)

The scalars are normed on the sphere by
@de -0 and SésTdcb =0, di=snddddy .

For the poloidal scalar S, the induction equations thus have the forms of the diffu-
sion equation and the Laplace equation, respectively (see, e.g,, Krause & Ridler
1980):

(toom)'AS = S, Re<r<R, 9)

AS = 0, r > R,, (10)

where A is the Laplace Operator. The boundary (interface) conditions are given
by the continuity of S and its radial gradient according to the continuity of the
radial component and the tangential components of the flux density, respectively

(see eq.(15) below).
A setup for the scalar function S by means of spherical harmonics given by

S=Y" (Siu(r,t) cosmep + S, (r,t) sinme) Ppm(cosd) (11)
9
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corresponds to a separation of the form f(r, t) - g(1J, ¢). Using the orthogonality
of the spherical harmonics, we obtain from egs. (9) and (10) the fully decoupled
one-dimensional induction equations for the harmonic modes S&5, (1, t):

DuSin = HooumSpy, , Re<r <R, (12)
D,S = 0, ¢ >Ry, (13)
where the operator D,, is defined by

d? 20 n(n+1)

D, = — ot SR e il MLs
" or? 4 r or r2 ¢
The interface conditions at r = R, are
17, ad
(5T - c,s \— ~ .Qcs 1+ — G c,s =, 15
(Sn"l) (S]'Im) L) [ar lSﬂ.ﬂ] [ar I-Sl'll'ﬂ] ( )

Eq. (13) is fulfilled with the usual potential solution for the field outside a conduc-
tor which is regular at infinity. From this solution the associated modes C¢& (t)
are defined by ¢

Sem(,t) = CR(t)r™ ', r >R, (16)
The geomagnetic potential V and its secular variation on the Earth’s surface
r = Ry are derived from the scalar S by V = —%(rS). The geomagnetic po-

tential is conventionally given as an expansion into spherical harmonics, whose
coefficients are known as Gauss coefficients g,,, and h,,, (Mauersberger et al.
1959). Therefore, we obtain on the Earth’s surface

1 y ) 1
C::llll(t) = H gﬂm(t) /\nm R;}J+Z: C:m(t’) = H hﬂm(t’)’\llm R'[[:‘,+23 (17)

where A, are the Schmidt’s normalization coefficients defined by

1/2
) s

/\nm == ((2 - 60!1])

with d; Kronecker symbol. Solution (16) then determines the field outside the
conducting part of the mantle in dependence of the Gauss coefficients, hereafter
sometimes called data. The conventional harmonic downward continuation of the
radial field component B, can be obtained by substituting (16), (17) and (18) into
(38) below (section 4.2).

It follows also from eq.(13) that the secular variation field can be obtained via
the time derivatives, i.e. S&3 = C& r~"=1 with C%3 calculated by the secular
variation coefficients, g, and Ry, instead of the Gauss coefficients. Thus, the
boundary values of the harmonic modes and their time derivatives at r=R,, can be
derived from the solution (16) in dependence on the Gauss coefficients and their

time derivatives as given in the literature.

10
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3. SOLUTION OF THE INVERSE BOUNDARY
VALUE PROBLEM

3.1 Basic properties of inversion

Let us return to the scalar induction equation (9). It can be decomposed into de-
coupled one-dimensional parabolic partial differential equations (12) describing
the diffusion of the harmonic modes S&f (r,t) of S(r,t) through the electrically
conducting spherical shell of the earth mantle. Dropping all subscripts and super-
scripts to simplify the notation (replacing S{*¥ = u) the inverse boundary value
problem for the determination of u(R, t) can be formulated as follows:

o*u  20u  n(n+1) du
O ' 3 Re<r<Ry,, 0<t<T
or? ¥ r or z Hoou (1) ot '’ =

with boundary conditions
u(Rs,t) = B(t),
ou n+1
—_— t 1) =
B (Ro,t) + R, u(Rg, ) = 0 (19)

and an initial condition

The first boundary condition is directly connected with the geomagnetic data on
the earth surface, while the other one is derived by the second continuity condi-
tion in (15) applied to the transition between the non-conducting and conducting
mantle shell. The boundary values in (19) are given only on one side of the radial
interval in contrast to the stable (properly posed) standard two-side boundary-
value problems. There is a slight difference between the heat or diffusion problem
and our case concerning the position of the temporally and/or spatially variable
coefficient functions in the differential equation. However, this is only of nu-
merical importance as long as extreme situations (nearly vanishing or unbounded
coefficient functions) can be avoided. Modern theory for the inverse heat conduc-
tion problem provides results which allow wide classes of coefficient functions
with only weak assumptions. The rigorous mathematical study of the considered
inverse problem (19) requires its embedding into well defined function spaces.
With appropriate specifications of those spaces, statements on correctness, i.e.
existence, uniqueness and stability can be derived. The first two points can be
usually satisfied (e.g., Tsutsumi 1965, Knabner & Vessella 1987, Dinh Nho Hao
1995).

11
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The instability of the problem has to be considered in greater detail. This
is because several aspects are involved: data spacing, spectral contents, data
errors, theoretical stability estimates and reconstruction behaviour, numerical-
algorithmic processing and geophysical constraints. The main two reasons for
the instability can be seen better if the inverse problem in the formulation (19) is
transformed into a Volterra integral equation of the first kind (see (33) and (34)
below): First, the compact integral operator has smoothing properties. Second,
the unknown function cannot be reconstructed for time points near the end of the
time interval (effect of convolution property). Third, some direct influence on the
instability comes from the effect of the magnitude of the electrical conductivity
as a coefficient function in the differential equation. The spectral aspect of the
instability, i.e. the increasing amplitude of periodic parts is discussed below in
appendix B.

Stable inversion can be forced mainly by means of constraints on the solution
set. There are two possibilities which are studied here: Stability estimates and
Tikhonov regularization. .

A stability estimate describes the influence of the error bound € of the data ¢(t)
(here the boundary values)

Iplls < €

and an a priori bound E for the solution u
lull, < E

on the solution of the inverse problem by means of an estimate of the following
type:

Julla < C (e, E) . (20)
The effect of the bound E is a selection of solutions, for which the stability
estimate directly represents the local continuity of the inverse operator. In the
case of linearity, the function u appearing in this estimate (20) can also be
replaced by differences of functions, so that the estimate can also be interpreted
as the effect of the data error (exact data minus real data) on the disturbance (or
error) of the solution (exact solution minus disturbed solution). These stability
estimates can be found in the literature derived for the different situations: the
function intervals considered (finite, half-infinite, infinite), the type of smoothness
of the coefficients in the differential equation and the various norms or seminorms
which reflect the smoothness of the solution itself.

Because the assumed conductivity models to be tested cover a wide range of mag-
nitudes and are presented by different function types, their influence as a coef-
ficient in the induction equation with respect to stability should be checked first

12
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theoretically. Let us briefly outline a general stability result from the literature
(Knabner & Vessella 1988):

For the partial differential equation

0%u du du
p— — = — < >
o T b(x) — + c(x)u 5 0<x<L, t>0 (21)

Ox
having sufficiently smooth coefficients a(x), b(x), ¢(x), c¢(x) <0,
with boundary conditions u(0,t) = ¢(t), %u(o,t) =0, t>0,
and the assumptions ||¢||2 < € (data) and |[u(L,.)||» < E (solution),
and with the abbreviation

a(x)

X

A(x) :=/a(s)‘1/2ds

0

the stability estimate of Holder type
lu(x, )|z < CelAR/AL)(AR/AL) L AK/ALY - g<x <L, C>0 (22)

can be derived.

Because (19) is a special case of eq.(21) we find from (22) after some simple

calculations ,

AW = [ (roow () 2dr, Re<r <R, (23)
Ro
Thus, (23) and (22) describe the influence of the electrical conductivity o on the
error behaviour in the interior of the radial interval.

It is also of some interest that the assumption on the smoothness of the “leading”
coefficient a(x) can be considerably relaxed without changing the validity of the
estimate. Therefore very general bounded functions, including step functions for
the conductivity function o(r) are allowed. Stability estimations even exist, if a(x)
is only approximatively known. A further important point is: Only this leading
coefficient of the differential equation (21) has to be considered as an exponent
for the bounds E and € in the Holder type estimation.

It is important to mention that thege exists one exception of the validity of (22):
the (right) inner point L of the radial interval corresponding to R, is excluded,
which is just of prime interest for our problem. To get stability estimates there at
all, stronger bounds on the solution in this point are necessary. These are given by
bounded radial or temporal derivatives of the function u(r, t). In every case (with
bounded radial and bounded time derivatives) the resulting estimate is no longer
of the Holder type but of the much weaker logarithmic type.

13
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Stability estimates using a bound for the radial derivative %%(1', t) < E can be
found in (Knabner & Vessella 1987). However, the radial function behaviour can-
not be accounted for in our approach because the input and output in the integral
equation are pure time functions. From a physical point of view (smoothness
constraints on the radial derivative of the unknown function on the core-mantle
boundary), it may even be reasonable, to construct an algorithm working with the

derivative of the function instead of the unknown function itself.

The problem of bounding the temporal behaviour of the solution on the core-
mantle boundary by using different degrees and types of derivatives to get sta-
bility estimates (e.g. Engl & Manselli 1989; Manselli & Vessella 1991) directly
corresponds to our integral equation approach. However, as the time function to
be determined exists at the lower bound R, of the radial interval, as mentioned,
the stability estimates which can be reached are of much poorer quality than for
any interior point of the radial interval. To demonstrate the characteristic features,
we give two examples with different norms for the a priori bounds and for the
stability estimate:

(1) The following general theorem (Manselli & Vessella 1991) shows clearly this
logarithmic estimate under relatively weak assumptions on the function u and the
coefficients of the partial differential equation, which in our application are only
needed as radially variable functions (19).

Theorem:

Let u be a solution of the parabolic equation

0*u du du
e a(x, t)a + b(x, t)a +c(x,t)u (24)
. da 0db _—
with (x,t) € Q:=[0,L]x[0,T] and a,b,c, 5t I bounded functions in Q.

d :
We assume that fore > 0 |u(0,t)| <e and |a—u(0, t)] < L7'¢ are satisfied
X

and, with the a priori bound E > 0,

L, ty) —u(L,t
m&x|u|—|—T03up [u(L, ta) — u(L, t)]

Te—T <E is fulfilled for some @& € (0,1).
t) #ta P |

Then, for a fixed 7 € (0,2/30), there exists a constant ¢; such that the estimate

[u(L,t)] < |loge|™™ holdsif € < €. (25)

14
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(2) For the problem with the simpler differential equation

2
%:g—?, 0<x<1, %(O,t)zo,teR, (26)
with u(0,t) = g(t) given and u(1, t) = f(t) unknown,
the L, norm-bounds for the data ||g||; < € and the solution [|f||, + [|%]|; < E
respectively, yields the following result (Engl & Manselli 1989) :
For n > 2, there exist numbers K,,, with lim,_,,, K,, = oo, and exponents /3, with
lim, 00 A = 0 such that the estimate

I£(t)] < Ka 0<t<T (27)

holds.

These logarithmic estimates show that the data error’e (or the difference between
exact and disturbed data) can be estimated for the corresponding solutions within
the order O(1/log(1/€)). However, the constants involved are difficult to calcu-
late, the influence of the coefficient functions of the differential equation (e.g. the
electrical conductivity) can no longer seen explicitely as in the Holder estimates
given above, and they only provide a very raw error budget valid near the interval
end.

The other possibility for a stable inversion, applied here, is the method of Tikhonov
regularization. The principle of regularization is to change the mapping from the
data to the solution from an operator of first kind to a more stable operator of
second kind, i.e., the problem itself is changed to enable a controlled inversion.

Fundamental results on regularization with many details are published, e.g. in
Plato (1995), Engl, Hanke & Neubauer (1996) and Hansen (1992, 1998).

The method of Tikhonov regularization, which is applied here (in a specific
Tikhonov-Phillips variant, see section 3.2) to find solutions in a constraint so-
lution set, consists in constructing a solution f by weighted minimization of the
following quantity via a suitable choice of the parameter A

ALy = lla + A[IL(Ex — )15 (28)

The norms ||.|| or seminorms ||.||s and the smoothing functional L have to be
specified. While the first term in (28) measures the data approximation at R,, the
second term accounts for the smoothness of the solution at R.. The quantity f*
means an initial guess.
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We do not use the regularization in this general form in our procedure. There
are other regularization variants that are nearly equivalent to (28) (e.g. Hansen
1992,1998). From these we use that type which accounts especially for the data
error:

min||L(fy — *)||s subjectto ||Afy — ¢|la = €. (29)
Thus, a value of f, with optimal smoothness on the core-mantle boundary must be
found approximating the data within a fixed error range.

In order to have a criterion for the regularized solutions, the so-called L-curve
analysis, measuring the typical trade-off between solution smoothness and the
degree of approximation to the data, is applied: The two contributions to the error
parts, i.e. the approximation to the data and the degree of smoothness of the
solution, have to be balanced.

The regularization method provides convergence even on weaker assumptions
than those imposed for stability estimations discussed above. To prove and to
reach convergence, some smoothness assumptions and bounds (specified below)
combined with adapted parameter choice strategies are also necessary.

There are some useful results for our problem which take into account bounds
on f and f, where f means the time derivative of f. Engl & Manselli (1989)
show, that for the non-characteristic Cauchy problem (26) and for different de-
grees of smoothness for the solution f(t), its reconstruction from noisy data g,
lle — gl < e, is possible with a reconstruction error which depends Hélder-

continuously on the data error €. The exponents between 1/2 and 2/3 depend on
the smoothness assumed for the solution.

The results are L, convergence
AMe) ~ e |Ifxe — fllL, = o(e?)...0(e*?) (30)
and uniform convergence

Ae) ~ e fyo(t) —£(t)] = 0(e'?)..0(3), 0<t<T. (3l

For the derivative f, there was also Ly convergence found. If the second term in
(28), responsible for the smoothness of f, is chosen as pure L, norm without any
further smoothness assumption for fy(,), L, convergence can still be proved, but no
longer pointwise convergence and convergence of the derivatives. These results
refine and enlarge the logarithmic stability estimates shown above.

In the inverse problem (19), an initial condition u(r,0) = 1(r) has been included.
This is, however, not necessary for a sufficient amount of data or in other spe-
cial cases. Then this condition may be dropped (Dinh Nho Hao 1995; Reinhardt
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& Seiffarth 1993). In general, the initial condition is a weak point in the solu-
tion procedure because it introduces some degree of arbitrariness whose effect is
strongest at the beginning of the reconstruction time interval.

Regarding the mathematical assumptions it should be kept in mind that these as-
sumptions should be supplemented by physical constraints consistent with the
degrees of freedom of the mathematical problem.

A practical aspect is that the measured data are always finite and discrete. For
them, all function norms are equivalent and thus arbitrary estimates between these
norms with suitable constants are possible. However, theoretical considerations
of the continuous case, as given here for stability estimates and regularization,
are nevertheless justified to guarantee stability in the limiting case: the density
of the data can increase and more and more disturbing higher frequencies can be
caused by uncontrolled noise.

3.2 Construction of the solving algorithm‘

Recently, for the solution of unstable non-characteristic Cauchy problems, several
regularizing procedures have been developed and applied: Mollification, hyper-
bolic regularization, solution of integral equations of the first kind, variational
methods and sequential regularization (for overviews see, e.g., Dinh Nho Hao &
Gorenflo 1991 and Reinhardt & Seiffarth 1993).

We have constructed a method which combines elements of two of these pro-
cedures: We study the inverse problem for the differential equation (19) in the
equivalent form of a Volterra integral equation of the first kind and solve an op-
timal control problem (a variational method) for the unknown boundary function
(“boundary control”):

The quantity ||¢(.) — u(R,,.)|| is minimized, where u is the solution of (19).

|I.|| is any fixed norm. ¢(t), 0 < ¢ < T, is the boundary function which is known
on R,. The unknown boundary function u(Rc, .) is considered as the control.

The algorithm starts with a shifting standard transform for (19): A stable boundary
value problem is solved so that 1(r) = 0 (initial condition) is fulfilled.
Having modified the problem in this way, we want to specify the existing linear
relationship

A: 8 = I (32)
between the known boundary data function ¢(.) on R, and the unknown function
f(.) == u(Re,.) on R,.
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Only for very simple cases (e.g. o (r) = const.) the kernel k(7) in (33) below can
be directly determined from the differential equation via an integral (e.g. Laplace)
transform technique. Then, the Volterra integral equation of the first kind

o(t) = [ k(- ) fr)dn (33)

can be obtained in explicit form. The convolution kernel k(t) is analytically
known and can be described by an infinite series (Eldén 1983).

However, in our case with o (r) # const., i.e. for a partial differential equation
with locally variable coefficients, the situation is more ditficult. We know only that
the corresponding relation is still given by an abstract linear operator equation of
the first kind

¢ = Af, A Volterra integral operator, (34)

but we cannot specify the kernel explicitely. However, it is known that this type
of operator can be replaced by a finite dimensional approximation. Thus, we
introduce a time discretization {t = t;,i = 1, N} and approximate the unknown
boundary function f(t) by an appropriate set of base functions ey (t):

N
f(t) = > fiex(t). (35)
k=1

These steps contain some degree of freedom to account for physical constraints
and also to restrict the resolution and to coarsen the final time discretization. With-
out loss of generality we adopt the simplest choice for the base functions:

ex(ti) = 0. Then a matrix (a;) describing the linear relationship and approxi-
mating the operator A in (34) can be determined in the following way: With the
boundary functions

ou* 1
- (Rayt) + “I;“ Ry, t) =0,  u*(Ret) =ex(t), k=1,...,N,
r a
(36)
a stable solution of the differential equation (19) can be found. This determines
the kth column of (a;), so that the whole matrix is given by

(ay) = W*(Rg, t;), i=1,...,N, k=1,...,N, (37)

Because of its Toeplitz structure due to the convolution kernel, it is only necessary
to calculate the first matrix column (k = 1). The other ones (k = 2, ..., N) then
are generated by shifting their elements downward iteratively, which results in the
known triangular matrix structure. The implementation of this step thus requires
only the numerical solution of one stable problem for the first matrix column.
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Having the matrix (a;) determined, the regularization procedure (the boundary
control process) can be started. For our purposes, it is the proper inversion pro-
cedure with some degrees of freedom left which may be used to account for the
geomagnetic aspects of the problem. The inversion algorithm is based partly on
some tools found in (Hansen 1992,1998) connected with the theory described in
section 3.1. Thus, our approach can be adapted to the special problem considered.
The algorithm ends with a standard transform which restores the original initial

condition.

19

Scientific Technical Report STR 99/12 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-99127



4. RESULTS

4.1 Used magnetic data and electrical conductivity models

The magnetic input data given on the earth surface are the Gauss coefficients
Znm, nm Of the geomagnetic potential field (see eq. (17)). With the geomagnetic
potential V (section 2.2) given on the earth surface, the link to our parabolic differ-
ential equation is given via eq. (16). By this relation, the scalar quantities and the
radial derivatives in (15) for R,, which are necessary for the boundary conditions
¢(t) in (19), can simply be calculated by means of the Gauss coefficients.

A comparison between the Gauss coefficients for the time interval beginning in
1550, which were determined by different authors, is given, e.g. by Mauersberger
(1952). But for the downward continuation we use time series beginning in 1900
for reasons of accuracy. Before this date, there are too many contradictions be-
tween the time series proposed by different authors. In addition, because of non-
regular and wide spacing, it is impossible to get sighificant spectral estimates.
As an example of the situation, the Gauss coefficient hy,(t) is shown in figure
2 (see next page). The time span comprehends the whole measuring period and
that interval which starts at the beginning of this century which is used for our
calculations.

The series after 1900 were calculated by an integration procedure from the sec-
ular variation coefficients of Hodder (1981) so that two year spaced series from
1903 to 1975 resulted. These time series were extended by IGRF (International
Geomagnetic Reference Field) values until 1987 giving data at 43 time points to-
tally. By using these series, periods between about 10 years and slightly more than
30 years can be estimated. For the study of the 60 to 80-year periods, the series
should be longer by about 50 years.

Another aspect of the data to be addressed here concerns their errors, which are
difficult to estimate. Comparing different references it is reasonable to assume
that there is a monotonous decrease of errors (perhaps from about 100 nT down
to 10 nT) for the interval from 1903 until 1987. This order of magnitude (the
decrease by a factor of 10) can also be found for the Gauss coeficcient gg; in
(Bloxham & Jackson 1992). The incompletely known error of the data on the
earth surface is the most important reason for the necessity of studying stability
estimates and stabilizing the solution by a regularization process.

The electrical conductivity of the mantle as prescribed input quantity in our al-
gorithm is, especially for the lower mantle, not well known and a subject of con-
tinued discussion. The traditional analytic forms (power law or exponential law
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hy, [103nT]

O = N WHAULADdo OO

The complete time series beginning The truncated time series beginning
in 1550 (all authors and methods) in 1900 (Hodder 1981, IGRF)

5.90[

5.801’ 7

hy; [103nT]

5.401 :

1600 1700 1800 1900 2000 19060 1920 1940 1960 1980
calendar years calendar years

Figure 2: Example of a magnetic data time series: The Gauss coefficient hy; (t)
of the spherical harmonic expansion of the geomagnetic potential field (left di-
agramme: all values available according to Barraclough (1978), Hodder (1981),
IGRF).

formulae, cf. eqs. (1) and (2)) are largely consistent with the deep earth interior
material investigations (semi-conductor property of the material, high-pressure
experiments). During the last decade, the studies resulted in curves monotoni-
cally increasing with depth in the mantle and ending with values of only some
Sm~! at the core-mantle boundary (e.g. Poirier & Le Mouél 1992; Shankland,
Peyronneau & Poirier 1993). But with these values, the electromagnetic coupling
torques are not sufficiently high (e.g., Holme 1998). However, the D” layer at the
bottom of the mantle supposedly consisting of core-infiltrated material with about
100 km to 200 km in thickness and a conductivity of up to 4000 Sm~! could
generate the lacking torque. This layered conductivity can be modelled by a step
function. Of significance to our study is also the large range of magnitudes of the
assumed mantle conductivity. This is one reason for some destabilizing influence
on the numerical solution of the inverse boundary value problem which exists in
addition to the inherent theoretical instability. One advantage of the numerical
algorithm used is the possibility to work with arbitrary conductivity distributions.
In particular, there is no problem with (bounded) radial discontinuities. Thus, our
algorithm agrees with the theoretical assumptions and estimates which guarantee
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stability for a wide range of coefficient types in the differential equation. By this
it is possible to study the effects of simply structured conductivity layers near the
core-mantle boundary. An interesting additional application, to study the effec-
tiveness of our downward continuation algorithm, concerns the field behaviour in
a proposed passive upper core layer in the fluid outer core which is locked to the
mantle and in which the conductivity jumps into the 10> Sm~! range (see, e.g.,
Lister & Buffett 1998). This causes an instability (severely ill-conditioned matrix
in the algorithm, see next section) which is nearly out of numerical control.

Of course, also the non-conducting (harmonic) case o, = 0 should be favourably
treated with the stabilizing algorithm. This is because the algorithm can account
for the influence of the data noise and stabilize the solution.

The partial oy models used here are given in table 1.

Conductivity Model 1

upper main lower lower mantle’s  * passive upper
mantle mantle D” layer core layer

r>R, | Re+200km<r <R, | Re<r <R+ 200km Re = 50km <r < R

om=0|om,(r)=10 Sm“'(%‘)"’ oM, (r) =3 x10*Sm™ | opu(r) =2 x 10° Sm™!

Conductivity Model 2

£ Ry Re +3km <r <R, Re <r < R¢ + 3km Re — 50km < r < Re

om =0 | on,(r) =10Sm ™ (B2)5 | op, (1) =2 x 10°Sm™" | opu(r) = 2 x 10° Sm™"

Conductivity Model 3

om =10 om =0 om =0 I

Table 1: Models of the mantle conductivity oy (r) used for numerical calculations,
R, = 5400 km and R, = 3400 km. The fields are calculated at the CMB and at
the bottom of the passive upper core layer, respectively and are compared with the
harmonic downward continuation (Model 3).
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4.2 Downward continuation of magnetic field components

In this section we consider how the downward continuation algorithm works,
which modifications and criteria are possible and which mathematical or numeri-
cal features are obtained. As our “model” component and boundary function ¢(t)
in (19) we choose the data function hy;(t) (Gauss coefficient) from the spherical
harmonic expansion of the geomagnetic potential V at the earth surface. Curves
for hy, (t) are presented in figure 2. As has been mentioned in section 4.1 a ho-
mogeneous error evaluation for each time point of the data series does not exist.
Thus, as a first estimation, the minimum amplification of errors can be obtained by
looking at the harmonic downward continuation giving a factor of at least 13 for
n = 1. For the non-harmonic downward continuation, an error with an oscillating
behaviour would have to be estimated exponentially by means of the estimate (51)
(Appendix B). However, this raw estimate is already sufficient to get some insight
into the effect of the input data characteristics in the regularization procedure for
our ill-posed inverse boundary value problem.

The set of base functions ey (t) for the boundary function (35) is specified by self-
created triangle-like peak-functions to approximate the Kronecker symbol condi-
tion in the time points t;. The numerical integration of the stable two-side bound-
ary value problems with boundary conditions (36) to determine the Toeplitz matrix
A in eq.(37) is implemented by the conventional Crank-Nicholson algorithm with
a spacing for the radial interval of 0.2 km and time steps of 2 years corresponding
to the data given.

For the regularization according to (29) the norms are taken as

T 1/2
u(Re, Dl = (R, )l := ( [ (e, t)Pdt)
0
and for ||.||s the norms
ou
lu(Re, )2 and  Jlu(Re, Jllwy = [Ju(Re, Y2 + [l 50 (Re, )2

are applied which is adapted to the results for the stability estimations and for the
regularization. It should be pointed out that the derivative considered here in the
regularization by means of the W} norm refers to the time variable and not to the
spatial variable because the inversion approach constructed here applies only to
time dependent functions.

The values of the different oy models and some other parameters are given in
table 1. For the presentation of the results, we define the time functions h{M® and
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h‘l’}‘] as coefficient of the solution analogously to the harmonic continuation (16),
(17) as

1
R, — 50km

BCMB(t) — g8 (R,,t) and hP(t) =

— R— S?I(RC =5 50kll'l, t) y

respectively.

The resulting CMB-functions can be seen in the figures 4, 6 and 8 showing dif-
ferent cases of the regularized, downward continued magnetic field component
hCMB and h?}" calculated with the different regularization norms. To emphasize
the higher frequency structure and for better comparison, a linear trend was re-
moved. Clearly, the typical smoothness behaviour of the different norms is ob-
served, which, with a certain degree of freedom, can be selected corresponding
to the physical background. As expected, the regularization with the weaker ||.||»
norm results in more oscillating solutions. For comparison the downward contin-
uation is calculated also for the harmonic case (o (r) = 0), so that the influence
of the presence of the mantle conductivity and of its distribution can be studied.
In addition, the spectrally founded effect of amplitude amplification and phase
shifting appear in the figures, especially compared with the harmonic downward
continuation.

The solutions were calculated for two depth levels: First, the field is described on
the core-mantle boundary. In addition, as an experiment, the downward continu-
ation of the field component due to hy; (t) is presented for a second level (50 km
beneath the CMB) inside a supposed passive layer on top of the fluid outer core.
As the core-mantle boundary solution for oy, almost completely coincides with
the harmonic continuation, it is not shown. Thus, the effect of this conductivity
model at the deeper level (R, — 50km) is mainly due to the conductivity opu(r).
With greater depth and sufficiently high conductivity values the solution becomes
stronger modulated.

The degree and the quality of the data approximation at R, in the residual norm
I lla = |.]|2 according to the first term in (28) is shown for each solution (figures
5, 7 and 9). Considering the assumed time-dependent errors of the h,,-data for
the past, a compensatory matching 5% bound was fixed a priori.

At this point, it should be stressed that - concerning the significance of the solution
- the temporally middle section of each solution submits the best information on
the input data, the boundary values on the earth surface. The beginning of the time
interval is dominated by the influence of the arbitrary initial condition which was
taken here as the harmonic continuation. By means of the phase shift compared to
the harmonically downward continued solution this time interval can be evaluated.
The final part of the time interval is dominated by the regularization norm because
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the curve is forced to fulfill the corresponding minimum condition at the end of
interval and for this time interval no longer significant to the data on the earth
surface.

Moreover, for each regularized solution, the trade-off between solution smooth-
ness at R, and R, —50km (“solution norm”), respectively, and the data approxima-
tion achieved on the R, level (“residual norm™) is given using the “L-curves” (fig-
ures 10-13) (see Hansen 1992,1998). These are shown for the conductivity oy,
on both levels and generated by means of both stabilizing regularization norms.
In each case the ||.||; norm is used as residual norm measuring the data approxi-
mation at R,.

To characterize the properties and the limiting difficulties of the numerical proce-
dure a further criterion may be called: The condition numbers of the regularization
matrix A reach the order of 10" at the core-mantle boundary for the oy, solution
and 109, especially in the higher conducting case of the passive upper core layer
above the R.-50 km level. It has to be mentioned that, with conductivity val-
ues greater than those selected here, the regularization process can no longer be
numerically controlled.

In addition to the study of the temporal character of the non-harmonic downward
continuation by means of a single Gauss coefficient, the spatial behaviour and the
global effects can be demonstrated with the radial component B, of the magnetic
field covering locally spectral components of different degree and order. By means
of the Gauss coefficients gy, (t) and h,, (t) as boundary values taken up to degree
and order 5, the field component B, (r, t):

By ! > (Sgm(r, t) cosmp+S5,,(r, t) sinmep) n(n+1) Py (cosd) (38)

was calculated at the core-mantle boundary r = R, for two time points - 1930 and
1960 - belonging to the middle part of the interval between 1903 and 1990 - and
additionally for these time points at a depth of 50 km r = R, — 50km beneath
the core-mantle boundary (see figures 14-17). As conductivity models oy, and
opul (see table 1) were applied. Because of the differing data quality, it was nec-
essary to control the regularization of each component individually. The solution
presented here was calculated by means of regularization with the W} norm. The
comparison of our results with published CMB fields from other authors which
were calculated for nearly the same epochs should take into consideration that our
computations include the influence of the conductivity from the mantle and partly
also from the fluid outer core.

The properties of the time structure, which can be derived from the couples of
figures 14, 15 and 16, 17, respectively, confirm the results discussed for the down-
ward continuation of the single Gauss coefficient hy; (t) (increasing temporarily
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modulation with depth, a kind of integral influence of the electrical conductivity,
phase shifting and amplitude amplification). If we consider those figures which
concern the same time point but present different depths (e.g. figures 14 and 16
for 1930) the anomalies with their spatial details can be seen better, especially
those around the south pole and beneath Siberia. Analogous observations con-
cerning the spatial structure can be also made for 1960 (figures 15 and 17). From
these significant spatial modulations, it can be concluded that the velocity field in
the top layer of the fluid outer core must have finer scales with increasing depth.
Summarily, we find that highly conducting layers near the CMB can change the
continuation results compared with the harmonic downward continuation consid-
erably. This should have consequences for the physical quantities which are aso-
ciated with the magnetic field at the CMB.
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5. CONCLUDING REMARKS

The non-harmonic downward continuation of the magnetic field presented here
has consequences in two fields of investigation:

(A) physical parameters associated with the magnetic field and

(B) the further development of the inverse theory accounting for the uncertainty
of input data

Concerning (A) it is of high interest to know the magnetic field on the core-mantle
boundary and in the earth lower mantle in the decadal time scale. One reason is
the necessity to calculate the electromagnetic core-mantle coupling, with which
the correlation between Earth rotation and magnetic field in this time scale can
be explained. Our results suggest that computations of coupling torques by using
the regularization method in the downward continuation process and a sufficiently
high conductivity may lead to new aspects. In particular, the magnetic field on the
CMB is used for the determination of the velocity fields in the fluid outer core
(frozen-field theory) which plays an important role in the calculation of toroidal
coupling torques. The results derived from the non-harmonic downward continu-
ation procedure can be differ from those basing only on the harmonic downward
continuation of the magnetic field components.

Concerning (B) this problem of downward continuation is itself an inverse prob-
lem and, at the same time, part of a joint coupled inverse problem: As a down-
ward continuation problem it is connected with the assumptions on the conductiv-
ity model for the lower mantle. Because in our downward continuation problem
data are given only on one side of the radial interval and because nonvanishing
electrical conductivity in the lower mantle has been assumed, the corresponding
mathematical problem can be characterized as an inverse boundary value problem
which describes a non-harmonic downward continuation process. In this sense,
the presented approach for the solution of this inverse problem can be seen in the
continuity of papers by Benton & Whaler (1983) and Bloxham (1989), who used
a perturbation method or a stochastic inversion approach, respectively. We have
solved the problem more extensively applying more recent mathematical tools.

The formal identity with the inverse heat conduction problem (often also: non-
characteristic Cauchy problem) has led us to the construction of a regularizing
numerical algorithm for this severely unstable inverse problem. With this, it has
become possible to account for arbitrary conductivity models, for the composition
of the solving function by certain base functions (“boundary control approach”)
and for different solution strategies, i.e. the assumption of norm bounds on the
solution to reach a certain type of smoothness or to account for the degree of ap-
proximation to the data. The instability of the problem is not only influenced by
the conductivity function but also by the spectral content of the data. Especially
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because of the largely unknown noise of the older data - we use a nearly one-
hundred year time span - stabilizing estimates are necessary. These estimates,
given in the literature and adapted to our inverse problem, can be used to give
Hélder type error estimates inside the lower mantle depending on the smoothness
constraint adopted for the solution, an error estimate for the input data, and an
exponent describing the integral influence of the conductivity function. The nu-
merical construction of the time series of the magnetic field on the core-mantle
boundary is achieved via a regularization procedure for which, dependent on the
assumed smoothness of the solution connected with a parameter choice strategy
for the minimization, also theoretical approximation error results of Hélder type
exist. Because each regularization procedure - we apply a modification of the
Tikhonov regularization - combined with special norms gives somewhat different
results, only a “synoptic” view leads to an approximative impression on the solu-
tion behaviour. These aspects of instability and its regularization should also be
taken into consideration if the harmonic downward continuation is to be applied.

To evaluate the physical results, the background of the diffusion equation should
be kept in mind: Beyond of the question of smoothness, amplitude amplification
and phase shifting, which can be seen in the examples (figures in section 4.2) the
first and the last part of the reconstruction time interval should be excluded from
the interpretation.

Under these aspects, the epochs (1930, 1960) of the radial component of the (5,5)
core-mantle boundary field were selected (figures 14-17). This cutting of the time
interval for a physically significant interpretation and the derivation of parameters
of fluid matter velocity and coupling torques requires the search and the use for a
longer span of the magnetic input data base.

The method can be adapted to other questions, e.g. the further investigation of
the spectral characteristics or the field continuation into the upper layers of the
fluid outer core. But this application of our formalism is limited by the numerical
conditions. For reaching better error estimations of the magnetic field on the core-
mantle boundary, it is neccessary to find more adequate time dependent error bars
for the Gauss coefficients g, and h,,, for the beginning of the time interval and to
have a theory which estimates the effect of time dependent errors on the construc-
tion of solutions of the unstable non-characteristic Cauchy problem.
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APPENDIX A

An example for the analytical solution of the forward problem

In this appendix and the next one, we are concerned with the analytical solution
of the forward problem (standard boundary value problem) and will describe the
characteristic difficulties of the inverse problem. We adopt eq.(2) for the conduc-
tivity distribution in the conducting shell.

In the forward problem, the time dependence must be prescribed on two bound-
aries: on the inner boundary, e.g., by a function derived from outer core dynamics
(e.g. Braginsky 1984) and on the outer boundary by the time variations calculated
for R, and given on Ry determined via (15), (16) and (17).

Using the abbreviation u(r,t) = S (r, t) we solve the differential equation (12)
with a separation ansatz

u(r,t) = () &(t) = f(x) g(t") (39)
introducing the normalized variables x, t’ defined by
r = xR, and t = t' pgogRc2, (40)

respectively. The separation of eq. (12) leads to g/g = —k?, where k is a (com-
plex) constant. The governing equation for the radial modes denoted by f(r) is
then given by

n(n+ 1) df

— )t =10, with f = — @1

2
f” s fl k2 = __
+ : + (k*x T

X
where k? must be prescribed in the forward problem. The solutions are

f = xV2C I,(z) + Cad_p(2)], (42)
where J;, and J_, are the Bessel functions of first kind (Ryshik & Gradstein 1963)
with the argument and the index given by

2k _(a=2) 2n + 1

— 3 2 = 8
S— L ’ . (@ — 2)

(43)

(For the case a = 2, where z is singular, as well as for some related references see
Greiner-Mai 1986.)
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Next, we determine Cs, in dependence on C;. Application of the boundary con-
ditions (15) to the solutions (16) and (42) results in the validity of

[% ' + (n+1)f]yee, = 0 (44)

at x, = R, /R¢. Using the condition (44) and the recurrence formula for the
Bessel functions, we obtain

f) = Cixd 1(e) + 220k 5 i), @s)

‘]*D*I (Za)
where z, = z(x,) according to eq. (43). In the forward problem, the remainig
complex constant is determined from the boundary conditions at the CMB, i.e. by
the field model of the core. Here, for simplicity, we assume that the parameters
of the solution, k and C,, are prescribed. For periodic solutions with a prescribed

frequency, v, we get
k =ik =Vi V Voo R (46)

The Bessel functions then have the argument
2z ~ ke ix7, 47)

For = 0, we obtain the half-integer Bessel functions, the real and imaginary
parts of which are the Thomson functions (e.g. Ryshik and Gradstein 1963).

The analytical solution of the forward problem can be used to study the penetra-
tion of particular oscillations through the mantle. We show the example of the
dipole field (n=1) with prescribed periodic time-dependence and o = 0.

If we consider some constant factors by replacing C; by a new complex constant
Cs (45) reads
f(7) = Oy zﬁ%[J%(z) + tan zg .I_%(z)} ;

where z, = Vi kox,. First, we decompose the Bessel functions and tan z into
real and imaginary parts usingz = Vi kox = ‘Jz—‘ kox and the conventional defi-
nitions of the hyperbolic functions by the trigonometric functions of an imaginary
argument. After some algebraic operations, we obtain

23 J%(?,) = Re(z) + iIm(z), 273 J_3(z) = Rey(z) + iIm,(z),

[X]

with Re, Im, Re, and Im; given by

1 . 1
Re (x) = (— [cospxchmyx — sinyxshnx] + — cosnxshnx),
V2mnx X
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1 1

Im (x) = o (+ [cos px chpx + sinnxshnx]| — n—xsin nx ch nx),
1 1

Re; (x) = oo (— [sinnx chnx + cosnxshnx] + n—xsin nx sh nx),
1 1

Im, (x) = o (+ [sinnxchnx — cosnxshnx] + n_xCOS nx ch nx),

where n = ko/ V2. The constant C; and tan z, are decomposed as follows:
C; = ce'f, tanzg = h + iq,

with

Sin 7)X, COS X4 sh nx, ch nx,
- q-= z .
cos? xs ch? nx, + sin? nx, sh? nx,’ cos? nx, ch? nx, + sin? nx, sh? nx,

h =

The solution ((12), (39)) u(x,t) = f(x) g(t) can be rewritten as

_ \/WQ ) + v2(x) el [P0 +8-vt]
w(x) = Re(x) + hRey(x) — (111111( Yy  w(x) = Im(x) + qRey(x) + hIm(x) ,
v(x)

w(x)

p(x) = arctan

where ¢ and [ are the prescribed constants. Without loss of generality, the phase
of the solution is assumed to be zeroat x = 1 fort = 0, so that

B = —p(x = 1) = —¢(1) holds. Introducing v(x) = ¢(x) — (1) the
associated solution is then given by

u(x, t) = C\/w?( ) + v2(x) el V) - vt
v(x)w(l) — w(x)v(1)
w(x)w(l) + v(x)v(1)
which is suitable to study the penetration of a particular oscillation through the

mantle. The solution at any x > 1 then becomes phase-shifted by (x). The
normalized amplitude is given by

= /[w2(x) + v2(x)]/[w2(1) + v2(1)].

v(x) = — arctan

In the following we give numerical examples of the behaviour of the phase and
the normalized amplitude of the poloidal dipole mode as a function of x for the
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10- and 60-year periods. For a shell of 2000 km thickness and oy = g9 =
100 Sm™!, the associated parameters of this model are kg ~ 5.5 and ~ 2.3, re-
spectively, and x, a2 1.58. The results are shown in fig. 3a and b. The attenuation
(geometrical and inductive) of the modes depends on the frequency considered,
and the shape of the amplitude spectra of a particular spherical harmonic mode
depends on x. For example, a spectrum which shows equal amplitudes for dif-
ferent periods at the CMB is transformed into a spectrum at r = Ry where the
amplitudes increase with increasing period, which is typical for a low-pass filter.
The forward solution therefore shows that the mantle induction must be taken into
account if the observed amplitude distribution is to be interpreted by, e.g., core-
mantle coupling. As shown in figure 3b, the conductivity also causes a phase lag
between x = 1 and x = x,, which is lower for the higher period, and becomes
negligible if the period continues to increase. In particular, this will be important
for the interpretation of the phase lag between geomagnetic field quantities and
ALOD. Phase differences can also appear for magnetic variations, which have
equal periods and are associated with modes of different number n.
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Figure 3: (a) Relative amplitude A and (b) phase 7y of the poloidal dipole modes

as a function of x = r/ry for the 10- and 60-year periods and oy = 100 Sm™!
in a shell of 2000 km thickness (ry core radius).
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APPENDIX B

Remarks on the inverse problem

For the analytical forward problem (two-side standard boundary value problem)
presented in Appendix A also an associated (analytical) inverse boundary problem
can be studied. With (15), (16) and (17) the time variation of the considered
magnetic field component at R,,, abbreviated here, as above, by ¢(t), is related to
the boundary values by

$(t) = Sin(Ro,t) = CLL(6) Re ™" (48)

and can be obtained from the observations. Eq.(45) continues to be valid, but now
C, (k) is an unknown function and has to be determined from the continuity of
the solutions (16) and (45) at x = x,. We obtain as solution in our example with
« = 0 and n = 1 an integral representation for u(x, t) = f(r)g(t'):

a+tib
u(x, t') = ]bi)m [ Cy(k) e ™" (kx)~2 [J%(kx) + tankx, J_a(kx)]dk  (49)
a,b)—o0 2
—(a+ib)

which describes the inverse problem for C, (k) as solution of a Fredholm integral
equation of the first kind.

The boundary condition for x = x, then gives

a+ib
is . C] (1{) —k2¢
s P LB / e o™ g 0
#(t) 2 (a.bl)IEco i kx, cos kxa( : 0]
—(a+ib)

If we take into account higher modes (n=1,2,3...) and o # 0, the kernel of this
integral will be still more complicated (see eq. (45)).

Let us write k* = p; + iv,. A first physical condition is then associated with the
observed slow decrease of the dipole field over a long period. Because the mantle
is a conducting shell without internal dynamics, we conclude that ;z; > 0 is valid
within the mantle. In addition, the values of y; must be finite. For a weakly
conducting mantle, the time-dependent potential field is usually assumed to be a
first order approximation of the exact solution. Considering the normalized time
scale and the decrease of the axial dipole field of about 20nTa~!, we find that
y1 is in the order of 10~ if the potential solution is applicable. So we have a
first approximation for p;. The frequency v, is constrained by the assumption
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of decade oscillations, so that v, is in the interval [0.3, 3.0] for the conductivity
model used. Therefore, we can assume that the area of integration is a small
rectangle in the complex k plane. An additional constraint can be obtained if
the conductivity is constant or decreases monotonously from the CMB towards
R,, e.g. according to the setups (1) and (2). Because the magnetic field has no
sources in the mantle, the flux density also decreases monotonously. The smallest
decrease is shown by the potential field, which reflects the geometrical weakening
of the field if the conductivity is zero. In reality, inductive weakening according to
the loss of energy by ohmic dissipation is superimposed. In the inverse boundary
value problem, the potential solution gives the lowest amplification of the field
continued towards the CMB. If o)y # 0, then the upper bound of amplification
of the modes cannot be specified. For example, modes of high frequencies are
not observed because of their strong attenuation. However, they may exist at the
CMB, so that the inverse solution cannot be applied to this frequency domain (the
amplification will then be infinite). Finally, the modes of higher order can only be
estimated with large statistical errors at the earth surface. These errors are strongly
amplified when continued to the CMB.

It can be estimated that arbitrarily small errors in the data function can result in ar-
bitrarily large disturbances in the unknown function on the core-mantle boundary.
To show this, we consider here only the case &« = 0 and n = 1 for the conduc-
tivity law (2) and the differential equation (19) (section 3.1), respectively, i.e. the
behaviour of the dipole field in a mantle with constant conductivity.

We take |¢(t) — @°(t)| < & with @(t) as “exact” data and ¢?(t) = ¢(t) + & sinvt
as “disturbed” data. Inserting this in the differential equation (19), we find the
estimate (using also Appendix A)

lu(r, t) — u’(r, t)| > C——exp((#/2)/*1), Re<r<R,. (51

vii2r
Thus, we see how a data error d is amplified in dependency of its frequency content
v. Because high-frequency disturbances in the data cannot be excluded, large
errors in the results are possible only limited by the Nyquist frequency. Therefore,
additional mathematical and physical constraints of the inverse solution should
be introduced in the future, e.g. constraints inferred from the magnitude of the
electromagnetic torques necessary to excite the ALOD.
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Figure 4: Downward continuation of the Gauss coefficient hy, (t) onto the CMB:
Solutions hi}*'® by regularization with the [|u(R, .)||2 norm and the [[u(Re, .)||w;
norm, using the conductivity model oy, from table 1, and by harmonic downward
continuation. Linear trends are removed.
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Figure 5: Downward continuation of the Gauss coefficient hy, (t) onto the CMB:
Comparison at R, of the data (“harmonic continuation”) with the regularized so-
lutions which were calculated for the conductivity model oy, from table 1 and
with the [[u(R, .)||z norm and the [[u(R, .) |w; norm, respectively. Linear trends
are removed.
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Figure 6: Downward continuation of the Gauss coefficient hy;(t) into the pas-
sive upper core layer (R, — 50km) : Solutions h'ffl by regularization with the
[u(Re, -)||l2 norm and the [[u(Re, -)[|w; norm, using the conductivity models o,
and oy, from table 1, and by harmonic downward continuation. Linear trends are

removed.
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Figure 7: Downward continuation of the Gauss coefficient hy; (t) into the pas-
sive upper core layer (R, — 50km) : Comparison at R, of the data (“harmonic
continuation”) with the regularized solutions which were calculated for the con-
ductivity models oy, and oy, from table 1 and with the ||u(Rc, .)||2 norm and the
[u(Re, .)[lwy norm, respectively. Linear trends are removed.
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Figure 8: Downward continuation of the Gauss coefficient hy; (t) into the pas-
sive upper core layer (R, — 50km) : Solutions hf}' by regularization with the
[[u(Re, .)|l2 norm and the |[u(Re, .)|lw; norm, using the conductivity models oy,
and oy, from table 1, and by harmonic downward continuation. Linear trends are

removed.
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Figure 9: Downward continuation of the Gauss coefficient hy,(t) into the pas-
sive upper core layer (R, — 50km) : Comparison at R, of the data (“harmonic
continuation”) with the regularized solutions which were calculated for the con-

ductivity models oy, and oy, from table 1 and with the ||u(Rc, .)||2 norm and the
[lu(Re, .)||wy norm, respectively. Linear trends are removed.
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Figure 10: L-curve for Tikhonov regularization applied to the downward con-
tinuation of the Gauss coefficient h;; onto the CMB, using the solution norm
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(data approximation at R, ) ‘
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Figure 11: L-curve for Tikhonov regularization applied to the downward con-
tinuation of the Gauss coefficient hy; onto the CMB, using the solution norm
[lu(Re, .)[lwy, the conductivity model oy, from table 1 and the residual norm |[.[|,
(data approximation at R;,)
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Figure 12: L-curve for Tikhonov regularization applied to the downward continu-
ation of the Gauss coefficient h; into the passive upper core layer (R, — 50km),
using the solution norm ||u(R, .)||2, the conductivity models oy, and oy, from
table 1 and the residual norm ||.||» (data approximation at R,) :
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Figure 13: L-curve for Tikhonov regularization applied to the downward continu-
ation of the Gauss coefficient h;, into the passive upper core layer (R, — 50km),
using the solution norm [[u(Rc, .)||wy. the conductivity models o, and o, from
table 1, and the residual norm ||.|| (data approximation at R,,)
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Figure 14: Radial component B, of the (5,5) magnetic field on the CMB for 1930
calculated with the conductivity model oy, and the boundary values g, and hy,, due
to Hodder (1981) by means of downward continuation regularized with the [lu(Rc, .)|lw}
norm. Values are in units of 1000 nT.
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Figure 15: Radial component B, of the (5,5) magnetic field on the CMB for 1960
calculated with the conductivity model oy, and the boundary values g, and h,, due
to Hodder (1981) by means of downward continuation regularized with the [Ju(Re, .)|lw;
norm. Values are in units of 1000 nT.

Scientific Technical Report STR 99/12 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-99127



-400)]

Figure 16: Radial component B; of the (5,5) magnetic field in the passive upper
core layer (R, — 50km) for 1930 calculated with the conductivity models ow,, opu
and the boundary values g,, and h,, due to Hodder (1981) by means of downward
continuation regularized with the [u(Rc, .)||lwy norm. Values are in units of 1000 nT.
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Figure 17: Radial component B, of the (5,5) magnetic field in the passive upper
core layer (R, — 50km) for 1960 calculated with the conductivity models oy, opu
and the boundary values g, and h,, due to Hodder (1981) by means of downward
continuation regularized with the |lu(Rc,.)||w; norm. Values are in units of 1000 nT.
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