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Abstract

We report on the state of the art in the development of a non-linear conjugate gradient (NLCG)
version of the 2-D inverse algorithm for magnetotelluric (MT) data over structures with arbitrary
electrical anisotropy. The algorithm is based on the Occam inverse strategy. As a direct solver, our
2-D finite volume forward modeling program for structures with arbitrary anisotropy is employed,
which is also further used to effectively evaluate parametric sensitivities by employing the reciprocity
principle. A standard Polak-Ribiere NLCG algorithm is then applied to minimize the inversion
objective function which consists of a data misfit term and of regularization penalties applied to both
the structure complexity and anisotropy throughout the model. The algorithm offers considerable
savings to the computing time and memory demands due to both the reciprocity-based evaluation of
the parametric sensitivities and on-line computation of products of the Jacobian and its transverse
with a vector within the CG algorithm. Synthetic test inversions with a single anisotropic box
anomaly are presented and used to discuss expected ambiguity issues in anisotropic structures. The
2-D anisotropic inversion is further applied to a small subset of experimental MT data from the
contact area of the Southern Portuguese Zone and the Ossa Morena Zone in southern Portugal, and
the results are compared with those obtained earlier by a 1-D inverse and 2-D direct trial-and-error
modeling approach to the same data.

1 Introduction

Over the last decades, anisotropy of the electrical conductivity in the earth has become a valuable indi-
cator of tectonic structures and processes, both fossil and recent. Large-scale electrical macro-anisotropy
manifests a specific spatial arrangement of conducting fractions in the subsurface, a specific organization
of conductors which are not distinguished as separate bodies by the diffusing electromagnetic field but
rather sensed as an anisotropic bulk. Interpretations of electromagnetic induction data from a vicinity
of the German Continental Deep Borehole (KTB) proved that suites of graphitized fossil shear zones
or faults filled with saline fluids appear as highly electrically anisotropic domains throughout the whole
upper crust of the area (e.g., Eisel and Haak, 1999; Eisel et al., 2001). Crustal anisotropic structures were
later modeled, and put into regional tectonic plots, in several regional MT studies, e.g., by Lezaeta and
Haak (2003), Heise and Pous (2003) or by Weckmann et al. (2003), with special regard to the phenomenon
of MT phases exceeding 90◦. Brasse et al. (2008) could explain systematic deflections of long-period in-
duction arrows over the South Chilean continental margin by regional 2-D anisotropy due to a deeply
fractured, fluid-rich crust in the region. Deep sub-crustal electromagnetic investigations as well as at-
tempts of interpreting jointly the seismic and electric anisotropy in the lithospheric and sub-lithospheric
upper mantle have evolved into promising indicators of large-scale structures and deformation processes
in the Earth (see, e.g., Mareschal et al., 1995; Simpson, 2001; Bahr and Simpson, 2002; Hamilton et
al., 2006; Padilha et al., 2006; Roux et al., 2011; Ruiz-Constán et al., 2012). See Wannamaker (2005)
for a more thorough review on the electrical anisotropy and its relations to deep geological and tectonic
processes.

The sample of the induction studies mentioned above clearly evidenced the existence of crustal and up-
per mantle electrical anisotropy. The studies also demonstrated that macro-anisotropic structures can be
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often treated mathematically as earth sub-domains with continuous intrinsic anisotropy. This approxima-
tion simplifies the modeling of inductive responses considerably, as highly heterogeneous structures, often
involving series of thin and highly conducting sheet-like bodies, can be modeled by a single large-scale
anisotropic bulk.

Methods for the direct numerical modeling of MT fields in laterally inhomogeneous structures with
arbitrary anisotropy have been around since the paper by Reddy and Rankin (1975) who presented the
first finite element algorithm for 2-D structures with azimuthal electrical anisotropy. A finite volume
algorithm for MT fields in 2-D structures with general biaxial anisotropy was published by Pek and
Verner (1997), and the finite element version of the same algorithm was presented by Li (2002). The
latter algorithm was later extended to allow for an automatic mesh adaptation in the direct simulations
by Li and Pek (2008). A 3-D finite difference code for the modeling of MT fields in anisotropic structures
was presented by Weidelt (1999), and a number of algorithms exist for the simulation of controlled source
electromagnetic fields in 3-D generally anisotropic media (e.g., Wang and Fang, 2001; Weiss and Newman,
2002; Davydycheva et al., 2003; Hou et al., 2006; Zaslavsky et al., 2011).

As it can be often difficult to even qualitatively suggest particular anisotropic structures that can account
for specific features in the experimental MT data, inverse MT solutions for anisotropic conductivities in
the earth are highly desirable. Although a few inverse algorithms for anisotropic conductivities have
been presented for geoelectric and electromagnetic applications with controlled source (Pain et al., 2003;
Ramananjaona and MacGregor, 2010), they cannot be immediately applied to the MT case because of
largely different sensitivity patterns of anisotropic media for different source types and geometries. For
MT inversions for laterally non-uniform anisotropic media, two approaches have been presented so far:
a 2-D inversion for a conductivity tensor aligned with the model coordinate frame by Mackie (based
on the 2-D inverse code by Rodi and Mackie, 2001) and an inverse algorithm by Li et al. (2003) for
a general conductivity tensor in the 2-D model. The latter algorithm was an attempt for a complete
solution to the 2-D anisotropic MT inverse problem. The solution was based on a damped Gauss-Newton
minimization of a penalized objective function and made it possible to employ non-quadratic structure
and anisotropy penalties to regularize the inverse solution. Due to stability problems with practical MT
data, development of the algorithm has been discontinued, but substantial portions of the work spent
on that method have been included into the present version of the non-linear conjugate gradient inverse
procedure.

As compared to the 2-D isotropic case, the inversion for anisotropic conductivities has to cope with
increased number of parameters (by a factor of 6 for the most general anisotropy case, and by a factor of
3 in the most common case of anisotropy due to a finely laminated structure), with a more complex direct
solution and sensitivity computations (coupled partial differential equations for coupled field modes in
the anisotropic case), and also with a largely more complex pattern of equivalencies and ambiguities of
the anisotropy parameters.

This paper reports on the current development of a non-linear conjugate gradient (NLCG) version of the
2-D inverse algorithm for magnetotelluric (MT) data over structures with arbitrary electrical anisotropy.
The structure of the paper is as follows: In the following section, we present a brief description of
the NLCG algorithm along with the pre-requisites necessary for its application to the anisotropic 2-D
MT inversion. In Section 3, we present two simple synthetic tests of the inverse algorithm and discuss
ambiguity issues in 2-D anisotropic models. Finally, in Section 4, we compare results of the anisotropic
inversion applied to a small subset of practical MT data from a contact area of the Southern Portuguese
Zone and the Ossa Morena Zone, southern Portugal, with those obtained for the same data set earlier by
a 1-D inversion and a trial-and-error 2-D direct modeling. Section 5, Conclusion, summarizes the main
results achieved.

2 NLCG Inversion Algorithm

2.1 2-D Magnetotelluric Model with Arbitrary Anisotropy

Here, we adopt the 2-D MT model with arbitrary anisotropy exactly in the form as it was introduced
in (Pek and Verner, 1997). A 2-D conducting medium (earth) occupies the half-space z > 0 and its
(structural) strike is parallel to the x-coordinate axis. The conductor is generally characterized by a
symmetric, positive definite 3 × 3 conductivity tensor σ(r), where r is a position vector, r = (x, y, z).
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Locally, i.e. in each point of the medium, an orthonormal transformation exists that diagonalizes the
conductivity tensor. This transformation can be expressed through three rotations around the coordinate
axes (Euler rotations), and the conductivity tensor can be generally written in the form

σ = Rz(−αS)Rx(−αD)Rz(−αL) diag{σ1, σ2, σ3}Rz(αL)Rx(αD)Rz(αS), (1)

where σ1, σ2, σ3 are the principal conductivities, and αS , αD, αL are the anisotropy strike, dip and slant,
respectively. Matrix Rξ(α) symbolizes a rotation around the current axis ξ through the angle α. Eq. (1)
is true in each point r of the conductor but is generally spatially dependent. The position argument r is
omitted for brevity here and in what follows. The air layer, z < 0, is assumed to be filled with an ideal
insulator (σair = 0).

Magnetotelluric field in the model is excited by a uniform, time-harmonic plane wave originating from
sources at z → −∞. We assume the time-harmonic factor of the form exp(−iωt) here, where ω = 2π/T
is the angular frequency corresponding to the period T and t is time.

With the MT model described above, Maxwell’s equations in the diffusive approximation reduce to a
coupled pair of partial differential equations of the second order for the strike-parallel field components,
Ex and Hx, of the form (Pek and Verner, 1997)
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where the material coefficients A, B and K, L are given by

A = (σxyσyz − σxzσyy)/D, B = (σxzσzy − σxyσzz)/D,

L = (σyzσzx − σyxσzz)/D, K = (σyxσzy − σyyσzx)/D,

and D is a sub-determinant of the conductivity tensor, D = σyyσzz − σyzσzy. In virtue of the symmetry
of the conductivity tensor, we have A = L and B = K. After solving eqs. (2), with corresponding
boundary conditions, for Ex and Hx, we can obtain the complete MT field in the model by calculating
the transversal field components via
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1
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, (3a)
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Determining basic MT functions, i.e. MT impedances and vertical geomagnetic transfer functions (in-
duction arrows), requires us to solve the above system of equations for two independent polarizations of
the exciting field. Then, if a field component F is linearly related to the horizontal magnetic components
through F = TxHx + TyHy, we easily obtain
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x

, (4)

where the superscripts (1), (2) distinguish MT fields for the two polarizations.

2.2 Numerical Solution to the Direct Problem

Analytical solution to Eqs. (2) has not been given yet even for the simplest 2-D models. To solve
that system numerically, a standard finite volume (FV) approximation of (2) was presented by Pek and
Verner (1997). Alternatively, a finite element (FE) algorithm for the same problem was developed by
Li (2002).
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By discretizing the system of equations (2), with the corresponding boundary conditions, on a FV mesh
we arrive at a system of linear algebraic equations, Ax = b, for the approximate strike-parallel fields u.
The matrix A is a symmetric banded complex matrix which depends on the conductivities and on
the geometry of the mesh. The r.h.s. vector b depends on the fields on the outer boundaries of the
computation domain (Dirichlet boundary conditions). Remember that x involves both the electric and
magnetic components of the MT field because of the mode coupling in anisotropic media. Remember
also that, from the point of view of the inverse problem, one direct solution represents, in fact, a number
of solutions computed for a suite of periods and, at each period, for two independent polarizations,

Ax = b ⇔




A(T1) 0 . . . 0 0
0 A(T1) . . . 0 0
...

...
. . .

...
...

0 0 . . . A(TNper) 0
0 0 . . . 0 A(TNper)







x(1)(T1)

x(2)(T1)
...

x(1)(TNper)

x(2)(TNper)




=




b(1)(T1)

b(2)(T1)
...

b(1)(TNper)

b(2)(TNper)




,

(5)
where Ti, i = 1, . . . , Nper are the periods for which the solution is to be calculated.

As a 2-D MT direct problem for anisotropic media is mostly of moderate size, we use Gaussian elimination
procedure to solve the systems (5). For each period of the field, the elimination step is carried out in full
for one polarization only and the eliminated form of the matrix A(Ti) is stored. This can be later used
to carry out a fast elimination step for only the r.h.s. vector b(2)(Ti) in the second polarization, without
the necessity of repeating the time consuming complete elimination procedure for A(Ti) once again. The
fast back-substitution step is identical for both polarizations. After the approximate solution u(Ti) has
been found, transversal fields (3) are computed by using a spatial derivative procedure by Weaver et
al. (1985, 1986) generalized to anisotropic models (see Pek et al., 2003). From the solutions for both field
polarizations, required MT functions are obtained easily from (4).

2.3 Computation of Parametric Sensitivities

Sensitivities of the MT fields and functions are essential parts of inverse algorithms as they allow us
to find parametric changes in the model required to improve the fit between the model and observed
data. Sensitivities with respect to the parameters of a 2-D anisotropic model can be evaluated by
differentiating the field components or MT functions with respect to the model parameters, i.e. with
respect to σj (or ̺j = σ−1

j ), j = 1, 2, 3, and αS , αD, αL, eq. (1), for each specified homogeneous domain

of the model. Following the ideas by Rodi (1976), Jupp and Vozoff (1977), Červ and Pek (1981) and Rodi
and Mackie (2001), Pek et al. (2003) developed a numerical algorithm for the parametric sensitivities
in 2-D MT models with arbitrary anisotropy. Starting from (5), approximate parametric sensitivities of
the strike-parallel field components with respect to an arbitrary parameter p are given by

∂x

∂p
= −A−1

(
∂A

∂p
x+

∂b

∂p

)
≡ −A−1rp, (6)

where rp is a vector which depends on conductivities, mesh geometry, boundary conditions, as well as on
the direct solution x. Vector rp is parameter (p) dependent. Since (6) is a pseudo-direct problem (i.e., it
has the same matrix A as the direct solution, but the r.h.s. is different), we can solve it fast by making
use of the eliminated form of the matrix A which had been stored earlier. Eq. (6) has to be solved once
for each parameter p for which the sensitivity is needed.

Even more speedup in the sensitivity calculations can be achieved if reciprocity principle is applied
(Rodi and Mackie, 2001; Pek et al., 2003). If (6) is solved directly we obtain the parametric sensitivity
with respect to p in all mesh nodes throughout the model, which mostly represents a lot of redundant
information. If the sensitivities are needed for only a single index (mesh node), say δ, we can pick out that
index by multiplying the complete sensitivity ∂x/∂p by a vector ∆δ which consists of zeros everywhere
except at the δ-th position where it is one,

∂xδ

∂p
= ∆T

δ

∂x

∂p
= −∆T

δ A−1rp = −∆T
δ (AT )−1rp = − (A−1∆δ)

T rp. (7)

The underlined part of the formula shows where the symmetry of the normal matrix is used, A = AT ,
which is a manifestation of the physical reciprocity principle in the numerical domain. By employing (7),
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we obtain sensitivities with respect to all parameters at a single mesh node for the price of only one single
pseudo-forward solution qδ = A−1∆δ. This must be solved repeatedly if the sensitivities in several nodes,
with different ‘pickers’ ∆, are required. The idea of eq. (7) can be easily extended to more general ‘picker’
vectors which may span several mesh nodes and even depend on the model parameters. In this way, the
reciprocity computations can be employed immediately to numerically evaluate parametric sensitivities
of the transversal MT fields (3) and MT functions (4).

Formulas for the transversal fields (3), when numerically approximated, lead to linear interpolation
filters in an, at most, 9-point vicinity of the central mesh node δ, Fδ = PT

δ (p)x, for any transversal field
component F (Pek et al., 2003). Components of the picker vector Pδ(p) now generally depend on the
model parameters p, but they are equal for both polarizations of the exciting field. In virtue of (7), the
sensitivities of Fδ with respect to p can be computed via

∂Fδ

∂p
=

∂PT
δ

∂p
x+PT

δ

∂x

∂p
=

∂PT
δ

∂p
x−PT

δ A−1rp =
∂PT

δ

∂p
x− (A−1Pδ)

T rp . (8)

Evaluating the first term on the r.h.s. of (8) is elementary. The second term requires one pseudo-forward
solution, qδ = A−1Pδ, for each field component for which the sensitivities are needed. Once qδ is found,
evaluating any sensitivity for Fδ is a matter of a simple multiplication of qT

δ with the respective vector rp.

Parametric sensitivities of the MT transfer functions (4) can be computed either by using (7), (8) in
formulas (4) which have been differentiated directly with respect to p, or by deriving corresponding picker
vectors PTδ for the MT functions considered. In the latter approach, we write the MT functions (4) in a
general functional form, Tδ = f(Fiδ), where Fiδ, i = 1, . . ., symbolize field components at the δ-th mesh
node for any polarization. As Fiδ = PT

iδ x according to what was said in the previous paragraph, we can
write for the parametric sensitivities of T ,
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≡ wT
x x− (A−1wp)

T rp. (9)

Formally, eq. (9) looks the same as (8), only with more complex coefficients. Again, we need to solve
only one pseudo-forward problem to evaluate all sensitivities of the function T at the node δ.

2.4 Inverse Problem

The MT inverse problem for 2-D generally anisotropic conductivity in the earth is formulated as a
minimization problem for a target functional

Φ(p|λs, λa,pref) = Φd(p) + λsΦs(p|pref) + λaΦa(p|pref), (10)

where Φd is a misfit between the model and observed data, and Φs, Φa are structure complexity and
anisotropy penalties, respectively, with respective weights λs, λa. The vector p aggregates the model
parameters, which are in our case logarithms of the principal resistivities and the anisotropy directions,
i.e. strike, dip and slant, eq. (1), or any subset of those, in each homogeneous model sub-domain
selected for inversion. The vector pref contains parameters of a reference model which gives a way
how to incorporate prior information into the inverse procedure. If a reference model is introduced, the
minimization parameters are ∆p = p−pref instead of p, and the inversion searches for deviations of the
parameters p from the reference model pref which minimize (10). In the following we omit the reference
model pref from the notations for simplicity.

The data misfit term in (10) is defined in the least-squares sense as

Φd(p) =
∥∥C−1

d [dobs − dmod(p) ]
∥∥2 = [dobs − dmod(p) ]T (C−1

d )TC−1
d [dobs − dmod(p) ], (11)

where dmod(p) is a vector of modeled data for parameters p, dobs are experimental measured data,
and Cd is a covariance matrix of the observations. As in anisotropic modeling the secondary, diagonal
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elements of the MT impedance tensor are of particular importance, we use real and imaginary parts of
all four components of the impedance tensor and of both components of the vertical geomagnetic transfer
functions as data items in the inversion procedure.

The two regularization terms in (10) are of crucial importance for a stabilization of the MT inversion
which is an ill-posed problem (e.g., Constable et al., 1987; deGroot-Hedlin and Constable, 1990). The
structure complexity term of (10), Φs(p|pref), penalizes excessive structure in the inverse model and
prevents overfitting the data by structural features that are required by only the noise component in
the data. We employ only simple structure penalties in the present inverse algorithm, specifically the
minimum norm penalty (Tikhonov and Arsenin, 1977), and minimum roughness and minimum curvature
penalties (Constable et al., 1987; deGroot-Hedlin and Constable, 1990). The minimum norm functional
produces the closest model with respect to the reference model, the minimum roughness and minimum
curvature functionals produce smooth electrical models that still fit the data within their error bars. All
these penalties can be formally written in the same form,

Φs(p|pref) = ‖Ls(p− pref) ‖2 = (p− pref)
TLT

s Ls(p− pref), (12)

where Ls is a unit matrix, or approximation to the gradient or Laplace operators for the three considered
structure functionals, respectively. The matrix Ls is independent of the model parameters p in these
cases. We apply the structure penalty to each of the anisotropy parameters separately, and we use
one common weight λs for all parameters. It seems to balance well the regularization structure terms
provided the logarithms of the principal resistivities and the anisotropy angles in radians are used as
model parameters. It should be emphasized here that the structure penalty in the form (12) makes
best sense for homogeneous model domains arranged into a rectangular grid of cells. In what follows,
our model domains for the inversion will be identical with the cells of the FD grid used in the forward
modeling though the inverse algorithm alone is able to operate on any disjunct set of domains within the
model. A structure penalty best suited to the general case of completely irregular blocks throughout the
model is the minimum norm penalty.

The aim of introducing the anisotropy penalty term, Φa(p), in the target (10) is to supress redundant
anisotropy in the structure. The anisotropy penalty aims at minimizing the difference, in the least-squares
sense, between the full conductivity tensor, σ, and its mean isotropic part defined by σ̄iso = 1

3 (σ1 + σ2 +
σ3) diag{1, 1, 1}. It can be easily shown that this leads to an anisotropy penalty form (Pain,2003)

Φa(p) =
∑

cells

(log ̺1, log ̺2, log ̺3)




2 −1 −1
−1 2 −1
−1 −1 2






log ̺1
log ̺2
log ̺3


 =

=
∑

cells

[
(log ̺1 − log ̺2)

2 + (log ̺2 − log ̺3)
2 + (log ̺3 − log ̺1)

2
]
. (13)

The summation in (13) runs over all anisotropic cells, or domains, of the model that are flagged for
inversion. Formally, the anisotropy functional can be again expressed as Φa(p) = pTLT

aLap, similarly
as the structure complexity functional (12), but with the matrix La being effective on the resistivity
variables only, not on the anisotropy angles.

Eq. (1) describes the most general, biaxial conductivity anisotropy in the space. In MT practice, however,
this type of anisotropy is too general, and difficult to interpret. Anisotropy in MT is most commonly
understood in terms of finely layered earth domains or sub-parallel dykes which are not sensed as separate
conductors by the diffusing electromagnetic field. In such cases, simpler, uniaxial anisotropy is a more
useful concept in MT interpretations rather than the general case (1).

Uniaxial electrical anisotropy can be introduced as a fixed constraint by apriori setting, e.g., σ1 = σ2.
We can easily show that, in (1), Rz(−αL) diag{σl, σl, σt}Rz(αL) = diag{σl, σl, σt}, where we have
introduced longitudinal and transversal conductivities, σl ≡ σ1 = σ2 and σt ≡ σ3, respectively. Thus, the
slant αL vanishes in the uniaxial case, and we can conclude that the uniaxial anisotropy is completely
described by four parameters only, two principal conductivities σl and σt (or resistivities ̺l and ̺t)
and two anisotropy directions, strike αS and dip αD. Of course, if uniaxial anisotropy is imposed as
a fixed constraint we have to consider that varying σl implies varying both σ1 and σ2 simultaneously,
and we must modify the sensitivities accordingly, specifically ∂/∂σl = ∂/∂σ1 + ∂/∂σ2, ∂/∂σt = ∂/∂σ3.
In the same way, isotropy can be introduced as a fixed constraint in certain portions of the model by
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setting σiso ≡ σ1 = σ2 = σ3. The parameter σiso (or, alternatively, the resistivity ̺iso) is the only
parameter that desribes the isotropic conductivity completely. A modified sensitivity must be then
considered in the isotropic case, ∂/∂σiso = ∂/∂σ1 + ∂/∂σ2 + ∂/∂σ3.

Degenerate anisotropy cases, like the uniaxial anisotropy and isotropy above, can be also imposed as soft
constraints on the model structure, by modifying slightly the anisotropy penalty (13) to the form

Φa(p) =
∑

cells

[
λa,12(log ̺1 − log ̺2)

2 + λa,23(log ̺2 − log ̺3)
2 + λa,31(log ̺3 − log ̺1)

2
]
. (14)

If the internal weights are, e.g., λa,12 ≫ λa,23 = λa,31 = 1, the minimization of (10) will keep the principal
resistivities ̺1 and ̺2 close to equal, except for those model domains where the biaxial anisotropy is
highly effective at improving the fit to the data, or at decreasing the structure complexity. Soft isotropy
constraint is simply imposed by increasing the overall penalty weight λa in (10). Incorporating the
anisotropy penalty (14) in the code is straightforward while introducing the fixed constraints requires
some extra decision branches to be coded for the individual degeneracy cases.

There is a number of methods that can be used to minimize the target (10) (see, e.g., Bertsekas, 1999).
Here, we use the non-linear conjugate gradient (NLCG) minimization procedure that has been a core of
well-known MT inversion codes by Newman and Alumbaugh (1999) and Rodi and Mackie (2001). NLCG
is a class of extensions of the linear conjugate gradient method to nonquadratic problems (e.g., Andrei,
2008). NLCG algorithms are well suited for large-scale problems due to the simplicity of their iteration
and their very low memory requirements. NLCG algorithms show stable and robust convergence and
do not usually fail in case of ill-posed problems, where the speed of convergence is negatively affected,
however. Just as in the linear case, preconditioning can improve the convergence rate of conjugate
gradients.

Without going into further theoretical details, we present the NLCG version we use in our inversion
algorithm as a flowchart in Fig. 1. It is Polak-Ribière form of the NLCG procedure adopted from (Rodi
and Mackie, 2001), with a direct line search employed. Minimization of the target (10) starts from an
initial model p0 in the direction of the steepest descent defined by the negative of the target gradient,

g(p|λs, λa) = −2ST (p) (C−1
d )T (C−1

d )[dobs − dmod(p)] + 2λsL
T
s Lsp+ 2λaL

T
aLap for p = p0, (15)

where S(p) is a sensitivity matrix with entries sij(p) = ∂dmod
i (p)/∂pj, i = 1, . . . , Ndat, j = 1, . . . , Npar.

Here, Ndat and Npar are the number of measured data items and number of model parameters flagged for
inversion, respectively. Subsequent steps are carried out in conjugate gradient directions which prevents
the algorithm from proceeding in slow, zigzagging steps on the slope characteristic of a pure steepest
descent minimization.

An essential ingredient of the NLCG iteration step is an 1-D line search for a minimum in the conjugate
gradient direction. Since the direct MT problem for 2-D anisotropic conductivities is substantially faster
than the evaluation of the target gradient (15), we employ a simple golden search rule (Press et al.,
1986) to carry out the line search. Typical number of the line search steps is between 20 and 30 in our
procedure. If the target does not decrease in the line search because of loss of conjugacy due to numerical
errors the NLCG process is restarted in the steepest descent direction. If the target gradient reaches a
pre-defined threshold, or if the number of iterations exceeds a user defined limit, the iteration process is
terminated.

As mentioned in the previous paragraph, evaluation of the target gradient (15) is the most computer
resource demanding step in the minimization procedure. Substantial time savings could be already
achieved by employing the reciprocity principle in the sensitivity calculations, see eqs. (7), (8), (9). The
NLCG procedure gives a possibility of saving even more time and memory at computing the gradient of
the data misfit in (15) (Rodi and Mackie, 2001). This part of the target gradient requires us to compute a
matrix-vector product ST (p) (C−1

d )T (C−1
d )[dobs−dmod(p)] ≡ STv, where v is a vector of model vs. data

residuals normalized by the data covariance matrix. The i-th component of this product is

(STv)i =

Ndat∑

j=1

∂dmod
j (p)

∂pi
vj =

Ndat∑

j=1

[
wT

xj x− (A−1wpj)
T rpi

]
vj =

=




Ndat∑

j=1

vjwxj




T

x−


A−1

Ndat∑

j=1

vjwpj




T

rpi ≡ WT
xi x+ (A−1Wp)

T rpi , (16)
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NLCG minimization

Select a start model, p0

Compute target Φ(p0|λs, λa) and
gradient g(p0|λs, λa) = ∇Φ(p0|λs, λa)

Apply preconditioner K(p0|λs, λa)
and form vector h = Kg

If first iteration or
CG degeneracy

Set β = 0
YES

Set β = hT (g − glast)/γlast
NO

Set new search direction, u = −h + βulast

Store for next iteration,
glast = g, γlast = hTg,ulast = u

Line search for
α = argminτ Φ(p + τu) by

direct search (golden search rule)

Target decreased
in the line search?

Line search failed
(CG degener-
acy). Restart

CG with steepest
descent direction

Update model parameters, p0 = p0 + αu.

Convergence threshold
reached or number of

CG iterations exhausted

Output model parameters and summary of
convergence diagnostics, and end CG loop

Start new
CG iteration

NO

YES

YES

NO

Figure 1: Flowchart of the NLCG minimization algorithm as applied to the MT inversion for 2-D
anisotropic conductivities.

where eq. (9) has been used to express the sensitivities of dmod
j (p) (MT model responses) with respect to

the parameter pi. Since the vectors wpj , j = 1, . . . , Ndat, are characteristics of the MT function dmod
j (p)

only, and not of the particular pi, we can evaluate them in the course of the forward problem solution
and accumulate them, with weights vj (data residuals), into the sum

∑Ndat

j=1 vjwpj = Wp. Only one

pseudo-forward solution is then needed, A−1Wp, for all the sensitivity computations. The vectors Wxi,
i = 1, . . . , Npar, must be, however, computed for each pi individually, but it is an easy operation. To
summarize, eq. (16) says that computing the matrix-vector product STv (i) does not need the elements of
the sensitivity matrix S to be evaluated explicitly and stored, and, (ii) requires only one pseudo-forward
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solution, and then, for each parameter pi, i = 1, . . . , Npar, two vector-vector multiplications.

We use a simple Jacobi pre-conditioning to improve the convergence rate of the NLCG procedure (e.g.,
Newman and Boggs, 2004). In this case, the pre-conditioning matrix is an inverse diagonal of the
approximate Hessian,

K(p|λs, λa) =
{
diagonal of

[
ST (p)(C−1

d )T (C−1
d )S(p) + λsL

T
s Ls + λaL

T
aLa

]}−1
. (17)

In our runs, we found that applying the pre-conditioning improved the convergence of the NLCG min-
imization and prevented the iterations to terminate prematurely due too small target gradients. Un-
fortunately, we must evaluate the individual sensitivities explicitly (though not to store them) to use
the pre-conditioner (17), which does not allow us to fully exhaust the time-saving advantage implied by
eq. (16) above. Therefore, we do not compute the pre-conditioner (17) in each iteration step, but update
it only after a couple of iterations, typically after 5 to 10 steps in our algorithm. Fig. 2 shows the effect
of the pre-conditioning for an inverse run by comparing convergence curves for both non-pre-conditioned
and pre-conditioned NLCG with various update rates. The convergence is monitored as a function of
iterations and of the computation time.
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Figure 2: Effect of pre-conditioning on the NLCG iteration process. Pre-conditioned process is shown for
several update rates of the pre-conditioner, specifically for updates at each iteration (upd 1), after every
5th (upd 5) and after every 10th iteration (upd 10). Left plot monitors the convergence as a function of
the iteration number, right plot as a function of the computation time. The reference PC workstation
was based on an Intel Core i7-940 processor and was equipped with 6 GB of RAM. Intel Visual Fortran
v. 11 compiler was used to compile the code.

3 Synthetic tests

3.1 Simple 2-D Anisotropic Box Anomaly in a Uniform Host

3.1.1 Anomaly with Uniaxial Anisotropy and Anisotropy Strike only

We carried out a series of synthetic tests of the inverse MT procedure for 2-D structures with arbitrary
anisotropy with very simple models in order to assess the performance of the code, as well as to indicate
basic ambiguity patterns in 2-D anisotropic structures. A first test was run with synthetic data generated
by a simple block anomaly, size 10 × 10 km2, embedded in a uniform host half-space. The top of the
anomaly is situated 2 km beneath the surface. Geometry of this test model has been adopted from (Rodi
and Mackie, 2001). The host medium is isotropic, with resistivity ̺host = 300 Ωm. The anomalous block
is characterized by uniaxial anisotropy, with principal resistivities ̺1 = ̺3 = 10 Ωm and ̺2 = 100 Ωm
and with anisotropy strike αS = 30◦. No dip or slant are considered. Physically, the anomaly may be
interpreted as a lamelar structure, with parallel vertical conducting lamelas deflected by 30◦ with respect
to the structural strike of the model. Experimental data are simulated at seven equispaced sites above
the anomalous body for 10 logarithmically equidistant periods from the range of 0.01 to 300 s. We add
Gaussian noise to the data, with zero mean and a standard deviation equal to 2.5% of the maximum

Pek et al., NLCG MT Inversion for 2-D Anisotropic Conductivities

195



module from all four impedance elements. An absolute standard deviation of 0.01 is used to add noise
to geomagnetic transfer functions (induction arrows). The size of the inverse problem was: 1350 model
cells, 5400 model parameters, 560 data items.

MT impedances ( =10, =1, RMS=1.018), from homo 100l lstr ani

MT impedances ( =10, =1, RMS=1.003)l lstr ani , from 1000/10

MT impedances ( =10, =1, RMS=0.989), from 100/1l lstr ani

r1 r2 r3 aS nani

0 1 2 3

LOG10 [Resistivity ( m)]W
−90 −60 −30 0 30 60 90

Anisotropy angle (deg)

0 1 2 3

LOG10 [Anisotropy]

Figure 3: Three patterns of inverse models from simulated MT data for a box anomaly with uniaxial
anisotropy and anisotropy strike. The models were obtained from different initial models but with the
same regularization weights, λs = 10 and λa = 1. The black square shows the position of the anisotropic
anomalous body. The triangles on the surface indicate observation sites. The size of the model section
displayed is 25× 25 km2. The panels show, from the left to the right, the three principal resistivities, ̺1,
̺2, ̺3, from the inversion, the anisotropy strike αS , and the anisotropy ratio defined as νani = ̺max/̺min,
where ̺min, ̺max are, respectively, the minimum and maximum principal resistivities in model cells. The
gray zones in the anisotropy plots indicate model domains with small anisotropy, ̺max/̺min < 1.1. The
RMS indicated for each model is computed by RMS =

√
Φd(p)/Ndat.

In 1-D case, this type of structure is the most general anisotropic structure that can be restored from MT
data, with the exception of the vertical resistivity, ̺3, which is principally indistinguishable in layered
media (Pek and Santos, 2006). In 2-D, the vertical resistivity does affect the MT curves, but simulation
studies have shown that its effect is concentrated immediately above the anomalous box and is very weak
as compared to the effect of the horizontal resistivities. Thus, we can expect only very poor resolution of
the 2-D inversion with respect to the vertical resistivity.

In fact, inverse runs applied to the simulated data typically show three patterns of resulting models,
displayed in Fig. 3. The first pattern shows heterogeneous anisotropy within the anomaly, with ̺max =
̺1 > ̺2, strike αS = 30◦, in the top corners of the anomalous body, and ̺max = ̺2 > ̺1, strike αS =
− 60◦, in the body central zone. Both those zones reproduce the horizontal anisotropy correctly, but the
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transition between them inside the body evidently represents an excessive structure. Though it seems
to be an effect of underregularization of the model, the pattern is pervasive enough and is likely to be
connected with a deep local minimum in the parameter space. The other two patterns are as expected,
with only the min/max resistivites swapped. The vertical resistivity is not recovered correctly in any of
the models, and is evidently result of an interplay of the starting model and of the regularization.

Figure 4 shows a complete suite of inverse results for our test model with various regularization weights,
λs ∈ {1, 10, 100, 1000} and λa ∈ {0, 1, 10, 100}. To avoid visually disturbing jumps between different
quasi-equivalent model types (see Fig. 3), we started all inversion runs from the same oversmoothed
model obtained from a uniform host, ̺0 = 100 Ωm, with λs = 1000, λa = 10. For small penalties, we
evidently obtain models with excessive granularity and anisotropy. For strong anisotropy penalization, the
recovered conductive domain becomes thinner and concentarted along the top edge of the true anomaly.
The horizontal anisotropy is best recovered with the weights λs, λa close to 10 and 1, respectively.
This agrees with the positions of the corresponding solutions on the L-surface (Fig. 5, left), which was
suggested earlier for estimating the optimum regularization weights in 1-D anisotropic inversions (Pek
and Santos, 2006).

3.1.2 Anomaly with Uniaxial Anisotropy and Anisotropy Strike and Dip

Anisotropy dip is known to be an unresolvable parameter in the 1-D anisotropic MT model unless addi-
tional information on the principal resistivites is available. A layer with the longitudinal and transversal
resistivities ̺l and ̺t, respectively, and anisotropy dip αD is sensed by MT soundings as an azimuthally
anisotropic layer (i.e., with αD = 0◦) with the horizontal resistivity (e.g., Pek and Santos, 2002)

̺d = ̺l cos
2 αD + ̺t sin

2 αD. (18)

Even for a known dip αD, the principal resistivities ̺l, ̺t cannot be found uniquely unless one of the
principal resistivities or the anisotropy ratio is known. The bottom left panel in Fig. 6 shows ̺y − ̺z
(transversal vs. longitudinal) equivalency lines for various dips αD for a 1-D anisotropy model with
true ̺y = 100 Ωm, ̺z = 10 Ωm, and αD = 60◦. Any resistivity pair on any of the αD-labeled curves
produces the same horizontal resistivity ̺d, and is thus indistinguishable from MT data in the 1-D case.

In a 2-D case, the above equivalency is not theoretically justified, though the models equivalent in the 1-D
case produce very similar MT curves also in 2-D. In Fig. 6, a few curves are demonstrated for a square 2-D
anomalous body with various dipping anisotropies which would be completely equivalent in 1-D case. For
the period of 30 s, the 2-D MT curves are between 20 and 30 Ωm in resistivities and between 120 and
125◦ in phases immediately above the anomalous body. These differences are very small, in spite of the
largely different generating models. Therefore, a poor resolution of the dip by a 2-D anisotropic inversion
can be expected.

One more feature of dipping anisotropy in laterally non-uniform structures should be mentioned, namely a
slight asymmetry of the MT curves above the anomaly with anisotropy dip. This feature does not appear
in 1-D media. Because of poor resolution with respect to the dip, this asymmetry often translates into
an asymmetry of the conductivity distribution within the earth. This is clearly demonstrated in Figs. 7a
and b where inversion results are shown for synthetic data from the box model in Fig. 6. In Fig. 7a, the
data were inverted only for principal resistivities and anisotropy strike, the dip was fixed at αD = 0◦.
The data were fit successfully, but the recovered anisotropic conductor is shifted considerably towards
the right-hand side margin of the true anomaly. Fig. 7b results from the inversion for both the principal
resistivities, anisotropy strike as well as dip. A forced lamelarity of the anisotropy is demonstrated in
Fig. 7c by increasing the internal anisotropy penalty weight λa,12 from 1 to 100 in (14).

Effect of extending the inverted data set by vertical geomagnetic transfer functions (induction arrows,
tippers) is demonstrated in Fig. 7d. The geomagnetic data do not improve the inversion considerably as
compared to Fig. 7b, they perhaps focus and centre the recovered anomaly marginally better. An attempt
of employing the geomagnetic data as a source of directional information in the anisotropic inversion failed
completely. Fig. 7e shows results of the inversion of the main, off-diagonal impedances jointly with the
geomagnetic transfer functions, with diagonal impedances omitted. The anisotropy was not recognized
properly by those data, and neither the principal resistivities nor the characteristic anisotropy directions
were recovered satisfactorily.
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Figure 4: 2-D anisotropic inversion of noisy synthetic data generated by a model with a square anisotropic
box (̺1 = ̺3 = 10 Ωm, ̺2 = 10 Ωm, αS = 30◦) embedded in a homogeneous halfspace (̺host = 300 Ωm)
for different structure and anisotropy penalty weights. For detailed description of the model sections, see
caption to Fig. 3. The table in the bottom left panel summarizes the structure and anisotropy penalties
of the resulting models as well as their RMS’s. Models with RMS > 1.5 are grayed.

3.1.3 Isotropic Anomaly

Another important test consists in checking any spurious anisotropy produced by the anisotropic inversion
if data due to an isotropic structure are inverted. We consider the same 2-D box model as above but
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isotropic version (right). The dashed lines connect model points with the same structure and anisotropy
penalty weights. The bold isoline marks a misfit contour of 760 which corresponds to the RMS = 1.000.
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Figure 6: 2-D box model with dipping anisotropy (top left panel) and MT apparent resistivity and phase
curves for a series of models with various principal resistivities ̺y, ̺z and anisotropy dips αD which
would be exactly equivalent in 1-D case (right panels). The bottom left panel shows lines of pairs of the
resistivities ̺y, ̺z which are equivalent for indicated dips αD in 1-D case. The colored circles correspond
to anisotropy parameters which produced the 2-D MT curves in the right panels.

with an isotropic anomaly with ̺iso = 10 Ωm. The top panel in Fig. 8 shows models provided by a
standard isotropic inversion for several structure penalty weights. The same inversion runs were then
carried out for three principal resistivities aligned with the model coordinate frame. The anisotropy
angles were omitted here since no reason existed to include them for data which did not contain any
significant diagonal impedance elements. Results of the anisotropic inversion are displayed in the bottom
panel of Fig. 8. Clearly a superior result is obtained with λs = 100 and λa = 10, though the data are
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Figure 7: 2-D anisotropic inversion of synthetic MT data generated by the model with dipping anisotropy
from Fig. 6. a) Inversion of MT impedances for three principal resistivities and anisotropy strike; dip is
fixed at αD = 0◦. b) Inversion of MT impedances for three principal resistivities and anisotropy strike
and dip. c) The same as b) but with a soft constraint applied to minimize the difference between the
resistivities ̺1 and ̺2 (forced lamelarity of anisotropic domains). d) The same as b) but the inverted
data set was extended by vertical geomagnetic transfer functions (induction arrows). e) The same as d)
with diagonal impedances left out from the inverted data set.

slightly underfitted in this case (RMS = 1.130). With smaller structure and zero anisotropy penalties,
we observe both considerable spurious anisotropy as well as structural instability. For large penalties,
new spurious anisotropy may appear due to the fact that the yx MT curves (H-mode) can be fitted
satisfactorily with less conductivity (i.e., with less structure) than the xy (E-mode) curves. The vertical
resistivity, ̺3, evidently gives the most variable images due to the low sensitivity of the MT fields with
respect to this paramter.

The L-surface for this synthetic test is shown in the right-hand side panel in Fig. 5. The shape of this
surface is slightly different from that for the anisotropic case studied earlier. As we cannot worsen the
model complexity and data misfit by strengthening the anisotropy penalty applied to isotropic data, the
L-surface does not show a target increase for large anisotropy penalties as it is the case for anisotropic
data.
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Figure 8: Top: Isotropic inversion for isotropic conductivity in a square box anomaly for several structural
penalties. Bottom: Anisotropic inversion for three principal resistivities aligned with the model coordinate
frame for the same data as above for several pairs of structure and anisotropy penalties.

3.2 Near-Surface Anisotropic Distorter above a Discordant Anisotropic Layer

A special class of anisotropic models are structures with highly anisotropic, near-surface bodies which
act as strong MT distorters by virtue of chanelling the telluric currents in a direction generally oblique
with respect to the structural strike. Such distortions may even result in MT phases rolling out of their
natural quadrant (Pek, 2009), and may be a source of convergency difficulties for the NLCG inversion
procedure. Here we only briefly visit a synthetic test for MT data generated by a model consisting of
a near-surface, highly anisotropic block (̺1 = ̺3 = 1 Ωm, ̺2 = 100 Ωm, αs = 20◦) in the uppermost
crust underlain by a mid- to lower-crustal layer with increasing anisotropy from the left to the right and
discordant anisotropy strike, αS = −20◦. Complete parameters of the model are shown in the bottom
right panel in Fig. 9. The model produces the out-of-quadrant phases but only for rotated data, not in
the model coordinate frame.

The inversion was run for all three principal resistivities and for the anisotropy strike. The size of the
inverse problem was: 950 model cells, 3800 model parameters, 1440 data items. Results of the inversion
are shown in Fig. 9 for the regularization weights λs = 10, λa = 3. RMS of the final model is 1.060. The
inverse model captures the true structure satisfactorily, especially parameters of the near surface distoring
body. The resistive part of the deep layer to the left is shifted towards the surface but its anisotropy to
the right is recovered well both as to the size and geometrical position. The part of the layer immediately
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Figure 9: Inversion of noisy synthetic MT data generated by a model of a shallow, strongly anisotropic
anomaly and a layer of moderate anisotropy increasing from the left to the right beneath the anomalous
block. The panels show the principal resistivities (̺1, ̺2, ̺3, top panels), anisotropy strike and anisotropy
ratio (αS , νani, bottom panels) recovered by the inversion. The bottom rightmost panel shows the geom-
etry and parameters of the data generating (true) model, resistivities are given in Ωm. The regularization
weights used are λs = 10, λa = 3. The inverse model’s RMS is 1.060.

beneath the distorter is not sensed properly, which could be expected.

This model test presents an exercise with a more complex anisotropic structure, which could be recovered
sufficiently well by the NLCG inverse procedure. For this kind of models with mixed anisotropy strikes
one open question still remains, specifically that of misdetermined structural strikes for the 2-D modeling.

4 Field Data: MT Data from Southern Portugal

In our previous paper on the 1-D MT inversion for anisotropic media, we tested the developed method
on practical data from southern Portugal, from the transition of two southernmost prominent zones of
the Iberian Variscides, the Southern Portuguese Zone (SPZ) and the Ossa Morena Zone (OMZ) (Pek
and Santos, 2006). A long and narrow belt of mafic and ultramafic rocks lines up at the border between
these zones. Those rocks are currently interpreted as an ophiolite complex (Badajoz Acebuches Ophiolite
Complex, BAOC). In the Portuguese mainland the BAOC represents the southern border of the Beja
Igneous Complex (BIC) deformed in the vicinity of the Ferreira-Ficalho thrust (Figueiras et al., 2002).
Without further repeating the geological background of the area, detailed in (Pek and Santos, 2006), it
has been concluded that the geological context of the study area is greatly favourable to the presence of
anisotropic structures at upper to middle crust depths. References to the presence of anisotropic black
schists in south Iberia, as well as to the anisotropic behaviour of MT data can be found in (Pous et al.,
2004).

Pek and Santos (2006) modeled a small subset of data from a large-scale broad-band MT experiment in
southern Portugal (Almeida et al., 2001) which crosses the contact area between the SPZ and OMZ. They
used a 1-D inversion procedure for anisotropic structures and 2-D trial-and-error forward modeling to fit
the MT impedances. Though excellent fit was achieved earlier by 2-D inverting the principal MT curves,
some specific features in the data suggested that non-negligible non-2-D effects influence the MT field,
especially those related to the diagonal impedance elements (Pek and Santos, 2006). Anisotropy was
adopted as a possible mechanism for explaining the non-2-D features in the data, though other reasons
cannot be excluded either, particularly static distortions or off-profile 3-D effects.

Without attempting any deeper interpretation of the above MT data, we only want to demonstrate here
how the trial-and-error modeling by Pak and Santos (2006) compares with results of the 2-D anisotropic
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Figure 10: Inverse 2-D anisotropic model from a subset of MT data across the contact area between the
SPZ and OMZ, southern Portugal. The model was obtained with regulariztion penalty weights λs = 300,
λa = 100. The size of the model was: 1701 model cells, 8505 model parameters, 792 data items. The
bottom right panel repeats the model obtained by a combined 1-D anisotropic inversion and 2-D trial-
and-error forward modeling by Pek and Santos (2006). The black lines above the plots indicate the
section of the profile which was modeled in the paper by Pek and Santos (2006) (sites 04, 03, 02, 01, 09
in the original model). See the text for the acronyms.

inversion of the same data subset. We present one of the inverse anisotropic models in Fig. 10. All
three principal resistivities, anisotropy strike and dip were inverted in this case. A significant dip was
detected only in the conductive channel between two resistors in the central part of the profile which may
indicate vertical current channeling in this zone. In other domains of the model, the dip is featureless,
and therefore is not displayed in Fig. 10.

The interpreted principal resistivities in Fig. 10 are very similar to each other, and we would rather
conclude that the underlying structure is isotropic. The main structures revealed by the inversion do
coincide well with the results of the isotropic inversion by Almeida et al. (2001), which are indicated in
the bottom left model in Fig. 10 by dashed contours labeled C2, R1, C3. Only the localized conductor
C2 by Almeida et al. (2001) is substantially larger in our model and interconnected with deep crustal
conductors. This can be explained by the structure being oversmoothed due to large structural penalty
imposed (λs = 300). In fact, this conductor becomes more focused if the structure penalty is relaxed,
but for the price of unrealistically increased anisotropy in other parts of the model.

Effect of the anisotropy in the model is mainly seen in improved fit to the secondary, diagonal impedances,
which are non-symmetric (Zxx +Zyy 6= 0) and cannot be thus explained in terms of a purely 2-D model.
Similarly as in the trial-and-error result, the anisotropy is practically completely concentrated in the
first 10 km layer of the model. A strong anisotropic feature is observed beneath the BIC and seems
to represent a sub-vertical current channel because of ̺1 ≈ ̺2 ≪ ̺3 and a large dip in this zone. The
originally strongly anisotropic continuous layer modeled beneath the SPZ in the SW of the profile is not
necessarily supported by the new 2-D model, and may occur due to a strong effect of the conductor C2.
The moderately anisotropic layer beneath the OMZ in the NE part of the profile does appear in the
inverse model in the basement of the continuous crustal resistor. The anisotropy strike in this layer is,
however, of opposite sign in comparison with the original model. Some of the very shallow anisotropy is
likely to be due to static distortions in the MT curves which could not be removed completely, especially
from the diagonal impedances. Interference of the static shifts with anisotropy is one of the questions
still open to further investigations.
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5 Conclusion

We presented an algorithm for the 2-D inversion of magnetotelluric data for conductivity distributions
with arbitrary anisotropy. The inversion is based on a Polak-Ribière version of the NLCG algorithm
with a simple Jacobi pre-conditioning, and is the same procedure as Rodi and Mackie’s (2001) technique
used for isotropic inversion. We tried to show all the algorithmic issues of the anisotropic inversion and
demonstrate all of them working together. Though the synthetic tests carried out in this contribution were
only very simple, they could demonstrate basic features of the anisotropic inversion as well as an overview
of ambiguities and quasi-equivalencies that may appear at interpreting anisotropic models. Though
the most significant ambiguity issues known from 1-D magnetotellurics (sensitivity w.r.t. the vertical
conductivity, ambiguities for dipping anisotropies) cannot be theoretically justified in 2-D structures,
they are manifested in practice by poor resolution and by quasi-equivalencies of certain model parameters
in 2-D anisotropic sections. This situation as well as missing theoretical results cause that a lot more
weight is put on numerical experiments and tests in 2-D MT situations.

As regards the outputs of the synthetic tests, we could arrive at following conclusions: (i) similarly as in
the 1-D case, the most reliable inversion results are obtained for structures with azimuthal anisotropy,
(ii) vertical resistivity is almost indistinguishable in 2-D models though it cannot be omitted completely
because of its irreplaceable role in the forward modeling step; forcing lamelar or tubular anisotropy may
be a baypass for coping with the unresolved vertical conductivity, (iii) similarly as in 1-D MT case,
anisotropy dip is an unresolvable parameter unless additional structural information is available; effect
of the true dip increases if anisotropy strike increases (i.e., if lamelas dip in the direction close to the
structural strike); if false dip is fixed in the inverse procedure in such a case, the recovered anisotropy
strike may be not correct, (iv) care must be taken if resistivities from dipping structures are interpreted;
the resistivities may be not correct due to the action of the structure/anisotropy penalties.

With regard to practical data, we could arrive to a satisfactory fit of the experimental data in a few cases.
Nevertheless, verifying the models cannot be based on the MT fit alone, and will require additional
support from other geodata. Moreover, a number of more or less algorithmic questions remains still
open, e.g., (i) how much do static distortions and 3-D off-profile effects in MT data interfere with 2-D
anisotropic interpretations, (ii) how much significant is a correct determination of the 2-D structural
strike for the 2-D anisotropic inversion if varying or mixed anisotropy strikes mask the true structural
axis of homogeneity, (iii) how oblique anisotropies are interpreted by the 2-D inversion, especially those
producing out-of-quadrant anomalous MT phases.
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