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S U M M A R Y
The influence of changes in surface ice-mass redistribution and associated viscoelastic re-
sponse of the Earth, known as glacial isostatic adjustment (GIA), on the Earth’s rotational
dynamics has long been known. Equally important is the effect of the changes in the rotational
dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational
feedback, or more precisely, the rotational feedback on the sea level equation, has been math-
ematically described by the sea level equation extended for the term that is proportional to
perturbation in the centrifugal potential and the second-degree tidal Love number.

The perturbation in the centrifugal force due to changes in the Earth’s rotational dynamics
enters not only into the sea level equation, but also into the conservation law of linear momen-
tum such that the internal viscoelastic force, the perturbation in the gravitational force and the
perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation
to the linear-momentum balance creates an additional rotational feedback on the viscoelastic
deformations of the Earth. We term this feedback mechanism, which is studied in this paper,
as the rotational feedback on the linear-momentum balance.

We extend both the time-domain method for modelling the GIA response of laterally het-
erogeneous earth models developed by Martinec and the traditional Laplace-domain method
for modelling the GIA-induced rotational response to surface loading by considering the rota-
tional feedback on linear-momentum balance. The correctness of the mathematical extensions
of the methods is validated numerically by comparing the polar-motion response to the GIA
process and the rotationally induced degree 2 and order 1 spherical harmonic component of
the surface vertical displacement and gravity field. We present the difference between the case
where the rotational feedback on linear-momentum balance is considered against that where
it is not. Numerical simulations show that the resulting difference in radial displacement and
sea level change between these situations since the Last Glacial Maximum reaches values of
±25 and ±1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up
to 10 per cent in areas of former or ongoing glaciation, but by up to 50 per cent at the bottom
of the southern Indian ocean. This also results in the movement of coastlines during the last
deglaciation to differ between the two cases due to the difference in the ocean loading, which
is seen for instance in the area around Hudson Bay, Canada and along the Chinese, Australian
or Argentinian coastlines.

Key words: Sea level change; Geopotential theory; Earth rotation variations.

1 I N T RO D U C T I O N

The redistribution of ice and water over the Earth’s surface during glaciation and deglaciation cycles due to changes in climate induces
3-D crustal motion, gravity-field variations and changes in sea level, which is known collectively as glacial isostatic adjustment (GIA). The
surface-mass redistribution and associated mass redistribution in the Earth’s interior are capable of perturbing the rotation of the Earth, both
in direction and magnitude of the rotation vector. A wander of the rotation axis induces a perturbation in the centrifugal force, which acts,
in turn, as an additional load. This loading is manifested in all GIA-related observables, that is crustal motions, sea level variations and the
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1824 Z. Martinec and J. Hagedoorn

perturbations in the gravity potential (e.g. Milne & Mitrovica 1996; Mitrovica et al. 2001), and is known as the rotational feedback (Peltier
1998).

The secular changes of the Earth’s rotation axis during ice ages over timescales of 1 Myr has been intensively investigated over the
past two and a half decades. Han & Wahr (1989) were the first to consider the effect of GIA-induced change in the rotation vector on sea
level, while Milne & Mitrovica (1996) first derived a complete, gravitationally self-consistent extension of the sea level equation to include
the rotational-feedback mechanism, see also Milne & Mitrovica (1998), Peltier (1999) and Mitrovica et al. (2001). The spatial and temporal
pattern of GIA-related observables due to the feedback mechanism was successively refined by, for example, Peltier (1999), Mitrovica et al.
(2001, 2005), Peltier & Luthcke (2009), Peltier & Drummond (2010), Mitrovica & Wahr (2011) and Roy & Peltier (2011). While this shows
that a deep insight into the physics of the induced wander of the rotation axis for a deforming and rotating Earth has been attempted, despite
the significant scientific effort, the mutual coupling between the Earth’s deformation caused by ice-mass loading and the induced wander of
rotation axis is still under scientific debate (e.g. Chambers et al. 2010, 2012; Métivier et al. 2012; Peltier et al. 2012).

The rotational feedback on sea level is mathematically described by adding an extra term into the sea level equation that is proportional
to the GIA-induced perturbations in the centrifugal potential and the second-degree tidal Love number (Milne & Mitrovica 1996, 1998;
Peltier 1998, 1999; Mitrovica et al. 2001). Since the sea level equation describes the spatial and temporal distribution of the ocean-water load,
the additional term modifies the loading and subsequently induces additional crustal deformation and gravity-field perturbations. Due to the
reason that follows, we refine the notion introduced by Peltier (1998) and will refer to this effect as the rotational feedback on the sea level
equation. As this feedback mechanism has been intensively studied in the literature, we will not deal with it in this paper.

The perturbation in the centrifugal force enters not only into the sea level equation, but also into the conservation law of linear momentum
such that the internal contact (or surface) viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal
force are in balance. Since the perturbation in the centrifugal force results from the rotational response of a deforming Earth to surface
loading, this additional contribution to a solution of the linear-momentum balance can also be viewed as a rotational feedback. To distinguish
it from the rotational feedback in the sea level equation, we will refer to this as the rotational feedback on the linear-momentum balance.

To extend the existing theories for modelling the GIA signal by rotational feedback on the linear-momentum balance, we will proceed in
two steps. First, the time-domain (TD) method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec
(2000) will be extended by adding the perturbation in the centrifugal force into the linear-momentum equation. Simultaneously, Poisson’s
equation for the perturbation in the gravitational potential will be extended by adding the perturbation in centrifugal potential. These two
partial differential equations will be coupled with the linearized Liouville equation for the GIA-induced rotational response of the Earth. A
non-trivial part in this step is the derivation of the boundary condition for the perturbation in gravity potential at the Earth’s surface and on
the core–mantle boundary. The extended TD method will be checked against the traditional Laplace-domain (LD) method for computing the
polar-motion response m(t) to the GIA process (e.g. Wu & Peltier 1984). The numerical agreement between the extended TD method and
the LD method for the time evolution of m(t) will numerically validate the correctness of the mathematical formulation of the TD method
extended for the rotational feedback in linear-momentum balance.

In the second step, we generalize the traditional LD method (Wu & Peltier 1984) for an additional term in the gravitational-potential
boundary condition which arises due to the rotational feedback on the linear-momentum balance. The generalization concerns the time
evolution of the rotationally induced degree 2 and order 1 spherical harmonic component of displacement and gravity potential. The
numerical agreement with the extended TD method will validate the mathematical correctness of the extended LD method. At this stage,
the TD and LD methods will be considered to be fully mathematically consistent. Finally, we show the difference between the case
where the rotational feedback on linear-momentum balance is included against the case without this feedback mechanism.

The main objective of the paper is to present the theoretical extension of the TD and LD methods for the rotational feedback on the
linear-momentum balance in a transparent way. That is why we will not consider the rotational feedback on the sea level equation, but our
surface load model will be defined by a simple spherical cap used by Spada et al. (2011) for a benchmark study of the numerical performance
of GIA computational codes. This provides the rotational amplitudes and the rotational relaxation times of the M3L70V01 model (Spada et al.
2011) for the case where the rotational-feedback mechanism is included, which may then serve as a benchmark for other GIA computational
codes. A full exploitation of the rotational-feedback effect on the complete suite of GIA-related observables, including the rotational feedback
on the sea level equation, is the next step for future study.

2 T H E I N I T I A L H Y D RO S TAT I C E Q U I L I B R I U M

We treat the Earth as a self-gravitating deformable body, which is composed of a fluid core and a laterally heterogeneous viscoelastic solid
mantle, separated from each other by the core–mantle boundary. Let the Earth be in mechanical equilibrium at time t = 0 and rotate about its
centre of mass O with the uniform angular velocity ��0. We will use this initial equilibrium configuration κ0 as the reference configuration
for the description of both the wander of the rotational axis and the motion inside the deformed Earth induced by time-varying external
surface-mass loading. We choose a Cartesian coordinate system O(x1, x2, x3) corotating with the Earth, such that the coordinate axes x1, x2,
x3 coincide with the principal axes of inertia of the configuration κ0. Let A, B and C (A = B < C) be the corresponding principal moments
of inertia. We suppose that the axis of uniform rotation of the equilibrium configuration κ0 coincides with the axis of the largest principal
moment of inertia, so that ��0 = �0 �e3, where �e3 is the Cartesian unit base vector in the x3 direction. A material particle in κ0 is assigned
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Rotational feedback in GIA 1825

by its position vector �x , measured in the uniformly rotating reference frame O(x1, x2, x3). Let V be the volume of the Earth in the initial
configuration κ0 and �0(�x) be the volume-mass density in V. The inertia tensor of the configuration κ0, as viewed in the corotating frame
O(x1, x2, x3), may be written as the volume integral (e.g. Moritz & Mueller 1987)

C0 =
∫

V
�0(�x) [(�x · �x)I − �x ⊗ �x] dV (�x), (1)

where the dot and cross denote the scalar and dyadic product of vectors, respectively, and I is the second-order identity tensor.
In the gravitating and rotating Earth, there are two volume forces acting on a material particle. The attractive gravitational force per unit

mass, −grad φ0, generated by the volume-mass density �0(�x) and represented by the gravitational potential φ0(�x) and the repulsive centrifugal
force per unit mass, −grad ψ0, represented by the centrifugal potential ψ0(�x) and appearing since a rotating frame is used as the reference for
the description of the deformation of the Earth and the motion of its rotation axis.

The gravitational potential φ0(�x) in the initial equilibrium satisfies Poisson’s equation,

∇2φ0 = 4πG�0 in V, (2)

together with the continuity conditions

[φ0]+− = 0, [�n · grad φ0]+− = 0 on ∂V ∪ 	, (3)

where G is Newton’s gravitational constant, ∂V and 	 are the Earth’s surface and an internal discontinuity across which the unperturbed
density �0(�x) exhibits a finite jump (including the core–mantle boundary ∂C), respectively. A unit normal to either ∂V or 	 is denoted by �n.
The symbol [ f ]+− denotes the jump of quantity f on ∂V or 	 and a superscript + (−) denotes the evaluation of f on the external (internal) side
of ∂V or 	.

The centrifugal potential ψ0(�x) in the initial equilibrium

ψ0(�x) = −1

2

[
�2

0(�x · �x) − ( ��0 · �x)2
]

(4)

is continuous at the internal discontinuity 	,

[ψ0]+− = 0 on 	, (5)

but vanishes outside the Earth,

ψ+
0 = 0 on ∂V, (6)

where ψ+
0 denotes the centrifugal potential on the external side of ∂V.

The sum of the two forces, the so-called the gravity force per unit mass, can be represented as the negative gradient of the gravity
potential 
0 = φ0 + ψ0. The gravity potential 
0(�x) satisfies Poisson’s equation

∇2
0 = 4πG�0 − 2�2
0 in V, (7)

together with the continuity conditions

[
0]+− = 0, [�n · grad 
0]+− = 0 on 	, (8)

and the inhomogeneous boundary conditions


−
0 = φ+

0 + ψ−
0 ,

�n · grad 
−
0 = �n · grad φ+

0 + �n · grad ψ−
0

}
on ∂V . (9)

The initial static stress t0(�x) is assumed to be hydrostatic, t0 = −p0(�x)I everywhere in V, where p0(�x) is the initial hydrostatic pressure.
The mechanical equilibrium of the uniformly rotating Earth is then reduced to the hydrostatic equilibrium where the compression due to
gravity is balanced by a pressure gradient. The balance of these two forces is guaranteed by the equation of hydrostatic equilibrium

grad p0 + �0 grad 
0 = �0 in V . (10)

The boundary condition associated with eq. (10) is [p0]+− = 0 on 	. In particular, p−
0 = 0 on ∂V, where p−

0 denotes the initial pressure on
the internal side of ∂V.

3 A P P L I C AT I O N O F A S U R FA C E - M A S S L OA D

3.1 Inertia-tensor increments

We assume that a time- and space-varying surface-mass load is applied to the Earth’s surface ∂V at t = 0 + and deforms the initial hydrostatic
configuration κ0 into the time-dependent instantaneous configuration κ(t). Let O(t) be the centre of mass of the configuration κ(t). We will
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1826 Z. Martinec and J. Hagedoorn

require that the position of O(t) with respect to the rotating frame O(x1, x2, x3) does not change in time and coincides with the centre of mass
O of the configuration κ0, that is O(t) ≡ O at any time t > 0. By �r (�x, t), we denote the instantaneous position of a particle in the configuration
κ(t) initially located at the position �x in the configuration κ0. The position �r (�x, t) can be represented by the displacement �u(�x, t) of the particle
�x from its equilibrium position

�r (�x, t) = �x + �u(�x, t). (11)

As introduced, we assume that the deformation of the Earth is induced by the redistribution of surface masses. Correct to first order in ‖�u‖,
the instantaneous inertia tensor cL(t) associated with a time-varying surface-mass load, as viewed in the rotating frame O(x1, x2, x3), can be
linearized as (Martinec & Hagedoorn 2005, eq. 16)

cL(t) =
∫

∂V
σ L(�x, t) [(�x · �x)I − �x ⊗ �x ] dS(�x), (12)

where σ L(�x, t), �x ∈ ∂V , is the surface-mass density of the load measured with respect to undeformed unit area dS(�x) and the label L stands
for ‘Load’. The rotational response of the Earth to the surface load is described by the instantaneous inertia tensor CR(t) of the configuration
κ(t). Correct to first order in ‖�u‖, the tensor CR(t), as viewed in the rotating frame O(x1, x2, x3), can be linearized as (Martinec & Hagedoorn
2005, eqs 13 and 14)

CR(t) = C0 + cR(t), (13)

where the label R stands for ‘Response’ and the inertia-tensor increment cR(t) has the form

cR(t)
∫

V
�0(�x) [2 (�x · �u(�x, t)) I − �x ⊗ �u(�x, t) − �u(�x, t) ⊗ �x ] dV (�x). (14)

The total increment c(t) of the initial inertial tensor C0 is then expressed as the sum of two constituents,

c(t) = cL(t) + cR(t). (15)

3.2 Motion of rotation axis

The instantaneous angular velocity �ω(t) of the configuration κ(t), as viewed in the rotating frame O(x1, x2, x3), can be decomposed into the
uniform angular velocity ��0 and a small perturbation �0 �m(t):

�ω(t) = ��0 + �0 �m(t). (16)

The dimensionless quantities m1(t) and m2(t) express the deviations of the instantaneous rotation axis from its equilibrium position and the
quantity m3(t) characterizes variations in the rotational speed.

The motion of the rotation axis of the current configuration κ(t) is governed by the principle of angular-momentum conservation which
results in the Liouville equation for parameters �m(t) (Munk & MacDonald 1960; Moritz & Mueller 1987). Assuming that the inertia-tensor
increment c(t), the relative angular-momentum vector �h(t) and the rotation parameters �m(t) of the configuration κ(t) are small quantities
whose product may be neglected, the Liouville equation can be linearized, and subsequently solved by direct time integration. For the quantity
m3(t), the integration gives

m3(t) = − 1

C�0
[�0c33(t) + h3(t)] , (17)

where c33(t) and h3(t) are the Cartesian components of the inertia-tensor increment c(t) and the relative angular-momentum vector �h(t),
respectively.

The wander of the rotation vector induced by a non-oscillatory long-term redistribution of the surface-mass load consists of periodic
oscillations with the Chandler-wobble frequency superimposed on long-term variations. The Chandler wobbling of the rotation vector can be
removed by moving-average filtering of m(t) over the Chandler-wobble period [as conventional, we will use a complex notation and define
m(t) = m1(t) + i m2(t)]. As a result, long-term motion of the rotation vector is expressed as (Wu & Peltier 1984; Vermeersen & Sabadini
1996; Mitrovica & Milne 1998; Martinec & Hagedoorn 2005)

m(t) = χ (t), (18)

where the complex polar-motion excitation function is defined by

χ (t) = 1

(C − A)�0
[�0c(t) + h(t)] , (19)

and c(t) = c13(t) + i c23(t) and h(t) = h1(t) + i h2(t).
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Rotational feedback in GIA 1827

4 E U L E R I A N P O T E N T I A L I N C R E M E N T S

4.1 The Eulerian density increment

Time changes in the volume-mass density in the instantaneous configuration κ(t) can be described by the Eulerian increment �E of the
unperturbed mass density (e.g. Wolf 1991; Dahlen & Tromp 1998):

�E = �(�r , t) − �0 [�x(�r , t)] . (20)

This increment can be expressed in terms of the displacement �u(�x, t) by linearizing the mass-conservation law (Martinec & Hagedoorn 2005,
eq. 47),

�E = −div
[
�0(�x)�u(�x, t)

]
, (21)

which is correct to a first order in ‖�u‖. Since it is irrelevant in linearized theory whether the increment �E is regarded as a function of �r or �x ,
we consider �E to depend on the position vector �x , that is �E(�x, t).

As traditional in GIA modelling, the effect of a fluid core on the Earth’s viscoelastic response to long-term glacial loading is modelled
by a static-deformation approximation (Dahlen 1974; Crossley & Gubbins 1975). In view of this concept, the Eulerian density increment in
the fluid core is

�E = �n · grad �0

�n · grad 
0

E, (22)

where �n is the unit normal to a level surface 	 of density �0 and gravity potential 
0 in the initial configuration κ0 and 
E is the Eulerian
gravity-potential increment (see Section 4.4). Moreover, in GIA modelling, it is justifiable to approximate the unperturbed density of the fluid
core by an average value of the PREM density stratification of the core (Dziewonski & Anderson 1981). Klemann (personal communication,
2007) tested the validity of this assumption against the case where the Earth is modelled by a full viscoelastic sphere with the PREM
core stratification of the unperturbed density and with a low viscosity of 5 × 1019 Pa s. The comparison of the viscoelastic responses of
the full-sphere model against the spherical-shell model where the effect of the core is approximated by static deformation with a constant
unperturbed density shows that the relative difference is of the order of 5 × 10−3 for spherical harmonic degree j = 2 of the Eulerian
gravity-potential increment, with the error decreasing with increasing spherical harmonic degree. This relative error is acceptable since it is of
the same order as the error associated with the spherical approximation applied in GIA modelling (Martinec & Hagedoorn 2005, section 4.2).
Hence, adopting the static-deformation approximation of a fluid core and assuming a constant unperturbed density of the core implies that
the Eulerian density increment vanishes in the core, �E = 0.

4.2 The Eulerian gravitational-potential increment

As a response to the time changes in the volume-mass density distribution, the gravitational potential φ(�r , t) of the configuration κ(t) changes
over time, which may be described by the Eulerian increment φE of the initial gravitational potential, that is by the quantity

φE = φ(�r , t) − φ0[�x(�r , t)]. (23)

The increment φE satisfies the following boundary-value problem (e.g. Dahlen & Tromp 1998):

∇2φE = 4πG �E in V − 	 (24)

subject to the interface conditions on an internal discontinuity 	:[
φE

]+
− = 0[�n · grad φE

]+
− = −4πGσ	

⎫⎬
⎭ on 	, (25)

and the boundary conditions on the external boundary ∂V:[
φE

]+
− = 0[�n · grad φE

]+
− = 4πGσ ∂V + 4πGσ L

⎫⎬
⎭ on ∂V . (26)

Outside the volume V, the Eulerian density increment �E vanishes and the incremental gravitational potential is harmonic, ∇2φE = 0. The
surface-mass densities σ	(�x, t) and σ ∂V (�x, t) are defined by

σ	(�x, t) = [�0(�x) (�n(�x) · �u(�x, t))]+− for �x ∈ 	,

σ ∂V (�x, t) = �0(�x−)
(�n(�x) · �u(�x−, t)

)
for �x ∈ ∂V

(27)

and �0(�x−) and �u(�x−, t) denote the volume-mass density and the displacement, respectively, on the interior side of ∂V.
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1828 Z. Martinec and J. Hagedoorn

4.3 The Eulerian centrifugal-potential increment

Time changes in the size and orientation of the instantaneous angular velocity �ω(t) induce perturbations in the centrifugal potential. These
may be described by the Eulerian increment ψE of the initial centrifugal potential:

ψE = ψ(�r , t) − ψ0[�x(�r , t)]. (28)

Substituting the centrifugal potentials of the initial equilibrium configuration κ0 and the instantaneous configuration κ(t), respectively, the
increment ψE can be expressed as a function of the rotational parameters mi. In terms of the zeroth- and second-degree spherical harmonics,
this expression, correct to a first order in mi, is (e.g. Martinec & Hagedoorn 2005, eqs 94 and 95)

ψE(�x, t) = r 2ψE
00(t)Y00(�) + r 2

1∑
m=−1

ψE
2m(t)Y2m(�), (29)

where

ψE
00(t) = −4

3

√
π �2

0m3(t), ψE
20(t) = − 1√

5
ψE

00(t),

ψE
21(t) = −

√
2π

15
�2

0m∗(t), ψE
2,−1(t) = −[

ψE
21(t)

]∗
.

(30)

Differentiating ψE with respect to r yields

�er · grad ψE = 2

r
ψE, (31)

where �er is the unit vector in the radial direction. Moreover, the application of the Laplace operator to eq. (29) results in

∇2ψE = −4�2
0m3 in V . (32)

As introduced earlier, the earth model consists of a fluid core and a solid viscoelastic mantle separated from each other by the core–mantle
boundary. For GIA modelling, we will assume that there is no differential rotation between the fluid core and the mantle and that the core
corotates with the mantle. This means that the centrifugal potential ψ passes continuously through the core–mantle boundary. We also assume
that ψ is continuous at a mantle discontinuity 	. To express this condition mathematically, let the internal discontinuity 	 in the initial
configuration κ0 be moved to the discontinuity σ (t) in the current configuration κ(t) by internal deformations. The continuity of the centrifugal
potential ψ at the displaced point �r on the deformed discontinuity σ (t) is expressed as[
ψ

]+
− = 0 on σ (t). (33)

Taking into account the decomposition (28) and the fact that the initial equilibrium centrifugal potential ψ0 is continuous on the deformed
discontinuity σ (t), we find that the Eulerian centrifugal-potential increment ψE passes continuously through discontinuity σ (t). In addition,
correct to a first order in ‖grad �u‖, the continuity of ψE on σ (t) can be viewed as the continuity of ψE on the undeformed discontinuity 	,
that is[
ψE

]+
− = 0 on 	. (34)

However, the continuity of the centrifugal potential is not valid at the Earth surface since the centrifugal force vanishes outside the Earth,
causing the continuity condition (34) to reduce to

ψE+ = 0 on ∂V, (35)

where ψE + denotes the centrifugal-potential increment on the external side of ∂V.

4.4 The Eulerian gravity-potential increment

Time variations of both the gravitational and centrifugal potentials due to the mass redistribution on the Earth’s surface and inside the Earth,
and associated changes in the Earth’s rotation dynamics mean that the gravity potential 
(�r , t) = φ(�r , t) + ψ(�r , t) of the configuration κ(t)
also varies in time. This can be described by the Eulerian increment 
E of the initial gravity potential:


E = 
(�r , t) − 
0[�x(�r , t)]. (36)

In view of eqs (23) and (28), the Eulerian gravity-potential increment 
E is equal to the sum of the Eulerian gravitational-potential increment
φE and the Eulerian centrifugal-potential increment ψE, that is


E = φE + ψE. (37)

By considering eqs (24) and (32), 
E satisfies Poisson’s equation of the form

∇2
E = 4πG �E − 4�2
0m3 in V − 	. (38)
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Rotational feedback in GIA 1829

The interface conditions (25) and (34) combine to give

[

E

]+
− = 0[�n · grad 
E

]+
− = −4πGσ	

⎫⎬
⎭ on 	, (39)

where the surface-mass density σ	 is given by eq. (27)1. Likewise, the boundary conditions (26) and (35) yield


E− = φE+ + ψE−

�n · grad 
E− = �n · grad φE+ + �n · grad ψE− − 4πGσ ∂V − 4πGσ L

⎫⎬
⎭ on ∂V, (40)

where the surface-mass density σ ∂V is given by eq. (27)2.

5 G L A C I A L I S O S TA S Y O N A RO TAT I N G E A RT H

5.1 Extended differential-equation formulation

We are dealing with the viscoelastic response of a self-gravitating, deformable earth model to a surface-mass load, and intend to extend the
traditional theory of viscoelastic relaxation (e.g. Farrell 1972; Wu & Peltier 1982) to the case where the Earth is rotating and its rotational
dynamics is changing as a response to a change in surface loading. As introduced, we assume that the Earth rotates with a constant angular
velocity ��0 prior applying the surface-mass load and with a time-varying angular velocity �ω(t) as the surface-mass load changes.

After applying a time-varying mass load with surface density σ L to the external surface ∂V, the response of a viscoelastic earth model
B is governed by the conservation of linear momentum (inertial forces are neglected) and by Poisson’s equation for small perturbations of a
hydrostatically pre-stressed and self-gravitating continuum in a rotating reference frame O(x1, x2, x3),

div τ − �0 grad 
E + grad (�0�u · �g0) + �E�g0 = 0

∇2
E − 4πG�E = −4�2
0m3

⎫⎬
⎭ in B, (41)

where τ is the Lagrangian increment of the Cauchy stress tensor and �g0 is the initial gravity, �g0 = −grad 
0. Eqs (41) are derived by applying
the incremental field theory (e.g. Wu & Peltier 1982; Wolf 1991), which allows us to adopt the assumption of a spherical approximation
(Martinec & Hagedoorn 2005, section 4.2). This means that (i) the Earth is represented by a sphere B with the unit normal to the external
surface ∂V and an internal discontinuity 	 coinciding with the unit radial vector �er, �n = �er, and (ii) the unperturbed mass density �0 is radially
dependent only, that is �0 = �0(r).

We should emphasize that the centrifugal-force increment grad ψE is included in the linear-momentum balance via the gravity-force
increment grad 
E and the centrifugal-potential increment ψE in Poisson’s equation via the gravity-potential increment 
E. These two
additional terms extend the traditional differential-equation formulation of GIA (e.g. Farrell 1972; Wu & Peltier 1982) where only the
gravitational-force increment grad φE and the gravitational-potential increment φE are considered.

As discussed in Section 4.1, the effect of a fluid core on the Earth’s viscoelastic response to long-term glacial loading is viewed in
terms of a static deformation. This concept allows us to consider the solution domain B as a solid viscoelastic spherical shell, representing
the Earth’s mantle, bounded by a fluid–solid boundary ∂C, representing the core–mantle boundary, and by the surface ∂V, representing the
Earth’s surface. Thus, the surface ∂B bounding the solution domain B consists of two parts, ∂B = ∂C ∪ ∂V.

The boundary conditions on the external surface ∂V vary over time and are functions of the time evolution of the surface-mass load
changes. They are therefore of the form

�er · τ− · �er = −g0(a)σ L

τ− · �er − (�er · τ− · �er

) �er = �0

E− = φE+ + ψE−

1

4πG
grad 
E− · �er + �−

0 (�u− · �er) = 1

4πG

(
grad φE+ · �er + 2

a
ψE−

)
− σ L

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

on ∂V, (42)

where a is the radius of ∂V and g0(a) is the magnitude of �g0 on ∂V. The symbols τ−, �−
0 and �u− denote the stress tensor increment, the

unperturbed mass density and the displacement on the interior side of ∂V, respectively. The first pair of boundary conditions on the traction
increment can be found in Longman (1963) or Farrell (1972), whereas the second pair of boundary conditions on the Eulerian gravity-potential
increment and the Eulerian gravity-force increment follow from eq. (40) by the substitution from eqs (27)2 and (31).
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1830 Z. Martinec and J. Hagedoorn

To complete the formulation, the boundary conditions for the displacement, the traction increment, the gravity potential and the gravity
intensity increments are prescribed at an internal discontinuity 	 (e.g. Dahlen 1974), and eq. (39):

[�u]+− = 0

[τ · �er]
+
− = 0[


E
]+
− = 0[

1

4πG
grad 
E · �er + �0(�u · �er)

]+

−
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

on 	. (43)

Since an inviscid fluid core is included, the continuity of the normal component of the displacement, that is, �er · �u, the continuity of the normal
component of the stress vector, that is, �er · τ · �er and the free-slip behaviour, that is, τ · �er − (�er · τ · �er)�er = �0, are appropriate, instead of
eq. (43). These conditions can be expressed in the form (e.g. Chinnery 1975; Tromp & Mitrovica 1999), and eq. (39):[�u · �er

]+
− = 0

�er · τ+ − �−
0

[
g0(b)(�u · �er) + 
E

] �er = �0[

E

]+
− = 0

1

4πG

[
grad 
E · �er

]+
− + [�0]+− (�u · �er) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

on ∂C, (44)

where b is the radius of ∂C and g0(b) is the magnitude of �g0 on ∂C. The symbols τ+ and �−
0 denote the stress tensor increment and the

unperturbed mass density on ∂C from the mantle and core side, respectively.
Provided that the spatial-time variations of the surface-mass load σ L and temporal variations of the polar motion (m1, m2) and rotation

speed m3 are specified, the above initial, boundary-value problem describes the spatiotemporal behaviour of the displacement field �u and the
Eulerian gravity-potential increment 
E( = φE + ψE) as independent field variables. In what follows, our strategy of solving this problem will
make use of existing numerical methods applied to solve the associated problem for a non-rotating Earth. In this particular case, the Eulerian
centrifugal-potential increment ψE is identically equal to zero and the Eulerian gravity-potential increment 
E is reduced to the Eulerian
gravitational-potential increment φE. Moreover, the rotation parameters mi, i = 1, 2, 3, are also identically equal to zero, the non-homogeneous
Poisson’s equation (41)2 is reduced to a homogeneous one, and the non-homogeneous boundary conditions (42)3, 4 are reduced by terms
proportional to ψE. Finally, the unperturbed gravity potential 
0 is reduced to the unperturbed gravitational potential φ0.

5.2 Weak formulation

The initial, boundary-value problem (41)–(44) for a non-rotating Earth has been formulated in a weak sense by Martinec (2000). We will now
modify this formulation for a rotating Earth by adding the perturbation in the centrifugal potential into eqs (41)–(44).

As introduced, the Eulerian gravitational-potential increment φE considered by Martinec (2000) as an independent field variable for a
non-rotating Earth is now replaced by the Eulerian gravity-potential increment 
E for a rotating Earth. Under such a replacement, the forms
of the differential equations and the boundary conditions expressed in terms of φE (and �u) for a non-rotating Earth are the same as those
expressed in terms of 
E (and �u) for a rotating Earth. The only difference is that the right-hand side of Poisson’s equation (41)2 vanishes for
a non-rotating Earth and the boundary condition (42)3, 4 do not contain the two terms depending on ψE. Hence, the modification of the weak
formulation concerns how to extend the original weak formulation such that these additional terms are accounted for.

Following the considerations by Martinec (2000), for functions (�u, 
E, �) from an appropriate functional space Vsol, whose detailed
specification is given by Martinec (2000, eq. 27), let us define the energy functional E by the sum of the term Epress associated with the
pressure, elastic shear energy Eshear, gravity energy Egravity and the term Euniq associated with the uniqueness of a solution:

E(�u,
E,�) = Epress(�u, �) + Eshear(�u) + Egravity(�u,
E) + Euniq(�u), (45)

where the energy constituents are, except Egravity and Euniq, defined by Martinec (2000, eqs 30–32). For a rotating Earth, the original gravitational
energy Egrav of the form

Egrav(�u, φE) = E (I)
grav(�u) + 1

8πG

∫
B

(
grad φE · grad φE

)
dV +

∫
B

�0(�u · grad φE)dV, (46)

where E (I)
grav(�u) is given by Martinec (2000, eq. A1), is now replaced by the gravity energy Egravity. This energy can be derived from the

gravitational energy, provided that the Eulerian gravitational-potential increment φE is replaced by the Eulerian gravity-potential increment

E

Egravity(�u, 
E) = E (I)
grav(�u) + 1

8πG

∫
B

(
grad 
E · grad 
E

)
dV +

∫
B

�0(�u · grad 
E)dV . (47)
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Rotational feedback in GIA 1831

The six conditions on vanishing a rigid-body translation and rotation are derived in (Martinec & Hagedoorn 2005, section 2.4). These
conditions ensure that the position of the centre of mass is fixed during GIA process and the relative angular-momentum vector �h(t) vanishes.
They are used to define the term Euniq in a similar way as eq. (33) in Martinec (2000).

Moreover, we introduce the linear functional F i+1 taken at the current time ti+1 by the sum of the dissipative term taken at the previous
time ti, the term associated with the boundary conditions on traction increment, the term associated with the boundary condition on the
Eulerian gravity increment and the term associated with the source term on the right-hand side of Poisson’s equation (41)2 (all three later
terms are taken at the current time ti+1):

F i+1(�u, 
E) = F i
diss(�u) + F i+1

surf (�u) + F i+1
surf (
E) + F i+1

rot (
E), (48)

where the first two terms on the right-hand side are given by Martinec (2000, eq. 35 and the first part of eq. 36), and the third term is chosen
in the form

F i+1
surf (
E) =

∫
∂ B

bi+1
1 
EdS, (49)

where an auxiliary variable b1, taken at the current time ti + 1, is introduced to satisfy the boundary conditions (42)4 and (44)4 for the Eulerian
gravity increment on ∂B, and the fourth term has the form

F i+1
rot (
E) =

∫
B

�CF
EdV, (50)

where �CF = �2
0m3/πG.

The ‘weak formulation’ of the initial, boundary-value problem (41)–(44) consists of finding the fields (�u, 
E, �) from the functional
space Vsol that fulfils a homogeneous initial condition and, at a fixed time, they satisfy the following variational equality:

δE(�u, 
E,�, δ�u, δ
E, δ�) = δF(δ�u, δ
E) ∀(δ�u, δ
E, δ�) ∈ Vsol. (51)

Note that we drop, in contrast to Martinec (2000), time labels i and i + 1 since they are redundant in the following considerations. The
variation of the energy constituents are, except for δEgravity, given by Martinec (2000, eqs 40–43). The missing term reads as

δEgravity(�u, 
E, δ�u, δ
E) = δE (I)
grav(�u, δ�u) + 1

4πG

∫
B

(
grad 
E · grad δ
E

)
dV

+
∫

B
�0

(�u · grad δ
E
)

dV +
∫

B
�0

(�δu · grad 
E
)
dV . (52)

Likewise, the variation of the linear function F i+1 is

δF i+1(δ�u, δ
E) = δF i
diss(δ�u) + δF i+1

surf (δ�u) + δF i+1
surf (δ
E) + δF i+1

rot (δ
E), (53)

where the first two terms on the right-hand side are given by Martinec (2000, eq. 45 and the first part of eq. 46), and the last two terms read
as

δF i+1
surf (δ
E) =

∫
∂ B

bi+1
1 δ
EdS, (54)

and

δF i+1
rot (δ
E) =

∫
B

�CFδ
EdV . (55)

To show that the weak formulation generalizes the differential-equation formulation of the problem (41)–(44), let us temporarily assume that
the weak solution (�u, 
E, �) is sufficiently smooth such that the Green’s theorems (Martinec 2000, eqs 50 and 51) can be applied to the
second and the third integral on the right-hand side of eq. (52), respectively:

δEgravity(�u, 
E, δ�u, δ
E) = δE (I)
grav(�u, δ�u) + 1

4πG

[
−

∫
B

∇2
Eδ
E dV +
∫

∂ B

(�n · grad 
E
)
δ
E dS −

∫
	

[�n · grad 
E
]+
− δ
E dS

]

−
∫

B
div (�0�u) δ
E dV +

∫
∂ B

�0 (�n · �u) δ
E dS −
∫

	

[�0 (�n · �u)]+− δ
E dS +
∫

B
�0(�δu · grad 
E)dV . (56)

We modify the variational equality (Martinec 2000, eq. 52) by replacing δEgravity by δEgrav and 
E by φE, respectively. Then the implication of
Martinec (2000, eq. 53) applied to the modified variational equality provides the Maxwell viscoelastic constitutive equation, the divergence-free
constraint on displacement �u, the linear-momentum balance (41)1, Poisson’s equation (41)2 and the interface conditions (43).

Moreover, the inspection of the modified variational equality shows that there are three surface integrals over the bounding surface ∂B
that are proportional to the test function δ
E:

1

4πG

∫
∂ B

(�n · grad 
E
)
δ
E dS +

∫
∂ B

�0 (�n · �u) δ
E dS =
∫

∂ B
b1 δ
E dS, (57)
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1832 Z. Martinec and J. Hagedoorn

where an auxiliary variable b1 has been introduced to satisfy the boundary conditions (42)4 and (44)4 for the Eulerian gravity increment. In
view of ∂B = ∂C ∪ ∂V, we have

1

4πG

∫
∂C

(�n · grad 
E
)
δ
E dS +

∫
∂C

�0 (�n · �u) δ
E dS + 1

4πG

∫
∂V

(�n · grad 
E
)
δ
E dS +

∫
∂V

�0 (�n · �u) δ
E dS

=
∫

∂C
b1 δ
E dS +

∫
∂V

b1 δ
E dS. (58)

Since δ
E is an arbitrary, infinitely differentiable function that does not vanish on ∂C nor on ∂V, then, according to the implication of Martinec
(2000, eq. 54), the last integral equation can only be fulfilled if

1

4πG
�n · grad 
E(b+) + �0(b+) �n · �u(b+) = b∂C

1 , (59)

1

4πG
�n · grad 
E(a−) + �0(a−) �n · �u(a−) = b∂V

1 , (60)

where b∂C
1 and b∂V

1 denote the function b1 on ∂C and ∂V, respectively. With the unit outward normal �n to ∂V and ∂C equal to �er and −�er,
respectively, we then have

1

4πG
�er · grad 
E(b+) + �0(b+) �er · �u(b+) = −b∂C

1 , (61)

1

4πG
�er · grad 
E(a−) + �0(a−) �er · �u(a−) = b∂V

1 . (62)

However, the boundary-value functions b∂C
1 and b∂V

1 have not yet been specified. The requirement that the weak formulation for sufficiently
smooth functions is equivalent to the differential-equation formulation now implies that b∂C

1 and b∂V
1 are chosen such that the boundary

conditions (44)4 and (42)4 must be satisfied. The comparison of eqs (44)4 and (42)4 with eqs (61) and (62), respectively, implies that the
functions b∂C

1 and b∂V
1 must be chosen in the form

b∂C
1 = − 1

4πG

(
grad 
E− · �er

) − �−
0 (�u+ · �er), (63)

where �−
0 and 
E − are the unperturbed density and the Eulerian gravity-potential increment on ∂C on the core side, respectively, and

b∂V
1 = 1

4πG

(
grad φE+ · �er + 2

a
ψE−

)
− σ L, (64)

where φE+ is the Eulerian gravitational-potential increment φE on the exterior side of ∂V and ψE− is the Eulerian centrifugal-potential
increment ψE on the interior side of ∂V. Moreover, the continuity of the normal component of the displacement vector on ∂C, that is,
�er · �u(b+) = �er · �u(b−), has been applied in eq. (63). The boundary-value function b∂C

1 can be further rewritten in the form analogous to
eq. (64)

b∂C
1 = − 1

4πG

(
grad φE− · �er + 2

b
ψE−

)
− �−

0 (�u+ · �er). (65)

In other words, defining b∂V
1 and b∂C

1 in the forms (64) and (65), respectively, guarantees that the boundary conditions for the Eulerian gravity
increment on bounding surfaces ∂C and ∂V are satisfied.

5.3 Spherical harmonic parametrization

It has become convenient to use spherical coordinates (r, �), � = (ϑ , ϕ) when dealing with the viscoelastic response of a spherical earth
model and parametrize field variables in terms of surface spherical harmonics. Such a parametrization has been used, for instance, by Peltier
(1974), Wu & Peltier (1982) and others. Here, we only introduce the representation form for the Eulerian gravitational-potential increment
φE and refer to Martinec (2000, eqs 55–57) for the parametrizations of other field variables. For a fixed time and b ≤ r ≤ a, the angular
dependence of φE is described as a series of scalar spherical harmonics Yjm(�) (e.g. Varshalovich et al. 1989, chapter 5):

φE(r,�) =
∞∑
j=0

j∑
m=− j

φE
jm(r )Y jm(�), (66)

where φE
jm(r ) are the spherical harmonic expansion coefficients depending on the radial coordinate r. Note that the same parametrization as

in eq. (66) is taken for the test function δφE. The spherical harmonic representation of eq. (37) then reads as


E
jm(r ) = φE

jm(r ) + ψE
jm(r ), (67)
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Rotational feedback in GIA 1833

where 
E
jm(r ) and ψE

jm(r ) are the spherical harmonic expansion coefficients of the Eulerian gravity-potential increment 
E and the Eulerian
centrifugal-potential increment ψE, respectively. The later coefficients are given by the representation (30) where they are equal to zero unless
j = 0, or j = 2 and m = 0, ±1.

We now aim at expressing the boundary-value functions b∂C
1 and b∂V

1 in spherical harmonic representation. Since the Eulerian density
increment vanishes outside the Earth and in a fluid core (as discussed in Section 4.1), the Eulerian gravitational-potential increment is
harmonics outside the solution domain B,

∇2φE = 0 outside B. (68)

Moreover, it passes continuously through the boundaries of B,[
φE

]+
− = 0 on ∂C ∪ ∂V . (69)

The solution of this boundary-value problem with an additional requirement that φE is regular at the origin and vanishes at infinity is

φE(r,�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
j=0

j∑
m=− j

(a

r

) j+1
φE

jm(a−)Y jm(�) for r ≥ a,

∞∑
j=0

j∑
m=− j

( r

b

) j

φE
jm(b+)Y jm(�) for r ≤ b.

(70)

Differentiating the last expression with respect to r and referring the results to the external sides of ∂B yields

�er · grad φE(r,�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

a

∞∑
j=0

j∑
m=− j

(− j − 1)φE
jm(a−)Y jm(�) for r = a+,

1

b

∞∑
j=0

j∑
m=− j

jφE
jm(b+)Y jm(�) for r = b−.

(71)

where the continuity of φE on ∂C and ∂V, that is eqs (25)1 and (26)1, have been used. Substituting for φE
jm(a−) and φE

jm(b+) from eq. (67)
yields

�er · grad φE(r,�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

a

∞∑
j=0

j∑
m=− j

[
(− j − 1)
E

jm(a−) + ( j + 1)ψE
jm(a−)

]
Y jm(�) for r = a+,

1

b

∞∑
j=0

j∑
m=− j

[
j
E

jm(b+) − jψE
jm(b+)

]
Y jm(�) for r = b−.

(72)

The boundary-value functions b∂V
1 and b∂C

1 , expressed by eqs (64) and (65), respectively, can now be represented as

b∂V
1 = 1

4πGa

∞∑
j=0

j∑
m=− j

[
(− j − 1)
E

jm(a−) + ( j + 3)ψE
jm(a−)

]
Y jm(�) − σ L, (73)

and

b∂C
1 = 1

4πGb

∞∑
j=0

j∑
m=− j

[
j
E

jm(b+) + (− j + 2)ψE
jm(b+)

]
Y jm(�) − �−

0 (�u+ · �er). (74)

By comparing the boundary-value functions (73) and (74) with those for a non-rotating Earth (Martinec 2000, eq. 38) we can find that there
are two additional boundary-value terms in eqs (73) and (74), that is

b∂V,ψ

1 = 1

4πGa

∞∑
j=0

j∑
m=− j

( j + 3)ψE
jm(a−)Y jm(�), (75)

and

b∂C,ψ

1 = 1

4πGb

∞∑
j=0

j∑
m=− j

(− j + 2)ψE
jm(b+)Y jm(�), (76)

which describe the feedback of the centrifugal-potential increment on the linear-momentum balance.

5.4 Numerical implementation of the rotational feedback

Fig. 1 illustrates the basic components for the description of the GIA-induced variations in the rotation vector and the associated feedback
mechanics, that is, the rotationally induced variations in deformation and gravity. These components are the gravito-viscoelastic equations
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σice
i+1, σ

ocean
i , ψE

i

GVE

ΦE
i+1, �ui+1

MC

ci+1
13 , ci+1

23 , ci+1
33

LE

mi+1
1 , mi+1

2 , mi+1
3

CF

ψE
i+1

SLE

σocean
i+1

Figure 1. Schematic illustration of the implementation of the GIA-induced variations in the rotation parameters and the associated feedback mechanics of the
rotationally induced variations in deformation and gravity between time epochs ti and ti+1. The numerical algorithm solves the first four steps in the spherical
harmonic domain. Then, the output quantities are transformed into the spatial domain and the SLE is solved in the last step (see text for further details).

(GVE) governing the load-induced perturbation of the hydrostatic equilibrium reference configuration, MacCullagh’s formula describing the
variation of the inertia-tensor increment, the Liouville equation describing the motion of the rotation axes, the variation of the centrifugal
force (CF) and the sea level equation (SLE) controlling the redistribution of water in the ice-ocean system. The evaluation of the coupled
system of equations from time epoch ti to time epoch ti+1 is implemented in the five-step algorithm. The arrows indicate the flow of the
operations.

In the first step, the spatial and time varying ice-mass load σ ice
i+1 over continents is prescribed as input data. The water-mass load σ ocean

i

over oceans and the Eulerian centrifugal-potential increment ψE
i are known from the previous time ti solution. The total surface-mass load at

the start of time epoch ti+1 is

σ L
i+1 = σ ice

i+1 + σ ocean
i . (77)

The GVEs describing the load-induced perturbation of a spherical, self-gravitating, incompressible, Maxwell-viscoelastic continuum, extended
for the centrifugal-potential increment, as derived in Section 5.2, are solved by the spectral finite-element method developed by Martinec
(2000). There, the radial dependence of the field variables is parametrized by finite elements, whereas the lateral dependence is parametrized
by spherical harmonics. This method provides the displacement vector �u and the Eulerian gravity-potential increment 
E at time ti+1.

In the second step, the degree 0 and degree 2 spherical harmonic components of the gravitational-potential increment φE are computed
by

φE
jm(r, ti+1) = 
E

jm(r, ti+1) − ψE
jm(r, ti ), (78)

 at B
ibliothek des W

issenschaftsparks A
lbert E

instein on O
ctober 24, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Rotational feedback in GIA 1835

for j = 0, 2, m = 0, 1 and b ≤ r ≤ a. Here, the degree 0 and degree 2 spherical harmonic components of the centrifugal-potential increment
ψE are expressed by eq. (30). The temporal perturbation of the inertia tensor, required to be specified in the Liouville equation, is then derived
from time variations of the degree 2 spherical harmonic components of the gravitational-potential increment by MacCullagh’s formulae
(Martinec & Hagedoorn 2005, eqs 79 and 89),

c13(t) = −
√

5

6π

a3

G
Re

[
φE

21(t)
]
,

c23(t) =
√

5

6π

a3

G
Im

[
φE

21(t)
]
,

c33(t) = 1

3

√
5

π

a3

G
φE

20(t) + 1

3
Tr c(t), (79)

where Re and Im are the real and imaginary parts of a complex number, respectively, and Tr c(t) is the trace of the inertia-tensor increment.
Note that under the incompressibily condition div �u = 0 and surface-mass conservation, that is when σ L

00(t) = 0 at any time t, the trace of
cL(t) vanishes, Tr c(t) = 0.

In the third step, the motion of the rotation axis of the deformed Earth is governed by the Liouville equation. This step was studied in
detail by (Martinec & Hagedoorn 2005, sections 2.5 and 2.6). We showed that the Chandler wobbling of the rotation vector can be removed
by moving-average filtering of m(t) over the Chandler-wobble period. As a result, the long-term motion of the rotation vector is governed by
eqs (17) and (18). Assuming that there is no rigid-body rotation of the configuration κ(t) with respect to the corotating frame O(x1, x2, x3),
the relative angular-momentum vector vanishes, �h(t) = 0 for t > 0 (Martinec & Hagedoorn 2005, eq. 27), and eqs (17) and (18) reduce to

m1(t) = c13(t)

C − A
, m2(t) = c23(t)

C − A
, m3(t) = − c33(t)

C
. (80)

In the fourth step, the rotation parameters are substituted into eq. (30) and the centrifugal-potential increment ψE is updated for time
epoch ti+1. Finally, the spherical harmonics of the gravity-potential increment can be updated,


E
jm(r, ti+1) = φE

jm(r, ti+1) + ψE
jm(r, ti+1), (81)

and transformed, together with the spherical harmonic representation of the displacement �u(ti+1), into the spatial domain. The time epoch ti+1

ends with solving the sea level equation for σ ocean
i+1 following the implementation by Hagedoorn et al. (2007).

6 T H E L OV E - N U M B E R A P P ROA C H F O R P O L A R M O T I O N

The polar motion of the Earth’s rotation axis as a response to surface-mass load variations during glaciation periods is traditionally computed
in the LD using the method proposed by Sabadini et al. (1982). This method requires that not only the initial density �0(r) but also the
viscosity and elastic parameters vary only radially.

To model the polar motion of the rotation axis due to the motion inside the deforming Earth and the change of the gravitational and
centrifugal forces, the inertia-tensor increment c(t) in the polar-motion excitation function χ (t) consists of two contributions, cL(t) and cR(t),
as shown in eq. (15), and the contribution cCF(t) due to the centrifugal-potential increment ψE,

c(t) = cL(t) + cR(t) + cCF(t), (82)

where

cR(t) = kL(t) ∗ cL(t), (83)

kL(t) is the second-degree loading Love number for the gravitational potential (e.g. Peltier 1974, 1976; Wu & Peltier 1982) and the asterisk *
denotes the time convolution. Munk & MacDonald (1960, section 5.3) and Moritz & Mueller (1987, section 3.2) showed that

cCF(t) = (C − A)
kT(t)

ks
∗ m(t), (84)

where kT(t) is the second-degree tidal Love number for the gravitational potential and ks is the secular Love number,

ks = 3G(C − A)/�2
0a5. (85)

By eqs (82)–(84), the linearized Liouville equation (18) for polar motion becomes[
δ(t) − kT(t)

ks

]
∗ m(t) = χL+R(t), (86)

where δ(t) is the Dirac delta function and

χL+R(t) = 1

C − A
[δ(t) + kL(t)] ∗ cL(t). (87)
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1836 Z. Martinec and J. Hagedoorn

Applying the Laplace transform to eq. (86) results in

m(s) = M(s)χL+R(s), (88)

where m(s) is the Laplace image of m(t),

χL+R(s) = 1

C − A
[1 + kL(s)]cL(s), (89)

and

M(s) = 1

1 − kT(s)

ks

(90)

is the Laplace-transformed polar-motion transfer function representing the displacement of the rotation axis of the instantaneous configuration
κ(t) with respect to the co-rotating frame O(x1, x2, x3) for a unit surface-mass loading excitation (Spada et al. 2011).

The objective of this section is to compare the polar-motion function m(t) calculated by the LD method with that resulting from the TD
method (presented in Section 5). For this reason, we identify the secular Love number with the fluid tidal Love number

ks ≡ kT
f . (91)

This assumption means that the Earth has reached its rotational equilibrium prior to the application of the surface load. This assumption may,
however, be violated due to (i) unrelaxed lithospheric stresses in the initial configuration of a viscoelastic earth model comprising an elastic
lithosphere, (ii) lateral density variations in the Earth’s mantle caused by thermal and compositional heterogeneities or (iii) non-zero deviatoric
pre-stresses induced by convection currents in the mantle. Within the framework of traditional GIA theory, there is no rigorous mathematical
tool to take these effects into account. Since kT

f differs very little from the observational value of ks, Mitrovica et al. (2005) added a small
correction (the so-called β-correction) to the fluid Love number to adjust the observed secular Love number. By this, elastic-lithosphere and
mantle-convection effects are accounted for when modelling glacial-induced perturbations of the Earth’s rotation.

In the case when the Chandler wobble is not included in M(s) and assumption (91) is adopted, eq. (88) can be arranged as (e.g. Wu &
Peltier 1984; Vermeersen et al. 1997; Mitrovica & Milne 1998; Sabadini & Vermeersen 2004; Spada et al. 2011)

M(s) = Ae + As

s
+

M−1∑
i=1

Ai

s − ai
, (92)

where ai are the roots of a degree M − 1 polynomial dispersion equation and represent the (real) rotational counterparts of the viscous
gravitational relaxation frequencies si. Making use of the product identity (A2), the elastic Ae, secular As and viscous Ai rotational residues
are expressed as

Ae = σr

σ0
, As = − σr

σ0

M∏
i=1

si

M−1∏
i=1

ai

, Ai = σr

σ0

1

ai

M∏
k=1

(sk − ai )

M−1∏
k �=i

(ak − ai )

, (93)

where σ r is the Chandler-wobble angular frequency for a rigid earth,

σ0 = kT(s = 0) − kT
e

kT(s = 0)
σr, (94)

and kT
e is the elastic second-degree tidal Love number for the gravitational potential.

6.1 Numerical results for polar motion

We now compute the polar motion of the rotating, spherically symmetric, five-layer, incompressible, self-gravitating, viscoelastic earth model
M3-L70-V01 (Spada et al. 2011, table 3) used in the benchmark study of numerical performance of GIA computational codes based on
different mathematical and numerical approaches. The Green’s functions of this model are computed analytically (e.g. Sabadini et al. 1982;
Wu & Peltier 1984; Milne & Mitrovica 1996). The surface-mass load is represented by a spherical cap with surface-mass density σ (ϑ) centred
at the colatitude ϑ c = 25◦ and longitude λc = 75◦. The parameters of the spherical-cap load are given by (Spada et al. 2011, table 4).

Let a spherical-cap load σ (ϑ) be centred at the north pole and σ j be the expansion coefficients of σ (ϑ) into a series of Legendre
polynomials Pj(cos ϑ). The same load, but centred at colatitude ϑ c and longitude λc, that is the load σ (ϑ , λ), is represented by the series of
spherical harmonics in the form

σ (ϑ, λ) =
∞∑
j=0

j∑
m=− j

σ jmY jm(ϑ, λ), (95)
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Rotational feedback in GIA 1837

where the expansion coefficients σ jm are related to σ j by

σ jm = 4π

2 j + 1
σ j Y

∗
jm(ϑc, λc). (96)

In particular, for j = 2 and m = 1, we have

σ21 = −
√

3π

10
σ2 sin 2ϑc e−iλc . (97)

A simple loading history is simulated by the Heaviside function f(t) = H(t). The surface-mass load σ L is then

σ L = σ (ϑ, λ) f (t). (98)

The inertia-tensor increment cL(t) due to surface-mass load is

cL(t) = (C − A)Gσ f (t), (99)

where the geometrical factor Gσ is determined by the load geometry (Spada et al. 2011, eq. 31),

Gσ =
√

8π

15

a4

C − A
σ ∗

21. (100)

Transforming eq. (99) to the LD and substituting the result into eq. (89) yields

χL+R(s) = Gσ [1 + kL(s)] f (s), (101)

where f(s) is the Laplace image of f(t). The polar motion (eq. 88) which now includes a loading effect is

m(s) = Gσ [1 + kL(s)]M(s) f (s). (102)

Substituting for kL(s) (e.g. Peltier 1976) for M(s) from eq. (92) (Vermeersen et al. 1994; Mitrovica & Milne 1998; Sabadini & Vermeersen
2004; Spada et al. 2011) showed that

m(s) = Gσ

(
A′

e + A′
s

s
+

M−1∑
i=1

A′
i

s − ai

)
f (s), (103)

where the elastic A′
e, secular A′

s and viscous A′
i amplitudes are given by Spada et al. (2011, eqs 23–25). The other viscous amplitudes denoted

by A′′
i in Spada et al. (2011) are shown to vanish identically. For Heaviside loading (f(s) = 1/s), the inverse Laplace transform of eq. (103)

results in

m(t) = Gσ

[
A′

e + A′
st +

M−1∑
i=1

A′
i

ai
(eai t − 1)

]
H (t). (104)

Fig. 2 compares the x and y Cartesian components of the polar-motion function m(t) computed by the TD method (solid lines) with those
resulting from the LD method (dashed lines). The dashed and solid curves show excellent agreement for all chosen time instances, which
means that the extended TD method for calculating m(t) (presented in Section 5) is fully consistent with the traditional LD solution to m(t).

It should be emphasized that the two methods are independent of each other and calculate the polar-motion function m(t) in rather
different ways. The extended TD method includes the effect of changes in the centrifugal force in the linear-momentum equation (41) which
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Figure 2. The x and y Cartesian components of the polar motion function m(t) computed by the extended TD method (solid colour lines) and the traditional
LD method (dashed lines). In all calculations, the results apply to the spherically symmetric, incompressible viscoelastic earth model M3-L70-V01 (Spada
et al. 2011, table 3) loaded by a spherical cap (Spada et al. 2011, table 4) centred at the colatitude ϑc = 25◦ and longitude λc = 75◦.
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1838 Z. Martinec and J. Hagedoorn

is coupled with the linearized Liouville equation (18) for determining the polar motion m(t). It is important to emphasize that eq. (18) does
not contain the contribution of the centrifugal-force change. The LD method does not consider the change of the centrifugal force in the
linear-momentum equation (41), but it includes an additional term cCF(t) in the linearized Liouville equation (86) for determining the polar
motion m(t). In this respect, the LD method considers the effect of the change of the centrifugal force on deformation and gravity to be
negligible. In the following section, we aim to show that this approximation is not correct for the deformation and gravity field of degree j = 2
and order m = 1.

6.2 Rotational feedback on displacement and gravity

Having found the polar-motion function m(t), the Eulerian centrifugal-potential increment ψE
21(t) is determined by eq. (30)2. Substituting ψE

21

into eqs (75) and (76), the degree 2 and order 1 spherical harmonic of the boundary-value functions b∂V,ψ

1 and b∂C,ψ

1 is

b∂V,ψ

1,21 = Gψm∗,

b∂C,ψ

1,21 = 0, (105)

where

Gψ = −
√

5

24π

�2
0a

G
. (106)

Hence, only the boundary-value function b∂V,ψ

1,21 (t) describes the feedback of the polar motion m(t) on displacement and gravity.
The solution of the initial, boundary-value problem (51) with the boundary conditions (73) and (74) for degree j = 2 and order m = 1,

that is function Y21(r, t), where Y21 stands for the vertical and horizontal amplitudes of the displacement, U21 and V21, respectively, and for
the amplitudes of the gravity potential, 
E

21. It is composed of two parts,

Y21(r, t) = Y L
21(r, t) − Y ψ

21(r, t), (107)

where the first part, Y L
21(r, t), expresses the response of the viscoelastic earth model to surface-mass load variations σ L(t), while the second

part, Y ψ

21(r, t), expresses the response of the viscoelastic earth model to polar-motion variations m(t). The opposite signs on the right-hand
side of eq. (107) account for the opposite signs at b∂V,ψ

1 and σ L in the boundary condition (73).
The first part is commonly included in computations of the viscoelastic response functions Y21(r, t). For the surface-mass load σ L(t) in

the form of spherical harmonic series (95) and the Heaviside loading, it holds that (e.g. Peltier 1974, 1976; Wu & Peltier 1982)

Y L
21(r, t) = σ21

[
yL

e +
M∑

k=1

yL
k

sk
(esk t − 1)

]
H (t), (108)

where the symbol yL stands for the viscoelastic load Love numbers hL, �L and kL for the vertical and horizontal displacements and the
incremental gravitational potential, respectively. The elastic amplitudes yL

e and viscous amplitudes yL
k depend on the radial distance r from

the centre of the sphere, hence Y L
21. The loading Love numbers yL and the viscous gravitational relaxation frequencies sk are characterized by

the harmonic degree j of a surface load, which is j = 2 in this particular case and is assumed to be implicit in eq. (108). Moreover, making
use of eqs (85), (100) and (106) gives

σ21 = −ksG
∗
σ Gψ, (109)

and Y L
21(r, t) can be expressed in a more convenient form

Y L
21(r, t) = −ksG

∗
σ Gψ

[
yL

e +
M∑

k=1

yL
k

sk
(esk t − 1)

]
H (t). (110)

The second part, Y ψ

21, has not yet been considered in computation of the viscoelastic response functions Y21(r, t). This part can be viewed
as the rotational feedback of polar-motion variations to deformation and gravity potential. This part can be expressed as the time convolution
of the second-degree tidal Love numbers yT(r, t) with the boundary-value function b∂V,ψ

1 ,

Y ψ

21(r, t) = yT(r, t) ∗ b∂V,ψ

1 (t), (111)

or, in view of eq. (105),

Y ψ

21(r, t) = Gψ yT(r, t) ∗ m∗(t). (112)

Similarly to yL, the symbol yT stands for the tidal Love numbers hT, �T and kT for the vertical and horizontal displacements and the incremental
gravitational potential, respectively. The tidal Love numbers yT are characterized by the harmonic degree j of tidal loading, which is j = 2 in
this particular case, and is assumed to be implicit in eq. (112). Applying the Laplace transform to eq. (112) gives

Y ψ

21(r, s) = Gψ yT(r, s)m∗(s). (113)

 at B
ibliothek des W

issenschaftsparks A
lbert E

instein on O
ctober 24, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Rotational feedback in GIA 1839

Substituting for the Laplace-transformed tidal Love numbers (e.g. Spada et al. 2011), and for m(s) from eq. (103), we have

Y ψ

21(r, s) = G∗
σ Gψ

(
yT

e −
M∑

k=1

yT
k

s − sk

)(
A′

e + A′
s

s
+

M−1∑
i=1

A′
i

s − ai

)
f (s). (114)

Making use of the product identity (A1 in Appendix A), we obtain

Y ψ

21(r, s) = G∗
σ Gψ

(
Be + Bs

s
+

M−1∑
i=1

B ′
i

s − ai
+

M∑
i=1

B ′′
i

s − si

)
f (s), (115)

where the elastic Be, secular Bs and viscous B ′
i and B ′′

i residues are expressed as

Be = yT
e A′

e, (116)

Bs = yT
f A′

s, (117)

B ′
i =

(
yT

e +
M∑

k=1

yT
k

ai − sk

)
A′

i , i = 1, . . . , M − 1, (118)

B ′′
i =

(
A′

e + A′
s

si
−

M−1∑
k=1

A′
k

ak − si

)
yT

i , i = 1, . . . , M, (119)

and yT
f is the tidal fluid Love number (e.g. Spada et al. 2011, eq. 2). For Heaviside loading [f(s) = 1/s], the inverse Laplace transform of

eq. (115) results in

Y ψ

21(r, t) = G∗
σ Gψ

[
Be + Bst +

M−1∑
i=1

B ′
i

ai
(eai t − 1) +

M∑
i=1

B ′′
i

si
(esi t − 1)

]
H (t). (120)

Substituting eqs (110) and (120) into (107), the complete relaxation of Y21(t) due to surface loading σ L and the rotational feedback by
polar motion m(t) is

Y21(r, t) = −G∗
σ Gψ

{
ks

[
yL

e +
M∑

i=1

yL
i

si
(esi t − 1)

]
+ Be + Bst +

M−1∑
i=1

B ′
i

ai
(eai t − 1) +

M∑
i=1

B ′′
i

si
(esi t − 1)

}
H (t). (121)

Under assumption (91), our calculations show that

ks yL
i = −B ′′

i (122)

for any i = 1, . . . , M. Then, eq. (121) is reduced to the form

Y21(r, t) = −G∗
σ Gψ

{
ks yL

e + Be + Bst +
M−1∑
i=1

B ′
i

ai
(eai t − 1)

}
H (t). (123)

Comparing eqs (104) and (123), we can see that there is an important similarity in the time relaxation of the polar-motion function m(t) and
the relaxation of the deformation and gravity field Y21(t). Under assumption (91), Vermeersen et al. (1994), Sabadini & Vermeersen (2004)
and Spada et al. (2011) showed that the time relaxation of the polar motion m(t) is characterized only by the rotational frequencies ai. This fact
is expressed by eq. (104), where the amplitudes A′′

i of the relaxation modes characterized by the viscous gravitational relaxation frequencies
si are equal to zero. Similarly, the time relaxation of the deformation and gravity field Y21(t) due to rotational feedback is characterized only
by the rotational frequencies ai. This fact is expressed by eq. (123), where the amplitudes B ′′

i of the relaxation modes proceed by the viscous
gravitational relaxation frequencies si are cancelled by the contribution Y L

21(r, t) due to eq. (122).
Fig. 3 shows the time evolution of the spherical harmonic U21(r, t) of the vertical displacement and F21(r, t) of the gravity-potential

perturbation at the surface of the sphere (r = a) after the onset of a spherical-cap load at t = 0. The TD solution (solid colour lines), defined
by eq. (51) with the boundary conditions (73) and (74), is compared with the LD solution given by eq. (123) (dashed lines). We can see that
there is again excellent agreement between the two solutions, despite being based on different mathematical and numerical approaches.

To demonstrate the importance of the rotational feedback for the deformation and gravity field on a rotating sphere, the displacement
U L

21(a, t) and gravitational potential FL
21(a, t), which correspond to the solution with a surface loading only, are also shown in Fig. 3 (thin

solid colour lines). We can see that the difference between the complete solution U21(r, t) and F21(r, t), which includes the rotational-feedback
contributions Uψ

21(r, t) and Fψ

21(r, t), and the responses U L
21(a, t) and FL

21(a, t) to a surface loading only is significant, even immediately after
the loading of the sphere by a surface load. We can conclude that the rotational feedback on the deformation and gravity fields U21 and F21

due to change in the centrifugal force is positive in the sense that it adds significant contributions to these fields.
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Figure 3. The spherical harmonic U21(t) of vertical displacement and F21(t) of gravity-potential perturbation at the surface of the sphere (r = a) computed
by the extended TD method (thick solid colour lines, red = real part, green = imaginary part) and the extended LD method (dashed lines). These complete
responses are compared with the responses U L

21(t) and FL
21(t) (thin solid colour lines) that are induced by surface loading only. The differences between the

thick and thin lines are due to the rotational feedback of polar motion on vertical displacement and gravity-potential perturbation, that is Uψ

21(r, t) and Fψ

21(r, t).

To estimate the magnitude of the rotational feedback on linear-momentum balance, we calculate the GIA-induced radial displacement
and sea level change since the Last Glacial Maximum (LGM) for the case where the rotational feedback is considered in linear-momentum
balance, and compare it with the case where this feedback is not implemented. We again employ the rotating, spherically symmetric, five-layer,
incompressible, self-gravitating, viscoelastic earth model M3-L70-V01 (Spada et al. 2011, table 3). The ice load is represented by the global
ICE-3G deglaciation history proposed by Tushingham & Peltier (1992), which consists of 18 global ice-thickness distributions representing
the deglaciation history from the LGM at 21 ka BP (before present) until today. We extend this model by a glaciation history starting at 120 ka
BP according to Hagedoorn et al. (2007). While we acknowledge that this is not the most recent global ice model, the point of this discussion
is to investigate the effect of the inclusion/exclusion of the rotational feedback. The ocean load is governed by the sea level equation that is
implemented as described by Hagedoorn et al. (2007). We consider all feedbacks on the ocean load, that is, the effects of moving coast lines,
grounded and floating ice and the centrifugal-potential increment due to the change in the Earth’s rotation dynamics.

The top panel of Fig. 4 shows the surface distribution of radial displacement since the LGM for the case where the rotational feedback
is implemented in the linear-momentum balance. This figure shows that the radial displacement reaches its largest values in the northern (up
to 500 m) and southern (up to 200 m) polar regions due to the melting of the Fennoscandian, Laurentide and Antarctic ice sheets. The radial
displacement has negative values of several tens of metres over the oceans (up to −45 m in the southern Indian ocean) due to increasing
amount of melted water. The bottom panel of Fig. 4 shows the differences in radial displacement since the LGM between the cases with and
without the rotational feedback included in the linear-momentum balance. We can see that the difference has the pattern of the degree 2 and
order 1 spherical harmonic function. The differences result in modified surface deformation patterns with values reaching ±25 m, that is
up to 10 per cent, in the areas of former or ongoing glaciations, but with significantly large changes in the deformation pattern in the ocean
regions. For example, implementing or neglecting the rotational feedback in the linear-momentum balance affects the radial displacement of
the bottom of the southern Indian ocean up to 50 per cent.

Furthermore, the top panel of Fig. 5 shows the spatial distribution of sea level change (i.e. the change in water-column load) since the
LGM for the case where the rotational feedback is considered in the linear-momentum balance. The sea level overall is seen to have risen by
about a 100 m over the open ocean (the equivalent sea level is 108 m). The bottom panel of Fig. 5 shows the differences in sea level change
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Figure 4. Top panel: The surface distribution of radial displacement since the LGM at 21 ka BP for the case where the rotational feedback is taken into
account in the linear-momentum balance. Bottom panel: The difference in radial displacement since the LGM between the cases with and without the rotational
feedback on linear-momentum balance. The results apply to the spherically symmetric, five-layer, incompressible, self-gravitating, viscoelastic earth model
M3-L70-V01 (Spada et al. 2011) and the ICE-3G deglaciation model (Tushingham & Peltier 1992).

since the LGM between the cases where the rotational feedback is and is not implemented in the linear-momentum balance. As with the radial
displacement, we can see that the difference has the pattern of the degree 2 and order 1 spherical harmonic function and reaches values of
±1.8 m. The areas with different load histories with respect to moving coastlines are seen to be, for example, in the vicinity of Hudson Bay
and along the Chinese, Australian and Argentinian coastlines. We can conclude from Figs 4 and 5 the importance of the rotational feedback
on the linear-momentum balance.

6.3 Numerical results for the length of day (LOD)

For the sake of completeness, we compute the variations of the LOD induced by the GIA process. The LOD variations are dealt with (e.g.
Munk & MacDonald 1960; Moritz & Mueller 1987; Sabadini & Vermeersen 2004)

�LOD

LOD
(t) = c33(t)

C
, (124)

where LOD is a reference value of the length of day and c33 is the axial inertia-tensor increment in response to surface-mass redistribution
and the associated viscoelastic response of the Earth.

The extended TD method computes the time-varying increment c33(t) by eq. (79)3, after determining the degree 2 and order 0 spherical
harmonic component of the gravitational-potential increment φE by eq. (78). Since the deformation of the Earth in response to ψ20 is included
in the TD calculations, the spherical harmonic component φE

20 is influenced by the time variation of ψ20. This means that the extended TD
method considers the bidirectional coupling between deformation and gravity on one side, and both the polar-motion and LOD variations on
the other.
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Figure 5. The same as Fig. 4, but for the sea level change.

To model the LOD variation due to the motion inside the deforming Earth and the change in the gravitational and centrifugal forces by
the LD method, the inertia-tensor increment c33(t) in the LOD excitation function χ 3(t) consists of two contributions, cL

33(t) and cR
33(t), as

shown in eq. (15), and the contribution cCF
33 (t) due to the centrifugal-potential increment ψE,

c33(t) = cL
33(t) + cR

33(t) + cCF
33 (t), (125)

where

cR
33(t) = kL(t) ∗ cL

33(t). (126)

Munk & MacDonald (1960, section 5.3) showed that

cCF
33 (t) = −2

3
(C − A)

kT(t)

ks
∗ m3(t), (127)

where the secular Love number ks is given by eq. (85). However, Wu & Peltier (1984) and Spada (2003) consider the magnitude of cCF
33

being small in comparison to the magnitudes of cL
33 and cR

33, and neglect cCF
33 in the total inertia-tensor increment c33. Under this assumption,

eqs (125) and (126) can be combined to give

c33(t) = [
δ(t) + kL(t)

] ∗ cL
33(t). (128)

The numerical example of the LOD variations will be presented for the earth model M3-L70-V01 (Spada et al. 2011, table 3), which is loaded
by a spherical cap (Spada et al. 2011, table 4) centred at colatitude ϑ c and longitude λc. For this load, the inertia-tensor increment cL

33 is
(Spada et al. 2011, eq. 33)

cL
33 = 4π

15
a4σ2(3 cos2 ϑc − 1). (129)

Fig. 6 compares the LOD variations computed by the TD method (solid lines) with those resulting from the LD method (dashed lines). The
dashed and solid curves show excellent agreement for all chosen time instances, which means that the methods are numerically consistent
for calculating �LOD. Since the effect of the centrifugal-potential increment ψE

20 on �LOD is only considered in the TD method, while the
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Figure 6. The LOD variation computed by the extended TD method (red line) and the traditional LD method (dashed line). The incremental centrifugal
potential ψE

20 is included only in the TD method, while the inertia-tensor increment cCF
33 is neglected in the LD solution.
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Figure 7. The spherical harmonic U20(t) of vertical displacement and F20(t) of gravity-potential perturbation at the surface of the sphere (r = a) computed by
the extended TD method (red lines) and the traditional LD method (dashed lines). The incremental centrifugal force is included only in the TD method.

term cCF
33 is neglected in the LD solution, the numerical agreement between the two solutions shows that the effect of the centrifugal-potential

increment ψE
20 on �LOD is negligible, in agreement with Wu & Peltier (1984) and Spada (2003).

Fig. 7 shows the evolution of the spherical harmonic U20(r, t) of the vertical displacement and F20(r, t) of the gravity-potential perturbation
at the surface of the sphere (r = a) after the onset of a spherical-cap load at t = 0. The TD solution (solid colour lines), defined by eq. (51)
with the boundary conditions (73) and (74), is compared with the traditional LD solution based on the loading Love numbers (dashed lines).
We can see that there is excellent agreement between the two solutions, although the former includes the rotational feedback of �LOD on
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deformation and gravity while the latter neglects this effect. We can conclude that the rotational feedback of �LOD on the deformation and
gravity fields U20 and F20 is small and can safely be neglected.

7 C O N C LU S I O N S

This paper has been motivated by an effort to extend the existing TD method (Martinec 2000) for modelling the GIA response of laterally
heterogeneous earth models to include the effect of variations in the Earth’s rotational dynamics. This was achieved by adding the perturbation
in the centrifugal force into the linear-momentum equation and Poisson’s equation and by coupling them with the linearized Liouville equation.
Such a modification describes not only the direct effect, that is the change of the Earth’s rotational dynamics in response to surface loading
and the mass movement inside the Earth, but also the opposite effect, that is the change of deformation and gravity fields in response to
varying rotational dynamics. We refer to the latter effect as the rotational feedback on the linear-momentum balance. We emphasize that this
effect differs from the rotational feedback on the sea level equation where the incremental centrifugal potential is added to sea level equation.
We do not deal with this effect in this paper, since it has already been studied intensively in literature (e.g. Milne & Mitrovica 1996; Peltier
1998).

After the mathematical extension of the TD method for the incremental centrifugal force and reaching numerical agreement on the
polar-motion function against the LD method (Wu & Peltier 1984), another question arises involving how the degree 2 and order 1 spherical
components of vertical displacement and incremental gravity potential computed by the extended TD method significantly differ from those
computed by the LD method. It appears that the traditional LD method must also be extended to the rotational feedback on displacement and
the gravity field. The extension is presented in Section and checked numerically against the extended TD method. Only after the extension
of both of these methods for rotational effect, they provide consistent numerical results.

The extension of the LD method brings a new physical insight into the viscoelastic relaxation process on a rotating Earth. We show that
the degree 2 and order 1 spherical components of vertical deformation and incremental gravity potential, that is U21 and F21, relax in time
with different relaxation frequencies than the other spherical harmonic components of deformation and gravity field. That is, the relaxation
of U21 and F21 proceeds at the rotational frequencies, while the relaxation of the other spherical components does so by viscous gravitational
relaxation frequencies. We show that the difference between the case where U21 and F21 relax in time with the rotational frequencies and
where the relaxation is by viscous gravitational relaxation frequencies is significant. Since the later case corresponds to the traditional LD
approach, we conclude that the extended LD method needs to be applied when computing the relaxation of the degree 2 and order 1 spherical
components of vertical deformation and incremental gravity potential.

As far the variations in the LOD are concerned, the comparison between the extended TD method and the traditional LD method shows
the LOD to be influenced by the variation of the centrifugal force only by a tiny amount, and this effect can be neglected. The feedback
mechanism where the LOD variations influence the degree 2 and order 0 spherical harmonic components of deformation and gravity is also
very small and can likewise be neglected.
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A P P E N D I X A : P RO D U C T I D E N T I T Y

In this appendix, we prove the product identity needed for making an algebraic arrangement of eq. (114) to obtain (115). The identity has the
following form:

M−1∑
i=1

Ai

s − ai

M∑
k=1

Bk

s − bk
=

M−1∑
i=1

Ai

s − ai

M∑
k=1

Bk

ai − bk
−

M∑
i=1

Bi

s − bi

M−1∑
k=1

Ak

ak − bi
, (A1)

where M(M ≥ 2) is an integer number and the other symbols are real quantities. The validity of this relation will be proven by the method of
mathematical induction.

In the first step of mathematical induction, we show that eq. (A1) holds for M = 2. In this case, eq. (A1) reads as

A1

s − a1

(
B1

s − b1
+ B2

s − b2

)
= A1

s − a1

(
B1

a1 − b1
+ B2

a1 − b2

)
− B1

s − b1

A1

a1 − b1
− B2

s − b2

A1

a1 − b2
. (A2)

The right-hand side of the last equation can be arranged as follows:

A1 B1

(
1

s − a1

1

a1 − b1
− 1

s − b1

1

a1 − b1

)
+ A1 B2

(
1

s − a1

1

a1 − b2
− 1

s − b2

1

a1 − b2

)

= A1 B1
(s − b1) − (s − a1)

(a1 − b1)(s − a1)(s − b1)
+ A1 B2

(s − b2) − (s − a1)

(a1 − b2)(s − a1)(s − b2)

= A1

s − a1

(
B1

s − b1
+ B2

s − b2

)
,

which is equal to the left-hand side of eq. (A2). Thus, we have shown that eq. (A1) holds for M = 2.
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In the second step, we assume that eq. (A1) holds for a particular value M and we wish to show that it also valid for M + 1. The left-hand
side of eq. (A1) for M + 1 can be arranged as follows:

M∑
i=1

Ai

s − ai

M+1∑
k=1

Bk

s − bk

=
M−1∑
i=1

Ai

s − ai

M∑
k=1

Bk

s − bk
+

M−1∑
i=1

Ai

s − ai

BM+1

s − bM+1
+ AM

s − aM

M+1∑
k=1

Bk

s − bk

=
M−1∑
i=1

Ai

s − ai

M∑
k=1

Bk

ai − bk
−

M∑
i=1

Bi

s − bi

M−1∑
k=1

Ak

ak − bi
+

M−1∑
i=1

Ai

s − ai

BM+1

s − bM+1
+ AM

s − aM

M+1∑
k=1

Bk

s − bk
, (A3)

where the second step is justified by the induction hypothesis that eq. (A1) holds for M. By the partial fraction decomposition,

1

(s − ai )(s − bM+1)
= 1

ai − bM+1

(
1

s − ai
− 1

s − bM+1

)
,

1

(s − aM )(s − bk)
= 1

aM − bk

(
1

s − aM
− 1

s − bk

)
, (A4)

the sum of the last two terms in eq. (A3) can be expressed as

M−1∑
i=1

Ai

s − ai

BM+1

s − bM+1
+ AM

s − aM

M+1∑
k=1

Bk

s − bk

= BM+1

M−1∑
i=1

Ai
1

ai − bM+1

1

s − ai
+ AM

M+1∑
k=1

Bk
1

aM − bk

1

s − aM

− BM+1

M−1∑
i=1

Ai
1

ai − bM+1

1

s − bM+1
− AM

M+1∑
k=1

Bk
1

aM − bk

1

s − bk
. (A5)

Substituting this expression for the last two terms in eq. (A3) yields

M∑
i=1

Ai

s − ai

M+1∑
k=1

Bk

s − bk
=

M∑
i=1

Ai

s − ai

M+1∑
k=1

Bk

ai − bk
−

M+1∑
i=1

Bi

s − bi

M∑
k=1

Ak

ak − bi
, (A6)

thereby showing that indeed, eq. (A1) holds for M + 1. Since both inductive steps have been performed, by mathematical induction, eq. (A1)
holds for all integers M ≥ 2.
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