
 

 

 

 

   Originally published as: 

 

 

 

 

 

 

 

 

Rogaß, C., Mielke, C., Scheffler, D., Bösche, N., Lausch, A., Lubitz, C., Brell, M., Spengler, D., Eisele, A., Segl, K., 
Guanter, L. (2014): Reduction of Uncorrelated Striping Noise—Applications for Hyperspectral Pushbroom 
Acquisitions. - Remote Sensing, 6, 11, p. 11082-11106 

 
DOI: http://doi.org/10.3390/rs61111082 



Remote Sens. 2014, 6, 11082-11106; doi:10.3390/rs61111082 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Reduction of Uncorrelated Striping Noise—Applications for 
Hyperspectral Pushbroom Acquisitions 

Christian Rogass 1,*, Christian Mielke 1, Daniel Scheffler 1, Nina K. Boesche 1, Angela Lausch 2, 

Christin Lubitz 1, Maximilian Brell 1, Daniel Spengler 1, Andreas Eisele 1, Karl Segl 1 

and Luis Guanter 1 

1 Helmholtz Center Potsdam, German Research Center for Geosciences, Telegrafenberg,  

Potsdam 14473, Germany; E-Mails: christian.mielke@gfz-potsdam.de (C.M.); 

daniel.scheffler@gfz-potsdam.de (D.S); nina.boesche@gfz-potsdam.de (N.K.B.); 

christin.lubitz@gfz-potsdam.de (C.L.); maximilian.brell@gfz-potsdam.de (M.B.); 

daniel.spengler@gfz-potsdam.de (D.S.); andreas.eisele@gfz-potsdam.de (A.E.);  

karl.segl@gfz-potsdam.de (K.S.); luis.guanter@gfz-potsdam.de (L.G.) 
2 Helmholtz Center for Environmental Research-UFZ, Permoserstr 15, Leipzig 04318, Germany;  

E-Mail: angela.lausch@ufz.de  

* Author to whom correspondence should be addressed; E-Mail: christian.rogass@gfz-potsdam.de; 

Tel.: +49-331-288-1820; Fax: +49-331-288-1192.  

External Editors: Richard Gloaguen and Prasad S. Thenkabail 

Received: 5 September 2014; in revised form: 30 October 2014 / Accepted: 4 November 2014 / 

Published: 11 November 2014 

 

Abstract: Hyperspectral images are of increasing importance in remote sensing 

applications. Imaging spectrometers provide semi-continuous spectra that can be used for 

physics based surface cover material identification and quantification. Preceding radiometric 

calibrations serve as a basis for the transformation of measured signals into physics based 

units such as radiance. Pushbroom sensors collect incident radiation by at least one detector 

array utilizing the photoelectric effect. Temporal variations of the detector characteristics that 

differ with foregoing radiometric calibration cause visually perceptible along-track stripes in 

the at-sensor radiance data that aggravate succeeding image-based analyses. Especially, 

variations of the thermally induced dark current dominate and have to be reduced. In this 

work, a new approach is presented that efficiently reduces dark current related stripe noise. 

It integrates an across-effect gradient minimization principle. The performance has been 

evaluated using artificially degraded whiskbroom (reference) and real pushbroom 
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acquisitions from EO-1 Hyperion and AISA DUAL that are significantly covered by stripe 

noise. A set of quality indicators has been used for the accuracy assessment. They clearly 

show that the new approach outperforms a limited set of tested state-of-the-art approaches 

and achieves a very high accuracy related to ground-truth for selected tests. It may substitute 

recent algorithms in the Reduction of Miscalibration Effects (ROME) framework that is 

broadly used to reduce radiometric miscalibrations of pushbroom data takes. 

Keywords: stripes; hyperspectral; dark current; pushbroom; calibration; radiometric; EO-1 

Hyperion; AISA; EnMAP; ROME 

 

1. Introduction 

Remote sensing data acquisitions broadly serve as a basis for spatiotemporal analyses of the status 

and the dynamic of the Earth’s surface. The increasing demand for spatially highly resolved 

geoinformation rises the quantity of different sensors and acquisition platforms. Optical systems such as 

imaging spectrometers offer continuous spectra on a pixel basis enabling the identification and 

quantification of surface cover materials due to their spectral response on incident electromagnetic 

radiation. Imaging spectrometers that follow the line scanner principle utilize either the whiskbroom 

technology such as the airborne HyMAP (Hyperspectral Mapper) [1] or the pushbroom technology such 

as the spaceborne EO-1 Hyperion [2] or the airborne AISA (Airborne Imaging Spectrometer for 

Applications) Dual [3]. Most of them provide continuous spectra that ranges from the visible and near 

infrared (VNIR: 0.4–1.3 µm) up to the short wave infrared (SWIR: 1.3–2.5 µm) wavelength region to 

support a broad set of applications. Scanners that utilize the pushbroom technology are mostly used 

because a longer integration time enables a better Signal-To-Noise Ratio (SNR) compared to whisk-broom 

scanners. Each pixel of a pushbroom acquisition represents the data take of one detector column of the 

detector array or briefly a spectrum. If the physical characteristics of detector elements vary over time 

and, hence, differ from the current calibration set, then stripes are visually perceptible after the 

radiometric scaling with the current calibration set. With regard to [4–6], such effects can be considered 

as miscalibration and may consist of linear and non-linear signal dependent and independent fractions. 

The independent fractions are caused by variations of thermally induced electron pairs that are broadly 

considered as dark current or offset. The thermally induced dark current variations are Gaussian 

distributed (Gaussian White Noise) and signal independent as described in [5,7,8]. In [4,9], approaches 

have been proposed that aim to reduce miscalibration effects. The framework has been named  

ROME—Reduction of Miscalibration Effects—and is currently used by different airborne facilities to 

correct the acquisitions for miscalibrations. However, proposed approaches of [4,9] lack a high precision for 

the dark current estimation. Thus, a new approach has been developed that is analytically derived and 

contemporarily achieves a significant higher accuracy than the approaches proposed in [4,9–14] that partly 

belong to the reviewed approaches of [15]. There are other techniques published in the literature [16–36] as 

stated in [4,15], but they were not tested in this paper and may be the focus of future reviewing work, which 

should also comprise more performance benchmarks to test the capacities of the approaches [16–36] to be 

integrated into ROME or other radiometry related frameworks. 
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For validation, a large set of artificially degraded and real hyperspectral image samples from both 

airborne and spaceborne acquisitions has been utilized, which is described in more detail in the following 

section. In the next sections, an approach is presented that integrates human visual perception of 

miscalibration related across-track gradients by minimizing their modulus.  

2. Materials and Methods 

2.1. Materials 

Real hyperspectral images and artificially degraded samples were used to evaluate the performance 

of inspected approaches. The samples are comprised of three atmospherically corrected airborne 

HyMAP [1] scenes, two radiometrically corrected spaceborne EO-1 Hyperion [2] scenes and two 

radiometrically corrected airborne AISA Dual [3] scenes. The HyMAP scenes were acquired over 

Germany in detail; over Potsdam in 2004, over Berlin in 2005 and over Dresden in 2003 with an average 

ground sampling distance (GSD) of about 6 m. The Hyperion scenes were acquired in 2013 and 2014 

over the Haib River Complex and cross the border region of Namibia and the Republic of South Africa 

with an average ground sampling distance of about 30 m. The AISA Dual scenes were acquired over the 

Fichtwald region, Germany, in 2010 with an average ground sampling distance of about 2 m. The locations 

of the case study regions are shown in Figure 1. 

Figure 1. Overview on study regions as Landsat 8 false color composite subsets overlaid 

with vectorized acquisition borders for airborne data takes (a)-two scenes over the Fichtwald 

region (AISA DUAL; red), spaceborne data takes (b)-two scenes over the Haib River 

Complex of Namibia and the Republic of South Africa (Hyperion; green) and airborne data 

takes (c,d) three scenes over the cities of Dresden (c), Berlin, Potsdam (HyMap; blue). 

  

(a) (b) 
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Figure 1. Cont. 

(c) (d) 

The HyMAP [1] system is primarily used for hyperspectral data taken from airborne platforms.  

It utilizes the whiskbroom technology (rotating mirror) and has about 128 spectral bands (depending on 

configuration). HyMAP continuously covers the spectral region between 0.44 and 2.5 µm and provides 

spectral resolution from 15 to 20 nm. Contrary to pushbroom systems, data acquisitions of single detector 

systems such as those following the whisk-broom scanning principle are assumed to remain 

radiometrically stable in across-track direction and, hence, are assumed to be not impacted by temporal 

dark current variations. Therefore, they have been selected as the optimal basis of comparison for 

simulations to evaluate the performance of different destriping approaches for pushbroom systems such 

as AISA, Hyperion, or in the future EnMAP [37,38]. The HyMAP scenes have been atmospherically 

corrected through ATCOR [39] before artificial degradation has been applied. Additionally, all bands of 

the scenes have been visually inspected to identify potential remaining stripes that have to be corrected 

before artificial degradation. No HyMAP scenes were impacted by striping noise, as it is likely for 

whiskbroom acquisitions as proposed in [1]. However, atmospheric correction has been performed 

before artificial degradation to avoid drawbacks from varying illumination geometry on the evaluation 

of the performances of tested destriping approaches. Remaining long waves across track gradients have 

been reduced using the detrending approach of [4]. This was essential for an objective performance 

evaluation of the artificial degraded HyMAP images, although the destriping should always be applied 

before atmospheric correction using at-sensor radiance or at-sensor reflectance. Subsets of these scenes 

are exemplarily shown in Figure 2a,c. 

The hyperspectral Hyperion system is mounted on the spaceborne EO-1 platform [2], has about  

220 bands, acquires data from a sun-synchronous 705-km-high orbit with an average ground sampling 

distance of about 30 m and continuously covers a spectral region between 0.4 and 2.5 µm. Contrary to 

HyMAP or AISA, some bands of Hyperion are erroneous or are spectrally redundant [40] and, hence, 

those bands have not been considered, which resulted in 196 bands of 220 and ranging from 0.426 µm 

to 2.395 µm. Additionally, the Hyperion at-sensor-radiance (L1R product) scenes have been corrected for 

missing data as proposed in [10]. Subsets of these scenes are exemplarily shown in Figure 2d,e. 
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The AISA DUAL [3] system is primarily used for hyperspectral data taken from airborne platforms. 

This system has about 491 bands (depending on configuration) and consists of two sensors utilizing the 

pushbroom technology (Eagle and Hawk). The Eagle covers the spectral region between 0.4 and 0.97 µm 

(VNIR) with a spectral resolution of about 2.3 nm. The Hawk covers the spectral region between 0.97 

and 2.45 µm (SWIR) with a spectral resolution of about 6.3 nm (depending on configuration). Therefore, 

both AISA systems continuously cover a similar spectral region as HyMAP.  

The AISA scenes have been radiometrically corrected using the AISA processing software 

CaliGeo [3]. Subsets of these scenes are exemplarily shown in Figure 2f,g whereas band combinations 

for real hyperspectral images were selected that enable a better visual perception of the stripe noise. 

Figure 2. False colored representations of subsets of HyMAP acquisitions over (a) Potsdam 

(CIR: Red 864.5 nm, Green 652.6 nm, Blue 546.3 nm), (b) Berlin (CIR as in (a), (c) Dresden 

and of subsets of Hyperion acquisitions over (d,e) the Haib River Complex (Red 2304.71 nm, 

Green 915.23 nm, Blue 447.17 nm), and subsets of AISA acquisitions over the Fichtwald 

region (f) and (g) (Red 1574.37 nm, Green 964.39 nm, Blue 730.05 nm). 

  

(a) (b) (c) 

 
(d) (e) (f) (g) 

After pre-processing the HyMAP reflectance scenes (Figure 2a,c) were artificially striped across track 

for succeeding destriping and its related evaluation of tested destriping approaches. This was individually 

performed for each band of each scene of each scenario by adding White Gaussian Noise (WGN) to the 
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bands as proposed in [41], having a zero mean and specific standard deviations, whereas the striping pattern 

was assumed to be invariant per scene or within a short time span as assumed in [5,7,8]. For this, the 

simulated noise vector was mean normalized and then divided by its standard deviation to have zero 

mean and a standard deviation of 1. Then, the noise vector was rescaled to a specific scale (given in the 

following) and replicated as a row vector to the band dimensions by using the dyadic product between 

the row noise vector and a column vector valued 1 and of width equal to the number of columns of one 

band. In this work, WGN was selected for the artificial image degradation, because it has been assumed 

that dark current variations are caused by variations of thermally induced electrons which probability 

distribution is a Gaussian according to [5,7,8]. Additionally, it is assumed that the dark current varies 

only slowly over time and the sensor manufacturer integrated steering elements to keep the detector 

elements by progressive cooling in thermal balance to provide a nearly scene invariant (slowly varying) 

dark current. Although those assumptions appear to be valid for testing the performance of different 

approaches the noise models vary from sensor to sensor as described in [6] that aggravates any method 

evaluation. However, the different standard deviations represent scaled degradations of four different 

striping scenarios, whereas scales represent standard deviations of 0.1%, 0.5%, 1% and 5% of the full 

gray value range (difference of the maximum and the minimum gray value of the band) of the band that 

shall be degraded. This is exemplarily shown in Figure 3. Hence, 1536 different striping scenarios  

(4 noise levels, 3 HyMAP images, 128 bands) were simulated to serve as input for the evaluation of 

inspected destriping approaches, whereas each striping scenario was realized by simple addition to 

account for the property of dark current to be uncorrelated for the signal. 

Figure 3. Examples of false colored (CIR: Red 864.5 nm, Green 652.6 nm, Blue 546.3 nm) 

artificially degraded subsets of HyMAP acquisitions over Potsdam (a–d), over Berlin (e–h) 

and Dresden (i–l); noise degradation levels (a,e,i) 0.1%, (b,f,j) 0.5%, (c,g,b) 1% and 

(d,h,l) 5% noise degradation. 

 
(a) (e) (i)  
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Figure 3. Cont. 

 
(b) (f) (j) 

 
(c) (g) (k) 

 
(d) (h) (l) 

2.2. Methods 

2.2.1. Selected Current Approaches 

Temporal dark current variations lead to uncorrelated striping caused by temporal variations of 

thermally induced electrons [5,7,8]. The signal superimpositions are signal uncorrelated and vary from 

sensor to sensor. As stated in [4] airborne acquisitions are more affected than spaceborne acquisitions 

that may be caused by higher dynamics of acquisition conditions. The following convention has been 

made for succeeding algorithm descriptions and is related to the pushbroom technology and its detector 

arrays. A pixel is the acquisition of a single detector element, a spectrum is the acquisition of all detector 

elements of a single detector array column representing all bands, a column or samples are all 
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acquisitions of a single detector element (pixel) over time and a row or a line are all detector element 

(pixels) acquisitions of one band for one integration time step in across-track direction. 

In this work, a new approach is proposed and its performance is compared with other broadly used 

approaches. Those are the approaches proposed in [4,9,11–14] and tested in [15], which will be described 

shortly in the following section. The approaches of [15] have partly been selected for performance 

evaluation to be comparable with the results provided by [15]. Related reviewing work should extend 

the number of tested approaches to provide a better overview on the performance of existing approaches 

such as those proposed in [16–36], which were not the focus of this work. 

In [4,9] new techniques have been proposed that aim to reduce radiometric miscalibration comprising 

reductions of dark current variation related offset stripes and deviations of radiometric detector linearities 

as well as non-linearities. The approach of [4] is called ROME—Reduction Of Radiometric Effects. This 

approach has been tested again in [9], analyzing real images. 

In [4,9], at first, column differences are computed. Then, the distribution of all differences of each 

column are examined due to their likelihood using an approximation of their respective histogram. The 

histogram bin (frequency category) with the highest likelihood then represents the agglomerated 

majority of column differences of the inspected column. To avoid drawbacks in relying on a single 

criterion, all bins are median averaged. All averages are then median averaged, whereby each bin average 

is weighted by its number of elements. Those weighted averages are then subtracted from the striped 

images. Afterwards, the destriped image is rescaled using the gray value maximum and minimum before 

and after destriping. This is performed to preserve the gray value range. In the last step, long wave 

brightness gradients or reduction undershoots are reduced. For this, the destriped image is divided by the 

dyadic product of a detector related index vector and a boxcar smoothed vector of median column averages. 

In [11] an approach is presented that comprises neither local or global reductions, but both are 

proceeded using the same scheme. In the following, the global approach is briefly described that has 

been also used for testing. First, local reductions are performed to remove outliers. Then, global 

reduction is performed to suppress striping noise.  

The general scheme is straightforward and assumes that local or global statistics are not affected by 

uncorrelated noise. In the global approach, the global standard deviation of this band and the column 

standard deviations for each pixel are computed. The ratios between the global standard deviation and 

the local standard deviations are then considered as updated gains alike the gain coefficient that has been 

estimated in the process of radiometric calibration. The offsets are then estimated as the difference of a 

global band mean and the product of the column gains and the column means. Both the new offset and 

the new gain are then applied as in the process of radiometric scaling. The gray values of dead or 

erroneous detector elements have been corrected beforehand by applying the approach of [10] and the 

local or the global method can be applied. 

In [12], an approach is proposed that is part of an EO-1 Hyperion related processing scheme for  

at-ground-reflectance retrieval. At first, the column means of each band are computed. Then, a smoothed 

representation is computed by using triangular smoothing of size 10. The ratio between the pixel 

corresponding to the value of the smoothed column mean and the column mean is then applied as new 

gain. This approach is straightforward, but does not correct for erroneous gains as assumed. It corrects 

for dark current related miscalibrations as shown in [4], because otherwise the at-sensor-radiance data 

has to be rescaled back to the digital number (DN) successively reduced with the offsets that have been 
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estimated in the process of radiometric miscalibration. However, this approach is quite similar to the 

inversed equation of the detrending part of the approach of [4].  

In [13], an approach is presented that combines wavelet decompositions and frequency domain 

adaptive filtering per band. First, the image is wavelet decomposed. Then, the vertical components are 

Fourier transformed into the frequency domain, where basically striping is suppressed using an adaptive 

iterative filter scheme that aims on differentiating between image background and uncorrelated stripe 

noise. Afterwards, the Fourier image is transformed back into the wavelet domain and then further back 

to the spatial domain. Basically, this approach assumes that stripe noise is to some extent stationary. 

In [14], an approach is presented that bases on filtering the outputs of the Maximum Noise Fraction 

Transformation (MNF) of [42] and transforming the results back to the original image domain. The noise 

covariance matrix of the image that is necessary to perform the MNF is here directly estimated from the 

image itself by integrating computed statistics of shift differenced homogeneous regions. After MNF 

transformation, the striped MNF bands are destriped using the approach proposed in [13] and 

transformed back to the image domain. This approach assumes that stripe noise tends to remain 

uncorrelated after MNF transformation and is contemporarily conditioned by the implementation of the 

approach of [13]. It is also assumed that stripe noise is to some extent stationary. 

The approaches of [13] and [14] are parameterized and, hence, can be adjusted from image to image 

to provide better destriping results. In this work the parameters have been used that have been commonly 

suggested by [13–15]. 

2.2.2. Proposed Approach 

The following proposed approach can be considered as an enhancement of the approaches of [4,9] 

for dark current variation related destriping and updates the major framework of ROME as proposed 

in [4,9]. The basic radiometric rescaling equation that integrates radiometric calibration coefficients is 

the following that follows the notation of [24]: ݔ)1ܮ, ,ݕ (ߣ = ,ݔ)	ܰܦ ,ݕ (ߣ − ܦ) ଴ܰ(ݔ, (ߣ + ,ݔ)ߝ ((ߣ ⊗ 1௪(ݕ, ,ݔ)݃(ߣ (ߣ ⊗ 1௪(ݕ, (ߣ  (1)

where ݔ)1ܮ, ,ݕ ,ݔ)	ܰܦ ,denotes at-sensor-radiance (ߣ ,ݕ ܦ ,the recorded digital number (DN) (ߣ ଴ܰ(ݔ,  (ߣ
the dark current estimated in the process of radiometric calibration, ݔ)ߝ,  a scene constant variation of (ߣ

uncorrelated striping noise and ݃(ݔ, (ߣ  the gain respectively, ݔ  the detector element or across track 

position, ݕ the scan line number or along track scan line position, ߣ the wavelength, 1௪ a row vector of 

width equal to the number of rows and valued 1 and ⊗ is the dyadic product. Usually, ݔ)ߝ,  is very (ߣ

small and can be considered as an update between two succeeding dark current estimations. Temporal 

variations of dark current and path radiance related stray light can potentially cause deviations from 

foregoing calibration. Hence, striping noise is visually perceptible especially over sensed low albedo 

regions, where the ratio between the striping noise and the ground reflected radiation is higher than in 

high albedo regions. Considering only one band and using a shorter notation Equation (1) can be 

simplified to the following equation: 
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1ܮ = 	ܰܦ	 − ൫ܦ ଴ܰ(ݔ) + ൯(ݔ)ߝ ⊗ 1௪(ݕ)݃(ݔ) ⊗ 1௪(ݕ) = ݅݉ = ݅݉௦ −  	ݏ
ݏ = (ݔ)ߝ ⊗ 1௪(ݕ)݃(ݔ) ⊗ 1௪(ݕ) (2)

where ݅݉ denotes the at-sensor radiance image of one band where all uncorrelated striping noise have 

been completely removed, ݅݉௦ the real at-sensor radiance image of one band and ݏ the uncorrelated 

striping noise matrix of one band that represents the uncorrelated, stationary dark current variation or 

offset miscalibration [5]. Considering ݏ as a signal superimposition of ݅݉௦ , it can be assumed that 

uncorrelated along track striping noise causes additional across track gradients. Therefore, the basic 

assumption of this work is that remaining stripes cause additional gradients perpendicular to the stripe 

direction. This can be expressed for along track stripes by the following integrals for the image defined 

in the domain ߗ that is a bounded domain of ℜଶ: න߲	݅݉ − ݅݉௦߲ݔ	
ஐ ݕ݀ = න ஐݔ߲ݏ߲ (3) ݕ݀

From this it follows that a minimization of the integral of across track gradients in case of along track 

uncorrelated striping noise can suppress this kind of noise. However, 
డ	௜௠డ௫  is unknown and, hence, an 

approximation is necessary that can only be derived from ݅݉௦.  
For this, the along track integral of Equation (3) is substituted with the row median ݉݁݀௬ and with 

the across track integral to account for dominating across track gradients and to enable a direct 
determination of ݏ which gives then the following Equation: න൬݉݁݀௬ ߲	݅݉ − ݅݉௦߲ݔ ൰	

ஐ ⊗ 1௪(ݕ)	݀ݔ = න൬݉݁݀௬ ߲ ൰ஐݔ߲ݏ ⊗ 1௪(ݕ) ݔ݀ = න߲	ݔ߲ݏ	
ஐ ݔ݀ = (4) ݏ

The problem to estimate 
డ	௜௠డ௫  still remains, but now a gradient based solution is given for ݏ, because 

the term ቀ݉݁݀௬ డ	௦డ௫ቁ ⊗1௪(ݕ)	equals 
డ	௦డ௫ . This relies on the principle that scene invariant along track 

stripes have no along track variation. In this work 
డ	௜௠డ௫  is estimated by the difference of 

డ	௜௠ೞడ௫  and its along 

track smoothed representation that is basically a column high pass filtering result of 
డ	௜௠ೞడ௫ .  

This gives then the following relation: ߲	߲݅݉ݔ 	≈ ߲ ݅݉௦߲ݔ − ߲ ݅݉௦߲ݔ ⨁݂݈݅ଵ  (5)

where ݂݈݅ଵ	denotes a column filter vector of length 2 and valued with −1 and 1 and ⨁ is the convolution 

operator. This results in an approximation of 
డ	௜௠డ௫  , because the right hand side of Equation (5) can be 

considered as an along track high pass filtering result, where mostly real image gradients remain 

depending on the selection of the elements of the filter. An example is shown in Figure 4. Depending on 

the selection of the filter and its size the result may vary as shown in Figure 4. Basically, strong 

smoothing filters tend to suppress image gradient information and should be avoided. In this work a 

Boxcar filter of size 3 was selected, but other isotropic filters might be also appropriate. 
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Figure 4. False colored near infrared image subsets that show the process of the estimation 

of the across track gradients considering Equation (5) for an HyMAP data set acquired 

over Potsdam in 2004 (a), that was artificially degraded with uncorrelated across track 

noise (b), the across track gradient from (a) in (c), the across track gradient from (b) in (d) 

and the estimation of 
డ	௜௠డ௫  from ݅݉௦ in (e). 

   
(a)  (b)  (c)  (d)  (e)  

If both Equations (4) and (5) are combined, then the following Equation (6) relates to the assessment  

of ݏ: න݉݁݀௬ ൬߲	݅݉௦߲ݔ ⨁݂݈݅ଶ൰ ⊗ 1௪(ݕ)	
ஐ ݔ݀ ≈ (6) ݏ

where ݂݈݅ଶ denotes a column Boxcar filter of length 3 that is used to suppress the impact of impulse 

noise on succeeding stripe noise estimation. To avoid small errors in the assessment of ݏ and to avoid 

overshooting artifacts (overcorrection) as described in [4,9], the following post-processing steps can be 

additionally applied. At first, ݏ is reduced by its mean to integrate the zero mean property of thermal 

Gaussian noise (like dark current variations), ݏ − ݏ  is then applied on the striped image and the 

difference of the current mean and the mean before applying ݏ is subtracted from the image. This then 

gives the following Equation: ݅݉ ≈ ݅݉௦ − ݏ + ݏ − ݅݉௦ − ݏ + ݏ + ݅݉௦= ݅݉ௗ௦ଵ (7)

Second, potential overcorrections and other originated uncorrelated striping noise is reduced such as 

stray light that could be visually perceptible as long wave brightness gradients. This is performed by 

estimating the column medians, a strong smoothing of those medians and by subtracting difference of 
the current mean and the mean before applying ݏ as in the previous step. This gives then the relation: ݅݉ ≈ ݅݉ௗ௦ଵ − (݉݁݀௬(݅݉ௗ௦ଵ)⨁݂݈݅ଷ) ⊗ 1௪ − ቀ(݉݁݀௬(݅݉ௗ௦ଵ)⨁݂݈݅ଷ) ⊗ 1௪ቁ + ݅݉௦ = 	 ݅݉ௗ௦ଶ (8)

where ݂݈݅ଷ denotes a broad filter that is basically used to reduce approximated long wave trends as 

suggested in [43]. Here we used the half of the image width or columns. Other filter sizes or filtering 

approaches may also work such as those described in [44], but were not tested. This might be part of 

future research. The selected approach is similar to [4,9], but the trends are now subtracted and mean 

normalized instead of being divided. It follows from this that deviations between true and estimated 

trends have now a lower influence on the overall destriping performance. Nevertheless, it is 

recommended to transform each image from at-sensor-radiance to at-sensor-reflectance to avoid 

drawbacks on detrending caused by varying illumination geometry. Additionally, high non-stationary 

dark current bias should be reduced beforehand by applying the approach of [10].  
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2.3. Evaluation Metrics 

2.3.1. For Artificially Degraded Images (HyMAP) 

All inspected approaches have been evaluated according their performance using the following four 

metrics to avoid relying on a single performance criterion. The first metric is the Peak-Signal-To-Noise 

ratio (PSNR) [45]. According to [4] the PSNR is a ratio between band maximum and standard deviation 

and can be considered as a contrast measurement. The second metric is the local Modified Structural 

Similarity Index (MSSIM) [17,45,46]. It combines local structure, luminance and contrast metrics and 

be considered as an overall image (band) quality index. The third metric is the column correlation and 

the fourth metric is the overall correlation both between ground truth and the destriping result. The two 

last metrics can be considered as spectral preservation indices. All four performance indicators have 

been related to available ground truth (the original HyMAP scenes) and, hence, these metrics enable 

objective evaluations.  

2.3.2. For Striped Real Images (Hyperion/AISA Dual) 

The evaluations of the performance of each considered approach has been differently performed for 

real images compared to artificially striped images because ground-truth was not available. 

Hence, PSNR, MSSIM, column and overall correlations have not been applied for the performance 

evaluation. In addition, relative approaches as proposed in [4] are limited according to their performance 

evaluation significance.  

In this work, three approaches are used for the evaluation of the performance of the destriping results. 

Those are the subjective visual inspection and two objective indices. The first objective index basically 

incorporates the property of uncorrelated striping noise to have zero mean that is additionally biased by 

potential impulse noise. Therefore, the differences between the original image and the destriped images 

should also have a zero mean of column averages if the striping noise have been exactly estimated.  

This is biased if high non-stationary dark current noise still impacts the data. To suppress this, the 

approach of [10] should be applied before any succeeding destriping. However, a potential destriping 

index may consider this property if it is assumed that remaining striping noise has this property. A related 

index can be defined as follows: ࢌࢌ࢏ࢊ = ,࢞)૛࢙ࢊ࢓࢏) ࢟ = ૚) − ,࢞)࢙࢓࢏ ࢟ = ૚) )⨁ ૝࢒࢏ࢌ = ,࢞)෤࢙ ࢟ = ૚)	⨁	࢒࢏ࢌ૝ (9)ࡰࡼࡴ࡭࡭ = หࢌࢌ࢏ࢊ − ૝ห (10)࢒࢏ࢌ⨁ࢌࢌ࢏ࢊ

with ̃ݔ)ݏ, ݕ = 1)	as the first row of the estimated stripe matrix of different approaches,	݂݈݅ସ as boxcar 

filter of size 3 and AAHPD as Absolute Average of Highpass of Differences. Contrary to a 

straightforward evaluation of the average of ̃ݔ)ݏ, ݕ = 1) this index AAHPD also incorporates remaining 

low frequency overcorrections through the second filtering step as given in Equation (10). This also 

enables a more objective evaluation of approaches that include a mean centering of estimated stripe 

matrix as the proposed approach integrates. 

As previously mentioned, AAHPD should be close to zero if the destriping approach has significantly 

reduced uncorrelated striping noise. In addition to the AAHPD, the correlation of the vectors of the 
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integrals of the absolute along track gradients (CIAG) of the original and the destriped image were 

included for performance evaluation purposes which terms are given in the following as: නฬࣔ	࢙࢟ࣔ࢓࢏ ฬ	
ષ ࢟ࢊ ∧ න ฬࣔ ࢟૛࢙ࣔࢊ࢓࢏ ฬષ (11) ࢟ࢊ

Here, the principle utilized is that stationary along track stripes do not change along track image gradients 

and, hence, any destriping must preserve them as well. For the sake of simplicity, the median and the 3σ 

standard deviation were used as performance metrics for the correlation vectors consisting of the 

correlation values for each band. 

The visual inspection has been performed using false colored images of bands in which uncorrelated 

striping noise is visually straightforward perceptible. The interpretation of the results has been 

additionally ranked as for the other evaluation metrics to avoid relying on a single criterion or 

imbalanced weighting criteria. 

3. Results and Discussion 

The evaluation of the results of different approaches has been performed using the concepts given in 

preceding chapters. All performance indicators have been averaged using their respective median that is 

more robust than the geometric mean if outliers are present, e.g. the destriping results for atmospheric 

absorptions bands. Additionally, three-sigma probability estimates have been computed to account for 

the performance variation of different approaches. Both the median and the three-sigma probability 

estimate of the inspected performance indicator may characterize the performance better than a single 

statistical criterion. If possible, all indicators were related to ground truth observations (HyMAP). All tested 

approaches have been applied according to the suggestions of respective authors. Therefore, achieved results 

may not represent potential results if the parameter selection of parameterized approaches would be 

optimized for each scenario. 

3.1. For Artificially Degraded Images (HyMAP) 

The averaged results for all approaches, bands and noise scenarios are given in the following Table 1 

and will now be analyzed and discussed in more detail. Considering the PSNR as contrast indicator that 

is exemplarily shown in Figure 5 the proposed approach performs best that is closely followed by the 

approach of [13] and related to Table 1 more distant by the approach of [10,11] as well as by the approach 

of [9]. 

However, the new approach has a significantly lower variation of achieved PSNR and remains stable 

even in low SNR scenarios as in the bands that are spectrally close to atmospheric absorptions. If the 

three-sigma probability estimates are additionally considered then the approach of [9] slightly 

outperforms the approach of [10,11], but this is not valid in low SNR scenarios where stripes contribute 

more to the overall signal variation than in high SNR scenarios.  

If the two best performing approaches, which are related to PSNR—the proposed approach and the 

approach of [13]—are considered more in detail as exemplarily shown in Supplementary Figure S1,  

then the approach of [13] slightly outperforms the proposed approach mostly in high SNR scenarios. On 
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average, the proposed approach performs best whereas the performance mostly varies close to the 1.4 

µm water vapor absorption.  

When the MSSIM indicator is considered, which represents an overall image quality index, then a 

performance ranking according the results is quite similar to those related to the PSNR indicator as 

exemplarily shown in Figure 5. However, the differences between the best approach—the proposed 

approach—and the second best—the approach of [13] —are more significant as depicted in Figure 5. 

Contrary to PSNR, the proposed approach outperforms the second best approach in each band on 

average. This is also valid for the performance variation (compare Table 1) that is factors smaller for the 

proposed approach compared to the second best approach of [13]. 

Table 1. Objectively derived results for simulated images. 

Approach/Indicator M1 M2 M3 M4 M5 M6 

Average PSNR [%] 

(3σ) 

99.92 

(0.30) 

97.09 

(11.22) 

97.20 

(14.45) 

83.50 

(19.97) 

99.81 

(4.56) 

85.87 

(27.54) 

Average MSSIM [%] 

(3σ) 

99.58 

(1.43) 

93.40 

(29.99) 

93.43 

(29.92) 

80.57 

(46.47) 

95.68 

(22.79) 

65.94 

(24.07) 

Average Column Correlation[%] 

(3σ) 

99.96 

(0.4) 

91.34 

(11.54) 

86.19 

(8.70) 

78.65 

(15.73) 

93.77 

(6.72) 

95.77 

(7.23) 

Average Spectral Correlation [%] 

(3σ) 

99.93 

(3.32) 

91.35 

(49.06) 

86.03 

(47.76) 

76.39 

(62.19) 

91.97 

(27.51) 

94.37 

(55.55) 

Average [%] 

(3σ) 

99.85 

(1.36) 

93.29 

(25.45) 

90.71 

(25.21) 

79.78 

(36.09) 

95.31 

(15.40) 

85.49 

(28.60) 

M1: Proposed approach; M2: Rogass et al. (2012) [9]; M3: Goodenough et al. (2003) and Datt et al. (2003) [10,11]; 

M4: Staenz et al. (2002) [12]; M5: Pande-Chhetri and Abd-Elrahman (2011) [13]; M6: Pande-Chhetri and  

Abd-Elrahman (2013) [14]. 

Figure 5. Average MSSIM of the two best performing approaches for artificially  

degraded images. 

 

The column correlation index relates the correlation between spatially adjacent image columns and 

is mostly close to 1, because the surface cover only slowly varies from column to column. Therefore, 

any remaining stripes would decrease the correlation coefficient. Consequently, the higher the index the 
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more the stripes have been reduced or the more the spectra have been preserved. Here, the proposed 

approach significantly outperforms the second best approach of [14] that is exemplarily shown in 

Supplementary Figure S2 that is contrary to the performance ranking for the PSNR and the SSIM 

indicators. This might be caused by the overall smoothing effect that is derived if the approach of [14] 

will be applied. Contrary to the column correlation the proposed approach and the approach of [13] 

perform best that is similar to the PSNR and MSSIM results. Additionally, the performance of the second 

best approach significantly decreases with increasing noise level as shown in Supplementary Figure S3. 

According to all the four performance indicators—PSNR, SSIM, Column and Overall Correlation—the 

proposed approach performs best. The second best approach is on average the approach of Pande-Chhetri 

and Abd-Elrahman [13]. If the objectively obtained results were extended by visual inspection, using for 

example the result subsets that are exemplarily shown in Figure 6, then the approach of Goodenough et al. 

and Datt et al. [10,11] would be ranked as the second best approach. This is clearly visually perceptible 

while comparing the “stripiness” of, e.g., the dark colored lake of Figure 6d–g. 

Integrating all objectively and subjectively obtained results for artificially striped HyMAP images led 

to a performance ranking that is given in Supplementary Table 4. The proposed approach performs best, 

second is the image domain approach of Pande-Chhetri and Abd-Elrahman [13] and third are the globally 

applied methods of Goodenough et al. and Datt et al. [10,11]. If the different destriping results are 

compared only on a visual basis, then all approaches including the proposed one significantly suppress 

stripes, but some residual striping is still remaining that may then hinder succeeding analysis, such as a 

chlorophyll content estimation of the lake in the south west of the subsets as shown in Figure 6d–h. If the 

overall results for simulated images would be quantized to three level of destriping, then the proposed 

approach and the image domain approach of Pande-Chhetri and Abd-Elrahman [13] would achieve the 

highest stripe reduction level, the approaches of Goodenough et al. and Datt et al. [10,11] and  

Rogass et al. [9] a moderate stripe reduction level and the approach of Staenz et al. [12] and the MNF domain 

approach of Pande-Chhetri and Abd-Elrahman [14] a low stripe reduction level. 

Figure 6. Exemplary results as false colored contrast enhanced subsets of one HyMAP 

scene (a); Potsdam original; figured again for visual comparison) that has been artificially 

degraded with 5% noise (b) for (c) the proposed approach, (d) Rogass et al. [9],  

(e) Goodenough et al. and Datt et al. [10,11], (f) Staenz et al. [12], (g) Pande-Chhetri 

and Abd-Elrahman ([13] and (h) Pande-Chhetri and Abd-Elrahman [14]. 

  
(a) (b) 
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Figure 6. Cont. 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

3.2. For Real Images (Hyperion/AISA Dual) 

In the following section, the destriping results for originally striped remote sensing images 

(Hyperion/AISA Dual) are evaluated. Contrary to artificially degraded images, the ground truth was not 

available that may bias any kind of evaluation. However, the performance evaluation was here also 

subjectively and objectively conducted. The objective evaluation results are given in Table 2. 

With regard to the results of Table 2, the proposed approach outperforms all other approaches on 

average. The second best approach is on average the approach of Rogass et al. [9]. The third best 

approach is on average the image domain approach from Pande-Chhetri and Abd-Elrahman [13]. The 

differences between the first and the second best approach are significant, and that coincides with the 
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evaluation results obtained for simulated images as perceptible in Figure 5 and the Supplementary 

Figures S1–S3.  

Contrary to Rogass et al. [9] the proposed approach mostly achieves a decreased destriping 

performance in significant low SNR scenarios as exemplarily shown in Supplementary Figure S1. 

Although the estimation of the overall performance is strongly impacted by the results for low SNR 

scenarios, it is important to include those results to enable both “worst case” performance evaluations 

and the incorporation of bands that are “indirectly” useful for, e.g., estimation of columnar water vapor. 

Table 2. Objectively derived results for real images. 

Approach/Indicator M1 M2 M3 M4 M5 M6 

Median AAHPD/Hyperion [#] 

(3σ) 

0.00004 

(0.0029) 

0.00028

(0.0021)

0.00034 

(5.5623) 

0.00084 

(0.3825) 

0.00060 

(0.0031) 

0.00166 

(0.0136) 

Median AAHPD/AISA [#] 

(3σ) 

0.02311 

(1.3208) 

0.0634 

(1.3666)

0.18276 

(157.7) 

0.05955 

(1.3317) 

0.06011 

(1.4045) 

0.09223 

(1.8410) 

Average AAHPD [#] 

(3σ) 

0.00962 

(0.6476) 

0.03144

(0.6557)

0.04128 

(59.052) 

0.02516 

(0.9894) 

0.02733 

(0.6759) 

0.031 

(0.7650) 

Median CIAG/Hyperion [#] 

(3σ) 

1.0 

(0.21) 

1.0 

(0.66) 

0.88 

(0.71) 

0.97 

(0.84) 

0.51 

(0.93) 

0.38 

(0.81) 

Median CIAG/AISA [#] 

(3σ) 

1.0 

(0.25) 

1.0 

(0.1) 

0.06 

(0.68) 

0.24 

(0.63) 

1.0 

(0.03) 

0.19 

(0.34) 

Average CIAG [#] 

(3σ) 

1.0 

(0.23) 

1.0 

(0.38) 

0.47 

(0.70) 

0.6 

(0.74) 

0.76 

(0.48) 

0.28 

(0.57) 

M1: Proposed approach; M2: Rogass et al. (2012) [9]; M3: Goodenough et al. (2003) and Datt et al. (2003) [10,11]; 

M4: Staenz et al. (2003) [12]; M5: Pande-Chhetri and Abd-Elrahman (2011) [13]; M6: Pande-Chhetri and Abd-Elrahman 

(2013) [14]. 

Figure 7. Average AAHPD performance of the two best performing approaches for real images. 

 

As for simulated images, the subjective evaluation (visual) has been performed because even very 

fine differences are often more easily perceptible through human vision as through statistical approaches. 

The succeeding ranking was based on a result evaluation of subsets that are exemplarily shown in Figure 8. 
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Figure 8. Subsets of one Hyperion scene (a) as across track spatially stretched false color 

composites (Red 2304.71 nm, Green 915.23 nm, Blue 447.17 nm) of the destriping results of 

(b) the proposed approach, (c) Rogass et al. [9], (d) Goodenough et al. and Datt et al. [10,11], 

(e) Staenz et al. [12], (f) Pande-Chhetri and Abd-Elrahman [13] and (g) Pande-Chhetri and 

Abd-Elrahman [14]. 

(a) 

(b) 

(c) 

(d) 

 
(e) 

(f) 

(g) 
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The results for the ranking are given in Supplementary Table S5. Based on the visual comparison, 

both the proposed approach and the approach of Goodenough et al. and Datt et al. [10,11] perform best. 

This is similar for the overall Hyperion related ranking, whereas the approach of Rogass et al. [9] 

performs as second best and the approach of Goodenough et al. and Datt et al. [10,11] as third best. 

Figure 9. Subsets of one AISA Dual scene (a) as across track spatially stretched false color 

composites (Red 1574.37 nm, Green 964.39 nm, Blue 730.05 nm) of the destriping results of 

(b) the proposed approach, (c) Rogass et al. [9], (d) Goodenough et al. and Datt et al. [10,11], 

(e) Staenz et al. [12], (f) Pande-Chhetri and Abd-Elrahman [13] and (g) Pande-Chhetri and 

Abd-Elrahman [14]. 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 9. Cont. 

(f) 

(g) 

The ranking of Supplementary Table S5 is partly in contrast to the overall objectively obtained results 

of Supplementary Table S4. It follows from this that different SNR scenarios lead to a variation of 

individual ranking except for the proposed approach. This assumption is supported while considering the 

visual based ranking for the individual results based on real striped AISA Dual acquisitions that are 

exemplarily shown in Figure 9. There the proposed approach and the approach of Goodenough et al. and 

Datt et al. [10,11] perform best. Contrary to the visually obtained results for Hyperion (compare 

Supplementary Table S5) the approach of Pande-Chhetri and Abd-Elrahman [14] performs as second best 

and, hence, outperforms the approach of Pande-Chhetri and Abd-Elrahman [13]. This might be again caused 

by sensor related SNR differences (impact of strong smoothing). 

As for Hyperion objectively obtained results for destriping AISA Dual images are complemented 

with the evaluation results based on visual perceptions and summarized in Supplementary Table S6. 

There, the proposed approach outperforms again all other tested approaches for both scenarios—the 

statistical and the visual evaluation except for the 3σ criterion of the CIAG metric. Contrary to the results 

for Hyperion the approach of Pande-Chhetri and Abd-Elrahman [13] performs as second best and the 

approach of Staenz et al. [12] as third best. 

3.3. For Artificially Degraded and Real Images 

If all individual evaluation results for destriping are commonly considered as in Table 3, then the 

proposed approach clearly outperforms all other approaches. The second best approach is the approach 

from Pande-Chhetri and Abd-Elrahman [13] and the third best approach is from Rogass et al. [9]. Both 

perform similarly, although the approach of Goodenough et al. and Datt et al. [10,11] delivered visually 

better results. If the subjective evaluation using visual perception will be excluded, then the second and 

the third best approach switch their ranks.  
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Table 3. Overall performance ranking for real AISA Dual and Hyperion images. 

Approach/Indicator M1 M2 M3 M4 M5 M6 

PSNR [#] 1 4 3 6 2 5 

SSIM [#] 1 4 3 5 2 6 

Column Correlation [#] 1 4 5 6 3 2 

Overall Correlation [#] 1 4 5 6 3 2 

Visual comparison HyMAP [#] 1 3 2 6 4 5 

Median AAHPD/Hyperion [#] 1 2 3 5 4 6 

Median AAHPD/AISA [#] 1 4 6 2 3 5 

Median CIAG/Hyperion [#] 1 2 4 3 5 6 

Median CIAG/AISA [#] 3 2 6 4 1 5 

Visual comparison Hyperion [#] 1 3 1 5 2 4 

Visual comparison AISA [#] 1 5 1 3 4 2 

Average [#] 

(Ʃ all, Ʃ objectively only) 

1 (1) 

(13, 10) 

3 (2) 

(37, 18) 

4 (4) 

(39, 35) 

6 (5) 

(51, 37) 

2 (3) 

(33, 23) 

5 (5) 

(48, 37) 

M1: Proposed approach; M2: Rogass et al. (2012) [9]; M3: Goodenough et al. (2003) and Datt et al. (2003) [10,11]; 

M4: Staenz et al. (2002) [12]; M5: Pande-Chhetri and Abd-Elrahman (2011) [13]; M6: Pande-Chhetri and  

Abd-Elrahman (2013) [14] 

4. Conclusions  

In this work, a new approach for the reduction of signal independent radiometric miscalibration has 

been proposed. It achieves an accuracy of about 99.8% for selected artificially degraded image samples. 

The visual inspection as well as the new defined image quality index for successive destriping indicate 

that the proposed approach also outperforms all other inspected approaches for real hyperspectral 

pushbroom acquisitions, such as those from AISA or Hyperion. Because this approach significantly 

outperforms the latest approach [9] of the ROME framework, it can be expected that destriping of data 

acquisitions from APEX, ASTER and CHRIS/Proba will be also improved in comparison with the 

approach described in [9], but this was not tested. These findings are based on the individual results and 

the overall ranking of the destriping results for all 1536 individually degraded image samples (3 HyMAP 

scenes, 128 bands and the 4 noise scenarios) and four real image samples. Its high processing speed,  

the complete vectorization and the striping quality indicator enable an integration into processing chains 

such as ROME. Compared to the approaches presented by [4,9] this approach is much faster and easier 

to implement. Integrated filter components are fixed and, therefore, this approach can be considered as 

parameter free that tend to represent a close approximation of an analytical solution. To avoid drawbacks 

for any radiometry related destriping approach, it is necessary to reduce acquisition geometry related 

albedo variations. It follows from this that at-sensor reflectance is recommended as processing level for 

destriping. It is assumed that other uncorrelated stripes can be also suppressed by the proposed approach 

if the striping direction is correctly considered in the proposed equations. However, in future work more 

benchmark tests of more approaches [16–36] are necessary to determine the current best performing 

approach that should be then integrated into ROME.  
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