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Abstract 23 
Purpose: Many Mediterranean drylands are characterized by strong erosion in headwater catchments, 24 
where connectivity processes play an important role in the redistribution of water and sediments. 25 
Sediment connectivity describes the ease with which sediment can move through a catchment. The 26 
spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of 27 
sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main 28 
factors driving sediment connectivity. This is particularly true for the patchy vegetation covers typical of 29 
many dryland environments. Several connectivity measures have been developed in the last few 30 
years. At the same time, advances in remote sensing have enabled an improved catchment-wide 31 
estimation of ground cover at the subpixel level using hyperspectral imagery.  32 
Materials and methods: The objective of this study is assessing sediment connectivity for two adjacent 33 
subcatchments (approx. 70 km²) of the Isábena River in the Spanish Pyrenees in contrasting seasons 34 
using a quantitative connectivity index based on fractional vegetation cover and topography data.  35 
The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were 36 
derived by applying a Multiple Endmember Spectral Mixture Analysis approach to the hyperspectral 37 
image data. Sediment connectivity was mapped using the Index of Connectivity, in which the effect of 38 
land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In 39 
this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation 40 
(RUSLE) was used as weighting factor. Bi-temporal C factor maps were derived by linking the spatially 41 
explicit fractional ground cover and vegetation height obtained from the airborne data to the variables 42 
of the RUSLE subfactors. 43 
Results and discussion: The resulting connectivity maps show that areas behave very differently with 44 
regard to connectivity, depending on the land cover but also on the spatial distribution of vegetation 45 
abundances and topographic barriers. Most parts of the catchment show higher connectivity values in 46 
August as compared to April. The two subcatchments show a slightly different connectivity behavior 47 
that reflects the different land cover proportions and their spatial configuration.  48 
Conclusions: The connectivity estimation can support a better understanding of redistribution 49 
processes of water and sediments from the hillslopes to the channel network at a scale appropriate for 50 
land management. It allows hot spot areas of erosion to be identified, and the effects of erosion control 51 
measures as well as different land management scenarios to be studied. 52 
 53 
Keywords  Index of Connectivity • Fractional cover • Imaging spectroscopy • Northeastern Spain • 54 
Sediment connectivity • Spectral unmixing 55 
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1 Introduction 58 

Sediment connectivity relates to the physical transfer of sediment through a drainage basin (Bracken 59 

and Croke 2007). The identification of sediment source areas and the way they connect to the channel 60 

network are essential for environmental management (Reid et al. 2007), especially where high erosion 61 

and sediment delivery rates cause severe on- and off-site effects. An off-site effect of world-wide 62 

importance is the sedimentation of reservoirs and the corresponding loss in water storage capacity 63 

(Verstraeten et al. 2006) with an estimated annual loss in storage capacity of the world’s reservoirs of 64 

around 0.5-1 %, and for individual reservoirs of even 4-5 % (WCD 2000). 65 

Connectivity is mainly determined by the spatial organization of the catchment’s heterogeneity (Van 66 

Nieuwenhuyse et al. 2011), where topography, surface roughness and anthropogenic structures, 67 

vegetation cover and its spatial arrangement as well as temporal dynamics play a vital role in the 68 

redistribution of water and sediment resources. Particularly dryland areas are characterized by a 69 

heterogeneous vegetation cover with seasonal to long-term changes as a consequence of agricultural 70 

management, fire, land abandonment, climate change and other factors. 71 

While most studies on flows over shrubland are conducted at small scales often based on field 72 

experiments, connectivity has rarely been investigated at the landscape scale (Turnbull et al. 2008) 73 

and is still often not sufficiently described in hydrological catchment models (De Vente et al. 2006). 74 

However, observed ecohydrological interactions at patch/inter-patch scales have profound effects and 75 

management implications at the catchment scale, as pointed out by Ludwig et al. (2005). Here remote 76 

sensing may provide adequate, spatially explicit surface information at a scale relevant for land 77 

management. Several authors stress the potential of remotely sensed data for understanding the 78 

patterns and processes of connectivity (Bracken et al. 2013; King et al. 2005; Vrieling et al. 2006), 79 

which has not yet been fully exploited. In recent years, earth observation technology has made 80 

tremendous progress. This opens up new opportunities for retrieving quantitative surface information 81 

at a spatial resolution allowing the characterization of relevant landscape patterns, a temporal 82 

resolution adequate to capture landscape dynamics and a spectral resolution suited to quantify 83 

relevant surface covers. The latter is provided by so-called hyperspectral sensors or imaging 84 

spectrometers recording the light reflected from the ground in many narrow contiguous bands. The 85 

concept of imaging spectrometers originated in the 1980s with the first airborne sensors and has since 86 

then continuously improved and been increasingly employed for earth science applications. Today 87 
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hyperspectral data become increasingly available from a rising number of airborne imaging 88 

spectrometers and a few spaceborne exploration missions. However, the lack of spatial and temporal 89 

continuity in airborne and spaceborne imaging spectrometer data as well as the demanding 90 

processing of these complex data is limiting their widespread use (Plaza et al. 2009; Schaepman et al. 91 

2009). Imaging spectroscopy has been used for various soil mapping and soil degradation studies 92 

over the past few years (Ben-Dor et al. 2009) based on its potential to identify surface materials and to 93 

quantify surface properties. Furthermore, hyperspectral data allow relative abundances of material 94 

components on the surface to be derived by unmixing pixel spectra (Goetz 2009). Spectral mixture 95 

analysis has proven to be a promising tool for retrieving subpixel information on vegetation and soil 96 

surfaces, especially for the heterogeneous patterns of dry and vital vegetation and soil patches that 97 

are typically found in dryland areas (Okin et al. 2001; Ustin et al. 2004). Another recent development 98 

in remote sensing that facilitates sediment connectivity research is the increasing availability of multi-99 

sensor data, i.e., data simultaneously collected with different sensors, such as hyperspectral and 100 

LiDAR data. That way, concurrent spatial information on several of the factors driving sediment 101 

connectivity can be retrieved.  102 

Spatially explicit quantitative information obtained from remotely sensed data facilitates the use of 103 

connectivity indices. In recent years, a large number of these indices has been developed in order to 104 

quantitatively evaluate the connectivity of hydrological systems (Antoine et al. 2009). They aim at 105 

supporting a better understanding of water and sediment redistribution processes, allowing the 106 

identification of hot spot areas of erosion and a study of the effects of erosion control measures and 107 

different land management scenarios. These indices are a simplified surrogate for hydrological 108 

functioning and have different abilities to reflect complex interactions, while emphasizing different 109 

factors as dominant drivers. Bracken et al. (2013) provide an overview of proposed hydrological 110 

indices. Among these, the Index of Connectivity originally introduced by Borselli et al. (2008) has 111 

already been applied for different regions and scales (Cavalli et al. 2013; López-Vicente et al. 2013; 112 

Sougnez et al. 2011) and was successfully used to improve prediction of sediment yields in a semi-113 

lumped catchment model (Vigiak et al. 2012). The Index of Connectivity provides an estimate of the 114 

potential connection between the sediments eroded from hillslopes and the stream system, while 115 

taking into account land surface and topographic characteristics (Borselli et al. 2008). 116 
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In this work, we propose an approach to exploit high-resolution airborne data for overland flow 117 

sediment connectivity estimation. More specifically, we investigate the potential of hyperspectral and 118 

LiDAR data for assessing sediment connectivity at the hillslope to subcatchment scale for a 119 

mesoscale catchment using the Index of Connectivity. The studied catchment in the Spanish 120 

Pyrenees experiences high erosion and sediment delivery rates, while badlands are considered to 121 

contribute a major proportion of the sediments to the channel network. 122 

 123 

2 Study area and data 124 

The study area encompasses the Villacarli (42 km²) and Carrasquero (25 km²) subcatchments of the 125 

mesoscale, semi-humid Isábena catchment (445 km²) located in the southern Pyrenees in 126 

northeastern Spain (Fig. 1). The catchment is characterized by a rough terrain (650 m a.s.l. in the 127 

South to 2,600 m a.s.l. in the North), resulting in a pronounced climatic and land cover gradient. 128 

Strong inter-annual and seasonal variability of precipitation, temperature and local growth conditions 129 

(e.g., due to relief, lithology and land use) create a highly heterogeneous landscape. High altitudes are 130 

dominated by shrubland, meadow, woodlands and bare soil/rock, while valley bottoms are mainly 131 

used for agriculture. The wide abundance of Miocene marls leads to the formation of badlands, i.e., 132 

areas of unconsolidated sediments or poorly consolidated bedrock with little or no vegetation (Gallart 133 

et al. 2002). Contemporary geomorphic processes are mainly dominated by fluvial erosion on slopes 134 

and in the badlands during floods typically occurring in spring and in late summer and autumn (López-135 

Tarazón et al. 2009). The Isábena River is characterized by large sediment yields indicating high 136 

connectivity between the source areas and the fluvial network (López-Tarazón et al. 2012). Apart from 137 

the badlands, arable land and shrubland are seen as major sources of sediment delivered to the 138 

Barasona reservoir at the outlet of the Isábena catchment. In consequence, the initial capacity of the 139 

reservoir of 92 hm³ has been considerably reduced by siltation over the past several decades (Valero-140 

Garcés et al. 1999). 141 

 142 

2.1 Hyperspectral data 143 

Airborne AISA Eagle and Hawk imaging spectrometer data (Airborne Imaging Spectrometer for 144 

Application, Specim Ltd., Oulu, Finland) were acquired at an altitude of 4,200 m on April 02 and 145 

August 09, 2011 with a ground sampling distance (GSD) of 4 m in 12 and 15 flight lines, respectively. 146 
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AISA records reflected solar radiation from the visible (VIS) to the shortwave infrared spectral region 147 

(SWIR) (400 to 2,500 nm). Data acquisition and radiometric correction were conducted by NERC 148 

(Natural Environment Research Council, UK). Subsequent geocorrection was performed using in-149 

house software developed at the German Research Centre for Geosciences (GFZ). Atmospheric 150 

correction was done using ATCOR-4 (Atmospheric/Topographic Correction for Airborne Imagery) 151 

(Richter and Schlaepfer 2002). Mosaicking of the flight lines was realized in ENVI 4.8 (Exelis Visual 152 

Information Solutions). Subsequently, refined georegistration of the image mosaics was performed 153 

based on orthophotos provided by the Spanish National Centre for Geographic Information (CNIG). 154 

Final geometric accuracy varied between 0 and 2 image pixels, i.e., 0 and 8 m, with the largest 155 

deviations in the mountainous North. To further adjust the surface reflectance of the image mosaics, 156 

empirical line correction was performed using field spectra collected during the airborne campaigns. 157 

Additionally, the image mosaics were optimized by removing the water absorption features (Painter et 158 

al. 1998, Roberts et al. 1998b), filtering the spectra using a Savitzky-Golay filter (Savitzky and Golay 159 

1964) and removing saturated (>90% reflectance) and negative (not physically meaningful) pixels. For 160 

final analysis, 380 spectral bands remained and 11.1 % of the April and 5.6 % of the August image 161 

pixels were excluded.  162 

 163 

2.2 Field data collection 164 

In two field campaigns concurrent with the airborne image acquisitions, fractional cover of green 165 

vegetation (GV), dry vegetation assumed to be photosynthetically non-active (NPV), bare soil, and 166 

rock were visually estimated for 60 (April) and 53 (August) transects of 20 m length (Fig. 1). Visual 167 

estimation was carried out in 10 % steps for 1 m x 1 m plots every 2 m along the transects using the 168 

quadrate sampling method (Kreeb 1983, Coulloudon et al. 1999, Kercher et al. 2003). Estimates were 169 

averaged for each transect. Nadir photographs of each estimation site were taken, the position was 170 

measured using a hand-held GPS, the vegetation height was measured and the land use type was 171 

recorded. 172 

These field data were subsequently used to validate the image analysis results on the level of cover 173 

fractions and, after determining C factors from ground reference data (section 3.3), on the level of C 174 

factors. The C factor is the cover and management factor in the Universal Soil Loss Equation 175 
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reflecting the effect of ground cover and management practices on erosion rates. For validation, 176 

transect averages were compared with the image analysis results for the corresponding image pixels. 177 

 178 

2.3 LiDAR data 179 

Airborne LiDAR data were acquired by NERC with a Leica ALS50 instrument in single-pulse mode 180 

(maximum of four returns per given pulse recorded) in August 2011 concurrent with hyperspectral data 181 

acquisition. The average flight altitude of 4,200 m resulted in an average point density of 0.7 hits per 182 

m². The mean error magnitude is 3.3 cm with a standard deviation of 4.1 cm for 2,500 m altitude, with 183 

an additional maximum error of 10-15 cm at the edges of the swath due to a systematic roll boresight 184 

bias (NERC 2011).  185 

Pre-processing of the LiDAR point clouds was carried out by the Institute for Earth and Environmental 186 

Sciences at the University of Potsdam (Bauer 2013) applying LAStools (Martin Isenburg, rapidlasso 187 

GmbH, rapidlasso.com). It comprised the classification of the point cloud into ground and non-ground 188 

points and the generation of a digital elevation map (DEM; including only ground points) as well as a 189 

vegetation height map, both with 4 m spatial resolution. In a further step, the DEM was hydrologically 190 

corrected for local pits using TauDEM 5.0 (Terrain Analysis Using Digital Elevation Models, 191 

hydrology.uwrl.usu.edu/taudem/taudem5.0/index.html). 192 

 193 

3. Methods 194 

3.1 Multiple Endmember Spectral Mixture Analysis (MESMA) 195 

Spectral Mixture Analysis (SMA) models the apparent surface reflectance P of an image pixel i as the 196 

linear sum of N endmembers weighted by the fraction fik of each endmember within the instantaneous 197 

field of view of pixel i (e.g., Adams et al. 1993; Roberts et al. 1998a). That is, for a given wavelength, 198 

λ: 199 

 200 

𝑃𝑃𝑖𝑖𝑖𝑖 =  ∑  𝑓𝑓𝑖𝑖𝑖𝑖 ∗  𝑃𝑃𝜆𝜆𝜆𝜆 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑁𝑁
𝑘𝑘=1               (1) 201 

 202 
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The fit of the model is assessed by an error metric based on the residual term eiλ, indicating the error 203 

between the measured and modeled spectra. The standard error metric for SMA is the root mean 204 

square error (RMSE) of the residuals for each pixel across all bands given by: 205 

 206 

RMSEi =  �∑ (eik)2λ
k=1 /N�

1/2
              (2) 207 

 208 

The modeled fractions are typically constrained by assuming that the physical abundance of the 209 

materials present in each pixel sums up to a total of 100 % (Okin et al. 2001): 210 

 211 

∑  𝑓𝑓𝑖𝑖𝑖𝑖 = 1𝑁𝑁
𝑘𝑘=1                 (3) 212 

 213 

SMA techniques have been successfully applied for quantifying vegetation cover in dryland areas 214 

(Asner and Heidebrecht 2002, Bachmann 2007; Elmore et al. 2000; Gill and Phinn 2009; McGwire et 215 

al. 2000; Numata et al. 2007; Peterson and Stow 2003). In standard SMA approaches, a fixed number 216 

of representative endmembers is selected which may not effectively model all elements in the image, 217 

or pixels may be modeled by endmembers that do not correspond to the material located in the field of 218 

view. As a result, accuracy of the estimated fractions is low (Sabol et al. 1992). The limitations of the 219 

SMA approach are particularly problematic in highly heterogeneous landscapes such as in the 220 

Mediterranean on fine spatial scales. A technique that addresses these restrictions is Multiple 221 

Endmember Spectral Mixture Analysis (MESMA), which allows the number and type of endmembers 222 

to be varied on a per pixel basis (Roberts et al. 1998b) and thus better accounts for in-class variability. 223 

In this study, MESMA was applied to the hyperspectral AISA images to estimate fractional cover for 224 

GV, NPV, soil and rock. For this study, all endmember spectra were derived from the image data sets. 225 

The main advantage of using image endmembers (rather than field or lab spectra) is that they are 226 

collected at image scale and are thus easier to correlate with image features (Rashed et al. 2003). 227 

The spectral endmember library was set up using VIPER tools (ENVI add-on; www.vipertools.org). 228 

The MESMA library for the April data set used in this study included ten endmembers for the GV 229 

class, eight for NPV, five for bare soil and two for rock. For the August data set eleven endmembers 230 

for GV were distinguished, six for NPV, six for bare soil and two for rock (Fig. 2). 231 
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The endmember library was used to estimate the fractional abundance of each class for each pixel in 232 

the image. Two-, three-, and four-endmember models were applied. To account for variations in 233 

illumination and in spectral albedo, a shade endmember was included (i.e., a spectrum with a 234 

reflectance of zero in all bands) (Dennison and Roberts 2003). MESMA was run in a partially 235 

constrained mode with the following constraints: (a) the minimum and maximum allowable fraction 236 

values range between -0.05 and 1.05, meaning that slightly negative fractions and fractions slightly 237 

larger than 100 % are acceptable, (b) the shade fraction values have a maximum allowable fraction of 238 

80 % to prevent exclusion of very well fitting models despite a high shade component in the pixel, and 239 

(c) a commonly accepted RMSE threshold of 0.025 must be complied following Dennison and Roberts 240 

(2003). Each two-, three-, or four-endmember model meeting the constraints was evaluated for every 241 

single image pixel, selecting the model with the minimum RMSE value (Painter et al. 1998). If no 242 

model met the constraints, the pixel was left unmodeled. As a result, an image containing the best-fit 243 

model per pixel and the corresponding fractional value of each endmember (i.e. GV, NPV, soil and 244 

rock) was produced. Since shade was not considered as a land cover component, the estimated 245 

fractions of each pixel were shade-normalized following the procedure of Adams et al. (1993). The 246 

modeled fractions were rescaled to range between 0 and 100 % by assuming that the physical 247 

abundance of the materials present in each pixel sum up to a total of 100 %. 248 

 249 

3.2 Land use classification 250 

MESMA results provide estimates of the cover fractions on a pixel-by-pixel basis independent of the 251 

land use class that the respective pixels belong to. In the subsequent C factor estimation, however, a 252 

land use class-wise procedure was applied. Therefore, in addition to the MESMA approach, 253 

supervised land use classification was performed using the Support Vector Machine (SVM) classifier 254 

Image SVM 2.1 (Rabe et al. 2010). SVM classification has shown to be particularly suitable for high-255 

dimensional multi-collinear image data and has furthermore the advantage of requiring only small 256 

training data sets (Foody et al. 2006; Plaza et al. 2009). 257 

The SVM classification was based on the fused April and August image data sets to account for 258 

seasonal vegetation cover changes and hence improve classification performance. Furthermore, prior 259 

to SVM classification a principle component analysis (PCA) was applied on the spectral data to reduce 260 

noise and increase data variance (Richards 1999). PCA was applied on the original reflectance data 261 
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as well as on spectra that were normalized by continuum removal (CR) (Clark and Roush 1984), 262 

resulting in a final reduction of the number of bands from 380 to 235 for the reflectance data and 380 263 

to 45 for the CR data. SVM classification was then performed using different input data sets, namely 264 

(1) the reflectance data only, (2) the CR data only, and (3) reflectance and CR data combined. 265 

Subsequently, accuracy was tested for each case. To train the classifier, approximately 3,000 pixels 266 

corresponding to 0.1 % of the entire data set were used based on ground reference data representing 267 

a total of eight land use classes. Class selection was based on Mueller et al. (2009) for reasons of 268 

comparison to previous studies. Classification accuracy was assessed based on ground truth data of 269 

approximately 8,000 pixels.  270 

During post-classification, the raster-based land use information was aggregated by majority filtering 271 

(kernel size: 7x7, weight: 5) and elimination of areas smaller than 2,000 m² to create coherent land 272 

use classes. 273 

 274 

3.3 C factor mapping based on RUSLE 275 

The Universal Soil Loss Equation (USLE) and its modified version the Revised USLE (RUSLE) are 276 

widely-used empirical models for assessing long-term averages of soil loss based on the product of 277 

six erosion risk factors, namely the rainfall and runoff factor (R), the soil erodibility factor (K), the 278 

slope-length factor (L), the slope-steepness factor (S), the cover and management factor (C) and the 279 

support practice factor (P) (Wischmeier and Smith 1978). Among these factors, the C factor 280 

represents the effect of ground cover and management practices on reducing soil loss. It is calculated 281 

as:  282 

 283 

𝐶𝐶 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗ EI𝑖𝑖
EI

𝑛𝑛
𝑖𝑖=1               (4) 284 

 285 

where SLRi describes the soil loss ratio for time period i, EIi represents the rainfall and runoff erosivity 286 

during period i, and n is the total number of periods. That way, each SLRi value is weighted by the 287 

fraction of rainfall and runoff erosivity (EI) associated with the corresponding time period, and these 288 

weighted values are combined into an overall C factor value. In this study, the focus is placed on the 289 

spatial and temporal surface cover dynamics and its effect on C factor estimation, whereas the 290 
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dynamics of rainfall and runoff erosivity was purposely not considered by giving equal weights to all 291 

time periods. Therefore C factor values were estimated by calculating SLR without taking changes in 292 

EI into account.  293 

For calculating the individual SLR values, a subfactor approach is introduced in RUSLE that considers 294 

several surface characteristics related to surface cover and land use (Renard et al. 1997) based on 295 

the work of Laflen et al. (1985) and Weltz et al. (1987). An individual SLRi (0–1) value is thus 296 

calculated for each time period i as: 297 

 298 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ∗ 𝐶𝐶𝐶𝐶𝑖𝑖 ∗ 𝑆𝑆𝑆𝑆𝑖𝑖 ∗ 𝑆𝑆𝑆𝑆𝑖𝑖 ∗ 𝑆𝑆𝑆𝑆𝑖𝑖               (5) 299 

 300 

where SLRi is the soil-loss ratio for the given conditions, PLUi the prior land use subfactor, CCi the 301 

canopy cover subfactor, SCi the surface cover subfactor, SRi the surface roughness subfactor and SMi 302 

the soil moisture subfactor.  303 

The CC subfactor is a function of the fraction of the land covered by canopy Fc and the effective fall 304 

height of raindrops H. It is calculated as: 305 

 306 

𝐶𝐶𝐶𝐶 = 1 −  𝐹𝐹𝑐𝑐 ∗  𝑒𝑒(−0.1∗𝐻𝐻)         (6) 307 
 308 

The SC subfactor is calculated as: 309 

𝑆𝑆𝑆𝑆 =  𝑒𝑒[−𝑏𝑏∗ 𝑆𝑆𝑝𝑝∗ �0.24
𝑅𝑅𝑢𝑢

�
0.08

]         (7) 310 
 311 

where Sp is the percentage of land area covered by surface cover, b is the effectiveness of surface 312 

cover in reducing soil erosion (empirical coefficient) and Ru is the random roughness. The SR 313 

subfactor is calculated as: 314 

𝑆𝑆𝑆𝑆 =  𝑒𝑒[−0.66(𝑅𝑅𝑢𝑢− 0.24)]          (8) 315 
 316 

Published values of C factors can vary from 0, e.g., for woodlands with 100 % ground cover, to 1 for 317 

bare soil areas (Pierce et al. 1986).  318 
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C factors were estimated for each ground reference site based on the field data collected and on 319 

literature values. Surface and canopy cover as well as vegetation height obtained in the field 320 

campaigns were used; random roughness was estimated based on reference photographs provided 321 

by Renard et al. (1997); PLU and SM were set to 1 according to Schiettecatte et al. (2008) and 322 

Verstraeten et al. (2002) and b was set as a land cover dependent constant taken from Renard et al. 323 

(1997). This way, the C factor estimation for the ground reference sites used for accuracy assessment 324 

was completely independent of the subsequent C factor estimation based on remotely sensed data. 325 

In the remote sensing approach, spatially explicit C factor values were estimated for the land use 326 

classes shrubland, arable land, and badland (obtained from land use classification; section 3.2), which 327 

make up a large part of the study area and are assumed to contribute the largest proportion of 328 

sediments to the channel network. For C factor mapping, the estimated ground cover fractions 329 

(obtained from MESMA; section 3.1) were linked to the variables of the RUSLE subfactors CC and SC 330 

for both dates separately. The fractional ground cover obtained from hyperspectral image analysis 331 

does not account for the vertical vegetation distribution, since spectral pixel information is 332 

simultaneously affected by the spectral characteristics of canopy and surface vegetation (Guyot et al. 333 

1989). Thus, we linked the MESMA-derived abundances of GV, NPV and rock with the subfactors in 334 

three different ways and tested the overall accuracy for each case: (1) GV is assigned to canopy cover 335 

(Fc), NPV and rock to surface cover (Sp). (2) GV and NPV are assigned to Fc, and rock to Sp. (3) GV is 336 

assigned to Fc, NPV to Fc and to Sp, and rock again to Sp. As suggested in Dissmeyer and Foster 337 

(1981), we assumed that rock has a positive effect on reducing soil erosion and is therefore assigned 338 

to surface cover (Sp). Vegetation height H is based on the LiDAR-derived height map (section 2). PLU 339 

and SM were again set to 1, while Ru and b were set as a land cover dependent constants based on 340 

Renard et al. (1997).  341 

As a result, shrubland, arable and badland areas were mapped by continuous C factor values, while 342 

constant C factors adopted from Mueller et al. (2009) and Antronico et al. (2005) were assigned to the 343 

remaining land use classes that are assumed to exhibit much less variability across space and time 344 

(Table 1). Data gaps remaining after data pre-processing and MESMA were filled by constant C 345 

factors per land use class based on MARM (2008). 346 

 347 

3.4 Index of Connectivity 348 
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Sediment connectivity is assessed using the Index of Connectivity (IC) proposed by Borselli et al. 349 

(2008) and further adapted to the use of high-resolution digital elevation models by Cavalli et al. 350 

(2013). For each cell in the catchment, the IC estimates the upslope component Dup and the 351 

downslope component Ddn (Fig. 3 in the supplementary material). Dup represents the characteristics of 352 

the upslope contributing area and thereby summarizes the potential for downward routing of the 353 

sediment produced upstream. Ddn accounts for the characteristics of the flow path from a specific cell 354 

to the stream network and hence expresses the probability that sediment arrives at a sink along a flow 355 

line. This way, IC provides an estimate of the potential of sediment eroded from the hillslope and of its 356 

connection to the stream system (López-Vicente et al. 2013). IC is computed as follows: 357 

 358 

𝐼𝐼𝐼𝐼𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐷𝐷𝑢𝑢𝑢𝑢,𝑘𝑘

𝐷𝐷𝑑𝑑𝑑𝑑,𝑘𝑘
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 359 

where 𝑊𝑊�  is the average weighting factor for the upslope contributing area (-), 𝑆𝑆̅ the average slope 360 

gradient for the upslope contributing area (m/m), A the upslope contributing area (m²), di the length of 361 

the i-th cell along the downslope path to the sink (m), Wi weight of the i-th cell (-) and Si the slope 362 

gradient of the i-th cell (m/m). The subscript k indicates that each cell has its own IC value. IC is 363 

dimensionless and defined in the range [-∞; +∞] with connectivity increasing as IC approaches +∞.  364 

The weighting factor represents the impedance of runoff and sediment fluxes due to ground cover and 365 

surface roughness. Borselli et al. (2008) proposed using the C factor as weighting factor as a widely-366 

applied parameter that can be explicitly related to observable and measurable characteristics of land 367 

use and management. In this study, spatially explicit C factor maps were derived from remotely 368 

sensed data (section 3.3) as input in the IC estimation. Furthermore, the LiDAR-derived DEM was 369 

input in the IC calculation. As proposed by Cavalli et al. (2013) we constrained the slope values 370 

between 0.005 and 1 m/m and used the multiple flow D-infinity approach (Tarboton 1997) since this 371 

approach is better suited to represent divergent flow over hillslopes than the single-flow algorithm 372 

applied in the original IC model. Cavalli et al. (2013) introduced two different scenarios for the 373 

application of the index, namely analyzing sediment connectivity across the whole catchment between 374 

hillslopes and catchment outlet (“IC outlet”) and analyzing sediment connectivity between hillslopes 375 
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and main channels (“IC channel”). In this study, IC values were calculated with regard to the main 376 

channels, assuming that redistribution processes from the hillslopes to the channels are highly 377 

relevant for the overall sediment yield of the catchment and that these are the areas where effective 378 

erosion control measures can be applied.  379 

 380 

4 Results 381 

4.1 Multiple Endmember Spectral Mixture Analysis (MESMA) 382 

More than 95 % of the image pixels for both data sets were successfully modeled. Undefined pixels 383 

(1.1 % April; 4.3 % August) resulted from differences between reference and modeled spectra. Four-384 

endmember models were chosen for 77 % (April) and 80 % (August) of the images, including most of 385 

the shrublands. Shrubland areas are characterized by a mosaic of patches of green and dry 386 

vegetation as well as bare soil and rock smaller than the 4 m GSD of the images. The resulting high 387 

spectral variability led to the preference of four-endmember models. Three-endmember models, 388 

however, were predominantly chosen by the algorithm for more homogenous land use types, such as 389 

arable land and badlands.  390 

Fig. 4 shows a subset of the August image with the cover fractions derived using MESMA for GV, 391 

NPV, soil and rock. The vegetation fraction (GV and NPV) makes up the largest part of the study area. 392 

The fractions of NPV appear scattered, notably on shrubland and meadow areas. Shrubland areas are 393 

dominated by NPV in April (40 %) followed by GV (23 %), whereas in August GV dominates (also 40 394 

%) followed by NPV (27%). For meadows the factional cover of NPV is similar in April and August (33 395 

% and 29 %, respectively), while it increases for GV (47 % to 58 %). The land use class arable land is 396 

mainly covered by GV in April (61 %), while fractional covers of bare soil and NPV (15 % and 61 %, 397 

respectively) dominate in August, indicating residue cover after harvest. Coniferous forests in the 398 

North are modeled with high abundances of GV for both dates (71 % and 79 %). High abundances of 399 

NPV in deciduous forests in April (73 %) can be explained by dry leaves, while in August the canopies 400 

turn green and hence the fractional cover of GV dominates (74 %). 401 

Accuracy was assessed in two ways based on field estimates, firstly on the estimated dominant 402 

ground cover class per pixel, and secondly on the estimated fractional cover per pixel for both image 403 

mosaics. 404 
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For the April image mosaic, the dominant ground cover fraction per pixel resulted in an overall 405 

accuracy of 65.2 % with the best results obtained for GV (83.3 %) and the poorest for rock (16.7 %). 406 

The latter was mainly confused with the soil cover fraction. Estimated GV abundances provided the 407 

best results (R² = 0.70, RMSE = 0.16); soil and rock cover fraction prediction was poor (R² = 0.22, 408 

RMSE = 0.26 and R² = 0.23, RMSE = 0.19, respectively). Generally, accuracy for land use classes 409 

with high vegetation cover abundances is high for GV and NPV and low for soil and rock cover 410 

fractions (Fig. 5). Furthermore, if the soil cover fraction is underestimated, NPV is overestimated. 411 

However, land use classes with high fractional abundances of bare soil or rock showed a reversed 412 

behavior. 413 

For the August image mosaic, overall accuracy of the estimated dominant ground cover fraction per 414 

pixel is slightly lower (57.9 %). The best results were obtained for the soil cover fraction (100 %), the 415 

poorest again for the rock fraction (16.7 %). Class confusion appeared mainly between the covered 416 

fractions (GV and NPV) and the uncovered fractions (soil and rock). Estimated GV abundances for all 417 

reference data provided the best results (R² = 0.63, RMSE = 0.20), while rock cover fraction prediction 418 

was poor (R² = 0.19, RMSE = 0.23). Overall accuracy for all land use classes except shrubland over 419 

all ground cover fractions is good (mean error less than 20 %) (Fig. 5).  420 

 421 

4.2 Land use classification 422 

Eight classes were distinguished in the land use classification: shrubland, arable land, rock, bare soil, 423 

deciduous forest, coniferous forest, meadow and badland (Fig. 4f). The best overall accuracy of 88 % 424 

was obtained using a combination of reflectance and CR spectra in the SVM classification. Land use 425 

classes with expected high vegetation cover provided high accuracies (84 % - 94 %), while land use 426 

classes with high abundances of bare soil or rock tended to get confused with other classes (63 % - 427 

74 %), particularly with shrubland. Shrubland and coniferous forest constitute the dominant land use 428 

types (49 % and 28 %, respectively) in the study area, while badlands and bare soil areas make up 429 

2 % and 1 %, respectively. Meadow/pasture (8 %), deciduous forest (8 %) and arable land (5 %) have 430 

approximately equal shares.  431 

 432 

4.3 C factor mapping based on RUSLE 433 
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Estimated ground cover fractions were assigned to the variables of the RUSLE subfactors. The best 434 

results were achieved when assigning GV to canopy cover (Fc), and NPV and rock together to surface 435 

cover (Sp). However, accuracy was higher for land use classes with high vegetation cover 436 

(shrubland/arable land) than for land use classes with low vegetation cover (badland). 437 

The obtained C factor maps for April and August are presented in Fig. 6 (subset, in supplementary 438 

material) and Fig. 7 (entire study area). Shrubland, arable land and badlands are mapped by 439 

continuous C factor values derived from the proposed remotely sensed approach, while spatially and 440 

temporally constant C factors (Table 1) were assigned to the remaining land use classes as well as to 441 

pixels excluded during the image analysis process. Badlands and bare soil areas exhibit the highest C 442 

factor values for both dates. There is no change or only a slight increase in C factor values for most 443 

areas (mainly shrubland and badland areas) between April and August, indicating an increase in 444 

erodibility, whereas for some areas (mainly arable land) a slight decrease in C factor values was 445 

found, indicating a lower erodibility. On average, C factors slightly increase from 0.11 (April) to 0.14 446 

(August) for Villacarli and 0.09 (April) to 0.10 (August) for Carrasquero (Table 2). 447 

These observations are in line with the distribution curves of C factors per land use class (shrubland, 448 

arable land, badland) and date (April, August) in Fig. 8. The distribution curves differ in their range and 449 

shape, representing the spatial and temporal variability of C factor values within these three land use 450 

classes. The C factor distribution for badland shows two frequency maxima near 0.02 and 0.7 and a 451 

flat curve shape, whereas arable land and shrubland are characterized by steep distribution curves 452 

with frequency maxima between 0.01 and 0.1. Mean C factor values for badland for both dates are 453 

higher (0.35) in comparison to the land use classes arable land and shrubland (0.15 each).  454 

The correlation between reference and modeled C factors was high for the August image mosaic (Fig. 455 

9) (R² = 0.71). The low mean absolute error (MAE = 0.09) and root mean square error (RMSE = 0.11) 456 

indicate good model prediction. In contrast, correlation was poor (R² = 0.04) for the April image 457 

mosaic. However, overall accuracy is acceptable as the mean error is less than 20 %. With increasing 458 

C factors, the modeled C factors are consistently underestimated relative to the reference C factors, 459 

particularly in the land use classes arable land and badland.  460 

 461 

4.4 Index of Connectivity 462 
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The spatially explicit Index of Connectivity was calculated for the entire Villacarli and Carrasquero 463 

subcatchment and gives an estimate of how sediment sources and stream network are connected and 464 

how the connectivity changes between April and August (Fig. 10). Differences between both dates 465 

can be attributed to different input values of the weighting factor W (C factor), whereas the other input 466 

data remain the same for both dates. A change in one cell will have an effect on flow path values for 467 

all upstream IC calculations and on the contributing area values for all downstream IC calculations, 468 

and hence there are only a few areas (mainly forested areas in the upstream parts of the catchments) 469 

that show no changes in IC between April and August. 470 

As expected, the highest connectivity values are found close to the channels and in areas with sparse 471 

vegetation, while there are also some parts of the catchments that seem to be hardly connected to the 472 

channel network. Most parts of the catchments show an increase in connectivity from April to August 473 

with the largest changes in badland and shrubland areas. Areas experiencing a decrease in 474 

connectivity are mainly related to arable land and meadow/pasture, for example in the northwestern 475 

part of Villacarli. The general increase in connectivity from April to August is also reflected in the 476 

average IC values for both catchments (Table 2). When comparing both catchments, Villacarli is 477 

characterized by a higher average connectivity that can be attributed to the topographic characteristics 478 

and the distribution of C factors. The distribution curves of the IC values by subcatchment and date 479 

(Fig. 11) exhibit higher frequencies between -10 and -8 as well as between -4 and 0 for Villacarli as 480 

compared to Carrasquero, whereas it is reverse for the range -8 to -4. This pattern is found for April as 481 

well as for August, indicating that catchment topography and land cover characteristics have a greater 482 

influence on the IC value distribution than seasonal differences in vegetation cover. For both dates, IC 483 

values between -4 and 0 are related to badland and bare soil areas close to river channels, whereas 484 

IC values between -10 and -8 are related to forests.  485 

 486 

5 Discussion 487 

Many authors have shown that not only the extent of vegetation, but also the spatial configuration of 488 

vegetated and bare areas, largely affect the redistribution of resources in semi-arid areas (Ludwig et 489 

al. 2005; Puigdefábregas 2005; Turnbull et al. 2008). Vegetation patterns can be regarded as a 490 

structural factor remaining static during a storm event (Reaney et al. 2014). Over longer time periods, 491 

however, vegetation density and its spatial distribution may change, resulting from disturbances such 492 
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as grazing, fire or deforestation, but also in response to resource flows creating patches or banded 493 

vegetation typical for many semi-arid hillslopes. In consequence, the long-term effectiveness of 494 

vegetation patches to obstruct flows and retain water and soil resources within semi-arid landscapes 495 

may also change (Ludwig et al. 2005). Apart from long-term changes in vegetation density and 496 

patterns, seasonal changes in vegetation cover may also affect the redistribution of resources and 497 

connectivity at hillslopes during the course of a year. In this study, information on the spatial patterns 498 

and temporal changes of vegetation cover were derived from airborne hyperspectral data acquired in 499 

April and August 2011 in two subcatchments having an overall size of 70 km². Different from 500 

broadband sensors, the hyperspectral sensors used in this study, such as AISA, record spectral 501 

information in many narrow contiguous bands and thus allow relative abundances of material 502 

components on the surface to be derived by unmixing pixel spectra (Goetz 2009). The MESMA 503 

approach applied in this study was found to be particularly suitable for deriving abundances of 504 

vegetation and soil in heterogeneous Mediterranean landscapes predominantly covered by shrublands 505 

that are characterized by high spectral variability within the surface classes (Bachmann 2007; Elmore 506 

et al. 2000; McGwire et al. 2000). Shrublands make up nearly half of the study area (49 %, section 507 

4.2) and change across the area from nearly complete to patchy coverage. Vegetation patches in 508 

Mediterranean shrublands are typically in the order of 1 m² or less in area, and since standard aerial 509 

photographs and high-resolution satellite images are also in this order of spatial resolution they may 510 

be indispensible for characterizing vegetation patterns in sufficient detail for describing 511 

ecohydrological processes (Lesschen et al. 2008; Muñoz-Robles et al. 2012). Yet, standard aerial 512 

photographs and high-resolution satellite images without spectral information in the shortwave infrared 513 

range do not allow discrimination among photosynthetically non-active, i.e., dry, and green vegetation 514 

components and bare soil, hence mapping of total plant cover is limited. However, dry vegetation 515 

components make up a comparably large proportion of the overall vegetation cover in Mediterranean 516 

landscapes and thus have an influence on water and soil fluxes that should not be neglected (De Jong 517 

and Epema 2006). The MESMA approach proposed in this study accounts for subpixel heterogeneity 518 

by unmixing the spectral pixel information. The resulting fraction cover map does, however, not 519 

provide the correct location of vegetation patches and inter-patches within a pixel, but it gives the 520 

relative abundances of green and dry vegetation, bare soil and rock and achives accuracies similar to 521 

comparable studies (e.g., Bachmann 2007). Under or over estimating fractions can be mainly 522 
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explained by erroneous reference data estimation and locational inaccuracies caused by choosing 523 

inadequately pure endmembers and incorrect unmixing model parameterization, by non-linear mixing 524 

effects not captured by the linear assumption of SMA, and by the challenging study area (high spectral 525 

variability and rough terrain).  526 

Apart from the subpixel derivation of fraction cover using MESMA, land use classification using SVM 527 

was performed on the same hyperspectral bi-temporal image mosaics. SVM is particularly suited to 528 

high-dimensional imagery with limited training data (Plaza et al. 2009) and resulted in high overall 529 

classification accuracy (88 %). The shrubland class was often confused with other classes due to its 530 

high spectral variability with vegetation patches smaller than the image pixel size of 4 m. The land use 531 

classification result was used in the subsequent class-wise estimation of C factors based on the 532 

RUSLE approach. 533 

USLE/RUSLE is an empirical model assessing long-term averages of sheet and rill erosion originally 534 

developed for agricultural land in the United States. It does not explicitly consider runoff or individual 535 

erosion processes of detachment, transport, and deposition. Despite the empirical character and partly 536 

erroneous results, the model is widely applied for soil loss estimation. In this study we solely used the 537 

cover and management factor of RUSLE that is based on subfactors for explicitly incorporating 538 

quantitative information on cover fractions and land management practices (Renard et al. 1997). It 539 

also allows for the differentiation of time-variant and time-invariant C factors, depending on the 540 

application and study area (pasture/rangeland vs. agricultural land). However, most studies on 541 

catchment-wide soil erosion mapping still use annually and spatially averaged C factors per land use 542 

class based on published values, which do not reflect the large spatial variability (e.g., shrubland) or 543 

seasonal change (e.g., arable land) in the cover and management factor. To account for this spatial 544 

and temporal variability, remote sensing data are increasingly employed to estimate C factor values. 545 

Often spectral ratios such as the Normalized Difference Vegetation Index (NDVI) are used as 546 

indicators of photosynthetically active vegetation (e.g., Kouli et al. 2009; Wu et al. 2004), while there 547 

are only few studies on mapping erosion potential for mesoscale catchments that consider seasonal 548 

changes in land cover. Some recent studies relate cover fractions derived from remote sensing 549 

analyses to C factor values (De Asis and Omasa 2007; Meusburger et al. 2010). In this study, we 550 

proposed spatially explicit C factor mapping based on cover fractions linked to RUSLE’s canopy (Fc) or 551 

surface cover (Sp) subfactors, which also takes non-photosynthetically active vegetation as well as 552 
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other factors (e.g., vegetation height) into account. The MESMA-derived cover fractions were 553 

assigned to the subfactors in three different ways and overall accuracy was tested for all three 554 

approaches. In our study, highest accuracy was obtained when assigning GV to canopy cover (Fc), 555 

and NPV and rock together to surface cover (Sp), and hence we applied this approach to all land use 556 

types. Thereby, accuracy was higher for land use classes with high vegetation cover (shrubland/arable 557 

land) than for land use classes with low vegetation cover (badland), indicating that the assignation is 558 

not universally transferable among study areas, but needs adaptation depending on the type and 559 

distribution of vegetation cover present in the area. Alternatively, a land use dependent assignation 560 

could be used. This way, C factors were mapped spatially explicit for the three land use types 561 

shrubland, arable land and badland that together have a 56 % share (section 4.2) of the study area 562 

and exhibit the greatest spatial and seasonal dynamics. Also, they are expected to contribute the 563 

largest amount of sediment to the channel network, which is underpinned by the results of a spectral 564 

fingerprinting of sources of suspended sediments reported in Brosinsky et al. (this issue). They found 565 

for the same study area that badlands were always the major sources; forests and grasslands 566 

contributed little, and other sources (not further determinable, including arable land and shrubland) up 567 

to 40 %. For the land use types shrubland, arable land and badland C factors between April and 568 

August change in different ways (section 4.3), justifying the use of time-varying C factors as compared 569 

to annual averages. Other land use such as pasturage changes very slowly with time and hence 570 

annual average C factors may be adequate (Renard et al. 1997). The spatially and temporally 571 

averaged constant C factors taken from the literature (Table 1) fit the spatially explicit C factors 572 

derived from the image analysis to different extents (Fig. 8). While for badland a constant C factor of 1 573 

is assumed, C factors derived from the image analysis vary between 0.0 and 0.9, with the majority of 574 

values at 0.02 in April and 0.7 in August indicating a decrease in vegetation cover from April to 575 

August. Similarly, C factors for shrublands show a slight increase from April to August with the majority 576 

of values at 0.02 and 0.04, respectively, while the constant literature value used for shrublands in 577 

similar studies is in the same range (0.031). The constant C factor for arable land (0.25) obtained from 578 

literature seems to be an average annual value representative of the seasonal changes in C factors in 579 

arable land. C factors for arable land derived from the image analysis vary between 0.0 and 0.9, with 580 

frequency peaks at 0.01/0.08 in April and at 0.04 in August. Despite the fact that most fields are 581 

harvested before August and should therefore be expected to exhibit high C factors at that time, for 582 
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most arable lands the C factor seems to decrease from April to August. This indicates that total 583 

vegetation cover increases, which can be explained by crop residues left after harvest that protect 584 

against soil erosion (López-Vicente et al. 2008).  585 

For the calculation of the Index of Connectivity a weighting factor represents how water and sediment 586 

fluxes are obstructed by ground cover and surface roughness. The weighting factor should be chosen 587 

depending on the characteristics of the study area. While Cavalli et al. (2013) propose using a 588 

Roughness Index based on a digital terrain model for their alpine, largely unvegetated study area 589 

where fluxes mainly depend on topography, Borselli et al. (2008) propose using the C factor of RUSLE 590 

for regions where vegetation cover and land use management play an important role for sediment 591 

fluxes, such as in our study area. One has to bear in mind that in this study a temporal change in the 592 

rainfall and runoff erosivity was purposely not considered so as to focus on the C factor changes 593 

resulting from surface cover dynamics. The increase in potential erosion risk from the increase in 594 

connectivity in August could, however, be counterbalanced by the decrease in rainfall erosivity in the 595 

summer months, since precipitation maxima generally occur in spring and autumn in this region. 596 

The resulting connectivity map shows that areas behave very differently with regard to connectivity, 597 

depending on the land cover but also on the spatial distribution of vegetation abundances and 598 

topographic barriers. Most parts of the catchment show higher connectivity values in August as 599 

compared to April (section 4.4), indicating a generally lower vegetation cover in August and hence 600 

higher C factors and higher erosion potential, whereas some areas are characterized by a decrease in 601 

connectivity, which can often be related to an increase in total vegetation cover from April to August on 602 

arable land. The two studied subcatchments have slightly different connectivity behavior (Fig.s 10 and 603 

11) that mainly reflects the different topography and land cover proportions and their spatial 604 

configuration. This is in line with results from suspended sediment measurements (Francke et al. in 605 

this issue) and spectral fingerprinting (Brosinsky et al. in this issue) showing how sediment yields and 606 

sediment sources differ between the subcatchments. 607 

 608 

6 Conclusions 609 

This work has demonstrated the potential of high spectral resolution imagery for a catchment-wide bi-610 

temporal mapping of vegetation abundance on a subpixel basis. Different from broadband imagery, 611 

this approach enabled the discrimination of both dry and vital vegetation components, which together 612 
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influence soil erosion processes and sediment fluxes. It is expected that this information can improve 613 

erosion model parameterization, which today still often builds on annually and spatially averaged 614 

empirical values. In this work we derived spatially explicit RUSLE C factors based on airborne 615 

hyperspectral and LiDAR data as input in a connectivity assessment. 616 

Knowledge of the spatial pattern of connectivity and its change over time is essential for sound land 617 

and water resource management and for understanding the potential environmental effects of induced 618 

changes (Lexartza-Artza and Wainwright 2009). For Mediterranean landscapes with heterogeneous 619 

vegetation cover, soil erosion potential will be better represented if connectivity and hence the spatial 620 

distribution of sediment generation and transport are taken into account (Sougnez et al. 2011). The 621 

Index of Connectivity (Borselli et al. 2008) applied in this work accounts for the topographical 622 

sequence of landscape properties and barriers. It is based on the ratio of hydrological distance to the 623 

stream network and the potential occurrence of upstream runoff. The index may support the 624 

identification of hot spot connectivity areas in order to take actions to reduce or favor connectivity, may 625 

support assessing the effect of land use changes (e.g., due to land abandonment), land management 626 

practices and erosion control measures on soil erosion and sediment transport, and may improve 627 

understanding of the consequences of varying types of connectivity by incorporating connectivity 628 

information in soil erosion models. 629 

The Isábena catchment has been chosen as an ideal study area because it experiences high erosion 630 

and sediment delivery rates, while connectivity effects are assumed to play an important role. 631 

Badlands can mainly be found in the Villacarli and Carrasquero subcatchments (6% and 2% of their 632 

total area, respectively), and to a lower degree in the other three subcatchments of the Isábena basin 633 

(López-Tarazón 2012). Furthermore, the Isábena catchment has been intensively monitored and 634 

studied during the past ten years including modeling water and sediment transport using the process-635 

based, spatially semi-distributed modeling framework WASA-SED (Mueller et al. 2010; Bronstert et al. 636 

in this issue). Future work will include the incorporation of sediment connectivity information in the 637 

model to better reflect connectivity processes.  638 

While this study is based on bi-temporal airborne data, advances in satellite remote sensing hold the 639 

prospect of quantitative, spatially explicit, catchment-wide derivation of surface information useful for 640 

connectivity analysis. These advances include a continuous increase in spatial image resolution to 641 

cover processes at the patch/inter-patch scale, an increase in temporal resolution to cover seasonal 642 
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and long-term changes, and new multi-sensor missions enabling the simultaneous retrieval of various 643 

surface properties. Furthermore, upcoming hyperspectral satellite sensors, such as EnMAP, will 644 

provide high spectral resolution observations on a frequent and global basis that will allow the retrieval 645 

of biophysical surface parameters as input for hydrological catchment models. 646 
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Tables 865 

 866 

Table 1: Constant C factors assigned to remaining areas not mapped by continuous C factors 867 

Land use type C factor Reference 

Arable land 0.25 Mueller et al. (2009) 

Meadow/pasture 0.1515 Mueller et al. (2009) 

Shrubland 0.031 Mueller et al. (2009) 

Coniferous forest 0.00058 Mueller et al. (2009) 

Deciduous forest 0.00158 Mueller et al. (2009) 

Bare soil/badland 1 Antronico et al. (2005) 

Rock 0 Mueller et al. (2009) 

 868 

 869 

Table 2: Statistics on the C factors and IC values obtained for the studied subcatchments Villacarli 870 

and Carrasquero 871 

Villacarli min max mean median Stdv 

C factor April 0.00 1.00 0.11 0.02 0.24 

C factor August 0.00 1.00 0.14 0.03 0.25 

IC April -13.06 2.43 -6.40 -6.43 2.02 

IC August -13.06 2.44 -6.21 -6.21 2.15 

      Carrasquero min max mean median Stdv 

C factor April 0.00 1.00 0.09 0.03 0.16 

C factor August 0.00 1.00 0.10 0.03 0.17 

IC April -15.46 1.30 -6.45 -6.36 1.82 

IC August 13.01 1.49 -6.30 -6.25 1.88 
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Figures 873 

 874 

Fig. 1  Location of the Isábena catchment in Spain (a) and the two studied subcatchments Villacarli 875 

and Carrasquero in the northwestern part of the Isábena catchment (b) 876 
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 878 

Fig. 2  Endmember library setup for MESMA for the August image mosaic including eleven 879 

endmembers for the GV class (a), six for NPV (b), six for bare soil (c) and two for rock (d). Dashed 880 

lines indicate mean, dotted lines standard deviation. Blue bars indicate water absorption bands that 881 

cannot be used in the analysis 882 
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 884 

 885 

Fig. 3  Definition of upslope and downslope component of the Index of Connectivity (Borselli et al. 886 

2008) 887 
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 889 

Fig. 4  Fractional cover of GV (a), NPV (b), soil fraction (c) and rock (d) for a subset of the August 890 

image mosaic. High abundances of the cover classes are indicated by dark shades and low 891 

abundances by brighter shades, while black pixels indicate that the cover class is not present. 892 

Additionally, selected model complexity of MESMA (e), land cover resulting from SVM classification (f) 893 

and the original image in true colors (g) are shown for the same subset  894 
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 895 

Fig. 5  Reference cover fractions vs. estimated cover fractions using MESMA for GV (a/e), NPV (b/f), 896 

soil (c/g) and rock (d/h) for April (left column) and August (right column). Solid lines indicate 1:1 line, 897 

dashed lines 10 % deviation, dotted lines 20 % deviation  898 

36 
 



 899 

 900 

Fig. 6  C-factor map for subset (same as in Fig. 4) for April (a) and August (b) 901 
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 903 

Fig. 7  C-factor map for the entire study area for April (a), August (b) and the change from April to 904 

August (c) 905 
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 907 

Fig. 8  Distribution curves of the C factors by land use type for April and August 908 
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 910 

 911 

Fig. 9  Reference C factors vs. estimated C factors for the land use classes arable land, shrubland 912 

and badland for April (a) and August (b) 913 
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 915 

 916 

Fig. 10  Connectivity map for the entire study area for April (a), August (b) and the change from April 917 

to August (c) 918 
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 920 

Fig. 11  Distribution curves of the IC values by subcatchment for April and August 921 
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