GFZ

Helmholtz-Zentrum
PorTspaAam

Originally published as:

Forster, S., Wilczok, C., Brosinsky, A., Segl, K. (2014): Assessment of sediment connectivity from vegetation cover
and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. - Journal of Soils and
Sediments, 14, 12, p. 1982-2000.

DOI: http://doi.org/10.1007/s11368-014-0992-3



10

11

12
13

14

15

16

17

18

19

20

21
22

Assessment of sediment connectivity from vegetation cover and topography using remotely

sensed datain a dryland catchment in the Spanish Pyrenees

Saskia Foerster  Charlotte Wilczok ¢ Arlena Brosinsky * Karl Segl

S. Foerster (<) « A. Brosinsky ¢ Karl Segl

GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing, Telegrafenberg, 14473

Potsdam, Germany

e-mail: foerster@gfz-potsdam.de

C. Wilczok « A. Brosinsky

University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Str. 24-25,

14476 Potsdam, Germany

(<) Corresponding author:
Saskia Foerster

Tel +49 (0) 331 288 28615
Fax +49 (0) 331 288 1192

e-mail: foerster@gfz-potsdam.de



mailto:foerster@gfz-potsdam.de
mailto:foerster@gfz-potsdam.de

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55

56

57

Abstract

Purpose: Many Mediterranean drylands are characterized by strong erosion in headwater catchments,
where connectivity processes play an important role in the redistribution of water and sediments.
Sediment connectivity describes the ease with which sediment can move through a catchment. The
spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of
sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main
factors driving sediment connectivity. This is particularly true for the patchy vegetation covers typical of
many dryland environments. Several connectivity measures have been developed in the last few
years. At the same time, advances in remote sensing have enabled an improved catchment-wide
estimation of ground cover at the subpixel level using hyperspectral imagery.

Materials and methods: The objective of this study is assessing sediment connectivity for two adjacent
subcatchments (approx. 70 km2) of the Isdbena River in the Spanish Pyrenees in contrasting seasons
using a quantitative connectivity index based on fractional vegetation cover and topography data.

The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were
derived by applying a Multiple Endmember Spectral Mixture Analysis approach to the hyperspectral
image data. Sediment connectivity was mapped using the Index of Connectivity, in which the effect of
land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In
this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation
(RUSLE) was used as weighting factor. Bi-temporal C factor maps were derived by linking the spatially
explicit fractional ground cover and vegetation height obtained from the airborne data to the variables
of the RUSLE subfactors.

Results and discussion: The resulting connectivity maps show that areas behave very differently with
regard to connectivity, depending on the land cover but also on the spatial distribution of vegetation
abundances and topographic barriers. Most parts of the catchment show higher connectivity values in
August as compared to April. The two subcatchments show a slightly different connectivity behavior
that reflects the different land cover proportions and their spatial configuration.

Conclusions: The connectivity estimation can support a better understanding of redistribution
processes of water and sediments from the hillslopes to the channel network at a scale appropriate for
land management. It allows hot spot areas of erosion to be identified, and the effects of erosion control

measures as well as different land management scenarios to be studied.

Keywords Index of Connectivity ¢ Fractional cover  Imaging spectroscopy ¢ Northeastern Spain

Sediment connectivity « Spectral unmixing
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1 Introduction

Sediment connectivity relates to the physical transfer of sediment through a drainage basin (Bracken
and Croke 2007). The identification of sediment source areas and the way they connect to the channel
network are essential for environmental management (Reid et al. 2007), especially where high erosion
and sediment delivery rates cause severe on- and off-site effects. An off-site effect of world-wide
importance is the sedimentation of reservoirs and the corresponding loss in water storage capacity
(Verstraeten et al. 2006) with an estimated annual loss in storage capacity of the world’s reservoirs of
around 0.5-1 %, and for individual reservoirs of even 4-5 % (WCD 2000).

Connectivity is mainly determined by the spatial organization of the catchment’s heterogeneity (Van
Nieuwenhuyse et al. 2011), where topography, surface roughness and anthropogenic structures,
vegetation cover and its spatial arrangement as well as temporal dynamics play a vital role in the
redistribution of water and sediment resources. Particularly dryland areas are characterized by a
heterogeneous vegetation cover with seasonal to long-term changes as a consequence of agricultural
management, fire, land abandonment, climate change and other factors.

While most studies on flows over shrubland are conducted at small scales often based on field
experiments, connectivity has rarely been investigated at the landscape scale (Turnbull et al. 2008)
and is still often not sufficiently described in hydrological catchment models (De Vente et al. 2006).
However, observed ecohydrological interactions at patch/inter-patch scales have profound effects and
management implications at the catchment scale, as pointed out by Ludwig et al. (2005). Here remote
sensing may provide adequate, spatially explicit surface information at a scale relevant for land
management. Several authors stress the potential of remotely sensed data for understanding the
patterns and processes of connectivity (Bracken et al. 2013; King et al. 2005; Vrieling et al. 2006),
which has not yet been fully exploited. In recent years, earth observation technology has made
tremendous progress. This opens up new opportunities for retrieving quantitative surface information
at a spatial resolution allowing the characterization of relevant landscape patterns, a temporal
resolution adequate to capture landscape dynamics and a spectral resolution suited to quantify
relevant surface covers. The latter is provided by so-called hyperspectral sensors or imaging
spectrometers recording the light reflected from the ground in many narrow contiguous bands. The
concept of imaging spectrometers originated in the 1980s with the first airborne sensors and has since

then continuously improved and been increasingly employed for earth science applications. Today
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hyperspectral data become increasingly available from a rising number of airborne imaging
spectrometers and a few spaceborne exploration missions. However, the lack of spatial and temporal
continuity in airborne and spaceborne imaging spectrometer data as well as the demanding
processing of these complex data is limiting their widespread use (Plaza et al. 2009; Schaepman et al.
2009). Imaging spectroscopy has been used for various soil mapping and soil degradation studies
over the past few years (Ben-Dor et al. 2009) based on its potential to identify surface materials and to
quantify surface properties. Furthermore, hyperspectral data allow relative abundances of material
components on the surface to be derived by unmixing pixel spectra (Goetz 2009). Spectral mixture
analysis has proven to be a promising tool for retrieving subpixel information on vegetation and soil
surfaces, especially for the heterogeneous patterns of dry and vital vegetation and soil patches that
are typically found in dryland areas (Okin et al. 2001; Ustin et al. 2004). Another recent development
in remote sensing that facilitates sediment connectivity research is the increasing availability of multi-
sensor data, i.e., data simultaneously collected with different sensors, such as hyperspectral and
LiDAR data. That way, concurrent spatial information on several of the factors driving sediment
connectivity can be retrieved.

Spatially explicit quantitative information obtained from remotely sensed data facilitates the use of
connectivity indices. In recent years, a large number of these indices has been developed in order to
quantitatively evaluate the connectivity of hydrological systems (Antoine et al. 2009). They aim at
supporting a better understanding of water and sediment redistribution processes, allowing the
identification of hot spot areas of erosion and a study of the effects of erosion control measures and
different land management scenarios. These indices are a simplified surrogate for hydrological
functioning and have different abilities to reflect complex interactions, while emphasizing different
factors as dominant drivers. Bracken et al. (2013) provide an overview of proposed hydrological
indices. Among these, the Index of Connectivity originally introduced by Borselli et al. (2008) has
already been applied for different regions and scales (Cavalli et al. 2013; Lopez-Vicente et al. 2013;
Sougnez et al. 2011) and was successfully used to improve prediction of sediment yields in a semi-
lumped catchment model (Vigiak et al. 2012). The Index of Connectivity provides an estimate of the
potential connection between the sediments eroded from hillslopes and the stream system, while

taking into account land surface and topographic characteristics (Borselli et al. 2008).
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In this work, we propose an approach to exploit high-resolution airborne data for overland flow
sediment connectivity estimation. More specifically, we investigate the potential of hyperspectral and
LIDAR data for assessing sediment connectivity at the hillslope to subcatchment scale for a
mesoscale catchment using the Index of Connectivity. The studied catchment in the Spanish
Pyrenees experiences high erosion and sediment delivery rates, while badlands are considered to

contribute a major proportion of the sediments to the channel network.

2 Study area and data

The study area encompasses the Villacarli (42 km2) and Carrasquero (25 km?) subcatchments of the
mesoscale, semi-humid Isdbena catchment (445 km?) located in the southern Pyrenees in
northeastern Spain (Fig. 1). The catchment is characterized by a rough terrain (650 m a.s.l. in the
South to 2,600 m a.s.l. in the North), resulting in a pronounced climatic and land cover gradient.
Strong inter-annual and seasonal variability of precipitation, temperature and local growth conditions
(e.g., due to relief, lithology and land use) create a highly heterogeneous landscape. High altitudes are
dominated by shrubland, meadow, woodlands and bare soil/rock, while valley bottoms are mainly
used for agriculture. The wide abundance of Miocene marls leads to the formation of badlands, i.e.,
areas of unconsolidated sediments or poorly consolidated bedrock with little or no vegetation (Gallart
et al. 2002). Contemporary geomorphic processes are mainly dominated by fluvial erosion on slopes
and in the badlands during floods typically occurring in spring and in late summer and autumn (Lépez-
Tarazén et al. 2009). The Isdbena River is characterized by large sediment yields indicating high
connectivity between the source areas and the fluvial network (L6pez-Tarazon et al. 2012). Apart from
the badlands, arable land and shrubland are seen as major sources of sediment delivered to the
Barasona reservoir at the outlet of the Isabena catchment. In consequence, the initial capacity of the
reservoir of 92 hm3 has been considerably reduced by siltation over the past several decades (Valero-

Garcés et al. 1999).

2.1 Hyperspectral data

Airborne AISA Eagle and Hawk imaging spectrometer data (Airborne Imaging Spectrometer for
Application, Specim Ltd., Oulu, Finland) were acquired at an altitude of 4,200 m on April 02 and
August 09, 2011 with a ground sampling distance (GSD) of 4 m in 12 and 15 flight lines, respectively.

5
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AISA records reflected solar radiation from the visible (VIS) to the shortwave infrared spectral region
(SWIR) (400 to 2,500 nm). Data acquisition and radiometric correction were conducted by NERC
(Natural Environment Research Council, UK). Subsequent geocorrection was performed using in-
house software developed at the German Research Centre for Geosciences (GFZ). Atmospheric
correction was done using ATCOR-4 (Atmospheric/Topographic Correction for Airborne Imagery)
(Richter and Schlaepfer 2002). Mosaicking of the flight lines was realized in ENVI 4.8 (Exelis Visual
Information Solutions). Subsequently, refined georegistration of the image mosaics was performed
based on orthophotos provided by the Spanish National Centre for Geographic Information (CNIG).
Final geometric accuracy varied between 0 and 2 image pixels, i.e., 0 and 8 m, with the largest
deviations in the mountainous North. To further adjust the surface reflectance of the image mosaics,
empirical line correction was performed using field spectra collected during the airborne campaigns.
Additionally, the image mosaics were optimized by removing the water absorption features (Painter et
al. 1998, Roberts et al. 1998b), filtering the spectra using a Savitzky-Golay filter (Savitzky and Golay
1964) and removing saturated (>90% reflectance) and negative (not physically meaningful) pixels. For
final analysis, 380 spectral bands remained and 11.1 % of the April and 5.6 % of the August image

pixels were excluded.

2.2 Field data collection

In two field campaigns concurrent with the airborne image acquisitions, fractional cover of green
vegetation (GV), dry vegetation assumed to be photosynthetically non-active (NPV), bare soil, and
rock were visually estimated for 60 (April) and 53 (August) transects of 20 m length (Fig. 1). Visual
estimation was carried out in 10 % steps for 1 m x 1 m plots every 2 m along the transects using the
quadrate sampling method (Kreeb 1983, Coulloudon et al. 1999, Kercher et al. 2003). Estimates were
averaged for each transect. Nadir photographs of each estimation site were taken, the position was
measured using a hand-held GPS, the vegetation height was measured and the land use type was

recorded.

These field data were subsequently used to validate the image analysis results on the level of cover
fractions and, after determining C factors from ground reference data (section 3.3), on the level of C

factors. The C factor is the cover and management factor in the Universal Soil Loss Equation
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reflecting the effect of ground cover and management practices on erosion rates. For validation,

transect averages were compared with the image analysis results for the corresponding image pixels.

2.3 LiDAR data

Airborne LIDAR data were acquired by NERC with a Leica ALS50 instrument in single-pulse mode
(maximum of four returns per given pulse recorded) in August 2011 concurrent with hyperspectral data
acquisition. The average flight altitude of 4,200 m resulted in an average point density of 0.7 hits per
mz2. The mean error magnitude is 3.3 cm with a standard deviation of 4.1 cm for 2,500 m altitude, with
an additional maximum error of 10-15 cm at the edges of the swath due to a systematic roll boresight

bias (NERC 2011).

Pre-processing of the LIDAR point clouds was carried out by the Institute for Earth and Environmental
Sciences at the University of Potsdam (Bauer 2013) applying LAStools (Martin Isenburg, rapidlasso
GmbH, rapidlasso.com). It comprised the classification of the point cloud into ground and non-ground
points and the generation of a digital elevation map (DEM; including only ground points) as well as a
vegetation height map, both with 4 m spatial resolution. In a further step, the DEM was hydrologically
corrected for local pits using TauDEM 5.0 (Terrain Analysis Using Digital Elevation Models,

hydrology.uwrl.usu.edu/taudem/taudem5.0/index.html).

3. Methods
3.1 Multiple Endmember Spectral Mixture Analysis (MESMA)

Spectral Mixture Analysis (SMA) models the apparent surface reflectance P of an image pixel i as the
linear sum of N endmembers weighted by the fraction f; of each endmember within the instantaneous
field of view of pixel i (e.g., Adams et al. 1993; Roberts et al. 1998a). That is, for a given wavelength,

A

Py = Yio1 fe * P+ en (1)
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The fit of the model is assessed by an error metric based on the residual term e;,, indicating the error
between the measured and modeled spectra. The standard error metric for SMA is the root mean

square error (RMSE) of the residuals for each pixel across all bands given by:

1/2

RMSE; = (Z}-1(en)®/N) @)
The modeled fractions are typically constrained by assuming that the physical abundance of the

materials present in each pixel sums up to a total of 100 % (Okin et al. 2001):

k=1 foe =1 ®)

SMA techniques have been successfully applied for quantifying vegetation cover in dryland areas
(Asner and Heidebrecht 2002, Bachmann 2007; Elmore et al. 2000; Gill and Phinn 2009; McGwire et
al. 2000; Numata et al. 2007; Peterson and Stow 2003). In standard SMA approaches, a fixed number
of representative endmembers is selected which may not effectively model all elements in the image,
or pixels may be modeled by endmembers that do not correspond to the material located in the field of
view. As a result, accuracy of the estimated fractions is low (Sabol et al. 1992). The limitations of the
SMA approach are particularly problematic in highly heterogeneous landscapes such as in the
Mediterranean on fine spatial scales. A technique that addresses these restrictions is Multiple
Endmember Spectral Mixture Analysis (MESMA), which allows the number and type of endmembers
to be varied on a per pixel basis (Roberts et al. 1998b) and thus better accounts for in-class variability.
In this study, MESMA was applied to the hyperspectral AISA images to estimate fractional cover for
GV, NPV, soil and rock. For this study, all endmember spectra were derived from the image data sets.
The main advantage of using image endmembers (rather than field or lab spectra) is that they are
collected at image scale and are thus easier to correlate with image features (Rashed et al. 2003).
The spectral endmember library was set up using VIPER tools (ENVI add-on; www.vipertools.org).
The MESMA library for the April data set used in this study included ten endmembers for the GV
class, eight for NPV, five for bare soil and two for rock. For the August data set eleven endmembers

for GV were distinguished, six for NPV, six for bare soil and two for rock (Fig. 2).
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The endmember library was used to estimate the fractional abundance of each class for each pixel in
the image. Two-, three-, and four-endmember models were applied. To account for variations in
illumination and in spectral albedo, a shade endmember was included (i.e., a spectrum with a
reflectance of zero in all bands) (Dennison and Roberts 2003). MESMA was run in a partially
constrained mode with the following constraints: (a) the minimum and maximum allowable fraction
values range between -0.05 and 1.05, meaning that slightly negative fractions and fractions slightly
larger than 100 % are acceptable, (b) the shade fraction values have a maximum allowable fraction of
80 % to prevent exclusion of very well fitting models despite a high shade component in the pixel, and
(c) a commonly accepted RMSE threshold of 0.025 must be complied following Dennison and Roberts
(2003). Each two-, three-, or four-endmember model meeting the constraints was evaluated for every
single image pixel, selecting the model with the minimum RMSE value (Painter et al. 1998). If no
model met the constraints, the pixel was left unmodeled. As a result, an image containing the best-fit
model per pixel and the corresponding fractional value of each endmember (i.e. GV, NPV, soil and
rock) was produced. Since shade was not considered as a land cover component, the estimated
fractions of each pixel were shade-normalized following the procedure of Adams et al. (1993). The
modeled fractions were rescaled to range between 0 and 100 % by assuming that the physical

abundance of the materials present in each pixel sum up to a total of 100 %.

3.2 Land use classification

MESMA results provide estimates of the cover fractions on a pixel-by-pixel basis independent of the
land use class that the respective pixels belong to. In the subsequent C factor estimation, however, a
land use class-wise procedure was applied. Therefore, in addition to the MESMA approach,
supervised land use classification was performed using the Support Vector Machine (SVM) classifier
Image SVM 2.1 (Rabe et al. 2010). SVM classification has shown to be particularly suitable for high-
dimensional multi-collinear image data and has furthermore the advantage of requiring only small

training data sets (Foody et al. 2006; Plaza et al. 2009).

The SVM classification was based on the fused April and August image data sets to account for
seasonal vegetation cover changes and hence improve classification performance. Furthermore, prior
to SVM classification a principle component analysis (PCA) was applied on the spectral data to reduce

noise and increase data variance (Richards 1999). PCA was applied on the original reflectance data

9



262
263
264
265
266
267
268
269
270

271
272
273

274

275

276
277
278
279
280
281
282

283

284

285

286
287
288
289
290

as well as on spectra that were normalized by continuum removal (CR) (Clark and Roush 1984),
resulting in a final reduction of the number of bands from 380 to 235 for the reflectance data and 380
to 45 for the CR data. SVM classification was then performed using different input data sets, namely
(1) the reflectance data only, (2) the CR data only, and (3) reflectance and CR data combined.
Subsequently, accuracy was tested for each case. To train the classifier, approximately 3,000 pixels
corresponding to 0.1 % of the entire data set were used based on ground reference data representing
a total of eight land use classes. Class selection was based on Mueller et al. (2009) for reasons of
comparison to previous studies. Classification accuracy was assessed based on ground truth data of

approximately 8,000 pixels.

During post-classification, the raster-based land use information was aggregated by majority filtering
(kernel size: 7x7, weight: 5) and elimination of areas smaller than 2,000 m2 to create coherent land

use classes.

3.3 C factor mapping based on RUSLE

The Universal Soil Loss Equation (USLE) and its modified version the Revised USLE (RUSLE) are
widely-used empirical models for assessing long-term averages of soil loss based on the product of
six erosion risk factors, namely the rainfall and runoff factor (R), the soil erodibility factor (K), the
slope-length factor (L), the slope-steepness factor (S), the cover and management factor (C) and the
support practice factor (P) (Wischmeier and Smith 1978). Among these factors, the C factor
represents the effect of ground cover and management practices on reducing soil loss. It is calculated

as:

SLR;* El;
¢ =yn, i (4)

where SLRi describes the soil loss ratio for time period i, El; represents the rainfall and runoff erosivity
during period i, and n is the total number of periods. That way, each SLR; value is weighted by the
fraction of rainfall and runoff erosivity (El) associated with the corresponding time period, and these
weighted values are combined into an overall C factor value. In this study, the focus is placed on the

spatial and temporal surface cover dynamics and its effect on C factor estimation, whereas the

10
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dynamics of rainfall and runoff erosivity was purposely not considered by giving equal weights to all
time periods. Therefore C factor values were estimated by calculating SLR without taking changes in

El into account.

For calculating the individual SLR values, a subfactor approach is introduced in RUSLE that considers
several surface characteristics related to surface cover and land use (Renard et al. 1997) based on
the work of Laflen et al. (1985) and Weltz et al. (1987). An individual SLR; (0-1) value is thus

calculated for each time period i as:

where SLR; is the soil-loss ratio for the given conditions, PLU; the prior land use subfactor, CC; the
canopy cover subfactor, SC; the surface cover subfactor, SR; the surface roughness subfactor and SM;

the soil moisture subfactor.

The CC subfactor is a function of the fraction of the land covered by canopy F. and the effective fall

height of raindrops H. It is calculated as:

CC=1— FE * e(-01+H) (6)

The SC subfactor is calculated as:

SC = e[_b* Sp* (%)0-08

()

where S, is the percentage of land area covered by surface cover, b is the effectiveness of surface
cover in reducing soil erosion (empirical coefficient) and R, is the random roughness. The SR

subfactor is calculated as:

SR = ol~0.66(Ry—0.24)] (8)

Published values of C factors can vary from 0, e.g., for woodlands with 100 % ground cover, to 1 for

bare soil areas (Pierce et al. 1986).
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C factors were estimated for each ground reference site based on the field data collected and on
literature values. Surface and canopy cover as well as vegetation height obtained in the field
campaigns were used; random roughness was estimated based on reference photographs provided
by Renard et al. (1997); PLU and SM were set to 1 according to Schiettecatte et al. (2008) and
Verstraeten et al. (2002) and b was set as a land cover dependent constant taken from Renard et al.
(1997). This way, the C factor estimation for the ground reference sites used for accuracy assessment

was completely independent of the subsequent C factor estimation based on remotely sensed data.

In the remote sensing approach, spatially explicit C factor values were estimated for the land use
classes shrubland, arable land, and badland (obtained from land use classification; section 3.2), which
make up a large part of the study area and are assumed to contribute the largest proportion of
sediments to the channel network. For C factor mapping, the estimated ground cover fractions
(obtained from MESMA; section 3.1) were linked to the variables of the RUSLE subfactors CC and SC
for both dates separately. The fractional ground cover obtained from hyperspectral image analysis
does not account for the vertical vegetation distribution, since spectral pixel information is
simultaneously affected by the spectral characteristics of canopy and surface vegetation (Guyot et al.
1989). Thus, we linked the MESMA-derived abundances of GV, NPV and rock with the subfactors in
three different ways and tested the overall accuracy for each case: (1) GV is assigned to canopy cover
(Fc), NPV and rock to surface cover (Sp). (2) GV and NPV are assigned to F., and rock to S,,. (3) GV is
assigned to F., NPV to F; and to S;, and rock again to S,. As suggested in Dissmeyer and Foster
(1981), we assumed that rock has a positive effect on reducing soil erosion and is therefore assigned
to surface cover (Sp). Vegetation height H is based on the LiDAR-derived height map (section 2). PLU
and SM were again set to 1, while R, and b were set as a land cover dependent constants based on

Renard et al. (1997).

As a result, shrubland, arable and badland areas were mapped by continuous C factor values, while
constant C factors adopted from Mueller et al. (2009) and Antronico et al. (2005) were assigned to the
remaining land use classes that are assumed to exhibit much less variability across space and time
(Table 1). Data gaps remaining after data pre-processing and MESMA were filled by constant C

factors per land use class based on MARM (2008).

3.4 Index of Connectivity

12
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Sediment connectivity is assessed using the Index of Connectivity (IC) proposed by Borselli et al.
(2008) and further adapted to the use of high-resolution digital elevation models by Cavalli et al.
(2013). For each cell in the catchment, the IC estimates the upslope component D, and the
downslope component Dy, (Fig. 3 in the supplementary material). D, represents the characteristics of
the upslope contributing area and thereby summarizes the potential for downward routing of the
sediment produced upstream. Dy, accounts for the characteristics of the flow path from a specific cell
to the stream network and hence expresses the probability that sediment arrives at a sink along a flow
line. This way, IC provides an estimate of the potential of sediment eroded from the hillslope and of its

connection to the stream system (Lopez-Vicente et al. 2013). IC is computed as follows:

= logio d.
i
Zi:k,nk VVL'SL'

D W, S, /A
=101 (22) = oy [ 5
n,

where W is the average weighting factor for the upslope contributing area (-), S the average slope
gradient for the upslope contributing area (m/m), A the upslope contributing area (m?2), d; the length of
the i-th cell along the downslope path to the sink (m), W; weight of the i-th cell (-) and S; the slope
gradient of the i-th cell (m/m). The subscript k indicates that each cell has its own IC value. IC is

dimensionless and defined in the range [-«; +] with connectivity increasing as IC approaches +.

The weighting factor represents the impedance of runoff and sediment fluxes due to ground cover and
surface roughness. Borselli et al. (2008) proposed using the C factor as weighting factor as a widely-
applied parameter that can be explicitly related to observable and measurable characteristics of land
use and management. In this study, spatially explicit C factor maps were derived from remotely
sensed data (section 3.3) as input in the IC estimation. Furthermore, the LiDAR-derived DEM was
input in the IC calculation. As proposed by Cavalli et al. (2013) we constrained the slope values
between 0.005 and 1 m/m and used the multiple flow D-infinity approach (Tarboton 1997) since this
approach is better suited to represent divergent flow over hillslopes than the single-flow algorithm
applied in the original IC model. Cavalli et al. (2013) introduced two different scenarios for the
application of the index, namely analyzing sediment connectivity across the whole catchment between

hillslopes and catchment outlet (“IC outlet”) and analyzing sediment connectivity between hillslopes

13
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and main channels (“IC channel”). In this study, IC values were calculated with regard to the main
channels, assuming that redistribution processes from the hillslopes to the channels are highly
relevant for the overall sediment yield of the catchment and that these are the areas where effective

erosion control measures can be applied.

4 Results
4.1 Multiple Endmember Spectral Mixture Analysis (MESMA)

More than 95 % of the image pixels for both data sets were successfully modeled. Undefined pixels
(1.1 % April; 4.3 % August) resulted from differences between reference and modeled spectra. Four-
endmember models were chosen for 77 % (April) and 80 % (August) of the images, including most of
the shrublands. Shrubland areas are characterized by a mosaic of patches of green and dry
vegetation as well as bare soil and rock smaller than the 4 m GSD of the images. The resulting high
spectral variability led to the preference of four-endmember models. Three-endmember models,
however, were predominantly chosen by the algorithm for more homogenous land use types, such as

arable land and badlands.

Fig. 4 shows a subset of the August image with the cover fractions derived using MESMA for GV,
NPV, soil and rock. The vegetation fraction (GV and NPV) makes up the largest part of the study area.
The fractions of NPV appear scattered, notably on shrubland and meadow areas. Shrubland areas are
dominated by NPV in April (40 %) followed by GV (23 %), whereas in August GV dominates (also 40
%) followed by NPV (27%). For meadows the factional cover of NPV is similar in April and August (33
% and 29 %, respectively), while it increases for GV (47 % to 58 %). The land use class arable land is
mainly covered by GV in April (61 %), while fractional covers of bare soil and NPV (15 % and 61 %,
respectively) dominate in August, indicating residue cover after harvest. Coniferous forests in the
North are modeled with high abundances of GV for both dates (71 % and 79 %). High abundances of
NPV in deciduous forests in April (73 %) can be explained by dry leaves, while in August the canopies

turn green and hence the fractional cover of GV dominates (74 %).

Accuracy was assessed in two ways based on field estimates, firstly on the estimated dominant
ground cover class per pixel, and secondly on the estimated fractional cover per pixel for both image

mosaics.
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For the April image mosaic, the dominant ground cover fraction per pixel resulted in an overall
accuracy of 65.2 % with the best results obtained for GV (83.3 %) and the poorest for rock (16.7 %).
The latter was mainly confused with the soil cover fraction. Estimated GV abundances provided the
best results (R2 = 0.70, RMSE = 0.16); soil and rock cover fraction prediction was poor (R2 = 0.22,
RMSE = 0.26 and R2 = 0.23, RMSE = 0.19, respectively). Generally, accuracy for land use classes
with high vegetation cover abundances is high for GV and NPV and low for soil and rock cover
fractions (Fig. 5). Furthermore, if the soil cover fraction is underestimated, NPV is overestimated.
However, land use classes with high fractional abundances of bare soil or rock showed a reversed

behavior.

For the August image mosaic, overall accuracy of the estimated dominant ground cover fraction per
pixel is slightly lower (57.9 %). The best results were obtained for the soil cover fraction (100 %), the
poorest again for the rock fraction (16.7 %). Class confusion appeared mainly between the covered
fractions (GV and NPV) and the uncovered fractions (soil and rock). Estimated GV abundances for all
reference data provided the best results (R2 = 0.63, RMSE = 0.20), while rock cover fraction prediction
was poor (R2z = 0.19, RMSE = 0.23). Overall accuracy for all land use classes except shrubland over

all ground cover fractions is good (mean error less than 20 %) (Fig. 5).

4.2 Land use classification

Eight classes were distinguished in the land use classification: shrubland, arable land, rock, bare soil,
deciduous forest, coniferous forest, meadow and badland (Fig. 4f). The best overall accuracy of 88 %
was obtained using a combination of reflectance and CR spectra in the SVM classification. Land use
classes with expected high vegetation cover provided high accuracies (84 % - 94 %), while land use
classes with high abundances of bare soil or rock tended to get confused with other classes (63 % -
74 %), particularly with shrubland. Shrubland and coniferous forest constitute the dominant land use
types (49 % and 28 %, respectively) in the study area, while badlands and bare soil areas make up
2 % and 1 %, respectively. Meadow/pasture (8 %), deciduous forest (8 %) and arable land (5 %) have

approximately equal shares.

4.3 C factor mapping based on RUSLE
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Estimated ground cover fractions were assigned to the variables of the RUSLE subfactors. The best
results were achieved when assigning GV to canopy cover (F.), and NPV and rock together to surface
cover (Sp). However, accuracy was higher for land use classes with high vegetation cover

(shrubland/arable land) than for land use classes with low vegetation cover (badland).

The obtained C factor maps for April and August are presented in Fig. 6 (subset, in supplementary
material) and Fig. 7 (entire study area). Shrubland, arable land and badlands are mapped by
continuous C factor values derived from the proposed remotely sensed approach, while spatially and
temporally constant C factors (Table 1) were assigned to the remaining land use classes as well as to
pixels excluded during the image analysis process. Badlands and bare soil areas exhibit the highest C
factor values for both dates. There is no change or only a slight increase in C factor values for most
areas (mainly shrubland and badland areas) between April and August, indicating an increase in
erodibility, whereas for some areas (mainly arable land) a slight decrease in C factor values was
found, indicating a lower erodibility. On average, C factors slightly increase from 0.11 (April) to 0.14

(August) for Villacarli and 0.09 (April) to 0.10 (August) for Carrasquero (Table 2).

These observations are in line with the distribution curves of C factors per land use class (shrubland,
arable land, badland) and date (April, August) in Fig. 8. The distribution curves differ in their range and
shape, representing the spatial and temporal variability of C factor values within these three land use
classes. The C factor distribution for badland shows two frequency maxima near 0.02 and 0.7 and a
flat curve shape, whereas arable land and shrubland are characterized by steep distribution curves
with frequency maxima between 0.01 and 0.1. Mean C factor values for badland for both dates are
higher (0.35) in comparison to the land use classes arable land and shrubland (0.15 each).

The correlation between reference and modeled C factors was high for the August image mosaic (Fig.
9) (R2 = 0.71). The low mean absolute error (MAE = 0.09) and root mean square error (RMSE = 0.11)
indicate good model prediction. In contrast, correlation was poor (R2 = 0.04) for the April image
mosaic. However, overall accuracy is acceptable as the mean error is less than 20 %. With increasing
C factors, the modeled C factors are consistently underestimated relative to the reference C factors,

particularly in the land use classes arable land and badland.

4.4 Index of Connectivity
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The spatially explicit Index of Connectivity was calculated for the entire Villacarli and Carrasquero
subcatchment and gives an estimate of how sediment sources and stream network are connected and
how the connectivity changes between April and August (Fig. 10). Differences between both dates
can be attributed to different input values of the weighting factor W (C factor), whereas the other input
data remain the same for both dates. A change in one cell will have an effect on flow path values for
all upstream IC calculations and on the contributing area values for all downstream IC calculations,
and hence there are only a few areas (mainly forested areas in the upstream parts of the catchments)
that show no changes in IC between April and August.

As expected, the highest connectivity values are found close to the channels and in areas with sparse
vegetation, while there are also some parts of the catchments that seem to be hardly connected to the
channel network. Most parts of the catchments show an increase in connectivity from April to August
with the largest changes in badland and shrubland areas. Areas experiencing a decrease in
connectivity are mainly related to arable land and meadow/pasture, for e