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Abstract: The machine learning method, random forest (RF), is applied in order to
derive biophysical and structural vegetation parameters from hyperspectral signatures.
Hyperspectral data are, among other things, characterized by their high dimensionality
and autocorrelation. Common multivariate regression approaches, which usually include
only a limited number of spectral indices as predictors, do not make full use of the
available information. In contrast, machine learning methods, such as RF, are supposed
to be better suited to extract information on vegetation status. First, vegetation parameters
are extracted from hyperspectral signatures simulated with the radiative transfer model,
PROSAIL. Second, the transferability of these results with respect to laboratory and field
measurements is investigated. In situ observations of plant physiological parameters and
corresponding spectra are gathered in the laboratory for summer barley (Hordeum vulgare).
Field in situ measurements focus on winter crops over several growing seasons. Chlorophyll
content, Leaf Area Index and phenological growth stages are derived from simulated and
measured spectra. RF performs very robustly and with a very high accuracy on PROSAIL
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simulated data. Furthermore, it is almost unaffected by introduced noise and bias in the data.
When applied to laboratory data, the prediction accuracy is still good (Cab: R2 = 0.94/
LAI: R2 = 0.80/BBCH (Growth stages of mono-and dicotyledonous plants) : R2 = 0.91),
but not as high as for simulated spectra. Transferability to field measurements is given
with prediction levels as high as for laboratory data (Cab: R2 = 0.89/LAI: R2 = 0.89/BBCH:
R2 = ∼0.8). Wavelengths for deriving plant physiological status based on simulated and
measured hyperspectral signatures are mostly selected from appropriate spectral regions
(both field and laboratory): 700–800 nm regressing on Cab and 800–1300 nm regressing on
LAI. Results suggest that the prediction accuracy of vegetation parameters using RF is not
hampered by the high dimensionality of hyperspectral signatures (given preceding feature
reduction). Wavelengths selected as important for prediction might, however, vary between
underlying datasets. The introduction of changing environmental factors (soil, illumination
conditions) has some detrimental effect, but more important factors seem to stem from
measurement uncertainties and plant geometries.

Keywords: hyperspectral data; vegetation status; random forest; PROSAIL; crop

1. Introduction

Optical remote sensing data are able to provide information on biophysical and structural vegetation
parameters with high temporal and/or spatial resolution and over large areas. Therefore, they are
of great interest for the ecosystem modeling science community. Many research fields have been
linking respective models and remote sensing data, for example in agriculture [1], forestry [2] and
hydrology [3], and also for analyzing climate change impact [4]. A large number of studies focused
on the use of multispectral data, for example from Landsat, SPOT or AVHRR sensors. Unfortunately,
these have limited applicability for estimating vegetation parameters, like Leaf Area Index (LAI) or leaf
chlorophyll (Cab), due to data acquisition in broad bands only. In contrast, hyperspectral sensors are
designed to capture reflectance in very narrow bands and, therefore, facilitate the detection of subtle
absorption features. While absorption features in visible light (VIS) are dominated by leaf pigments,
like chlorophyll and carotenoids, absorption in the near-infrared (NIR) and shortwave infrared (SWIR)
is mainly influenced by leaf cell structure and water content, respectively (see [5] and references therein).

Simple or multiple linear regression methods are often used to extract vegetation parameters from
spectral measurements [6]. Vegetation indices used as predictor variables contain only a small amount
of information captured by the full spectral signature. However, more sophisticated methods originating
in data mining and machine learning might have a higher potential to exploit the full information content
of spectral remote sensing data, which are characterized by their high dimensionality and autocorrelation
between adjacent bands. One of those promising machine learning techniques is called random forest
(RF), developed by [7]. RF performance deriving biophysical parameters from hyperspectral data has
been investigated only by a limited number of studies, e.g., [8], showing good results. On the other hand,
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RF has already been applied successfully in ecology (e.g., [9,10]) and for classification of hyperspectral
remote sensing data (e.g., [11,12]), rather than regression.

Most studies testing the quality of machine learning methods to, e.g., derive Cab were based on
(i) a single measurement campaign and (ii) evaluated against in situ data with considerable measurement
uncertainties. Single campaigns usually depict a very small number of homogeneous phenological
growth stages of the analyzed crop. The transferability of any generated model onto crops with
different phenological states is then limited: structural or bio-chemical differences might translate
differently into measured reflection profiles dependent on the underlying phenological status. Here,
we applied RF onto datasets that cover the complete vegetation period, including all principal growth
stages. In order to exclude potentially disturbing factors coming with airborne measurements, such as
atmospheric conditions or aircraft movements, only laboratory and field observations were considered
here. Nevertheless, the approach is of interest to the scientific community in light of increasing
airborne hyperspectral data availability and up-coming hyperspectral satellite missions, e.g., the
Environmental Mapping and Analysis Program (EnMAP), the Hyperspectral Infrared Imager (HysPIRI)
or the Hyperspectral Imager Suite (HISUI).

To avoid evaluating against potentially imprecise in situ measurements, the algorithm was,
furthermore, applied to simulated spectral signatures based on the radiative transfer model (RTM),
PROSAIL ([13–15]). Those simulated spectra allow for the application of RF on idealized data where
the ‘truth’ is already known. Simulations also included added noise and bias on reflection profiles. The
transferability of these results with respect to measured data was subsequently investigated. Cab and LAI
estimates were derived from simulated and measured spectra and phenological stages, on a measurement
basis only.

Consequently, the aims of this study were to: (i) extract biophysical vegetation information from
RTM-based hyperspectral signatures (excluding evaluation against imprecise in situ data); (ii) detect
appropriate spectral regions concerning vegetation status; (iii) transfer results based on simulated data
to laboratory and field measurements covering most barley and wheat growth stages; and (iv) assess
potentially limiting factors and advantages of the implemented approach.

2. Data and Methods

2.1. Laboratory Experiment

The laboratory experiment was conducted at the Helmholtz Centre for Environmental Research (UFZ)
laboratory in Bad Lauchstädt from 27 April to 20 July 2009; hence, covering a full vegetation period with
2 measurements per week, summing-up to a total of 23 measurement days. Summer barley (Hordeum
vulgare) was grown in a shade house in 8 containers of 90 × 90 cm with varying water supply on two
different soil types (sandy and chernozem). This resulted in eight scenarios (two soil types + four water
treatments). Four container pairs were exposed to different water regimes: Containers 1, 2—dry water
regime at barley’s mature stage; Containers 3, 4—periodic interruption in water irrigation; Containers
5, 6—successive decrease in water supply; Containers 7, 8—sufficient water supply (water capacity at
60%) at any time.
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Bidirectional diffuse reflectance data were acquired with an ASD FieldSpec
3TM spectroradiometer (ASD Inc., Boulder, CO, USA)which records the electromagnetic radiation
reflected by the target from 350 nm to 2500 nm in 2151 spectral bands featuring a spectral resolution
of 3 nm (350 nm–1000 nm) and 10 nm (1001 nm–2500 nm) interpolated to 1 nm. Measurements were
taken in nadir direction ∼30 cm above the canopy (25◦ foreoptic). An artificial light source was used
(quartz tungston, 1000 W) with a 45◦ illumination angle. Per container and measurement day, the
spectra used for further analysis constituted the average of 25 ASD measurements.

ASD measurements below 400 nm and above 2300 nm suffer to a certain extent from noise.
We therefore tested whether eliminating bands within these spectral ranges affects RF. Eliminating
bands had no effect on prediction accuracies (R2, MAE), but only on wavelengths selected as important
predictors: the number of selected wavelengths situated in bio-physically meaningful regions was higher
after elimination. Consequently, the spectral regions mentioned above were eliminated for further
analysis. In order to ensure comparability, bands in spectral regions affected by water vapor of the
field measurements were also eliminated.

Parallel in situ measurements of biophysical and structural vegetation parameters included Cab,
derived by a Minolta SPAD (Special Products Analysis Division) 502 Chlorophyll meterTM (Minolta
Co. Ltd. Osaka, Japan), and leaf area index, LAI 2000 Plant Canopy AnalyzerTM (LI-COR, Biosciences,
Lincoln, NE). Moreover, soil spectra were collected for wet and dry soil conditions. These in situ
measurements were also taken twice per week between April and July 2009. Each LAI value for
subsequent analysis constitutes two measurements at each container and measurement day, with three
LAI measurements, respectively. The final LAI value is hence the average of six measurements. We
randomly selected 10 leaves of each container and measurement day for SPAD measurements. The final
SPAD value is hence the average of 10 SPAD readings. Chlorophyll content was also derived on the
basis of wet chemical analysis from leaf samples [16], which facilitated SPAD data conversion into units
of µg/mL. PROSAIL requires Cab content in relation to leaf surface area (µg/cm2), and a formula applied
by [17] to summer barley and originally developed by [18] was used for conversion.

Phenological growth stages were measured according to the BBCH scale [19], which distinguishes
10 principal growth stages: 0 = germination, 1 = leaf development, 2 = tillering, 3 = stem elongation,
4 = ear appearance, 5 = heading, 6 = flowering, 7 = fruit development, 8 = fruit ripening, 9 = senescence.
For an exact description of plant development, secondary growth stages are additionally used. For
example, the principal growth Stage 6 (flowering), where 20% of flowers are open, is indicated as BBCH
Scale 62.

2.2. Field Measurements

Hyperspectral field measurements were collected independently by the German Research Center
for Geosciences (GFZ) and the Helmholtz Center for Environmental Research (UFZ). While UFZ
simultaneously collected SPAD, LAI and BBCH information, GFZ acquired BBCH stages only.
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2.2.1. UFZ

The UFZ study site constitutes a gradient (in terms of elevation, precipitation, temperature and
land-use intensity) from the Harz mountains into the lowlands to the northeast between Straßberg and
Aschersleben in central Germany. This area is dominated by agriculture with some forest patches in the
higher elevated parts. The site was sampled several times during each of the growing seasons between
2010 and 2013 focusing on 3 cereal types: winter wheat (Triticum aestivum), winter rye (Secale cereale)
and winter barley (Hordeum vulgare).

Spectral measurements were collected with an ASD FieldSpec 3TM spectroradiometer under clear
skies between 2 h before and after the Sun meridian to ensure likewise illumination conditions with
no foreoptic (bare fiber). Each spectral profile used for further analysis constitutes the average
of 25 measurements 50 cm above the canopy. A white reference was taken after the collection
of 3 spectral profiles (75 measurements). Bands below 400 nm and in the spectral ranges from
1340–1420 nm, 1800–1940 nm and above 2300 nm were eliminated due to their low signal-to-noise
ratios (SNRs), caused by strong water vapor absorption in the atmosphere and detector sensitivity. In
total, about 200 spectral profiles covering most of the phenological BBCH stages could be used for
further analysis.

Parallel in situ measurements of biophysical and structural vegetation parameters (Cab and LAI) were
collected simultaneously along the lines of the laboratory procedure.

2.2.2. GFZ

The GFZ study site, Beelitz-Wittbrietzen, is a typical agricultural landscape in eastern Germany
characterized by the cultivation of different crops close together and is well suited for monitoring plant
development and taking measurements regularly. The site was sampled in nearly regular intervals during
the 2007 and 2008 growing seasons. Spectral measurements were sampled for 2 selected cereal types:
winter wheat and winter barley.

Spectral reflectance measurements were collected using an ASD FieldSpec Pro FR spectroradiometer.
All spectral measurements were collected under clear skies between 2 h before and after the Sun meridian
to ensure likewise illumination conditions with an 8◦ foreoptic. Canopy reflectance was measured
approximately 1 m above the plants (diameter of field of view: about 14 cm) in the nadir direction while
walking slowly through the canopy and integrating a spectral signal (average of 20 × 50 individual
ASD measurements).

Several transects (about 20 m) were sampled in this way to obtain representative spectra for each
canopy at each growth stage. For each target, 10 spectral measurements (each averaged from 50
individual ASD measurements) were taken and averaged to minimize noise and the inherent variability
of the plants and to average out variances due to the measurement method. The spectra were stored in
spectral libraries and corrected for detector jumps (offset between two detectors). Bands below 400 nm
and in the spectral ranges from 1340–1420 nm, 1800–1940 nm and above 2300 nm were eliminated due
to their low signal-to-noise ratios (SNRs), caused by strong water vapor absorption in the atmosphere
and detector sensitivity.
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2.3. Simulation of Spectral Signatures Using PROSAIL

While the PROSPECT (Leaf Optical Properties Model, [13]) simulates reflectance as a function
of leaf biophysical and chemical parameters, the SAIL canopy bidirectional reflectance model [14]
accounts for canopy architecture. In recent years, these two models have been coupled (PROSAIL) with
subsequent versions to implement new developments in the field of radiative transfer modeling. The
MATLABTM (MATLAB Release 2010b, The MathWorks, Inc., Natick, Massachusetts, USA) source
code distributed via http://teledetection.ipgp.jussieu.fr/prosail/ (accessed on 24 March 2012) consisting
of PROSPECT-5B [20] and 4SAIL [21], was used in this study.

The 1-dimensional SAIL model assumes the canopy layer to be a horizontally homogeneous, infinite
and turbid medium only consisting of flat leaves with a perfect Lambertian reflection. Leaf azimuth
angle is assumed to be randomly distributed with a canopy characterization based on LAI and a leaf
inclination distribution function (LIDF) only [14,21]. Due to its physical assumptions, the model was
originally designed for crops and can also be applied (with some limitations) to broadleaf species.

We used PROSAIL to simulate 4 datasets with an increasing number of varied parameters and
also introducing noise + bias. In Simulation 1, only the basic biophysical and structural parameters
were varied (see Table 1). The parameter distribution for modeling was obtained from laboratory
in situ measurements. In Simulation 2, the additional influence of different soil backgrounds was
investigated. For this purpose, measured spectra of dry and wet soils were integrated into PROSAIL, and
the soil brightness coefficient (psoil) accordingly varied. Simulation 3 included additional biophysical
and structural modifications, varying all model variables simultaneously. Thus, possible phenological
changes in carotenoid content (Car), brown pigment content (Cbrown), plant water content (Cw), dry
matter content (Cm), leaf mesophyll structure (N), leaf angle distribution (angl) and hot spot size (hspot,
maximum measured reflectivity, which occurs when the sensor is in direct alignment between the light
source and the target) were considered. Simulation 4 also implements the influence of measurement
uncertainties on RF performance. Noise was added to the produced reflectance signatures as a Gaussian
distribution with a standard deviation of 3% of reflectance amplitude at each wavelength. A 2%
measurement bias accounting for errors in sensor calibration was introduced, as well.

Table 1. Dataset simulation concept concerning Simulations 1–4 with an increasing
number of varied PROSAIL parameters. psoil, soil brightness coefficient; angl, leaf angle
distribution; hspot, hot spot size.

Dataset Research Question Varied Model Parameters

Simulation 1
Basic biophysical and
structural parameters

Cab, Cw, Cm, LAI

Simulation 2 Additional soil influence Cab, Cw, Cm, LAI + psoil + different soils

Simulation 3 Total variability
Cab, Cw, Cm, LAI + psoil + different soils + Car,
Cbrown, N, angl, hspot

Simulation 4
Total variability +
Measurement uncertainties +
Measurement bias

Cab, Cw, Cm, LAI + psoil + different soils + Car,
Cbrown, N, angl, hspot + Additional noise (3%,
Gaussian) + Additional bias (2%)
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Ten thousand parameter combinations were generated within each of the four simulations. Varied
parameters were drawn randomly from an underlying statistical distribution. The statistical distributions
and parameter ranges specific to summer barley (and crops in general) were derived from laboratory data
and literature (see Table 2 and [17,22–24]).

2.4. Random Forest Methodology

The RF methodology is based on classification and regression trees (CART, [25]). In this study, it
was used in regression mode. RF was identified as an appropriate methodology, because it combines
the representation of non-linear relations and also of interactions between variables with usability.
Furthermore, its parameter values are fairly robust, which might be an advantage when dealing with
hyperspectral remote sensing data and their relation to plant physiological status. Another aspect is RF’s
ability to work with numerous predictor variables, even if their contribution to the response variable is
weak, as tested by [7]. Furthermore, it is possible to gain information on the importance of predictor
variables by modeling the response from the internal structure of the grown random forest.

Table 2. PROSAIL parameterization for respective simulations with: Gaussian
mixture = a probability density function consisting of 1–4 Gaussian distributions with
respective mean(s), standard deviation(s) and weight(s); tts = solar zenith angle;
tto = observer zenith angle; psi = azimuth; and skyl = diffuse light.

Parameter Mean SD Min Max Distribution Reference

Cab Data Data 0 100 Gaussian Mixture Data
Car 10 2 0 100 Truncated Gaussian -

Cbrown 0 0.2 0 1.5 Truncated Gaussian [22]
Cw 0.015 0.003 0.006 0.03 Truncated Gaussian Data
Cm 0.005 0.001 0.002 0.01 Truncated Gaussian [17,24]
N 1.3 0.1 1 1.5 Truncated Gaussian [17,23]

LAI Data Data 0 15 Truncated Gaussian Data
angl 45 - 20 70 Uniform [17]
psoil Data Data 0 1 Truncated Gaussian Data
skyl 0.01 - - - Fixed -

hspot 0.1 0.3 0.001 1 Truncated Gaussian [22]
tts 45 - - - Fixed Laboratory conditions
tto 0 - - - Fixed Laboratory conditions
psi 0 - - - Fixed Laboratory conditions

In this study, the randomForest package [26] implemented in the statistical software “R” [27] was
used. The RF algorithm was applied for all four PROSAIL simulations and for laboratory, as well
as field data separately. All simulated wavelengths between 400 and 2500 nm (in total, 2101) were
used as predictor variables. In laboratory and field measurements, wavelengths affected by noise were
eliminated (see Section 2.2), resulting in 1679 predictor variables. The dependent variables (LAI, Cab)
for PROSAIL simulations originated from the spectral profiles’ parameter set and for ASD measurements
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from respective SPAD and LAI 2000 Plant Canopy Analyzer data acquisitions. RF performance was
evaluated on an independent validation dataset based on the coefficient of determination (R2) and on
the internally computed variable importance (within RF). Variable importance is derived from the total
decrease in node impurities from splitting on the variable when the random forest is generated [26].
Here, RF refers to the residual sum of squares (averaged over all trees).

Recent remote sensing studies have used RF on hyperspectral data often for land-use
classification [28–31] or to quantify shrub cover [32]. The influence of feature reduction (FR) preceding
RF was also analyzed [33,34]. Here, we used principal component analysis (PCA, the first 5 components)
for FR. This usually improved prediction accuracies between 4% and 8% (R2).

RF predictions on simulated datasets were derived from a single run. RF predictions on laboratory
and field data were based on 100 runs (median thereof) with randomly varying training datasets.
We used varying numbers of RF runs due to substantially different sample sizes of laboratory vs.
simulated data. RF runs on sample sizes of ∼10,000 show almost identical results, whereas runs on
relatively small sample sizes can differ. For each run, 70% of ASD measurements were used as the
training dataset and 30% for predicting. The RF parameter values “ntree” and “mtry” were set to 1000
and 700, respectively. Additionally, a 10-fold cross-validation (CV) was performed, which provides RF
prediction performance as mean absolute errors (MAE). Other parameterization values for “ntree” and
“mtry” were tested, but had little impact on the derived results.

3. Results

3.1. In Situ Measurements

3.1.1. Laboratory

Temporal plant biophysical properties were dominated by plant phenology. While there was also
some effect of the different implemented water treatments at the end of the measurement period, soil
influence seemed to be almost negligible. All in situ measurements varied considerably over the course
of the seasonal evolution (see Figure 1). Chlorophyll content was high throughout the early to middle
growing stages (35–45 µg/cm2) until the start of ripening. LAI steadily increased up to 7 m2/m2 until
ear appearance, followed by slow, steady decline. BBCH measurements covered most of the barley
macro-stages: tillering (20–29), stem elongation (30–39), ear appearance (40–49), heading (50–59),
flowering (60–69), fruit development (70–79), fruit ripening (80–89) and senescence (90+).

3.1.2. Field

In situ measurements exhibited the spectrum of eco-physiological values for chlorophyll, LAI and
BBCH, considering that most of the vegetation period was covered by measurements (see Figure 2).
Most Cab values could be found around 40 and around 5 µg/cm2. This reflects the typical bimodal
Cab distribution over a crop vegetation period with moderate to high values until the start of ripening
and subsequent very low values. LAI was normally distributed between 1 and 8 m2/m2. BBCH
measurements covered most of the macro-stages. There were, however, some differences between GFZ
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and UFZ measurements: GFZ measurements did not include BBCH stages below 30 and between 62
and 82 for wheat, but generally more measurements between BBCH 30 and 40.

Figure 1. Summary of the in situ laboratory measurements: chlorophyll content
(µg/cm2) (top), Leaf Area Index (m2/m2) (middle) and phenological measurements (Growth
stages of mono-and dicotyledonous plants, BBCH scale) (bottom).
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Figure 2. Summary of the in situ field measurements: chlorophyll content (µg/cm2)
(top), Leaf Area Index (m2/m2) (second from top) and phenological measurements
from the German Research Center for Geosciences (GFZ) and Helmholtz Centre for
Environmental Research-UFZ (UFZ) Growth stages of mono-and dicotyledonous plants
(BBCH) scale) (bottom two). For comparison, the laboratory BBCH measurements are
also shown (middle)
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3.2. PROSAIL Simulations

PROSAIL simulated spectra varied considerably in shape and magnitude within and between
Simulations 1–4 (see Figure 3). The more parameters were varied, the higher the variation at each
wavelength. Simulation 3, for example, exhibited higher maximum and lower minimum reflectances
over the full spectrum compared to Simulation 1. The added noise and bias clearly translated into the
reflection profiles of Simulation 4.
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Figure 3. PROSAIL simulated spectral profiles (summary statistics over 10,000
simulations). Variation of basic biophysical and structural parameters (Simulation 1) (top
left), variation of additional soil parameters (Simulation 2) (top right), variation of all
parameters (Simulation 3) (bottom left) and variation of all parameters + additional noise
and bias (Simulation 4) (bottom right).
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3.3. Random Forest Prediction

All vegetation parameters in Simulations 1 and 2 (additional soil influence) could be derived precisely
(R2 near one, see Table 3). In Simulation 3, where all biophysical and structural model variables were
varied, prediction accuracy was still very high for Cab, but lower when deriving LAI. Added noise and
bias (Simulation 4) did not affect RF performance. RF prediction accuracy was lower on laboratory data
with R2 values between 0.80 and 0.94. Deduction of phenological phases based on ASD measurements
could be performed at a similar level as respective Cab and LAI estimates.
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Table 3. RF prediction accuracy (R-squared and cross-validation) on simulated, laboratory
and field data (FR using the first five PCA components). RF predictions on laboratory and
field data were based on 100 runs with randomly varying training datasets (median thereof).
Cross-validation was 10-fold. BBCH prediction based on GFZ field measurements is shown
for wheat (first value) and barely (second value) separately.

Dataset R2 Cab MAE Cab R2 LAI MAE LAI R2 BBCH MAE BBCH

Simulation 1 0.99 2.09 0.98 0.56 - -
Simulation 2 0.99 2.37 0.97 0.63 - -
Simulation 3 0.98 3.21 0.88 1.10 - -
Simulation 4 0.98 3.23 0.89 0.88 - -

Laboratory data 0.94 4.66 0.80 0.91 0.91 8.01
Field data UFZ 0.89 6.94 0.89 0.65 0.80 10.72
Field data GFZ - - - - 0.85/0.88 9.87/12.07

RF prediction accuracy (R2) was generally at a similar level for laboratory and field-based
measurements: Cab and BBCH at a slightly lower level and LAI at a slightly higher level (see Table 3).
Phenological stages could be derived with similar predictive power for the two independent field
measurement sets (UFZ and GFZ). Prediction accuracy was just marginally affected by the species
observed, i.e., wheat or barley (see Table 3). The number of UFZ field measurements with single
crops was too low to allow for a robust comparison. RF predictions on the complete datasets were
similar (R2 0.80 for UFZ and 0.85 for GFZ field measurements). MAE of Cab estimates increased
when more complexity was introduced in PROSAIL simulations and furthermore for laboratory and
field measurements. In contrast, MAE of LAI estimates decreased for Simulation 4 and also for all ASD
measurements, despite decreasing R2.

Predicted vs. observed Cab/LAI values for PROSAIL Simulations 1–4 were highly positively linearly
correlated (see Figure 4). Scattering increased slightly for Simulations 3 and 4, especially at higher LAI
values. A small offset could be detected for LAI Simulations 3 and 4.

Predicted vs. observed values for in situ laboratory and field measurements were also highly positively
linearly correlated (see Figure 5). Scattering was generally more pronounced with respect to Simulations
1–4, but the respective linear regressions were still very close to the ideal 1:1 line.
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Figure 4. Scatterplot of predicted vs. measured Cab/LAI for PROSAIL Simulations 1–4.
The respective linear regression model is indicated with a red line and the “ideal” 1:1
relationship with a green line. In the case of a congruent linear regression and a 1:1 line,
the former is superimposed by the latter.
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Figure 5. Scatterplot of predicted vs. observed values for all laboratory and field in situ
measurements (Cab, LAI, BBCH). The respective linear regression model is indicated with a
red line and the “ideal” 1:1 relationship with a green line. In the case of a congruent linear
regression and a 1:1 line, the former is superimposed by the latter.
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3.4. Important Wavelengths

RF also provides a measure of internally assigned importance/weights for predicting variables
(wavelengths) based on the grown tree structure. Here, we extracted for each run the 20 most important
wavelengths (a single run for simulated data and 100 for ASD measurements). Because RF results for
ASD measurements are based on 100 runs, selected important wavelengths are presented as frequencies.
The most prominent spectral regions selected as predictor variables just varied slightly between
Simulations 1–4 and ASD measurements regressing on Cab (see Table 4 and Figures 6–10). However,
laboratory and field measurements also included spectral regions from NIR and SWIR. Selected
wavelengths when regressing on LAI did generally vary more, also within PROSAIL simulations.
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Table 4. Summary of most important spectral regions (in nm) selected by RF for simulated,
laboratory and field-based hyperspectral profiles. GFZ collected BBCH stages only for
spectral field measurements.

Dataset Cab LAI BBCH

Simulation 1 700–720 750, 1140, 1270, 1870 -
Simulation 2 700–720 1,140, 1270, 1870 -
Simulation 3 680–715 930, 960, 1700, 1870 -
Simulation 4 680–715 950, 1450, 1700, 1870 -

Laboratory data 680–710, 2300 715, 810–910, 1100–1300 700, 1450, 2300
Field data UFZ 680–810, 1150, 1430, 2300 450–500, 750–950, 1200 700, 780, 1300, 2300
Field data GFZ - - 400, 700, 780, 1300, 1450, 2000

Figure 6. Identified important wavelengths (according to RF) for predicting chlorophyll
content based on PROSAIL simulations. A single run was performed with a randomly
selected training dataset. Identified important wavelengths are plotted as vertical
lines. Colored lines indicate PROSAIL simulated spectral profiles with changing Cab

parameterization between 1 and 100 g/m2 (y-axis). For all simulations, the same spectra
are plotted. Variation of basic biophysical and structural parameters (Simulation 1) (top
left), variation of additional soil parameters (Simulation 2) (top right), variation of all
parameters (Simulation 3) (bottom left)and variation of all parameters + additional noise
and bias (Simulation 4) (bottom right).

0

0.1

0.2

0.3

0.4

0.5

0.6

Cab=1
Cab=5
Cab=10
Cab=20
Cab=40
Cab=100
var. imp

Cab=1
Cab=5
Cab=10
Cab=20
Cab=40
Cab=100
var. imp

55
0

60
0

65
0

70
0

75
0

80
0

85
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Cab=1
Cab=5
Cab=10
Cab=20
Cab=40
Cab=100
var. imp

55
0

60
0

65
0

70
0

75
0

80
0

85
0

Cab=1
Cab=5
Cab=10
Cab=20
Cab=40
Cab=100
var. imp

Wavelength [nanometers]

R
ef

le
ct

io
n



Remote Sens. 2014, 6 12262

Selected important wavelengths for Cab prediction originated consistently from the VIS and red edge
(rapid reflectance change of vegetation in the NIR), covering the spectral regions between 680 and
810 nm (vertical lines or bars in Figures 6 and 7). This is the spectral region that is most affected
when changing Cab parameters values in PROSAIL simulations (colored lines in respective Figures). In
the case of ASD measurements, also wavelengths at 2300 nm (laboratory and field) and at 1150/1430 nm
(field only) were selected (Figure 7), where changing Cab content has little or no influence on simulated
spectra according to PROSAIL.

Figure 7. Identified important wavelengths (according to RF) for predicting chlorophyll
content based on ASD laboratory (bottom) and field measurements (top). One hundred
RF runs were performed with randomly selected training datasets. Identified important
wavelengths are plotted as frequencies (y-axis). Lines indicate PROSAIL simulated spectral
profiles with changing Cab parameterization between 1 and 100 g/m2 (z-axis).
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Important variables for LAI prediction of PROSAIL simulations were consistently selected from the
NIR and SWIR (vertical lines or bars in Figures 8 and 9). This is in line with PROSAIL simulations
based on changing LAI parameterization where the spectral region between 800 and 1200 nm is mostly
affected. However, within these spectral regions, selected wavelengths changed considerably between
Simulations 1 and 4. Please notice that changes below LAI = 2 can affect the complete electromagnetic
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spectrum between 400 and 2500 nm. Important wavelengths for deriving LAI from laboratory and field
measurements were primarily situated in the spectral region 700–1300 nm, hence excluding wavelengths
>1400 nm, which were selected from all PROSAIL simulations. Field measurement-based predictions
also included wavelengths around 500 nm (Figure 9).

Figure 8. Identified important wavelengths (according to RF) for predicting LAI based
on PROSAIL simulations. A single run was performed with a randomly selected training
dataset. Identified important wavelengths are plotted as vertical lines. Colored lines indicate
PROSAIL simulated spectral profiles with changing LAI parameterization between 1 and
9 m2/m2(y-axis). For all simulations, the same spectra are plotted. Variation of basic
biophysical and structural parameters (Simulation 1) (top left), variation of additional
soil parameters (Simulation 2) (top right), variation of all parameters (Simulation 3)
(bottom left) and variation of all parameters + additional noise and bias (Simulation 4)
(bottom right).
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Important wavelengths for deriving phenological phases were considered to be in the red edge
(∼700 nm), at 1330 nm, 1450 nm, 2000 nm and 2200 nm (see Figure 10). Differences between UFZ
laboratory and field measurements mainly concerned wavelengths around 1450 nm (not selected for field
measurements). This spectral region was included when using GFZ barley field measurements, but not
GFZ wheat field measurements. Here, the spectral region around 1330 nm was selected as important,
which features only marginally in UFZ wheat field measurements.
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Figure 9. Identified important wavelengths (according to RF) for predicting LAI based
on ASD laboratory (bottom) and field measurements (top). One hundred RF runs were
performed with randomly selected training datasets. Identified important wavelengths are
plotted as frequencies (y-axis). Lines indicate PROSAIL simulated spectral profiles with
changing LAI parameterization between one and nine.
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Figure 10. Identified important wavelengths (according to RF) for predicting BBCH based
on ASD laboratory (bottom), UFZ field measurements (top) and GFZ field measurements
(middle). One hundred RF runs were performed with randomly selected training datasets.
Identified important wavelengths are plotted as frequencies (y-axis). Lines indicate
PROSAIL simulated spectral profiles with changing LAI parameterization between one
and nine.
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4. Discussion

RF prediction accuracy was very high for simulated data. The more influencing variables were
kept constant in the simulation process, the better the derivation of vegetation physiological status.
Cab estimates were excellent, even within more complex data structures, i.e., varying all PROSAIL
biophysical and structural vegetation parameters + additional noise and bias (R2 = 0.98), while R2 values
were a bit lower for LAI (0.89). RF performance decreased slightly on laboratory and field data, but
including field-based measurements had no detrimental affect on prediction accuracies. The goodness of
chlorophyll estimates were comparable with other studies [35–37].

The most important selected variables (wavelengths/spectral regions) changed marginally between
PROSAIL Simulations 1–4 and also between between simulations, laboratory and field measurements
when regressing on Cab. Moderate changes of prediction variables were found when regressing
on LAI or BBCH; changes between laboratory and field measurements were not more pronounced
than within PROSAIL simulations. Despite selecting, on average, prediction variables from
appropriate spectral regions, prior knowledge of physical processes is crucial. Plant’s biophysical
properties constitute different proportions of measured reflectance dependent on the wavelength.
Bacour et al. [38], for example, quantified the relative contributions of all canopy variables on reflectance
used in PROSAIL, i.e., the percentage of the total variance explained by a given variable. Results indicate
that chlorophyll content accounts for ∼60% of the reflectance variation in the VIS (400–700 nm). In the
NIR (700–1100 nm), the most important variables are the average leaf angle and the leaf area index,
which contribute equally to reflectance [15].

Consequently, one would expect that the selection of important variables for estimating chlorophyll
and LAI refers to the spectral regions mentioned above. Overall, selected wavelengths for Cab and
LAI correspond well with the above-mentioned sensitivity analysis conducted by [38,39], independent
of whether simulated, laboratory or field data were used. Bands considered to be most important for
modeling Cab were very similar to those identified in simulated data. LAI prediction was primarily
based on wavelengths in the NIR and SWIR, spectral regions dominated by the vegetation’s structural
components [15,23]. Wavelengths considered to be most important by RF corresponded well with the
findings of other studies [37,40].

A few sets of important variables included wavelengths from spectral regions with no physical
relationship to the response variable (for example, 2300 nm for predicting Cab/BBCH). Furthermore,
selected wavelengths were not always consistent between implemented simulations, especially
concerning LAI (compare Simulations 1/2 vs. 3/4). This might be caused by the fact that parameter
sets with different values can exhibit the same reflection profile: the complex variable interaction
influencing NIR and SWIR seems to impede variable selection from that spectral region. Furthermore,
some wavelengths most likely provide information that has only a mathematical-statistical relationship.
Machine learning methods, including RF, sometimes show tendencies of overfitting [41]. That means the
algorithm in use actually fits background noise rather than selecting biophysically meaningful prediction
variables. This would also explain the slightly improved LAI prediction for Simulation 4 compared to
Simulation 3.
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The devolution of barley phenological growth stages (BBCH scale) is intimately connected with
Cab and LAI changes: high chlorophyll content throughout the early to middle growing stages and a
sharp decrease with the start of ripening, while LAI steadily increases until ear appearance, followed
by slow, steady decline. A simple RF model can predict the BBCH scale well based on in situ Cab

and LAI measurements alone (R2 = 0.74). Consequently, one would expect the selected important
wavelengths originating from two spectrally different groups (VIS and NIR). This was primarily the case,
but waveband selection also included the far SWIR region for both field and laboratory measurements.
Noticeable is the selection of the spectral region around 1450 nm as an important predictor when deriving
phenological stages for GFZ barley field measurements and UFZ barley laboratory measurements.
It seems that geometric properties specific to barley, e.g., the long awn, are behind this selection.
Differences between spectral regions selected from GFZ and UFZ wheat measurements are likely to
originate from the varying coverage of BBCH stages during data acquisition. However, also, other
factors, such as crop management (row spacing, orientation) might affect variable selection from
different datasets, as found by [42] when discriminating crop types.

Possibly limiting factors of the implemented approach can be divided into four groups as follows.

(1) RF limitations related to hyperspectral data: Many highly correlated predictor variables were used
to model vegetation status by the RF algorithm; variable importance often included groups of
adjacent wavelengths. Furthermore, wavelengths that are not physically related to the investigated
response, but that may contain unique information content (like the 2300-nm spectral region),
can be selected as important prediction variables. Nevertheless, most predictors were selected
from biophysically meaningful spectral areas. Given the RF preceding feature reduction, future
studies might have to include a set of prominent machine learning/kernel methods. Wavelengths
consistently selected by all applied methods could then be assumed as robust prediction variables.
Even though PCA is often used for feature reduction of hyperspectral data [43], there are other
methods already available that sometimes outperform PCA, such as maximum noise fraction
transformation (MNF, [44]) or non-parametric weighted feature extraction (NWFE, [45,46]. Still,
the Hughes’ phenomenon is likely to affect many pre-processing and data mining methods [47,48].

(2) Limitations of inverse modeling: Naturally, the retrieval of biophysical variables from remote
sensing data is in any case affected by the problem that several biophysical and structural
vegetation characteristics have an impact on the same spectral regions. As the inversion of RTM
is generally an under-determined problem, knowledge on the distribution of model parameters
is helpful [15], which requires one to determine as many parameters required by the used RTM
as possible.

(3) Limitations of PROSAIL. Although PROSAIL is an extensively used and tested RTM [15],
a simple one-dimensional model like this has limitations. The canopy description by the means of
LAI and an LIDF should be mentioned here. A possible improvement might be the use of a more
sophisticated, but also more complicated, three-dimensional model, where vegetation structure can
be better represented [6]. However, subsequently, the estimation of many more vegetation structure
parameters would be necessary. Obviously, summer barley canopy structure changed substantially
between growth, maturation and senescence phases. Describing these canopy structure changes is
difficult based on parameter mean values. The collected ASD spectra over the whole measurement
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period could not be fully represented in the model parameterization. Especially, the appearance of
ears/awns specific to summer barley cannot be described within PROSAIL. Investigating different
growing stages separately could improve prediction accuracy, but limits transferability to field or
airborne data acquisitions.

(4) Limitations of in situ measurements: The selection of unexpected wavelengths by RF for LAI
might originate from difficulties in providing a representative sample size of in situ observations,
despite intensive sampling efforts. Furthermore, Cab, LAI and BBCH in situ data are affected by
measurement uncertainties. For example, indices based on hyperspectral reflectance measurements
have been found to derive Cab more robustly than SPAD measurements [49,50]. Finally, it
was observed that there is an important influence of the phenological phase on the appearance
of summer barley spectra, which is difficult to capture by PROSAIL model parameterization.
Furthermore, the effect of ears specific to summer barley on ASD measurements could be detected,
as already mentioned.

Advantages:

(1) RF was shown to be a robust prediction method for simulated, laboratory and field data.
A performance decrease between simulated and measured hyperspectral signatures has to
be expected given measuring inaccuracies (both in situ and hyperspectral); for example,
inherent slight diversions from nadir positions performing ASD measurements even with strict
measurement protocols. Temporal sampling in the laboratory, even on identical barley plots,
was very dense compared to field measurements. In this respect, slight decreases in prediction
performance are negligible indicating that environmental conditions, e.g., changing illumination,
seem to have only minor influences. Prediction differences between the two independent field
datasets of GFZ and UFZ can most likely be attributed to the different coverage of BBCH stages
and different acquisition procedures, but are still comparably close.

(2) The inclusion of multi-temporal hyperspectral data with different growth stages (and physiological
status’) posed no limitations on RF prediction performance. Most studies evaluated machine
learning techniques on hyperspectral data acquisitions with very homogeneous growth stages.
Here, we could show similar prediction accuracies with all phenological growth stages included.
Likewise, [51] used crop ASD measurements at different scales and different BBCH stages for
successfully predicting biomass.

(3) Variables for predictive RF models were in most cases selected from biophysically meaningful
spectral regions. Wavelengths selected for LAI prediction do vary more because changing LAI
affects a considerable part of VNIR and SWIR, even extending into VIS at low LAI values.

(4) No extensive parameter tuning is required when applying RF on hyperspectral data. Changing
“mtry” or “ntree” had little effect on prediction quality and robustness. The proposed settings
of “mtry = 1000” and “ntree = 700” should also be applicable to other studies dealing with
hyperspectral data. This is in contrast to other machine learning or kernel methods, such as in
support vector regression or kernel ridge regression, where extensive parameter tuning, with the
risk of overfitting, is standard procedure. Chan and Paelinckx [52] also found RF to be a fast,
stable and robust method when deriving land use classes.
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5. Conclusions

This study tested whether the impediment to derive vegetation parameters from hyperspectral
signatures at consistently high levels stems from their high dimensionality, (changing) environmental
factors, such as illumination conditions, or the uncertainty of in situ measurements. Therefore, vegetation
parameters were extracted from a unique combination of three independent datasets: simulated
signatures, laboratory and field measurements covering a complete vegetation period combined with
respective in situ measurements. Consequently, the applicability of machine learning methods, like
randomForest, for deriving the plant physiological status from hyperspectral signatures was investigated.
Based on PROSAIL simulated data, the potential of this approach, which is able to represent also
non-linear relations and interactions between variables, could be demonstrated. randomForest was
almost not affected by artificially introduced noise and bias in data: high accuracy estimates for
chlorophyll content (R2 = 0.98) and LAI (R2 = 0.89). Despite shortcomings when simulating crop
hyperspectral signatures at certain phenological growth stages, this study could still demonstrate the
usefulness of a radiative transfer model, like PROSAIL, to assess statistical approaches on simulated
hyperspectral data: when testing against simulated signatures, the truth is already known, i.e., one is
able to discriminate between randomForest performance and measurement uncertainties or changing
environmental conditions. This in contrast to most approaches, where machine learning methods are
tested against measurements only.

In a next step, the transferability of the approach to laboratory and field data was investigated. For
a full vegetation period of summer barley, RF performance was good, but accuracies were not as high
as for simulated spectra (Cab: R2 = 0.94/LAI: R2 = 0.80/BBCH: R2 = 0.91). Prediction accuracies for
field measurements were at a similar level demonstrating randomForest’s applicability also with datasets
influenced by changing environmental conditions. Nevertheless, unexpected wavelengths were selected
as important, specifically for Cab and BBCH estimation. These unexpected wavelengths, however, were
not restricted to field, but included also laboratory measurements. The selection of different important
predictors might be due to (i) insufficient sample sizes of laboratory and field data or (ii) PROSAIL
model limitations. Providing a representative sample size of in situ observations is still considered to be
one of the major difficulties despite intensive sampling efforts.

RandomForest performed well on hyperspectral data with underlying high phenological complexity.
Applying this methodology on single principal growth stages would improve prediction accuracy, but
was not investigated here. As a result, randomForest can be used for predicting plant physiological status
on multi-temporal and also airborne hyperspectral data (given precise atmospheric/geometric correction).
Mixed pixels should not have a detrimental effect on prediction accuracy if these consist of different crop
types: BBCH estimates in this study could be performed at a similar level, including a single or different
crop type(s). However, predictor variables were not consistently selected from similar spectral regions
using randomForest. Most likely, varying plant geometry between crop types (wheat vs. barley) and
also different data acquisition times (different geometry and chemical composition) cause this varying
selection. Decreasing performance between simulated and laboratory and field data indicates that in
situ measurement uncertainties are the most limiting factor when deriving bio-physical plant properties.
This is despite some PROSAIL limitations simulating ASD, like data for all phenological stages.
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Future studies should implement and test a set of prominent machine learning/kernel methods,
especially for variable selection. Wavelengths consistently selected by all applied methods could
then be assumed robust prediction variables. Geometrical plant properties at certain growth stages
impede appropriate variable selection based on one method only. Consequently, we recommend a
more intense use of 3D simulation models that account for changing geometrical properties dependent
on phenological stage. This is even more important when airborne or satellite data over larger areas
are analyzed, where exact phenological stages are not precisely known. Application on simulated
spectral profiles (2D or 3D models) offers more insights regarding the general evaluation of a machine
learning method and facilitates the interpretation of the results obtained. Regarding spectral field
measurements, we recommend intense spectral sampling with many repetitions and averaging to
minimize measurements inaccuracies.

Benefits from using hyperspectral remote sensing data could, next to the demonstrated randomForest
potential, be shown, as well. Although their high dimensionality and autocorrelation complicates the
interpretation of selected important variables, they offer extended information content compared to
multispectral data. Allowing for the derivation of biophysical and structural vegetation parameters
with high temporal and/or spatial resolution covering large areas, remote sensing data are of special
importance for the ecosystem modeling science community.
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