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Summary

In a previous paper, we have calculated the poloidal magnetic field at the
core-mantle boundary (CMB) from the Gauss coefficients of the geomagnetic
field at the Earth surface. The numerical solution of the mantle induction
equation is based on a modified Tikhonov regularization of an integral equa-
tion approach. We have tested the method for several conductivity models
of the mantle and a passive upper-core layer.

This paper deals with the inverse solution of the induction equation ac-
counting for mowving core material. In a layer of the fluid outer core we
prescribe the associated velocity field by a differential rotation in the outer
core, the angular velocity of which near the CMB corresponds to the mean
westward drift of the geomagnetic field. Apart from the conventional appli-
cations of the frozen-field theory, we solve the complete induction equation
for the poloidal magnetic field in the mantle as well as in the fluid outer core
layer using the magnetic field as boundary values at the Earth’s surface and
the assumed velocity field as prescribed model parameter.

This numerical experiment shows both the scope of our method with
respect to highly conducting material and the effect of the motion of the
conducting material on the penetration behavior of field variations.

The results indicate that the field continuation by our method is possible
down to about 100 km below the CMB in the decadal time scale. The
penetration depth mainly depends on the high conductivity while the effect
of the relative rotation is marginal in the uppermost 25 km and becomes
more significant in deeper parts. For depths of the outer core below 100
km, the solution procedure becomes more unstable and no relevant solution,
fitting the data within 10%, can be reached, i.e., decadal field variations at



these depths cannot be fully causally related to those observed at the Earth’s
surface.

Key words: internal magnetic field, induction equation, inverse problem,
core rotation, downward continuation



1 Introduction

For several problems of core dynamics, the geomagnetic field and its variation
must be known in the core-mantle-boundary (CMB) region. Such problems
are, e.g., the electromagnetic (EM) core-mantle-coupling and the determina-
tion of the velocity field v of the liquid core. At present, there is no com-
prehensive theoretical framework for determining the structure and material
parameters in the CMB region. Recent investigations suggest that the CMB
region is a complex transition zone including several kilometers of the upper
core and a few hundred kilometers of the lower-most mantle (e.g., Buffett,
1992; Lay et al., 1998).

Although the findings about the structure of the CMB region are prelim-
inary and partially controversial, we assume that a highly conducting shell
may exist and must be taken into account in studies of core-mantle interac-
tions, like the EM coupling and angular momentum exchange between core
and mantle. An example is the determination of the velocity field of the core
in the CMB region by inverting the frozen-field equation in the case where
the CMB is covered on the core side by a non-moving layer of core material.
The radial component of the magnetic flux then has to be determined not at
the CMB but at the inner boundary of this layer. Conventionally, approxi-
mative solutions of the induction equation (potential solutions, perturbation
solutions) are applied if the electrical conductivity of the layer is much lower
than that of the core, the time scale of variations is decadal larger and/or
the thickness of the conducting layer is small. It is not the purpose of this
paper to explore the scope of these methods for highly conducting parts of
the CMB region and to define the corresponding parameter ranges, but to
present and use an algorithm which solves, inversely, the induction equation
more or less independently of the assumptions about these parameters, and
is embedded in a comprehensive inversion technique.

Therefore, we have recently developed a method for the non-harmonic
downward continuation of the geomagnetic field to the CMB for an electri-
cally conducting mantle (Ballani et al., 1995, 1999, 2001). We solved the
inverse boundary value problem associated with the EM induction equation
by an adapted solution procedure based on the related, well developed the-
ory of the inverse heat conduction equation (sometimes named the sideways
heat equation) ( Dinh Nho Hao and Gorenflo, 1991, Reinhardt and Seiffarth,
1993). To overcome the difficulties with a space-variable coefficient func-
tion in the differential equation, the solution algorithm uses an idea used in



geothermal inversion (Stromeyer 1983, 1984).

The induction equation for the poloidal geomagnetic field B, was de-
composed into decoupled differential equations of the second order for the
harmonic (cosine and sine) modes S¢ of the poloidal field scalar S defining
the poloidal magnetic field by

B; = curlcurl (rS). (1)

The two boundary values are given by the Gauss coefficients of the geo-
magnetic potential field, ¢,,, and h,,,, at the Earth’s surface, r = Rpg, i.e.,
only on one side of the mantle approximated by an outer insulating shell
(R, < r < Rg) and an inner electrically conducting shell (R, < r < R,).
Within the insulating shell, the magnetic field behaves like a potential field.
Therefore, the boundary values are well known at » = R,. The mathemat-
ical problem of solving the induction equation for r € (R., R,), especially
at R., is then an inverse problem which is severely ill-posed like the inverse
heat conduction problem. We have recently treated this inverse boundary
value problem for the induction equation in its equivalent form of a Volterra
equation of the first kind (Eldén, 1995) and solved an regularizing optimal
control problem for the unknown boundary function f(¢) = S%5 (R,.,t). An
outline of this method is given in section 3.1 .

In this paper, we will enlarge this method to calculations of the magnetic
field in a core shell in which the electrically conducting liquid rotates differ-
entially with the angular velocity w(r). The objective of this investigation
is

1) to find and to test a numerical algorithm of the inverse solution of the
induction equation for this moving core fluid with its prescribed velocity field
and

2) to study the effect of the motion on the diffusion of magnetic field
variations through the outer parts of the core.

The choice of a differential rotation is somewhat pragmatical: for the
associated velocity field, v = wxr, w = (0,0,w), the induction equation
can be decomposed into two independent systems of differential equations
for the poloidal and the toroidal magnetic field, respectively. This ensures
that the poloidal magnetic field can be calculated without information about
the toroidal field, B; = curl (rT"). B; is not considered here because further
modeling and additional assumptions are necessary to calculate its boundary
values at r = R,.



The difference between the scalar differential equations valid only for the
mantle, on one hand, and the mantle together with a core layer, on the
other hand, is that the latter are coupled with respect to the sin- and cos-
modes. The conductivity of the core is assumed to be constant but the
velocity parameter w(r) introduces an additional  dependent coefficient into
the differential equations of the mantle-core induction equation. Therefore,
these equations can not be solved independently and the algorithm applied
up to now to the mantle induction equation must be modified for the inverse
solution. Compared with the frozen-field theory, the terminology “inverse”
is used here with respect to the determination of By and not of v, which is
a prescribed parameter function in this paper. Furthermore, in the frozen-
field approximation, the diffusion term is conventionally neglected. For the
inversion of the core induction equation with respect to v with the diffusion
term considered, we refer to an approximation given by Gubbins (1996).

2. Induction equation of the core for an axially rotating fluid

In the following, we outline the derivation of the scalar induction equation
given in textbooks, e.g. Krause and Réidler (1980). The vectorial induction
equation of the core is given by

curl curl B + curl (vxB) = B, divB = 0, (2)
Mo Oc

where p is the permeability of vacuum, o, is the constant electrical con-

ductivity of the core, B is the magnetic flux density and v is the velocity

field of moving core material. After decomposition of B into its poloidal and

toroidal parts represented by scalar functions and of v x B according to

vxB = curllr U + rV + grad W, (3)
we obtain for the poloidal scalar S in eq. (1) the differential equation
1 .
AS + U = 5, (4)
Ho O¢

which only contains the scalar U of the toroidal part of v x B in eq. (3). This
equation defines a representation of a vector field with non-vanishing diver-
gence by three scalar functions, two of which are normed by ¢ ...sinddddp =



0, like S and T'. Applying the operator r - curl to eq. (3), we obtain
QU = —rcurl (v xB), (5)

where € is the Laplacean at a sphere r = const.,

1 0 0 1 9?

€= sin 198_19(81n 198_19) + sinZy) 92 (6)

Using egs.(1) and (5), we obtain, for a rotating fluid with v .= w x r, the
expression

QU = — w(r) (r x grad Q.9), (7)

where w is the vector of the angular velocity. Eq. (7) is valid for an angular ve-
locity w which is dependent on r. For the axisymmetric case, w = (0,0, w(r)),
applied here, we obtain from eq. (7)

o0S
dg
(see e.g. Krause and Rédler, 1980, p. 201).
Eq. (8) can be solved for the harmonic modes of U by using the spherical
harmonic expansion of U and S, the Legendre’s differential equation Y, =
—n(n + 1)Y,, for Yy, = P,,(cost)e’™? and the normalization conditions of

the spherical harmonic functions. By the spherical harmonic expansion of
the poloidal scalar field,

W = - (5-)wr) (8)

S0 0,0,8) = 3 (Styu(r,t) cosmep + S, (1, 1) sinmp) Pun(cosd) — (9)

n,m

and of the scalar U in eq. (8), we obtain from the scalar induction equation
(4) the following, in pairs coupled differential equations for the harmonic

modes Sy, ., S5
?se,  20S¢,  nn+1),, Sim .
or? + r oo 12 Spm — Ho o (1) or Mo 7()(r)Sm = 0
#?Ss,  20S:,. nn+1)_, 95im c
or? roor 12 Spm — Ho o(r) ot o () (r) S = 0
which can be written as
D, SB[+ m po o(r) w(r) S24 = o0, (10)
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using the operator

ZM—F;E—i—MOU(T)a. (11)

3 The algorithms for solving the induction equations
3.1 Inversion of the mantle induction equation

The equations of the harmonic modes of S in the conducting part of the
mantle are obtained by choosing w(r) = 0 in eqs. (10) and replacing o(r) by
the mantle conductivity oy (r) in the operator (11). The resulting decoupled
differential equations for the harmonic modes then read

0? 20 n(n+1) 0
Z oy 2z BTy hdl — 12
or? + r or 72 Ho o (r) ot Y 0, (12)

where u stands for S&° (e.g., Ballani et al., 2001). The boundary conditions

at the outer boundary of the conducting shell of the mantle, »r = R,, are
given by

ou n+1
U(Raat) — ¢(t)7 E(Raat)_F R

u(Ry t) = 0, (13)

where ¢(t) is inferred from the geomagnetic potential field at the Earth’s sur-
face by its continuation through an insulating shell to » = R,, correspond-
ing to the conventional harmonic downward continuation R — R,. The
boundary function ¢(¢) is given by temporally discrete values of the Gauss
coefficients gpm, hnm (“data”) in a finite period, 0 < ¢ < T. The second of the
boundary conditions (13) is a consequence of the well-known continuity of S
and 0S/0r, if a non-potential magnetic field within a conductor is continued
by a potential field outside of it.

To solve the inverse boundary value problem for the unknown function
u(R,,t), an initial condition,

u(r,0) =4(r), R.<r<R, (14)



must be given. For the numerical calculations, we assume that 1 (r) is the
potential solution obtained for o, = 0, which corresponds to the stationary
solution of eq. (12) (Qu/dt = 0).

The algorithm for solving eq. (12) with the boundary conditions (13) is
described by Ballani et al. (2001), from which we will give an outline below.
In this preceding paper, we studied the inverse problem for the differential
equations (12), (13) and (14) in the equivalent form of an integral equation of
the first kind, which describes the linear relation between pure time functions
for different r-levels: the unknown time function f(¢) = u(R,,t) on R. and
the data function ¢(t) = u(R,,t) on R,. This relation is represented by a
Volterra integral equation

o) = [ bt —7) f(r)ar, (15)

if for the initial condition (14) ¢(r) = 0. This condition is reached at the be-
ginning of the algorithm by subtracting a suited stable boundary value prob-
lem. Obviously, the kernel k(t) contains all the influence of r, R,, R.,n,m
and o(r). However, for o(r) # const., this function cannot longer be spec-
ified analytically. Thus, another method overcoming this deficiency has to
be introduced: Eq.(15) represents a linear relationship ¢ = A f, where A is
an (abstract) linear operator, here the Volterra integral operator. With the
decomposition of the unknown function f into base functions ey, f =Y fi e,
the formal relations

¢ =Af=A0D frer) =) fuAlex) (16)

can be written. As the term A (e;) means the solution of a stable two-side
boundary value problem with the function ex(t) at R, and the second bound-
ary condition of (13) at R, (e.g., Cannon, 1984), a finite-dimensional matrix
(a;r), approximating the operator A, can be determined in the following way:
A time discretization {t = ¢;,i = 1, N} is introduced and the base functions
ex(t) are taken as the simplest form of the Kronecker tensor ej(t;) = dg;.
With the boundary conditions

ou¥ n+1
—(R,,t
(Rayt) + "

5 uF(Ry,t) = 0, uf(Re,t)=er(t), k=1,...,N, (17)

the solution u*(r,t) of the two-side boundary value problem for the dif-
ferential equation (12) can be calculated for each base function e. Since

8



u* = Aey, where e is a base function, it is clear that this solution forms
the kth column of (a;), so that the whole matrix can be composed by its
columns

(ai) == u*(Ry,t;), i=1,....,N, k=1,...,N. (18)

With the convolution kernel in eq. (15), the matrix (a;,) has a Toeplitz
structure. Thus, in practice it is only necessary to calculate the first matrix
column (k = 1). The other columns (k = 2,...,N) are then generated
by shifting their elements downward iteratively, which results in the known
triangular structure, i.e., the implementation of this step requires only the
numerical solution of one stable boundary value problem.

Having the matrix (a;,) determined, the regularization procedure can be
started. We use a modified Tikhonov regularization (Hansen 1992, 1998),
which accounts especially for the data error € at R,. The unknown function
f(t) = u(R.,t) is determined by the minimization

min||f||g subject to [[Af —¢[la <e. (19)

While the second term in the procedure (19) controls the data approximation
at R,, the first term searches for optimal smoothness of the solution at R..
The norms are specified as the conventional Ly norm for ||.||o. The other one
is chosen as W1 norm.

The algorithm ends with a transform which restores the original initial
condition.

3.2 Inversion of the mantle-core induction equation

The method for the inversion of the mantle induction equation outlined in
section 3.1 can also be applied, with some modifications, to the corresponding
inverse boundary value problem for eqs. (10), now including also the mantle
and an outer-core layer. The two coupled equations (10) can be transformed
into one complex equation, introducing the complex harmonic mode, u, by

i=5¢ +iS:, , i=+—1. (20)

From eqs. (10) we then obtain the complex differential equation for a partic-
ular complex mode

Dyt + i m g o(r) w(r) @ = 0, (21)

9



which has a structure analogous to that of the mantle (eq. (12)), with the
outer-core velocity w(r) as an additionally assigned parameter function. Be-
cause we are now interested to solve the inverse problem for time functions
W(Roes 1), Roe < Re, on a r-level beneath the CMB in the fluid outer core, the
range of r-values is enlarged to the interval [R,., R,]. The boundary values
are taken, as above, only at the outer boundary R,, i.e., they remain exactly
the same. Thus, the conditions (13) can be written in complex composed
form as

W(Rert) = 30, S (Rayt)+

o w(R,,t) = 0. (22)
The choice of an initial condition needs additional consideration. For the
mantle, the used harmonic downward continuation, condition (14), oy = 0,
corresponds to the stationary solution of eqs. (12). This principle is kept
also for the core: The initial value function ’gﬁ(r) = a(r,0), Rpe < 1 < Ry,
is determined numerically in advance from a system of ordinary differential
equations which is obtained from eq. (21) by neglecting the time derivative
terms. (For comparison, this solution is also shown in the figures denoted by
“steady-state” in the next section.)

The solution algorithm of the mantle-core inverse boundary value prob-
lems can be applied by full analogy as described in section 3.1: The re-
lations (16) can be understood in complex form. The solutions @* of the
stable two-side boundary value problems (17) are generated with the com-
plex base functions é(t) = éf*(t) + i éi™(t) at the lower boundary R, and
the second complex outer boundary condition given at R, (22). From ",
the complex matrix (a;;) = @*(R,,t;) for the regularization procedure (19)
can be derived. The regularized solution of the inverse problem @(R,.,t) =
SE o (Roe, 1) +152, (Roe, t) contains the harmonic modes S5 (R, t) as its real
part and imaginary part, respectively.

4 Model assumptions: Data, conductivity and velocity models

The data used are the Gauss coefficients given by Bloxham and Jackson
(1992). On the basis of a spline interpolation, they are taken equally spaced
(At = 2 years) covering the time interval 1690-1990. As an example, we
demonstrate the downward continuation for the [1,1] and [5,5] harmonic
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modes. Hereafter, we do not introduce new notations for the harmonic co-
efficients at different radii (different depth beneath the CMB), but keep for
simplicity the original notations. From the pairs g;;, h;; only the g;; and gss
components will be presented and discussed here.

The assumed conductivity model is given by

0 R, <r
) 10 (Be)P R.+200 km <7 < R,
(1) =9 3000 R, <r <R, +200 km (23)
2 % 10° R, >,

where the unit of o(r) is Sm~! and the basic radii are taken as R, = 5480 km
and R, = 3485 km. For the region in the interval R. + 200 km < r < R,,
the mantle conductivity is chosen according to the results in laboratories
(e.g., Shankland et al., 1993). The effect of this shell on the inverse solu-
tion is marginal in the decadal time scale. For the lower-most shell of the
mantle (e.g., the D” layer), we assume that the conductivity model is con-
sistent with the conductance necessary for the EM core-mantle coupling and
decadal length-of-day variations (Holme, 1998). This is valid for our model
(23), but can also be reached by other combinations of the thickness of the
shell and the value of o). Besides this, the assumed model (23) should be
considered primarily as an example for which the numerical algorithm will
be demonstrated.

For the value of the velocity function w(r) at the CMB (r = R.), we
choose the mean westward drift of the outer core, w, = —0.1°a~! (e.g.,
Greiner-Mai, 1986). Further, we prescribe the radial dependence of w for
r € (R. — 100 km, R.) by the alternative possibilities a) a step function
and b) a continuous increase to zero, both shown in Fig. 1. The model
assumptions about w(r) imply that the observed variations (except a global
westward drift) are caused by processes (sources of the secular variation) in
core parts lying deeper than the respective R,. value.

We choose a maximum depth of 100 km, because the skin depth is about
20 to 60 km for periods of 20 to 100 years and we expect that the solution
becomes unstable for r < R. — 100 km. The results are then compared with
the inverse solutions for the stationary case and a non-moving layer (w = 0,
denoted as “model 0” hereafter). The potential solution is obtained if both
w = 0 and the stationary case are chosen.

The models of relative rotation are shown in Fig. 1. The Figs. 2-3 show the
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resulting variations of the poloidal g1, gs5 modes at several radii, R,. < R,,
as an example.

5 Results

In the following, we will discuss i) the influence of the model of mantle con-
ductivity, ii) the influence of the relative rotation of the core and its conduc-
tivity and iii) the differences between the non-stationary and the stationary
solutions in the core.

i) The upper curves in Fig. 2 show the “data” at the Earth surface, i.e.,
the values of the Gauss coefficients gi; and gss; the lower curves show the
associated CMB values derived by non-harmonic downward continuation as
“model 0”. The curves can be compared with the steady-state solution, which
corresponds to the potential solution (“model 0 (steady state)”). However,
according to the primary objective of this paper, we will study the field be-
havior in the outer parts of the core and refer to further discussions of the
influence of the mantle conductivity o, (r) by Ballani et al. (2001). Com-
pared with the field variations obtained for the core (Fig. 3), the differences
between the potential solution and the inverse solution for the conducting
mantle at the CMB are rather marginal, although they are significant with
respect to the EM core-mantle coupling.

ii) With respect to the core, the results for model 0 (w = 0) show the
absolute effect of the high conductivity in the core on the variations of the
poloidal modes. Comparing with those for the other w models, we conclude
that the penetration behavior is dominated by the high conductivity. As
shown in Fig. 3, the influence of the relative rotation is rather weak in the
first 25 km below the CMB [in Fig. 3 a), the differences between the models
1 and 2 are so small that they could not be displayed], but it becomes more
significant for r = R, — 50 km and deeper parts. The figs. 3 b) and c) show
that the differences between the models 1 and 2 become significantly larger
in deeper parts of the core. The graphs for g;; show that the relative rotation
amplifies the values of this coefficient compared to that with zero-velocity.
Furthermore, this amplification is stronger for model 2, which suggests that
the different directions of the relative rotation in model 1 (w < 0 in r €
(R.—25km) versus w > 0in r € (R.—50 km)) cause a partial cancellation of
the effect of the relative rotation. However, this cannot clearly be concluded
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from the behavior of gss.

iii) The departures from the steady-state solutions are significant at all
levels of r, R,. and become large at the deepest shell considered. As expected,
the phase shift between the stationary and the non-stationary solutions in-
creases with depth and reaches values of about 40 years for r = R, — 100 km.
Comparing the variations for the different w models, we can conclude that
the phase shifts and the increase of their amplitudes are the major effects
of the relative rotation, whereas the spectral content of the variations is not
changed. As expected from the governing equations, the spectral content will
be changed if w is assumed to be time dependent.

In addition, Fig. 3 ¢) shows large oscillations of gs5. The first part of the
time interval is dominated by the influence of the required initial condition
by which a certain arbitrariness is introduced. As a measure of its length,
the phase shift can be considered, which amounts to about 40 years for
r = R. — 100 km. Therefore, the irregular behavior in, e.g., Fig. 3 ¢) for
gss in the first 40 years is a typical effect of the regularization procedure.
The large amplitudes of the variations in the middle of the curves indicate
that the algorithm approaches numerical instability. To this subject, it must
be mentioned that the misfit bound, €, = ||¢(.) — u(Ry,.)||, at R, (see
procedure (19)) is chosen as 5% for r > R. — 50 km, corresponding to the
assumed error level of the data. This r level is then the maximum depth for
which no instabilities appear. For r = R.—100 km, we need a higher ¢, value
(10 %) to reach a stable solution, otherwise the solution becomes unstable for
€m = 5% and r = R, — 100 km, corresponding to the typical trade-off in the
Tikhonov regularization. From a physical point of view, this behaviour may
be associated with crossing the skin depth of decadal variations by downward
continuation. Because we are not dealing with single frequencies, this skin
depth cannot be quantified by only one value of r and is an interval of radii
according to the frequency spectrum of the used time series. The associated
effects in the numerical method are the instability and an r dependent ¢,
necessary to reach stable solutions.

Nevertheless, some tens of kilometers below r = R, — 100 km stability
can no more be reached by reasonable ¢, values, i.e., solutions of physical
relevance can no longer be determined for depths greater 100 km, by this
method.
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6 Conclusions

We show that the algorithm, by which we solved the inverse mantle-induction
problem recently (Ballani et. al., 2001), can be enlarged to the outermost core
with small modifications if the velocity field of the outer core is approximated
with a relative differential rotation. As the method does not represent a kind
of disturbance theory but provides the full inversion free from assumptions
on the scale of the magnetic field, it is able to account for the high con-
ducting core material at least down to a depth of 100 km combined with
the prescribed motions. Nevertheless, for a more realistic velocity field, the
situation will be more complicated, in particular if the toroidal field must
be considered. Therefore, our investigation should only be understood as a
preliminary step in the investigation of the inverse induction problem of the
core.

By an example calculation we show that the effect of the high conductivity
dominates the downward continuation. The influence of the relative rotation
is marginal in the first 25 km of the outer core and becomes more significant
in deeper parts. The comparison with the stationary solution shows that the
inverse solution is stable in the first 50 km of the upper core if a data error ¢,
of 5% at r = R, is allowed; for 100 km depth, this value must be increased
to 10% in order to at all construct a reasonable solution. Besides possible
physical constraints not considered in this paper, this behaviour is probably
related to an r dependent skin effect appearing if the boundary values are
given by a discrete finite time series with a certain spectral band instead of
a single harmonic signal.

The method used can be applied to calculations of geomagnetic variations
in the outer core necessary for investigations of the velocity field by frozen-
flux theory, calculations of EM torques and estimates of the strength of the
magnetic-flux in the outer-core parts. The pure induction effects (e.g., in a
passive layer) are known; a further physical interpretation of these problems
compared with conventional approximative solutions should be explored in
the near future.
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Figure 1: Prescribed dependence of the angular velocity, w, on radius
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¢) r = R — 100 km inside the



