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Abstract: In order to catch up the short-term clock variation of GNSS satellites, clock 

corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). 

This estimation is already very time-consuming for the GPS constellation only as a great 

number of ambiguities need to be simultaneously estimated. However, on the one hand better 

estimates are expected by including more stations, and on the other hand satellites from 

different GNSS systems must be processed integratively for a reliable multi-GNSS 

positioning service. To alleviate the heavy computational burden, epoch-differenced 

observations are always employed where ambiguities are eliminated. As the epoch-differenced 

method can only derive temporal clock changes which have to be aligned to the absolute 

clocks but always in a rather complicated way, in this paper, an efficient method for  

high-rate clock estimation is proposed using the concept of “carrier-range” realized by means 

of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time 

processing are developed, respectively. The experimental validation shows that the 

computation time could be reduced to about one sixth of that of the existing methods for 

post-processing and less than 1 s for processing a single epoch of a network with about  

200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed 
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processing strategy will enable the high-rate clock estimation for future multi-GNSS 

networks in post-processing and possibly also in real-time mode. 

Keywords: precise point positioning service; high-rate clock correction; integer clock 

correction; carrier-range; integer ambiguity resolution 

 

1. Introduction 

Precise point positioning (PPP), where precise orbit and clock corrections are essential [1], is widely 

applied in areas ranging from GNSS-based Precise Orbit Determination (POD) of Low Earth Orbit 

(LEO) satellites to ground surveying. Due to the high altitude of GNSS satellites, their orbits can be 

precisely determined and predicted as well. Therefore, orbits do not have to be updated very fast, and 

even predicted orbits can also fulfill the PPP requirement for a few hours. However, satellite clock 

corrections must be estimated or updated very frequently due to their short-term variations which are 

confirmed by the significant difference between estimated high-rate corrections and values interpolated 

from low-rate estimates [2]. Montenbruck et al. [3] proved that the linearly interpolated clock corrections 

from 5-min clock products are not sufficient to achieve high LEO orbits accuracy of a few cm. Therefore, 

30 s or even higher rate satellite clock corrections are necessary to PPP for precise applications,  

in particular for kinematic applications such as orbit and trajectory determination of LEO and other 

moving platforms. 

Usually, phase ambiguities must be estimated simultaneously with clock corrections using phase and 

range observations from a global GNSS ground network. The large number of ambiguities makes the 

estimation of high-rate clock corrections quite time-consuming, what is particularly significant for  

real-time applications. This situation will become even worse as more satellites and stations are included 

in the processing. On the one hand, processing of denser networks is suggested for better clock corrections. 

On the other hand, newly emerging GNSS systems, such as the Chinese Beidou system (BDS) and the 

European GALILEO system, are expected to be involved in current GPS and GLONASS processing to 

provide multi-GNSS services for better accuracy and reliability. 

In order to improve the computational efficiency, several approaches have been developed for 

estimating high-rate clocks by using epoch-differenced observations where ambiguities are removed. 

For post-processing, Bock et al. [2] developed an efficient algorithm to estimate clocks of 30 s and/or 5 s 

based on the low-rate clock corrections (e.g., 300 s) from a regular orbit determination procedure. In the 

algorithm, clock differences between adjacent epochs are estimated using epoch-differenced phase 

observations and then the estimates are combined with the low-rate clocks as control points to obtain the 

final high-rate clock corrections. For real-time processing, Zhang et al. [4] and Ge et al. [5] suggested a 

similar processing strategy with two processes running in parallel. One is to estimate clock corrections 

directly, but with a slow update rate of about 300 s, while the other one is to estimate epoch-differenced 

clock corrections with a high update rate. The epoch-differenced clocks are converted to high-rate clocks 

with the data provided by the first process. Although clock corrections from the epoch-differenced 

solutions are of high quality and in principle could satisfy the demands of PPP applications, the absolute 

clocks are maintained in a complicated way, especially in the real-time mode. In addition, this solution  
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is theoretically different from the undifferenced solutions, because correlations between epochs  

are neglected. 

Instead of the epoch-differenced method, the concept of “carrier-range” proposed by Blewitt et al. [6] 

provides a new perspective to relieve the computational burden, where all the ambiguities are resolved 

in advance [7]. Based on the carrier-range concept, Chen et al. [8] use PPP with ambiguity resolution to 

produce carrier-ranges on station base for efficiently processing huge networks. In this paper, the method 

is modified for estimating high-rate clock corrections and two processing procedures are developed for 

both post-processing mode and real-time mode, respectively. In the post-processing mode, the fixed 

integer ambiguities based on the low-rate products are properly introduced to convert high-rate phases 

to carrier-ranges. In contrast, the fixed integer ambiguities of the previous epoch are used for generating 

carrier-ranges at the current epoch in real-time mode. In this way, the clock corrections can be estimated 

very efficiently because no or only a few ambiguities are included in the estimation. 

In the following sections, the current methods using undifferenced and epoch-differenced 

observations are firstly introduced; and then the new processing procedures based on carrier-range for 

post-processing mode and real-time mode are presented, respectively. Finally the computation efficiency 

and the quality of clock corrections from the new processing procedure are accessed. 

2. Undifferenced Estimation 

As station coordinates, satellite orbits and Earth Rotation Parameters (ERP) can be well determined 

in advance, and they are usually fixed in the clock estimation. For example, for estimating high-rate 

clocks in post-processing mode, the above-mentioned parameters and zenith total delay (ZTD) as well, 

are already precisely estimated in the precise orbit determination with a lower sampling rate. Furthermore, 

the ZTD parameters could also be fixed in the post-processing mode, whereas in the real-time mode, they 

must be estimated with clock corrections together. Therefore, the observation equations of ionosphere-free 

combination can be expressed as: ݒ௅௖ =δݐ௥ − δݐ௦ + ݉δܶ + λଵܾ௖ + ݈௅௖ݒ௉௖ =δݐ௥ − δݐ௦ + ݉δܶ + ݈௉௖  (1)

where, δݐ௥  and δݐ௦  are the receiver and satellite clock, respectively; δܶ  and m are ZTD and the 

corresponding mapping function; ܾ௖ represents the phase ambiguities; ݈௅௖ and ݈௉௖ are pre-fit residuals of 

the phase and range observations, while ݒ௅௖ and ݒ௉௖ represent the related post-fit residuals, respectively. 

In addition, the phase center correction and the phase windup effect must be corrected in modeling and 

the satellite-dependent differential code biases (DCB) [9] should also be applied, especially if different 

types of range observations are employed. 

The estimation using Equation (1) is nowadays widely applied to network solutions, such as precise 

orbit determination, and it is rather time-consuming due to the great number of ambiguities. The number 

of ambiguities increases dramatically along with the number of stations and satellites, so that it is very 

difficult to carry out for large networks and for multi-GNSS constellations. In order to improve the 

computational efficiency, epoch-differenced methods are proposed where ambiguities are eliminated. 
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3. Epoch-Differenced Estimation 

Based on the undifferenced observation equations Equation (1), the epoch-differenced observation 

equations can be written as: ݒ∆௅௖(݅) = ∆δݐ௥(݅) − ∆δݐ௦(݅) + ∆݉(݅)∆δܶ(݅) + ∆݈௅௖(݅)ݒ∆௉௖(݅) = ∆δݐ௥(݅) − ∆δݐ௦(݅) + ∆݉(݅)∆δܶ(݅) + ∆݈௉௖(݅) (2)

where, ∆ is the differential operator between two adjacent epochs, for example, the differenced clock 

correction is ∆δݐ௦(݅) = δݐ௦(݅) − δݐ௦(݅ − 1). 
As ambiguities are removed from observation equations, the computational efficiency could be 

improved significantly, and the epoch-differenced clocks can also be estimated precisely. However, the 

clock correction at the initial epoch is required in order to obtain the clock corrections by the accumulation 

of the successive epoch-differenced clock corrections. The maintenance of the absolute clock offsets thus 

becomes a critical issue in the epoch-differenced methods. For the post-processing step, Bock et al. [2] 

proposed the use of the estimated low-rate clocks as control points to align the accumulated clock changes 

to absolute clocks. For real-time processing, Zhang et al. [4] and Ge et al. [5] suggested a similar 

processing schema with two parallel processes—one is to estimate the epoch-differenced clocks and the 

other is to estimate the clock offsets. In all the above methods, if cycle slips happen, no epoch-differenced 

observations could be formed with respect to the last epoch. In the case that most of the stations lose 

tracking of one satellite, its absolute clock offset cannot be propagated forward. Furthermore, using  

epoch-differenced observations is not theoretically equivalent to that using undifferenced ones, as the 

statistical correlations between differenced observations is usually neglected. 

4. Carrier-Range Methods 

Similar to the method for huge network solutions [8], the ambiguities could be resolved station by 

station in advance. For completeness, we briefly introduce the carrier-range method here. In Equation (1), 

the ambiguities of the ionosphere-free combination are always expressed as wide-lane ܾ௪ and narrow-lane ܾ௡ for ambiguity resolution: ܾ௖ = ଵ݂ଵ݂ + ଶ݂ ܾ௡ + ଵ݂ ଶ݂ଵ݂ଶ − ଶ݂ଶ ܾ௪ (3)

where ܾ௖ is the ambiguity of ionosphere-free combination; ଵ݂ and	 ଶ݂ are signal frequencies; ܾ௪ and ܾ௡ 

are wide-lane and narrow-lane ambiguities, respectively. Although ܾ௪ and ܾ௡ are not natural integer 

values due to the existence of the uncalibrated phase delays (UPD), the fractional part of UPDs can be 

estimated from a reference network and applied to all the stations for integer ambiguity resolution in 

PPP mode [10]. 

The wide-lane ܾ௪ could be calculated from Melbourne-Wübbena combination [11,12], then, similar 

to [13,14], the fractional part of ܾ௪ could be expressed as: ܾܨ௪ = δܾ௪௥ + δܾ௪௦  (4)
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where ܾܨ௪  is the fractional part of wide-lane and δܾ௪௥ , δܾ௪௦  represent receiver-dependent and  

satellite-dependent wide-lane UPDs. After fixing a receiver-dependent UPD or a satellite-dependent 

UPD, wide-lane UPDs could be derived from Equation (4). 

With the help of wide-lane UPDs, wide-lane ambiguities could be fixed. Afterwards, ܾ௪  can be 

replaced by its integer number, then the related wide-lane UPDs could be merged into the associated 

narrow-lane ambiguity. Therefore Equation (3) can be written as: ܾ௖ = ଵ݂ଵ݂ + ଶ݂ ܾ௡′ + ଵ݂ ଶ݂ଵ݂ଶ − ଶ݂ଶ ܰ௪ (5)ܾ௡′ = ௡ܰ + δܾ௡௥ + δܾ௡௦  (6)

where ܾ௡′ is the new narrow-lane ambiguities after absorbing the related wide-lane UPDs; ܰ௪ is the 

fixed integer value of the wide-lane ambiguity; ௡ܰ, δܾ௡௥ and δܾ௡௦  are the integer narrow-lane ambiguity 

and the related UPD for the receiver and satellite, respectively. 
From Equation (5), the new narrow-lane could be derived from a known ionosphere-free ambiguity and 

a relative fixed wide-lane ambiguity. Then similar to the calculation of wide-lane UPDs, the fractional part 

of the new narrow-lane ܾ௡′ could be expressed as: ܾܨ௡′ = δܾ௡௥ + δܾ௡௦  (7)

where ܾܨ௡′  is the fractional part of narrow-lane and δܾ௡௥ , δܾ௡௦  represent receiver-dependent and 

satellite-dependent narrow-lane UPDs. 

According to the above-mentioned approach, the wide-lane UPDs and narrow-lane UPDs could be 

derived accurately and applied to any other station to recover the integer nature of ambiguities for fixing. 

After both the wide-lane and narrow-lane ambiguities are fixed, taking Equations (5) and (6) into 

consideration, the observation equation Equation (1) could be rewritten as: ݒ௅௖ − λଵ ቆ ଵ݂ଵ݂ + ଶ݂ ௡ܰ + ଵ݂ ଶ݂ଵ݂ଶ − ଶ݂ଶ ܰ௪ቇ = δݐ௥ − δݐ௦ + λଵ ଵ݂ଵ݂ + ଶ݂ (δܾ௡௥ + δܾ௡௦) + ݉δܶ + ݈௅௖ݒ௉௖ = δݐ௥ − δݐ௦ + ݉δܶ + ݈௉௖  (8)

where the integer ambiguities are introduced into the equations as known values. This also means that the 

observations correspond to an ambiguity-fixed solution and will certainly result into better clock estimates 

if there is no wrong fixing. Of course, in practice, it is hard to fix all the ambiguities correctly, especially 

for PPP where UPDs bring additional errors. In this paper, we simulated the real-time processing and 

with a focus on its computational efficiency, in real data processing, we suggest to only fix those 

ambiguities with high confidence. It should also be pointed out that the narrow-lane UPDs at the receiver 

and satellite can either be corrected or estimated. In principle, the narrow-lane UPD parameters cannot 

be ignored, as they could be absorbed by the clock parameters of the carrier-range observation equation 

and that will lead to inconsistent definition of clock parameters in the carrier-range and code-range 

observations. If only carrier-range observations are used for clock correction determination, then UPDs 

cannot be separated from clock corrections, the Equation (8) can be written as: 
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௅௖ݒ − λଵ ቆ ଵ݂ଵ݂ + ଶ݂ ௡ܰ + ଵ݂ ଶ݂ଵ݂ଶ − ଶ݂ଶ ܰ௪ቇ = δݐ௜௥ − δ݅ݐ௦ + ݉δܶ + ݈௅௖δݐ௜௥ = δݐ௥ + λଵ ଵ݂ଵ݂ + ଶ݂ δܾ௡௥δݐ௜௦ = δݐ௦ + λଵ ଵ݂ଵ݂ + ଶ݂ δܾ௡௦
 (9)

where δݐ௜௥ and δݐ௜௦ are the receiver and satellites clocks including the corresponding UPDs, respectively. 

With these clock corrections, the estimated ambiguities will have integer characteristics, thus they are also 

referred to as integer clocks [15,16]. In principle, the method could be directly applied for data processing 

of three frequencies if two ionosphere-free observations are performed. However, recent studies showed 

the possible inconsistency of GPS L5 with L1 and L2 [17]. Therefore, there are still issues that should 

be investigated, especially the DCBs, UPDs and their consistency. This is also the reason we only include 

two frequencies in this paper. 

Since there are no ambiguities to be estimated for the carrier-range, the efficiency could be improved 

greatly. Taking all the above into consideration, the processing procedures using the carrier-range 

concept can be illustrated in Figures 1 and 2 for post-processing and real-time processing, respectively. 

Figure 1. Overview on the estimation of clock corrections in post-processing mode  

using carrier-ranges. 

 

As illustrated in Figure 1, the estimation of clock corrections in post-processing mode can be carried 

out with the following steps: 

(1) Precise orbit determination with a low sampling rate (e.g., 300 s) is carried out to provide  

orbits and clocks similar to the IGS final products using a global network with homogeneously 

distributed stations. 
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(2) UPDs are derived from the float ambiguities in precise orbit determination according to 

Equations (4) and (7) and the magnitude of UPDs is kept below one cycle for both wide-lane  

and narrow-lane. 

(3) The RINEX files are loaded one by one, and PPP with ambiguity fixing is carried out station by 

station with the help of the precise orbits, clocks (low-rate) and UPDs. The fixed ambiguities are 

stored in a station-related file. 

(4) With the fixed ambiguities, a new RINEX file is created by converting the carrier-phases of the 

original RINEX file into carrier-ranges. The fixed ambiguities are also applied for those epochs 

which are not used in the low-rate processing, if no cycle slip occurs. Therefore the sampling 

interval of the new RINEX file is kept the same as the original one. 

(5) Repeat steps (3) and (4) until there is a related new RINEX file for each station. 

(6) Based on the new RINEX files, clock corrections or integer clock corrections can be achieved 

using the efficient way expressed by Equations (5) and (6), respectively. 

Figure 2. Overview on the estimation of clock corrections in real-time mode using carrier-range. 

 

Similarly, as shown in Figure 2, the whole procedure of the real-time processing can be described  

as follows: 

(1) Similar to the post-processing mode, precise orbit determination with a processing interval of 

300 s is carried out in batch mode with a fixed update rate, for example every few hours, and the 

predicted orbits are generated for clock estimation. 

(2) The clock estimation is carried out according to Equation (1) with the predicted orbits. At the 

beginning, all ambiguities must be estimated. During this period, sampling rate and stations 

involved could be properly reduced in order to save computation time. 

(3) The estimated undifferenced ambiguities can be utilized for UPD estimation for undifferenced 

ambiguity resolution. Here, we can also perform PPP for each of the reference stations and to 

estimate UPDs with the PPP estimated ambiguities  
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(4) The fixed ambiguities are added to the phase observations of the consequent epochs to obtain 

carrier-ranges if no cycle slips were detected. These carrier-ranges will be used in step 2 for  

high-rate clock estimation for saving computational time. 

(5) Steps (2)–(4) is carried out for each epoch. As more and more ambiguities could be fixed along 

with the epoch-increasing progress, the processing is accelerated epoch by epoch. 

5. Experimental Validation 

As the critical task of this study is to tackle the heavy computation burden for the clock estimation, 

the major aim of the experimental validation is the assessment of the computational efficiency of the 

new approach. 

5.1. Software and Data 

In order to validate the new processing method based on the carrier-range concept, the PANDA 

software developed at Wuhan University [18,19] was adapted for processing carrier-ranges. Two processing 

procedures for post-processing and real-time processing were developed with the improved version of 

PANDA as processing core. GPS data with a sampling rate of 30 s from about 450 global distributed 

permanent stations, as shown in Figure 3, over the time from DOY 203 to 238, 2012, were employed. 

Different networks would be defined for various processing scenarios. 

Figure 3. Station distribution of the experimental network. There are about 450 stations in total. 

Among them, about 100 stations indicated with red triangles, are used for orbit determination 

and high-rate clock estimation, while the blue dots indicate the other about 350 stations for 

assessing product quality. 

 

5.2. Processing Scenarios 

In order to assess the efficiency of the carrier-range strategy, five networks with station number of 

50, 100, 150, 200, and 250 were defined. Data on the day 203, 2012 of all the networks were processed 

using the undifferenced method and the carrier-range method in the post-processing and real-time mode, 

respectively. The sampling rate was 30 s in order to obtain the high-rate clock corrections. The computational 
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time of one least-squares adjustment for each network was recorded and compared for assessing the 

computational efficiency of each method.  

For post-processing, the traditional undifferenced method was rather straightforward following the 

approach of Ge et al. [20], where ambiguities were estimated as unknowns and only active parameters 

were kept in the normal equation to save computation time. The carrier-range method was carried out 

following the procedure illustrated in Figure 1. In the first step, the orbits and clocks of 300 s interval 

were estimated using the network with about 100 reference stations (indicated by red triangles in Figure 3) 

for all the above mentioned networks.  

For the real-time mode, simulated real-time processing was undertaken and we even assumed  

that all ambiguities were resolved in advance to test the computation time. According to [21], PPP 

ambiguity-resolution could be carried out stably with a high success rate, so this simulation is reasonable 

to test the possible efficiency this strategy could achieve in real time. In other words, the raw data were 

read from RINEX files and then the fixed ambiguities were employed to obtain carrier-ranges. Afterwards, 

the clocks were estimated epoch by epoch with ZTD parameters, simultaneously. The average computational 

times for one single epoch of both methods were compared. 

Additionally, the orbits and high-rate clocks were also briefly assessed but only for the post-processing 

products. Among the 450 IGS stations shown in Figure 3, about 100 core stations indicated with red triangles 

were used to generate the satellite clocks, while the remaining indicated by blue dots were employed as 

PPP user stations. For each day from 203 to 238, 2012, the 30 s clocks were estimated following the 

procedure of Figure 1. In the final step only carrier-range measurements were adopted, so that with this 

kind of products, ambiguity fixing could be performed directly without satellite UPDs. Then PPP was 

carried out with the orbits and high-rate clocks for the 350 user stations and with ambiguity fixing. The 

results both before and after ambiguity fixing were compared to the IGS weekly solutions. 

5.3. Validation of Computational Efficiency 

All the test computations were carried out on a computer equipped with two processors (2.13 GHZ) 

and 4 GB RAM under openSUSE linux operation system. For post-processing, as the orbits and clocks of 

a low-rate processing are already available, PPP is usually employed to speed up the data cleaning. This 

means, in both the traditional method and the carrier-range method, PPP is iteratively carried out for all 

the involved stations. The additional steps for the carrier-range method are the UPD estimation, PPP 

ambiguity-fixing and generation of RINEX files with carrier-ranges. However, UPD estimation is quite 

efficient, it takes only about 50 s for the daily data from a network with about 100 stations and the UPD 

estimation only needs to be estimated once a day. Other steps can be carried out station by station in parallel 

and it takes only about 5 s to finish all these steps for one station. Therefore, only the computation time 

for the final step is considered here. As shown in Figure 4, the carrier-range method has a linearly 

increasing processing time proportional to the increasing number of stations. It only takes 32 min for 

processing a network with about 250 stations, which saves about 85% computation time compared to 

the traditional ones. The results also suggest that more stations and more satellites could be included in 

the carrier-range method. 

For real-time processing, average computation time per epoch of both simulated experiments  

(carrier-range method) described above and the undifferenced method for networks with different number 
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of stations, are shown in Figure 5. It can be seen that it takes only 0.12, 0.26, 0.42 and 0.60 s per epoch for 

networks comprising 50, 100, 150 and 200 stations, respectively, whereas, 10.7 s is needed for the traditional 

method for the network comprising 200 stations. The computation time of the carrier-range method has 

a linear increase along with the increase of the number of stations. This also demonstrates the potential 

of including more stations and satellites for clock estimation in real-time with the new strategy. 

Figure 4. Comparison of computation times of the new method (red squares) and traditional 

method (blue triangles) for networks with different number of stations. 

 

Figure 5. Comparison of average computation time per epoch of the new method (red 

squares) and traditional method (blue triangles) for networks with different number  

of stations. 

 

5.4. Clock Quality 

Since the real-time experiments are simulated only for testing the possible efficiency this method 

could achieve, and its fixed ambiguities are also from post-processing, in this paper, only clocks from 
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post-processing are tested for quality checking. Statistically, about 94% narrow-lane ambiguities over the 

experimental period for all stations could be fixed, and we found that most of the unfixed ambiguities are 

related to a low elevation angle, which shows a great consistency between clock corrections  

and ambiguities. 

The difference of the station coordinates between PPP results and IGS weekly solution provides a 

more realistic indicator of the quality of the integer clocks. As shown in Table 1, after having applied a 

seven-parameter transformation, the mean RMS of ambiguity-float solutions in east, north and up 

directions are 3.8, 3.0 and 6.0 mm, respectively, while those for ambiguity-fixed solutions are 2.6, 2.9 

and 5.8 mm, respectively. The ambiguity resolution mainly contributes to the east components, which 

coincides with the foundings by Geng et al. [22]. 

Table 1. Mean RMS of station coordinates with respect to IGS weekly solution. 

Type (the Processing Interval is 30 s) 
Mean RMS with Respect to IGS Weekly Solutions (mm) 

East North Up 

Ambiguity-float solutions 3.8 3.0 6.0 
Ambiguity-fixed solutions 2.6 2.9 5.8 

6. Conclusions 

Two processing procedures for estimating high-rate clock corrections for post-processing and real-time 

processing, respectively, are developed using the carrier-range observations generated based on PPP with 

ambiguity resolution. In post-processing, PPP is firstly carried out at every station at low rate processing 

interval, and the ambiguities are resolved after applying UPD corrections. Then all the carrier-phases are 

converted to carrier-ranges with a high-rate sampling, and finally, with the carrier-ranges the clocks 

determination can be done in an efficient way because no ambiguities or only few unfixed ambiguities 

need to be estimated. In real-time mode, the whole procedure starts with the undifferenced model. Then, 

the fixed ambiguities from last epoch are used to convert the carrier-phases to carrier-ranges at current 

epoch if no cycle slips were detected. The processing is accelerated step by step by fixing more and  

more ambiguities. 

A preliminary validation experiment shows that it takes only about 32 min for a network with about 

250 stations for estimating clocks of 30 s sampling rate, while it takes about 214 min using the traditional 

method for daily data. 

With the estimated integer clocks, about 94% ambiguities could be fixed in the PPP processing. The 

mean RMS of station coordinates of the PPP fixed solutions in east, north and up directions with respect 

to IGS weekly solution are 2.6, 2.9 and 5.8 mm, respectively. For real-time processing, the simulated 

experiment shows that it takes only 0.12, 0.26, 0.42 and 0.6 s for a single epoch for networks comprising 

of 50, 100, 150 and 200 stations. 

The experimental validation confirms that the new processing strategy will enable the high-rate clock 

estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode. 
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