

GEOFORSCHUNGSZENTRUM POTSDAM STIFTUNG DES ÖFFENTLICHEN RECHTS

Scientific Technical Report

ISSN 1610-0956

3-D Lokalbebentomographie der südlichen Anden zwischen 36° und 40°S

Dissertation zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

am Fachbereich Geowissenschaften der Freien Universität Berlin

vorgelegt von

Mirjam Bohm

Januar 2004

Erstgutachter: Zweitgutachter: Priv. Doz. Dr. Günter Asch Prof. Dr. Rainer Kind

Tag der Disputation: 20. Februar 2004

Ein heftiges Erdbeben zerstört mit einem Schlage alle gewohnten Vorstellungen, daß nichts so sicher und fest sei wie die Erde, die wir bewohnen; nun schwankt plötzlich der Boden unter unseren Füßen wie eine dünne Kruste über einer unsicheren Flüssigkeit.

Ch. Darwin

•

Zusammenfassung

Die südlichen Anden sind Teil des aktiven Kontinentalrandes von Südamerika, der durch eine Kombination subduktionsgebundener Prozesse gebildet wurde. Die andine Gebirgskette erstreckt sich über den gesamten südamerikanischen Kontinent, variiert jedoch merklich in Höhe und Krustenmächtigkeit. Während die Zentralen Anden, vor allem auch die tieferen Strukturen bis in den oberen Mantel, vergleichsweise gut erforscht sind (SFB 267), ist über den geophysikalischen Aufbau der südlichen Anden bisher relativ wenig bekannt. Aus diesem Grund wurde das seismische Experiment ISSA 2000 in den südlichen Anden durchgeführt. In dieser Arbeit wurde mithilfe der Methode der lokalen Erdbebentomographie ein 3-D Modell der seismischen Geschwindigkeitstruktur erstellt. Die gleichzeitig durchgeführte Lokalisierung der registrierten Erdbeben, ergibt darüberhinaus ein detailliertes Bild der Verteilung der Seismizität im Untersuchungsgebiet.

Im Rahmen des ISSA 2000-Experimentes wurde ein seismologisches Netzwerk mit 62 Seismographen betrieben, das die Subduktionszone von der Küste bis in den *backarc* zwischen 36° und 40°S überdeckt. In einem Zeitraum von 3 1/2 Monaten wurden 440 lokale Erdbeben registriert, die Aufnahme in den ISSA 2000-Datenkatalog fanden.

P- und S-Laufzeiten von 150 ausgewählten, gut lokalisierbaren Erdbeben wurden für das 1-D Geschwindigkeitsmodell und die Hypozentralparameter invertiert. Das Geschwindigkeitsmodell diente als Startmodell in der 3-D Tomographie. Die Hypozentren der Erdbeben zeigen eine $\sim 30^{\circ}$ geneigte Wadati-Benioff-Zone mit kontinuierlicher Seismizität bis in 120 km Tiefe, die vereinzelt bis in 200 km Tiefe zu beobachten ist. Sowohl die generell geringe Seismizität im Untersuchungsgebiet als auch die geringe Tiefenerstreckung der Wadati-Benioff-Zone u.a. im Vergleich zu den Zentralen Anden sowie die Konzentration der mitteltiefen Erdbeben in 60 km Tiefe, spiegeln wahrscheinlich den Einfluß des jungen Alters und des damit verbundenen hohen thermischen Zustandes der Nazca-Platte auf das Subduktionsregime wider. Die krustale Seismizität konzentriert sich im *forearc* Bereich nördlich und südlich der Arauco-Halbinsel am Beginn aktiver Störungszonen (Bio-Bio- und Gastre-Störung) und damit in einem Gebiet, das die höchsten Hebungsraten im *forearc* aufweist. Während sich die Diskontinuitäten ins Landes-innere bis zur Hauptkordillere fortsetzen, ist ihr seismische aktiver Teil auf den *forearc* begrenzt.

Die 3-D v_p Tomographie wurde nach dem graduellen Ansatz durchgeführt, d.h. es wurde noch ein 2-D Modell als Zwischenschritt erstellt. Diese Vorgehensweise stellt sicher, daß in Gebieten mit geringerer Auflösung, die wahre Struktur besser durch ein regionales 2-D Modell abgeschätzt wird. Besonderes Gewicht wurde auf die Abschätzung der Lösungsqualität gelegt. Neben den Standardparametern, wie DWS, RDE und *spread* Funktion, wurden auch synthetische Test in die Analyse einbezogen. Die kombinierte Abschätzung der Lösungsqualität ergab gut aufgelöste Bereiche für die Küstenkordillere und das Längstal bis in 100 km Tiefe. Unterhalb der Hauptkordillere nimmt die Auflösung ab und variiert von N nach S zwischen 30 und 100 km Tiefe. Für das v_p/v_s Verhältnis konnte ein 2-D Modell berechnet werden.

Das tomographische v_p Modell zeigt zum ersten Mal die Geschwindigkeitsstruktur der südlichen Anden (Küstenkordillere bis Hauptkordillere) bis in eine Tiefe von 100 km. Es ist im Wesentlichen durch von Osten nach Westen variierende Geschwindigkeitsanomalien geprägt. Die Nazca-Platte ist durch die Lage der Erdbeben definiert und durch hohe v_p Geschwindigkeiten gekennzeichnet (7,2–8,3 km/s). Die durchschnittlichen Geschwindigkeiten in der kontinentalen Kruste sind im gesamten v_p Modell relativ hoch (5,5–6,5 km/s). Die tieferliegende Struktur kann in drei Gebiete unterteilt werden.

Erniedrigte v_p Geschwindigkeiten in 30–50 km Tiefe unterhalb der Küstenkordillere und oberhalb der abtauchenden Platte deuten eine mögliche Hydratisierung und Serpentinisierung des kontinentalen Mantelkeils an. Die Konzentration der Erdbeben in 60 km Tiefe, die auf Dehydratisierungsprozesse innerhalb der subduzierten ozeanischen Lithosphäre zurückzuführen ist, könnte mit der beobachteten Geschwindigkeitsanomalie verbunden sein. Mantelgeschwindigkeiten werden in diesem Bereich nicht beobachtet.

Der Bereich unterhalb des Längstals ist von einer markanten Anomalie erhöhter v_p Geschwindigkeiten geprägt, die das gesamte Untersuchungsgebiet von N nach S durchzieht. Mantelgeschwindigkeiten werden hier ab 40 km Tiefe erreicht.

Weiter nach Osten nimmt die Krustenmächtigkeit zu und erreicht 50–55 km unterhalb der Hauptkordillere und des aktiven vulkanischen Bogens. Geringe Geschwindigkeiten, ein erhöhtes v_p/v_s Verhältnis und die sich durch die Spektralanalyse andeutende Zone erhöhter seismischer Dämpfung könnte auf das Vorhandensein partieller Schmelzen und deren mögliche Anlagerung unterhalb der Kruste (magmatische Unterplattung) hindeuten.

Abstract

The Southern Andes are part of the South American active continental margin, which was built by a combination of subduction related processes. The Andean mountain chain covers the whole South American continent from north to south, but varies remarkeably in elevation and crustal thickness. Whereas the Central Andes, above all the deeper structures as far as the upper mantle, are studied quite intensively (SFB 267), so far little is known about the geophysical constitution of the Southern Andes. For this reason the seismic experiment ISSA 2000 was carried out in the Southern Andes. In this study a 3-D model of the seismic structure was derived using local earthquake tomography. The simultaneous localisation of the registrated earthquakes results also in a detailed picture of the distribution of seismicity in the area under investigation.

Within the framework of the ISSA 2000 experiment a seismological network with 62 seismographs was operated, covering the subduction zone from the coast to the backarc between 36° and 40° southern latitude. In a time span of 3 1/2 month 440 local earthquakes have been registrated and were collected in the ISSA 2000 data catalogue.

P and S travel times of 150 selected, well localized earthquakes were used to invert for the 1-D velocity model and the hypocentral parameters. The velocity model was used as input model for the 3-D tomography. The hypocenters of the earthquakes show a $\sim 30^{\circ}$ dipping Wadati-Benioff zone with continuous seismicity until 120 km depth, which can be observed partly until 200 km depth. Both the general low seismicity in the area under investigation, the low depth extent of the Wadati-Benioff zone (especially when compared to the Central Andes) and the concentration of the intermediate depth seismicity in 60 km depth reflect most probably the influence of the young age and therefore high thermal state of the Nazca plate to the subduction regime. Crustal seismicity is concentrated in the forearc, north and south of the Arauco peninsula at the beginning of active fault zones (Bio-Bio and Gastre fault) and therewith in an area with highest uplift. Whereas the discontinuities can be observed until the Main Cordillera, their seismically active part is restricted to the forearc.

For the 3-D v_p tomography the gradual approach was used, i.e. as an intermediate step a 2-D model was calculated. This procedure ensures that in areas of low resolution the real structure is estimated better with a regional 2-D model. The evaluation of the solution quality was done

very carefully. Beside the standard parameter, like DWS, RDE and spread function, synthetic tests were executed. The combined estimation of the solution quality resulted in areas of good resolution beneath the Coastal Cordillera and the Longitudinal Valley until a depth of 100 km. Beneath the Main Cordillera the resolution is less and varies from north to south between 30 and 100 km depth. For the v_p/v_s ratio a 2-D model could be calculated.

The tomographic v_p model shows for the first time the velocity structure of the Southern Andes (Coastal Cordillera to Main Cordillera) until a depth of 100 km. It is mainly characterized by from east to west varying velocity anomalies. The downgoing Nazca plate is defined by the location of the earthquakes and characterized by high v_p velocities (7.2–8.3 km/s). The mean velocities in the continental crust are relatively high throughout the whole v_p model (5.5–6.5 km/s). The lower structures can be divided into three subregions.

Low v_p velocities in 30–50 km depth beneath the Coastal Cordillera and above the downgoing plate indicate a possible hydratization and serpentinization of the continental mantle wedge. The concentration of earthquakes in 60 km depth, which can be attributed to dehydration processes within the subducted oceanic lithosphere, could be connected to the observed velocity anomaly. Mantle velocities are not observed in this area.

The area beneath the Longitudinal Valley shows a most prominent anomaly of increased v_p velocities, which can be observed in the whole area under investigation from north to south. Mantle velocities are reached here in 40 km depth.

Further east crustal thickness increases and reaches 50–55 km below the Main Cordillera and active volcanic arc. Low velocities, an increased v_p/v_s ratio and a zone of increased seismic attanuation which can be seen in the spectral analysis suggest the existence of partial melts and its possible attachment below the crust (magmatic underplating).

Resumen

Los Andes del Sur son parte del margen continental activo de Sudamérica, y tienen origen en una serie de procesos relacionados con la subducción. La cordillera andina se prolonga a lo largo de todo el continente sudamericano, y varia marcadamente en altura y espesor de la corteza continental. Mientras que los Andes centrales, están relativamente bien investigados, principalmente por parte del SFB 267, desde las estructuras profundas hasta el manto superior, es muy poco lo que se ha avanzado en las características geofísicas referidas al origen de los Andes australes. Por esta razón fue llevado a cabo el Proyecto de Investigación de los Andes del Sur ISSA 2000. En este trabajo, se realizó mediante el método de tomografía de sismos locales, un modelo tridimensional (3-D) de la estructura sismológica de velocidades. Al mismo tiempo, la localización de los sismos registrados, provee una detallada idea de la distribución de la sismicidad en el área de estudio.

En marco del experimento ISSA 2000, se instaló una red sismológica de 62 sismógrafos, con el objetivo principal de abarcar la zona de subducción desde la costa hasta el retro-arco entre 36° y 40°Sur. Durante tres meses y medio se registraron un total de 440 sismos locales, los cuales se encuentran en el catalogo de registros de ISSA 2000.

Los tiempos de recorrido de las ondas P- y S- de 150 sismos locales, de buena calidad de localización, fueron invertidos para el modelo de velocidad uni-dimensional (1-D) y el parámetro hipocentral. Los hipocentros de los sismos muestran una zona de Wadati-Benioff con una inclinación de $\sim 30^{\circ}$ y continuidad sísmica hasta los 120 km de profundidad; a partir de allí puede observarse esporádicamente hasta los 200 km de profundidad. Así mismo, la baja sismicidad general en el área de estudio, la poca (en comparación con los Andes centrales) extensión de la zona de Wadati-Benioff y la concentración de la sismicidad en profundidades medias (60 km), reflejan probablemente efectos relativos a la juventud y estado termal del régimen de subducción de la placa de Nazca. La sismicidad cortical se concentra en el antearco, al Norte y Sur de la península de Arauco, en cercanías al origen de los fallamientos de Bio-Bio y Gastre y con ella en la zona con mayor elevación del antearco. Si bien, las discontinuidades se prolongan desde el interior hasta la Cordillera Principal, su actividad sísmica esta concentrada en el antearco.

La tomografía 3-D de v_p se realizó a partir de una aproximación gradual, es decir, se efectuó

un modelo 2-D como paso intermedio. Estos pasos aseguraron una mejor interpretación de la estructura real a partir de un modelo regional de 2-D en zonas con poca definición. De esta manera se le dio mayor importancia a la interpretación en la calidad de definición. Ademas de los parámetros estándar como ser DWS, RDE y función *spread*, se realizó un Test sintético adicional. Las interpretaciones combinadas de la calidad de definición dieron como resultado, áreas de buena definición en la Cordillera de la Costa y Valle Longitudinal hasta una profundidad de 100 km. Por debajo de la Cordillera Principal, la definición va disminuyendo y varia de Norte a Sur entre 30–100 km de profundidad. Fue posible también, calcular un modelo 2-D para la relación v_p/v_s .

El modelo tomográfico v_p , muestra por primera vez la estructura de velocidades de los Andes australes (Cordilleras de la Costa y Principal) hasta una profundidad de 100 km, esencialmente enmarcado por anomalías en las velocidades de Este a Oeste. La placa de Nazca esta definida por los sismos e identificada por una alta v_p (7,2–8,3 km/s). Las velocidades medias de la corteza continental son relativamente altas para el modelo v_p (5,5–6,5 km/s). La estructura profunda puede ser dividida en tres regiones.

Bajas velocidades v_p entre 30–50 km de profundidad, por debajo de la Cordillera de la Costa y por encima de la placa subductada, podrían indicar una hidratación y serpentinización del manto continental. La concentración de sismos a los 60 km de profundidad, derivada de la deshidratación de la litosfera oceánica subductada, puede estar relacionada con las anomalías en las velocidades observadas. Las velocidades del manto no fueron observadas en esta región.

Por debajo del Valle Longitudinal, hay una marcada alta anomalía de velocidad v_p , que se extiende de Norte a Sur. Allí las velocidades del manto se observan a partir de los 40 km de profundidad.

Hacia el este, el espesor cortical aumenta, alcanzando 50–55 km por debajo de la Cordillera Principal y el arco volcánico activo. Velocidades bajas, una alta relación v_p/v_s y una zona de alta atenuación sísmica, determinada a partir de análisis espectral, pueden estar relacionadas con los procesos de fusión parcial y su posible disposición por debajo de la corteza (*magmatic underplatting*).

Inhaltsverzeichnis

Zusammenfassung				
Ab	Abstract			
Resumen				
1	Einl	eitung	9	
2	Der	aktive Kontinentalrand Südamerikas	13	
	2.1	Einführung	13	
	2.2	Die Seismizität und das Beben von 1960	19	
	2.3	Die Entstehung der Anden - ein Überblick	20	
	2.4	Regionale Geologie des Untersuchungsgebietes	21	
	2.5	Bisherige geophysikalische Studien in der Region	24	
3	ISSA 2000-Experiment	31		
	3.1	Datengewinnung	31	
	3.2	Datenaufbereitung	33	
4	Methode		41	
	4.1	Theoretische Grundlagen der LET	41	
	4.2	Der LET Algorithmus SIMULPS	44	
	4.3	Qualität der Lösung	46	
	4.4	Das Minimum 1-D Modell	49	
5	Seis	mizität in den südlichen Anden	51	
	5.1	Das Minimum 1-D Modell der südlichen Anden	51	

INHALTSVERZEICHNIS

	5.2	Das 1-D Geschwindigkeitsmodell	53
	5.3	Seismizität	58
6	Loka	ale Erdbebentomographie	63
	6.1	Inversionsverfahren	63
	6.2	Auflösungsvermögen und synthetische Modelle	66
	6.3	Ergebnisse	77
7	Inte	rpretation und Diskussion der Ergebnisse	91
	7.1	Seismizität	91
	7.2	Tomographie-Modell	92
	7.3	Vergleich mit den Zentralen Anden	98
	7.4	Abschließende Bemerkungen und Ausblick	101
A	Stati	onsliste	115
B	Erdbebenkatalog		119
С	Teilr	nehmerliste	129
D	Veröffentlichungen		
	D.1	Papers	131
	D.2	Tagungsbeiträge	131

Kapitel 1 Einleitung

Seit Entdeckung der Plattentektonik in den 60er und 70er Jahren befassen sich weltweit viele Geowissenschaftler damit, das komplexe Erscheinungsbild der Subduktionszonen und deren entscheidenden Einfluß auf die Gestalt der Erde zu studieren. Subduktionszonen entstehen an aktiven Kontinentalrändern. Eine ozeanische Lithosphärenplatte, die sich unter eine kontinentale schiebt und in den Erdmantel eintaucht, ist kälter und dichter als die sie umgebende Asthenosphäre. Der daraus resultierende negative Auftrieb ist die treibende Kraft der Plattenbewegung. Das Abtauchen der subduzierten Platte ist eine komplexe Funktion des Alters der Lithosphäre, der Konvergenzrate und des Alters der Subduktionszone. Die Temperaturdifferenz zwischen der subduzierten Platte und des sie umgebenden Mantels hat erhebliche Auswirkungen auf die seismischen Geschwindigkeiten. Doch nicht nur die Temperatur sondern auch Fluide, die innerhalb der subduzierten ozeanischen Lithosphäre in die Tiefe transportiert werden, haben einen entscheidenden Einfluß auf die Prozesse innerhalb der Subduktionszone. Sie beeinflussen das Verhalten der Gesteine maßgeblich und damit auch die seimische Wellenausbreitung. Darüberhinaus zählen Subduktionszonen zu den besonders dynamischen Bereichen der Erde, an denen sich über 90% der Erdbebenaktivität konzentriert und fast alle besonders explosiven Vulkane vorzufinden sind. Deshalb bietet sich die lokale Erdbebentomographie hervorragend zum Studium der Subduktionszonen an.

Die Anden und der pazifische Kontinentalrand Südamerikas zählen zu den Bereichen, an denen aktive plattentektonische Prozesse besonders gut analysiert werden können. Seit 1993 tragen Wissenschaftler der Berliner und Potsdamer Universitäten und des GeoForschungsZentrums Potsdam zusammen mit den südamerikanischen Partnern im Rahmen des Sonderforschungsbereich SFB 267 "Deformationsprozesse in den Anden" dazu bei, die Prozesse, die die Subduktionsorogenese kontrollieren, zu erforschen. Mit einer umfangreichen geophysikalischen, geologischen, petrologischen und geodätischen Datenbasis konnten detaillierte Bilder der Kruste und des Mantels erstellt sowie geologische und tektonische Modelle der Anden entwickelt werden. Der bisherige Fokus der Untersuchungen des SFB 267 lag in den Zentralen Anden. Es treten jedoch beachtliche laterale Variationen entlang des andinen Kontinentalrandes auf. Sie werden besonders deutlich, wenn man die schmalen, topographisch niedrigen Patagonischen Anden mit den breiten und hohen Zentralen Anden vergleicht. Die zugrundeliegende Natur dieser Unterschiede ist trotz der offensichtlich ähnlichen plattentektonischen Bedingungen immer noch unklar. Deshalb werden seit 1999 auch die südlichen Anden intensiv untersucht. Die vorhandenen geophysikalischen und geologischen Studien werden durch eine Reihe neuer Untersuchungen vervollständigt, um die gleichen Größen und Eigenschaften wie in den Zentralen Anden darzustellen und damit die wesentlichen Ursachen, die für die Variationen entlang des Streichens veranwortlich sind, herausarbeiten zu können.

Das Anfang 2000 durchgeführte ISSA 2000-Experiment sollte ähnlich zu den seismischen und seismologischen Untersuchungen in den Zentralen Anden (u.a. ANCORP) ein Bild der Krustenstruktur und des oberen Mantels zwischen 36° und 40°S liefern und damit zum Verständnis der geodynamischen Prozesse beitragen. In diesem Gebiet fand 1960 das größte jemals aufgezeichnete Erdbeben, das sogenannte Valdivia-Beben, statt. Schwerpunkte der seismologischen Untersuchungen sind die genaue Lokalisierung der Erdbeben, die Analyse des Spannungsfeldes anhand von Herdflächenlösungen und Momententensoren sowie die Laufzeittomographie der oberen Platte zur Bestimmung der Lithosphärenstruktur.

Diese Arbeit basiert auf der Analyse seismologischer Daten aus dem ISSA 2000-Experiment mittels der lokalen Erdebentomographie mit dem Ziel der Bestimmung der dreidimensionalen Geschwindigkeitsstruktur für die Kruste und den oberen Mantel sowie die genaue Lokalisierung der Seismizität.

Am Anfang dieser Arbeit (Kapitel 2) wird eine Einführung in das Untersuchungsgebiet im weitesten Sinne gegeben. Zunächst werden die lateralen Variationen entlang des andinen Kontinentalrandes beschrieben, um dann im Anschluß den derzeitigen Kenntnisstand über die südlichen Anden - Seismizität, geologische Entwicklung und bisherige geophysikalische Untersuchungen - vorzustellen.

In Kapitel 3 wird das ISSA 2000-Experiment vorgestellt, das die Datengrundlage dieser Studie bildet. Ebenso werden die Datenbasis und die einzelnen Schritte der Bearbeitung und Selektion vorgestellt.

Katitel 4 bietet einen Überblick über die theoretischen Grundlagen der lokalen Erdbebentomographie sowie über die einzelnen Parameter der Auflösung.

In Kapitel 5 werden die neugewonnenen seismologischen Daten des ISSA 2000-Experiments analysiert. Präzise Lokalisierungen der Erdbeben zeigen zum ersten Mal den genauen Verlauf der Wadati-Benioff-Zone im Untersuchungsgebiet. Zusätzlich werden die krustale und die Benioff-Seismizität diskutiert. Eine modifizierte Version dieses Kapitels erschien in *Tectonophysics (Bohm et al., 2002)*.

Kapitel 6 beginnt mit der Parametrisierung des Modells und der Beschreibung einzelner Aspekte des Inversionsverfahrens. Anschließend wird das Auflösungsvermögen der Modelle abgeschätzt und hinsichtlich der Zuverlässigkeit diskutiert. Schließlich wird das dreidimensionale Geschwindigkeitsmodell, das den gesamten Bereich der Subduktionszone vom Bereich der seismischen Kopplung mit den flachen Beben im Westen bis zu den mitteltiefen Beben unter dem aktiven magmatischen Bogen umfaßt, beschrieben. Am Ende des Kapitels erfolgt ein Vergleich der Ergebnisse mit anderen geophysikalischen Untersuchungsergebnissen aus der Region.

Kapitel 7 umfaßt im Wesentlichen die Diskussion und Interpretation des 3-D v_p Modells der südlichen Anden. Eine Gegenüberstellung zur *forearc* Region der Zentralen Anden soll Unterschiede und Gemeinsamkeiten der Geschwindigkeitstrukturen beider Bereiche aufdecken. Die Arbeit schließt mit einer Zusammenfassung.

Kapitel 2

Der aktive Kontinentalrand Südamerikas

2.1 Einführung

Der westliche Kontinentalrand Südamerikas ist geprägt durch die Subduktion der ozeanischen Nazca-Platte unter die kontinentale südamerikanische Platte und die damit verbundene Entstehung des andinen Orogens (Abbildung 2.1). Über 8000 km erstrecken sich die Anden entlang des aktiven Kontinentalrandes - von der Karibik bis nach Feuerland. Sie weisen jedoch merkliche Variationen in Topographie und Krustenmächtigkeit entlang des Streichens auf (Abbildung 2.2). Krustenverkürzung durch Faltungs- und Überschiebungsprozesse sowie magmatische Aktivität haben zur Krustenverdickung und Hebung der andinen Kordillere vor allem in den Zentralanden geführt (u.a. Schmitz, 1994; Allmendinger et al., 1997; Giese et al., 1999).

Die ozeanische Nazca-Platte, die unter den südamerikanischen Kontinent abtaucht, weist an ihren übrigen Rändern divergenten Charakter auf. Im Norden wird sie durch den Galapagos-Rücken von der Cocos-Platte getrennt, im Westen durch den Ostpazifischen Rücken (*Pacific-Farallon spreading center*) von der Pazifischen Platte und im Süden durch den Chile-Rücken (*Antarctic-Nazca spreading center*) von der Antarktischen Platte. Im *Hot Spots*-Referenzsystem bewegt sich die Nazca-Platte mit einer Geschwindigkeit von ~5,1 cm/a Richtung Osten, während sich die südamerikanische mit ~3,4 cm/a Richtung Westen bewegt (*DeMets et al., 1990*). Daraus ergibt sich eine leicht schräge Konvergenz von ~8,5 cm/a (N77°E). Aktuelle Untersuchungen, basierend auf der Analyse von GPS-Daten, ergeben einen Wert von ~6,5 cm/a N77°E (*Angermann et al., 1999*). Seit 48 Ma erfolgt die schräge Subduktion relativ gleichmäßig, mit der einzigen Ausnahme zwischen 26–20 Ma von fast orthogonaler Konvergenz (*Pardo-Casas and Molnar, 1987*). Während Geschwindigkeit und Azimutalwinkel der Subduktion von Nord nach Süd gleichbleibend sind, variiert das Alter der Nazca-Platte stark. In den Zentralanden ist der subduzierte Ozeanboden 40–46 Ma alt und nimmt bis 46°S auf nahezu 0 Ma ab (*Müller et al., 1997*). Dort wird momentan der Chile-Rücken subduziert.

Abbildung 2.1: Plattentektonische Situation und Seismizität Südamerikas. Die Erdbeben mit einer Magnitude ≥ 4 wurden dem PDE-Katalog entnommen (*www.1*). Die Plattengrenzen stammen von *Müller et al.* (1997) bzw. (*www.2*). Das Untersuchungsgebiet des ISSA 2000-Experimentes (weiße Viereck) befindet sich am südlichen Ende des südamerikanischen aktiven Kontinentalrandes, an dem die ozeanische Nazca-Platte unter die kontinentale südamerikanische Platte subduziert wird.

Abbildung 2.2: Die Topographie Südamerikas (Etopo5-Datensatz von *www.3*). Charakteristischer Gebirgszug im Westen Südamerikas sind die Anden mit Erhebungen von über 6000 m im zentralen Bereich. Die Topographie nimmt nach Süden hin ab und erreicht im Untersuchungsgebiet (schwarzes Viereck) mit den Vulkanen maximale Höhen von 3000 m. Die Tiefe des Tiefseegrabens reduziert sich von ~8000 m auf ~4000 m. Die Breite der Anden beträgt bei 20°S ~700 km und nimmt bis 38°S auf ~250 km ab.

Abbildung 2.3: Überblick über die Subduktionszone der südlichen und Zentralen Anden. Linkes Bild: Bathymetrie (*www.3*) mit Vulkanverteilung (*www.5*). Rechtes Bild: Ozeanbodenalter (*Müller et al.* (1997); *www.2*) der Nazca-Platte mit der Seismizität seit 1973 (M \geq 4) (*www.1*) und Tiefenlage der Benioffzone nach *Gudmundson and Sambridge* (1998). Das schwarze Viereck kennzeichnet das Untersuchungsgebiet. Der Subduktionswinkel der Nazca-Platte variiert entlang des westlichen südamerikanischen Kontinentalrandes zwischen ~ 10° und ~ 30°. Das Auftreten von rezentem Vulkanismus korreliert mit einem steileren Winkel der Benioffzone, während in den *flat slab* Bereichen kein Vulkanismus beobachtet wird. Die Seismizität nimmt quantitativ nach Süden hin ab.

Die Subduktionszone zwischen 4° und 45°S wurde von *Barazangi and Isacks (1976)* anhand der Hypozentrenverteilung von 1700 Erdbeben¹ aus den Jahren 1959–1975 in 4 Segmente unterteilt. Sie unterscheiden sich durch eine signifikante Änderung des Subduktionswinkels; Bereiche mit flacher Subduktion (*flat slab*) der Nazca-Platte wechseln sich mit normaler Subduktion (~ 30°) ab. Ein besonderes Merkmal ist die räumliche Korrelation des quartären Vulkanismus mit steilerem Subduktionswinkel (siehe Abbildung 2.3).

¹Es wurden nur qualitativ hochwertige Ereignisse aus den internationalen Datenkatalogen ISS für 1959–1963, ISC für 1964–1973 und USGS für 1973–1975 verwendet.

2.1. EINFÜHRUNG

Variationen entlang der andinen Subduktionszone Trotz einer von den Zentralanden bis zu den südlichen Anden gleichbleibenden Subduktionskinematik können verschiedene geologische und geophysikalische Variationen entlang des Streichens des andinen Gebirgsbogens beobachtet werden (siehe u.a. *Lowrie and Hey (1981)*):

- 1. Die höchsten Erhebungen des Andenorogens liegen in den Zentralen Anden bei \sim 6700 m, im Süden werden jedoch nur Höhen von \sim 3000 m erreicht.
- Ähnliche Höhendifferenzen weist die Küstenkordillere auf, deren Höhe von ~1800 m im Norden auf ~1000 m in der Nahuelbuta Kordillere im Süden abnimmt und noch weiter südlich in der Valdivia-Region nicht mehr als ~100 m erreicht.
- 3. Die Breite der Anden reduziert sich von \sim 700 km im zentralen Bereich auf \sim 250 km im Süden.
- 4. Die Subduktionsprozesse führen zu einer extrem verdickten kontinentalen Kruste in den Zentralen Anden mit mehr als 70 km Mächtigkeit (u.a. Zandt et al., 1994; Giese et al., 1999; Yuan et al., 2000). Im Gegensatz dazu beträgt die Krustenmächtigkeit in den südlichen Anden ca. 40 km (Lomnitz, 1962; Bohm et al., 2002).
- 5. Weder die in den Zentralen Anden beobachtete Plateaubildung noch das Krustenwachstum nach Osten kann in den südlichen Anden beobachtet werden.
- 6. In den Zentralen Anden reicht die seismische Aktivität innerhalb der Wadati-Benioff-Zone bis in 700 km Tiefe, in den südlichen Anden hingegen nur bis in 200 km Tiefe. Quantitativ nimmt die Benioff-Seismizität nach Süden hin stark ab. (*Barazangi and Isacks, 1976*)
- 7. Die seismische Kopplungszone erreicht in Nordchile eine Tiefe von 36–41 km und nimmt ab 28°S auf 48–53 km zu (*Tichelaar and Ruff, 1991*).
- Während in den südlichen Anden der subduktionsgebundene Magmatismus vom Jura bis zum Miozän nahezu stationär war (*Herron, 1981*), kann in den Zentralen Anden eine Migration nach Osten hin beobachtet werden (*Coira et al., 1982; Scheuber and Reutter,* 1992).
- 9. Der chilenische *forearc* verändert sich von tektonisch erosiv im Norden (*Rutland*, 1971) zu frontal akkretiv (*Bangs and Cande*, 1997) bzw. frontal und basal akkretiv (*Díaz-Naveas*, 1999; Lohrmann et al., 2001) im Süden. Aktuelle Untersuchungen zeigen einen breiten Subduktionskanal und kaum frontale Akkretion bei 38°S (*Reichert and SPOC Scientific Shipboard Party*, 2002; Krawczyk and the SPOC Team, 2003).
- 10. Das Untersuchungsgebiet liegt in einer gemäßigten Klimazone zwischen dem ariden Klima Nordchiles und der glazialen Klimazone Patagoniens. Die klimatischen Variationen sind verantwortlich für die unterschiedliche Sedimentzufuhr und folglich die Auffüllung des Tiefseegrabens, dessen Tiefe nach Süden hin stark abnimmt (Zentrale Anden ~8000 m, südliche Anden: ~4000 m). Die Breite der Tiefseegrabenfüllung beträgt in

Abbildung 2.4: Die regionale Plattentektonik der südlichen Anden (modifiziert nach *Melnick et al.* (2003b)). Im Untersuchungsgebiet (schwarzes Viereck) wird 20–35 Ma alte ozeanische Lithosphäre vom Ostpazifischen Rücken (weiß) und vom Chile-Rücken (grau) subduziert. Das Valdivia *fracture zone* System trennt die unterschiedlichen Lithosphären voneinander ab.

den Zentralen Anden $\sim 0,1$ km und nimmt auf 2-3 km in den südlichen Anden zu (*Bangs and Cande, 1997*).

Die Nazca-Platte im Untersuchungsgebiet Die Nazca-Platte zwischen 36° und 40° südlicher Breite wurde an zwei unterschiedlichen *spreading centers* erzeugt. Nördlich von 38° wurde sie vor etwa 35 Millionen Jahren am Pazifik-Farallon *spreading center* gebildet und südlich des 40°S innerhalb der letzten 20 Ma am Antarktis-Nazca *spreading center*. Die Grenze zwischen den unterschiedlichen Lithosphären bilden zwei *fracture zones*, und zwar die Mocha *fracture zone* im Norden und die Valdivia *fracture zone* im Süden. Sie bilden zusammen mit dem Chile-Graben ein Dreieck. Vermutlich enstand der Bereich innerhalb dieses Dreiecks auch am Pazifik-Farallon *spreading center*. Das Alter ist nicht geklärt, ist aber vermutlich geringer als nördlich der Mocha *fracture zone*. Dieses Gebiet stellt eine Grenze zwischen ozeanischer Lithosphäre unterschiedlichen Alters und wahrscheinlich unterschiedlicher Zusammensetzung dar. Die abtauchende Platte im Untersuchungsgebiet ist mit durchschnittlich 25 Ma relativ jung verglichen mit den Zentralen Anden. (*Herron, 1981*)

18

Abbildung 2.5: Bedeutende Erdbeben seit 1570 (weiße Rauten) mit der Seismizität seit 1973 (graue Kreise, M \geq 4,0; Quelle: PDE-, NOAA- bzw. SISRA-Katalog (*www.1*)). Das Untersuchungsgebiet liegt in dem Bereich, in dem das stärkste je registrierte Erdbeben, das sogenannte Valdivia-Beben mit einer Magnitude von M_w = 9,5, ausgelöst wurde. Desweiteren sind die relokalisierten Epizentren nach *Cifuentes (1989)* eingezeichnet (Kreise 1–9: Vorbeben; Kreise A, B: Hauptbeben; Vierecke 1, 2: ausgewählte Nachbeben). Die Abbildung wurde so rotiert, daß der E-W Schnitt senkrecht zum Streichen des Tiefseegrabens verläuft, um eine gut fokussierte Benioff-Zone zu erhalten. (A: Epizentrendarstellung; B: N-S Schnitt; C: E-W Schnitt mit Benioff-Zone; D: Tiefen-Häufigkeitsverteilung der Beben)

2.2 Die Seismizität und das Beben von 1960

In historischer Zeit zeigt die Plattengrenzfläche der Subduktionszone entlang der südlichen Küste von Chile immer wieder große und stark destruktive Erdbeben. Die meisten dieser Beben weisen Überschiebungscharakter auf und spiegeln die Subduktion der Nazca-Platte unter den südamerikanischen Kontinent wider. Die Abbildung 2.5 zeigt die größten Beben seit 1570 im Untersuchungsgebiet mit der Verteilung der Seismizität seit 1973. Zwei besonders verheerende Erdbeben waren die von Talca am 1. Dezember 1928 ($M_s = 8,0$) und Chillán am 25. Januar 1939 ($M_s = 8,0$) (Beck et al., 1998). Das größte je registrierte Erdbeben ist am 22. Mai 1960 mit ei-

ner Oberflächenwellenmagnutide von $M_s = 8,5$ und einer Momentenmagnitude von $M_w = 9,5$ aufgetreten. Es zerstörte die Stadt Valdivia und verursachte Schäden von Concepción bis Puerto Montt. Ein Tsunami erreichte eine Höhe von bis zu 10 m und hatte Auswirkungen auf den gesamten pazifischen Raum. Das sogenannte Valdivia-Beben besteht aus 2 Hauptbeben, die in einem Abstand von 34 s erfolgten und den Abschluß einer Reihe von 9 Vorbeben bilden, die ihrerseits Magnituden (M_s) bis zu 7,8 aufweisen. Die Bruchlänge des Bebens, die aus der Verteilung der Nachbeben und der krustalen Deformation abgeleitet wurde, beträgt etwa 1000 km und verläuft ab 37°S südwärts (*Cifuentes, 1989*). Kanamori and Cipar (1974) bestimmten das seismische Moment der beiden Hauptbeben auf 2,7 × 10²³ Nm mit einem Durchschnittsversatz von 24 m. Die Vor- und Nachbebenserien, die die Hauptbeben begleiteten sowie die Mehrheit der Beben nach 1963, die in der Region von Arauco stattfanden, deuten darauf hin, daß in diesem Gebiet ein Regime hoher Spannung vorherrscht (*Nishenko, 1985; Cifuentes, 1989*). Das jüngste der starken Erdbeben in dieser Region geschah am 10. Mai 1975 mit einer Magnitude von $M_s = 7,9$.

Das Abtauchen der Nazca-Platte unter den südamerikanischen Kontinent wird durch die Verteilung der Erdbeben nachgezeichnet und erfolgt bis in eine Tiefe von ca. 200 km (siehe Abbildung 2.5 bzw. 2.3). Das Untersuchungsgebiet gehört nach der Einteilung von *Barazangi and Isacks (1976)* zum Segment Südchile $(33^{\circ} - 45^{\circ}S)$, in dem die Wadati-Benioff-Zone einen normalen Einfallswinkel von $25^{\circ} - 30^{\circ}$ aufweist. Das Segment nördlich davon $(27^{\circ} - 33^{\circ}S)$ ist durch ein flaches Abtauchen der Platte (*flat slab*) gekennzeichnet. Die seismische Kopplungszone (seismogene Zone) fällt mit einem Winkel von $12^{\circ} \pm 3^{\circ}$ ein und reicht bis in eine Tiefe von 41-53 km (*Tichelaar and Ruff, 1991*).

2.3 Die Entstehung der Anden - ein Überblick

Die nun folgende Abhandlung gibt einen Überblick über die tektonische Entwicklung der chilenischen und argentinischen Anden nach *Mpodozis and Ramos (1989)*.

- frühpaläozoischer tektonischer Zyklus (Famatinian cycle): Im frühen Paläozoikum lag der Südwestrand von Gondwana in der Nähe der westlichen Seite der heutigen Sierras Pampeanas in Argentinien. Der vorgelagerte Mikrokontinent Chilenea wurde während des oberen Devons durch eine nach Osten einfallende Subduktionszone an den Kontinentalrand von Gondwana akkretiert.
- spätpaläozoischer tektonischer Zyklus (Gondwana cycle): Eine neue Subduktionszone mit großem Akkretionskeil wurde am westlichen Rand des akkretierten Terranes gebildet. Ein spätpaläozoischer-frühmesozoischer magmatischer Bogen entstand in diesem Akkretionskeil. Mit Ende des Paläozoikums endete auch das laterale Wachstum des Kontinentalrandes.

3. mesozoischer-känozoischer Zyklus (Andian cycle): Im frühen Mesozoikum entwickelte sich ein magmatischer Bogen mit zugehörigen backarc Becken auf dem spätpaläozoischen Grundgebirge. Anschließende Subduktionserosion und/oder strike slip faulting entfernten große Teile der paläozoischen forearc Ansammlung. In Nordchile erreichten diese Prozesse mit dem jurassischen magmatischen Bogen als heutige Küstenkordillere ihr Maximum.

Wichtigstes Merkmal im Mesozoikum ist die tektonische Segmentierung des westlichen Kontinentalrandes bezüglich der Unterschiede in der geologischen Entwicklung und in der Beschaffenheit der *backarc* Becken sowie im Verhalten der magmatischen Bögen der einzelnen Segmente.

Auf weitere Deformationen in der oberen Kreide reagierten die einzelnen Abschnitte unterschiedlich und somit entstanden segmenttypische Falten- und Störungsmuster. Eine erneute Segmentierung trat im Miozän auf und ergibt das heutige morphotektonische Muster, welches durch Konvergenzgeschwindigkeit und Einfallen der Benioff-Zone bestimmt wird und wiederum die Verteilung des spätkänozoischen Vulkanismus reguliert. Die neuen Segmente unterscheiden sich nur leicht von denen des Mesozoikums.

2.4 Regionale Geologie des Untersuchungsgebietes

Der südamerikanische Plattenrand im Untersuchungsgebiet gliedert sich in drei morphotektonische Haupteinheiten (siehe Abbildung 2.6):

- 1. forearc
 - (a) offshore Becken (Concepcion-Itaca, Arauco, Valdivia)
 - (b) Küstenkordillere (Cordillera de Nahuelbuta)
 - (c) Längstal
- 2. Hauptkordillere (Cordillera Principal) mit magmatischem Bogen
- 3. backarc (Neuquén-Becken)

Eine strukturelle Besonderheit dieses Plattenrandabschnittes ist die um ca. 40 km in den Pazifik vorspringende Arauco-Halbinsel, die den gehobenen Teil des nach ihr benannten Beckens im äußeren *forearc* Bereich bildet. Die Entstehung und Form der Arauco-Halbinsel ist tektonisch kontrolliert. Ihre Küsten verlaufen subparallel zu verschiedenen Störungsrichtungen, die sich im gesamten Gebiet zwischen der Tiefseerinne und dem magmatischen Bogen wiederfinden. Die Störungssysteme der Oberplatte folgen zum Teil alten Strukturen, die mit dem Beginn des Auseinanderbrechens von Gondwana seit dem frühen Mesozoikum angelegt wurden (*Echtler et al., 2003a*).

Abbildung 2.6: Die geologische Karte vom chilenischen Teil des Untersuchungsgebietes mit den Haupteinheiten und Störungszonen (*H. Echtler, pers. Mitt.; Bohm et al., 2002*).

Die tektonische Entwicklung Das Grundgebirge der südlichen Anden bildet ein spätpaläozoischer Akkretionskomplex, der im wesentlichen die Küsten- und Hauptkordillere unterlagert. Vom mittleren Jura bis zum Neogen wurde dieser Komplex vom Nordpatagonischen Batholithen durchdrungen, der die Hauptkordillere der südlichen Anden aufbaut. Der heutige aktive vulkanische Bogen besteht aus andesitischen bis basaltischen Stratovulkanen, die sich entlang der N-S streichenden Liquiñe-Ofqui-Störungszone (LOFZ) anordnen (*Hervé, 1994; Cembrano et al., 2000*). Diese großräumige dextrale *strike-slip* Diskontinuität ist mindestens seit dem Eozän aktiv. Sie enstand entweder aufgrund der schrägen Subduktionsrichtung (*Hervé, 1994; Lavenu and Cembrano, 1999*) und/oder durch die Subduktion des Chile-Rückens am südlichen Ende der LOFZ (*Nelson et al., 1994*). Zwei bedeutende Verwerfungen segmentieren den aktiven Kontinentalrand des Untersuchungsgebietes in nordwest-südöstlicher Richtung vom Pazifik bis zum *backarc*: die Bio-Bio- und die Gastre-Störungszone² (siehe Abbildung 2.6). Zusammen mit der LOFZ handelt es sich bei diesen Verwerfungen um krustale Diskontinuitäten, die mindestens seit dem Paläozän aktiv sind (*Rapela and Pankhurst, 1992*). Sie trennen Segmente unterschiedlicher metamorpher und magmatischer Entwicklung im Hinblick auf die präandine

²Die Gastre-Störung ist mittlerweile in Lanalhue-Störung unbenannt worden, wird in dieser Arbeit aber noch unter der Alter Bezeichnung verwendet.

2.4. REGIONALE GEOLOGIE DES UNTERSUCHUNGSGEBIETES

Orogenese voneinander ab. Seit der oberen Kreide kontrollieren sie die differentielle Entwicklung der *forearc* Becken (*Mordojovich, 1981*). Der aktive Charakter dieser Störungszonen wird außerdem durch Blattverschiebungsbewegungen in der Hauptkordillere belegt (*Melnick et al.,* 2002) sowie durch unterschiedliche regionale Hebungs- bzw. Senkungsraten in den Segmenten der Küstenkordillere.

Seit dem Beginn des andinen Subduktionsregimes im Mesozoikum registrierte der Kontinentalrand Deformationsprozesse, die nicht, wie in den Zentralen Anden, zu einer erheblich verdickten Kruste führten. Die Konvergenz wurde vielmehr seit dem Neogen in zum Tiefseegraben parallele Bewegungen entlang der LOFZ umgewandelt.

Das paläozoische Grundgebirge Die ältesten Gesteine der Region sind Teil des spätpaläozoischen Akkretionskomplexes, der vor allem in der Küstenkordillere ansteht und weisen ein Alter von ca. 300 Ma auf. Sie bilden das Grundgebirge der südlichen Anden. Es existieren keine Beweise für eine ältere kontinentale Kruste. Das paläozoische metamorphe Grundgebirge besteht aus metasedimentären Gesteinen (*Hervé, 1994*). Im Gegensatz dazu findet man in den Zentralen Anden präkambrische und frühe paläozoische Einheiten (*Baeza and Pichowiak, 1988*).

Magmatischer Bogen Bezogen auf den paläozoischen magmatischen Bogen hat sich der jurassische und frühkretazische magmatische Bogen nach Westen hin verlagert und blieb bis heute, was seinen Abstand zur Tiefseerinne betrifft, plattentektonisch etwa in derselben Position. Die quartären Stratovulkane entlang der heutigen Hauptkordillere gehören zur *Southern Volcanic Zone* (SVZ). Wie anfänglich schon erwähnt, bemerkten *Barazangi and Isacks (1976)*, daß nur in den Regionen des südamerikanischen Kontinentalrandes, in denen die Benioff-Zone mit ~ 30° einfällt, aktiver Vulkanismus auftritt. Dieses Merkmal deutet auf einen engen Zusammenhang zwischen der Entstehung des andinen Vulkanismus und der Subduktionsgeometrie der ozeanischen Lithosphäre hin.

Nördlich von 39°S tritt Vulkanismus in der Hauptkordillere und in den östlichen präkordilleren Erhebungen auf. Südlich von 39°S ist der Vulkanismus auf die Hauptkordillere beschränkt, während basaltischer *backarc* Vulkanismus über den gesamten Bereich auftritt.

Die Verbreiterung des magmatischen Bogens im Oligozän bis Miozän tritt zeitgleich mit Extension und Beckenformation zwischen 36° und 43,5°S auf und wird von *Muñoz et al. (2000)* und *Jordan et al. (2001)* auf eine Zunahme der Konvergenzrate zurückgeführt.

Seit dem frühen Pleistozän migrierte der magmatische Bogen um 35–80 km nach Westen, was nach *Stern (1989)* durch folgende Faktoren verursacht sein kann:

1. eine Zunahme des Subduktionswinkels der Nazca-Platte,

- 2. eine Migration der Achse des Tiefseegrabens nach Westen aufgrund der Akkretion entlang der inneren Seite des Tiefseegrabens
- 3. und/oder eine Erhöhung der Temperatur im Mantelkeil und der damit verbundenen geringeren Tiefe der Magmageneration unterhalb des vulkanischen Bogens.

Alle drei Prozesse treten möglicherweise in gleichem Ausmaß auf, wobei der letztere von besonderer Bedeutung ist. Extensiver *backarc* Vulkanismus östlich der Hauptkordillere impliziert aktive Konvektion und die Zufuhr von heißem Asthenosphärenmaterial in den Mantelkeil unterhalb dieser Region (*Muñoz and Stern 1988; 1989*).

Liquiñe-Ofqui *fault zone* (**LOFZ**) Die parallel zum Plattenrand verlaufende dextrale Liquiñe-Ofqui-Störungszone beeinflußt die neotektone und aktive Deformation im heutigen magmatischen Bogen. Die sich über 1100 km vom Istmo de Ofqui bis in die Seenregion erstreckende LOFZ ist eine große Horizontalverschiebung, die scheinbar bei Lonquimay endet (*Melnick et al.*, 2002). Der Versatz wird dort in einer breiten extensiven Auffiederungszone akkomodiert.

Die schräge Subduktion der Nazca-Platte unter das westliche Südamerika führt zu einer Langzeit-Deformation an der südandinen Plattengrenzenzone und wird als Ursache für die rechtslaterale Verschiebung entlang der LOFZ angesehen (*Hervé, 1994; Cembrano et al., 2000*). *Forthyse and Nelson (1985)* heben den Einfuß durch die Subduktion des Chile-Rückens seit dem Pliozän am südlichen Ende der LOFZ hervor, der von *Cembrano et al. (2000)* als zweitrangig betrachtet wird.

Die südlichen Anden weisen keinen Falten- und Überschiebungsgürtel auf, weil die Konvergenz größtenteils durch die Entkopplung entlang der LOFZ akkomodiert wird (*Hervé*, 1994).

Neuquén-Becken Im *backarc* des jurassisch-unterkretazischen magmatischen Bogens entstand eine Reihe zusammenhängender Becken, u.a. das Neuquén-Becken, welches mit marinen und kontinentalen Sedimenten gefüllt ist (*Mpodozis and Ramos, 1989*).

2.5 Bisherige geophysikalische Studien in der Region

Lokale Seismizitätsuntersuchungen Die Verteilung der Seismizität im Untersuchungsgebiet, die innnerhalb der letzten 30 Jahre im PDE-Katalog erfaßt wurde, ist bereits in Abschnitt 2.2 beschrieben und in Abbildung 2.5 dargestellt. Hier sei noch auf die seismologische Studie von *Campos et al. (2002)* verwiesen, die am nörlichen Rand des ISSA 2000-Untersuchungsgebietes zwischen 35° und 37°S durchgeführt worden ist. Wie schon in den PDE-Daten zu erkennen ist, nimmt die seismische Aktivität nach Norden hin deutlich zu. Die Erd-

beben liegen in der 35–40° geneigten Wadati-Benioff-Zone, die bis in eine Tiefe von 150 km beobachtet wird. Bei der Mehrheit der Erdbeben handelt es sich um Intraplattenbeben, die im oberen Bereich der abtauchenden Nazca-Platte lokalisiert sind. Desweiteren berichten *Campos et al. (2002)* von krustaler Seismizität in der oberen Platte unterhalb des Längstals und der Küstenkordillere, die in dieser Form bisher nicht in den nördlichen und zentralen chilenischen Anden beobachtet worden ist. Die durch die Erstausschlagsrichtung der P-Wellen bestimmten Herdflächenlösungen einiger ausgewählter Benioff-Beben weisen hauptsächlich extensiven Charakter auf und in geringem Maße kompressiven.

offshore Seismik Der südliche chilenische *forearc* weist seit Ende des Tertiärs akkretiven Charakter auf, mit möglichen vorangegangenen sich abwechselnden akkretiven und erosiven Episoden (*Bangs and Cande, 1997*). Anhand der Interpretation reflexionsseismischer Profile und der sich darin andeutenden geringen Mächtigkeit des Akkretionskeils von nur 20–30 km kommen *Bangs and Cande (1997)* zu der Annahme, daß die aktuelle Phase der Akkretion nicht älter als 1-2 Ma sein kann. Der Beginn der Zunahme der Sedimentablagerung im Tiefseegraben fällt mit der glazialen Erosion in der Hauptkordillere zusammen.

Díaz-Naveas (1999) hebt den unterschiedlichen Charakter der Subduktion nördlich und südlich der Mocha *fracture zone* anhand der erneuten Bearbeitung und Interpretation ebendieser Daten hervor. Im nördlichen Bereich weist der Tiefseegraben eine Tiefe von über 4700 m auf und ist mit einer mehr als 2000 m mächtigen Sedimentschicht gefüllt. Der größte Teil der Sedimente wird frontal akkretiert. Im Süden hingegen ist der Tiefseegrabens nur 4400 m tief und mit lediglich 1600 m Sedimenten gefüllt, von denen der größte Teil subduziert und später dann basal akkretiert oder unterplattet wird. Der Keilwinkel (Neigung des Kontinentalhanges plus Subduktionswinkel) ist auf den nördlichen Profilen konstant und verringert sich nach Süden hin.

Erste Ergebnisse das *offshore* Experiment im Rahmen von SPOC (Subduction Processes Off Chile) deuten eine Segmentierung der oberen Platte mit ausgeprägten *forearc* Becken und einem kleinen Akkretionskeil an (*Reichert and SPOC Scientific Shipboard Party*, 2002).

onshore Seismik Die refraktionsseismischen Untersuchungen entlang eines Profils bei 39°S im Rahmen des Experimentes ISSA 2000 (*Bohm et al., 2002; Lüth et al., 2003b*) zeigen laterale Geschwindigkeitenvariationen. Die durchschnittliche P-Wellengeschwindigkeiten in der Kruste sind im *forearc* langsamer als unterhalb der Hauptkordillere. Eine allmähliche Geschwindigkeitszunahme im Bereich der Krusten-Mantel-Grenze im *forearc* deutet einen hydratisierten und serpentinisierten Mantel an, während unterhalb des Längstals und der Hauptkordillere keine kontinentale Moho beobachtet werden konnte. Die ozeanische Moho kann bis in eine Tiefe von 45 km unterhalb der Küstenkordillere verfolgt werden.

Weitwinkel- und steilwinkel-seismische Untersuchungen im Rahmen von SPOC fokussieren

Abbildung 2.7: Die refraktionsseischen Profile des SPOC Experimentes bei 36°, 37° und 38°S (*Lüth et al., 2003a; Krawczyk and the SPOC Team, 2003*) sowie des ISSA 2000-Experimentes bei 39°S (*Lüth GeoForschungsZentrum Potsdam et al., 2003b*).

Abbildung 2.8: Die Krusten- und Mantelstruktur der südlichen chilenischen Anden entlang eines Profils bei 39°S (*X. Yuan, pers. Mitt.*).

auf die seismogene Kopplungszone und den *forearc* Bereich (*Krawczyk and the SPOC Team*, 2003). Nach Osten einfallende Reflektivitätsbänder in einer Tiefe von 16–42 km werden als Oberkante der abtauchenden Platte interpretiert und korrelieren mit der lokalen Seismizität. Die refraktionsseismischen Profile weisen eine 7 km mächtige ozeanische Kruste auf, die bis in eine Tiefe von 45 km beobachtet wird. Die kontinentale Kruste ist durch eine E-W Geschwindigkeitszunahme charakterisiert. Die kontinentale Moho konnte unterhalb des Längstal und der Hauptkordillere nicht beobachtet werden.

Receiver Functions **Profil bei 39°S** Neben dem lokalen Erdbebennetz im ISSA 2000-Experiment wurde ein temporäres lineares Netzwerk entlang 39°S installiert. Die teleseismischen Daten dieser Stationen wurden verwendet, um die tieferen Strukturen die Ozean-Kontinent-Kollision mittels der *Receiver Functions* Methode darzustellen. Die ozeanische Moho kann deutlich bis in eine Tiefe von 110 km verfolgt werden und entspricht der gleichen Beobachtungstiefe wie in den Zentralen Anden. In ebendieser Tiefe nimmt auch die Benioff-Seismizität stark ab. Die kontinentale Moho erreicht ihr Maximum von 50 km Tiefe unterhalb des westlichen Bereichs der Hauptkordillere und nimmt dann nach Osten hin ab - auf 45 km unterhalb der höchsten Erhebungen der Anden und auf 40 km unterhalb des westlichen Neuquén-Beckens. (*Kind et al., 2001*) Abbildung 2.9: Bouguer-Schwerekarte (Z. Tašárová und F4-Projekt, pers. Mitt.).

Gravimetrie Die Karte der Bouguer-Anomalie in Abbildung 2.9 basiert auf Schweremessungen, die im Rahmen verschiedener Kampagnen innerhalb der letzten 20 Jahren durchgeführt worden sind. Für eine genaue Beschreibung siehe *Götze et al. (2001)*. Die Schwerekarte setzt sich zusammen aus der Bougueranomalie auf dem südamerikanischen Kontinent, die dann auf pazifischer Seite in die Freiluftanomalie übergeht. Die Bouguer-Schwere der südlichen Anden zeigt drei deutlich ausgeprägte Anomalien. Zum einen ein Maximum von ca. 100 mGal auf und nördlich der Arauco-Halbinsel, welches ab 39°S nach Süden hin in ein Minimum von ca. -50 mGal übergeht. Betrachtet man die Bouguer-Schwere entlang des aktiven Kontinentalrandes von Südamerika, so fällt auf, daß diese Maxima von ca. 50–100 mGal in regelmäßigen Abständen auftreten und das eigentlich "anomale" Verhalten das deutlich ausgeprägte Minimum zwischen 39° und 40°S ist. Desweiteren existiert ein Minimum von ca. -180 mGal bei 70°W und 36°S.

Abbildung 2.10: Ergebnis der 2-D Inversion entlang zweier MT-Profile. Dargestellt ist der spezifische Widerstand. (*Brasse and Soyer, 2001*)

Magnetotellurik Magnetotellurische Untersuchungen entlang zweier Profile bei 38.9° und 39.3°S zeigen Bereiche (B und C in nebenstehender Abbildung) leicht erhöhter Leitfähigkeit in 20-40 km Tiefe unterhalb und östlich des magmatischen Bogens. Sie können mit der Lage der LOFZ korreliert werden, die ihrerseits für den rezenten Vulkanismus von Bedeutung ist. Eine weitere Anomalie (A) erhöhter Leitfähigkeit unterhalb des Längstals wird auf dem nördlichen Profil in 35 km Tiefe beobachtet und kann räumlich mit der Gastre Störung korreliert werden. (Brasse and Soyer, 2001)

GPS-basierte Deformations-Messungen Nach *Klotz et al. (2001)* reicht die seismische Kopplungszone südlich von 35°S bis in eine Tiefe von 50 km. Der Bereich südlich von 38°S befindet sich in einem Zustand postseismischer Relaxation nach dem Valdivia-Beben von 1960.

Kapitel 3

Das ISSA 2000-Experiment

Das seismologische Experiment ISSA 2000 (*Integrated Seismological experiment in the Southern Andes*) fand im Rahmen des Sonderforschungsbereiches SFB 267 "Deformationsprozesse in den Anden" und in Zusammenarbeit mit den südamerikanischen Partneruniversitäten in Südchile und Argentinien statt. Es setzte sich aus den folgenden Teilprojekten zusammen:

- seismologisches Netzwerk: Von November 1999 bis April 2000 wurde ein seismologisches Netz betrieben, dessen Daten Seismizitätsuntersuchungen (*Bohm et al., 2002*), der lokalen Erdbebentomographie (vorliegende Arbeit) und der Momententensorinversion (*Bruhn, 2003*) dienten.
- **sprengseismisches Profil:** Für die refraktionsseismischen Untersuchungen wurden die seismologischen Stationen jeweils eine Woche im Januar und im April 2000 entlang eines Profils bei 39°S installiert (*Lüth et al., 2003b, Bohm et al., 2002*).
- *Receiver Functions* **Profil:** Im Frühjahr 1999 wurden für Krusten-Mantel-Untersuchungen mittels der *Receiver Functions* Methode Breitbandstationen entlang eines Profiles bei 39°S installiert und bis Sommer 2002 betrieben.

Die seismologischen Projekte wurden von einer Reihe anderer geophysikalischer, geologischer, petrologischer und geodätischer Studien begleitet (für genaue Informationen siehe SFB-Berichtsband von 2001).

3.1 Datengewinnung

Grundlage dieser Arbeit bildet das seismologische Teilprojekt, welches von der Freien Universität Berlin, dem GeoForschungsZentrum Potsdam und der Universität Potsdam in Kooperation

Abbildung 3.1: Stationskarte des ISSA 2000-Experimentes mit der regionalen Topographie (www.4). Die höchsten Erhebungen im Untersuchungsgebiet bilden die Vulkane (schwarze Dreiecke) mit ~3000 m. Die Symbole erläutern die verwendeten Instrumententypen: weiße invertierte Dreiecke - kurzperiodische 3-Komponenten Seismometer; schwarze invertierte Dreiecke - 3-Komponenten Breitbandseismometer, graue Vierecke - OBH/OBS. Eine vollständige Stationsliste befindet sich im Anhang A. Die Feldzentrale war in Victoria untergebracht.

mit dem GEOMAR in Kiel, der Universidad de Concepción und der Universidad Catolica del Norte in Antofagasta durchgeführt worden ist.

Aufgrund der langjährigen Arbeit des SFB in Südamerika und einer Reihe vorangegangener seismischer Experimente in den Zentralen Anden konnte auf einen großen Erfahrungsschatz zurückgegegriffen werden, der sowohl auf wissenschaftlicher als auch auf logistischer Ebene zur Verfügung stand. Wesentliche Unterschiede zu den Experimenten im Norden, die sich extrem auf den Umfang und die Qualität der Daten auswirken, sind zum einen die geringere Seismizität im Süden und zum anderen das höhere seismische Rauschen aufgrund der dichteren Besiedlung, des feuchteren Klimas und der damit verbundenen stärkeren Vegetation Südchiles.

Das seismologische Netz bestand aus 62 kontinuierlich registrierenden Stationen, die in einem Gebiet von ca. 400 x 400 km in Chile und Argentinien installiert waren. Aufgrund der niedrigen Seismizität wurden bereits im November 1999 13 Stationen in Chile aufgebaut (siehe Tabelle 3.1). Desweiteren existierte zu diesem Zeitpunkt schon das mit Breitbandgeräten bestück-

Seismologisches Netzwerk ISSA 2000				
	Teil 1	Teil 2		
Laufzeit	15.11.1999 bis 15.01.2000	28.01.2000 bis 10.04.2000		
	ca. 60 Tage	ca. 90 Tage		
Gebiet	$36^{\circ} - 40^{\circ}$ S und $70^{\circ} - 74^{\circ}$ W	$36^{\circ} - 40^{\circ}$ S und $69^{\circ} - 75^{\circ}$ W		
	ca. $400 \mathrm{km} \times 300 \mathrm{km}$	ca. $400 \mathrm{km} \times 400 \mathrm{km}$		
	in Chile	in Chile und Argentinien		
Stationen	26	61		
Stationsabstand	ca. 100 km	ca. 50 km		
Datenlogger	$13 \times MARSlite,$	$13 \times MARSlite, 13 \times CMG-SAM$		
	$13 \times \text{CMG-SAM}$	$34 \times PDAS$, $1 \times ORION$		
Sensoren	$13 \times \text{Lennartz LE-3D/5 s},$	$13 \times \text{Lennartz LE-3D/5 s},$		
	13 × Güralp CMG-3ESP	13 × Güralp CMG-3ESP,		
		$35 \times Mark L4-3D$		
Abtastrate	125 Hz (MARSlite),	125 Hz (MARSlite),		
	100 Hz (SAM)	100 Hz (andere Instrumente)		
Registrierung	kontinuierlich	kontinuierlich		
Zusatzausstattung	4 GB-Festplatten,	1 und 4 GB-Festplatten,		
	GPS (Synchronisation	GPS (Synchronisation alle 2 h),		
	alle 2 h), Solarpanele	Solarpanele		
Personal	1 Feldgruppe	1 Zentralegruppe, 2–6 Feldgruppen		
Betreuungzyklus	Auf- und Abbau	alle 8–10 Tage (PDAS, MARSlite		
		in Chile), alle 14 Tage (PDAS in		
		Argentinien), alle 20 Tage (SAM)		

Tabelle 3.1: Details zu Lage, Aufbau und Betrieb des seismologischen Netzwerkes ISSA 2000

te Profil entlang 39°S. Somit wurde insgesamt über einen Zeitraum von ca. 150 Tagen die seismische Aktivität im Untersuchungsgebiet sowie die weltweite Seismizität aufgezeichnet. Zusätzlich wurden von Mitte Januar bis Mitte Februar 15 Ozeanbodenhydrophone (OBH) und 1 Ozeanbodenseismometer (OBS) vor der chilenischen Küste von Concepcion bis Valdivia ausgesetzt. Einen Überblick über die Verteilung der Stationen bietet die Abbildung 3.1. Die Namen und Koordinaten der Stationen befinden sich im Anhang A auf Seite 115.

3.2 Datenaufbereitung

Die kontinuierlichen Datenströme wurden vor Ort in der Feldzentrale in Victoria eingelesen, einer Qualitätskontrolle unterzogen und auf DAT-Bändern gesichert. Für die endgültige Archivierung wurden die unterschiedlichen Datenformate in ein einheitliches mseed-Format umgewandelt und zeitlich sortiert in Form von Stundendateien auf CDROM abgelegt. Die Rohdatenmenge für den gesamten Zeitraum umfaßt ca. 350 GByte auf 493 CDs.

Abbildung 3.2: Datenbeispiel für ein flaches Beben an der Küste. Gezeigt sind die Rohdaten. Links die einminütige Zeitreihe, rechts der P-Wellen-Einsatz in einem 1,5 s Fenster.

Abbildung 3.3: Datenbeispiel für ein tiefes Beben im Norden. (Rohdaten, links - einminütige Zeitreihe, rechts - P-Wellen-Einsatz in einem 1,5s Fenster)

Abbildung 3.4: Datenbeispiel für ein mitteltiefes Beben im Süden. (Rohdaten, links - einminütige Zeitreihe, rechts - P-Wellen-Einsatz in einem 1,5 s Fenster)

Abbildung 3.5: Anzahl der P- (oben) bzw. S-Wellen-Beobachtungen (unten) an den jeweiligen Stationen des ISSA-Netzes.

Nach der Rückkehr aus dem Gelände wurden die Daten am GFZ in Potsdam wiederum auf DAT-*Tapes* archiviert und stehen mittlerweile auch über das *GEOFON*-Archiv *online* zur Verfügung. Ein Teil der Daten (14 Tage) wurde von Beginn an interaktiv bearbeitet, um einen Überblick über die Qualität der Daten sowie Kriterien bezüglich der Sensitivität des später eingesetzten automatischen Triggers zu erhalten. Der in dieser Untersuchung angewendete Triggeralgorithmus basiert auf der Polarisations- und Kovarianzanalyse (*Asch, 1998*). Die Eigenvektoren der Kovarianzmatrix beschreiben die Richtung der Polarisation und über die Eigenwerte wird der Pbzw. S-Einsatz der seismischen Raumwelle bestimmt. Anschließend werden über entsprechende Koinzidenzkriterien Fehltriggerungen eliminiert.

Anhand der automatisch erstellten Ereignislisten wurden Zeitfenster mit einer Länge von 180 s ausgeschnitten und interaktiv am Bildschirm weiterbearbeitet. Zur Bestimmung der Ankunftszeiten der P- und S-Wellen wurde das auf dem Programm PITSA basierende Programmpa-

37

ket GIANT verwendet (*Rietbrock and Scherbaum*, 1998), wobei die automatisch gepickten P-Phasen manuell korrigiert wurden. Gleichzeitig wurde die Qualität der Picks gemäß der zeitlichen Schärfe des Ersteinsatzes gewichtet. Mit der implementierten Routine HYPO71 (*Lee and Lahr, 1975*) konnte eine vorläufige 1-D Lokalisierung durchgeführt werden. Alle Informationen bezüglich der Lokalisierung der Ereignisse und die zugehörigen Phaseninformationen wurden in einer Datenbank gespeichert. Die Festlegung der S-Phase ist im Allgemeinen schwierig und mit größeren Fehlern behaftet als der P-Ersteinsatz, da sie in der Koda der P-Wellen ankommen. Für eine präzise Tiefenbestimmung der Erdbeben sind sie jedoch unerläßlich und wurden, um die Genauigkeit des Einsatzes zu erhöhen, auf der Transversalkomponente im strahlenbasierten Koordinatensystem gepickt. Dadurch konnte auch vermieden werden, daß konvertierte Wellen als S-Einsatz interpretiert wurden. Weitere Phasen, wie z.B. P_n, die für die Erhöhung der Lokalisiergenauigkeit wichtig sind, konnten nicht identifiziert werden.

Gleichzeitig wurden den P-Phasen Polaritäten zugeordnet, mit denen, aufgrund der geringen Anzahl der Ersteinsätze mit zuverlässiger Erstausschlagbewegungsrichtung, leider keine eindeutigen Herdflächenlösungen bestimmt werden konnten. An dieser Stelle sei noch einmal auf *Bruhn (2003)* verwiesen. Er hat mittels Momententensorinversion für 10% der registrierten Beben Herdflächunglösungen berechnet.

Abbildung 3.6: Verteilung von Beobachtungsanzahl (oben), GAP (Mitte) und RMS (unten) der 440 Ereignisse. Die Angaben basieren auf der Verwendung des Minimum 1-D Geschwindigkeitsmodells (vgl. Kapitel 5).

Die Erdbeben wurden nach den folgenden Qualitätskriterien selektiert: Erstens sollte die minimale azimuthale Stationsüberdeckung mehr als 90° betragen (d.h. $GAP^1 < 270^\circ$) und zweitens mehr als 8 Beobachtungen (mit mindesten 4 S-Phasen) aufweisen. Dieses Auswahlverfahren ergab einen vorläufigen Erdbebenkatalog mit 317 Ereignissen.

Im Laufe der Bearbeitung stellte sich heraus, daß durch die automatische Triggerung ein gewisser Prozentsatz der Erdbeben nicht erkannt wurde. Dabei handelt es sich hauptsächlich um Ereignisse mit kleiner Magnitude, die nur an wenigen Stationen registriert wurden. Aufgrund der geringen Seismizität im Untersuchungsgebiet ist jedes zur Verfügung stehende Er-

¹Der GAP ist die größte azimutale Beobachtungslücke.

3.2. DATENAUFBEREITUNG

eignis wichtig, wodurch eine zeitintensive visuelle Suche notwendig wurde. Diese Suche², die sich hauptsächlich auf die Krustenbeben konzentrierte, erweiterte den Datensatz um 123 krustale Ereignisse, die insbesondere für das Studium der Spannungsverhältnisse und aktiven Oberflächendeformation im *forearc* von Bedeutung sind (siehe u.a. *Melnick et al. (2003b), Melnick et al. (2003b), Echtler et al. (2003b)*.

Einige Angaben über die qualitativen Aspekte (NOB, GAP, RMS) der 440 lokalisierten Erdbeben finden sich in den Abbildungen 3.5 und 3.6. Der vollständige Erdbebenkatalog ist der Tabelle im Anhang B zu entnehmen. Der Inhalt der Abbildungen sowie der Erdbebenkatalog basieren auf den Lokalisierungen mit dem Minimum 1-D Modell (vgl. Kapitel 5).

Die Daten der OBH- und OBS-Stationen konnten aufgrund von Problem mit der zeitlichen Synchronisation leider nicht verwendet werden.

²Diese Aufgabe übernahm ab September 2002 für ein Jahr die Studentin Amerika Manzanarez.

Kapitel 4

Methode

Die seismische Tomographie fand innerhalb der letzten drei Jahrzehnte in der Geowissenschaft eine weitverbreitete Anwendung, die im räumlichen Ausmaß von Metern bis zur gesamten Erde reicht. Bei dieser Methode führt man Laufzeitanomalien seismischer Wellen, die an einem Stationsnetz aufgezeichnet werden, auf räumliche Variationen der Geschwindigkeit innerhalb eines dreidimensionalen Geschwindigkeitsfeldes zurück. Dazu werden die Meßwerte (Laufzeiten) über ein System von Gleichungen mit den gesuchten physikalischen Parametern (Geschwindigkeiten, *slowness*) verbunden.

Für krustale Studien existieren zwei sogenannte passive Methoden - die teleseismische Tomographie (*Aki et al., 1977*) und die lokale Erdbebentomographie (LET) (*Kissling, 1988*) - im Gegensatz zu den aktiven Methoden, die Explosionsquellen verwenden. Ein Vorteil der LET gegenüber der teleseismischen Tomographie ist die hochauflösende Abbildung von Strukturen, da der höhere Frequenzgehalt von lokalen Beben und das Vorhandensein der Quelle im Modellraum eine höhere räumliche Abtastung erlaubt. Als Nachteil ist jedoch die ungleiche Verteilung der Beben zu erwähnen. Demzufolge erhält man eine hohe Auflösung in Gebieten, in denen eine dichte Erdbeben- und Stationsabdeckung existiert, und eine eher geringe in seismisch inaktiven Gebieten sowie in den äußeren Bereichen des Untersuchungsgebietes. Desweiteren wird die vertikale Ausdehnung des Modells durch die lokale Seismizität bestimmt.

4.1 Theoretische Grundlagen der lokalen Erdbebentomographie

Die theoretischen Grundlagen der lokalen Erdbebentomographie und ihre Anwendung sind in der Literatur detailliert beschrieben und können u.a. in *Aki and Lee (1976), Thurber (1983), Kissling (1988), Thurber (1993)* und *Thurber and Eberhart-Phillips (1999)* nachgelesen werden. Im folgenden Kapitel soll deshalb nur ein kurzer Überblick gegeben werden, der sich

hauptsächlich nach *Thurber (1993)* richtet. Das in dieser Arbeit verwendete Programm SIMULPS zur simultanen Inversion einer 3-D Geschwindigkeitsstruktur und Hypozentralparametern wurde ursprünglich von ihm entwickelt.

Mathematische Formulierung des Problems

In der Strahlentheorie wird die Laufzeit t einer seismischen Raumwelle von einem Erdbeben i zu einer seismischen Station j in einem Geschwindigkeitsfeld v durch folgendes Wegintegral beschrieben:

$$t_{ij} = \int\limits_{Erdbeben}^{Station} \frac{1}{v} \, ds \tag{4.1}$$

Die eigentlich meßbaren Größen sind jedoch die Ankunftszeiten T_{ij} an der seismischen Station, die sich aus der Summe der Herdzeit T_i^0 und der Laufzeit t_{ij} ergeben:

$$T_{ij} = T_i^0 + t_{ij} (4.2)$$

d.h. die beobachteten Ankunftszeiten sind eine Funktion der Herdparameter und des Geschwindigkeitsfeldes entlang eines jeden Strahlenweges ($T_{ij}^{obs} = T_{ij}^{obs}(T_i^0, x_{n_i}^0, v(x_n))$ mit n = 1, 2, 3). Sowohl Herdkoordinaten $x_{n_i}^0$, Herdzeit T_i^0 und Strahlenwege als auch das Geschwindigkeitsfeld $v(x_n)$ sind unbekannte Modellparameter.

Unter Annahme möglicher Herdkoordinaten und eines Geschwindigkeitsfeldes $v(x_n)$ als a priori Information können über die Gleichung 4.2 theoretische Ankunftszeiten T_{ij}^{calc} berechnet und mit den beobachteten Ankunftszeiten T_{ij}^{obs} verglichen werden. Die Abweichung ist durch die Laufzeitresiduen r_{ij} gegeben:

$$r_{ij} = T_{ij}^{obs} - T_{ij}^{calc} \tag{4.3}$$

Die Laufzeitresiduen sind demzufolge eine Funktion der Differenzen zwischen wahren und angenommenen Modellparametern ($r_{ij} = r_{ij}(\Delta T_i^0, \Delta x_{n_i}^0, \Delta v(x_n))$). Außer der Herdzeit sind alle Parameter dieser Funktion nicht linear von der beobachteten Laufzeit abhängig. Eine lineare Näherung wird durch die Taylorreihenentwicklung der Funktion T_{ij}^{obs} um ein Startmodell (Herdkoordinaten $x_{n_i}^{0^*}$, Herdzeit $T_i^{0^*}$, Geschwindigkeitsmodell $v^*(x_n)$) unter Vernachlässigung der Terme höherer Ordnung (≥ 2) erreicht. Schließlich können die Laufzeitresiduen mit den Korrekturen der Modellparameter in Zusammenhang gebracht werden (gekoppeltes Hypozentrum-Geschwindigkeitsmodell-Problem):

$$r_{ij} = \Delta T_i^0 + \sum_{n=1}^3 \frac{\partial t_{ij}}{\partial x_{n_i}} \Delta x_{n_i}^0 + \sum_{l=1}^L \frac{\partial t_{ij}}{\partial v_l} \Delta v_l$$
(4.4)

mit

$$\Delta T_i^0 = T_i^0 - T_i^{0^*}, \quad \Delta x_{n_i}^0 = x_{n_i}^0 - x_{n_i}^{0^*}, \quad \Delta v(x_n) = v(x_n) - v^*(x_n)$$

wobei der letzte Term in 4.4 eine finite Parametrisierung der Geschwindigkeitsstruktur beinhaltet.

Das Ziel der LET ist es nun, die Schätzwerte der Modellparameter (Hypozentrum und Geschwindigkeitsstruktur) so zu verbessern, daß der gewichtete *RMS*-Fehler minimal wird. Da es sich aufgrund der Kopplung von Herdparametern und Geschwindigkeitsstruktur in Gleichung 4.4 um ein hochgradig nichtlineares Problem handelt, das durch eine Taylorreihenentwicklung unter Vernachlässigung der höheren Terme linearisiert wurde, ist ein iteratives Lösungsverfahren erforderlich. In jedem Iterationsschritt werden die Strahlenwege, die theoretischen Laufzeiten und ihre partiellen Ableitungen neu berechnet.

Das vollständige Gleichungssystem der Beziehung 4.4 lautet in Matrixschreibweise:

$$\mathbf{d} = \mathbf{G}\mathbf{m} \tag{4.5}$$

wobei **d** der Vektor der Laufzeitresiduen und **m** der Vektor der Modellparameterkorrekturen ist. Die Jacobi-Matrix **G** enthält die Ableitungen der Laufzeiten nach den Modellparametern.

Die Inversionsmethode als Lösung des Problems

Eine direkte Lösung der Gleichung 4.5 existiert nur dann, wenn **G** quadratisch ist, d.h. wenn es genauso viele Beobachtungen wie Unbekannte gibt. Da dies bei seismologischen Untersuchungen selten der Fall ist, wird das Inversionsproblem nach *Menke (1989)* folgendermaßen formuliert:

$$\mathbf{m}^{est} = \mathbf{G}^{-g} \mathbf{d} \tag{4.6}$$

wobei \mathbf{G}^{-g} die verallgemeinerte Inverse (*generalized inverse*) ist, deren Lösung von der Art des zu untersuchenden Problems abhängt.

Normalerweise existieren in der seismischen Tomographie mehr Daten als Modellparameter, was zu einem überbestimmten Teilproblem führt. Es kann durch die Minimierung der quadratischen Abweichung der Laufzeitresiduen gelöst werden kann, also durch die Minimierung des quadratierten Vorhersagefehlers (*prediction error*) $\mathbf{e} = \mathbf{d}^{obs} - \mathbf{d}^{pre} = \mathbf{d}^{obs} - \mathbf{Gm}^{est}$. Andererseits werden jedoch nicht alle Bereiche des Modellraums gleichmäßig durchstrahlt, d.h. es ist gleichzeitig auch ein unterbestimmtes Teilproblem. Dieses wird wiederum durch die Minimierung der Lösungslänge (*solution length*) gelöst. Somit handelt es sich bei der LET um ein gemischt bestimmtes Problem. Fehlerbehaftete Daten (z. B. Pickfehler) und inadäquate Modellparametrisierung führen außerdem zu einem inkonsistenten Gleichungssystem, welches aber aufgrund redundanter Daten im Sinne eines besten Modells für einen Datendurchschnitt gelöst werden kann.

Ein möglicher Lösungsansatz des gemischt bestimmten Problems ist die Linearkombination der Lösungen für das über- und das unterbestimmte Teilproblem, also eine Kombination des Vorhersagefehlers und der Lösungslänge. Durch deren Minimierung erhält man die *damped least squares* Lösung (*Menke, 1989*):

$$\mathbf{m}^{est} = (\mathbf{G}^T \mathbf{G} + \varepsilon^2 \mathbf{I})^{-1} \mathbf{G}^T \mathbf{d}$$
(4.7)

wobei \mathbf{G}^T die transponierte Matrix der partiellen Ableitungen ist, **I** die Einheitsmatrix und ε^2 ein Dämpfungsfaktor, welcher zwischen Vorhersagefehler und Lösungslänge wichtet. Ein groß gewählter Dämpfungswert bewirkt eine stärkere Gewichtung der Einheitsmatrix gegenüber der Matrix **G**, was zu kleinen Diagonalelementen der verallgemeinerten Inversen führt. Das resultierende Modell bleibt in der Nähe des Startmodells. Im Gegensatz dazu führt eine geringere Gewichtung der Einheitsmatrix im Vergleich zu **G** zu größeren Modellparameterkorrekturen.

Das resultierende Geschwindigkeitsmodell ergibt sich schließlich dadurch, daß, von einem Startmodell ausgehend, nach jeder Iteration die Modellkorrekturen \mathbf{m}^{est} entsprechend der Gleichung 4.7 zum vorherigen Modell addiert werden. Der Iterationsprozeß wird solange fortgeführt, bis ein bestimmtes Abbruchkriterium erreicht ist (z. B. Unterschreitung der Datenvarianz oder der minimalen Länge der Modellkorrekturen).

4.2 Der LET Algorithmus SIMULPS

Mit dem Programm SIMULPS (*Thurber, 1983; Evans et al., 1994*) werden P-Einsatzzeiten und S-P-Zeiten invertiert, um Erdbebenlokalisierungen sowie v_p - and v_p/v_s -Variationen zu erhalten. Im Laufe der Jahre hat es sich in der Anwendung in verschiedenen Studien über lokale Erdbeben außerordentlich bewährt (u.a. *Eberhart-Phillips and Michael, 1998; Reyners et al., 1999; Graeber and Asch, 1999; Husen et al., 2000; Patzig, 2000; Eberhart-Phillips and Rey-*

4.2. DER LET ALGORITHMUS SIMULPS

ners, 2001; Paul et al., 2001; Schurr, 2001; Haberland and Rietbrock, 2001). Zahlreiche Autoren trugen mit ihren Modifikationen zur Verbesserung und Erweiterung des Programms bei (u.a. Eberhart-Phillips, 1986, 1993; Um and Thurber, 1987; Rietbrock, 1996; Thurber and Eberhart-Phillips, 1999).

In SIMULPS werden die Ankunftszeiten T_{ij}^{calc} mittels der Gleichungen 4.1 und 4.2 unter Verwendung geschätzter Herdkoordinaten, Herdzeit und eines Startmodells der Geschwindigkeitsstruktur sowie der *pseudo-bending raytracing* Methode (*Um and Thurber, 1987*) berechnet. Das Inversionsproblem und das damit verbundene gekoppelte Hypozentrum-Geschwindigkeitsmodell-System in Gleichung 4.4 wird iterativ durch eine Kombination von Parameterseparation (*Pavlis and Booker, 1980; Spencer and Gubbins, 1980*) und *damped least square* Inversion gelöst.

Die Resolutionsmatrix und Modellkovarianz (*Menke*, 1989) können direkt ausgegeben werden, da eine vollständige Matrixinversion durchgeführt wird.

Repräsentation der Untergrundstruktur Der Untergrund wird mittels einer Interpolationsfunktion kontinuierlich parametrisiert. Die Geschwindigkeit ist über ein 3-D Knotengitter definiert und berechnet sich an einem beliebigen Punkt x_n (n = 1, 2, 3) im Modellparameterraum gemäß der Funktion:

$$v(x_{1}, x_{2}, x_{3}) = \sum_{k=1}^{2} \sum_{l=1}^{2} \sum_{m=1}^{2} v(x_{1_{k}}, x_{2_{l}}, x_{3_{m}}) \\ \left[\left(1 - \left| \frac{x_{1} - x_{1_{k}}}{x_{1_{2}} - x_{1_{1}}} \right| \right) \left(1 - \left| \frac{x_{2} - x_{2_{l}}}{x_{2_{2}} - x_{2_{1}}} \right| \right) \left(1 - \left| \frac{x_{3} - x_{3_{m}}}{x_{3_{2}} - x_{3_{1}}} \right| \right) \right]$$
(4.8)

wobei x_{1_k} , x_{2_l} und x_{3_m} die Koordinaten der acht den Punkt (x_1, x_2, x_3) umgebenen Knotenpunkte darstellen (*Thurber*, 1983).

Die neueste Version von SIMULPS ermöglicht das Verknüpfen (*linking*) von Knotenpunkten während der Inversion, so daß in Gebieten mit ausreichend vorhandenenen Daten ein feine Parametrisierung erfolgen kann und gleichzeitig in Bereichen mit geringerer Auflösung noch eine stabiles Modell erzielt wird (*Thurber and Eberhart-Phillips*, 1999).

Raytracing Das Vorwärtsproblem $\mathbf{d} = \mathbf{G}\mathbf{m}$ beinhaltet die Berechnung des Wegintegrals in Gleichung 4.1, was in der seismischen Tomographie durch *raytracing* gelöst wird. Für die Berechnung der Strahlenwege und Laufzeiten in einem 3-D Geschwindigkeitsfeld wird im Programm SIMULPS eine *approximate raytracer* (ART) Methode (*Thurber, 1983*) verwendet, die

zunächst Erdbeben und Station durch eine große Anzahl an Kreisbögen unterschiedlicher Radien und Eintauchwinkel miteinander verbindet. Aus dieser Menge wird dann derjenige mit der geringsten Laufzeit ausgewählt. Anschließend wird dieser Strahl in einem iterativen Prozeß stückweise verformt, um die Laufzeit weiter zu minimieren, bis die Laufzeit konvergiert (*pseudo bending* Methode (PB) nach *Um and Thurber* (1987)).

S-Wellen und v_p/v_s -Verhältnis Durch eine Kombination der P- und S-Geschwindigkeitsstruktur erhält man zusätzliche Informationen zur Charakterisierung der mechanischen Eigenschaften und Geologie der Kruste und des oberen Mantels. Darüber hinaus ist in der LET die Verwendung von S-Wellen für eine präzise Bestimmung der Herdtiefe unerläßlich.

Im Allgemeinen sind die S-Beobachtungen zahlenmäßig und qualitativ geringer als die der P-Beobachtungen, weil sie einerseits in der Koda der P-Wellen ankommen und andererseits durch Dämpfung und Anisotropie stark beeinflußt werden. Deshalb haben S-Geschwindigkeitsmodelle in der Regel eine geringere Auflösung und bergen größere Unsicherheiten in sich als v_p -Modelle, wodurch ein direkter Vergleich zur Bestimmung des v_p/v_s -Verhältnisses zu starken Artefakten führen kann (*Eberhart-Phillips, 1990*).

Die Berechnung von v_p/v_s erfolgt äquivalent zu der von v_p . Von einem gut aufgelösten v_p -Modell ausgehend, ergeben sich für ein anfängliches konstantes v_p/v_s -Verhältnis identische Strahlenwege für P- und S-Wellen. Die beobachteten S–P Zeiten können wie folgt ausgedrückt werden:

$$t_{ij}^{S-P} = \int\limits_{Erdbeben}^{Station} \left(\frac{1}{v_s} - \frac{1}{v_p}\right) ds = \int\limits_{Erdbeben}^{Station} \left(\frac{v_p}{v_s} - 1\right) \frac{1}{v_p} ds$$
(4.9)

Nun werden S–P Laufzeitresiduen wie oben beschrieben den v_p/v_s -Modellvariationen zugeordnet.

4.3 Qualität der Lösung

In der lokalen Erdbebentomographie kann ein komplexes 3-D Geschwindigkeitsmodell nur dann sinnvoll interpretiert werden, wenn die Qualität des Modells bekannt ist. Von großer Wichtigkeit ist dabei die Frage nach der Eindeutigkeit der Lösung, aber auch wie gut die einzelnen Korrekturen bestimmt sind und wie sich Meßfehler auf das Ergebnis auswirken. Zum einen bilden mathematische Größen wie die Datenvarianz (*misfit*), *Derivative Weighted Sum*, Resolutionsmatrix, *spread* Funktion und Modellkovarianz Maße für die Qualität der Lösung. Zum anderen sollten bei der Anwendung der LET-Methode stets Auflösungstests mit synthetischen Modellen durchgeführt werden (z. B. Modelle mit harmonisch variierender Geschwindigkeit (sogenannte *Checkerboard*-Tests) oder Modelle, die sich an die bekannte oder zu erwartende Geologie anlehnen oder sich auf einzelne Strukturen beschränken).

Die im folgenden vorgestellten Fehlermaße können während der Inversion mit dem verwendeten Programm SIMULPS bestimmt werden.

Derivative Weighted Sum (DWS) Ein relatives Maß für die Dichte seismischer Strahlen in der Umgebung eines Geschwindigkeitsknotens stellt die DWS dar (*Toomey and Foulger, 1989*). Sie berücksichtigt neben der Zahl der Strahlen auch deren räumliche Entfernung zum jeweiligen Knotenpunkt. Die DWS des 1-ten Modellknotens ist definiert durch:

$$DWS_l = N\sum_i \sum_j \left(\int\limits_{P_{ij}} \omega_l \, ds \right) \tag{4.10}$$

wobei ω das in der linearen Interpolation benutzte und von der Koordinatenposition abhängige Gewicht ist, P_{ij} der Strahlweg vom Erdbeben *i* zur Station *j* und *N* ein Normalisierungsfaktor, der das vom *l*-ten Knoten beeinflußte Volumen berücksichtigt. Die Größe der DWS ist von der Wahl der Schrittweite *ds* während der numerischen Berechnung abhängig. Je kleiner *ds*, desto größer ist der Wert der DWS. Deshalb stellt die DWS nur ein relatives Maß dar. Für gut aufgelöste Modellknoten ergeben sich hohe DWS-Werte. Eine gute Parametrisierung des Geschwindigkeitsmodells ist dann erreicht, wenn die Anzahl der schlecht aufgelösten Knotenpunkte minimal wird.

Resolutionsmatrix, Diagonalelemente, *spread* **Funktion und** *smearing contours* Die Resolutionsmatrix **R** verbindet die wahren Modellparameter \mathbf{m}^{true} , die das Vorwärtsproblem $\mathbf{Gm}^{true} = \mathbf{d}^{obs}$ lösen, mit den berechneten \mathbf{m}^{est} und ist nach *Menke (1989)* wie folgt definiert:

$$\mathbf{m}^{est} = \mathbf{G}^{-g} \mathbf{d}^{obs} = \mathbf{G}^{-g} [\mathbf{G} \mathbf{m}^{true}] = [\mathbf{G}^{-g} \mathbf{G}] \mathbf{m}^{true} = \mathbf{R} \mathbf{m}^{true}$$
(4.11)

R ist eine $M \times M$ Matrix und M die Anzahl der Modellparameter. Jede Zeile dieser Matrix ist ein *averaging vector* eines einzelnen Modellparameters und beschreibt als solcher die Abhängigkeit eines Modellparameters von allen anderen das Modell aufbauenden Parametern bzw. wie die Information eines Parameters auf alle anderen verteilt wird. Für einen Datensatz, der alle Modellparameter perfekt auflöst, ist R die Einheitsmatrix, d.h. jeder *averaging vector* beinhaltet nur das Diagonalelement, umgeben von Nebendiagonalelementen mit dem Wert Null.

47

Da die gesamte Resolutionsmatrix **R** sehr groß und es damit nahezu unmöglich ist, sämtliche *averaging vectors* abzubilden, werden oft nur die skalaren Diagonalelemente dargestellt. *Too-mey and Foulger (1989)* haben jedoch gezeigt, daß der Wert eines Diagonalelementes stark von der gewählten Dämpfung und den verwendeten Knotenpunktabständen abhängen kann. Eine andere Möglichkeit zur Beurteilung der Auflösung eines Knotenpunktes ist die *spread* Funktion (*Menke, 1989; Toomey and Foulger, 1989; Michelini and McEvilly, 1991)*, welche die Stärke und Konzentration der Auflösung eines Knotenpunktes beschreibt. Jede Zeile s_j der Resolutionsmatrix **R** wird wie folgt in einen skalaren Wert umgerechnet:

$$S_{j} = \log\left[||s_{j}||^{-1} \sum_{k=1}^{N} \left(\frac{s_{kj}}{||s_{j}||}\right)^{2} D_{jk}\right]$$
(4.12)

wobei s_{kj} ein Element von **R** ist und D_{jk} der räumliche Abstand von s_{kj} zum Diagonalelement s_{jj} . Der Summenterm bewirkt große Werte der *spread* Funktion für Knoten, die eine signifikante Verschmierung in andere Knoten zeigen, besonders wenn diese weit entfernt sind. $||s_j||$ ist die L_2 -Norm des *averaging vectors*, also dessen Länge und bewirkt kleine Werte der *spread* FunKtion, wenn die Diagonalelemente groß sind.

Die *spread* Funktion betrachtet zwei Aspekte der Auflösung: die Größe des Diagonalelements und die räumliche Verschmierung. Sie zeigt jedoch nicht die Richtung der Verschmierung. *Eberhart-Phillips and Michael (1998)* betrachten diese Effekte mittels der sogenannten *smearing contours*, d.h. sie bestimmen Isolinien des *averaging vectors* normiert auf die Größe des Diagonalelementes.

Modellkovarianz Die Modellkovarianz beschreibt, wie Fehler in den Daten auf die Modellparameter übertragen werden. Unter der Annahme, daß die Datenfehler unabhängig voneinander sind und eine gleiche Varianz σ^2 besitzen, ist die Modellkovarianzmatrix nach *Menke* (1989) definiert durch:

$$\mathbf{C} = \boldsymbol{\sigma}^2 \mathbf{G}^{-g} (\mathbf{G}^{-g})^T \tag{4.13}$$

Die Diagonalelemente von **C** sind die Varianzen der Modellparameter und die Nebendiagonalelemente beschreiben die Abhängigkeit der Fehler zwischen den Modellparametern.

4.4 Das Minimum 1-D Modell

Die Ergebnisse der lokalen Erdbebentomographie hängen stark von der Wahl des Startmodells ab (*Kissling et al., 1994*). Um ein geeignetes Startmodell zu finden, führte *Kissling (1988)* das Konzept des "Minimum 1-D Modells" in die lokale Erdbebentomographie ein. Das Modell ist das Ergebnis der simultanen Inversion von Hypozentralkoordinaten, 1-D Geschwindigkeitsmodell und Stationskorrekturen. *Eberhart-Phillips (1990)* zeigte ebenfalls, daß mit detaillierten Startmodellen, die aus refraktionsseismischen Modellen abgeleitet wurden, eine schlechtere Datenanpassung durch die resultierenden Modelle erreicht wird, als im Vergleich zu einfachen Startmodellen, die aus einer Inversion hervorgegangen sind.

Die theoretischen Grundlagen zur Berechnung des 1-D Modells sind analog zur lokalen Erdbebentomographie und in Kapitel 4 beschrieben. Die Inversion der Hypozentralparameter und Geschwindigkeiten wird separat und iterativ durchgeführt. Die Bestimmung des Minimum 1-D Modells basiert außerdem auf der *trial-and-error* Methode und beginnt mit einer Sammlung von a priori Informationen über die Untergrundstruktur.

Zur Berechnung des Minimum 1-D Modells wurde in der vorliegenden Arbeit das Programm VELEST (*Kissling et al., 1995*) verwendet. Die Parametrisierung des 1-D Geschwindigkeitsmodells erfolgt durch horizontale Schichten konstanter Geschwindigkeit (v_p und v_s) über einem Halbraum. Für die Lage der Schichtgrenzen wird nicht invertiert. VELEST ermöglicht die Verwendung von S-Laufzeitdaten, entweder unter Angabe eines v_p/v_s Verhältnisses oder zur konkreten Berechnung eines v_s -Modells mit unabhängiger Schichtung. Eine Besonderheit von VELEST ist die Berechnung der Strahlwege bis zur wahren Stationshöhe, so daß die Stationskorrekturen nicht für Höhenunterschiede aufkommen müssen.

Da die Geschwindigkeit einer Schicht im resultierenden Modell die beste Durchschnittsgeschwindigkeit in dieser Tiefe darstellt (*Kissling et al., 1994*), dient das Minimum 1-D Modell auch als Referenzmodell für 3-D Tomographie.

Neben seiner Bedeutung als Startmodell der lokalen Erdbebentomographie, liefert das Minimum 1-D Modell auch gute Abschätzungen für die Hypozentralkoordinaten der Erdbeben (*Kissling, 1988*). Die 1-D Lokalisierungen unterscheiden sich nur geringfügig von denen aus der 3-D Tomographie, wie es u.a. *Graeber and Asch (1999)* für die komplexe Struktur der Subduktionszone in Nordchile zeigten. Sind die Hypozentren gut bestimmt, dann sind alle lateralen Geschwindigkeitsdifferenzen entweder in den Stationskorrekturen oder den Laufzeitresiduen enthalten.

Kapitel 5

Seismizität und Durchschnittsgeschwindigkeiten in den südlichen Anden

5.1 Die Berechnung des Minimum 1-D Modells der südlichen Anden

Die Berechnung des Minimum 1-D Modells erfordert gut lokalisierte Erdbeben. Existieren Unsicherheiten in den Lokalisierungen, kann der Inversionsprozeß wegen der Hypozentrum-Geschwindigkeits-Kopplung zu instabilen Ergebnissen führen. Deshalb wurde aus den vorhandenen Erdbeben ein Datensatz selektiert, der die folgenden Qualitätskriterien aufweist:

- 1. Anzahl der Beobachtungen: $NOB \ge 8$ (mit mindestens 4 S-Phasen)
- 2. azimuthale Beobachtungslücke: $GAP < 180^{\circ}$

Der ausgewählte Datensatz enthält 150 Ereignisse mit 2283 P- und 1325 S-Beobachtungen. Die beobachteten Laufzeiten dieser Erdbeben wurden für die simultane Inversion des 1-D Geschwindigkeitsmodells, der Hypozentralkoordinaten und der durchschnittlichen P- und S-Laufzeitresiduen an jeder Station (Stationskorrekturen) verwendet. Die in die Inversion eingehenden Ereignisse sind in Abbildung 5.1 dargestellt.

Da die Geschwindigkeitsstruktur der Kruste und des oberen Mantels in den südlichen Anden weitestgehend unbekannt ist, und globale Modelle wie IASP91 (*Kennett and Engdahl, 1991*) oder PREM (*Dziewonski and Anderson, 1981*) für lokale Studien nicht detailliert genug sind, wurde ein Startmodell mit regelmäßiger Parametrisierung gewählt. Die Mächtigkeit der oberen Schichten beträgt 5 km bis in eine Tiefe von 55 km, dann folgen weitere Schichtgrenzen bei 90 und 120 km Tiefe. Um großen Geschwindigkeits-

Abbildung 5.1: Verteilung der 150 Erdbeben, die zur Berechnung des Minimum 1-D Geschwindigkeitsmodells verwendet wurden. Schwarze Dreiecke markieren die Stationsstandorte. Außerdem eingezeichnet sind die Verläufe der Störungszonen (Bio-Bio, Gastre und Liquiñe-Ofqui).

variationen Rechnung zu tragen, wurden verschiedenste v_p -Startmodelle getestet - realistische bis möglicherweise unrealistische Modelle (siehe gestrichelte Linien in Abbildung 5.2). Das Startmodell für v_s wurde über ein konstantes v_p/v_s -Verhältnis von 1,75 bestimmt. Dieser Wert ging aus der Auswertung von reduzierten Wadati-Diagrammen

Abbildung 5.2: Startmodelle (gestrichelte Linien) und Endmodell (schwarze Linie) der Inversion für v_p mit einem konstanten v_p/v_s -Verhältnis von 1,75. Die Menge aller Geschwindigkeitsmodelle, die die Daten gleich gut anpassen, liegt im grauschattierten Bereich.

hervor (siehe Abbildung 5.3).

Das Konzept des Minimum 1-D Modells beinhaltet die Berechnung von Stationskorrekturen relativ zur obersten Schicht und zu einer Referenzstation. In der vorliegenden Untersuchung wurde die Station KP02 ausgewählt (siehe Abbildung 5.4). Obwohl sie nicht in der Mitte des Netzwerkes lag, erwies sie sich als geeignet, weil an dieser Station mehr als die Hälfte der Ereignisse registriert wurden, die in diese Inversion eingingen, und die Ersteinsätze hohe Gewichtungsfaktoren besitzen. Testläufe mit anderen Referenzstationen führten zu einem ähnlichen Muster in der Verteilung der Stationskorrekturen.

Während der Inversion wurden Schichten mit geringer Auflösung oder ähnlichen Geschwindigkeiten zusammengefaßt. Das vorläufige Modell für v_p (siehe Abbildung 5.4) besteht aus 8 Schichten mit Mächtigkeiten zwischen 5 und 30 km.

Abbildung 5.3: Reduziertes Wadati-Diagramm zur Bestimmung des v_p/v_s -Verhältnisses

Auf diesem Modell basierend wurden nun unabhängige Inversionen für v_p und v_s durchgeführt. Auch hier wurde eine große Bandbreite an Startmodellen und v_p/v_s -Verhältnissen getestet (1,6–1,9). Die Startmodelle und das Ergebnis der Inversion sind in Abbildung 5.4 dargestellt. Die Geschwindigkeitsfunktionen, die die Daten gleich gut anpassen, liegen im grauschattierten Bereich.

Die Stabilität der Lösung des gekoppelten Hypozentrum - Geschwindigkeitsmodell - Problems wurde durch ein systematisches Verschieben der Startwerte der Hypozentren um 10 km untersucht. Handelt es sich bei dem angenommenen Modell um ein globales Minimum, sollten keine signifikanten Änderungen im Geschwindigkeitsmodell sowie in den Herdkoordinaten auftreten *(Kissling et al., 1994)*, was für den untersuchten Datensatz zutrifft (ohne Abbildung).

Der 150 Erdbeben umfassende Datensatz weist RMS-Laufzeitresiduen von weniger als 0,4 s auf, wobei 70% dieser Ereignisse einen RMS-Wert kleiner als 0,2 s besitzen.

5.2 Das 1-D Geschwindigkeitsmodell

Das Geschwindigkeitsmodell (Abbildung 5.4 und Tabelle 5.1) ist bis auf die obersten 5 km grundsätzlich gut bestimmt. Dort zeigen sowohl die P- als auch die S-Geschwindigkeiten starke Variationen aufgrund der Heterogenitäten in der obersten Kruste. Die durchschnittlichen

Tiefe [km]	v _p [km/s]	v _s [km/s]	v_p/v_s
-2	4.39	2.40	1.83
0	5.51	3.19	1.70
5	6.28	3.60	1.74
20	6.89	3.93	1.75
35	7.40	4.12	1.80
45	7.76	4.55	1.71
55	7.94	4.55	1.75
90	8.34	4.77	1.75

Tabelle 5.1: P- and S-Wellengeschwindigkeiten und v_p/v_s Verhältnis des 1-D Geschwindigkeitsmodells (schwarze Linie in Abbildung 5.4)

Abbildung 5.4: Das Minimum 1-D Geschwindigkeitsmodell: Startmodelle (gestrichelte Linien) und Endmodell (schwarze Linie) der simultanen Inversion von 1-D v_p - und v_s -Modellen, Hypozentralparametern und Stationskorrekturen. Die Menge aller Geschwindigkeitsmodelle, die die Daten gleich gut anpassen, liegt im grauschattierten Bereich. Oben sind die zugehörigen Stationskorrekturen abgebildet. Kreuze kennzeichnen positive, Kreise negative Verzögerungen.

Geschwindigkeiten der kontinentalen Kruste betragen 6,3 km/s für die obere Kruste und liegen zwischen 6,9–7,4 km/s. Mantelgeschwindigkeiten von 8,0 km/s werden ab einer Tiefe von 55 km erreicht. Sie nehmen bis in 90 km Tiefe auf 8,34 km/s zu. Im Vergleich zu den P-Wellengeschwindigkeiten nehmen die S-Geschwindigkeiten allmählich zu, abgesehen von dem deutlichen Sprung an der Krusten-Mantel-Grenze bei 45 km Tiefe. Das durchschnittliche v_p/v_s -Verhältnis von 1,75 ist nur in den oberen 5 km und an der Krusten-Mantel-Grenze starken Schwankungen unterworfen.

Das 1-D Modell muß immer in Zusammenhang mit den Stationskorrekturen betrachtet werden, da es sich bei einer Subduktionszone um eine eindeutig zweidimensionale Struktur handelt. Die Stationskorrekturen beinhalten zum einen Laufzeitverzögerungen durch oberflächennahe Heterogenitäten und zum anderen die hohen Geschwindigkeiten innerhalb der abtauchenden Nazca-Platte. Die P- und S-Wellenverzögerungen an den seismischen Stationen zeigen ein systematisches Muster von positiven Werten in der Küstenkordillere und in Argentinien und negativen Werten im Längstal und im westlichen Teil der Hauptkordillere. Die Stationskorrekturen werden wahrscheinlich durch die variable Mächtigkeit der oberen Kruste stark beeinflußt. Die positiven Verzögerungen im Westen stimmen mit den relativ langsamen Geschwindigkeiten in der Kruste überein, die durch die Refraktionsseismik ermittelt wurden (*Bohm et al., 2002*). Eine dünnere und damit auch schnellere obere Kruste im Längstal ist hingegen für die negativen Werte an den zentralen Stationen verantwortlich. Die positiven Stationskorrekturen im Osten könnten durch ein nach E hin zunehmende Krustenmächtigkeit verursacht sein, die zu größeren Laufzeiten in diesem Bereich führt. Die Korrekturen für die S-Wellen zeigen einen ähnlichen Trend, aber mit größeren Werten.

Abbildung 5.5: Verteilung der 440 Erdbeben, die während des ISSA-Experimentes aufgezeichnet und mit dem Minimum 1-D Geschwindigkeitsmodell lokalisiert worden sind. Die Abbildung wurde um 11,4° rotiert, so daß vertikale Schnitte senkrecht zum Streichen des Trenches verlaufen, um eine gut fokussierte Benioff- Zone zu erhalten. A: Darstellung der Epizentren. Krustale Seismizität (Tiefe ≤ 40 km) ist durch weiße Kreise gekennzeichnet. Schwarze Dreiecke markieren die Stationsstandorte. Außerdem eingezeichnet sind die Verläufe der Störungszonen (Bio-Bio, Gastre und Liquiñe-Ofqui). B: N-S Schnitt. C: E-W Schnitt mit Benioff-Zone. D: Tiefen-Häufigkeits-Verteilung der Beben.

Abbildung 5.6: E-W Tiefensektionen (Breite $\sim 1^{\circ}$). Die Schnitte verlaufen senkrecht zum TiefseegrasbenufGraum Diefseeken umgeberen die Lage der Vulkane. CC steht für Küstenkostiflosehungebertifün börgstal.

Abbildung 5.7: Die Krustenbeben des ISSA 2000-Experimentes. Linkes Bild: Bebencluster nördlich von Arauco bzw. nördlich der Santa Maria Insel. Rechtes Bild: Bebencluster an der Gastre-Störung. In den jeweiligen E-W Schnitten wurde die Oberkante und die Moho der abtauchenden Platte, aus den refraktionsseimischen Profilen des SPOC-Experimentes, zur Verdeutlichung der Nazca-Platte eingezeichnet (*S. Lüth, pers. Mitt.*)

5.3 Seismizität

Bisher wurde das Einfallen der Wadati-Benioff-Zone im Untersuchungsgebiet durch globale seismologische Untersuchungen bestimmt, z.B. ermittelten *Barazangi and Isacks (1976)* einen ungefähren Einfallswinkel von $25^{\circ} - 30^{\circ}$ E. Die hier vorliegenden seismologischen Untersuchungen zeigen zum ersten Mal den akkuraten Verlauf der Benioff-Zone in den südlichen Anden. Die Benioff-Zone wird durch eine nach Osten geneigte Ebene mit kontinuierlicher Seismizität bis in eine Tiefe von 120 km definiert. Zwischen 73° und 74°W fällt die seismogene Zone mit ~10°E ein; östlich davon fällt die Benioff-Zone mit 30°±1°E ein. Eine seismische Aktivität zwischen 36° und 40°S kann generell bis in eine Tiefe von 200 km beobachtet werden.

Krustale Seismizität

Neben der Definition der Benioff-Zone enthält die Verteilung der Seismizität wichtige Informationen über die Tektonik der kontinentalen oberen Platte. Die krustale Seismizität (Tiefe ≤ 40 km) ist im *forearc* Bereich des aktiven Kontinentalrandes konzentriert. In der Hauptkordillere und entlang der LOFZ sind im Untersuchungszeitraum kaum Erdbeben zu verzeichnen gewesen (siehe Abbildung 5.5).

Abbildung 5.8: Herdflächenlösunausgewählter Beben gen des ISSA 2000-Katalogs (Bruhn, 2003) und des CMT-Katalogs (kleine schwarze Bälle). Die Mechanismen beider Kataloge zeigen ausschließ-Kompressionsbeben lich bis in 40 km Tiefe, darunter werden sowohl Kompressionsbeben als auch Extensionsbeben beobachtet. Die Momentenmagnituden der beobachteten Beben liegen zwischen $1 \le M_w \le 4, 3.$

Die Freisetzung der seismischen Energie entlang der Küste korreliert mit der Hebungsachse und dem postulierten Zentrum basaler Akkretion in der Tiefe (*Lohrmann et al., 2001*). Die Häufung der Beben nördlich und südlich der Arauco-Halbinsel kann mit der Gastre- und der Bio-Bio-Störung in Zusammenhang gebracht werden. Diese Diskontinuitäten setzten sich ins Landesinnere bis zur Hauptkordillere fort, während ihr seismisch aktiver Teil auf den *forearc* begrenzt ist. Diese beiden Verwerfungen begrenzen ein Gebiet mit geringer seismischer Aktivität, das zur Arauco-Halbinsel und zur Nahuelbuta-Kordillere gehört. Dieses weist wiederum im *forearc* die höchste Hebungsrate und Topographie auf.

Das Bebencluster nördlich der Arauco-Halbinsel (linkes Bild in Abbildung 5.7) befindet sich in unmittelbarer Umgebung der Santa-Maria Insel. Direkt nördlich der Insel ordnen sich die Beben in der oberen Platte in einem 5 km schmalen Band mit geringem westlichen Einfallen an. Das Band reicht von 4 km Tiefe bis zur seismischen Kopplungszone in 19 km Tiefe, verliert dort aber seine Fokussierung. Die Momententensorinversion von zwei dieser Beben zeigt nahezu identische Lösungen (*Bruhn, 2003*), und die resultierenden Mechanismen deuten Aufschiebungscharakter an (siehe auch Abbildung 5.8).

Das zweite Bebencluster südlich der Arauco-Halbinsel (rechtes Bild in Abbildung 5.7) befindet sich bei der Gastre-Störung. Auch hier konzentriert sich ein Teil der Beben in einem Band, daß

von 4 km Tiefe bis zur unteren Platte in 20 km Tiefe reicht. Die Herdflächenlösungen in diesem Gebiet weisen jedoch keine einheitlichen Mechanismen auf (Abbildung 5.8).

Benioff-Seismizität

Im Vergleich mit den Daten des PDE-Katalogs (siehe Abbildung 2.5) zeigen die lokalen Beben des ISSA-Netzes ein genaueres Bild der Seismizität. Die hohe Stationsdichte des ISSA-Netzes ermöglicht eine präzisere Hypozentrumsbestimmung als dies mit globalen Netzen möglich ist. Insbesondere kann die Benioff-Zone nun als schmales Band definiert werden. Ähnlichkeiten sind in der Abnahme der Seismizität von Nord nach Süd und in der fast aseismischen Arauco-Halbinsel zu verzeichnen.

Es wird davon ausgegangen, daß die mitteltiefe Seismizität sowohl durch metamorphe Prozesse in der Kruste und im oberen Mantel der subduzierten ozeanischen Platte kontrolliert wird, als auch durch die Reaktivierung von Störungen, welche in geringeren Tiefen gebildet wurden (Kirby et al., 1996). Bei der Subduktion hydratisierter ozeanischer Lithosphäre in Bereiche erhöhten Druckes und erhöhter Temperatur bewirken verschiedene Phasenumwandlungen die Freisetzung beträchtlicher Mengen an Wasser (Peacock, 1996). In geringeren Tiefen erfolgt die Fluidfreisetzung vorwiegend durch Kompaktion, d.h. wassergefüllte Klüfte und Poren werden durch die erhöhten Druckbedingungen geschlossen und das Wasser wird aus ihnen herausgepreßt. In größerer Tiefe (≥50 km) ist die Fluidfreisetzung dann Folge verschiedener Phasenumwandlungen. Eine wichtige metamorphe Transformation ist die Phasentransformation von Blauschiefer nach Eklogit (bei 500° – 600°C und 1.3–2.5 GPa), bei der große Wassermengen freiwerden (Peacock, 1993; 1996). Nach Poli and Schmidt (1995) existieren weitere Phasenumwandlungen innerhalb des Metmorphoseprozesses bei denen Fluide freigesetzt werden und die für eine bis über 200 km Tiefe kontinuierliche Dehydratisierung der ozeanischen Lithosphäre verantwortlich sind. Das freigesetzte Wasser setzt die effektive Spannung herab und macht Sprödversagen in Tiefen möglich, in denen unter gleichen Druck- und Temperaturbedingungen duktile Deformation zu erwarten wäre (dehydration embrittlement). Die Tiefe dieser Transformation hängt von der thermischen Struktur innerhalb der Subduktionszone ab (u.a. Alter der ozeanischen Lithosphäre, Konvergenzgeschwindigkeit). Sie kann 150 km für eine alte und kalte Lithosphäre betragen, aber auch nur 50-60 km für eine junge und warme Platte (Kirby et al., 1996).

Wie der Tiefen-Häufigkeitsverteilung in Abbildung 5.5 zu entnehmen ist, erreicht die Verteilung der lokalen Erdbeben des ISSA-Netzes bei 20 km Tiefe ein erstes Maximum. Es stellt die Zone seismischer Kopplung dar. Ein weiteres Maximum in 60 km Tiefe kann mit den oben beschriebenen Dehydrationsprozessen in der relativ jungen Nazca-Platte (20-30 Ma) in Verbindung gebracht werden.

Die Tiefenverteilung der Erdbeben variiert von Subduktionszone zu Subduktionszone. Die maximale Herdtiefe der im ISSA 2000-Experiment registrierten Erdbeben liegt bei \sim 190 km und entspricht damit nahezu der maximalen Herdtiefe der in den letzten 30 Jahren beobachteten Ereignisse von ~210 km. Nach Peacock (1993) bestimmt die Erwärmung der in den Mantel abtauchenden kalten ozeanischen Lithosphäre zusammen mit dem Druckausgleich, in welcher Tiefe die oben beschriebenen Metamorphoseprozesse stattfinden. Dabei sind die entscheidenden Parameter, die die thermische Struktur innerhalb der abtauchenden Platte steuern, das Alter A der subduzierten Platte und die Subduktionsgeschwindigkeit v_{sub} (Molnar et al., 1979). Der *thermal parameter* $\phi = Av_{sub}$ ist ein Maß für die Temperatur der abtauchenden Platte relativ zu dem sie umgebenden Mantel (Kirby et al., 1996). Ist der thermal parameter kleiner 1000 km, nimmt die maximale Erdebentiefe mit wachsendem ϕ zu. Tiefherdbeben können bei Subduktionszonen mit einem thermal parameter größer 5000 km beobachtet werden. Als Ursache für die geringe Tiefenerstreckung der Wadati-Benioff-Zone könnte demzufolge das geringe Alter der Nazca-Platte von 20–30 Ma und der damit verbundene hohe thermische Zustand der Platte angesehen werden. Kirby et al. (1996) verglichen für einige Bereiche verschiedener Subduktionszonen Wärmeflußdaten und maximale Herdtiefen von Benioff-Beben mit dem Alter der subduzierten Platte sowie dem thermal parameter und kamen zu dem Schluß, daß nur bis zu einem Plattenalter von 20 Ma und $\phi \leq 1000 km$ eine Korrelation der Parameter zu beobachten ist. In der Studie wird am Beispiel der mittelamerikanischen Subduktionszone gezeigt, wie die maximalen Herdtiefen mit dem Alter der Cocos-Platte (3–28 Ma) zwischen 100 und 250 km variieren. Allerdings ist die Konvergenzgeschwindigkeit von ca. 8-9 cm/a ziemlich hoch und ermöglicht damit auch Metamorphosetransformationen in größeren Tiefen. Für die südlichen Anden beträgt der *thermal parameter* $\phi = 1275 \text{ km}$ (mit $A = 25 \text{ Ma und } v_{sub} = 51 \text{ mm/a}$) und liegt damit nur geringfügig über dem Grenzwert. Aus der Seismizitätsverteilung der vorliegenden Studie zusammen mit den PDE-Daten ist deshalb nicht auszuschließen, daß auch Alter und thermischer Zustand einer 20-30 Ma alten subduzierten Platte Einfluß auf die maximale Herdtiefe der Erdbeben hat. Modellierungen der thermischen Struktur einer abtauchenden Platte zeigen auch, daß in einer jungen, langsam abtauchenden Platte ($\phi = 2500 \,\mathrm{km}$) die tiefsten Beben in 250 km Tiefe zu erwarten sind (Stein and Stein, 1996).

Ein weiteres auffälliges Charakteristikum ist die generell niedrige Seismizität in den südlichen Anden – sei es im Vergleich zu den Zentralen Anden oder auch zu anderen Subduktionszonen (u.a. Japan). Die ohnehin schon geringe Seismizität weist außerdem noch eine Abnahme innerhalb des Untersuchungsgebietes von Nord nach Süd auf. Diese steht eventuell auch in Zusammenhang mit der Änderung der thermischen Struktur der subduzierten ozeanischen Platte. Südlich von 39°S treten in der jungen ozeanische Lithosphäre fast keine Erdbeben mehr auf.

Die eher einfachen aber durchaus erfolgreichen Modelle der thermischen Struktur der subduzierenden ozeanischen Lithosphäre, wenn es um die Erklärung der wichtigsten subduktionsrelevanten Phänomene (u.a. Tiefenerstreckung der Wadati-Benioff-Zone) geht (*Stein and Stein, 1996*), tragen bisher noch nicht zum Verständnis der Variationen entlang einer Subduktionszone bei, wie es z.B. in den Anden zu beobachten ist.

Kapitel 6

Lokale Erdbebentomographie

6.1 Inversionsverfahren

Daten

Für die lokale Erdbebentomographie wurde der gleiche Datensatz wie für die 1-D Inversion verwendet, d.h. nur Ereignisse mit einer azimuthalen Stationsüberdeckung, die mindestens 180° und mindestens 8 P- und S-Beobachtungen aufweisen. Der dieser Arbeit zugrunde liegende Datensatz besteht also aus insgesamt 150 Beben mit 2283 P- und 1325 S-Beobachtungen.

Die Abbildung 6.1 zeigt die Strahlverläufe zwischen den in der Inversion verwendeten Beben und den Stationen. Während der westliche Teil des Untersuchungsgebietes gut durchleuchtet wird, durchlaufen den östliche Teil nur eine geringe Anzahl an Strahlen. Auch verlaufen diese nahezu vertikal, da hier horizontale Strahlen von Erdbeben aus dem *forearc* durch Dämpfung bzw. schlechtes Signal-Rausch-Verhältnis in geringerem Maße auftreten.

Inversionsgitter

Im Sinne einer geologischen Interpretation des resultierenden Geschwindigkeitsmodells wird eine möglichst feine Auflösung des Untersuchungsgebietes angestrebt. Die maximale räumliche Auflösung hängt jedoch maßgeblich von der Qualität und der Quantität der zur Verfügung stehenden Daten ab. Somit basiert die Parametrisierung des Untergrundes auf dem durchschnittlichen Stationsabstand, der Verteilung der Erdbeben und der Stationen sowie der Strahlen, die zwischen ihnen verlaufen. Verschiedene Testläufe sowohl mit synthetischen als auch mit realen Daten sowie die Abschätzung der Modellresolution entsprechend der in Kapitel 4.3 vorgestellten Methoden ergaben für den *forearc* – also für den Bereich, in dem die Strahldichte am höchsten ist – einen optimalen Knotenpunktabstand von 20 km. Zu den Randgebieten hin wurde der Knotenpunktabstand auf 30 km, 40 km, 50 km und 70 km vergrößert (Abbildung 6.1). Ver-

Abbildung 6.1: Verteilung der Erdbeben (schwarze Kreise), der Stationen (weiße Vierecke) und der sie verbindenden Strahlen (hellgraue Linien), die in der Inversion verwendet wurden, zur Verdeutlichung der Durchstrahlung des Untersuchungsgebietes. A: epizentrale Darstellung; B: N-S Schnitt; C: E-W Schnitt; D: Tiefen-Häufigkeitsverteilung der Beben. Das Inversionsgitter in A hat seinen Koordinatenursprung bei 72°W und 38°S und zeigt den Abstand der Knotenebenen in km. Der vertikale Abstand beträgt 20 km bis in eine Tiefe von 80 km, darunter 30 km.

tikal beträgt der Abstand der Knotenpunkte 20 km für Kruste und Mantel und ab 80 km Tiefe 30 km.

Die zunächst grob erscheinende Parametrisierung des Untergrundes stellt angesichts der begrenzten Datenmenge ein robustes seismisches Modell zur Verfügung, in welchem großräumige Strukturen gut aufgelöst werden und die Mehrzahl der Gitterpunkte eine hohe Auflösung besitzt.

Das Inversiongitter wurde um -11° gegen Nord rotiert, so daß es am Streichen des Tiefseegrabens orientiert ist. Außerdem verlaufen großräumige Strukturen, wie z.B. die Hauptkordillere oder das Längstal, entlang dieser Richtung.

		Anzahl	
bekannt	P-Beobachtung	2283	-
	S-Beobachtung	1325	Tabelle 6.1: Anzahl der Beobachtungen
unbekannt	Herdparameter	600	und der zubestimmenden Parameter der 3-D
	v an den Gitterpunkten	1287	Laufzeitinversion

Startmodell

Nach *Kissling et al. (1994)* definiert das Minimum 1-D Modell das Start- und Referenzmodell in der 3-D Laufzeitinversion. Das 1-D Modell stellt idealerweise den Durchschnitt der wahren 3-D Geschwindigkeiten in jeder Schicht dar und ist außer durch die Wahl der Schichttiefe und -mächtigkeit nicht durch a priori Informationen beeinflußt. Abbildung 6.2 zeigt beide Modelle. Während der Bearbeitung der Daten wurden verschiedene Vorgehensweisen getestet. Im ersten Ansatz wurden die Geschwindigkeiten des Minimum 1-D Modells direkt auf das 3-D Gitter übertragen. Im zweiten Ansatz wurde zusätzlich noch eine 2-D Inversion vor der 3-D Inversion durchgeführt. Der letztere graduelle Ansatz basiert auf der Annahme, daß in Gebieten mit geringer Auflösung die wahre Struktur besser durch ein regionales 2-D Startmodell abgeschätzt werden kann als durch ein 1-D Modell (*Reyners et al., 1999*). Die in der vorliegenden Arbeit vorgestellten Geschwindigkeitsmodelle basieren auf der graduellen Inversion. Die 2-D Inversion erfolgt über das Verknüpfen der Knotenpunkte (*Thurber and Eberhart-Phillips, 1999*) in N-S Richtung mit dem Ergebniss eines 2-D Geschwindigkeitsmodells in E-W Richtung.

Abbildung 6.2: Minimum 1-D v_p Modell (gepunktete Linie) und das dazugehörige 3-D Startmodell (schwarze Linie) für die 3-D v_p Inversion. Die Geschwindigkeiten im 3-D Startmodell sind lateral konstant. Die Kreise markieren die Knotenebenen, zwischen denen die Geschwindigkeitswerte linear interpoliert werden. Die Parametrisierung des Modells mit der Tiefe wird außerdem durch die hellgrauen Linien verdeutlicht.

Abbildung 6.3: *trade-off* Kurve zur Festlegung des Dämpfungswertes für die 3-D v_p -Inversion. Für verschiedene Dämpfungsfaktoren ist die Datenvarianz gegenüber der Modellvarianz aufgetragen. Für den gewählten Wert (schwarzer Kreis) wird eine geringe Datenvarianz und eine mäßige Modellvarianz erzielt.

Dämpfung des Modells (trade-off Kurven)

In der lokalen Erdbebentomographie ist der Dämpfungsfaktor ein entscheidender Parameter, der sorgfältig festgelegt werden muss. Niedrige Dämpfungswerte führen zu einem komplexen Modell mit einer relativ großen Reduktion der Datenvarianz. Hohe Dämpfungswerte hingegen ergeben ein eher glattes Model mit geringer Reduktion der Datenvarianz. Außerdem hängen Fehlermaße wie der Betrag des Diagonalelementes der Resolutionsmatrix stark vom gewählten Dämpfungswert ab. Nach (*Eberhart-Phillips, 1986*) kann der Dämpfungsfaktor mittels einer *trade-off* Kurve objektiv bestimmt werden. Für ein gegebenes Modellgitter wird ein Inversionsschritt bei verschiedenen Dämpfungswerten durchgeführt und jeweils die Varianz der Datenanpassung gegenüber der Varianz des Modells aufgetragen (Abbildung 6.3). Ein optimaler Wert ist derjenige, der die Datenvarianz reduziert, ohne die Modellvarianz stark ansteigen zu lassen. Es wird also ein Dämpfungswert gesucht, der bei der Inversion einerseits zur Minimierung der Laufzeitresiduen und andererseits zu einem möglichst wenig komplexen Modell führt.

6.2 Auflösungsvermögen und synthetische Modelle

Zur Abschätzung des Auflösungsvermögens der zu untersuchenden Daten und der Qualität der Inversionsergebnisse wurde einerseits die Modellresolutionsmatrix analysiert. Anderseits wurden synthetische Datensätze mit identischer Geometrie zum realen Datensatz invertiert.

Durchstrahlung und Resolutionsmatrix

Die in Kapitel 4.3 vorgestellten Fehlermaße wurden für den ISSA 2000-Datensatz analysiert. Durch ihre unterschiedliche Aussagekraft ergeben sie in ihrer Gesamtheit ein repräsentatives Bild über die Qualität der Lösung. DWS und Resolutionsmatrix werden direkt von SIMULPS ausgegeben. Zur Darstellung der Diagonalelemente und der *spread* Funktion wurde das Programm res2spread (*Haberland*, 1999) verwendet. Die nachfolgenden Abbildungen 6.4 bis 6.7 zeigen die charakteristischen Fehlermaße - DWS, *spread* Funktion und Diagonalelemente der Resolutionsmatrix - entlang vertikaler und horizontaler Schnitte. Da diese Werte an den diskreten Knotenpunkten definiert sind, werden sie der Umgebung des jeweiligen Knotens zugeordnet und nicht interpoliert dargestellt. Dunklere Grautöne und größere Kreise zeigen Bereiche guter Lösungsqualität an. Die absoluten Werte dieser Parameter hängen stark vom gewählten Dämpfungsfaktor ab. Deshalb wird hier nur ihre relative Größe interpretiert.

Wie durch die Strahlverläufe und Strahlenüberdeckung vorgegeben wird im nördwestlichen und zentralen Bereich des Modells die beste Auflösung erreicht. Die DWS, also das relative Maß für die Strahldichte in der Umgebung eines Knotenpunktes, nimmt ihre höchsten Werte im nördlichen forearc und oberhalb der abtauchenden Platte an. Unterhalb und östlich der Hauptkordillere erreicht sie kaum noch nennenswerte Beträge. Die Diagonalelemente der Resolutionsmatrix und die spread Funktion erreichen in denselben Gebieten die höchsten Werte an. Unterschiede sind in den Bereichen zu verzeichnen, die von weniger Strahlen durchlaufen werden. Während die vertikalen Schnitte bei -60 und -80 km durch die DWS als schlecht aufgelöst eingestuft werden, wird mittels der Beurteilung über den spread Wert auch in diesem Bereich eine akzeptable Auflösung für die obersten 50km erzielt. Im Unterschied zur DWS berücksichtigt die spread Funktion auch die richtungsmäßige Verteilung der Strahlen und stellt damit ein verläßlicheres Auflösungskriterium als die DWS dar. Ein Grenzwert der spread Funktion wurde gewählt, um Bereiche guter Auflösung von denen weniger guter Auflösung zu trennen. Grundlage bei dieser Wahl waren die relative Größe des spread Wertes und die Ergebnisse von Testrechnungen mit synthetischen Modellen. Hier und in späteren Abbildungen des Geschwindigkeitsmodells wird dieser Werte durch eine weiße bzw. rote Linie gekennzeichnet. Schlecht aufgelöste Bereiche werden ausgeblendet.

Synthetische Modelle

Zusätzlich zur Analyse der Durchstrahlung und Resolutionsmatrix zeigen Testrechnungen mit synthetisch erzeugten P- und S-Laufzeitdaten die Grenzen des Auflösungsvermögens und das mögliche Entstehen von Artefakten bei gegebener Modellkonfiguration. Ursachen dafür sind in der Quelle-Empfänger-Geometrie, in der Parametrisierung des Inversionsgitters, im gewählten Dämpfungswert bzw. in den Datenfehlern zu suchen.

Zunächst werden die synthetischen Daten durch Vorwärtsmodellierung in einem vordefinierten Untergrundmodell für die identischen Quelle-Empfänger-Paare, für die auch Laufzeitdaten vorliegen, berechnet. Die synthetischen Daten werden dann mit einem normalverteilten, zufallsgesteuerten Fehler versehen (*Haberland*, 1999) und anschließend mit den gleichen Parametern invertiert wie auch der reale Datensatz. Durch einen Vergleich zwischen dem vorgegebenen synthetischen Modell und dem Inversionsergebnis kann das Auflösungsvermögen beurteilt werden.

Abbildung 6.4: Die DWS (ein Maß für die Strahldichte in der Umgebung eines Knotenpunktes) entlang horizontaler Schnitte durch das 3-D v_p Modell. Die Knoten des Inversionsgitters werden durch schwarze Kreuze markiert. Dunkle Grautöne zeigen Bereiche mit hoher Strahldichte an. Die Bereiche, durch die kein Strahl verläuft, sind weiß dargestellt (DWS < 8).

Abbildung 6.5: Die DWS entlang vertikaler Schnitte durch das 3-D v_p Modell. Für die genaue Lage der Schnitte siehe Abbildung 6.1 und für weitere Informationen siehe Abbildung 6.4.

Abbildung 6.6: Spread Werte (grauschattiert) und Diagonalelemente (weiße Kreise) der Modellresolutionsmatrix für das 3-D v_p Modell dargestellt entlang horizonzaler Schnitte. Dunkle Grautöne (niedriger Spread Wert) und große Kreise (großes Diagonalelement) verdeutlichen Bereiche hoher Auflösung. Die weiße Isolinie entspricht einem Spread Wert von 2 und umschließt den Bereich hoher Auflösung.

Abbildung 6.7: Spread Werte (grauschattiert) und Diagonalelemente (weiße Kreise) der Modellresolutionsmatrix für das 3-D v_p Modell dargestellt entlang horizontaler Schnitte. Siehe Abbildung 6.6 für weitere Informationen.

Als theoretisches Geschwindigkeitsmodell dienten wie auch in vergleichbaren Studien (Graeber and Asch, 1999; Haberland, 1999) die beiden prinzipiell gebräuchlichen Muster: das sogenannte Checkerboard Modell und ein selbsterzeugtes Modell, das sich z.B. an den gegebenen Anomalien orientiert. Das Checkerboard Modell besteht aus einer lateral und vertikal harmonisch perturbierenden Geschwindigkeitsverteilung. Durch die regelmäßige Struktur innerhalb des gesamten Modellraumes ist die Reproduzierbarkeit des Modells leicht zu überprüfen. Während eine gute Durchstrahlung die kleinräumigen Anomalien widergibt, kann ein schlechtes Auflösungsvermögen zur Verwischung benachbarter positiver und negativer Anomalien führen. Ein entscheidender Nachteil der Checkerboard Methode ist, daß durch die künstliche Struktur des Schachbrett-Musters die Strahlen nicht immer in der Nähe der realen Strahlenwege verlaufen. Für den Checkerboard Test wurde das Minimum 1-D Modell als Hintergrundmodell verwendet und durch 5% – Perturbationen von v_p ein Schachbrett-Muster erzeugt (Abbildung 6.8 oben). Die aus diesem Modell resultierenden Laufzeitdaten wurden entsprechend der abgeschätzten Unsicherheiten bei der Laufzeitbestimmung der realen Daten mit Fehlern behaftet und anschließend invertiert. Das Inversionsergebnis in Abbildung 6.8 zeigt, daß das Schachbrett-Muster vor allem unterhalb des forearcs und des Längstals, also in den Bereichen, in denen eine dichte Strahlüberdeckung existiert, reproduziert werden kann. Den östlichen Teil des Untersuchungsgebietes hingegen durchläuft nur eine verminderte Anzahl an Strahlen, was sich in einer weniger guten Rekonstruktion des Musters widerspiegelt. Generell läßt sich feststellen, daß die Anomalien in ihrer Tendenz, aber nicht in der Größe ihrer Amplitude wiedergeben werden.

Darüberhinaus wurde ein zweites synthetisches Modell erstellt, welches sich an den Anomalien orientiert, die sich durch Testläufe mit den realen Daten ergeben haben bzw. a priori Informationen bekannter geologischer Strukturen mit einfließen läßt (Abbildungen 6.9 und 6.10). Die abtauchende Platte ist durch erhöhte Geschwindigkeiten gekennzeichnet. Desweiteren wurden erniedrigte Geschwindigkeiten unterhalb des forearcs und des vulkanischen Bogens modelliert. Die Berechnung der synthetische Laufzeitdaten und die anschließende Inversion wurde analog zum Checkerboard Test durchgeführt. Die wesentlichen Merkmale des Modells können während der Inversion rekonstruiert werden (Abbildungen 6.9 und 6.10). Wie schon durch den Checkerboard Test gezeigt wurde, ist insbesondere der zentrale Bereich des Modells durch ein hohes Auflösungsvermögen gekennzeichnet. Hier lassen sich kleinräumige Anomalien in Ausdehnung und Amplitude reproduzieren. Der horizontale Versatz der erniedrigten Geschwindigkeiten läßt sich auf den Knotenpunkt genau rekonstruieren (siehe horizontale Schnitte in 20 und 30 km Tiefe). Einzelne Anomalien erhöhter Geschwindigkeiten im zentralen Bereich werden nach der Inversion vollständig wiedergegeben (siehe horizontaler Schnitt in 40 km Tiefe). Die abtauchende Platte wird in den Gebieten wiedergegeben, in denen Benioff-Seismizität vorhanden ist (vergleiche dazu insbesondere vertikale Schnitte 20, 60, 100 km in Abbildung 6.9 bzw. horizontale Schnitte 40 und 80 km in Abbildung 6.10). Die südlichen und östlichen Randgebie-

Abbildung 6.8: Der *Checkerboard* Test. Oben: Theoretisches Geschwindigkeitsmodell zur Berechnung synthetischer Laufzeitdaten dargestellt in prozentualer Abweichung vom Minimum 1-D Modell. Unten: Ergebnis der Inversion der synthetisch erzeugten Daten. Die linke Seite der Abbildung zeigt horizontale Schnitte durch das Modell, die rechte Seite vertikale Tiefenschnitte. Die Erdbeben (weiße Kreise) aus einem 20 km breiten Bereich wurden auf die Sektionen projiziert.

Prozent) Rechts: Ergebnis der Inversion der synthetisch erzeugten Daten. erhöhter Geschwindigkeit (z.B. abtauchende Platte) und rot Bereiche erniedrigter Geschwindigkeit. (5-8 dargestellt in prozentualer Abweichung vom Minimum 1-D Modell. Blau gekennzeichnet sind Gebiete Inversion. Abbildung 6.9: Vertikale Schnitte zur Verdeutlichung des Auflösungsvermögens der tomographischen Links: Theoretisches Geschwindigkeitsmodell zur Berechnung synthetischer Laufzeitdaten

Abbildung 6.10: Horizontale Schnitte zur Verdeutlichung des Auflösungsvermögens der tomographischen Inversion. Links: Theoretisches Geschwindigkeitsmodell zur Berechnung synthetischer Laufzeitdaten dargestellt in prozentualer Abweichung vom Minimum 1-D Modell. Rechts: Ergebnis der Inversion der synthetisch erzeugten Daten.

te hingegen weisen eine Verschmierung der Anomalien auf. Insbesondere im *backarc* Bereich lassen sich die positiven Anomalien nicht eindeutig nach Osten abgrenzen (vertikale Schnitte bei 20 km und -60 km und Tiefenschnitt bei 60 km) bzw. sie verlaufen ineinander (vertikale Schnitte bei 100 km und -100 km), da hier horizontale Strahlen von Erdbeben aus dem *forearc* durch Dämpfung bzw. schlechtes Signal-Rausch-Verhältnis nur in geringerem Maße auftreten. Die Amplituden der Anomalien können nicht immer in der vollen Größe wiedergegeben werden. Es treten Differenzen bis zu 0,3 km/s auf. Ähnliche Differenzen sind auch für den realen Datensatz zu erwarten.

Die Bereiche guter Auflösung wurden wie oben erwähnt nach der Analyse der synthetischen Testrechnungen durch die Festlegung eines Grenzwertes für den *spread* Wert definiert.

Abbildung 6.11: Ein Tiefenschnitt durch das 2-D v_p Modell mit den relokalisierten Hypozentren (oben – absolute P-Wellen-Geschwindigkeiten; unten – P-Wellen-Geschwindigkeiten relativ zum Minimum 1-D Modell). Die rote Isolinie kennzeichnet den Bereich hoher Auflösung, der über den *spread* Wert definiert wird. Kreuze markieren die Modellknotenpunkte. Über den Modellen ist zur Orientierung die Topographie abgebildet mit den Stationen (Vierecke) und den aktiven Vulkanen (Dreiecke) aus dem gesamten Untersuchungsgebiet.

6.3 Ergebnisse

Im folgenden Abschnitt werden die Ergebnisse aus der Inversion der beobachteten Laufzeitdaten gezeigt. Die Darstellung der Ergebnisse erfolgt mittels vertikaler Sektionen und horizontaler Schnitte (Abbildungen 6.11 bis 6.14). Beim v_p Modell werden sowohl die absoluten Geschwindigkeitswerte als auch die Abweichungen zum 1-D Modell gezeigt. Die auf dem Modellgitter definierten Geschwindigkeitswerte werden unter Verwendung des Programmes simul2gmt (*Haberland, 1999*) in ein fein gerastertes Grid umgewandelt. Die Interpolation erfolgt mit dem gleichen Formalismus wie im Programm SIMULPS. Nicht durchstrahlte Bereiche sowie Bereiche schlechter Auflösung sind ausgeblendet; Bereiche geringerer Auflösung sind etwas heller dargestellt. Die Abschätzung der Auflösung basiert auf der in Kapitel 6.2 beschriebenen Analyse der Fehlermaße (u.a. *spread* Funktion) und der synthetischen Tests.

2-D v_p Modell

Das Ziel der 2-D Inversion ist die Erstellung eines regionalen Modells, welches die vorherrschenden Strukturen im Untersuchungsgebiet widerspiegelt. Da diese Strukturen wie z.B. der Tiefseegraben N11°E streichen, wurde das Modell dementsprechend rotiert. Das Ergebnis der Inversion ist als Tiefenschnitt in Abbildung 6.11 gezeigt. Das 2-D Modell erreichte nach 5 Iterationen eine 60% ige Reduktion der Datenvarianz im Vergleich zum 1-D Modell.

Das Geschwindigkeitsvariationen im 2-D v_p Modell sollen hier nicht näher beschrieben werden, da es sich formell nur um einen Zwischenschritt der Inversion handelt. Gleichwohl deuten sich im 2-D Modell schon die wesentlichen Anomalien des 3-D Modells an, die dann im nächsten Abschnitt erörtert werden.

3-D v_p Modell

Nach ausführlichen Testläufen und der oben beschriebenen Analyse des Auflösungesvermögen wurde 3-D v_p Modell ermittelt, das vom 2-D Modell ausgehend nach 4 Iterationen eine Reduktion der Datenvarianz von weiteren 9% erreichte. Die wesentlichen Elemente des 3-D Modells (Abbildungen 6.12 bis 6.15) sind:

(1) Nazca-Platte:

(A) Ozeanische Kruste und Mantel: Die abtauchende Nazca-Platte ist durch die Wadati-Benioff-Zone gekennzeichnet. Sofern sie von den seismischen Strahlen der registrierten lokalen Erdbeben durchlaufen wird, zeichnet sie sich durch erhöhte P-Wellen-Geschwindigkeiten aus und kann deutlich in den horizontalen Schnitten KAPITEL 6. LOKALE ERDBEBENTOMOGRAPHIE

Abbildung 6.12: Horizontale Schnitte in unterschiedlichen Tiefenlagen (linke untere Ecke) durch das 3-D v_p Modell. Die relokalisierten Erdbeben aus dem entsprechenden Tiefenbereich sind ebenfalls abgebildet. Außerdem wurden die wichtigsten Störungszonen in die jeweiligen Schnitte eingezeichnet (hellgraue Linien). Die rote Isolinie kennzeichnet den Bereich hoher Auflösung, der über den *spread* Wert definiert wird. Buchstaben stehen für v_p Anomalien, die im Text näher beschrieben werden. Die oberen beiden Karten sind zur genauen Orientierung abgebildet. Die linke Karte zeigt die Topographie mit der Stationsverteilung (rote invertierte Dreiecke) und den aktiven Vulkanen (schwarze Dreiecke). Die rechte Karte beinhaltet die krustale Seismizität (Tiefe ≤ 40 km), die Störungszonen (schwarze Linien), die 300 entifie Binkette) und die aktiven Vulkane. GeoForschungsZentrum Potsdam

Abbildung 6.13: Horizontale Schnitte in unterschiedlichen Tiefenlagen durch das 3-D v_p Modell in Abweichung zum Minimum 1-D Modell. Für weitere Informationen siehe Abbildung 6.12.

Abbildung 6.14: Vertikale Schnitte durch das 3-D v_p Modell - von N nach S sortiert. Für die genaue Lage der Schnitte siehe linke untere Ecke und Abbildung 6.1. Relokaliserte Erdbeben, Stationen und aktive Vulkane aus einem 30 km breiten Bereich um das Profil herum werden ebenfalls gezeigt. Die rote Isolinie kennzeichnet den Bereich hoher Auflösung, der über den *spread* Wert definiert wird.

Abbildung 6.15: Vertikale Schnitte durch das 3-D v_p Modell in Abweichung zum Minimum 1-D Modell - von N nach S sortiert. Für weitere Informationen siehe Abbildung 6.14.

in 30 und 40 km Tiefe der Abbildung 6.12 identifiziert werden. In dieser Tiefenlage treten v_p Werte zwischen 7,5 und 7,8 km/s im zentralen und nördlichen Bereich zwischen entlang der Küstenlinie (zwischen 100–120 km W und 260 km N–20 km S) auf. Mit größerer Tiefe nehmen die Geschwindigkeiten weiter zu und erreichen Werte von 8,3 km/s in 110 km Tiefe (siehe Schnitte 40 km und 60 km in Abbildung 6.14).

(2) Südamerikanische Platte:

Die v_p Tomographie zeigt hohe Geschwindigkeiten zwischen 6,5 und 6,8 km/s für die gesamte obere Kruste vom *forearc* bis zum *backarc* (siehe dazu Tiefenschnitt 20 km in Abbildung 6.12 und sämtliche vertikale Schnitte in Abbildung 6.14).

- (B) Küstenkordillere: Die Geschwindigkeiten unterhalb der Küstenkordillere werden einerseits durch die hohen Geschwindigkeiten der einfallenden Nazca-Platte dominiert. Andererseits werden weiter östlich in 30 bis 50 km Tiefe niedrige v_p Werte zwischen 6,8 und 7,5 km/s beobachtet. Diese Struktur dominiert den zentralen und nördlichen Bereich des Untersuchungsgebietes (zwischen -40 km bis 160 km N) und scheint nach Süden hin klar abgegrenzt zu sein (siehe dazu entsprechende Tiefenschnitte in Abbildung 6.12 und 6.14). Diese erniedrigten Geschwindigkeitswerte sind deutlich in der Relativdarstellung zu erkennen (Abbildungen 6.13 und 6.15). Hier zeigt sich auch, daß die Anomalie ebenso in E-W Richtung mehrere Knotenpunkte umfaßt, was für die Zuverlässigkeit der abgebildeten Struktur spricht.
- (C) Längstal: Die durchaus markanteste Anomalie im 3-D v_p Modell zeichnet sich durch erhöhte Geschwindigkeiten unterhalb des Längstal ab einer Tiefe von 30 km aus. Diese Struktur durchzieht das gesamte Untersuchungsgebiet und streicht vollständig in N-S Richtung, ist also um 11° zur Benioff-Zone verdreht. Die v_p Werte reichen von 7,3 km/s in 30 km Tiefe bis 8,1 km/s in 50 km Tiefe (siehe Abbildung 6.12).
- (D) Magmatischer Bogen und backarc: Die Auflösung nimmt durch die geringe Anzahl der beobachteten seismischen Strahlen nach Osten hin ab. Mantelgeschwindigkeiten werden erst ab 50–55 km Tiefe erreicht (siehe Profilschnitte 0 km und 20 km in Abbildung 6.14).
- (E) Weitere Strukturen:
 - (E1) Bio-Bio-Störungszone: Unterhalb des Längstals werden entlang der Bio-Bio-Störung langsamere Geschwindigkeiten in 30 und 40 km Tiefe als nördlich und südlich davon ermittelt. Die erhöhten Geschwindigkeiten nördlich der Bio-Bio-Störung setzten sich nach Westen hin fort bis in den Bereich (B) unterhalb der Küstenkordillere.

(E2) Gastre-Störungszone: Die Gastre-Störung scheint die beobachtete Anomalie langsamer Geschwingigkeiten unterhalb der Küstenkordillere (B) nach Süden hin abzugrenzen (siehe horizonatele Schnitte 30 und 40 km in Abbildung 6.12).

Stationskorrekturen

Wird während der 3-D v_p Inversion unter Verwendung eines geringen Dämpfungsfaktors auch für die Stationskorrekturen invertiert, dann ergeben sich die in Abbildung 6.16 gezeigten Größen. Es wurden sowohl Inversion mit Einbeziehung von Stationskorrkturen als auch ohne durchgeführt. Beide Vorgehensweisen führten zu sehr ähnlichen Strukturen im 3-D v_p Modells. Die Stationskorrekturen weisen relativ kleine Werte zwischen -0,16 s bis 0,15 s auf, d.h. der größte Teil der Information aus den Laufzeitresiduen konnte auf die 3-D Geschwindigkeitsstruktur abgebildet werden. Der zentrale Bereich des Untersuchungsgebietes zeichnet sich vorwiegend durch negative Stationskorrekturen aus. Die Arauco-Halbinsel weist einheitliche positive Stationskorrekturen auf.

Abbildung 6.16: Stationskorrekturen des 3-D v_p Modells.

Abbildung 6.17: Häufigkeitsverteilung der RMS-Werte der Lokalisierungen nach der 1-D Inversion (links) und nach der 3-D Inversion (rechts).

Datenanpassung

Das 3-D v_p Modell reduziert erwartungsgemäß RMS-Residuen und die Varianz der Laufzeitdaten des ISSA 2000-Datensatzes (siehe Tabelle 6.2). Insbesondere die vorher breit gestreuten RMS-Werte der Lokalisierungen der Erdbeben werden signifikant gemindert und konzentrieren sich nach der 3-D Inversion im Wesentlichen um den Wert 0,1 s (siehe Abbildung 6.17).

	RMS	Datenvarianz	Reduktion zu 1-D	Reduktion zu 2-D
1-D	0,427	0,118		
2-D	0,283	0,047	60%	
3-D	0,256	0,036	69%	23%

Tabelle 6.2: Übersicht über die Datenanpassung: RMS und Datenvarianz vor und nach der Inversion

Abbildung 6.18: Verschiebung der Hypozentren nach der 3-D v_p Inversion im Vergleich zu den 1-D Lokalisierungen mit dem Minimum 1-D Modell. Dargestellt sind die Hypozentren der 3-D Inversion (Kreise). Vektoren weisen von der 1-D zur 3-D Lokaliserung. Es werden nur kleine Änderungen in den Lokalisierungen der Hypozentren beobachtet.

Relokalisierung der Hypozentren

Die Relokalisierungen der Hypozentren aller in die Inversion eingegangenen Ereignisse ist in Abbildung 6.18 gezeigt. Die Vektoren zeigen die Verschiebung von der Position, welche mit dem Minimum 1-D Modell ermittelt wurde, zu der aus der 3-D v_p Inversion unter Verwendung der P- und S-Laufzeitdaten hervorgegangen Position. Obgleich die Anpassung der Hypozentren während der Inversion kaum beschränkt wurde, verschob sich die Mehrzahl der Lokalisierungen nur minimal und zeigt damit ihre Stabilität und Genauigkeit.

Abbildung 6.19: Ergebnis der 2-D v_p/v_s Inversion. Die graue Isolinie kennzeichnet den Bereich hoher Auflösung. Die Vierecke markieren die Stationen, Dreiecke die Vulkane und Kreuze die Modellknotenpunkte.

2-D v_p/v_s Modell

Von dem im letzten Abschnitt vorgestellten 3-D v_p Modell ausgehend wurde für das selbe Inversionsgitter das v_p/v_s Modell berechnet. Das anfängliche v_p/v_s Verhältnis von 1,75 wurde durch die Auswertung reduzierter Wadati-Diagramme bestimmt (siehe Abbildung 5.3). Der Dämpfungswert für die v_p/v_s Inversion wurde wie oben für v_p beschrieben ebenfalls über eine *trade-off* Kurve ermittelt. Die v_p Geschwindigkeiten wurden stark gedämpft, da sie bereits das Ergebnis der 3-D Inversion sind.

Der Bereich um die Wadati-Benioff-Zone zeigt bis in eine Tiefe von 60 km erhöhte Werte im Vergleich zum Mittelwert von 1,75 auf – also bis zu dem Tiefenbereich, in dem sich die mitteltiefen Beben konzentrieren. In der oberen Kruste wird ein erniedrigtes v_p/v_s Verhältnis (1,65–1,73) beobachtet. Im Übergangsbereich zwischen den Krusten- und Mantelgeschwindigkeiten zeigt das Modell eine Erhöhung von v_p/v_s (1,80–1,84).

Eine 3-D v_p/v_s Inversion erwies sich eingehender Untersuchung als nicht durchführbar, da die Anzahl der zur Verfügung stehenden S-Laufzeitdaten nicht ausreichend war.

Vergleich der Ergebnisse der lokalen Erdbebentomographie mit anderen geophysikalischen Untersuchungsergebnissen aus der Region

Im Rahmen des SFB 267 und in Zusammenarbeit mit chilenischen und argentischen Institutionen wurden in den südlichen Anden eine Reihe von geophysikalischen Untersuchungen durchgeführt und eine umfangreiche Datenbasis angelegt, deren Auswertung und Interpretation zum Teil noch in Bearbeitung ist. Das ISSA 2000-Experiment beinhaltete neben dem seismologischen Teilprojekt auch ein refraktionsseimisches Profil entlang 39° (*Lüth et al., 2003b*). Dasselbe Profil wurde für *Receiver Functions* Studien genutzt (*Kind et al., 2001*). Mit dem SPOC-Experiment erfolgten weitere Weit- und Steilwinkeluntersuchungen (*Krawczyk and the SPOC Team, 2003; Lüth et al., 2003a*). Außerdem wurde das Schwerefeld vermessen (*Götze et al., 2001*) und ist Grundlage der 3-D Dichtemodellierung (*Z. Tašárová, pers. Mitt.*). Die Ergebnisse dieser Untersuchungen, die bereits in der Einführung in Kapitel 2.5 vorgestellt wurden, können zur Interpretation des 3-D v_p Modells herangezogen werden, um zu einem konsistenten geophysikalischen Abbild des Untergrundes in Südchile zu gelangen. Deshalb sollen in dem nun folgenden Abschnitt die Ergebnisse der LET mit denen der anderen geophysikalischen Untersuchungsmethoden verglichen und diskutiert werden.

Refraktionsseismik Die Weitwinkeldaten wurden nicht in das hier vorgestellte 3-D v_p Modell integriert und können somit zum Vergleich herangezogen werden. Während das tomographische v_p Modell Geschwindigkeitsgradienten abbildet, treffen refraktionsseimische Modelle Aussagen über die Lage von Diskontinuitäten und deren Geschwindigkeitskontraste. Die refraktionsseismische Profile von ISSA und SPOC geben Informationen über die P-Wellen-Geschwindigkeitsstruktur der oberen 40 km. Die refraktionsseimischen Profile wie auch das tomographische Modell weisen vergleichbar hohe Geschwindigkeiten für die obere Kruste (5,9–6,2 km/s) auf (Profilschnitte (a)–(c) in Abbildung 6.20). In größeren Tiefen nehmen dann die Geschwindigkeiten im Tomographie-Modell schneller zu als in den Weitwinkel-Modellen. Ursache hierfür ist wahrscheinlich die graduelle Darstellung der Geschwindigkeiten mittels der Tomographie. Der Geschwindigkeitskontrast an der Moho wird im Bereich über und unter dieser Diskontinuität kompensiert. Bis auf das nördliche SPOC-Profil geben die refraktionsseismischen Untersuchungen keine Information über die Tiefenlage der Moho. Dieses zeigt Mantelgeschwindigkeit bei 72°W in 40 km Tiefe unterhalb des Längstals analog zum Tomographie-Modell (Profilschnitt (a) in Abbildung 6.20).

Receiver Functions Auch die *Receiver Functions* bilden Krusten- und Manteldiskontinuitäten ab. Während der Verlauf der ozeanische Moho gut mit der Wadati-Benioff-Zone korreliert (Pro-filschnitt (c) in Abbildung 6.20), ist die Tiefenlage der kontinentalen Moho unterhalb der Haupt-

Abbildung 6.20: Tomographische Profile entlang 37°, 38° und 39°S sowie die entsprechenden Ergebnisse der Refraktionsseismik des SPOC-Experimentes in den beiden oberen Schnitten und des ISSA-Experimentes im unteren Schnitt (entnommen von *Lüth et al., 2003a; 2003b*). Kurze schwarze Linien geben die Schichtgrenzen, welche durch die Weitwinkeldaten ermittelt wurden, und Zahlen die Geschwindigkeiten in [km/s], an. Im Profilschnitt bei 39°S ist zusätzlich die Moho, wie sie durch die *Receiver Functions* gesehen wird, eingetragen (*X. Yuan, pers. Mitt.*).

Scientific Technical Report STR 04/15

Abbildung 6.21: Dichtemodell zur Anpassung der Bouguer-Schwere (*Z. Tašárová, pers. Mitt.*) und Tomographie-Modell entlang eines Profils bei 38° S. (Dichten in g/cm³)

kordillere weitaus niedriger bestimmt als der Verlauf der 7,75 km/s-Isolinie im tomographischen Modell indiziert. Unter der Annahme, daß die Übergangszone zwischen Kruste und Mantel ab Geschwindigkeiten um 7,6 km/s anzutreffen ist (hellgraue Isolinie in (c)), nähern sich die beiden Linien an. Es ist jedoch zu beachten, daß das *Receiver Functions* Profil bereits am südlichen Rand des tomographischen Modells liegt und somit auch an den Rand der Auflösung rückt.

Dichtemodellierung Zusätzliche Vergleichsmöglichkeiten bietet die gravimetrische Dichtemodellierung zwischen 36–42°S (Abbildung 6.21). Das von Z. *Tašárová (pers. Mitt., 2004)* erstellte Dichtemodell berücksichtigt die seismischen und geologischen Informationen aus der Region.

Die hohen v_p Geschwindigkeiten in der oberen Kruste (6,5–6,8 km/s) werden durch hohe Dichtewerte (~2,77 g/cm³) bestätigt. Der in der v_p Tomographie gesehene Übergang von Krustenzu Mantelgeschwindigkeiten, der von ~40 km unterhalb des Längstals auf ~50 km unterhalb der Hauptkordillere zunimmt, stellt keinen Widerspruch zu der gemessenen Bouguer-Schwere dar. Auch der in der Tomographie ermittelte Bereich erniedrigter Geschwindigkeiten in 30–50 km Tiefe unterhalb der Küstenkordillere zeichnet sich durch geringere Dichten im Vergleich zu den sich weiter westlich befindlichen Werten aus, wird hier allerdings für den gesamten paläozoischen Akkretionskeil angenommen.

Kapitel 7

Interpretation und Diskussion der Ergebnisse

7.1 Seismizität

Die Verteilung der Seismizität wurde bereits ausführlich in Kapitel 5 diskutiert und soll hier nur kurz wiedergegeben werden. Die Wadati-Benioff-Zone wird durch eine nach Osten geneigte Ebene mit kontinuierlicher Seismizität bis in eine Tiefe von 120 km definiert. Eine seismische Aktivität zwischen 36° und 40°S kann generell bis in eine Tiefe von 200 km beobachtet werden. Eine doppelt seismische Wadati-Benioff-Zone, wie sie in den Zentralen Anden von *Comte et al. (1999)* für die Arica-Gegend (~ 19°S) und von *Rietbrock and Waldhauser (2002)* zwischen 21,5° und 22,5°S oder auch unter Honshu in Japan von *Hasegawa et al. (1978)* beobachtet wird, kann in den südlichen Anden nicht festgestellt werden. Die Konzentration der seismischen Aktivität in 60 km Tiefe steht wahrscheinlich in Zusammenhang mit den, im Untersuchungsgebiet in geringerer Tiefe ablaufenden Dehydrationsprozessen in einer relativ jungen Nazca-Platte (20–30 Ma). Auch die generell geringe seismische Aktivität in den südlichen Anden und deren Abnahme von Nord nach Süd kann im Zusammenhang mit der Änderung der thermischen Struktur der subduzierten ozeanischen Platte gesehen werden. Südlich von 39°S treten in der jungen ozeanische Lithosphäre fast keine Erdbeben mehr auf.

Die krustale Seismizität konzentriert sich im *forearc* Bereich des aktiven Kontinentalrandes, insbesondere nördlich und südlich der Arauco-Halbinsel am Beginn der Bio-Bio- und der Gastre-Störung. Während sich diese Diskontinuitäten ins Landesinnere bis zur Hauptkordillere fortsetzten, ist ihr seismisch aktiver Teil auf den *forearc* begrenzt. Der ISSA 2000-Katalog sowie internationale Datenkataloge zeigen geringe seismische Aktivität in dem Gebiet zwischen den beiden Verwerfungen, das zur Arauco-Halbinsel und zur Nahuelbuta-Kordillere gehört. Die Konzentration seismischer Aktivität sowie die regelmäßig auftretenden Erdbeben mit einer Ma-

Abbildung 7.1: Die wesentlichen Elemente der Ergebnisse der 3-D v_p Tomographie an einem beispielhaften Schnitt bei 38°S. Erdbeben, Stationen und Vulkane aus einem 30 km breiten Bereich um das Profil herum sind ebenfalls gezeigt. Die rote Linie kennzeichnet das Gebiet guter Auflösung. A umfaßt den Bereich erniegrigte P-Wellengeschwindigkeiten unterhalb der Küstenkordillere, der ab 38,5°S nordwärts beobachtet wird. B markiert den Bereich unterhalb des magmatischen Bogens, in dem Mantelgeschwindigkeiten erst in einer Tiefe von 55 km beobachtet werden. C kennzeichnet die im gesamten Untersuchungsgebiet anzutreffende N-S streichende Struktur erhöhter P-Wellengeschwindigkeiten.

gnitude größer 7,5 (*Nishenko, 1985*) deuten darauf hin, daß das Gebiet unter *stress* Konzentration steht (*Cifuentes, 1989*). Zusammen mit den Santa Maria Insel im Norden und der Mocha Insel im Süden weist dieses Gebiet die höchste Hebungsrate im *forearc* auf.

7.2 Tomographie-Modell

Der seismologische Datensatz des ISSA 2000-Experimentes ermöglichte mittels tomographischer Untersuchungen der P- und S-Laufzeiten lokaler Erdbeben eine Bestimmung der Geschwindigkeitsstruktur der südlichen Anden. Die Ergebnisse zeigen ein komplexes Bild der Geschwindigkeitsstruktur, das hauptsächlich durch subduktionsspezifische Prozesse geprägt ist. Mit den vorliegenden Untersuchungen konnte ein Großteil des *forearcs* und *arcs* bis in 100 km Tiefe aufgelöst werden. Da die vorherrschenden Strukturen überwiegend 2-D Charakter aufweisen, sollen im folgenden die wesentlichen Merkmale des 3-D v_p Modells am Beispiel eines repräsentativen Schnittes bei 38°S diskutiert werden (Abbildung 7.1). Die zugehörige Interpretation des Modells zeigt Abbildung 7.2.

Abbildung 7.2: Interpretation des 3-D v_p Modells bei ~37°S, ~38°S und ~39°S basierend auf den v_p Isolinien. Die abtauchende Nazca-Platte ist durch die Lage der Wadati-Benioff-Zone definiert und durch hohe v_p Geschwindigkeiten ($v_p \ge 8,3$ km/s) charakterisiert. Niedrige v_p Geschwindigkeiten (6,5-7,0 km/s) in 40 bis 50 km Tiefe unterhalb der Küstenkordillere werden als serpentinisierter Mantelkeil interpretiert. Die Krustenmächtigkeit beträgt ~40 km unterhalb des Längstals und nimmt auf ~50 km unterhalb des magmatischen Bogens zu. Siehe Text für ausführliche Diskussion.

93

Subduzierte ozeanische Platte

Die abtauchende Platte wird durch die Lage der Erdbeben definiert und ist durch schnelle seismische Geschwindigkeiten (7,2 bis 8,3 km/s) gekennzeichnet. Die hohen v_p Geschwindigkeiten sind konsistent mit der Vorstellung einer kalten und dichten ozeanischen Platte. Ein erhöhtes v_p/v_s Verhältnis im 2-D Modell wird beobachtet, muß aber mit der nötigen Vorsicht betrachtet werden. Insbesondere setzt sich die subduzierte Platte ab ~50 km Tiefe durch hohe v_p Geschwindigkeiten von 8,0 km/s und ab ~80 km Tiefe von 8,3 km/s von dem darüberliegenden kontinentalen Mantelmaterial ab. Die Mantelgeschwindigkeiten treten gleichzeitig mit einer Zunahme der seismischen Aktivität innerhalb der Wadati-Benioff-Zone auf. Diese kann nach *Kirby et al. (1996)* wahrscheinlich in Zusammenhang mit der in Kapitel 5.3 auf Seite 60 ausführlich erläuterten Phasenumwandlung von der Blauschiefer- zur Eklogitfazies gesehen werden. Die Tiefe dieser Phasenumwandlung ist maßgeblich abhängig von der Temperaturverteilung innerhalb der abtauchenden Platte. Die bei diesem Prozeß freiwerdenden Fluide sind möglicherweise auch für das erhöhte v_p/v_s Verhältnis verantwortlich. Auch die hohen v_p Geschwindigkeiten ab 50 km Tiefe innerhalb des ozeanischen Mantels sind wohl Folge der Eklogitbildung.

Kontinentale Platte

Durchschnittliche P-Wellengeschwindigkeiten in der kontinentalen Kruste sind in diesem Modell relativ schnell und werden durch die refraktionsseimischen Untersuchungen gestützt. Der Übergang zu Mantelgeschwindigkeiten findet in unterschiedlichen Tiefen statt und kann innerhalb des 3-D v_p Modells in drei Gebiete unterteilt werden.

Gebiet A: Unterhalb der Küstenkordillere und des Längstals (zwischen 72,5°W und 72,9°W) werden niedrige P-Wellengeschwindigkeiten von 6,5 bis 7,5 km/s in 30 bis 50 km Tiefe beobachtet. Mantelgeschwindigkeiten werden in diesem Bereich nicht erreicht. Das 2-D v_p/v_s Modell weist in diesem Bereich eine Erhöhung des v_p/v_s Verhältnisses auf. Diese Beobachtungen deuten eine mögliche Serpentinisierung des kontinentalen Mantelkeils an.

Die mechanische und chemische Dehydratisierung der subduzierten ozeanischen Kruste bewirkt durch die aufsteigenden Fluide die Hydratisierung des darüberliegenden Unterkrustenund Mantelmaterials (Serpentinisierung im lithosphärischen Mantel, Amphibolitisierung im asthenosphärischen Mantel) (*Peacock, 1996*). Während in geringeren Tiefen die Fluidfreisetzung vorwiegend durch das Schließen von Poren und Klüften in der ozeanischen Kruste aufgrund des zunehmenden Druckes erfolgt, sind ab 50 km Tiefe verschiedene Phasenumwandlungen der hauptsächliche Faktor der Dehydratisierung. Serpentinit kann für die beobachteten Geschwindigkeiten ursächlich sein, da es ein Ergebnis der Mantelhydratisierung ist und sich durch deutlich verringerte v_p Geschwindigkeiten und erhöhte v_p/v_s Verhältnisse auszeichnet. Geschwindigkeiten von \sim 7 km/s entsprechen 30% Serpentinisierung von Peridotit (*Christensen, 1966*).

Der Bereich zwischen 30 und 50 km Tiefe kann vom geophysikalischen Standpunkt aus der Unterkruste zugeordnet werden, gehört aber nach petrologischer Ansicht bereits zum oberen Mantel. Es handelt sich also um eine Pseudokrustenverdickung. Diese wird auch für den forearc Bereich der Zentralen Anden (Küsten- und Präkordillere) infolge der Serpentinisierung des kontinentalen oberen Mantels diskutiert (Giese et al., 1999). In 40-65 km Tiefe werden dort geringe v_p Geschwindigkeiten (Wigger et al., 1994; Schmitz et al., 1999; Patzwahl et al., 1999) und ein erhöhtes v_p/v_s Verhältnis (Graeber, 1997) beobachtet. M. Pardo (pers. *Mitt.*, 2003) berichtet von ähnlich geringen v_p Geschwindigkeiten im forearc zwischen 33° und 36°S im nördlichen Anschluß an das hier untersuchte Gebiet in einem ähnlichen Tiefenbereich (50–60 km). Zieht man Tomographiestudien anderer Subduktionszonen dieser Erde zu Rate, dann ist z.B. nach Reyners et al. (1999) der Bereich in 20-40 km Tiefe unterhalb der Raukumara-Halbinsel in Neuseeland serpentinisiert ($v_p = 7 \text{ km/s}$), dessen Tiefenlage auf die dünne australische Kruste zurückzuführen ist. Die notwendigen Fluide stammen hier allerdings von basal akkretierten Sedimenten, die wiederum durch einen Bereich erniedrigter v_p Geschwindigkeit ($6 \le v_p \le 6,5$ km/s in 20–40 km Tiefe) beobachtet werden. In der vorliegenden Studie weisen die relativ hohen v_p Geschwindigkeiten bei ~73°W unterhalb der Küstenkordillere nicht auf eine basale Akkretion von Sedimenten hin, die durch die Subduktion der ozeanischen Platte in größere Tiefen gelangen, wie es von Lohrmann et al. (2001) nach Auswertung von Sandkastenexperimenten vorgeschlagen wird. Tritt der Effekt in geringem Maße auf, fällt er hier wahrscheinlich unter die Grenze der Auflösbarkeit.

Der Bereich erniedrigter Geschwindigkeit scheint nach Süden hin durch die Gastre-Störung begrenzt zu sein. Geologisch trennt sie Gebiete unterschiedlicher metamorpher und magmatischer Entwicklung der präandinen Orogenes - das granitische Grundgebirge ist nur nördlich der Störung entlang des Küstenkordillere vorzufinden (siehe geologische Karte in Abbildung 2.6).

Gebiet B: Mittels der lokalen Erdbebentomographie werden Geschwindigkeitsgradienten ermittelt. Unter der Annahme, daß die Überganszone zwischen Kruste und Mantel bei Geschwindigkeiten um 7,75 km/s liegt, wird unterhalb der Hauptkordillere eine Krustenmächtigkeit von etwa 50 bis 55 km beobachtet und deutet eine Zunahme der Krustenmächtigkeit unterhalb des aktiven magmatischen Bogens an. Das 2-D v_p/v_s Modell weist in diesem Tiefenbereich eine erhöhtes v_p/v_s Verhältnis ($\geq 1, 8$) auf.

Was könnte die Ursache für die erhöhte Krustenmächtigkeit sein? *Giese et al. (1999)* stellen die verschiedenen Prozesse, die zu einer Krustenverdickung führen können, in einer Übersichtsabbildung vor: *pure shear thickening, simple shear thickening, magmatic thickening,* thickening by mass transfer und thickening by mantle wedge hydration. Da im backarc der südlichen Anden kein Falten- und Überschiebungsgürtel existiert (Hervé, 1994), kommt eine Krustenstapelung (Allmendinger et al., 1983; Schmitz, 1994) nicht in Betracht. Ein weiterer möglicher Prozeß wäre die magmatische Unterplattung, bei dem magmatisches Mantelmaterial unterhalb der Kruste angelagert wird. Dieser Prozeß kann in den Zentralen Anden beobachtet werden. Haberland (1999) und Schurr (2001) zeigen mittels der Q-Tomographie Bereiche erhöhter Dämpfung unterhalb der Westkordillere (rezenter magmatischer Bogen) und interpretieren diese als partiell geschmolzenes Krusten- und Mantelmaterial.

Eine detaillierte Analyse von Frequenzspektren der Erdbeben könnte auch für die südlichen Anden über Bereiche partieller Schmelzen nähere Auskunft erteilen. Die Spektralanalyse einiger tiefer gelegener Erdbeben ergab, daß an den Stationen in der Hauptkordillere und in Argentinien kaum Freuqenzen über 15 Hz zu beobachten waren, aber entfernte Stationen im *forearc* diese sehr wohl aufwiesen (Abbildung 7.3). Die geringe Dämpfung der Strahlen dieser Beben zu den weiter westlich und entfernt gelegenen Stationen ist durch Strahlverläufe in der Unterplatte denkbar. Im Gegensatz dazu wurden flache, innerhalb der Benioff-Zone gelegene Erdbeben an den argentinischen Stationen kaum registriert. Ebenso zeigen die zugehörigen Zeitreihen in Abbildung 7.3 deutlich, daß wahrscheinlich unterhalb des magmatischen Bogens eine Zone hoher seismischer Dämpfung existiert. Ob sie jedoch innerhalb der Kruste und/oder im asthenosphärischen Mantel lokalisiert ist, läßt sich aus den hier vorliegenden Untersuchungen alleine nicht schließen. Die Beobachtung des Gebietes erhöhter Dämpfung gibt keine weitere Einschränkung für die These der magmatischen Unterplattung, schließt diese jedoch nicht aus.

Brasse and Soyer (2001) berichten von einer leicht erhöhten Leitfähigkeit in 20–40 km Tiefe unterhalb des magmatischen Bogens (siehe Abbildung 2.10 auf Seite 29). *Soyer (2002)* zufolge kann sowohl aus den elektromagnetischen Rohdaten als auch deren Modellierungsergebnissen abgeleitet werden, daß unterhalb des vulkanischen Bogens in der o.g. genannten Tiefe geschmolzenes Material konzentriert ist.

Die Bouguer-Schwere zeigt im Bereich der Hauptkordillere ihre niedrigsten Werte im Untersuchungsgebiet von 100-130 mGal. Durch Dichtemodellierungen wird die Kruste-Mantel-Grenze in eine Tiefe von ~45 km gelegt (Z. Tašárová, pers. Mitt.).

Gebiet C: Die erhöhte Krustenmächtigkeit im Westen (Gebiet A) wird durch die Serpentinisierung des Mantelkeils erklärt. Gleichzeitig wird in Gebiet C eine Krustenmächtigkeit von 50 km festgestellt. Wie verhält sich nun der Bereich dazwischen? P-Wellengeschwindigkeiten von 7,75 km/s werden bereits ab \sim 40 km Tiefe beobachtet. Diese Zone erhöhter Geschwindigkeit erstreckt sich über das Untersuchungsgebiet von Nord nach Süd. In den Profilschnitten deutet der Verlauf der 7,75 km/s Isolinie eine scheinbare Aufwölbung des oberen Mantels an.

Hypotime: 1999-12-09 11:58:22.96 Hypocenter: -38.20 -70.73 -191.14 RMS: 0.34 GAP: 155 NOB: 19/10

Abbildung 7.3: Ausschnitte aus den Zeitreihen (oben) und P-Wellen-Amplitudenspektren eines tiefen Erdbebens in Argentinien (unten), das an verschiedenen Stationen des ISSA 2000-Netzwerkes beobachtet wurde (siehe Karte ganz oben). Die Zeitreihen sind auf die größte Amplitude im Zeitfenster normiert. Die Spektren von Signal und Rauschen sind jeweils für ein 2,56 s-Fenster nach und vor dem P-Einsatz gezeigt. Entfernte Stationen im forearc weisen eine starke P-Koda und einen hohen Frequenzgehalt auf. Dagegen registrieren Stationen im magmatischen Bogen und backarc fast keine Frequenzen oberhalb von ca. 15 Hz. Das legt den Schluß nahe, daß ein Gebiet erhöhter Dämpfung unterhalb des magmatischen Bogens existiert. Scientific Technical Report STR 04/15

Unterhalb der Küstenkordillere kann man jedoch von einer scheinbaren Krustenverdickung infolge der Serpentinisierung des Mantelkeils sprechen. Im petrologischen Sinn beträgt die Krustenmächtigkeit jedoch eher 40 km für die gesamte kontinentale Platte im *forearc*, wobei der westliche Bereich serpentinisiert ist und der östliche Bereich nicht. Unterhalb der Haupkordillere bzw. des magmatischen Bogens nimmt dann die Krustenmächtigkeit auf 50 km zu.

Eine andere Interpretationsmöglichkeit ist die Krustenausdünnung unterhalb des Längstals, die von *Echtler et al. (2003a)* diskutiert wird. Die Aufwölbung der 7,75 km/s-Isolinie führt intuitiv zur Vorstellung der Hochlage des kontinentalen Mantels. Die Krustenausdünnung könnte durch *forearc* Extension verursacht sein, wie sie von *Muñoz et al. (2000)* für die südlichen Anden berichtet wird.

N-S-streichend ist der linkslaterale Versatz der hohen Geschwindigkeiten interessant, der in 30–40 km Tiefe entlang der Bio-Bio Störung (sinistrale Blattverschiebung) beobachtet wird, aber noch ungeklärt ist.

7.3 Vergleich der Struktur der südlichen Anden und des zentralandinen *forearcs*

Entlang des südamerikanischen Kontinentalrandes treten erhebliche laterale Variationen auf. Sie werden besonders deutlich, wenn man die schmalen, topographisch niedrigen Patagonischen Anden mit den breiten und hohen Zentralen Anden vergleicht. Während die Subduktionsprozesse zu einer extrem verdickten kontinentalen Kruste in den Zentralen Anden mit mehr als 70 km Mächtigkeit und zu dem weltweit zweitmächtigsten Plateau (Altiplano-Puna-Plateau) führen (*Zandt et al., 1994; Beck et al., 1996; Yuan et al., 2000*), beträgt die maximale Krustenmächtigkeit in den südlichen Anden "nur" 40–50 km (*Lomnitz, 1962* und vorliegende Arbeit). Diese Unterschiede sollten sich auch auf die Signaturen der seismischen Geschwindigkeitsmodelle auswirken. Zum Vergleich der aus der 3-D v_p Tomographie abgeleiteten Ergebnisse der südlichen Anden mit den Zentralen Anden bieten sich neben dem refraktionsseismischen und *Receiver Functions* Profil bei 21°S insbesondere die Tomographie-Arbeiten von Frank Graeber und Stefan Husen an, die ein adäquates Gebiet von der Küste bis zum rezenten magmatischen Bogen zwischen $22^{\circ}-25^{\circ}$ S abdecken (*forearc: Husen (1999*), Längstal bis *arc: Graeber (1997*)).

Vorab noch eine Bemerkung zur seismischen Aktivität innerhalb der Wadati-Benioff-Zone: Wie an anderer Stelle schon erwähnt liegt ein wesentlicher Unterschied zwischen Zentralen und südlichen Anden in der Quantität der lokalen Erdbeben (siehe Abbildung 2.1). In den Zentralen Anden werden in einem vergleichbaren Zeitraum mehr als zehnmal so viele seismische Ereignisse registriert wie in den südlichen Anden. Auch variiert die maximale Erdebentiefe zwischen 700 km im N und 250 km im S. Als Ursache hierfür könnte die Altersdifferenz und die damit verbundene Temperaturdifferenz der Nazca-Platte angesehen werden.

Der Einfallswinkel der Wadati-Benioff-Zone beträgt für die Zentralen Anden $19^{\circ}-20^{\circ}$ (*Husen, 1999*) für die oberen 40 km und 35° in größeren Tiefen (*Schurr, 2001*) und für die südlichen Anden 10° bzw. 30° (*Bohm et al., 2002*). Die v_p Geschwindigkeiten innerhalb der abtauchenden ozeanischen Nazca-Platte sind für die oberen 80 km vergleichbar (v_p bis 8,2 km/s). Im Modell von *Graeber (1997*) steigen sie in größeren Tiefen auf 8,6–9,0 km/s an. Diese Tiefen werden in der vorliegenden Untersuchung und auch bei *Husen (1999)* nicht mehr aufgelöst. In allen drei Arbeiten zeigt sich in den Bereichen guter Auflösung ein erhöhtes v_p/v_s Verhältnis für die subduzierte Platte, daß durch fluidgefüllte Poren und Klüfte sowie mit dem Vorhandensein von Fluiden durch die Phasenumwandlung von der Blauschiefer- zur Eklogitfazies¹ erklärt werden kann.

Eine Reihe refraktionsseismischer Profile, die die Zentralen Anden überdecken, ermittelten mit großer Genauigkeit deren komplexen Krustenaufbau (Wigger et al., 1994; Schmitz et al., 1999; Patzwahl et al., 1999). Für die obere Kruste im forearc Bereich werden bereits in 10 km Tiefe hohe seismische Geschwindigkeiten beobachtet, die von West nach Ost leicht abnehmen (6,6 km/s in der Küstenkordillere, 6,3 km/s in der Präkordillere). Sie wird als jurassische Unterkruste interpretiert, die durch Erosion der Oberkruste in diesem stark gehobenen Küstenbereich anzutreffen ist, bzw. als jurassische Intrusiva. Weiterhin werden Hochgeschwindigkeitsschichten beobachtet, deren Basis in 20-25 km Tiefe unterhalb der Küste (7,2 km/s) und 35-40 kmunterhalb der Präkordillere (6,8-7,2 km/s) liegen und der kontinentalen Unterkruste zugeordnet werden. Tieferliegend werden keine typischen Mantelgeschwindigkeiten ermittelt. Unterhalb der Präkordillere existiert in 65-70 km Tiefe eine eindeutige Diskontinuität mit einem Geschwindigkeitsanstieg auf \geq 7,5 km/s, die der Krusten-Mantel-Grenze zugeordnet wird. Der Bereich darunter zeichnet sich in der Laufzeittomographie durch ein erhöhtes v_p/v_s Verhältnis aus (*Graeber*, 1997). Als eine mögliche Ursache der geringen v_p Werte und des erhöhten v_p/v_s Verhältnisses in dieser Tiefe wird die Hydratisierung bzw. Serpentinisierung des kontinentalen Mantelkeils durch freiwerdende Fluide aus der ozeanischen Nazca-Platte diskutiert (u.a. Graeber, 1997; Giese et al., 1999).

Der, in den Zentralen Anden durch die Refraktionsseismik und durch die Laufzeittomographie ermittelte, serpentinisierte Mantelkeil zwischen 40 und 70 km Tiefe unter der Küsten- und Präkordillere scheint, auch in den südlichen Anden unterhalb der Küstenkordillere in 30 bis 50 km Tiefe beobachtet zu werden. Hier ist die Serpentinisierung des Mantels hauptsächlich auf reduzierte v_p Geschwindigkeiten zurückzuführen. Die refraktionsseismischen Profile von ISSA und SPOC scheinen diese These mit v_p Geschwindigkeiten um 7,2 km/s ab 30 km Tie-

¹Für eine genaue Beschreibung der Prozesse siehe Kapitel 5.3 auf Seite 60 bzw. Literaturverweise innerhalb des Abschnitts.

fe zu unterstützen. Mehr Gewißheit wäre jedoch aus der Kenntnis des v_p/v_s Verhältnisses zu ziehen. Die geringere Tiefe des serpentiniserten Bereiches in den südlichen Anden könnte auf die, in geringerer Tiefe stattfindenden Metamorphoseprozesse innerhalb der abtauchenden Platte, die für die Serpentinisierung des angrenzenden kontinentalen Mantels veranwortlich sind, zurückzuführen sein. Inwieweit auch der unterschiedliche Abtauchwinkel der Nazca-Platte im Küstenbereich bzw. Einfallswinkel der Wadati-Benioff-Zone eine Rolle spielt, ist ungeklärt.

Zurück zu den Zentralen Anden: Weiter westlich unterhalb der Westkordillere und des rezenten magmatischen Bogens nehmen die Geschwindigkeiten für die Kruste weiterhin ab und sind mit Durchschnittswerten um 6,0 km/s bis in 50–60 km Tiefe relativ gering. Die Moho konnte mittels der Refraktionsseimik wegen der hohen Absorption seismischer Wellen in diesem Bereich (*Lessel, 1997; Haberland and Rietbrock, 2001*) nicht beobachtet werden. *Receiver Functions* Studien zeigen, daß die Krusten-Mantel-Grenze in 60–70 km Tiefe unterhalb der Westkordillere existiert (*Yuan et al., 2000*), und durch eine breite Übergangszone gekennzeichnet ist. Die tomographischen Untersuchungen weisen für die gesamte Tiefe unterhalb des magmatischen Bogens langsame Geschwindigkeiten und ein erhöhtes v_p/v_s Verhältnis auf (*Graeber, 1997; Rietbrock and Haberland, 1998*).

Ein wesentlicher Unterschied zwischen den Zentralen und südlichen Anden ist die Mächtigkeit der kontinentalen Kruste. Während die Tiefenlage der Moho in den Zentralen Anden zwischen 40 km (Küstenkordillere) und 70 km (Westkordillere) Tiefe variiert, nimmt sie in den südlichen Anden von \sim 35 km im *forearc* auf 50–55 km unterhalb der Hauptkordillere zu. Die verantwortlichen Mechanismen für die Entstehung der extremen Krustenmächtigkeit in den Zentralen Anden sind Gegenstand der aktuellen geowissenschaftlichen Diskussion. Während ältere Arbeiten die Verdickung der andinen Kruste hauptsächlich auf magmatische Addition zurückführen (James, 1971), gehen neuere Arbeiten von einer Kombination verschiedener Prozesse aus. Als wesentlicher Faktor wird die tektonische Verkürzung angeführt, mit geringeren Beiträgen durch magmatische Addition und Lithosphärenausdünnung sowie durch Hydratisierung des lithosphärischen Mantels und tektonischer Unterplattung im forearc (Isacks, 1988; Allmendinger and Gubbels, 1996; Giese et al., 1999). Ein Falten- und Überschiebungsgürtel, wie er im Subandin in den Zentralen Anden existiert, ist im backarc der südlichen Anden nicht anzutreffen, so daß ein tektonische Krustenverdickung nicht zu erwarten ist. Für die erhöhte Krustenmächtigkeit könnte hier hauptsächlich die magmatische Unterplattung unterhalb des aktiven magmatischen Bogens angesehen werden.

100

7.4 Abschließende Bemerkungen und Ausblick

Die Struktur der südlichen Anden wurde mittels lokaler Erdbebendaten des ISSA 2000-Netzwerkes untersucht. Präzise Erdbebenlokalisierungen zeigen eine um 30° geneigte Wadati-Benioff-Zone bis in 200 km Tiefe. Die geringe Seismizität im Untersuchungsgebiet mit maximalen Herdtiefen von 200 km sowie die Konzentration der mitteltiefen Erdbeben in 60 km Tiefe, spiegeln wahrscheinlich den Einfluß des jungen Alters und des damit verbundenen hohen thermischen Zustandes der Nazca-Platte auf das Subduktionsregime wieder. Die krustale Seismizität ist im *forearc* nördlich und südlich der Arauco-Halbinsel am Beginn aktiver Störungszonen konzentriert.

Mit Hilfe der lokalen Erdbebentomographie konnte zum ersten Mal die Geschwindigkeitsstruktur der südlichen Anden unterhalb der Küstenkordillere, des Längstals und der Hauptkordillere bis in eine Tiefe von 100 km aufgezeigt werden. Dabei ergab sich eine im Wesentlichen zweidimensionale Struktur, die durch von Osten nach Westen variierende Geschwindigkeitsanomalien geprägt ist. Die Nazca-Platte ist durch die Lage der Erdbeben definiert und weist hohe v_p Geschwindigkeiten auf (7,2-8,3 km/s). Geschwindigkeitswerte über 8,0 km/s ab 50 km Tiefe sind wohl Ausdruck der Eklogitbildung innnerhalb der abtauchenden Lithosphäre. Die durchschnittlichen Geschwindigkeiten in der kontinentalen Kruste sind im gesamten v_p Modell relativ hoch (5,5-6,5 km/s). Die tieferliegende Struktur kann in drei Gebiete unterteilt werden. Erniedrigte v_p Geschwindigkeiten in 30–50 km Tiefe unterhalb der Küstenkordillere und oberhalb der abtauchenden Platte deuten ein mögliche Hydratisierung und Serpentinisierung des kontinentalen Mantelkeils an. Die Konzentration der Erdbeben in 60 km Tiefe, die auf Dehydratisierungsprozesse innerhalb der subduzierten ozeanischen Lithosphäre zurückzuführen ist, könnte mit der beobachteten Geschwindigkeitsanomalie verbunden sein. Mantelgeschwindigkeiten werden in diesem Bereich nicht beobachtet. Weiter östlich unterhalb des Längstals ist die markanteste Anomalie des 3-D v_p Modells anzutreffen. Sie ist durch erhöhte v_p Geschwindigkeiten geprägt, die das gesamte Untersuchungsgebiet von N nach S durchziehen. Mantelgeschwindigkeiten werden hier ab 40 km Tiefe erreicht. Noch weiter nach Osten nimmt die Krustenmächtigkeit zu und erreicht 50–55 km unterhalb der Hauptkordillere und des aktiven vulkanischen Bogens. Geringe Geschwindigkeiten, ein erhöhtes v_p/v_s Verhältnis und die sich durch die Spektralanalyse andeutende Zone erhöhter seismischer Dämpfung könnte auf das Vorhandensein partieller Schmelzen und deren mögliche Anlagerung unterhalb der Kruste (magmatische Unterplattung) hindeuten.

Eine abschließende Beurteilung der Geschwindigkeitsstruktur der südlichen Anden kann mit den vorliegenden Daten nicht vorgenommen werden. Einige interessante Strukturen (z.B. Krustenmächtigkeit im *backarc*) liegen am Rand des Modells und sind dementsprechend unzureichend aufgelöst. Für ein umfassenderes Bild der seismischen Struktur in den südlichen Anden ist insbesondere die Kenntnis des v_p/v_s Verhältnisses und der Dämpfungswerte von entscheidender Bedeutung. Sie würden die Möglichkeit bieten, die vorliegende Interpretation zu vervollständigen und zu revidieren und könnten somit das Verständnis des Aufbaus der südlichen Anden vertiefen. Dazu wäre jedoch ein zeitlich gesehen langes seismologisches Netzwerk unumgänglich, um einen umfangreicheren Datensatz (insbesondere S-Laufzeiten) mit einer räumlich guten Durchstrahlung zu erhalten.

Literaturverzeichnis

- Aki, K. and Lee, W., Determination of the three-dimensional velocity anomalies under a seismic array using first p arrival times from local earthquakes, 1, a homogeneous initial model, *Journal of Geophysical Research*, 81, 4381–4399, 1976.
- Aki, K., Christoffersson, A., and Husebye, E. S., Determination of the three-dimensional seismic structure, *Journal of Geophysical Research*, **82**, 277–296, 1977.
- Allmendinger, R. and Gubbels, T., Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivi, *Tectonophysics*, **259**, 1–13, 1996.
- Allmendinger, R., Ramos, V. A., Jordan, T. E., Palma, M., and Isacks, B. L., Paleogeography and Andean structural geometry, northwest Argentina, *Tectonics*, **2**, 1–16, 1983.
- Allmendinger, R., Jordan, T. E., Kay, S. M., and Isacks, B. L., The evolution of the Altiplano-Puna plateau of the central Andes, *Annu. Rev. Earth Planet. Sci.*, **25**, 139–174, 1997.
- Angermann, D., Klotz, J., and Reigber, C., Space-geodetic estimation of the Nazca-South American Euler vector, *Earth and Planetary Science Letters*, **171**, 329–334, 1999.
- Asch, G., Präzise und schnelle Herdparameterbestimmung eine Herausforderung an die moderne Seismologie, Hablitationsschrift, Freie Universität Berlin, unpublished, 1998.
- Baeza, L. and Pichowiak, S., Ancient crystalline basement provinces in the north Chilean Central Andes - Relics of the continental crust development since the mid Proterozoic, in *The Southern Central Andes. Lecture Notes in Earth Siences, 17*, edited by H. Balburg and Ch. Breitkreutz and Peter Giese, pp. 3–24, Springer, Berlin Heidelberg New York, 1988.
- Bangs, N. and Cande, S. C., Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin, *Tectonics*, **16**, 489–503, 1997.
- Barazangi, M. and Isacks, B. L., Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America, *Geology*, **4**, 686–692, 1976.
- Beck, S., Barrientos, S., Kausel, E., and Reyes, M., Source characteristics of historic earthquakes along the central Chile subduction zone, *Journal of South American Earth Sciences*, **11**, 115–129, 1998.
- Beck, S. L., Zandt, G., Myers, S. C., Wallace, T. C., Silver, P. G., and Drake, L., Crustal-thickness variations in the central Andes, *Geology*, **24**, 407–410, 1996.
- Bohm, M., Lüth, S., Echtler, H., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A., and Wigger, P., The Southern Andes between 36° and 40°S latitude: Seismicity and average seismic velocities, *Tectonophysics*, **356**, 275–289, 2002.
- Brasse, H. and Soyer, W., A magnetotelluric study in the Southern Chilean Andes, *Geophys. Res. Lett.*, **28**, 3757–3760, 2001.
- Bruhn, C., *Momententensoren hochfrequenter Ereignisse in Südchile*, Dissertation, Universität Potsdam, Institut für Geowissenschaften, unpublished, 2003.
- Campos, J., Hatzfeld, D., Madariaga, R., López, G., Kausel, E., Zollo, A., Iannaconne, G., Fromm, R., Barrientos, S., and Lyon-Caen, H., A seismological study of the 1835 seismic gap in south central Chile, *Physics of the Earth and Planetary Interiors*, **132**, 177–195, 2002.
- Cembrano, J., Schermer, E., Lavenu, A., and Sanhueza, A., Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe-Ofqui fault zone, southern Chilean Andes, *Tectonophysics*, **319**, 129–149, 2000.
- Christensen, N. I., Elasticity of ultrabasic rocks, *Journal of Geophysical Research*, **71**, 5921–5931, 1966.
- Cifuentes, I. L., The 1960 Chile earthquakes, *Journal of Geophysical Research*, **94**, 665–680, 1989.
- Coira, B., Davidson, J., Mpodozis, C., and Ramos, V., Tectonic and magmatic evolution of the Andes of northern Argentina and Chile, *Earth-Science Reviews*, **18**, 303–332, 1982.
- Comte, D., Dorbath, L., Pardo, M., Monfret, T., Haessler, H., Rivera, L., Frogneux, M., Glas, B., and Meneses, C., A double-layered seismic zobe in Arica, Northern Chile, *Geophys. Res. Lett.*, 26, 1965–1968, 1999.
- DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., Current plate motions, *Geophysical Journal International*, **101**, 425–478, 1990.
- Díaz-Naveas, J. L., Sediment Subduction and Accretion at the Chilean Convergent Margin Between 35° and 40°S, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, 1999.

- Dziewonski, A. M. and Anderson, D. L., Preliminary reference Earth model, *Physics of the Earth and Planetary Interiors*, **25**, 297–356, 1981.
- Eberhart-Phillips, D., Three-dimensional velocity structure in northern California coast ranges from inversion of local earthquake arrival times, *Bulletin of the Seismological Society of America*, **76**, 1025–1052, 1986.
- Eberhart-Phillips, D., Three-dimensional P and S velocity structure in the Coalinga region, California, *Journal of Geophysical Research*, **95**, 15343–15363, 1990.
- Eberhart-Phillips, D., Local earthquake tomography: earthquake source regions, in *Seismic To-mography: Theory and Practice*, edited by H. M. Iyer and K. Hirahara, pp. 613–643, Chapman and Hall, 2-6 Boundary Row, London SE1 8HN, UK, 1993.
- Eberhart-Phillips, D. and Michael, A. J., Seismotectonics of the Loma Prieta, California region determined from three-dimensional V_p , V_p/V_s , and seismicity, *Journal of Geophysical Research*, **103**, 21,099–21,120, 1998.
- Eberhart-Phillips, D. and Reyners, M., A complex, young subduction zone imaged by threedimensional seismic velocity, Fiordland, New Zealand, *Geophysical Journal International*, 146, 731–746, 2001.
- Echtler, H., Glodny, J., Gräfe, K., Rosenau, M., Melnick, D., Seifert, W., and Vietor, T., Active tectonics controlled by inherited structures in the long-term stationary and non-plateau South-Central Andes, in *Geophysical Research Abstracts*, EGU, EGS/AGU Joint Assembly, Nice, Abstract EAE03-A-10902, 2003a.
- Echtler, H., Vietor, T., Götze, H.-J., Bohm, M., Asch, G., Lohrmann, J., Melnick, D., and Tašárová, Z., Active tectonics controlled by inherited structures in south-central Chile (36°S-42°S) - new tectonophysical insights, in *Actas*, 10th Chilean Geological Congress, Concepcion, Chile, 2003b.
- Evans, J. R., Eberhard-Phillips, D., and Thurber, C. H., User's manual for *SIMULPS12* for imaging v_p and v_p/v_s : A derivative of the "Thurber" tomographic inversion *SIMUL3* for local earthquakes and explosions, Open File Report 94-431, U.S. Geological Survey, 1994.
- Forthyse, R. D. and Nelson, E., Geological manifestation of ridge collision: evidence for the golfo de penas, taitao basin, southern chile, *Tectonics*, **4**, 477–495, 1985.
- Giese, P., Scheuber, E., Schilling, F., Schmitz, M., and Wigger, P., Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity, *Journal of South American Earth Sciences*, **12**, 201–220, 1999.

- Graeber, F., Seismische Geschwindigkeiten und Hypozentren in den südlichen zentralen Anden aus der simultanen Inversion von Laufzeitdaten des seismologischen Experiments PISCO'94 in Nordchile, Ph.D. thesis, Freie Universität Berlin, 1997.
- Graeber, F. and Asch, G., Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data, *Journal of Geophysical Research*, **104**, 20,237–20,256, 1999.
- Götze, H.-J., Krause, S., Romanyuk, T., Schmidt, S., Schulte, J., Tašárová, Z., and Wienecke, S., Density and susceptibility anomalies as an indicator of anomalous p-t conditions, in *Deformationprocesses in the Andes: Interaction between endogenic and exogenic processes during subduction orogenesis*, edited by Collaborative Research Center 267, pp. 293–318, SFB 267, Berlin Potsdam, 2001.
- Gudmundson, O. and Sambridge, M., A regionalized upper mantle (RUM) seismic model, *Journal of Geophysical Research*, **103**, 7.121–7.136, 1998.
- Haberland, C., *Die Verteilung der Absorption seismischer Wellen in den westlichen Zentralen Anden*, Ph.D. thesis, Freie Universität Berlin, 1999.
- Haberland, C. and Rietbrock, A., Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc, *Journal of Geophysical Research*, **106**, 11,151–11,167, 2001.
- Hasegawa, A., Umino, N., and Takagi, A., Double-planed deep seismic zone and upper-mantle structure in north eastern Japan arc, *Geophys. J. R. Astr. Soc.*, **54**, 281–296, 1978.
- Herron, E. M., Chile margin near lat 38°S: Evidence for a genetic relationship between continental and marine geological features or a case of curiuos coincidences?, *Geological Society* of America Memoir, 154, 755–760, Memoir, 1981.
- Hervé, F., The Southern Andes between 39° and 44°S latitude: The geological signature of a transpressive tectonic regime related to a magmatic arc, in *Tectonis of the Southern Central Andes*, edited by K.-J. Reutter, E. Scheuber, and P. Wigger, pp. 243–248, Springer Verlag, Berlin Heidelberg New York, 1994.
- Husen, S., *Local Earthquake Tomography of a Convergent Margin, North Chile*, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, 1999.
- Husen, S., Kissling, E., and Flüh, E., Local earthquake tomography of shallow subduction in north Chile: A combined onshore and offshore study, *Journal of Geophysical Research*, **105**, 28,183–28,198, 2000.

- Isacks, B., Uplift of the central Andean plateau and bending of the Bolivian orocline, *Journal* of *Geophysical Research*, **93**, 3.211–3.231, 1988.
- James, D. E., Andean crustal and upper mantle structure, *Journal of Geophysical Research*, **76**, 3.246–3.271, 1971.
- Jordan, T. E., Burns, W. M., Veiga, R., Pangaro, F., Copeland, P., Kelley, S., and Mpodozis, C., Extension and basin formation in the southern Andes caused by increased convergence rate: A mid-cenozoic trigger for the Andes, *Tectonics*, **20**, 308–324, 2001.
- Kanamori, H. and Cipar, J., Focal process of the great Chilean earthquake., *Physics of the Earth and Planetary Interiors*, **9**, 128–136, 1974.
- Kennett, B. L. N. and Engdahl, E. R., Traveltimes for global earthquake location and phase identification, *Journal of Geophysical Research*, **105**, 429–465, 1991.
- Kind, R., Bock, G., and Yuan, X., The structure of the lower plate from broadband seismology, in *Deformationprocesses in the Andes: Interaction between endogenic and exogenic processes during subduction orogenesis*, edited by Collaborative Research Center 267, pp. 429–465, SFB 267, Berlin Potsdam, 2001.
- Kirby, S., Engdahl, E. R., and Denlinger, R., Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in *Subduction: Top to Bottom*, edited by G. Bebout, D. Scholl, S. Kirby, and J. Platt, Geophysical Monograph 96, pp. 195–214, American Geophysical Union, 1996.
- Kissling, E., Geotomography with local earthquakes, *Reviews of Geophysics*, **26**, 659–698, 1988.
- Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U., Initial reference models in local earthquake tomography, *Journal of Geophysical Research*, **99**, 19,635–19,646, 1994.
- Kissling, E., Kradolfer, U., and Maurer, H., VELEST user's guide short introduction, Tech. rep., ETH Zürich, 1995.
- Klotz, J., Khazaradze, G., Angermann, D., Reigber, C., Perdomo, R., and Cifuentes, O., Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes, *Earth and Planetary Science Letters*, **193**, 437–446, 2001.
- Krawczyk, C. and the SPOC Team, Amphibious seismic survey images plate interface at 1960 Chile earthquake, *EOS*, **84**, 301–305, 2003.

- Lavenu, A. and Cembrano, J., Compressional- and transpressional-stress pattern for Pliocene and Quarternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile), *Journal of Structural Geology*, **21**, 1669–1691, 1999.
- Lee, W. and Lahr, J., HYPO71 (revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, Open File Report 75-311, U.S. Geological Survey, 1975.
- Lessel, K., Die Krustenstruktur der Zentralen Anden in Nordchile (21°-24°S), abgeleitet aus 3D-Modellierungen refraktionsseismischer Daten, Ph.D. thesis, Freie Universität Berlin, 1997.
- Lohrmann, J., Kukowski, N., and Oncken, O., Erosive and accretive mass transfer modes and related deformation at the Chilean forearc - results of 2d scaled sandbox experiments, in *Berichtsband für die Jahre 1999 - 2001*, pp. 397–421, Sonderforschungbereich 267: Deformationsprozesse in den Anden, Berlin Potsdam, 2001.
- Lomnitz, C., On Andean Structure, Journal of Geophysical Research, 67, 351–363, 1962.
- Lowrie, A. and Hey, R., Geological and geophysical variations along the western margin of Chile near lat 33° to 36°S and their relation to Nazca plate subduction, *Geological Society of America Memoir*, **154**, 741–754, 1981.
- Lüth, S., Mechie, J., Wigger, P., Flüh, E., Krawczyk, C., Reichert, C., Stiller, M., Bataille, K., and SPOC research group, Subduction processes off Chile (SPOC) Results from the amphibious wide-angle seismic experiment across the Chilean subduction zone, in *Actas*, 10th Chilean Geological Congress, Concepcion, Chile, 2003a.
- Lüth, S., Wigger, P., and ISSA Research Group, A crustal model along 39°S from a seismic refraction profile ISSA 2000, *Revista Geológica de Chile*, **30**, 83–101, 2003b.
- Melnick, D., Folguera, A., Rosenau, M., Echtler, H., and Potent, S., Tectonics from the northern segment of the Liquiñe-Ofqui fault system (37°-39°S), PATAGONIAN Andes, in *Abstract Book*, ISAG, Tolouse, poster, 2002.
- Melnick, D., Echtler, H., Folguera, A., Bohm, M., Pineda, V., Manzanares, A., and Asch, G., Quaternary tectonics of the Andean margin at 37°S, in *Abstract Volume*, SFB267-Workshop, Pucon, Chile, 2003a.
- Melnick, D., Echtler, H., Pineda, V., Bohm, M., Manzanares, A., and Vietor, T., Active faulting and northward growing of the Arauco Peninsula, southern Chile (37°30'S), in *Actas*, 10th Chilean Geological Congress, Concepcion, Chile, 2003b.

- Menke, W., *Geophysical Data Analysis: Discrete Inverse Theory*, vol. 45 of **International Geophysics Series**, Academic Press, San Diego, 1989.
- Michelini, A. and McEvilly, T. V., Seismological studies at Parkfield. I. Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization, *Bulletin of the Seismological Society of America*, 81, 524–552, 1991.
- Müller, R. D., Roest, W. R., Royer, J. Y., Gahagan, L. M., and Sclater, J. G., Digital isochrons of the world's ocean floor, *Journal of Geophysical Research*, **102**, 3,211–3,214, 1997.
- Molnar, P., Freedman, D., and Shih, J. S. F., Length of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere, *Geophys. J. R. astron. Soc.*, **56**, 41–54, 1979.
- Mordojovich, C., Sedimentary basins of Chilean Pacific offshore, in *Energy resources of the Pacific region*, edited by M. T. Halbouty, AAPG Studies in Geology, pp. 63–82, American Association of Petroleum Geologists, Tulsa, OK, United States, 1981.
- Mpodozis, C. and Ramos, V., The Andes of Chile and Argentina, in *Geology of the Andes and its relation to hydrocarbon and mineral resources*, edited by G. E. Ericksen, M. T. Cañas Pinochet, and J. A. Reinemund, chap. 5, pp. 59–90, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Housten, Texas, 1989.
- Muñoz, J., Troncoso, R., Duhart, P., Crignola, P., Farmer, L., and Stern, C. R., The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate, *Revista Geológica de Chile*, 27, 177–203, 2000.
- Muñoz, J. O. and Stern, C. R., The Quaternary volcanic belt of the southern continental margin of South America: transvers structural and petrochemical variations across the segment 38°S and 39°S, *Journal of South American Earth Sciences*, **1**, 147–167, 1988.
- Muñoz, J. O. and Stern, C. R., Alkaline magmatism within the segment 38-39°S of the Plio-Quaternary volcanic belt of the southern South American continental margin, *Journal of Geophysical Research*, **94**, 4,545–4,560, 1989.
- Nelson, E., Forsythe, R., and Arit, I., Ridge collision tectonics in terrane development, *Journal* of South American Earth Sciences, **7**, 271–278, 1994.
- Nishenko, S., Seismic potential for large earthquakes and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: a quantitative reappraisal, *Journal of Geophysical Research*, **90**, 3,589–3,615, 1985.
- Pardo-Casas, F. and Molnar, P., Relative motion of the Nazca (Farallon) and South American plates since late cretaceaous time, *Tectonics*, **6**, 233–248, 1987.

- Patzig, R., *Lokalbeben-Tomographie der Umgebung von Antofagasta (Nordchile)*, Ph.D. thesis, Freie Universität Berlin, 2000.
- Patzwahl, R., Mechie, J., Schulze, A., and Giese, P., Two-dimensional velocity models of the Nazca plate subduction zone between 19.5°S and 25°S from wide-angle seismic measurements during the CINCA95 project, *Journal of Geophysical Research*, **104**, 7293–7317, 1999.
- Paul, A., Cattaneo, M., Thouvenot, F., Spallarossa, D., Béthoux, N., and Fréchet, J., A threedimensional crustal velocity model of the southwestern Alps from local earthquake tomography, *Journal of Geophysical Research*, **106**, 19,367–19,389, 2001.
- Pavlis, G. L. and Booker, J., The mixed discrete continuous inverse problem: application to the simultaneous determination of earthquake hypocenters and velocity structure, *Journal of Geophysical Research*, 85, 4801–4810, 1980.
- Peacock, S. M., The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust, *Bulletin of the Seismological Society of America*, **105**, 684–694, 1993.
- Peacock, S. M., Thermal and petrologic structure of subduction zones, in *Subduction: Top to Bottom*, edited by G. Bebout, D. Scholl, S. Kirby, and J. Platt, Geophysical Monograph 96, pp. 119–133, American Geophysical Union, 1996.
- Poli, S. and Schmidt, M. W., *H*₂*O* transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems, *Journal of Geophysical Research*, **100**, 22,299–22,314, 1995.
- Rapela, C. W. and Pankhurst, R. J., The granites of northern Patagonia and the Gastre fault system in relation to the break-up of Gondwana, in *Magmatism and the causes of continental break-up*, edited by B. C. Storey, T. Alabaster, and R. J. Pankhurst, Geological Society Special Publications 68, pp. 209–220, Geological Society of London, London, United Kingdom, 1992.
- Reichert, C. and SPOC Scientific Shipboard Party, Subduction processes off Chile: Initial geophysical results of SONNE Cruise SO-161(2+3), in *Geophysical Research Abstracts*, EGS, European Geophysical Society, Nice, eGS02-A-05338, 2002.
- Reyners, M., Robinson, R., Pancha, A., and McGinty, P., A three-dimensional image of a shallow subduction: crustal structure of the Raukumara Peninsula, New Zealand, *Geophysical Journal International*, **137**, 873–890, 1999.

- Rietbrock, A., Entwicklung eines Programmsystems zur konsistenten Auswertung großer seismologischer Datensätze mit Anwendung auf die Untersuchung der Absorptionsstruktur der Loma-Prieta-Region, Kalifornien, Dissertation, LMU München, 1996.
- Rietbrock, A. and Haberland, C., ANCORP'96: Das passive seismologische Experiment, in Deformationsprozesse in den Anden: Berichtsband f
 ür die Jahre 1996 - 1998, edited by Sonderforschungsbereich 267, pp. 470–479, SFB 267, Berlin Potsdam, 1998.
- Rietbrock, A. and Scherbaum, F., The GIANT analysis system (graphical interactive aftershock network toolbox), *Seismological Research Letters*, **69**, 40–45, 1998.
- Rietbrock, A. and Waldhauser, F., Relative relocation of intermediate depth seismicity: A double Wadati-Benioff-Zone below the Central Andes, in *Fall Meet. Suppl.*, 83 (47), Eos Trans. AGU, Abstract T51E-06, 2002.
- Rutland, R. W., Andean orogeny and ocean floor spreading, *Nature*, 233, 252–255, 1971.
- Scheuber, E. and Reutter, K.-J., Magmatic arc tectonis in the Central Andes between 21° and 25° S, *Tectonophysics*, **205**, 127–140, 1992.
- Schmitz, M., A balanced model of the southern Central Andes, *Tectonics*, 13, 484–492, 1994.
- Schmitz, M., Lessel, K., Giese, P., Wigger, P., Araneda, M., Bribach, J., Graeber, F., Grunewald, S., Haberland, C., Lüth, S., Röwer, P., Ryberg, T., and Schulze, A., The chrustal structure beneath the Central Andean forearc and magmatic arc as derived from seismic studies - the PISCO 94 experiment in northern Chile 21deg-23degs, *Journal of South American Earth Sciences*, **12**, 237–260, 1999.
- Schurr, B., *Seismic Structure of the Central Andean Subduction Zone from Local Earthquake Data*, Ph.D. thesis, Freie Universität Berlin, 2001.
- Soyer, W., *Analysis of geomagnetic variations in the Central and Southern Andes*, Ph.D. thesis, Freie Universität Berlin, 2002.
- Spencer, C. and Gubbins, D., Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media, *Geophysical Journal of the Royal Astronomical Society*, **63**, 95–116, 1980.
- Stein, S. and Stein, C. A., Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes, in *Subduction: Top to Bottom*, edited by G. Bebout, D. Scholl, S. Kirby, and J. Platt, Geophysical Monograph 96, pp. 1–17, American Geophysical Union, 1996.

- Stern, C. R., Pliocene to present migration of the volcanic front, Andean Southern Volcanic Zone, *Revista Geológica de Chile*, **16**, 145–162, 1989.
- Thurber, C. and Eberhart-Phillips, D., Local earthquake tomography with flexible gridding, *Computer & Geosciences*, **25**, 809–818, 1999.
- Thurber, C. H., Earthquake Locations and Three-Dimensional Crustal Structure in the Coyote Lake Area, Central California, *Journal of Geophysical Research*, **88**, 8226–8236, 1983.
- Thurber, C. H., Local earthquake tomography: velocities and v_p/v_s-theory, in *Seismic Tomography: Theory and Practice*, edited by H. M. Iyer and K. Hirahara, pp. 563–583, Chapman and Hall, 2-6 Boundary Row, London SE1 8HN, UK, 1993.
- Tichelaar, B. W. and Ruff, L. J., Seismic coupling along the Chilean subduction zone, *Journal* of *Geophysical Research*, **96**, 11,997–12,022, 1991.
- Toomey, D. R. and Foulger, G. R., Tomographic inversion of local earthquake data from the Hengill-Grensdalur central volcano complex, Iceland, *Journal of Geophysical Research*, **94**, 17.497–17.510, 1989.
- Um, J. and Thurber, C., A fast algorithm for two-point seismic ray tracing, *Bulletin of the Seismological Society of America*, **77**, 972–986, 1987.
- Wigger, P. J., Schmitz, M., Araneda, M., Asch, G., Baldzuhn, S., Giese, P., Heinsohn, W.-D., Martinez, E., Ricaldi, E., Röwer, P., and Viramonte, J., Variation of the crustal structure of the Southern Central Andes deduced from seismic refraction investigations, in *Tectonis of the Southern Central Andes*, edited by K.-J. Reutter, E. Scheuber, and P. Wigger, pp. 23–48, Springer Verlag, Berlin Heidelberg New York, 1994.
- www.1, http://neic.usgs.gov/neis/epic/epic.html.
- www.2, http://gdcinfo.agg.nrcan.gc.ca/app/agegrid_e.html.
- www.3, http://www.ngdc.noaa.gov/mgg/global/seltopo.html.
- www.4, http://edcdaac.usgs.gov/gtopo30/gtopo30.html.
- www.5, http://www.volcano.si.edu/gvp/world/summinfo.cfm.
- Yuan, X., Sobolev, S. V., Kind, R., Oncken, O., Bock, G., Asch, G., Schurr, B., Graeber, F., Rudloff, A., Hanka, W., Wylegalla, K., Tibi, R., Haberland, C., Rietbrock, A., Giese, P., Wigger, P., Röwer, P., Zandt, G., Beck, S., Wallace, T., Pardo, M., and Comte, D., Subduction and collision processes in the Central Andes constrained by converted seismic phases, *Nature*, 408, 958–961, 2000.

Anhang A

Stationsliste

Abbildung A.1: Die seismologischen Stationen des ISSA 2000-Experimentes

Station	Latitude	Longitude	Height	Start	End	Datalogger	Sensor
Name	[°]	[°]	[m]	yymmdd	yymmdd	Type/No.	Type/No.
AP01	-36.9500	-70.7052	1224	000126	000207	PDAS 395	L4-3D 1343
AP02	-36.9112	-69.8243	1063	000125	000418	PDAS 398	L4-3D 1333
AP03	-37.4153	-70.6139	1221	000126	000418	PDAS 324	L4-3D 1164
AP04	-37.5078	-69.9768	1149	000126	000417	PDAS 338	L4-3D 1177
AP05	-38.0339	-70.6445	1040	000127	000418	PDAS 323	L4-3D 1336
AP06	-37.9569	-70.0599	1124	000127	000418	PDAS 325	L4-3D 1169
AP07	-38.5112	-70.4351	784	000126	000418	PDAS 333	L4-3D 1175
AP08	-38.4229	-69.9734	959	000126	000418	PDAS 332	L4-3D 1172

Fortsetzung auf der nächsten Seite

ANHANG A. STATIONSLISTE

Station	Latitude	Longitude	Height	Start	End	Datalogger	Sensor
Name	[°]	[°]	[m]	YYMMDD	YYMMDD	Type/No.	Type/No.
AP09	-38.5309	-69.4521	715	000126	000206	PDAS 396	L4-3D 1340
AP10	-39.4872	-70.9425	847	000127	000416	PDAS 322	L4-3D 1191
AP11	-39.4800	-70.1165	848	000127	000418	PDAS 329	L4-3D 1334
AP12	-36.0493	-69.7259	1380	000205	000418	PDAS 335	L4-3D 1188
AP13	-36.9097	-70.7076	1306	000207	000417	PDAS 395	L4-3D 1333
AP14	-38.5277	-69.4543	715	000206	000307	PDAS 396	L4-3D 1340
AS02	-38.7775	-73.2367	100	990424	011231	SAM 050	3ESP 3696
AS05	-38.8869	-72.6804	90	990425	011231	SAM 715	3ESP 3715
AS07	-38.9246	-72.3617	200	990508	011231	SAM 039	3ESP 3641
AS09	-38.9791	-72.0442	420	990428	011231	SAM 043	3ESP 3693
AS11	-38.8765	-71.8204	450	990427	011231	SAM 060	3ESP 3699
AS13	-38.7717	-71.6253	720	990429	011231	SAM 709	3ESP 3709
AS15	-38.8245	-71.2812	1200	990506	011231	SAM 042	3ESP 3710
AS17	-38.8961	-71.1000	1210	990505	011231	SAM 047	3ESP 3718
AS18	-38.9035	-70.8653	1550	990505	000303	SAM 045	3ESP 3635
AS19	-38.8857	-70.6089	1720	990505	011231	SAM 040	3ESP 3708
AS20	-38.9087	-70.0909	1030	990504	011231	SAM 054	3ESP 3689
AS21	-38.9721	-69.4147	680	990504	011231	SAM 053	3ESP 3704
AS22	-39.0649	-68.6976	330	990504	011231	SAM 038	3ESP 3716
CM07	-37.3727	-71.3568	1426	990901	000415	MARS 011	LE-3D 01
CM09	-37.9020	-71.5571	652	000131	000417	MARS 001	LE-3D 11
CM15	-37.7119	-71.4789	735	000207	000417	MARS 004	LE-3D 04
CM19	-38.4185	-71.5470	1406	000401	000416	MARS 012	LE-3D 12
CO01	-39.3167	-71.5816	663	000125	000416	ORION 180	LE-3D 2252
CP03	-36.7618	-71.9575	272	000131	000213	PDAS 308	L4-3D 1007
CP08	-37.6403	-71.7741	449	000128	000202	PDAS 302	L4-3D 1013
CPII	-38.0774	-71.8975	495	000128	000203	PDAS 386	L4-3D 1195
CP15	-38.1666	-71.3020	1011	000126	000202	PDAS 326	L4-3D 1155
CPI7	-38.2392	-71.8911	8/8	000127	000203	PDAS 328	L4-3D 1158
CP20 CP22	-38.5357	-/1.2688	722	000126	000417	PDAS 331	L4-3D 1156
CP22 CP27	-38.3332	-/1./904	132	000127	000305	PDAS 399	L4-3D 1121
CP27 CP20	-37.0234	-/1./822	445	000202	000417	PDAS 302	L4-3D 1013
CP29 CP20	-38.1000	-71.5021	508	000202	000416	PDAS 520	L4-5D 1155
CP30 CP21	-38.1403	-/1.6934	398 219	000203	000416	PDAS 380	L4-3D 1193
CP39	-57.4544	-72.1430	210	000203	000413	PDAS 328	L4-3D 1138
CP30	-30.7020	-71.3330	233	000213	000411	PDAS 308	L4-3D 1007
GP07	-36.3333	-71.7894	955	000303	000417	MARS 007	L4-3D 1121 LE 3D 05
GP13	-36 8704	-71 6183	826	990901	000114	MARS 007	LE-3D 03 LE-3D 02
KM01	-36 1002	-72 7421	265	990901	000112	MARS 001	LE 3D 02 LE-3D 07
IXIVI01	50.1002	12.1421	205	000131	000415	MARS 003	LE 3D 07 LE-3D 03
KM06	-37 2176	-73 5581	66	000131	000418	MARS 005 MARS 007	LE-3D 03
I M M I M I M I M I M I M I M I M I M I M I M I M H M H H M H H H H H H H H H H	57.2170	75.5501	00	990901	000114	MARS 006	LE-3D 13
KM11	-38 0618	-73 2667	554	000127	000417	MARS 002	LE-3D 02
	20.0010	, 3.2007	55 r	990901	000114	MARS 004	LE-3D 12
KP01	-36.5167	-72,4905	103	000131	000415	PDAS 305	L4-3D 1016
KP02	-36.9351	-72.5581	142	000129	000416	PDAS 307	L4-3D 1012
KP05	-37.1928	-72.9782	127	000127	000218	PDAS 309	L4-3D 1190
00	2	,		000220	000418	PDAS 298	"
KP06	-37.4978	-73.0069	616	000126	000207	PDAS 311	L4-3D 1019
KP07	-37.7193	-72.4282	127	000127	000416	PDAS 385	L4-3D 2252
KP10	-37.5571	-73.4009	180	000127	000202	PDAS 298	L4-3D 1183
KP12	-37.8315	-73.3788	169	000127	000202	PDAS 337	L4-3D 1154
KP13	-37.7745	-72.9524	818	000128	000418	PDAS 397	L4-3D 1122

Fortsetzung auf nächster Seite

Station	Latitude	Longitude	Height	Start	End	Datalogger	Sensor
Name	[°]	[°]	[m]	YYMMDD	YYMMDD	Type/No.	Type/No.
KP19	-38.3336	-72.2451	391	000125	000211	PDAS 330	L4-3D 1017
KP24	-37.5617	-73.3989	230	000202	000218	PDAS 298	L4-3D 1183
				000220	000418	PDAS 309	,,
KP25	-37.8355	-73.3792	156	000202	000418	PDAS 337	L4-3D 1154
KP34	-37.2816	-72.1765	215	000206	000413	PDAS 310	L4-3D 1378
KP35	-37.4975	-73.0066	616	000207	000418	PDAS 311	L4-3D 1019
KP37	-38.3402	-73.2855	190	000211	000312	PDAS 330	L4-3D 1017
				000312	000315	"	L4-3D 1196
				000315	000417	"	L4-3D 1017
LM02	-36.4838	-72.2273	115	990901	000114	MARS 008	LE-3D 04
				000131	000415	MARS 005	LE-3D 05
LM04	-36.9794	-72.1993	146	990901	000113	MARS 002	LE-3D 11
				000131	000416	MARS 006	LE-3D 06
LM05	-37.2542	-72.5187	72	000126	000204	MARS 009	LE-3D 09
				990901	000114	,,	,,
LM08	-37.5487	-72.6586	83	000126	000204	MARS 008	LE-3D 08
				990901	000115	MARS 005	LE-3D 06
LM10	-38.0431	-72.2605	390	000126	000203	MARS 012	LE-3D 12
				990901	000115	MARS 003	LE-3D 03
LM12	-39.2456	-72.7412	309	990901	000115	MARS 010	LE-3D 10
				000125	000213	MARS 013	LE-3D 13
LM13	-39.2309	-72.2152	303	990901	000115	MARS 012	LE-3D 08
				000125	000206	MARS 004	LE-3D 04
LM14	-38.0223	-72.2800	358	000203	000330	MARS 012	LE-3D 12
LM16	-37.2880	-72.4904	89	000204	000415	MARS 009	LE-3D 09
LM17	-37.5160	-72.7054	74	000204	000418	MARS 008	LE-3D 08
LM18	-39.2429	-72.7449	305	000213	000416	MARS 013	LE-3D 13
LP04	-37.2864	-71.7636	482	000128	000204	PDAS 406	L4-3D 1157
LP14	-37.9504	-72.8096	130	000125	000417	PDAS 304	L4-3D 1184
LP16	-38.1706	-72.8371	276	000124	000202	PDAS 312	L4-3D 1020
LP18	-38.3415	-72.4434	273	000125	000417	PDAS 303	L4-3D 1010
LP21	-38.4964	-72.7747	135	000125	000204	PDAS 297	L4-3D 1011
LP23	-38.7039	-72.4450	156	000125	000202	PDAS 306	L4-3D 1185
LP26	-38.5828	-72.1906	271	000202	000417	PDAS 306	L4-3D 1185
LP28	-38.1705	-72.8365	276	000202	000417	PDAS 312	L4-3D 1020
LP32	-37.2095	-71.8004	696	000204	000208	PDAS 406	L4-3D 1157
LP33	-38.4995	-72.7635	88	000205	000402	PDAS 297	L4-3D 1011
LP36	-37.2079	-71.8002	699	000208	000415	PDAS 406	L4-3D 1157
MM00	-38.3391	-73.9258	107	000128	000407	MARS 010	LE-3D 10
OH01	-36.5214	-73.6618	-675	000115	000220	OBH 01	H 01
OH02	-36.5136	-74.1872	-3648	000115	000220	OBH 02	H 02
OH03	-36.8941	-73.8651	-1127	000115	000220	OBH 03	H 03
OH04	-37.0981	-74.5093	-3971	000116	000220	OBH 04	H 04
OH05	-37.1332	-74.8342	-4740	000116	000220	OBH 05	H 05
OH06	-37.3371	-74.6696	-4753	000116	000220	OBH 06	H 06
OH07	-37.5054	-74.0095	-1446	000116	000220	OBH 07	H 07
OH09	-37.9993	-74.8463	-4642	000118	000220	OBH 09	H 09
OHIO	-38.1648	-75.0867	-4609	000118	000220	OBH 10	H 10
OHII	-38.4850	-75.0002	-4542	000118	000220	OBH 11	H I I
OH12	-38.6661	-74.2220	-1594	000118	000220	OBH 12	H 12
OH13	-38.9206	-/4.4225	-2351	000118	000220	OBH 13	H 13
OH14	-39.0852	-/5.0911	-4344	000119	000220	OBH 14	H 14
OHI5	-39.4154	-/5.1842	-4285	000119	000220	OBH 15	H 15
OF10	-39.4327	-/4.0885	-931	000119	000220	OBC 00	H 16
OH16 OS08	-39.4327 -37.6984	-74.0885 -73.9988	-931 -1241	000119 000117	000220 000220	OBH 16 OBS 08	H 16 S 08

 Tabelle A.1: Liste der seismologischen Stationen des Experimentes ISSA 2000

 Scientific Technical Report STR 04/15
 GeoForschungsZentrum Potsdam

Anhang B

Erdbebenkatalog

Ori	igin Time	•	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
991115	0401	44.72	-38.1710	-72.5438	63.48	71	0.14
991116	1644	53.62	-36.9465	-73.4692	11.28	201	0.26
991117	0205	41.37	-36.9601	-73.4476	8.28	195	0.27
991117	0622	46.54	-36.9504	-73.4550	8.37	198	0.10
991117	0758	41.05	-36.9774	-73.4733	15.66	199	0.17
991117	0921	58.99	-36.9476	-73.4626	8.64	199	0.21
991118	0208	06.05	-39.0104	-73.5289	27.04	261	0.26
991118	1830	34.18	-37.0230	-72.6432	19.85	99	0.15
991118	2007	32.43	-36.9514	-73.4604	12.21	199	0.19
991118	2127	30.08	-36.9527	-73.4531	9.38	198	0.09
991118	2144	37.71	-36.9419	-73.4655	8.38	232	0.12
991119	0414	03.48	-36.9879	-72.6971	20.40	106	0.08
991120	2325	11.04	-37.2987	-71.5341	126.50	127	0.46
991121	0502	26.61	-37.7899	-73.2150	29.76	185	0.24
991121	0511	39.47	-36.3619	-72.9881	17.72	211	0.14
991121	0614	16.75	-36.9644	-73.4634	10.01	222	0.32
991121	1236	26.54	-36.6617	-72.5243	71.27	140	0.26
991122	1646	10.56	-37.0387	-71.7113	8.11	116	0.25
991122	2325	16.43	-36.9414	-73.4667	8.18	223	0.22
991123	0449	53.49	-36.4894	-73.0389	16.68	183	0.10
991123	1310	16.96	-36.9407	-73.4619	8.34	232	0.12
991124	0343	59.91	-38.9537	-72.8173	59.24	129	0.23
991124	0611	26.15	-37.1869	-71.8863	90.20	84	0.12
991124	0841	05.68	-39.2094	-72.2101	100.04	116	0.28
991125	0421	22.31	-38.4867	-72.9959	60.02	120	0.18
991126	1227	54.93	-37.5782	-71.9913	95.98	126	0.08
991127	1943	03.85	-36.3232	-71.5757	110.92	260	0.14
991128	2150	16.30	-37.4266	-72.3413	58.88	76	0.13
991129	0422	11.13	-36.5338	-73.2276	32.73	202	0.22
991129	1307	10.17	-36.6542	-72.3167	63.42	89	0.19
991130	0008	59.11	-37.0378	-72.2826	60.02	145	0.05
991203	1228	13.56	-36.5309	-73.2384	28.66	248	0.09
991203	1448	18.39	-38.3066	-73.1944	43.66	161	0.24
991204	1750	58.55	-37.8660	-72.3750	75.33	70	0.33

Fortsetzung auf nächster Seite

yymddhhmmss.ss[°][°][km][°][km]991208002943.58-36.9417-73.45298.562220.30991209065422.09-36.3470-72.363361.591830.13991209065813.63-36.3561-72.377862.181800.13991209115822.72-38.2066-70.6416189.191600.32991209123602.38-37.6638-71.27974.322440.17991210082013.13-36.8336-71.27974.322440.17991220090944.38-37.4204-71.0004154.492110.319912210930944.38-37.4204-71.0004154.492110.31991221043401.18-36.9522-73.44638.152200.38991221054301.52-36.9522-73.44638.152200.20991223061424.32-36.9481-73.492910.512240.27991224013144.73-37.6360-72.023097.65590.30991224013144.73-37.6360-72.023097.65590.30991224050518.77-36.944-73.452715.112200.28991224050518.77-37.045-72.63652.4041490.07991224050518.77-37.648-73.4	Or	igin Time	;	Latitude	Longitude	Depth	GAP	Residuum
991207 0740 41.02 -37.9177 -74.1677 29.05 262 0.19 991209 0054 22.00 -36.3470 -72.3633 61.59 183 0.13 991209 0658 13.63 -36.3561 -72.3778 62.18 180 0.13 991209 1158 22.72 -38.2066 -70.6416 189.19 160 0.32 991209 1234 55.53 -37.2737 -71.7258 113.08 97 0.15 991220 0309 44.38 -37.4204 -71.0004 154.49 211 0.31 991221 0434 01.18 -36.9652 -73.4468 5.33 222 0.36 991221 0433 01.52 -37.0723 -73.4708 26.62 220 0.20 991221 0433 0.52 -36.9481 -73.4929 10.51 224 0.27 991224 0131 4.40.32 -36.9481 -73.4929 10.51 224 0.	yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
991208 0029 43.58 -36.9417 -73.4529 8.56 222 0.30 991209 0654 12.09 -36.3470 -72.3633 61.59 183 0.13 991209 1158 22.72 -38.2066 -70.6416 189.19 160 0.32 991209 1256 02.38 -37.6638 -72.3074 66.54 121 0.20 991209 1236 02.35 -37.2737 -71.7258 113.08 97 0.15 99121 0830 13.13 -36.836 -71.2797 4.32 244 0.17 991221 0434 01.18 -36.9652 -73.4463 8.15 220 0.28 991221 0843 08.52 -36.9522 -73.4568 5.33 222 0.36 991221 0843 08.52 -36.9522 73.4568 5.33 222 0.26 991221 0843 08.52 -36.9426 -73.4929 10.51 224 0.27	991207	0740	41.02	-37.9177	-74.1677	29.05	262	0.19
991209 0654 22.09 -36.3470 -72.3633 61.59 183 0.13 991209 1158 22.72 -38.206 -70.6416 189.19 160 0.32 991209 1256 02.38 -37.6638 -72.3074 66.54 121 0.20 991213 0820 13.13 -36.836 -71.2797 4.32 2444 0.17 991220 0820 44.38 -37.4204 -71.0004 154.49 211 0.31 991221 0843 08.52 -36.9522 -73.4463 8.15 220 0.28 991221 0843 08.52 -36.9522 -73.4708 26.62 220 0.20 991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07<	991208	0029	43.58	-36.9417	-73.4529	8.56	222	0.30
991209 0658 13.63 -36.3561 -72.3778 62.18 180 0.13 991209 1158 22.72 -38.2066 -70.6416 189.19 160 0.32 991209 2341 55.53 -37.2737 -71.7258 113.08 97 0.15 991210 0820 13.13 -36.8336 -71.2097 4.32 244 0.17 991220 0909 44.38 -37.4204 -71.1004 154.49 211 0.31 991221 0434 01.18 -36.9522 -73.4463 8.15 220 0.36 991221 0433 08.52 -36.9481 -73.4929 10.51 224 0.27 991221 1918 19.54 -37.2551 -72.030 97.65 59 0.30 991224 0505 18.77 -36.6944 -73.4551 16.83 222 0.14 991225 0535 50.86 -36.9486 -73.4277 15.11 220 0.28 </td <td>991209</td> <td>0654</td> <td>22.09</td> <td>-36.3470</td> <td>-72.3633</td> <td>61.59</td> <td>183</td> <td>0.13</td>	991209	0654	22.09	-36.3470	-72.3633	61.59	183	0.13
991209 1158 22.72 -38.2066 -70.6416 189.19 160 0.32 991209 1256 02.38 -37.6638 -72.3074 66.54 121 0.20 991209 2341 55.53 -77.17278 113.08 0.15 991210 0320 13.13 -36.8336 -71.2797 4.32 244 0.17 991220 0350 44.54 -36.9522 -73.4463 8.15 220 0.38 991221 0843 08.52 -36.9522 -73.4568 5.33 222 0.20 991221 0184 19.54 -37.0237 -73.4708 2.66.22 0.20 991221 0184 24.32 -36.9481 -73.4929 10.51 224 0.27 991223 0614 24.32 -36.944 -72.6355 24.04 149 0.07 991224 0505 18.77 -37.0245 -72.6355 24.04 149 0.07 991224 0826 </td <td>991209</td> <td>0658</td> <td>13.63</td> <td>-36.3561</td> <td>-72.3778</td> <td>62.18</td> <td>180</td> <td>0.13</td>	991209	0658	13.63	-36.3561	-72.3778	62.18	180	0.13
991209 1256 02.38 -37.6638 -72.3074 66.54 121 0.20 991213 0820 13.1 -36.833 -71.279 4.32 244 0.17 991220 0820 14.31 -36.836 -71.279 4.32 244 0.17 991221 0843 08.52 -36.9283 -73.4811 11.16 225 0.28 991221 0843 08.52 -36.9522 -73.4463 8.15 220 0.36 991221 0843 08.52 -36.9522 -73.4463 8.15 220 0.20 991221 0843 08.52 -36.4362 -70.2955 176.67 267 0.26 991224 0144 4.32 -36.4481 -73.4929 10.51 224 0.27 991224 055 18.77 -37.245 -72.2365 24.04 149 0.07 991224 055 18.77 -37.042 -72.102 85.53 252 0.14 <td>991209</td> <td>1158</td> <td>22.72</td> <td>-38.2066</td> <td>-70.6416</td> <td>189.19</td> <td>160</td> <td>0.32</td>	991209	1158	22.72	-38.2066	-70.6416	189.19	160	0.32
991209 2341 55.53 -37.2737 -71.7258 113.08 97 0.15 991213 0820 13.13 -36.8336 -71.2797 4.32 244 0.17 991220 0350 24.54 -36.9283 -73.4811 11.16 225 0.28 991221 0434 01.18 -36.9522 -73.4463 8.15 220 0.38 991221 2310 15.62 -37.0723 -73.4708 2.662 220 0.20 991221 1958 37.14 -36.4362 -70.2955 176.67 267 0.26 991224 0131 44.73 -37.6360 -72.0230 97.65 59 0.30 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0505 18.77 -37.4024 -72.151 20.20 0.28 991225 0588 37.49 -36.9753 -73.4492 5.19 221 0.29	991209	1256	02.38	-37.6638	-72.3074	66.54	121	0.20
991213 0820 13.13 -36.8336 -71.2797 4.32 244 0.17 991220 0909 44.38 -37.4204 -71.0004 154.49 211 0.31 991221 0434 01.18 -36.9522 -73.4463 8.15 220 0.36 991221 0843 08.52 -36.9522 -73.4568 5.33 222 0.36 991221 0983 71.4 -36.4362 -70.0295 176.67 267 0.26 991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0826 02.77 -36.9446 -73.4277 15.11 220 0.28 991225 058 37.49 -36.9753 -73.4492 5.19 221 0.29 991226 1830 16.78 -37.0724 -72.1502 85.53 252 0.21 <td>991209</td> <td>2341</td> <td>55.53</td> <td>-37.2737</td> <td>-71.7258</td> <td>113.08</td> <td>97</td> <td>0.15</td>	991209	2341	55.53	-37.2737	-71.7258	113.08	97	0.15
991220 0909 44.38 -37.4204 -71.0004 154.49 211 0.31 991221 2350 24.54 -36.9283 -73.4811 11.16 225 0.28 991221 0843 08.52 -36.9552 -73.4463 8.15 220 0.38 991221 0843 08.52 -36.9522 -73.4568 5.33 222 0.20 991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991224 0131 44.73 -37.6360 -72.6365 24.04 149 0.07 991224 0826 02.77 -36.9644 -73.4271 15.11 220 0.28 991225 0953 50.86 -36.9446 -73.4271 15.11 220 0.28 991225 0953 50.86 -36.9446 -72.1502 85.53 252 0.21 991225 0953 50.86 -72.6731 71.809 918 143 0.07	991213	0820	13.13	-36.8336	-71.2797	4.32	244	0.17
991220 2350 24.54 -36.9523 -73.4811 11.16 225 0.28 991221 0434 01.18 -36.9522 -73.4463 8.15 220 0.36 991221 2310 15.62 -37.0723 -73.4708 26.62 220 0.20 991222 1958 37.14 -36.4362 -70.2955 176.67 267 0.26 991223 1841 19.54 -37.2351 -72.0494 42.94 198 0.22 991224 0505 18.77 -37.0645 -72.6365 24.04 149 0.07 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.02 991225 2058 37.49 -36.9753 -73.4492 5.19 221 0.29 991226 1830 16.78 -37.073 -71.8809 91.84 0.07 991228 0644 39.71 -38.3231 -72.6789 13.72 122 0.23 <tr< td=""><td>991220</td><td>0909</td><td>44.38</td><td>-37.4204</td><td>-71.0004</td><td>154.49</td><td>211</td><td>0.31</td></tr<>	991220	0909	44.38	-37.4204	-71.0004	154.49	211	0.31
991221 0434 01.18 -36.9652 -73.4463 8.15 220 0.38 991221 2310 15.62 -37.0723 -73.4708 26.62 220 0.20 991223 0614 24.32 -36.9481 -73.4708 26.62 220 0.20 991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0505 18.74 -36.9644 -73.4277 15.11 220 0.28 991225 0535 5.749 -36.9753 -73.4492 5.19 221 0.29 991228 0644 39.71 -38.3231 -72.5373 66.91 110 0.23 991231 0144 49.93 -37.2773 -11.8809 91.910 60 0.57 </td <td>991220</td> <td>2350</td> <td>24.54</td> <td>-36.9283</td> <td>-73.4811</td> <td>11.16</td> <td>225</td> <td>0.28</td>	991220	2350	24.54	-36.9283	-73.4811	11.16	225	0.28
991221 0843 08.52 -36.9522 -73.4568 5.33 222 0.36 991221 2310 15.62 -37.0723 -73.4708 26.62 220 0.20 991223 1958 37.14 -36.4362 -70.2955 176.67 267 0.26 991223 10614 24.32 -36.9481 -73.4929 10.51 224 0.27 991224 0131 44.73 -37.6360 -72.030 97.65 59 0.30 991224 0826 02.77 -36.9486 -73.4277 15.11 220 0.28 991225 0953 50.86 -36.9486 -73.4277 15.11 220 0.28 991225 0953 50.86 -36.9486 -73.4277 15.11 20 0.28 991225 0953 50.86 -36.9486 -72.5373 66.91 110 0.23 991228 1801 36.79 -38.460 -72.6789 13.72 122 0.23 <td>991221</td> <td>0434</td> <td>01.18</td> <td>-36.9652</td> <td>-73.4463</td> <td>8.15</td> <td>220</td> <td>0.38</td>	991221	0434	01.18	-36.9652	-73.4463	8.15	220	0.38
991221 2310 15.62 -37.0723 -73.4708 26.62 220 0.20 991222 1958 37.14 -36.4362 -70.2955 176.67 267 0.26 991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991224 0131 44.73 -37.6360 -72.0230 97.65 59 0.30 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0505 18.77 -36.9644 -73.4551 16.83 222 0.14 991225 2058 37.49 -36.9753 -73.4492 5.19 221 0.29 991228 1644 39.71 -38.3231 -72.5673 66.91 110 0.23 991231 0144 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 0.06 -37.5978 -71.9410 99.10 0 0.44 <td>991221</td> <td>0843</td> <td>08.52</td> <td>-36.9522</td> <td>-73.4568</td> <td>5.33</td> <td>222</td> <td>0.36</td>	991221	0843	08.52	-36.9522	-73.4568	5.33	222	0.36
991222 1958 37.14 -36.4362 -70.2955 176.67 267 0.26 991223 1841 19.54 -37.2351 -72.9049 42.94 198 0.27 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991225 0953 50.86 -36.9486 -73.4277 15.11 220 0.28 991225 16.78 -37.7094 -72.1502 85.53 252 0.21 991228 1044 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 0.08 -38.3840 -72.6789 13.72 122 0.23 000102 1542 25.21 -38.5500 -72.0692 95.09 100 0.44 <t< td=""><td>991221</td><td>2310</td><td>15.62</td><td>-37.0723</td><td>-73.4708</td><td>26.62</td><td>220</td><td>0.20</td></t<>	991221	2310	15.62	-37.0723	-73.4708	26.62	220	0.20
991223 0614 24.32 -36.9481 -73.4929 10.51 224 0.27 991223 1841 19.54 -37.2351 -72.0949 42.94 198 0.22 991224 0131 44.73 -37.6360 -72.0230 97.65 59 0.30 991224 0826 02.77 -36.9644 -73.4551 16.83 222 0.14 991225 0953 50.86 -36.9486 -73.4277 15.11 220 0.28 991225 0058 37.49 -36.9753 -73.4492 5.19 221 0.29 991226 1830 16.78 -37.7094 -72.5373 66.91 110 0.23 991228 1801 36.79 -38.4660 -72.6789 13.72 122 0.23 000101 0554 00.08 -38.3840 -72.0692 95.09 100 0.44 000103 0713 23.99 -37.5778 -71.9410 99.10 60 0.57 <td>991222</td> <td>1958</td> <td>37.14</td> <td>-36.4362</td> <td>-70.2955</td> <td>176.67</td> <td>267</td> <td>0.26</td>	991222	1958	37.14	-36.4362	-70.2955	176.67	267	0.26
991223 1841 19.54 -37.2351 -72.0230 97.65 59 0.30 991224 0131 44.73 -37.6360 -72.0230 97.65 59 0.30 991224 0055 18.77 -36.9644 -73.4551 16.83 222 0.14 991225 0953 50.86 -36.9486 -73.4277 15.11 220 0.28 991225 2058 37.49 -36.9753 -73.4492 5.19 221 0.29 991228 1801 36.79 -38.4660 -72.5331 74.15 87 0.48 991221 1801 36.79 -38.4660 -72.6789 13.72 122 0.23 991231 0144 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 00.08 -38.3840 -72.6789 13.72 122 0.23 000102 1542 25.21 -38.5590 -72.0692 95.09 100 0.44 <td>991223</td> <td>0614</td> <td>24.32</td> <td>-36.9481</td> <td>-73.4929</td> <td>10.51</td> <td>224</td> <td>0.27</td>	991223	0614	24.32	-36.9481	-73.4929	10.51	224	0.27
991224 0131 44.73 -37.6360 -72.0230 97.65 59 0.30 991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0826 02.77 -36.9644 -73.4551 16.83 222 0.14 991225 0535 50.86 -36.9753 -73.4492 5.19 221 0.29 991226 1830 16.78 -37.7094 -72.5373 66.91 110 0.23 991228 0644 39.71 -38.3231 -72.6789 13.72 122 0.23 000101 0554 0.008 -38.3840 -72.6789 13.72 122 0.23 000102 1542 25.21 -38.5590 -72.0692 95.09 100 0.44 000103 0713 23.99 -37.5978 -71.9410 99.10 60 0.57 000106 0855 17.63 -36.6433 -72.499 43.45 192 0.14 <td>991223</td> <td>1841</td> <td>19.54</td> <td>-37.2351</td> <td>-72.9049</td> <td>42.94</td> <td>198</td> <td>0.22</td>	991223	1841	19.54	-37.2351	-72.9049	42.94	198	0.22
991224 0505 18.77 -37.0245 -72.6365 24.04 149 0.07 991224 0826 02.77 -36.9644 -73.4551 16.83 222 0.14 991225 0953 50.86 -36.9486 -73.4277 15.11 220 0.28 991226 1830 16.78 -37.7094 -72.1502 85.53 252 0.21 991228 0644 39.71 -38.3231 -72.3631 74.15 87 0.48 991228 1801 36.79 -38.4660 -72.5373 66.91 110 0.23 991231 0144 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 00.08 -38.3840 -72.6799 13.72 122 0.23 000102 1542 25.21 -38.5590 -72.1692 95.09 100 0.44 000109 0733 58.00 -37.4443 -72.0765 89.20 51 0.23 </td <td>991224</td> <td>0131</td> <td>44.73</td> <td>-37.6360</td> <td>-72.0230</td> <td>97.65</td> <td>59</td> <td>0.30</td>	991224	0131	44.73	-37.6360	-72.0230	97.65	59	0.30
991224 0826 02.77 -36.9644 -73.4551 16.83 222 0.14 991225 0953 50.86 -36.9753 -73.4277 15.11 220 0.28 991225 2058 37.49 -36.9753 -73.4492 5.19 221 0.29 991226 1830 16.78 -37.7094 -72.1502 85.53 252 0.21 991228 0644 39.71 -38.3231 -72.3573 66.91 110 0.23 991231 0144 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 00.08 -38.3840 -72.6789 13.72 122 0.23 000102 1542 25.21 -36.6433 -72.7999 43.45 192 0.14 000103 0713 23.99 -37.4443 -72.0765 89.20 51 0.23 000112 0111 18.82 -38.5207 -72.1393 76.71 107 0.19 </td <td>991224</td> <td>0505</td> <td>18.77</td> <td>-37.0245</td> <td>-72.6365</td> <td>24.04</td> <td>149</td> <td>0.07</td>	991224	0505	18.77	-37.0245	-72.6365	24.04	149	0.07
991225095350.86-36.9486-73.427715.112200.28991225205837.49-36.9753-73.44925.192210.29991226183016.78-37.7094-72.150285.532520.21991228064439.71-38.3231-72.363174.15870.48991228180136.79-38.4660-72.537366.911100.23991231014449.93-37.2773-71.880991.981430.0700010105540.08-38.3840-72.678913.721220.23000102154225.21-38.5590-72.069295.091000.44000103071323.99-37.5978-71.941099.10600.57000106085517.63-36.6433-72.739943.451920.14000109073358.00-37.4443-72.076589.20510.23000110153926.04-36.3186-72.335562.791910.10000129011728.64-38.4933-72.469062.52490.25000130143407.08-38.9620-72.750932.151160.15000131134421.65-37.5859-72.25183.42740.34000202061558.15-36.8470-73.145632.531620.18000203082451.22-36.8967 <td>991224</td> <td>0826</td> <td>02.77</td> <td>-36.9644</td> <td>-73.4551</td> <td>16.83</td> <td>222</td> <td>0.14</td>	991224	0826	02.77	-36.9644	-73.4551	16.83	222	0.14
991225205837.49 -36.9753 -73.4492 5.19 221 0.29 991226183016.78 -37.7094 -72.1502 85.53 252 0.21 991228064439.71 -38.3231 -72.3631 74.15 87 0.48 9912211014449.93 -37.2773 -71.8809 91.98 143 0.07 000101055400.08 -38.3840 -72.6789 13.72 122 0.23 000102154225.21 -38.5590 -72.0692 95.09 100 0.44 0001030713 23.99 -37.5978 -71.9410 99.10 60 0.57 0001060855 17.63 -36.6433 -72.7999 43.45 192 0.14 0001090733 58.00 -37.4443 -72.0765 89.20 51 0.23 0001101539 26.04 -36.3186 -72.3355 62.79 191 0.10 0001120111 18.82 -38.9620 -72.7509 32.15 116 0.15 0001301434 07.08 -38.9620 -72.7509 32.15 116 0.15 0001311344 21.65 -37.5859 -72.2923 2.83 147 0.20 0002021655 83.15 -36.8470 -72.1358 65.54 89 0.14 0020201655 83.6317 -73.1577 92.44 157 0.30 0002040502<	991225	0953	50.86	-36.9486	-73.4277	15.11	220	0.28
991226 1830 16.78 -37.7094 -72.1502 85.53 252 0.21 991228 0644 39.71 -38.3231 -72.3631 74.15 87 0.48 991228 1801 36.79 -38.4660 -72.5373 66.91 110 0.23 991231 0144 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 00.08 -38.3840 -72.6789 13.72 122 0.23 000102 1542 25.21 -38.590 -72.0692 95.09 100 0.44 000103 0713 23.99 -37.5978 -71.9410 99.10 60 0.57 000106 0855 17.63 -36.6433 -72.7999 43.45 192 0.14 000109 0733 58.00 -37.4443 -72.0765 89.20 51 0.23 000112 0111 18.82 -38.9207 -72.1393 76.71 107 0.19 <td>991225</td> <td>2058</td> <td>37.49</td> <td>-36.9753</td> <td>-73.4492</td> <td>5.19</td> <td>221</td> <td>0.29</td>	991225	2058	37.49	-36.9753	-73.4492	5.19	221	0.29
991228 0644 39.71 -38.3231 -72.3631 74.15 87 0.48 991228 1801 36.79 -38.4660 -72.5373 66.91 110 0.23 991231 0144 49.93 -37.2773 -71.8809 91.98 143 0.07 000101 0554 00.08 -38.3840 -72.6789 13.72 122 0.23 000102 1542 25.21 -38.5590 -72.0692 95.09 100 0.44 000103 0713 23.99 -37.5978 -71.9410 99.10 60 0.57 000106 0855 17.63 -36.6433 -72.7999 43.45 192 0.14 000112 0111 18.82 -38.5207 -72.1393 76.71 107 0.19 000129 0017 28.64 -38.9620 -72.7509 32.15 116 0.15 000130 1434 07.08 -38.9620 -72.7509 32.15 116 0.15 </td <td>991226</td> <td>1830</td> <td>16.78</td> <td>-37.7094</td> <td>-72.1502</td> <td>85.53</td> <td>252</td> <td>0.21</td>	991226	1830	16.78	-37.7094	-72.1502	85.53	252	0.21
9912281801 36.79 -38.4660 -72.5373 66.91 110 0.23 991231014449.93 -37.2773 -71.8809 91.981430.07000101055400.08 -38.3840 -72.6789 13.721220.23000102154225.21 -38.5590 -72.0692 95.091000.44000103071323.99 -37.5978 -71.9410 99.10600.57000106085517.63 -36.6433 -72.7999 43.451920.14000109073358.00 -37.4443 -72.0765 89.20510.23000110153926.04 -36.3186 -72.3355 62.791910.10000129001728.64 -38.4933 -72.4690 62.52490.25000130010309.40 -37.1883 -71.9584 81.391750.19000130143407.08 -38.9620 -72.7509 32.151160.15000131143407.08 -36.8322 -72.9923 2.831470.20000202061538.15 -36.2776 -71.8177 90.662560.46000203175425.10 -37.7368 -71.7578 92.441570.30000204001655.58 -36.8470 -73.1456 32.531620.18002020125536.71 -38.6317 -73.1507 30.801460	991228	0644	39.71	-38.3231	-72.3631	74.15	87	0.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	991228	1801	36.79	-38.4660	-72.5373	66.91	110	0.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	991231	0144	49.93	-37.2773	-71.8809	91.98	143	0.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000101	0554	00.08	-38.3840	-72.6789	13.72	122	0.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000102	1542	25.21	-38.5590	-72.0692	95.09	100	0.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000103	0713	23.99	-37.5978	-71.9410	99.10	60	0.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000106	0855	17.63	-36.6433	-72,7999	43.45	192	0.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000109	0733	58.00	-37.4443	-72.0765	89.20	51	0.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000110	1539	26.04	-36.3186	-72.3355	62.79	191	0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000112	0111	18.82	-38.5207	-72,1393	76.71	107	0.19
000120 0013 09.40 -37.1883 -71.9584 81.39 175 0.19 000130 1434 07.08 -38.9620 -72.7509 32.15 116 0.15 000131 1344 21.65 -37.5859 -72.2251 83.42 74 0.34 000202 0615 38.15 -36.2776 -71.8177 90.66 256 0.46 000202 1736 55.32 -36.8232 -72.9923 2.83 147 0.20 000203 0824 51.22 -36.8967 -72.1358 65.54 89 0.14 000203 1754 25.10 -37.7368 -71.7578 92.44 157 0.30 000204 0016 55.58 -36.8470 -73.1456 32.53 162 0.18 000204 0502 26.59 -37.8583 -73.6243 20.81 265 0.13 000204 1639 07.22 -38.1347 -73.1507 30.80 146 0.11 <td>000129</td> <td>0017</td> <td>28.64</td> <td>-38.4933</td> <td>-72.4690</td> <td>62.52</td> <td>49</td> <td>0.25</td>	000129	0017	28.64	-38.4933	-72.4690	62.52	49	0.25
000130 1434 07.08 -38.9620 -72.7509 32.15 116 0.15 000131 1344 21.65 -37.5859 -72.2251 83.42 74 0.34 000202 0615 38.15 -36.2776 -71.8177 90.66 256 0.46 000202 1736 55.32 -36.8232 -72.9923 2.83 147 0.20 000203 0824 51.22 -36.8967 -72.1358 65.54 89 0.14 000203 1754 25.10 -37.7368 -71.7578 92.44 157 0.30 000204 0016 55.58 -36.8470 -73.1456 32.53 162 0.18 000204 0502 26.59 -37.8583 -73.6243 20.81 265 0.13 000204 0502 26.59 -37.8583 -73.1456 32.53 162 0.18 000205 0205 36.71 -38.6317 -73.1507 30.80 146 0.11 <td>000120</td> <td>0103</td> <td>0940</td> <td>-37 1883</td> <td>-71 9584</td> <td>81 39</td> <td>175</td> <td>0.19</td>	000120	0103	0940	-37 1883	-71 9584	81 39	175	0.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000130	1434	07.08	-38 9620	-72,7509	32.15	116	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000131	1344	21.65	-37 5859	-72.2251	83.42	74	0.34
000202173655.32-36.8232-72.99232.831470.20000203082451.22-36.8967-72.135865.54890.14000203175425.10-37.7368-71.757892.441570.30000204001655.58-36.8470-73.145632.531620.18000204050226.59-37.8583-73.624320.812650.13000204050226.59-37.8583-73.212727.212100.21000205020536.71-38.6317-73.150730.801460.11000205094504.26-36.3027-72.925428.261880.27000205112534.25-37.3655-71.851991.98600.19000205124425.17-37.6278-73.584817.192130.16000205135717.81-37.5567-71.960891.281190.12000206040734.11-38.3502-71.59776.57830.31000206040734.11-38.3782-73.702326.741430.36000206202850.63-38.3782-73.278812.451720.25000207020042.35-36.9087-73.278812.451720.25000207030606.54-37.8125-73.194730.711010.19	000202	0615	38.15	-36 2776	-71 8177	90.66	256	0.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000202	1736	55 32	-36 8232	-72,9923	2.83	147	0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000203	0824	51.22	-36 8967	-72.1358	65 54	89	0.14
000204 0016 55.58 -36.8470 -73.1456 32.53 162 0.18 000204 0502 26.59 -37.8583 -73.6243 20.81 265 0.13 000204 1639 07.22 -38.1347 -73.2127 27.21 210 0.21 000205 0205 36.71 -38.6317 -73.1507 30.80 146 0.11 000205 0205 36.71 -38.6317 -72.9254 28.26 188 0.27 000205 0945 04.26 -36.3027 -72.9254 28.26 188 0.27 000205 1125 34.25 -37.3655 -71.8519 91.98 60 0.19 000205 1244 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 <td>000203</td> <td>1754</td> <td>25.10</td> <td>-37.7368</td> <td>-71.7578</td> <td>92.44</td> <td>157</td> <td>0.30</td>	000203	1754	25.10	-37.7368	-71.7578	92.44	157	0.30
000204050226.59-37.8583-73.624320.812650.13000204163907.22-38.1347-73.212727.212100.21000205020536.71-38.6317-73.150730.801460.11000205094504.26-36.3027-72.925428.261880.27000205112534.25-37.3655-71.851991.98600.19000205124425.17-37.6278-73.584817.192130.16000205135717.81-37.5567-71.960891.281190.12000205174412.66-36.8400-72.729650.351830.17000206040734.11-38.3502-71.59776.57830.31000206195724.68-38.1181-72.579954.00550.19000206202850.63-38.3782-73.702326.741430.36000207020042.35-36.9087-73.278812.451720.25000207030606.54-37.8125-73.194730.711010.19	000204	0016	55 58	-36 8470	-73 1456	32.53	162	0.18
000204 1639 07.22 -38.1347 -73.2127 27.21 210 0.21 000205 0205 36.71 -38.6317 -73.1507 30.80 146 0.11 000205 0205 36.71 -38.6317 -73.1507 30.80 146 0.11 000205 0945 04.26 -36.3027 -72.9254 28.26 188 0.27 000205 1125 34.25 -37.3655 -71.8519 91.98 60 0.19 000205 1244 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 <td>000204</td> <td>0502</td> <td>26.59</td> <td>-37.8583</td> <td>-73.6243</td> <td>20.81</td> <td>265</td> <td>0.13</td>	000204	0502	26.59	-37.8583	-73.6243	20.81	265	0.13
000205 0205 36.71 -38.6317 -73.1507 30.80 146 0.11 000205 0945 04.26 -36.3027 -72.9254 28.26 188 0.27 000205 1125 34.25 -37.3655 -71.8519 91.98 60 0.19 000205 1244 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000205 1744 12.66 -36.8400 -72.7296 50.35 183 0.17 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 <td>000204</td> <td>1639</td> <td>07.22</td> <td>-38.1347</td> <td>-73.2127</td> <td>27.21</td> <td>210</td> <td>0.21</td>	000204	1639	07.22	-38.1347	-73.2127	27.21	210	0.21
000205 0945 04.26 -36.3027 -72.9254 28.26 188 0.27 000205 1125 34.25 -37.3655 -71.8519 91.98 60 0.19 000205 1244 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000205 1744 12.66 -36.8400 -72.7296 50.35 183 0.17 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19 <td>000205</td> <td>0205</td> <td>36.71</td> <td>-38.6317</td> <td>-73.1507</td> <td>30.80</td> <td>146</td> <td>0.11</td>	000205	0205	36.71	-38.6317	-73.1507	30.80	146	0.11
000205 1125 34.25 -37.3655 -71.8519 91.98 60 0.19 000205 1244 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1244 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000205 1744 12.66 -36.8400 -72.7296 50.35 183 0.17 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19 <td>000205</td> <td>0945</td> <td>04.26</td> <td>-36.3027</td> <td>-72.9254</td> <td>28.26</td> <td>188</td> <td>0.27</td>	000205	0945	04.26	-36.3027	-72.9254	28.26	188	0.27
000205 124 25.17 -37.6278 -73.5848 17.19 213 0.16 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000205 1744 12.66 -36.8400 -72.7296 50.35 183 0.17 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000205	1125	34.25	-37 3655	-71 8519	91.98	60	0.19
000205 1357 17.81 -37.5567 -71.9608 91.28 119 0.12 000205 1744 12.66 -36.8400 -72.7296 50.35 183 0.17 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000205	1244	25.17	-37 6278	-73 5848	17 19	213	0.16
000205 1744 12.66 -36.8400 -72.7296 50.35 183 0.17 000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000205	1357	17.81	-37 5567	-71 9608	91.28	119	0.12
000206 0407 34.11 -38.3502 -71.5977 6.57 83 0.31 000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000205	1744	12.66	-36 8400	-72 7296	50.35	183	0.12
000206 1957 24.68 -38.1181 -72.5799 54.00 55 0.19 000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000206	0407	34.11	-38.3502	-71.5977	6.57	83	0.31
000206 2028 50.63 -38.3782 -73.7023 26.74 143 0.36 000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000206	1957	24.68	-38.1181	-72.5799	54.00	55	0.19
000207 0200 42.35 -36.9087 -73.2788 12.45 172 0.25 000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000206	2028	50.63	-38 3782	-73 7023	26.74	143	0.36
000207 0306 06.54 -37.8125 -73.1947 30.71 101 0.19	000207	0200	42.35	-36.9087	-73.2788	12.45	172	0.25
	000207	0306	06.54	-37.8125	-73.1947	30.71	101	0.19

Fortsetzung auf nächster Seite

Or	igin Time	;	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
000207	0721	45.05	-37.0222	-73.4022	17.65	261	0.23
000207	0937	28.46	-36.6948	-73.6873	32.19	243	0.26
000207	1454	28.02	-36.7283	-73.6732	34.87	241	0.17
000207	1523	25.05	-36.9805	-72.9807	26.87	168	0.24
000207	1741	07.68	-38.1722	-73.9620	16.81	258	0.32
000207	2017	48.14	-37.8902	-72.4263	60.49	126	0.07
000207	2110	53.98	-37.0337	-72.7044	36.06	124	0.12
000207	2250	33.48	-37.8178	-73.2667	26.21	80	0.26
000208	0034	12.98	-37.0237	-72.6973	36.79	124	0.18
000208	0126	58.19	-37.1945	-72.8065	47.81	110	0.10
000208	0706	59.39	-37.6608	-73.4687	19.93	233	0.27
000208	0707	49.01	-37.6692	-73.5032	22.90	239	0.31
000208	0816	30.64	-37.8319	-73.6658	19.05	167	0.23
000208	1013	20.75	-36.6872	-73.7560	33.56	251	0.34
000208	1901	25.60	-36.6743	-72.9575	2.31	231	0.22
000208	2324	03.57	-37.7232	-72.9078	45.81	81	0.21
000209	0630	09.96	-36.4088	-72.6702	31.46	179	0.31
000209	0829	49.48	-36.7172	-72.0967	83.17	222	0.18
000209	1146	13.77	-37.5275	-72.2535	83.11	78	0.23
000210	0207	42.84	-38.3937	-73.4637	25.75	212	0.31
000210	0646	32.63	-37.8182	-73.6353	22.85	264	0.23
000210	0714	56.66	-36.3464	-72.9021	19.94	227	0.16
000210	2344	58.36	-36.7282	-72.5885	55.46	160	0.12
000211	0139	52.25	-38.0940	-73.3328	27.07	220	0.17
000211	1348	02.48	-38.3165	-72.2332	90.64	85	0.23
000211	1540	09.52	-37.7987	-73.1858	33.62	104	0.12
000212	0143	21.36	-37.1067	-73.3758	20.29	183	0.30
000212	0446	23.53	-36.8753	-72.9810	25.39	174	0.31
000212	0502	42.35	-37.1697	-73.7182	19.38	258	0.27
000212	0737	19.73	-37.8142	-73.2383	20.57	106	0.23
000212	1007	58.63	-36.9712	-72.2890	54.60	91	0.29
000212	1528	47.06	-37.1863	-72.0192	92.58	142	0.15
000213	0229	33.22	-36.6352	-72.6670	57.27	142	0.12
000213	0503	49.66	-36.0285	-72.4843	14.30	264	0.17
000213	0504	07.54	-37.9767	-73.6033	19.11	217	0.19
000213	1239	31.67	-36.6950	-72.0730	64.32	187	0.21
000213	1526	56.03	-36.7760	-73.4073	17.12	203	0.26
000214	0210	21.80	-37.1523	-73.0183	18.38	132	0.27
000214	0414	02.56	-36.6863	-72.1015	/3.20	150	0.20
000214	0428	59.60	-37.8372	-/3.8313	16.85	240	0.26
000214	0728	39.66	-36.4425	-73.0373	15.59	187	0.35
000215	0143	31.83	-37.7528	-/3.3808	8.10	211	0.30
000215	0416	46.57	-3/.869/	-/3.43/0	12.73	186	0.25
000215	0837	32.41	-36.561/	-72.5510	38.94	253	0.14
000216	0410	40.21	-37.2200	-72.0772	/3.13	228	0.04
000216	0/12	42.97	-37.7629	-/2.1969	71.40	211	0.38
000216	0908	31.42	-37.8133	-/1.85/3	/3.03	211	0.13
000217	0742	52.18 12 70	-30.9400	-13.4032	18.70	229	0.34
000217	0/43	12.70 31 91	-30./900	-12.1///	15.24	107	0.20
000217	1215	54.04 70.07	-37.2901	-13.0122	50.80 21.15	227	0.52
000217	1213	47.04 17.07	-30.0413	-13.3003	21.13 50.07	220 57	0.22
000218	2151	17.07	-37.3103	-12.4211	39.07	122	0.10
000218	0443	-0.27 06 28	-37.0100	-73 4235	6 52	244	0.21 0.12
000217	CTTJ	00.20	51.7510	10.7400	0.54	<u> </u>	0.12

Or	igin Time	:	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
000220	0206	29.81	-36.4167	-73.0903	24.18	197	0.28
000220	0710	18.13	-37.1368	-71.9440	98.09	141	0.16
000220	0715	28.54	-38.0185	-71.6902	8.40	45	0.27
000220	0716	49.00	-38.0200	-71.6802	8.54	48	0.29
000220	1423	18.94	-39.3026	-71.8404	115.81	169	0.24
000220	1803	20.93	-36.9043	-72.4741	63.40	99	0.13
000220	1933	30.67	-36.7972	-73.5231	27.02	219	0.20
000220	1941	14.48	-37.7778	-73.2040	31.90	130	0.14
000221	0327	01.25	-37.5839	-72.7026	71.30	32	0.41
000221	1456	22.90	-36.6897	-73.1162	6.01	173	0.20
000221	1541	23.09	-36.9308	-73.4498	16.91	198	0.30
000221	1749	15.84	-38.2289	-72.4412	61.20	43	0.11
000222	0324	24.27	-36.7733	-73.4922	30.34	215	0.16
000222	0540	50.20	-36.7505	-73.5138	24.08	219	0.24
000222	0823	18.39	-36.7972	-73.5045	18.04	216	0.29
000223	0209	20.55	-36.9292	-73.4611	19.13	246	0.36
000223	0916	23.91	-39.8179	-71.6035	147.92	228	0.36
000223	1004	04.56	-38.7924	-72.6925	56.96	87	0.34
000223	1510	09.27	-36.9777	-71.7432	19.84	124	0.23
000223	1752	52.01	-38.0372	-73.1483	33.78	63	0.18
000223	2149	09.20	-37.6026	-72.3041	62.02	48	0.36
000224	0441	49.64	-37.2388	-71.3783	5.13	101	0.21
000224	0509	42.51	-37.8279	-73.4058	25.33	130	0.14
000224	0640	00.55	-37.8257	-73.3968	23.75	203	0.23
000224	0746	29.57	-36.7020	-73.1938	33.38	242	0.23
000224	1141	39.67	-37.8137	-73.2725	28.56	83	0.25
000225	0146	31.23	-37.0912	-72.6629	39.35	96	0.10
000225	0357	54.12	-38.2843	-73.2990	16.77	182	0.23
000225	0514	15.58	-39.2129	-73.2737	18.00	260	0.32
000225	0818	08.22	-35.6067	-71.4736	112.29	264	0.49
000225	2048	00.04	-37.2088	-72.4158	4.35	68	0.19
000226	0258	51.84	-37.8505	-73.4430	11.50	186	0.23
000226	0310	21.32	-37.9002	-73.5452	22.67	195	0.25
000226	0336	29.48	-37.9792	-73.5077	18.90	192	0.28
000226	0433	20.87	-37.8982	-73.5125	19.97	191	0.20
000226	0556	38.09	-37.0952	-71.9858	85.26	145	0.18
000227	0118	21.76	-37.1530	-72.8625	46.22	138	0.12
000227	0211	50.28	-36.3461	-73.0128	15.98	209	0.39
000228	0258	52.50	-37.3389	-72.2946	64.90	60	0.10
000228	0337	22.71	-38.3163	-73.4113	26.85	198	0.07
000228	0530	59.02	-37.8078	-73.2820	27.20	119	0.26
000228	0737	38.91	-36.9614	-72.7785	38.07	141	0.12
000228	1017	10.47	-37.7576	-71.8614	92.36	62	0.31
000228	1203	34.44	-37.0072	-72.1699	63.82	126	0.11
000228	1950	00.26	-38.2961	-72.4912	66.75	35	0.25
000229	0210	02.85	-37.5072	-72.0439	88.98	87	0.16
000229	0954	01.84	-37.8019	-72.7453	50.38	48	0.16
000301	0244	36.06	-36.0936	-71.9374	77.02	264	0.16
000301	0250	20.68	-38.0075	-73.3349	25.51	174	0.02
000301	1240	33.69	-38.2343	-72.5960	61.54	85	0.21
000301	1320	11.91	-36.4402	-70.8450	123.92	242	0.16
000301	1937	55.88	-35.8347	-71.9271	100.11	244	0.29
000301	2303	09.34	-39.0109	-71.6011	131.91	97	0.27
000302	0058	28.78	-36.4708	-72.7311	48.19	155	0.14

Fortsetzung auf nächster Seite

Or	igin Time	9	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
000302	1256	14.99	-38.2628	-69.2573	-0.85	227	0.17
000302	1336	33.99	-38.2609	-69.2946	-0.95	224	0.27
000302	1424	36.43	-36.5566	-72.4190	46.93	95	0.18
000302	1732	49.08	-37.4782	-72.2002	69.83	130	0.11
000303	0506	39.19	-37.2410	-72.9655	43.63	91	0.14
000303	0849	39.47	-38.5996	-72.8254	19.56	236	0.19
000303	1602	39.51	-38.0157	-73.5469	24.41	160	0.13
000303	1758	06.83	-38.7423	-72.8436	53.89	152	0.05
000303	2020	38.94	-36.1529	-73.0436	37.13	238	0.33
000304	0101	25.73	-37.7767	-72.9354	64.24	131	0.12
000304	0333	23.09	-37.8395	-72.9676	60.65	222	0.08
000304	0442	28.07	-37.6714	-71.8738	97.70	173	0.18
000304	0623	09.82	-36.6129	-73.2680	17.49	235	0.07
000304	0809	34.60	-35.7262	-70.4768	146.36	221	0.17
000304	1109	49.46	-36.6236	-73.2741	20.37	234	0.13
000304	1517	23.65	-37.5673	-71.7652	107.67	173	0.30
000304	1608	31.96	-37.2016	-71.3413	118.30	151	0.32
000304	1724	02.86	-36.2853	-72.6010	30.68	169	0.22
000304	1750	47.37	-37.9849	-72.9028	0.48	70	0.38
000305	0816	30.12	-37.1016	-72.1936	64.18	80	0.15
000305	1029	08.12	-36.0097	-72.1671	67.77	230	0.28
000305	1235	00.08	-37.9903	-73.3092	27.18	111	0.17
000305	1443	01.56	-38.2585	-69.2583	-0.85	227	0.46
000305	1932	42.63	-38.4959	-72.3023	69.13	111	0.13
000305	2056	43.32	-36.9093	-72.3615	62.38	105	0.22
000306	0504	27.40	-37.0849	-73.3896	20.86	214	0.12
000306	1907	15.49	-36.9673	-73.5942	13.71	250	0.07
000307	0057	36.50	-37.8050	-73.4329	15.49	213	0.16
000307	0117	18.95	-37.6590	-73.0964	5.58	93	0.18
000307	0942	13.89	-36.9908	-73.5056	16.41	257	0.06
000307	1257	03.41	-37.8253	-73.4505	16.64	241	0.07
000307	2034	13.47	-37.2258	-72.4039	3.67	77	0.08
000308	0147	11.50	-36.6357	-73.0847	35.23	175	0.13
000308	0228	04.40	-37.4888	-71.3799	125.72	168	0.32
000308	0313	16.23	-36.9516	-72.2456	61.33	124	0.12
000308	0331	15.71	-36.4377	-72.7607	28.26	162	0.21
000308	0448	23.06	-37.2623	-71.8266	96.37	117	0.22
000308	0513	00.28	-38.2542	-69.2944	-0.85	244	0.25
000308	0637	37.87	-36.4499	-72.4886	59.01	143	0.19
000308	0835	45.23	-36.9204	-73.4491	7.35	228	0.18
000308	1140	12.70	-38.8683	-70.1953	-0.85	95	0.30
000308	1316	14.30	-37.9003	-73.4391	5.61	236	0.17
000308	1352	51.08	-36.9200	-73.4947	16.01	235	0.08
000308	1648	07.20	-36.4371	-70.7600	139.63	244	0.11
000308	1650	54.19	-36.1433	-72.8127	25.68	245	0.14
000308	1726	35.51	-37.0793	-72.3293	57.81	61	0.14
000308	1924	52.66	-37.8969	-73.4395	8.64	233	0.16
000308	1951	41.97	-36.6104	-72.9939	35.75	166	0.19
000309	0106	57.10	-37.0184	-72.6816	46.50	144	0.17
000309	0441	50.75	-37.3729	-71.8358	102.87	223	0.14
000309	0448	23.62	-37.9059	-73.4326	6.63	251	0.13
000309	0651	27.13	-37.0162	-72.7500	18.61	158	0.03
000309	0804	54.51	-37.8979	-73.4277	5.83	234	0.11
000309	1151	34.97	-36.4891	-72.6220	56.41	171	0.16

Or	igin Time	•	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
000309	1158	53.90	-37.0419	-71.9781	89.37	258	0.10
000309	1522	28.14	-36.9419	-72.3392	59.11	98	0.13
000309	1529	27.46	-36.3429	-72.9841	33.49	249	0.13
000309	1929	57.27	-37.2467	-72.4355	15.23	130	0.19
000309	2358	35.16	-37.8713	-73.9758	16.11	212	0.45
000310	0144	55.72	-37.6672	-71.5317	118.66	96	0.27
000310	0630	54.01	-37.8229	-70.5915	177.28	63	0.28
000310	0647	13.11	-37.3550	-72.1987	81.54	140	0.08
000310	0736	30.98	-36.3157	-72.9215	23.69	239	0.13
000310	0752	23.64	-37.4847	-71.5264	120.05	235	0.18
000310	0821	19.38	-37.1244	-72.4220	56.17	68	0.11
000310	1016	00.30	-36.9039	-72.3070	56.85	123	0.17
000310	1151	18.36	-37.7965	-72.3517	64.03	97	0.14
000310	1502	46.69	-37.0245	-72.2832	60.40	73	0.05
000310	2005	23.16	-37.9643	-73.5406	19.43	261	0.07
000311	0248	03.24	-37.4365	-73.6372	29.41	223	0.15
000311	0324	08.58	-35.6766	-70.5707	144.05	238	0.37
000311	0555	06.33	-36.3058	-72.9000	26.55	235	0.15
000311	0615	08.33	-37.0116	-72.9034	37.76	146	0.20
000311	0637	29.40	-36.6981	-71.7169	19.35	250	0.08
000311	0717	33.03	-37.9199	-73.4623	7.19	206	0.13
000311	0725	02.01	-37.4230	-72.1096	89.97	55	0.25
000311	0826	47.32	-38.1274	-71.5222	108.86	90	0.14
000311	1437	47.60	-37.7033	-73.4605	17.85	222	0.11
000311	1725	19.71	-36.9609	-70.9532	138.77	113	0.30
000311	1728	47.26	-38.1919	-73.7436	20.36	176	0.08
000311	2207	26.77	-37.8839	-73.0289	23.84	115	0.06
000312	0135	32.02	-37.9578	-72.0165	11.61	90	0.20
000312	0256	36.50	-36.9171	-73.3112	20.78	207	0.18
000312	0430	29.43	-37.9503	-72.5435	63.15	43	0.39
000312	0818	25.44	-37.4187	-71.6979	112.79	175	0.17
000312	0919	11.27	-37.9701	-73.5165	19.30	245	0.08
000312	0940	19.62	-38.3469	-73.4661	27.44	232	0.03
000312	1009	23.01	-37.8718	-73.1596	8.93	122	0.06
000312	2243	39.51	-36.7881	-72.6558	55.62	185	0.15
000312	2322	26.80	-39.4067	-71.8707	3.09	224	0.12
000313	0113	59.59	-38.5841	-72.7321	37.54	127	0.19
000313	0115	18.95	-38.1567	-72.7422	51.57	111	0.26
000313	0809	12.52	-36.4226	-70.1927	173.85	139	0.32
000313	1209	58.95	-36.3816	-71.9408	73.23	222	0.23
000313	1324	20.38	-37.6255	-73.3330	11.93	131	0.11
000313	1637	09.55	-37.6362	-72.3343	55.71	171	0.15
000313	1721	00.04	-36.9390	-72.2946	58.72	111	0.10
000313	2225	48.00	-37.4762	-72.2275	81.07	111	0.05
000313	2303	49.77	-37.9692	-73.5522	19.33	196	0.07
000314	0241	50.86	-36.6597	-72.7102	48.50	246	0.08
000314	0331	12.90	-37.9526	-73.5656	21.33	144	0.37
000314	0523	01.78	-37.4267	-73.1647	29.21	122	0.08
000314	1005	22.04	-38.2435	-72.0802	76.97	87	0.43
000314	1540	29.25	-36.7681	-71.7464	16.81	239	0.10
000314	1634	13.33	-36.8725	-73.4432	16.60	231	0.16
000314	1649	38.11	-36.9537	-71.9827	83.40	174	0.14
000315	0337	24.76	-38.7745	-73.8312	28.93	230	0.21
000315	0809	04.30	-37.0000	-73.9525	15.08	245	0.22

Fortsetzung auf nächster Seite

Or	igin Time	9	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
000315	1039	07.76	-38.2315	-72.3296	61.64	133	0.26
000316	2348	37.23	-36.7975	-71.3412	4.64	181	0.27
000316	2352	29.93	-36.7958	-71.3477	4.45	181	0.30
000317	0023	22.75	-36.7882	-71.3478	5.46	154	0.29
000317	0210	25.76	-37.4902	-72.6479	59.53	75	0.37
000317	0316	59.53	-37.9988	-73.5813	21.07	233	0.25
000317	2046	18.30	-36.8333	-72.9875	13.67	145	0.15
000318	0726	57.99	-36.9547	-73.4460	16.21	195	0.27
000318	1023	52.07	-36.9237	-73.4190	16.34	221	0.33
000318	1300	23.99	-36.2171	-73.5019	35.27	259	0.11
000318	1642	39.33	-38.0025	-73.5742	17.86	164	0.28
000318	2201	28.83	-37.9783	-73.6220	20.56	243	0.15
000318	2235	27.03	-37.6357	-73.4388	17.47	175	0.27
000319	0143	46.37	-37.9495	-73.6427	18.07	179	0.23
000319	0503	06.21	-37.8278	-73.4368	14.52	240	0.14
000319	2346	08.37	-36.4864	-73.2931	27.72	214	0.20
000319	2347	11.09	-37.7955	-74.2860	39.63	253	0.21
000320	0158	07.91	-36.7460	-73.4221	3.34	208	0.26
000320	0853	21.12	-38.2424	-72.8438	42.19	103	0.03
000320	1042	07.01	-36.8023	-72.2235	70.23	81	0.28
000320	1948	02.49	-37.7767	-73.3842	25.47	129	0.10
000321	0115	54.78	-37.9662	-72.0305	13.68	48	0.26
000321	0419	41.92	-37.9077	-73.4420	10.73	223	0.17
000321	1005	08.84	-37.9670	-73.7585	30.97	219	0.26
000321	2102	02.21	-38.0133	-73.5028	23.79	237	0.14
000322	0037	13.95	-36.4643	-72.0896	73.64	178	0.26
000322	0352	48.83	-37.0080	-73.0508	29.40	160	0.22
000322	0517	15.50	-36.5183	-72.5550	29.46	236	0.09
000322	0838	03.37	-36.4281	-73.1666	24.62	205	0.21
000322	1042	44.32	-37.8372	-73.4655	23.01	243	0.19
000322	1222	27.93	-37.1634	-71.7466	101.24	254	0.14
000322	2232	44.95	-36.8450	-72.9700	16.65	142	0.12
000323	0032	05.39	-37.7603	-72.0547	87.42	196	0.13
000323	0612	16.28	-37.0766	-71.9022	91.60	173	0.10
000323	0650	13.36	-38.0230	-73.5178	21.63	230	0.15
000323	1022	53.48	-37.9938	-72.4458	61.62	107	0.15
000323	1025	19.89	-37.8485	-73.6233	20.55	213	0.19
000323	1525	33.48	-36.8598	-73.1093	26.88	156	0.28
000323	1526	09.71	-36.9215	-73.4645	16.67	201	0.29
000323	1541	27.24	-36.9180	-73.4510	17.26	199	0.26
000323	1551	37.11	-36.9317	-73.3857	17.53	262	0.24
000323	1555	15.46	-36.8362	-73.4397	18.98	204	0.14
000323	1612	25.56	-36.9283	-73.4724	11.08	203	0.20
000323	1625	26.95	-36.9135	-73.4645	17.30	229	0.29
000323	1750	26.44	-36.9220	-73.3817	19.19	215	0.25
000323	2108	01.44	-36.9363	-73.4533	17.27	198	0.32
000324	0009	16.97	-36.8642	-73.1118	30.58	156	0.22
000324	0404	37.25	-38.9381	-72.5601	60.71	88	0.10
000324	0649	16.16	-36.9378	-73.4390	15.95	222	0.30
000324	1021	59.76	-37.6895	-73.2375	27.73	149	0.19
000324	2205	32.62	-36.5258	-72.0155	92.64	130	0.24
000324	2343	38.32	-37.9508	-73.6485	19.36	156	0.13
000325	0028	08.59	-37.2517	-71.6690	97.58	133	0.14
000325	0232	44.60	-36.9345	-73.4003	18.42	214	0.23

Or	igin Time	•	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	SS.SS	[°]	[°]	[km]	[°]	[s]
000325	2023	20.79	-38.2261	-74.3154	16.09	268	0.38
000325	2050	30.87	-36.9818	-73.4435	17.98	217	0.25
000326	0214	44.60	-36.0325	-72.4898	16.78	263	0.29
000326	0321	38.08	-36.8470	-72.7281	52.79	171	0.16
000326	0429	35.19	-37.9825	-73.5540	21.65	234	0.16
000326	0434	03.95	-38.1358	-71.8907	91.16	33	0.21
000326	0602	15.51	-36.9352	-73.4330	17.01	194	0.24
000326	1611	23.36	-35.6337	-71.3710	104.66	243	0.17
000327	1835	50.85	-38.1655	-74.0573	13.16	234	0.11
000327	2125	00.44	-36.4175	-72.5683	19.44	128	0.23
000329	0651	04.61	-38.0501	-73.8012	16.38	224	0.23
000329	0655	01.44	-37.9283	-73.4320	9.96	220	0.21
000329	0743	19.09	-36.9818	-73.4468	18.09	222	0.23
000329	1617	41.43	-36.2945	-71.8961	73.56	234	0.17
000330	0109	37.17	-37.9863	-73.4056	31.66	196	0.34
000330	0342	59.19	-37.9338	-73.4132	4.53	237	0.21
000330	0742	41.18	-36.9418	-73.4776	16.20	230	0.20
000330	1914	28.55	-36.4582	-73.0772	17.87	212	0.18
000331	0529	33.74	-38.1778	-73.4373	26.14	188	0.19
000331	0916	40.47	-37.8945	-73.4548	9.51	204	0.12
000331	1148	19.79	-36.9798	-71.7595	18.95	153	0.35
000401	0617	20.15	-37.9645	-72.0538	13.17	61	0.28
000401	0703	28.85	-36.6448	-72.9878	26.79	180	0.29
000401	1059	12.16	-36.3677	-72.6532	25.54	147	0.29
000401	1438	24.61	-37.6475	-73.4598	20.06	188	0.30
000402	0139	42.08	-36.6055	-72.9723	41.82	199	0.06
000402	0209	25.28	-36.6373	-73.0698	18.81	172	0.33
000402	0237	56.56	-37.8750	-73.7487	18.97	257	0.22
000402	0820	10.89	-36.9653	-73.4547	17.92	195	0.24
000402	1147	46.21	-36.6703	-72.5159	53.15	182	0.10
000402	2300	08.04	-37.8025	-72.9124	65.23	56	0.24
000403	0044	27.21	-37.0056	-72.0863	69.81	145	0.10
000403	2036	24.40	-36.3289	-72.9701	31.65	241	0.16
000404	0328	42.00	-37.9150	-73.3808	13.31	188	0.21
000404	0655	41.87	-36.8622	-72.9137	36.77	239	0.05
000404	0930	17.69	-37.2493	-71.8690	92.99	212	0.09
000404	1257	51.09	-37.9582	-73.6542	20.72	244	0.18
000405	0006	14.48	-36.5183	-72.9167	19.83	183	0.15
000405	0128	33.78	-37.7907	-73.2095	23.31	118	0.21
000405	0214	22.33	-36.9762	-73.2650	18.35	189	0.17
000405	0252	46.05	-37.8825	-73.3975	11.68	191	0.20
000405	1007	49.13	-36.7917	-73.2588	26.46	203	0.21
000405	2321	36.58	-36.8295	-73.0010	15.12	147	0.25
000407	0254	27.72	-36.4077	-72.9712	15.14	195	0.28
000407	0938	44.20	-37.1162	-72.3654	58.62	58	0.23
000407	1029	46.07	-36.8885	-73.4792	18.04	234	0.32
000407	1127	11.46	-36.6537	-72.9582	28.39	229	0.26
000407	1803	47.93	-37.9238	-73.4248	8.99	212	0.19
000407	2337	38.85	-37.7942	-73.0501	57.91	88	0.10
000408	0039	38.99	-36.0789	-72.5207	68.38	247	0.09
000408	0507	30.33	-37.9095	-72.2684	65.77	42	0.27
000408	0949	38.41	-36.9390	-73.4461	5.35	197	0.26
000408	1053	07.42	-36.9997	-73.4441	3.75	190	0.26
000409	0211	59.63	-36.3220	-72.9650	30.25	209	0.29

Fortsetzung auf nächster Seite

Or	igin Time	9	Latitude	Longitude	Depth	GAP	Residuum
yymmdd	hhmm	ss.ss	[°]	[°]	[km]	[°]	[s]
000409	0618	27.58	-36.9920	-72.2458	61.58	70	0.09
000409	0717	59.39	-36.4098	-72.9328	19.08	175	0.21
000409	1035	28.78	-36.3030	-72.7858	28.31	156	0.20
000409	1357	54.67	-38.0170	-72.3696	64.93	79	0.16
000410	0411	02.85	-36.6000	-71.6461	98.72	240	0.11
000410	0807	13.38	-37.2845	-72.3346	56.60	85	0.06
000411	0340	22.98	-37.2093	-73.4738	11.40	146	0.23
000411	0508	56.43	-37.8638	-73.3292	33.79	130	0.19
000411	1248	07.52	-37.7938	-72.1946	72.27	58	0.36
000411	1612	39.20	-36.8365	-73.0008	8.42	179	0.19
000411	2304	48.44	-37.7325	-73.4983	24.32	204	0.33
000412	0007	13.54	-36.4708	-72.8607	32.88	187	0.23
000412	0103	02.68	-38.4125	-72.9884	49.41	80	0.21
000412	0501	02.54	-37.7997	-73.1468	28.88	121	0.16
000412	0644	18.46	-36.9480	-73.4152	16.08	190	0.28
000412	1621	28.23	-37.9455	-72.5188	78.36	59	0.30
000413	0139	03.85	-36.9628	-73.4655	7.48	199	0.22
000413	0510	46.17	-36.3820	-72.8977	25.94	230	0.24
000413	1305	30.76	-37.4648	-71.8674	98.21	168	0.18
000414	1905	17.09	-36.9625	-73.4198	4.75	190	0.20
000414	1931	35.47	-36.8441	-73.2318	33.13	174	0.17
000415	0039	27.94	-36.9515	-73.4350	12.55	193	0.25
000415	0245	15.78	-36.6708	-73.3384	27.42	218	0.20
000415	0520	26.57	-35.9473	-71.5242	111.07	253	0.18
000415	0650	02.23	-36.6611	-73.3417	17.92	205	0.28
000415	0750	59.73	-37.1632	-73.3800	21.51	159	0.26
000415	0802	19.15	-36.6720	-73.3075	31.39	200	0.27
000415	1247	23.48	-37.5983	-71.9690	101.51	47	0.27

Tabelle B.1: Liste der vom ISSA 2000-Experiment aufgezeichneten und mit dem 1-D Geschwindigkeitsmodell lokalisierten Beben (440 Ereignisse)

Anhang C

Teilnehmerliste

Institution	Teilnehmer
Freie Universität Berlin	Arturo Belmonte, Florian Finck, Sebastian
	Hölz, Stefan Lüth, Jan Rindschwentner, Piet
	Röwer, Peter Wigger
GeoForschungsZentrum	Günter Asch, Mirjam Bohm, Jörn Kumme-
Potsdam	row, Joachim Saul
Universidad Catolica del	Gerardo Aguilera, Jose Luis Cerda, Juan Oli-
Norte (Chile)	va
Universidad de Concepci-	Gonzalo Astroza H., Jorge Avila, Klaus Ba-
on (Chile)	taille, Alejandra Canales Q., Luka Caric,
	Ivonne Cartes, Eduardo Cavacho, Marcia Es-
	cobar Z., Sandra Jara, Geraldine Lacazette,
	Christian Leal, Rodrigo Mora, Luis Parra,
	Sandra Perez, Jorge Quezada, Marcelo
Universidad Nacional de	Benjamin Heit
Salta (Argentina)	
Universität Potsdam	Carsten Bruhn, Andreas Rietbrock, Daniel
	Vollmer
FUNVISIS (Venezuela)	Daniel Chalbaud

Tabelle C.1: Liste der Teilnehmer des Experimentes ISSA 2000

ANHANG C. TEILNEHMERLISTE

Anhang D

Veröffentlichungen

D.1 Papers

- Bohm, M., Lüth, S., Echtler, H., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A. and Wigger, P., *The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities*. Tectonophysics, Volume 356, Issue 4, 24 October 2002, Pages 275-289.
- Lüth, S., Wigger, P., Araneda, M., Asch, G., Bataille, K., Bohm, M., Bruhn, C., Giese, P., Quezada, J. and Rietbrock, A., *A crustal model along 39°S from a seismic refraction profile ISSA 2000.* Revista Geologica de Chile, Vol. 30, No.1, July 2003, Pages 83-101.

D.2 Tagungsbeiträge

- Bohm, M., Asch, G., Yuan, X., Bock, G., Kind, R., Haberland, C., Rietbrock, A. and ISSA working group, 2003. *The Southern Andes Between 36° and 40°S Latitude: A 3-D Image of the Lithospheric Structure Inferred From Local and Teleseismic Earthquake Data.* Abstract Volume, SFB267-Workshop, Pucon, Chile.
- Echtler, H., Vietor, T., Götze, H.-J., Bohm, M., Asch, G., Lohrmann, J., Melnick, D., Tasarova, Z. and Ladage, S., 2003. Active Tectonics and Neogene Evolution of South-Central Chile (36°S-42°S) - New Tectonophysical Insights. Abstract Volume, SFB267-Workshop, Pucon, Chile.
- Melnick, D., Echtler, H., Folguera, A., Bohm, M., Pineda, V., Manzanares, A. and Asch, G., 2003. *Quaternary Tectonics of the Andean Margin at 37°S*, Abstract Volume, SFB267-Workshop, Pucon, Chile.

- Bohm, M., Asch, G., Haberland, C., Rietbrock, A. and ISSA working group, 2003. *The* Southern Andes Between 36° and 40°S Latitude: A 3-D Image of the Lithospheric Structure Inferred From Local Earthquake Data. Actas, 10th Chilean Geological Congress, Concepción, Chile.
- Echtler, H., Vietor, T., Götze, H.-J., Bohm, M., Asch, G., Lohrmann, J., Melnick, D. and Tasarova, Z., 2003. Active Tectonics Controlled by Inherited Structures in South-Central Chile (36°S-42°S) - new tectonophysical insights. Actas, 10th Chilean Geological Congress, Concepción, Chile.
- 6. Melnick, D., Echtler, H., Pineda, V., Bohm, M., Manzanares, A. and Asch, G., 2003. *Active Faulting and Northward Growing of the Arauco Peninsula, Southern Chile (37°30'S)*. Actas, 10th Chilean Geological Congress, Concepción, Chile.
- Folguera, A., Araujo, M., Ramos, V. A., Melnick, D., Hermanns, R., García Morabito, E. and Bohm, M., 2003. Seismicity and Variations of the Crustal Tensional state of the Retro-arc in the Southern Central Andes During the last 5 Ma (37° 30′-39° S). Actas, 10th Chilean Geological Congress, Concepción, Chile.
- 8. Bohm, M., Asch, G., Bataille, K., Rietbrock, A., 2003. *The Southern Andes Between 36°* and 40°S Latitude: A Tomographic Image of the Lithospheric Structure Inferred From Local Earthquake Data. Geophysical Research Abstracts, EGS, Nice, EAE03-A-10746.
- Bohm, M., Asch, G., Bataille, K., Rietbrock, A., 2002. The Southern Andes Between 36° and 40°S Latitude: A Tomographic Image of the Lithospheric Structure Inferred From Local Earthquake Data. Eos Trans. AGU, 83(47), Fall Meet. Suppl.
- Bohm, M., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A. and ISSA working group, 2002. *The Southern Andes Between 36° and 40°S Latitude: A 3-D Image of the Lithospheric Structure Inferred From Local Earthquake Data.* 5th International Symposium on Andean Geodynamics (ISAG), Tolouse, France.
- Bohm, M., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A. and ISSA working group, 2002. *The Southern Andes Between 36° and 40°S Latitude: Seismicity and Average Velocities.* Annual meeting of the German Geophysical Society, DGG, Hannover, SOP41.
- Bruhn, C., Asch, G., Bohm, M., Krüger, F., Rietbrock, A., Scherbaum, F., 2002. Momententensoren lokaler Erdbeben in den südlichen chilenischen Anden (36°S bis 40°S). Annual meeting of the German Geophysical Society, DGG, Hannover, SOP42.

- Bohm, M., Bruhn, C., Asch, G., Bataille, K., Rietbrock, A. and ISSA working group, 2001. *The Southern Andes Between 36° and 40°S Latitude: Seismicity and Average Velocities.* Eos Trans. AGU, 82(47), Fall Meet. Suppl.
- Lüth, S., Asch, G., Bohm, M., Bruhn, C., Rietbrock, A. and Wigger, P., 2001. *The Seismic Structure of the South Chilean Margin Between the 36th and 40th Degree South From an Integrated Active and Passive Seismological Experiment*. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft 14, S. 127, Margins Meeting, Kiel.
- Bohm, M., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A., and ISSA working group, 2001. *ISSA 2000 - a Seismological Network in the Southern Andes*. Geophysical Research Abstracts, Poster SE6.01, EGS, GRA3, 585.
- 16. Asch, G., Bataille, K., Bock, G., Bohm, M., Bruhn, C., Flueh, E., Kind, R., Lüth, S., Quezada, J., Rietbrock, A., Scherbaum, F. and Wigger, P., 2001. *The ISSA 2000 passive seismological experiment*. Annual meeting of the German Geophysical Society, DGG, Frankfurt a. M., SOP29.
- Lüth, S., Wigger, P., Asch, G., Bohm, M., Rietbrock, A. and Bruhn, C., 2001. *The Crustal Structure of the Southern Andes Based on 3-Component Refraction and Wide-Angle Seismic Data*. Annual meeting of the German Geophysical Society, DGG, Frankfurt a. M., SOP09.
- Asch, G., Bataille, K., Bock, G., Bohm, M., Bruhn, C., Flüh, E., Kind, R., Lüth, S., Quezada, J., Rietbrock, A., Scherbaum, F., and Wigger, P., 2000. *The ISSA 2000 passive seismological experiment*. Eos Trans. AGU, 81(48), Fall Meet. Suppl.
- 19. Lüth, S., Wigger, P., Asch, G., Bohm, M., Bruhn, C., and Rietbrock, A., 2000. *The crustal structure of the Southern Andes based on 3-component refraction and wide-angle seismic data*. Eos Trans., 81(48), Fall Meet. Suppl.

ANHANG D. VERÖFFENTLICHUNGEN

Danksagung

Viele Menschen haben mit ihren Anregungen und ihrem Interesse zum Inhalt dieser Arbeit beigetragen. Besonders bedanken möchte ich mich bei....

- Günter Asch für die Begleitung und Betreuung dieser Arbeit.
- Rainer Kind für die Übernahme des Koreferats.
- Andreas Rietbrock für sein Interesse sowie seine überaus wertvollen und effektiven Anregungen.
- Bernd Schurr für die fachliche Einführung in die diversen Programme der lokalen Erdbebentomographie.
- Christian Haberland für sein stetes Interesse und seinen unerschöpflichen Wissens- und Zeitvorrat. Die Möglichkeit mit all meinen Fragen und Tomographie-Problemen zu ihm gehen zu können und immer eine offene Tür und eine Antwort vorzufinden, hat entscheidend dazubeigetragen, diese Arbeit zu beenden. Und nicht zu vergessen ein Dankeschön für die zur Verfügung gestellten Programme.
- allen Teilnehmern des ISSA 2000 Experimentes für ihr großes Engagement bei der Durchführung der Meßkampagne in Chile und Argentinien, durch das die vorliegende Arbeit erst möglich gemacht wurde. Und vor allem bei Klaus Bataille für die Unterstützung bei der Bewältigung diverser logistischer Schwierigkeiten in Chile.
- Jörn Kummerow, Joachim Saul, Stefan Lüth, Helmut Echtler, Zuzanna Tašárová, Holger Gaensicke, Klaus Bauer, Jo Lohrmann, Charlotte Krawzcyk, Daniel Melnick und Kirsten Elger für zahlreiche Gespräche und Hinweise, bereichernde fachliche Diskussionen und nicht zuletzt für die gemeinsam verbrachte Zeit.
- bei allen derzeitigen und ehemahligen Mitarbeitern des Projektbereich 2.4, und insbesondere sehr herzlich bei Forough Sodoudi - *mā dar ālemān hič zelzelehi bozorg nadārim* und Benjamin Heit, für die angenehme Arbeitsathmosphäre.

- Christian Haberland, Jörn Kummerow, Tobias Bohm, Helmut Echtler und Paula Mrochen für das sorgfältige Korrekturlesen dieser Arbeit.
- dem SFB 267 "Deformationsprozesse in den Anden", durch den diese Arbeit finanziert wurde und der mir ermöglicht hat, an zahlreichen Kongressen und Tagungen teilzunehmen.

Lebenslauf

Name:	Mirjam Bohm
Geburtsdatum:	03.11.1972
Geburtsort:	Potsdam

Schulausbildung:

1979-1987	Polytechnische Oberschule, Berlin
1987-1991	Theresienschule (Erweiterte Oberschule), Berlin
06/1991	Abitur

Hochschulausbildung:

1992-1999	Studium der Geophysik, Technische Universität Berlin
04/1998-04/1999	Diplomarbeit am Council for Geosciences, Pretoria, Südafrika
	und an der TU Berlin
07/1999	Diplom in Geophysik

Berufstätigkeit:

09/1991-07/1992	Dining Hall Assistant, Madingley Hall, Cambridge, GB
01/1995-12/1999	Arzthelferin
01/2000-10/2003	Wissenschaftliche Mitarbeiterin am
	GeoForschungsZentrum Potsdam