KTB REPORT 91-3

Tiefbohrung KTB-Oberpfalz HB

Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor

Bericht 1 zur KTB-Hauptbohrung Teufenbereich von 0–1720 m

Herausgegeben von der Projektleitung Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland im Niedersächsischen Landesamt für Bodenforschung

Redaktion: R. Emmermann, H.-G. Dietrich, J. Lauterjung, Th. Wöhrl

Redaktion: Prof. Dr. R. Emmermann, Dr. H.-G. Dietrich, Dr. J. Lauterjung und Dipl.-Geophys. Th. Wöhrl

Druck: Wittmann & Wäsch, 3007 Gehrden

Vertrieb: E. Schweitzerbart'sche Verlagsbuchhandlung

Bestellungen unter Angabe der Report-Nr. an:

E. Schweitzerbart'sche Verlagsbuchhandlung Johannesstr. 3A D-7000 Stuttgart 1

Titelbild: Luftbildaufnahme der Bohranlage UTB-1 für die KTB-Hauptbohrung mit dem sog. Feldlabor im Hintergrund (Foto Hoffmannsbeck, Oktober 1990)

Das diesem Bericht zugrundeliegende Vorhaben wird mit Mitteln des Bundesministeriums für Forschung und Technologie (Forschungszeichen: RG 9001-0)gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

Niedersächsisches Landesamt für Bodenforschung Hannover 1991

Nachdrucke, Vervielfältigungen und Übersetzungen, Verwendung in Funk und Fernsehen, Wiedergabe auf photomechanischem oder ähnlichem Wege und Speicherung in DV-Anlagen sind – auch auszugsweise – genehmigungspflichtig.

Alle Rechte bleiben vorbehalten.

С

Anschrift des Herausgebers: Projektleitung KTB im Niedersächsischen Landesamt für Bodenforschung, Postfach 51 01 53, D-3000 Hannover 51, Telefon: (0511) 643-2675

> ISSN 0939-8732 ISBN 3-928559-02-8

VORWORT

Das Feldlabor ist eine Gemeinschaftseinrichtung aller am KTB beteiligten Wissenschaftler und Wissenschaftlergruppen. Es ist seine Hauptaufgabe, vor allem durch kontinuierliche Untersuchungen an Bohrkernmaterial, Bohrklein-, Bohrspülungsund Gasproben sowie Gesteinsfluiden und Zuflüssen aus dem Gebirge sicherzustellen, daß umfangreiche geowissenschaftliche Basisdaten und Erkenntnisse aus den beiden KTB-Bohrungen (Vor- und Hauptbohrung) gewonnen werden.

Insbesondere sollen Größen und Eigenschaften gemessen werden, die

- für kurzfristige operative Entscheidungen über die Art des Bohrens, die Durchführung von Bohrlochmessungen und -tests sowie die Probenahme erforderlich sind,
- zeitlichen Veränderungen unterliegen und so schnell wie möglich zu ermitteln sind,
- quasi kontinuierlich oder in regelmäßigen Intervallen als Funktion der Tiefe erfaßt werden müssen,
- für Korrelationen mit Aufzeichnungen und Auswertungen von Bohrlochmessungen erforderlich sind,
- für spezielle Probenahmen benötigt werden und die Basisinformation für alle nachgeschalteten Forschungsprojekte liefern, die an Universitätsinstituten oder anderen Forschungseinrichtungen durchgeführt werden.

Um diese Aufgaben erfüllen zu können, wird ein umfangreiches geowissenschaftliches Programm durchgeführt, das folgende Untersuchungen umfaßt:

- strukturelle, petrographische und mineralogische Untersuchungen an Bohrkernen und Bohrklein (Cuttings)
- Erstellung eines lithologischen Profils und einer Erstinterpretation der geologischen Strukturen
- Bestimmung der Haupt- und Spurenelemente an Bohrkernmaterial, Cuttings- und Bohrmehlproben und der Bohrspülung
- On line-Analyse der in der Bohrspülung gelösten Gase
- Messung der physikalischen Eigenschaften von Bohrkernen und Bohrklein (Cuttings und Bohrmehl)
- Dokumentation, Speicherung und Sicherung sowie Vorverarbeitung und Präsentation aller Daten für die geowissenschaftliche und technische Auswertung und Interpretation.

Während im Rahmen der 4000 m tiefen Vorbohrung über 90 % der Bohrstrecke gekernt wurde, stehen für die Gesteinsbearbeitung der Hauptbohrung für die Feststoffuntersuchung im wesentlichen nur Bohrklein und / oder Bohrmehlproben zur Verfügung. Dies trifft auf jeden Fall für den Teufenbereich von 0 bis ca. 3000 - 4000 m zu, da in diesem Bohrlochabschnitt der Hauptbohrung während des Abteufens nicht gekernt wird. Es stehen lediglich einige, im Rahmen des Bohrlochmeßprogramms gewonnene in situ-Proben zur Verfügung, die mittels Seitenkern bzw. Kernschlitzgerät aus der Bohrlochwand gewonnen werden. Abbildung 1 gibt einen Überblick über die Organisationsstruktur und das Arbeitsschema im Feldlabor. Zusätzlich zu den hier aufgeführten speziellen Untersuchungen ist das Feldlabor verantwortlich für die Verteilung, Verwaltung und Archivierung aller Proben und für die regelmäßige Veröffentlichung aller im Feldlabor erzielten wissenschaftlichen Ergebnisse. Bisher sind vom Feldlabor insgesamt 9 Berichte, bisher nur Ergebnisse zur Vorbohrung KTB Oberpfalz VB betreffend, erstellt und veröffentlicht worden:

KTB-Report	88-1	Teufenbereich	0	-	480	m	VB	1
KTB-Report	88-2	Teufenbereich	480	-	992	m	VB	1
KTB-Report	88-6	Teufenbereich	992	-	1530	m	VB	1
KTB-Report	88-9	Teufenbereich	1530	-	1998	m	VB	1
KTB-Report	89-2	Teufenbereich	1709	-	2500	m	VB	1a
KTB-Report	89-4	Teufenbereich	2500	-	3009.7	m	VB	1a
KTB-Report	89-5	Teufenbereich	3009.7	-	3500	m	VB	1a
KTB-Report	90-2	Teufenbereich	3500	-	4000.1	m	VB	1b
KTB-Report	90-8	Teufenbereich	0	-	4000.1	m	VB	la,b

Für die Verteilung von Probenmaterial an die am Projekt beteiligten Arbeitsgruppen sind bis jetzt 8 ein- bzw. zweitägige "Sampling-Parties" abgehalten worden, damit die Geowissenschaftler und Techniker, die für ihre Untersuchungen benötigten Proben auswählen konnten. Den Probewünschen folgend wurden über 20000 Proben vom Feldlabor präpariert und den Wissenschaftlern und Wissenschaftlergruppen zugesandt.

Zum Feldlabor-Personal gehören gegenwärtig zwei Mitarbeiter des Projektmanagements, 16 Wissenschaftler von 9 Universitäten und 14 Techniker, die vor allem aus dem Gebiet um Windischeschenbach bzw. der Oberpfalz stammen. Dieses Personal gehört zu vier Fachbereichen: Geologie/Petrologie, Geochemie, Geophysik und Datenverwaltung.

untersteht organisatorisch dem Direktorat Geowissen-Es schaften der KTB-Projektleitung. Mit der Leitung vor Ort sind Dr. H.-G. Dietrich und sein Stellvertreter Dipl.-Geophys. Th. Das wissenschaftliche und nichtwissen-Wöhrl beauftragt. schaftliche Personal wird im Rahmen des DFG-Projektes "Personelle Ausstattung des KTB-Feldlabors" finanziert und ist über Privat-Arbeitsverträge bei Prof. Dr. R. Emmermann an der Universität Gießen angestellt. Antragsteller dieses DFG-Projektes sind neben Prof. Dr. R. Emmermann, Gießen, Prof. Dr. H. Berckhemer, Frankfurt, Prof. Dr. G. Friedrich, Aachen, Prof. Dr. K. von Gehlen, Frankfurt, Prof. Dr. Ing. O. Natau, Karlsruhe, Prof. Dr. H. Soffel, München, Prof. Dr. B. Stöckhert, Bochum sowie Prof. Dr. K. Weber und Prof. Dr. K. H. Wedepohl, Göttingen.

Diese neun Antragsteller sind verantwortlich für das geowissenschafltiche Untersuchungsprogramm, das im Feldlabor durchgeführt wird, sowie für die Bereitstellung von qualifiziertem Personal, das an den Instituten für die spätere Mitarbeit im Feldlabor ausgebildet wird. Bei diesen Universitätsinstituten, die auch für die apparative Ausstattung des Feldlabors verantwortlich sind, handelt es sich um folgende Institute:

Abb. 1: Organisationsstruktur des KTB-Feldlabors

- Institut für Geowissenschaften und Lithosphärenforschung der Universität Gießen
- Institut für Meteorologie und Geophysik der Universität Frankfurt a.M.
- Institut für Mineralogie und Lagerstättenlehre der RWTH Aachen
- Institut für Geochemie, Petrologie und Lagerstättenkunde der Universität Frankfurt a.M.
- Institut für Boden- und Felsmechanik der Universität Karlsruhe
- Institut für Allgemeine und Angewandte Geophysik der Universität München
- Institut für Geologie der Ruhr-Universität Bochum
- Institut für Geologie und Dynamik der Lithosphäre der Universität Göttingen und
- Geochemisches Institut der Universität Göttingen.

Literaturverzeichnis:

- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1988), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 0 - 480 m. - KTB Report 88-1, Projektleitung Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland im Niedersächsischen Landesamt für Bodenforschung.
- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1988), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 480 - 992 m. - KTB Report 88-2.
- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1988), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 992 - 1530 m. - KTB Report 88-6.
- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1988), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 1530 - 1998 m. - KTB Report 88-9.
- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1989), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 1709 - 2500 m. - KTB Report 89-2.
- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1989), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 2500 - 3009.7 m. - KTB Report 89-4.

- Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (eds., 1989), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 3009.7 - 3500 m. - KTB Report 89-5.
- Emmermann, R., Dietrich, H.-G., Lauterjung, J. & Wöhrl, Th. (eds., 1990), Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 3500 - 4000.1 m (E.T.). -KTB Report 90-2.
- Emmermann, R., Dietrich, H.-G., Lauterjung, J. & Wöhrl, Th. (eds., 1990), KTB Pilot Hole, Results of Geoscientific Investigation in the KTB Field Laboratory, 0 - 4000.1 m. - KTB-Report 90-8.

Tiefbohrung KTB OBERPFALZ HB Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor Bericht 1 zur KTB-Hauptbohrung

Teufenbereich von 0 - 1720 m

INHALTSVERZEICHNIS

SEITE

A 3

- VORWORT
- A. Einleitung
- A.1 Allgemeines
- A.2BohrtechnikA 3A.3ProbenahmeA 6A.3.1Art der Proben und ProbenahmestellenA 10A.3.2Teufenkorrelation bei der ProbenahmeA 14
- A.4SonstigesA 25A.5LiteraturverzeichnisA 26

в.	Geologie		
	Zusammenfassung Abstract	B B	3 4
B.1 B.1.1 B.1.2 B.1.3	Einführung Geologischer Rahmen Ergebnisse der Vorbohrung Arbeitsmethodik	B B B	5 5 7 9
в.2	Geologisches Profil	В	14
B.3 B.3.1 B.3.2	Gneise und Kalksilikatgesteine Paragneise Plagioklas-reiche, Kalksilikat-führende Gneise	B B B	16 16 19
B.3.3 B.3.4	Hornblende-Biotit-Gneise Kalksilikat-Gesteine und Kalksilikat- Marmore	B B	20 20
в.3.5	Mineralogische und chemische Zusammen- setzung der Paragneise	В	23

B.4 B.4.1 B.4.2	Metabasite Petrographie Chemische Zusammensetzung der Meta- basite	B B B	27 27 29
в.5	Lamprophyre	в	39
B.6 B.6.1 B.6.2 B.6.3 B.6.4 B.6.5	Erzmineralisation Sulfidische Erzminerale Oxidische Erzminerale Sonstige Erzminerale Altersstellung Erzmineralführung und Suszeptibilität	B B B B B B B	44 46 49 51 53
B.7 B.7.1 B.7.2	Strukturen und Gefüge Faltenstrukturen Kataklasite und kataklastisch de- formierte Gesteine	B B B	58 58 58
B.7.3 B.7.4	Kluftmineralisation Störungszonen	B B	63 67
в.8	Korrelation Vorbohrung - Hauptbohrung	в	72
B.9	Literaturverzeichnis	В	81
	Anhang	В	84
с.	Geochemie		
	Zusammenfassung Abstract	C C	2 2
C.1	Einleitung	С	3
C.2 C.2.1 C.2.2 C.2.3	Bohrspülungsanalytik Bohrspülungszusatz - Dehydril-HT Aufbereitungsverfahren und Meßmethoden Spülungstechnische Parameter und Maßnahmen	с с с с	4 4 4 6
C.2.4	Ergebnisse und Diskussion	С	7
C.3 C.3.1 C.3.2 C.3.3 C.3.4 C.3.4.1 C.3.4.2 C.3.4.3 C.3.4.4	Gasanalytik Allgemeines Analysenmethoden Probennahme Ergebnisse Gasfreisetzung während des Bohrens Tripgase Heliumeinleitungsteste Einfluß der Bohrspülung auf die Gas- freisetzung Diskussion		13 13 13 14 18 20 22 23
C.3.5	Schriftenverzeichnic	c	25
C. 5	Danksagung	c	20

C.6	Anhang Zusammenstellung sämtlicher Spülungs- einleitungen	С	28
D.	Geophysik		
D	Einleitung	D	2
D.1 D.1.1 D.1.2 D.1.3	Dichte Meßmethodik Darstellung der Meßergebnisse Vergleich Haupt- / Ertweiterungsbohrung		3 3 4 6
D.2 D.2.1 D.2.2	Gamma-Spektroskopie Methodenbeschreibung Ergebnisse	D D D	7 7 8
D.3 C.3.1 D.3.2	Suszeptibilität Methodenbeschreibung Ergebnisse	D D D	16 16 17
D.4 D.4.1 D.4.2 D.4.3 D.4.4 D.4.5	Wärmeleitfähigkeit Meßmethode Auswertung Berechnung der WLF aus Modalbestand Ergebnisse Zusammenfassung	D D D D D D D D	20 20 21 21 22 24
D.5	Literaturverzeichnis	D	25
E.	Felsmechanik		
 F 1	Allgomoinos	F	2
E.1	Aligemeines	L	2
E.2	Versuchsdurchführung	E	4
E.3	Vorversuche an Material der KTB-Vorbohrung	E	5
E.4	Erste Untersuchungen an Material der KTB-Hauptbohrung im Testintervall 0 m bis 600 m	E	6

- E.5Ausblick für weitere ArbeitenE9E.6LiteraturverzeichnisE9
- F. Bohrkernorientierung und Teufenkorrelation der KTB Vorbohrung
- F.1AllgemeinesF2F.2Methode der BohrkernorientierungF2

F.3 F 3 Ergebnisse F.3.1 3 Orientierung der Bohrkerne F F.3.2 F 3 Teufenkorrelation Bohrkern/FMS-Log F.4 Zusammenfassung und Empfehlungen 3 F F.5 Literatur 4 F 6 F Anhang G. Gefüge und Deformation G.1 Einführung 2 G G.2 3 G Daten G.3 Ergebnisse und Interpretation G 4 G.3.1 G 6 Schersinnumkehr G.3.2 G 6 Richtung und Scherbewegung G.3.3 Polarität der Scherrichtung G 9 G 9 G.3.4 Interpretation der einzelnen Teufenabschnitte G.4 Ausblick G 11 G.5 G 11 Literatur G.6 Anhang: Datenliste der Scherkriterien von 2004 bis 3569 m G 13 Felsmechanik Η. (Nachtrag zur KTB-Vorbohrung) н 3 H.1 Einleitung H.2 Ergebnisse der felsmechanischen Index-5 versuche H 5 H H.2.1 Einaxiale Druckfestigkeitsversuche 6 H.2.1.1 Einaxiale Druckfestigkeiten im Teufen-H bereich von 3000 bis 3575 m (Biotit-Gneise) H.2.1.2 Einaxiale Druckfestigkeiten im Teufen-Η 8 bereich unterhalb von 3575 m (Metabasite) H.2.1.3 Einaxiale Druckfestigkeiten im Bereich H 10 von Störungs- und Kataklasezonen H 11 H.2.2 Indirekte Zugfestigkeitsversuche H 13 H.2.2.1 Indirekte Zugfestigkeiten im Teufenbereich von 3000 bis 3575 m (Biotit-Gneise) H.2.2.2 Indirekte Zugfestigkeiten im Teufenbeн 13 reich unterhalb von 3575 m (Metabasite) н.3 H 14 Literaturverzeichnis Ι. Das automatische Probenahmesystem für die Hauptbohrung des KTB I 1 Anlagen

XII

A. Einleitung

H.-G. Dietrich N. Gleiß J. Hansmann J. Lauterjung Th. Wöhrl

	A. Einleitung			
¹ Diet	trich, HG., ¹ Gleiß, N., ¹ Hansmann, J., & ¹ Wöhrl, Th.	² Lauterjun	g,	J.
INHAL	TSVERZEICHNIS		Se	ite
A.1	Allgemeines	1	A	3
A.2	Bohrtechnik	i	A	3
A.3	Probenahme		A	6
A.3.1	. Art der Proben und Probenahmestellen	1	A	10
A.3.2	? Teufenkorrelation bei der Probenahme	1	A	14
A.4	Sonstiges		A	25
A.5	Literaturverzeichnis	1	A	26

Anschriften der Verfasser:

1) KTB-Feldlabor, Postfach 67, 8486 Windischeschenbach

2) Institut für Geowissenschaften und Lithosphärenforschung der Justus-Liebig-Universität, Senckenbergstr. 3, 6300 Gießen

KTB-Report 91-3 A1-A26 32 Abb Happover 1991

A. Einleitung

A.1 Allgemeines

In diesem Report werden die geowissenschaftlichen Ergebnisse der bohrungsbegleitenden Untersuchungen im KTB-Feldlabor für den Teufenbereich von 0 - 1720 m der Hauptbohrung KTB OBER-PFALZ HB dargestellt. Die Bohrung begann am 6. Oktober 1990 und erreichte die Berichtsteufe am 2. März 1991. Unter Berücksichtigung der bereits erschienenen Berichte zur KTB-Vorbohrung (z. B. Emmermann et al. 1990) ist dies der insgesamt 10. Bericht des Feldlabors.

Das zu diesem Bericht gehörende Übersichtsprofil mit den geologisch relevanten Daten findet sich im Maßstab 1 : 400 am Ende des Reports (Blatt 1 - 7).

Ergänzt wird die aktuelle Darstellung der Untersuchungsergebnisse des Feldlabors zur KTB-Hauptbohrung durch folgende zusätzliche Berichte zur Vorbohrung KTB Oberpfalz VB:

- Bohrkernorientierung und Teufenkorrelation der KTB-Vorbohrung. Abschlußbericht mit Ergebnissen von J.
 Kohl, J. Kück, J. Sigmund und Th. Wöhrl (vgl. Kapitel F.).
- Kontinuierliche makroskopische Aufnahme kinematischer Markierungen an Kernen der KTB-Vorbohrung zur qualitativen Abschätzung der duktilen Verformung im Teufenbereich von W. Springer, H. Heinisch und A. Zadow.
- Nachtrag zur KTB-Vorbohrung. Tiefbohrung KTB Oberpfalz VB - Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im Feldlabor, Teufenbereich von 3000 - 4000 m, Felsmechanik von Th. Röckel und O. Natau (vgl. Kapitel H).
- Das automatische Probenahmesystem f
 ür die Hauptbohrung des KTB von M. Heinisch (vgl. Kapitel I.)

Wie die beiden Luftaufnahmen (Abb. A.1.1 und A.1.2) zeigen, befindet sich die Hauptbohrung im östlichen, die Plattform der Vorbohrung im westlichen und das Zentralgebäude im nördlichen Bereich der Bohrlokation. Die Entfernung zwischen den beiden Bohransatzpunkten beträgt etwa 200 m und von der Vor- und Hauptbohrung etwa 100 bzw. 150 m.

A.2 Bohrtechnik

Nach dem offiziellen Start der KTB-Hauptphase mit der Einweihung der Bohranlage UTB-1 GH 3000EG, der größten Landbohranlage der Welt, am 8. September 1990 durch den Bundesminister für Forschung und Technologie begann der Bohrbetrieb am 6. Oktober 1990. Die Berichtsteufe von 1720 m wurde am 2. März 1991 erreicht (Abb. A.2.1 und Tab. A.2.1).

Entsprechend der Vorplanung wurde zunächst mit 17 1/2" Rollenmeißeln bis 305 m vorgebohrt. Dabei wurden die beiden Vertikalbohrsysteme ZBE 5000 und VDS-3 sowie eine voll stabilisierte 17 1/2" Bohrgarnitur (PHA) erfolgreich eingesetzt (z. B. Chur et al. 1990a, 1990b, Emmermann 1990, Emmermann und Rischmüller 1990, Rischmüller 1990, 1991). Da sich nach Bohrlochmessungen in diesem 17 1/2" Bohrloch im

Abb. A.1.1: Luftbildaufnahme der Bohranlage UTB-1 für die KTB-Hauptbohrung mit dem sog. Feldlabor im Vordergrund und Windischeschenbach im Hintergrund (Foto Hoffmannsbeck, Oktober 1990).

Abb. A.1.2: Luftbildaufnahme der KTB-Bohrlokation mit dem Bohrplatz der Vorbohrung in der linken Bildhälfte (Foto Hoffmannsbeck, Oktober 1990).

KTB Feldlabor

Die/Nu Stand: 01.03.91 (1720m)

Ta	b.	A	. 2	. 1	L

	MONATLICHE BOHRBILANZ DER TIEFBOHRUNG KTB OBERPFLAZ HB								
Jahr Monat	gebol von	hrt	t (m) bis	Leistung m	gebohrt h	m/h	Werkzeug	Bemerkung	
10.90 10.90 11.90 11.90 12.90	0 0 251.5 305.0 563.1		305.0 251.5 292.0 563.1 866.0	305.0 251.5 40.5 258.1 302.9	194.75 140.00 39.00 178.50 344.25	1.56 1.80 1.04 1.44 0.88	17 1/2" 28" 28" 17 1/2" 17 1/2"	Bohrlocherw. (17 1/2-28")	
01.91 02.91 2.3.91	866.0 1144.2 1690.5		1144.2 1690.5 1720.0	278.2 546.3 29.5	283.25 323.25 27.25	0.98 1.69 1.08	17 1/2" 17 1/2" 17 1/2"		
Summe erweite	0 ert 0	-	1720.0 292.0	1720.0 292.0	1351.25 179.0	1.27 1.63	3x17 1/2 13x17 1/2 1x 28" 2x 28"	2" Zahnmeißel 2" Warzenmeißel Zahnmeißel Hole Opener	

Die/Nu 29.05.91

Teufenbereich zwischen ca. 270 m und 305 m ein Neigungsaufbau bis 2° ergab, wurde dieser Bohrlochabschnitt von 305 m - 250 m rückzementiert. Für den anschließend geplanten Einbau der 24 1/2" Ankerrohrtour wurde das Bohrloch von 17 1/2" auf 28" Bohrlochdurchmesser erweitert. Während bis 269.4 m 28" Erweiterungsmeißel (Hole Opener) zum Einsatz kamen (Abb. A.2.2), wurde bis zur Verrohrungsteufe bei 292.0 m eine voll stabilisierte Bohrgarnitur mit 28" Zahnmeißel zum Aufbohren und zur Begradigung des rückzementierten Bohrlochabschnittes eingesetzt (A.2.3.).

Nach dem Einbau der 24 1/2"-Verrohrung, dem Zementieren des Ringraums zwischen Verrohrung und Gebirge vom Rohrschuh (290 m) bis nach übertage, dem Aufbohren des Rohrschuhs und dem Bohren eines 17 1/2"-Führungsbohrloches bis 306 m wurde die von der Zementation kontaminierte Bohrspülung vor dem weiteren Abteufen der KTB-Hauptbohrung ausgeschert und durch frisch angesetzte Dehydril HT-Bohrspülung ersetzt.

Von 305 m bis 1720.0 m wurde die Bohrung mit 17 1/2"-Warzenmeißeln in Kombination mit verschiedenen Bohrgarnituren (Bottom Hole Assemblies = BHA) abgeteuft. Zum Einsatz kamen dabei wie bereits oberhalb 305 m die beiden Vertikalbohrsysteme VDS-3 und ZBE 5000 (Abb. A.2.4 und A.2.5). Außerdem wurde mit zwei Motorsteuersystemen (MSS-1 und MSS-2) und einer voll stabilisierten Bohrgarnitur (PHA) gebohrt. Während letztere sowohl ohne als auch mit einer Universalelektronik mit Datenpulser zur on line-Datenübertragung der Bohrlochabweichung von der Vertikalen eingesetzt wurden, gehörten entsprechende Datenerfassungs- und Übertragungssysteme zur Standardausrüstung der o.g. Vertikalbohrsysteme.

Bis zur Berichtsteufe wurden im Rahmen des Bohrlochmeßprogramms neben mehreren orientierten Bohrlochkaliber- und Abweichungsmessungen (BGL) drei größere Meßkampagnen durchgeführt und zwar bei 305 m vor Beginn der Erweiterung von 17 1/2" auf 28" für den Einbau der 24 1/2"-Ankerrohrtour, bei ca. 762.5 m und bei der Berichtsteufe von 1720 m. Bis zu dieser Teufe weicht die Hauptbohrung etwa 0.7° von der Vertikalen ab; die horizontale Gesamtabweichung beträgt in dieser Teufe ca. 2 m.

Abb. A.2.6 gibt einen Überblick über die verschiedenen Bohrund Verrohrungsabschnitte der Bohrung bis zur Berichtsteufe bei 1720 m.

Über den aktuellen Stand der KTB-Hauptbohrung wird seit Dezember 1990 auch in der Rubrik "Nachrichten" der Zeitschrift Erdöl Erdgas Kohle monatlich berichtet. Die erste Nachricht im Heft 12, 1990, 106. Jahrgang der o.g. Zeitschrift umfaßt den Zeitraum vom 6. Oktober bis 4. Dezember 1990 und den Teufenabschnitt von 0 - 633.3 m.

A.3 Probenahme

Entsprechend der Vorplanung (z.B. Emmermann und Giese 1990) ist beim Abteufen der Hauptbohrung erst unterhalb von etwa 3000 – 4000 m mit der Entnahme von Bohrkernen zu rechnen, da bis zu dieser Tiefe umfangreiches Bohrkernmaterial aus der etwa 200 m entfernten und fast vollständig gekernten Vor-

Abb. A.2.2: Beim Vorbohren bis 305 m eingesetzte 17 1/2" Warzenmeißel mit einem zum Zementaufbohren verwendeten 28" Zahnmeißel

Abb. A.2.3: Im obersten Bohrlochabschnitt eingesetzte 28" Erweiterungsmeißel (Hole Opener)

Abb. A.2.4: Das aktive Vertikalbohrsystem ZBE 5000 mit 17 1/2" Warzenmeißel

Abb. A.2.5: Das aktive Vertikalbohrsystem VDS-3 mit 17 1/2" Warzenmeißel

Abb. A.2.6: Bohr- und Verrohrungsschema der Hauptbohrung KTB Oberpfalz HB bis 1720 m

bohrung KTB Oberpfalz VB vorliegt. Durch den Wechsel vom Seilkernbohrverfahren der Vorbohrung zum Vollmaßbohren bei der Hauptbohrung, in der nur etwa 15% gekernt werden sollen, liegen für das Berichtsintervall als Feststoffproben nur kleine Gesteinsbruchstückchen, Bohrklein/Cuttings und Bohrmehl vor. Die Abbildungen A.3.1 und A.3.2 sollen dies verdeutlichen.

A.3.1 Art der Proben und Probenahmestellen

Aus dem Teufenbereich von 0 - 1720 m liegt, wie geplant, noch kein Bohrkernmaterial vor. Somit stehen für die wissenschaftliche Untersuchung aus diesem Abschnitt der Hauptbohrung KTB Oberpfalz HB folgende Probenarten zur Verfügung:

- Feststoffe (Bohrklein, Bohrmehl, Seiten- und Schlitzkerne)
- Flüssige Proben (Bohrspülung, Fluide aus Fluidsamplern)
- Gasproben (aus der Bohrspülung und aus Fluidsamplern freigesetzte Gase)

Die Entnahmestellen der verschiedenen Proben sind im Übersichtsplan für das Spülungsfließschema dargestellt (Abb. A.3.1.1).

Bohrkleinmaterial wird bei der Hauptbohrung routinemäßig hinter dem Gasseparator aus den beiden Spülungsverteilerkästen (Schüttelsiebkästen) vor den Schüttelsieben, von den Schüttelsieben selbst und den nachgeschalteten Zentrifugen genommen (Abb. A.3.1.2 bis A.3.1.4). Für die Bezeichnung der Proben wurden hier folgende Begriffe gewählt (vgl. Abbildung A.3.1.1):

- Cuttingsfalle/Sandfalle (D)
- Cuttings (C)
- Zentrifuge (E)

In der genannten Reihenfolge nimmt die Korngröße des Bohrkleinmaterials von zum Teil mehrere Zentimeter großen Gesteinsbruchstücken über millimetergroße Partikel bis hin zum sog. Bohrmehl ab.

Die verschiedenen Bohrkleinproben wurden generell in 1.0 m-Intervallen genommen. Auch während der Bohrlocherweiterung von 17 1/2" auf 28" (s. Abschnitt A.2.) wurden die o.g. Proben an den verschiedenen Entnahmestellen für Kontroll- und ergänzende Untersuchungen genommen. Dabei variierten die Probenintervalle allerdings in Abhängigkeit von der bereits bekannten Lithologie zwischen 1.0 m und 4.0 m.

Bei der Entnahme der Bohrspülungsproben (B in Abb. A.3.1.1), die bei den Schüttelsieben erfolgt, wurden die gleichen Probenintervalle wie bei den Feststoffproben gewählt.

Für die Analyse und Beprobung der in der Bohrspülung gelösten Gase wurden mehrere Gasfallen in den Spülungsverteilungsrinnen vor den Schüttelsieben (A in Abb. A.3.1.1) installiert und über beheizbare Gasleitungen mit den Meßgeräten im Feldlabor-Gascontainer verbunden. Für die Gasanalyse stehen ein Gasmassenspektrometer, ein Gaschromatograph und eine

Abb. A.3.1: Übersicht über die verschiedenen Feststoffproben aus der zu 90% gekernten Vorbohrung KTB Oberpfalz VB

Abb. A.3.2: Beispiel für gewaschene, gesiebte und getrocknete Schüttelsiebproben aus der bis 1720 m nicht gekernten Hauptbohrung KTB Oberpfalz HB

- A 12 -

Abb: A.3.1.2: Übersicht über die Anordnung der Schüttelsiebe hinter dem Gasseparator

Abb. A.3.1.3: Gesamtüberblick von den Zentrifugen (r) bis zum Auslaufrohr aus der Bohrung (l)

Abb. A.3.1.4: Gewinnung von grobkörnigen Bohrkleinproben aus einem Schüttelsiebkasten, in dem auch eine Gasfalle installiert ist

speziell entwickelte Radon-Meßeinrichtung zur Verfügung. Auf diese Art und Weise ist es möglich, die aus der Bohrspülung freigesetzten Gase on line und kontinuierlich während des Abteufens zu analysieren (Abb. A.3.1.5). Mit Hilfe eines automatischen Gassammelsystems, daß mit dem Gaschromatographen verbunden ist, wird gewährleistet, daß entsprechend den vorgegebenen Gasschwellenwerten zu jedem Zeitpunkt automatisch Gasproben gewonnen werden können (Abb. A.3.1.6).

Neben der routinemäßigen Probenahme während des Abteufens erfolgte vor dem Einbau der 16"-Verrohrung bei 3003 m im Rahmen eines Ende Mai / Anfang Juni 1991 durchgeführten Test-Meßprogramms die Entnahme von in situ-Fluidproben aus dem Bohrloch mit einem Geocom-Fluidsampler. Anschließend wurden Gesteinsproben mit Seitenkern- und Schlitzkern/Core Slicer-Geräten der Firma Schlumberger (MSCT bzw. MCT) aus der Bohrlochwand entnommen. Der Core Slicer wurde erstmals im Kristallin getestet, nachdem Vorversuche an Kernmaterial der Vorbohrung erfolgreich verliefen (Abb. A.3.1.7 und A.3.1.8).

Um den erfolgreichen Einsatz dieser Kernentnahmegeräte nicht zu gefährden, wurde nur in solchen Teufen die Bohrlochwand beprobt, in denen der Bohrlochdurchmesser von 17 1/2" nicht wesentlich überschritten wurde. Eine Zusammenstellung der verschiedenen Sonderproben wird in Tab. A.3.1.1 gegeben.

Tab. A.3.1.1: Übersicht über die Entnahme von in situ-Proben im Teufenbereich von 0 - 1720 m der Hauptbohrung KTB Oberpfalz HB

Probenart	Datum	Teufe (m)
Fluidsampler-Proben	01.06.91	701, 1530
Schlitzkerne / Core Slicer	03.06.91	306, 1193
Seitenkerne	04.06.91 05.06.91	510 861, 968, 792, 974, 1104, 1105, 1120, 1325, 1383, 1540, 1547,5

A.3.2 Teufenkorrelation bei der Probenahme

Von besonderer Bedeutung für die Interpretation der gewonnen-Daten ist die teufenmäßige Zuordnung der übertage aus dem en Spülungsstrom gewonnenen Proben. Um eine gleichmäßige Probenahme auch bei monotonen Serien zu gewährleisten, wird bereits bei der Probenahme eine Teufenkorrektur durch Berechnung der Aufstiegszeit (Lag Time) der Bohrspülung von jeweiligen Bohrlochsohle bis zu den Beprobungsstellen der übertage berechnet (vgl. Abb. A.3.2.1). Ohne diese Korrektur kann die Teufezuordnung des Materials deutlich insbesondere in Abhängigkeit von der Bohrlochtiefe, dem Ringraumvolumen zwischen Gestänge und Bohrlochwand, dem Bohrverfahren, der Zusammensetzung der Bohrspülung, der

Abb. A.3.1.5: Prozeßgasmassenspektrometer und Gaschromatograph im Feldlabor-Container im Bereich der Bohranlage in einer Entfernung von ca. 30 m bis zu den Gasfallen

Abb. A.3.1.6: Monitoranzeige des mit einem Gaschromatographen verbundenen automatischen Gassammelsystems

Abb. A.3.1.7: Schlitzkern-Probe aus einer Bohrkernhälfte der KTB-Vorbohrung

Abb. A.3.1.8: Arbeitsweise des Schlumberger Core Slicer bei der Vorerprobung

ENICE	*	KTB BOHRD	ATEN DISPLAY		
Dor. 23		Dr	illing .	a Section	. 15:52
HPF C3 TEUFE BITTEUFE BIT HRS BIT HRS BIT HRS ROP MEISLAST DREHT DREHZ DREHZTOTAL DREHZTOTAL DREHZTOTAL DREHZTOTAL DREHZTURBD KONT.MOM MAREPL NEIGLAG AZIMUTH TEUFE 8 8 8 8 8 2632-353	2633.29 m 2633.29 m 61:36 hh:mm 109.29 m 0.74 m/hr 178.7 kH 0 ddH-m 0 rpm 87 rpm 0 ddH-m 1484.6 kH 0.50 deg 2.40 deg 2.40 deg 2.40 deg 2.40 deg 0.71 r.31 188 0.50 fe 0.517 r.31 188	SP-DRUCK HUB2AHL PUMPE 1 PUMPE 2 PUMPE 3 EINLAUF AUSLAUF DOWNZEIT LAGZEIT CUTTINGTEUFE AUSTRITTHUGE GESAMTHUBE BIT REVS UEBERSTD B DREHZ D 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177 bor 154 spn 76 spn 78 spn 81 spn 3493 L'min 3718 L'min 9:07 hh:mn 1:55 hh:mn 2630.15 m 17654 unit less 3:38498 unit less 3:38498 unit less 3:38498 unit less 3:58 m ⁴ DREHM SP.DRUCK 8.0 8.8 8.176 8.175 8.175 9.175 1775 1	TEMP IN TEMP DUT COND IN COND DUT SG DUT SG OUT VISK OUT PH IM PH OUT MUDTEMP PV YP CST DRILL PUT TOTAL PUT REDOX DUT DXYGEN IN DXYGEN DUT	46.9 degC -99.9 degC 6.78 m5/cm 8.39 m5/cm 1.843 kg/l 1.824 kg/l 26.99 cP 11.56 18.48 8.88 degC 18.08 cP 16 lb/108ft*i 6383 183.3 m*3 189.8 m*3 -218 mV -999 mV -99.9 ppm
262.77 2633.15 2633.29	15:36 , 1.42 166. 15:46 1.62 181. 15:52 1.58 179.	1977 B	175	TOTAL GAS	11 ppn 0.8 ppn

Abb. A.3.2.1: Monitoranzeige mit der aktuellen Bohrmeisterteufe und den wichtigsten bohrtechnischen Daten einschließlich der berechneten Aufstiegszeit (Lag Time) der Proben und der daraus resultierenden Probenahmeteufe bei den Schüttelsieben

Abb. A.3.2.2: Beispiel für die Teufenkorrektur der am Spülungsauslauf genommenen Probe in Abhängigkeit von der aktuellen Bohrteufe, dem Bohrfortschritt und der berechneten Aufstiegszeit der Spülung

Pumprate und des Bohrfortschrittes von der Bohrmeisterteufe abweichen, wie Abb. A.3.2.2 verdeutlichen soll. Eine nachträgliche Teufenzuordnung einer Probe, die wie konventionell üblich nur mit der aktuellen Bohrmeisterteufe bezeichnet wird, ist auch mit Hilfe von Bohrlochmessungen vor allem bei einem lithologischen Wechsel möglich, wie in der Abbildung angedeutet wird.

berechneten Aufstiegszeiten werden durch Einleitungen Die verschiedener Gase (z.B. Helium, Abb. A.3.2.3) und / oder Feststoffe (Kyanit und Cristobalit) in die ins Bohrloch verpumpte Bohrspülung überprüft. Abb. A.3.2.4 verdeutlicht, es zumindest bei feinkörnigen Feststoffen mit daß max. Korngrößen von 175 μ m (Kyanit) und 128 μ (Cristobalit) trotz Dichten keine wesentlichen verschiedener Unterschiede bezüglich Dispersion und Aufstiegsverhalten im Spülungsstrom auftreten. Das erste Auftreten beider Minerale erfolgt bei diesem Test gleichzeitig nach ca. 112 bzw. 113 min, das Maximum liegt bei beiden Feststoffen zwischen ca. 120 und 140 min, der letzte Nachweis erfolgt 160 bis 170 min nach Beginn des Aufstiegs von der Bohrlochsohle. Ein entsprechender Test zur Bestimmung der Verzögerung zwischen den Schüttelsieben den Zentrifugen (vgl. Abb. A.3.1.1) ergab einen ersten und Nachweis bei den Zentrifugen nach etwa 2 min, eine maximale Konzentration der Feststoffgehalte zwischen etwa 6 bis 14 min und einen letzten Nachweis nach 40 bis 60 min.

Weitere Tests zur Cuttingsprobenahme an den drei Schüttelsieben wurden durchgeführt, um die Verteilung des Spülungsstroms nach Passieren des Gasseparators auf die Schüttelsiebkästen und Schüttelsiebe zu bestimmen. Sowohl die Korngrößenverteilung (Abb. A.3.2.5) als auch die Verteilung der Mineralgehalte von jeweils zwei Kornfraktionen an den Schüttelsieben 1 bis 3 (Abb. A.3.2.6) zeigen, daß die drei Teilströme als repräsentativ für das Gesamtprobenahmesystem angesehen werden können.

Der Vergleich röntgenographisch bestimmter Mineralkonzentrationen an den verschiedenen Bohrklein-Probenarten (Abb. A.3.2.7 und A.3.2.8) weisen darauf hin, daß prinzipiell alle Feststoffproben von dem Schüttelsiebkasten bis zu den Zentrifugen vergleichbare Ergebnisse zeigen. Eine Korrelation der Quarz- und Amphibolgehalte während eines lithologischen Wechsels mit Gamma-Ray-Logs elektrischer Bohrlochmessungen zeigen bei den Cuttingsproben die beste Übereinstimmung mit den Logs (Abb. A.3.2.9 und A.3.2.10).

Die teufenmäßige Darstellung der grobkörnigen Bohrkleinproben mit den Kornfraktionen > 1 mm, < 1 mm und > 63µm und < 63 µm mit dem geologischen Profil ergibt, daß in der Regel etwa 60 bis 80 % des am Schüttelsieb gewinnbaren Bohrguts Körngrößen über 1 mm besitzt. Nur in stärker durch Kataklase und Alteration überprägten Abschnitten überwiegen feinerkörnige Fraktionen. Abb. A.3.2.11 bis A.3.2.14 verdeutlichen außerdem die Unterschiede in den Partikelgrößen zwischen Proben aus dem Schüttelsiebkasten und von den Schüttelsieben.

- A 19 -

Abb. A.3.2.5: Vergleich der Korngrößenverteilung repräsentativer Bohrklein/Cuttings-Teilmengen von den drei Schüttelsieben nach einem Gesamtprobenahmeversuch bei 2082 m

Abb. A.3.2.6: Verteilung der Mineralgehalte in den Kornfraktionen > 1 mm und < 0.25 mm, > 0.425 mm in repräsentativen Bohrklein/Cuttings-Teilmengen nach einem Gesamtprobenahmeversuch bei 2082 m

- A 21 -

Geologisches Übersichtsprofil der Hauptbohrung KTB Oberpfalz HB im Teufenbereich 300 bis 600 m mit einer Übersicht über die Korngrößen von Proben aus dem Schüttelsiebkasten und vom Schüttelsieb

Abb. A.3.2.13: Beispiel für eine Probe aus dem Schüttelsiebkasten mit cm-großen Gesteinsbruchstücken aus einer Teufe von 617 m

Abb. A.3.2.14: Beispiel für besonders grobkörniges Probenmaterial aus dem Schüttelsiebkasten aus 1313 m

A.4 Sonstiges

Zur Vereinfachung und Vereinheitlichung der Probenbezeichnungen werden für die Bearbeitung, Archivierung und Verteilung des Probenmaterials folgende Bezeichnungen bei der Probenahme gewählt:

Tab. A.4.1: Probenbezeichnungen bei der Hauptbohrung KTB Oberpfalz HB

	PROBENART	PROBEN- ABKÜRZUNG	PROBENBENENNUNG (TYP, TEUFE)	ENTNAHME- DATUM/-ZEIT
1.	Bohrkern	НК	Kernmarsch und -stück	-
2.	Seitenkern	HSK	HSK3049	+
3.	Schlitzkern / Core Slicer	HSL	HSL0306	+
4.	Bohrklein - Schüttelsieb- kasten	HF	HF0078	-
	- Schüttelsieb /	HC	HC0078	-
	- Zentrifuge - Sedimentrohr	HZ HR	HZ0145 HR von-bis	-
5.	Spülungsproben	HS	HS1256	+
zus	ätzliche Probena	hmen wie z.	в.:	
Cut Boh	tings bei einer rlochwerweiterun	g HEC	HEC0078	-
Cut Ges Bob	tings und größer teinsbruchstücke	e im		
loc	hsonden	HCL	HCL1140	+

Von den unter Pos. 4 aufgeführten Bohrkleinproben stehen von jedem Probentyp, ausgenommen HR-Proben, ca. 1.5 bis 2.0 kg an unverändertem, unbearbeitetem und feuchtem am Spülungsauslauf genommenen Probenmaterial im Archiv zur Verfügung. Außerdem stehen für weiterführende Untersuchungen vorpräparierte und getrocknete Bohrklein- und Bohrmehlproben zur Verfügung, die für die routinemäßigen Untersuchungen des Feldlabors bereits gewaschen, gesiebt und / oder aufgemahlen wurden. Unterlagen für die Bestellung von KTB-Probenmaterial können angefordert werden beim:

NLfB KTB-Feldlabor Postfach 67 8486 Windischeschenbach Telefon 09681 / 40014 (Sekretariat, Frau Ritter) Telefax 09681 / 40038

A.5 Literaturverzeichnis

- Chur, C., Engeser, B. & Oppelt, J. (1990a): Das Vertikalbohrkonzept für die KTB-Hauptbohrung. - Erdöl Erdgas Kohle, 106. Jahrgang, 12, 486 - 490.
- Chur, C., Engeser, B. & Oppelt, J. (1990b): Vertical Drilling Conzept for the Mainwell. - Oil Gas, 16, 4, 26 - 29.
- Emmermann, R. (1990): Vorstoß ins Erdinnere: Das Kontinentale Tiefbohrprogramm. - Spektrum der Wissenschaft, 60 - 70, Oktober 10/1990.
- Emmermann, R., Dietrich, H.-G., Lauterjung, J. & Wöhrl, Th. (eds., 1990), KTB Pilot Hole, Results of Geoscientific Investigation in the KTB Field Laboratory, 0 - 4000.1 m. -KTB Report 90-8, Projektleitung Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland im Niedersächsischen Landesamt für Bodenforschung
- Emmermann, R. & Giese, P. (Hrsg., 1990): Beiträge zum 3. KTB-Kolloqium. Gießen, 28.02. - 02.03.1990. - KTB-Report 90-4.
- Emmermann, R. & Rischmüller, H. (1990): Das Kontinentale Tiefbohrprogramm der Bundesrepublik Deutschland (KTB). Aktueller Stand und Planung der Hauptbohrung – Die Geowissenschaften, 8. Jahrgang, Nr. 9, 241 – 257.
- Rischmüller H. (1990): Example for Advanced Drilling Technology. - Oil Gas 16, 4, 16 - 20.
- Rischmüller H. (1991): Beitrag der Bohrprojekte der Lithosphärenforschung zur Entwicklung der Bohrtechnik für große Tiefen, dargestellt am Beispiel des KTB. - Erdöl Erdgas Kohle, 107, 1, 51 - 58.

B. Geologie

G. Godizart N. Gleiß J. Hansmann H. Häussinger S. Keyssner J. Kohl M. Lapp mit einem Beitrag von G. Hirschmann & J. Kohl

chen Bohru	ngsbearbeitung im KTB-Feldlabor (Windischeschenbac Teufenbereich von 0 bis 1720 m:	ch),
	B. Geologie	
G. Gc mit	odizart, N. Gleiß, J. Hansmann, H. Häussinger, S. Keyssner, J. Kohl & M. Lapp ¹⁾ einem Beitrag von G. Hirschmann ²⁾ und J. Kohl	
Inhalt:		
Zusammenfa	ssung	в3
Abstract		в4
B.1 1 B.1.1 B.1.2 B.1.3	Einführung Geologischer Rahmen Ergebnisse der Vorbohrung Arbeitsmethodik	B5 B5 B7 B9
в.2 с	Geologisches Profil	в14
B.3 (B.3.1 B.3.2	Gneise und Kalksilikatgesteine Paragneise Plagioklas-reiche, Kalksilikat-führende Gneise Horpblende-Biotit-Gpeise	B16 B16 B19
B.3.4 B.3.5	Kalksilikat-Gesteine und Kalksilikat-Marmore Mineralogische und chemische Zusammensetzung der Paragneise	B20 B23
B.4 N B.4.1 B.4.2	Metabasite Petrographie Chemische Zusammensetzung der Metabasite	B27 B27 B29
в.5 і	Lamprophyre	в39
в.б в	Erzmineralisation	в44

I

KTB-Report

В B В В В 4 6 В В 6 В 9 0 В В 0 В 3 В 7 В 7 В 9 В 9 В 4 B.6.1 Sulfidische Erzminerale B44 Oxidische Erzminerale B.6.2 B46 B.6.3 Sonstige Erzminerale B49 B.6.4 Altersstellung B51 B.6.5 Erzmineralführung und Suszeptibilität B53 B.7 Strukturen und Gefüge B58 B.7.1 Faltenstrukturen B58 B.7.2 Kataklasite und kataklastisch deformierte B58 Gesteine

Tiefbohrung KTB-Oberpfalz HB, Ergebnisse der geowissenschaftli-

54

Abb.

Hannover 1991

B1 - B83

91 - 3

в.7.3 в.7.4	Kluftmineralisation Störungszonen	B63 B67
в.8	Korrelation Vorbohrung-Hauptbohrung	в72
в.9	Literaturverzeichnis	B81
	Anhang	

Anschrift der Autoren:

 KTB-Feldlabor, 	Postfach 67	, D-8486	Windischeschenbach
------------------------------------	-------------	----------	--------------------

2) Niedersächsisches Landesamt für Bodenforschung, Stilleweg 2, D-3000 Hannover 51

Zusammenfassung

Dieser Bericht umfaßt die bisherigen Ergebnisse der petrographisch-geochemischen und strukturellen Bearbeitung des Teufenabschnittes 0 - 1720 m der KTB-Hauptbohrung "KTB OBERPFALZ HB".

Die Untersuchungsmethoden sowie die Art der Archivierung der gewonnenen Daten in der KTB-Datenbank werden detailliert beschrieben.

Bis 1720 m besteht das erbohrte Profil aus monotonen Paragneisen mit Metabasiteinschaltungen. Die Zusammensetzung der Gneise rangiert zwischen den Endgliedern Granat-Sillimanit-Biotit-Gneis und Muskovit-Biotit-Gneis. Als Edukte gelten Grauwacken und Tonsteine. Die mineralogische und chemische Komposition der Gneisvarianten wird aufgrund quantitativer Röntgendiffraktometrie- und Röntgenfluoreszenz-Analysen dargestellt.

In die Gneiseinheiten sind drei größere Metabasit-Körper aus Amphiboliten und Granat-Amphiboliten eingeschaltet. Aufgrund des Mineralbestandes und des Gefüges lassen sich drei Metamorphose-Stadien differenzieren: ein frühes HP-Ereignis, eine dominierende amphibolitfazielle Metamorphose sowie eine retrograde grünschiefer- bis zeolithfazielle Überprägung. Die chemische Komposition entspricht E-Type MORB bis Intraplattentholeiiten.

Zahlreiche geringmächtige Lamprophyr-Gänge durchschlagen die Gneiseinheiten. Untergeordnet finden sich Hornblende-Biotit-Gneise und Kalksilikat-Gesteine.

Nur selten ist ein primärer Erzmineralbestand reliktisch erhalten. Es dominieren bei weitem jüngere metamorphogene Phasen. In Gneisen überwiegen sulfidische, in Metabasiten oxidische Erzminerale. Gesteinsmagnetische Anomalien werden oberhalb ca. 200 m durch Magnetit bewirkt; unterhalb 200 m ist stets Pyrrhotin der Hauptträger der Suszeptibilität (siehe auch Kap. D).

Mit einer streckenweise starken kataklastischen Überprägung der Gesteine ist eine erhöhte Graphit- und Pyritführung verbunden. Die Foliation fällt nach Bohrlochmessungen steil ein. Kluftmineralisationen werden durch Quarz, Pyrit, Epidot, Prehnit, Adular, Laumontit und Calcit gebildet.

Die geologischen Profile der Vor- und Hauptbohrung lassen sich in geologischer und struktureller Hinsicht gut korrellieren; die Übertragung von Ergebnissen aus der Vorbohrung auf die Hauptbohrung ist möglich.

Abstract

This report presents preliminary results of the petrographical, geochemical and structural investigations of the scientific well 'KTB Oberpfalz HB', carried out in the depth interval between 0 and 1720 m.

A detailed description concerning the sampled material, the methods of investigation as well as data aquisition and data handling is given.

Down to 1720 m monotonous paragneisses with few metabasic intercalations have been intersected. Gneisses vary between garnet-sillimanite-biotite gneiss and muscovite-biotite gneiss; their composition corresponds to greywacke and claystone composition. The mineralogical and chemical gneiss composition is given by quantitative XRD and XRF analyses.

Three larger metabasic sequences of amphibolites and garnetamphibolites are intercalated within the paragneisses. Based on their mineral content and texture three metamorphic events can be delineated: an early HP event, a dominant overprint in amphibolite facies metamorphism and a retrogressive greenschist to zeolite facies metamorphism. The chemical composition shows affinities to E-type MORB to intraplate tholeiites.

The gneiss units are cut by many thin lamprophyric dikes. Hornblende gneisses and calcsilicate rocks are subordinate.

A primary ore mineral content is preserved in relics; younger metamorphogenous phases are prevailing. Sulphides are predominant in gneisses, oxidic opaque minerals in metabasic rocks. Magnetic anomalies are correlated to magnetite above 200 m and to ferrimagnetic pyrrhotite underneath.

Higher contents of graphite and pyrite can be correlated with locally strong cataklastic overprint. Borehole logging reveals a steep inclination of the foliation. Fissure mineralisation consists of quartz, pyrite, epidote, prehnite, adular, laumontite, and calcite.

The comparison of results of the pilot hole 'KTB OBERPFALZ VB' with the main hole reveals a strong correlation between the geological sections of the two wells.

B.1 Einführung

B.1.1 Geologischer Rahmen

Aus Abb. B.1.1. wird ersichtlich, daß sich die Bohrlokation am Westrand der Böhmischen Masse befindet, dem größten zusammenhängenden Grundgebirgskomplex in Mitteleuropa. Drei variszische, tektono-metamorphe Baueinheiten charakterisieren das engere Umfeld: Das Saxothuringikum, das Moldanubikum und die als Decken interpretierten Komplexe der Münchberger Gneismasse (MM), der Zone von Erbendorf-Vohenstrauß (ZEV) und die Zone von Tepla Taus (ZTT). Das gesamte Gebiet ist zudem von spätvariszischen Granitintrusionen durchsetzt. Im Westen sind die Grundgebirgseinheiten durch die Fränkischen Linie, einem NW-SE-streichenden Störungssystem, gegen permo-mesozoische Sedimente abgegrenzt.

Die drei vorgestellten variszischen Haupteinheiten lassen sich sowohl lithologisch wie auch auf Grund der strukturellen und metamorphen Entwicklung unterscheiden:

Das Saxothuringikum (ST) besteht aus deformierten kambrischen bis unterkarbonischen Sedimenten und Vulkaniten, die vor etwa 320 Ma (TEUFEL, 1988; KREUZER et al., 1989) von einer einphasigen, schwach- bis mittelgradigen Niederdruckmetamorphose überprägt wurden. Die Temperaturen dieser Metamorphose liegen zwischen maximal 350°C im Norden und maximal 600°C im Süden.

Das Moldanubikum (MN) dagegen, zeichnet sich durch eine polyphase Metamorphoseentwicklung aus. Es handelt sich wahrscheinlich um jungproterozoische bis altpaläozoische Metasedimentfolgen mit gelegentlichen Einschaltungen von Metabasiten, Kalksilikatgesteinen und Orthogneisen. Eng mit Metasedimenten verknüpft treten Eklogite auf, die ein frühes Hochdruckstadium belegen (BLÜMEL, 1983; O'BRIEN, 1989). Kleine Kyanit- und Granateinschlüsse in Plagioklasen der Paragneise weisen nach BLÜ-MEL (1983) auf eine Gleichgewichtseinstellung bei mittleren Drücken hin, während die dominierende Paragenese Cordierit, Kalifeldspat und Sillimanit ein HT/LP-Ereignis dokumentiert. Dieses letzte Ereignis wurde von TEUFEL (1988) und KREUZER et al. (1989) auf 320 Ma datiert.

Die Bohrlokation selbst befindet sich im Norden der Zone von Erbendorf-Vohenstrauß (ZEV), die ebenso wie die Münchberger Gneismasse (MM) und die Zone von Tepla-Taus (ZTT) nach WEBER und VOLLBRECHT (1989) als Teil eines größeren Deckenkomplexes gesehen wird. Abb. B.1.1.b zeigt einen Ausschnitt der ZEV mit der Bohrlokation. Im Wesentlichen handelt es sich um eine Wechsellagerung von Metabasiten (Amphibolite, Metagabbros, Meta-Ultramafitite) und Paragneisen. Gelegentlich treten Kalksilikatgesteine, Meta-Aplite, Lamprophyre und verschiedene Orthogneise auf. Es dominiert eine amphibolitfazielle Überprägung, die auf 380 Ma datiert wurde (TEUFEL, 1988; KREUZER et al., 1989). Die Bearbeitung von Metabasiten der KTB-Vorbohrung erbrachte Hinweise auf eine weitere, ältere Metamorphose bei höheren Drücken

Abb. B.1.1: Geologische Situation (a) Geologische Übersichtskarte des Grenzbereiches Saxothuringikum/Moldanubikum (nach SIEGESMUND et al. 1990); RH: Rhenohercynikum, ST: Saxothuringikum, MN: Moldanubikum, 1: höhere Dek-ken mit druckbetonter Metamorphose, 2: unterlagernde Deckeneinheiten, 3: Saxothuringikum, 4: Moldanubikum, 5: spätvariszische Granite, 6: KTB-Lokation, MM: Münchberger Gneismasse, ZEV: Zone von Erbendorf-Vohenstrauß, ZTT: Zone von Tepla-Taus, ZTM: Zone von Tirschenreuth-Mähring.

(b) Geologische Karte des engeren KTB-Umfeldes (nach STETTNER et al. 1990);VB: Vorbohrung, HB: Hauptbohrung.

(RÖHR et al., 1990). Unterlagert wird die ZEV von einer niedrigmetamorphen Serie, der Erbendorfer Grünschieferzone. Diese besteht aus grünschieferfaziellen Metabasiten und Metasedimenten mit mafischen und ultramafischen Einlagerungen.

Nach WEBER und VOLLBRECHT (1989) stellt die Grenze von Saxothuringikum und Moldanubikum die Sutur eines tief abgetragenen variszischen Kollisionsorogens dar. Diese wird im Bereich der Bohrlokation von der ZEV überdeckt und soll im Verlauf der Hauptbohrung durchteuft werden. Aufgeschlossen ist diese Sutur in der mylonitisierten Zone von Tirschenreuth-Mähring (ZTM).

Eine Zusammenfassung des Kenntnisstandes geben die Arbeiten in EMMERMANN & WOHLENBERG (1989). Weiterhin ist eine 10-teilige, detaillierte geologische Karte des KTB-Umfeldes im Maßstab 1:10000 erhältlich (STETTNER et al., 1990).

B.1.2 Ergebnisse der Vorbohrung

Die KTB-Vorbohrung wurde im Zeitraum September 1987 bis April 1989 bis zu einer Endteufe von 4000.1 m niedergebracht. Die Untergrenze der Zone von Erbendorf-Vohenstrauß (ZEV) wurde dabei offenbar nicht erreicht.

Das erbohrte Profil zeigt lithologisch eine gute Übereinstimmung mit der Oberflächengeologie und besteht aus einer Folge von Paragneisen, in die vier Metabasitsequenzen eingeschaltet sind.

Insgesamt können sieben Haupteinheiten unterschieden werden:

- 0 460 m: bunte Wechselfolge von Granat-Biotit-Gneisen (lokal mit Kalifeldspat, Muskovit oder Hornblende), Granat-Amphiboliten und Kalksilikatgesteinen, die eine starke retrograde Überprägung aufweist und als metamorphe, vulkano-sedimentäre Abfolge interpretiert wird;
- 460 1160 m: monotone Granat-Sillimanit/Kyanit-Biotit-Gneise
- 1160 1610 m: Metabasitfolge mit Granat-Amphiboliten, Metagabbros und Meta-Ultramafititen;
- 1610 2470 m: monotone Granat-Sillimanit/Kyanit-Biotit-Gneise;
- 2470 2690 m: bunte Wechselfolge von Amphiboliten, Hornblende-Gneisen, lokal sillimanitführenden Granat-Biotit-Gneisen und vereinzelten Kalksilikatlagen;
- 2690 3575 m: monotone Granat-Sillimanit/Kyanit-Biotit-Gneise;
- 3575 4000 m: Granat-Amphibolite und Metagabbros.

Die Paragneise, die etwa 70% des erbohrten Gesteins ausmachen, werden lokal von Lamprophyr-Gängen mit Mächtigkeiten von wenigen Zentimetern bis zu mehreren Metern durchsetzt. Dabei handelt es sich um Kersantite und untergeordnet Spessartite und Vogesite. Vereinzelt treten Aplitgänge auf, die im Teufenbereich von 60 - 120 m bis zu 6 m mächtig werden. Dezimeter-mächtige Aplitgänge wurden in den Metabasiten bei 2330 m und 3575 m beobachtet. Aplite und Lamprophyre werden der Ganggefolgschaft der spätvariszischen Granite zugerechnet.

Geothermobarometrische Untersuchungen an den Granat-Sillimanit-Biotit-Gneisen ergaben Temperaturen von $660\,^{\circ}\text{C} - 710\,^{\circ}\text{C}$ (Granat-Biotit-Thermometer) bei Drücken von 6-8 kbar (REINHARDT & KLEE-MANN, 1989). Im Gegensatz dazu läßt sich in den Metabasiten eine dreistufige Metamorphoseentwicklung nachweisen: Klinopyroxen-Plagioklas-Symplektite weisen auf ein frühes Hochdruckstadium bei einem Mindestdruck von 10 kbar und ca. 730°C (RÖHR et al., 1990) hin. Danach folgte eine durchgreifende Mitteldruckmetamorphose, deren maximale Bedingungen mit 675°C \pm 50°C bei 7 \pm 1 kbar aus den Paragneisen abgeleitet werden können. Schließlich wurden die Gesteine noch von einer retrograden Überprägung erfaßt, die bei grünschieferfaziellen Bedingungen stattfand.

Nicht bestätigt haben sich Vorhersagen aus dem Deckenmodell, nach dem generell flach einfallende Strukturen zu erwarten waren. Stattdessen läßt die Auswertung der Strukturdaten eine großräumige, offene Faltenstruktur mit weitgehend steil einfallender Foliation und Schichtung erkennen.

B.1.3 Arbeitsmethodik

Geologie

Im Gegensatz zur Vorbohrung standen für die wissenschaftliche Bearbeitung bisher keine Kerne sondern nur sogenannte Cuttings, also Bohrklein, zur Verfügung. Im Kapitel A.4 wurden die anfallenden Proben bereits vorgestellt. Für die geologische Bearbeitung, insbesondere für Gefügebeschreibungen, sollten die einzelnen Fragmente so groß wie möglich sein. Es stellte sich aber heraus, daß auffallend große Stücke in der Regel als "Nachfall" anzusprechen sind, und somit keiner Teufe exakt zugeordnet werden können. Dies gilt vor allem für die Proben aus dem sogenannten Schüttelsiebkasten (Probenbezeichnung "HFG") oder für größere Stücke, die eingeklemmt in Meßsonden, Steuerrippen der Vertikalbohrsysteme etc. zutage gefördert wurden. Für die Routinebearbeitung werden daher hauptsächlich zwei Fraktionen vom Schüttelsieb (Probenbezeichnung: "HC") benutzt, nämlich die Fraktion "grob" mit Korngrößen über 1 mm und die Fraktion "fein" mit Korngrößen zwischen 0.06 mm und 1 mm. Die grobe Fraktion eignet sich sowohl für die erste, sogenannte "Schnellansprache" mit dem Binokular, wie auch zur Herstellung von Streupräparaten für die mikroskopische Bearbeitung im Durch- und Auflicht. Die Feinfraktion eignet sich gut für die Karbonatbestimmung mit HCl und zum Erkennen ferromagnetischer Komponenten mit dem Handmagneten.

Die Bearbeitung des Bohrkleins durch die Arbeitsgruppe Geologie gliedert sich in die sogenannte Schnellansprache mit dem Binokular und in die mikroskopische Detailbearbeitung anhand von Dünn- und Anschliffen. Die Schnellansprache erfolgt jeden Meter, bei monotonen Abfolgen und großen Bohrfortschritten nur jeden zweiten Meter. Dünnschliffe werden in Abständen von vier bis acht Metern routinemäßig angefertigt. Entsprechend der Lithologie und in Absprache mit den anderen Arbeitsgruppen wird der Probenabstand verkleinert, bei Bedarf werden Konzentrate aus den Proben separiert.

Die Auswahl der Proben für die Auflichtmikroskopie erfolgt in der Regel in gleichmäßigen Abständen über das erbohrte Profil. Besonders berücksichtigt werden magnetische Anomalien, Anomalien der natürlichen Gammastrahlung und geochemische oder makroskopische Hinweise auf Erzmineralisationen. Für die Erzanschliffe wurden aus den Bohrkleinproben möglichst repräsentative Separate ausgelesen. Von ausgewählten Zonen wurden Erzmineralkonzentrate angefertigt. Zur Differenzierung ferromagnetischer und antiferromagnetischer Strukturtypen des Pyrrhotins erwies sich ein Kolloid mit feinsten Magnetitpartikeln ("Ferrofluid") als sehr gut geeignet. Zusätzlich kann damit die Verteilung magnetischer Minerale deutlich gemacht werden. Alle Beobachtungen werden unmittelbar ("on-line") in die KTB-Datenbank "KTBase" eingelesen und zwar überwiegend in alphanumerischer Form. In Abb. B.1.2 sind zwei Eingabemasken dargestellt:

Die Maske a) zeigt die Beschreibung der Probe HC0901. Im Feld "Schliff" befinden sich Querverweise auf eventuell vorhandene Dünnschliffe. Das Feld "Gestein" enthält einen generalisierten und normierten Gesteinsnamen, der direkt in Signaturen und Farben für die graphische Ausgabe des Profils umgesetzt werden kann. Die erlaubten Gesteinsnamen sind in einem jederzeit aktualisierbaren Katalog abgelegt. Der Alterationsgrad wird in vier Abstufungen angegeben: "frisch" wenn weniger als 10% des Gesteins Alterationserscheinungen zeigen. Entsprechend sind die Begriffe "schwach" (10% - 50%), "stark" (50% - 90%) und "vollständig" (90% -100%) definiert.

Im Feld "Hinweise Technik" wird unter "Schrott" lithologiefremdes Material wie Metallspäne, Farbe etc. aufgelistet. Die Einträge "Graphit" und "Kataklase" sollen Hinweise auf problematische Störungszonen geben und unter "Bit-Metamorphose" werden durch den Bohrvorgang verursachte, thermische Beeinflussungen einzelner Fragmente verstanden.

Eine genauere petrographische Beschreibung der Probe ist unter der Überschrift "Komponenten" zu finden. Dabei wird deutlich, daß die einzelnen Proben häufig aus Fragmenten verschiedener Gesteine zusammengesetzt sind (s. Kap. A.4.). Die Vergabe des generalisierten Gesteinsnamens schließt demnach eine Interpretation des Lithoprofils ein, die sich aus dem Kontext des Hangenden und Liegenden ergibt. Bei der "Schnellansprache" mit dem Binokular (s. Feld "Bearbeiter": Kürzel "S") findet eine grobe Abschätzung des Anteils der verschiedenen Komponenten in Vol.% statt. Die Felder "Zuordnung", "Granulometrie", "Gefüge" und "Bemerkung" werden optional ausgefüllt.

Wurde eine mikroskopische Bearbeitung durchgeführt, erscheint im Feld "Bearbeiter" das Kürzel "D". Die Komponentenbeschreibungen sind dann entsprechend verifiziert und wenn nötig modifiziert. Für jede Komponente kann eine Untermaske mit den verschiedenen Mineralphasen und deren Beschreibung aufgerufen werden (Abb. B.1.2b). Am Ende der Bearbeitung werden die Beobachtungen in wenigen Sätzen kurz zusammengefaßt (Feld "Abs.", Abb. B.1.2a).

Alle so gespeicherten Informationen können über Suchmasken aufgelistet und auf dem Drucker als Protokoll ausgegeben werden. Auch graphische Umsetzungen sind möglich.

Eine weitere Aufgabe der Arbeitsgruppe Geologie ist die Zusammenstellung des endgültigen Lithoprofils, wie es im Kapitel B.2 dargestellt ist. Hierfür ist eine Zusammenfassung und Interpretation der Daten und Ergebnisse aus praktisch allen Abteilungen des Feldlabors nötig.

Zusätzlich stehen alle bohrtechnischen Parameter und vor allem

		-			Vers.
Probe : Schliff : H	C0901 C0901/Mikrowel:	le	Sc	Hinweise 1 wott: gelbe	echnik Farbe
Gestein : G Alteration: s	ranat-Silliman tark	it-Biotit-Gne	eis Gr Bi	aphit: <mark>wenig</mark> takl.: <mark>wenig</mark> t_Me.: <mark>wenig</mark>	
Bearb. : <mark>Ko</mark> /S	Fein : <mark>-</mark>	Hir	w mm dicke	Ccc- Abs.	
Komponenten:		Zuordnung	Granulom	Gefüge	Bemerku
Typ Bezerchnu		the second se			

Abb. B.1.2 : Eingabemasken der KTB-Datenbank "KTBase" für die geologische Cuttingsbearbeitung. Erläuterungen s. Text.

die vielfältigen Bohrlochmessungen (s. Kap. D.2) zur Verfügung. In Abb. B.1.3 ist der Prozess der Profilentstehung schematisch dargestellt.

Als besonders wichtig herausgestellt hat sich die Korrelation der an Cuttingsproben gemessenen natürlichen Gamma-Strahlung mit den entsprechenden Bohrlochmessungen ("Referenz-Gamma-Log"). Mit diesem Vergleich kann eine punktuelle Teufenkorrektur der Einzelproben durchgeführt werden. Weiterhin findet eine kontinuierliche, visuelle Auswertung von Kaliber-, Eigenpotential-, Formation-Micro-Scanner-(FMS) und Formation-Micro-Imager-Logs (FMI) statt. So ergeben sich die lithologischen Grenzen, Störungen, das Einfallen der Foliation sowie die Abgrenzung des Nachfalls.

Teufenangaben in der geologischen Beschreibung, bzw. im Lithoprofil beziehen sich immer auf korrigierte Teufen. Wenn dagegen bei Beobachtungen oder Meßwerten eine Probenbezeichnung angegeben wird, bezieht sich der numerische Wert auf die unkorrigierte "Lag-Teufe", die aus Probennahmezeitpunkt und der theoretischen Aufstiegszeit berechnet wird (s. Kap. A.4). Einen Extremfall stellt die Probe HC0210 dar mit einer Lag-Teufe von 210 m und einer korrigierten Teufe von 203.5 m.

Abb. B.1.3: Erstellung des Lithoprofils der KTB-HB

Geochemie

Für die chemische und mineralogische Feststoffanalyse wurden die Cuttingproben im 2 m-Intervall genommen. Teilweise wurde die Beprobung auf 1 m-Abstände verdichtet und durch die Analyse der Zentrifugenproben ergänzt.

Die Cuttings werden in einem 63 μ m-Sieb gewaschen, bei 105°C getrocknet und ca. 50-100g in einer Wolfram-Carbid Kugelmühle 30 Minuten gemahlen. Zentrifugenproben werden getrocknet und 10 Minuten gemahlen. Das Gesteinspulver wird dann in standardisierte Aluminiumringe gepreßt. Diese Pulverpresstabletten werden sowohl für die Röntgenfluoreszenzspektrometrie, als auch für die Röntgendiffraktometrie verwendet.

Röntgen-Fluoreszenz-Analyse (RFA)

Die Analyse der Hauptbestandteile und Spurenelemente wird mit einem SIEMENS SRS 303 AS Röntgenfluoreszenzspektrometer durchgeführt. Die Routinemessung umfasst derzeit 10 Hauptbestandteile (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅) und 11 Spurenelemente (S, Cr, Ni, Cu, Zn, Nb, Rb, Sr, Y, Th, U). bei einer Meßzeit von 40 Minuten. Die Teufenlogs der chemischen Daten des Bereichs 0 - 1720 m befinden sich im Anhang. Die gemessenen Schwefel-Konzentrationen werden im Kapitel B.6. Erzmineralisation dargestellt.

Röntgen-Diffraktometrie (RDA)

Die mineralogische Phasenanalyse wird mit einem SIEMENS D 500 Röntgen-Pulver-Diffraktometer durchgeführt. Das Routine-Meßverfahren wurde bereits im Vorfeld der KTB-Vorbohrung entwickelt und während der KTB-Vorbohrung erfolgreich eingesetzt. Die wesentlichen Bestandteile dieses Verfahrens sind eine eigene Mineraldatei und ein eigenes Computer-Programm mit vollautomatischer Spektrenauswertung inklusive qualitativer und quantitativer Phasenanalyse (EMMERMANN & LAUTERJUNG, 1990). Die mineralogische Zusammensetzung der Gesteine von 0-1720m wird in einem Teufenlog der aufsummierten Mineralphasen im Anhang dargestellt.

B.2 Geologisches Profil

Lithostratigraphisch besteht das erschlossene Profil aus einer Folge von monotonen Paragneisen, in die drei Metabasitsequenzen eingeschaltet sind. Die folgenden Haupteinheiten lassen sich unterscheiden:

- 0 16 m: Kalksilikat-führender, Plagioklas-reicher Gneis;
- 16 69 m: Muskovit-Biotit-Gneise;
- 69 203 m: Metabasite I;
- 203 290 m: monotone Granat-Sillimanit-Biotit-Gneise mit Einschaltungen von Kalksilikat-führendem, Plagioklas-reichem Gneis von 243 bis 247 m und einem Kataklasit von 247 bis 254 m;
- 290 522 m: bunte Wechselfolge von Muskovit-Biotit-Gneisen, Kalksilikat-führendem, Plagioklas-reichem Gneis, Granat-Kyanit/Sillimanit-Biotit-Gneisen und Metabasiten (Metabasite II, 309 - 329 m);
- 522 1183 m: monotone Granat-Sillimanit-Biotit-Gneise mit Kalksilikat-führendem, Plagioklas-reichem Gneis bei 947 -994 m. Diese Einschaltung wurde in der Vorbohrung nicht durchteuft.
- 1183 1410 m: Metabasite III
- 1410 1573 m: bunte Wechselfolge aus Muskovit-Biotit-Gneisen, Granat-Sillimanit-Biotit-Gneisen, Metabasiten und Lamprophyren.
- 1573 1720 m: monotone Granat-Sillimanit-Biotit-Gneise mit kleineren Metabasiteinschaltungen.

Die Gneise, die den überwiegenden Teil der erbohrten Gesteine einnehmen, werden häufig von Lamprophyr-Gängen mit Mächtigkeiten von wenigen Zentimetern bis zu mehreren Metern durchsetzt.

Abb. B.2.1 Übersichtsprofil der KTB-HB von 0 bis 1720

- B 15 -

B.3 Gneise und Kalksilikatgesteine

B.3.1. Paragneise

Paragneise mit den Paragenesen Granat-Sillimanit-Biotit (Abb. B.3.1) und Muskovit-Biotit machen den Hauptteil der bisher in der Hauptbohrung durchteuften Gesteine aus. Dies entspricht den Verhältnissen der Vorbohrung. Als Edukte kommen, wie zuletzt bei RÖHR et al. (1990) erwähnt, Grauwacken und Tonsteine in Entsprechend der Heterogenität (Sand/Ton-Verhältnis) Frage. derartiger Edukte schwanken auch die Anteile der verschiedenen Mineralphasen in den Gneisen beträchtlich. Die Bezeichnungen Granat-Sillimanit-Biotit-Gneis und Muskovit-Biotit-Gneis müssen deshalb als "Endqlieder" einer "Mischreihe" gesehen werden und nicht als streng trennbare, eigenständige Gruppen. Selbst an cm-großen Cuttings sind bereits derartige Übergänge von metapelitischen Granat-Sillimanit-Biotit-Gneisen zu eher metapsammitischen Muskovit-Biotit-Gneisen zu beobachten. Es läßt sich folgende petrographische Einteilung vornehmen:

- 1. Muskovit-Biotit-Plagioklas-Quarz
- 2. Granat-Muskovit-Biotit-Plagioklas-Quarz
- 3. Granat-Sillimanit/Kyanit-Biotit-Plagioklas-Quarz
- 4. Sillimanit/Kyanit-Biotit-Plagioklas-Quarz

Zusätzlich ist der unterschiedliche Grad retrograder Umwandlung zu berücksichtigen. So bildet sich Serizit auf Kosten von Plagioklas und Sillimanit, Chlorit auf Kosten von Biotit und Granat. Die alterierten Gesteine können somit in nur drei Gruppen zusammengefaßt werden:

- 5. Muskovit-Chlorit-Plagioklas-Quarz
- 6. Biotit-Muskovit-Chlorit-Plagioklas-Quarz
- 7. Biotit-Granat-Muskovit-Chlorit-Plagioklas-Quarz

Quarz und Plagioklas zeigen in kataklastisch nicht beanspruchten Partien ein polygonales Pflastergefüge mit ebenen bis leicht gekrümmten Korngrenzen. Quarz ist vor allem in leukokraten Mobilisaten häufig von Bahnen sekundärer Fluideinschlüsse durchzogen. Plagioklas wird in vielen Fällen von lichtmikroskopisch nicht aufzulösenden Einschlüssen getrübt. In stärker alterierten Partien sind die Plagioklase zum Teil vollkommen serizitisiert. In einigen Fällen kann auch Saussuritisierung beobachtet werden.

Biotit zeichnet sich vor allem in Aluminium-Silikat- und Granat-führenden Gesteinen durch seine kräftige rotbraune Färbung aus. Bei der Chloritisierung wird Ti in auffälligen Sagenit-Gittern ausgeschieden. In den Biotit-Muskovit-Gneisen dominieren dunkelbraune Biotite.

Serizit ersetzt Plagioklas und/oder Sillimanit. In Serizit-Filzen treten häufig größere Quer-Muskovite auf. Zur Bildung neuer Hellglimmer kommt es offensichtlich auch bei der Chloritisierung der Biotite. BIO

Abb. B.3.1: Die kennzeichnende Paragenese Granat-Sillimanit-Biotit in einem Paragneis aus der Probe HC0728 (die lange Bildkante entspr. 2,6 mm, // Nic.).

Abb. B.3.2: Zonierter und rotierter Granat mit poikiloblastischem Kern und einschlußarmen Saum in einem Granat-Sillimanit-Biotit-Gneis der Probe HC0512. Die ehemaligen Sillimanit-Bahnen sind völlig zu Serizit umgebildet (die lange Bildkante entspr. 2,2 mm, // Nic.).

Abb. B.3.3: Sillimanit verdrängt Kyanit in der Probe HC0720. Die isolierten kleinen Kyanit-Körner im dichten Sillimanit-Filz besitzen dieselbe optische Orientierung. Dies weist darauf hin, daß es sich ursprünglich um dasselbe Kyanit-Korn gehandelt hat (lange Bildkante entspr. 0,6 mm, // Nic.).

Abb. B.3.4: Völlig alterierter Granat-Muskovit-Biotit-Gneis aus der Probe HC0720. Die Basisspaltbarkeit der ehemaligen Biotite wird von Rutil- und Ilmenit-Einschlüssen nachgezeichnet. Die einschlußfreien Chlorit-Aggregate in der Bildmitte sind Pseudomorphosen nach Granat. Die größeren, nichtorientierten Opakkörner bestehen weitgehend aus Pyrrhotin (lange Bildkante entspr. 2,6 mm, // Nic.). Sillimanit scheint Biotit zu verdrängen und kommt gewöhnlich in fibrolithischen Aggregaten vor, die zum Teil mit stengeligen-Sillimanit-Blasten verwachsen sind (Abb. B.3.1). In stärker alterierten Gneisen sind Hellglimmer-Pseudomorphosen nach Sillimanit (Abb. B.3.2.) verbreitet. Vor allem in den oberen Teufenbereichen bis ca. 750 m tritt neben Sillimanit oft auch

Kyanit in kleineren rundlichen Einzelkörnern auf. In vielen Fällen kann beobachtet werden, daß kleinere Kyanit-Körner mit derselben optischen Orientierung in einem dichten Fibrolith-Filz stecken (Abb. B.3.3). Es handelt sich also um Relikte einer Verdrängung durch Sillimanit.

Es können in der Regel zwei **Granat**-Generationen beobachtet werden (vgl. RÖHR et al. 1990). Während Granat I zumeist als poikiloblastischer Kernbereich mit Quarz-, Plagioklas- und Apatit-Einschlüssen zu erkennen ist, umgibt Granat II als subidiomorpher, einschlußfreier Anwachssaum die poikiloblastischen Kerne (Abb. B.3.2.); daneben tritt er in kleineren einschlußfreien und subidiomorphen Einzelindividuen auf (Abb. B.3.1).

Chlorit hat sich generell auf Kosten von Granat oder Biotit gebildet. Pseudomorphosen nach Biotit sind an den Opak- und Rutil-Einschlüssen zu erkennen, die in ihrer Anordnung die Basisspaltbarkeit der Biotite nachzeichnen (Abb. B.3.4).

Verbreitete Akzessorien sind Rutil, gelegentlich Anatas, Apatit, Zirkon, Epidot/Klinozoisit und Opakminerale. Apatit kann bisweilen lagig angereichert vorkommen (s.u.). Vereinzelt wurden auch zonierter Turmalin und Monazit beobachtet.

Sillimanit/Kyanit, Granat und Biotit bilden Kontaktparagenesen, (Abb. B.3.1) wobei sich die in der Vorbohrung bereits festgestellte Tendenz betätigt, daß die Häufigkeit von Kyanit mit zunehmender Teufe zugunsten von Sillimanit abnimmt (RÖHR et al., 1990). Muskovit scheint stabil neben Quarz vorzuliegen; die Aluminiumsilikate koexistieren nicht mit K-Feldspat. Röntgenographisch gelegentlich festgestellter K-Feldspat stammt, wie sich in vielen Fällen zeigen ließ, aus Lamprophyranteilen in der Cuttingsprobe oder aus spät angelegten und mit Adular verheilten Fugen.

B.3.2. Plagioklas-reiche, Kalksilikat-führende Gneise

Diese Gesteine stehen am Bohrplatz an und wurden von ROHRMÜLLER (1988) als Epidot/Klinozoisit-führende Muskovit-Biotit-Gneise beschrieben. Sie treten in den ersten 16 Metern der Hauptbohrung auf und weiter in den Teufenbereichen von 243 m bis 247 m und von 947 m bis 994 m. Vor allem im Intervall von 947 bis 994 m sind die Hangend- und Liegendgrenze dieses Gesteinstyps in den Cuttingsproben, wie auch in den RDA- und RFA-Analysen sehr klar zu fassen. Das läßt darauf schließen, daß es keine allmählichen Übergänge zu den umgebenden Paragneisen gibt. Die Plagioklas-reichen und Quarz-armen Gneise besitzen offenbar kein Äquivalent in der Vorbohrung. Die wesentlichen Komponenten sind stark serizitisierte Plagioklase, Chlorit (nach Biotit), oft quersprossende Muskovite und teilweise idiomorpher Epidot. Häufig findet sich Calcit in diskordanten Gängchen.

Plagioklas ist stets stark getrübt und serizitisiert. Epidot tritt zum Teil in bis zu 0.5 mm großen und idiomorphen Einzelkristallen auf. Biotit ist im vorliegenden Material weitgehend von Chlorit ersetzt. Darauf weisen reliktische Sagenit-Gitter, Biotit-Einschlüsse und -Lamellen sowie eine deutliche Anreicherung von Ti-Mineralen in Chlorit hin (Abb. B.3.5). Diese Chlorite besitzen einen optisch positiven Charakter und blauviolette Interferenzfarben. Eine (nach ROHRMÜLLER, 1988) zweite Generation von Chlorit tritt in Aggregaten von feinfilzigen Büscheln oder kleinen geldrollenartigen Paketen auf (Abb. B.3.5) und besitzt nach der etwas schwächeren Eigenfarbe und den bräunlich-violetten Interferenzfarben eine Mg-reichere Zusammensetzung. Im Gegensatz zu den Chloriten nach Biotit treten in diesem Chlorit-Typ kaum Einschlüsse Ti-haltiger Phasen auf.

Mit Biotit und Chlorit vergesellschaftet sind große Muskovite (bis 0.5 x 2 mm), die offenbar ebenfalls als Biotit-Abbauprodukt verstanden werden müssen (Abb. B.3.5). Es kann auch beobachtet werden, daß bis zu 1 mm große Muskovite in völlig serizitisierten Plagioklasen gebildet wurden. Rutil wird, ähnlich wie in den Kalksilikat-Gesteinen (s.u.), häufig von farblosem Titanit umsäumt (Abb. B.3.6).

B.3.3 Hornblende-Biotit-Gneise

Dieser Gesteinstyp tritt in untergeordneten Anteilen in Amphibolit-Paragneis-Wechsellagerungen von 290 - 312 m und von 505 -523 m oder in den Randbereichen der Amphibolitfolge von 1183 m bis 1410 m auf. Hauptbestandteile sind Plagioklas, Quarz, grüne Hornblende und Biotit. Oft kann auch Granat beobachtet werden. Untergeordnet treten Apatit, Epidot und Titanit auf (Abb. B.3.7).

B.3.4.Kalksilikat-Gesteine und Kalksilikat-Marmore

Auch diese Gesteinsgruppe tritt nur sehr untergeordnet auf, meist in den Randbereichen der Ampibolit-Körper, vergesellschaftet mit Lamprophyren oder als massive Einschaltung im Bereich zwischen 305 und 309 m. Oft führen die Kalksilikat-Gesteine auch Karbonate. Bisweilen treten Kalksilikat-führende Marmore auf (HC0306, HC0308). Die Hauptminerale sind Plagioklas, grüne Hornblende, Epidot/Klinozoisit, Titanit, Calcit und vereinzelt Granat. In einigen Cuttings wurden besonders hohe Titanitgehalte in Form von Titanit-umsäumten Rutilen beobachtet (Abb. B.3.6). In den mit Amphiboliten und Lamprophyren auftretenden Kalksilikat-Gesteinen sind bisweilen nadelige und fast farblose Amphibole zu beobachten.

Abb. B.3.5: Plagioklas-reicher, Kalksilikat-führender Gneis der Probe HC0014. Deutlich sind die beiden Chlorit-Typen in einer Plagioklas-Matrix zu erkennen. Muskovit ist mit dem pseudomorph nach Biotit entstandenen Chlorit verwachsen (lange Bildkante entspr. 1,8 mm, // Nic.).

Abb. B.3.6: Fast farbloser Titanit-Saum um einen Rutil-Kern in der Probe HC0409 (lange Bildkante entspr. 0,2 mm, // Nic.).

Kleine Kalksilikat-Linsen in Paragneisen, wie sie im Teufenintervall von 2220 bis 2360 m der Vorbohrung auftreten, können wegen der unbekannten Verbandsverhältnisse nicht als solche nachgewiesen werden. Die bei RÖHR et al. (1988) beschriebenen Apatitanreicherungen wurden aber in ähnlicher Form - z.B. in der Probe HC0302 - gefunden. In Kalksilikat-Gesteinen der Probe HC0320 wurden Klinopyroxene neben grüner Hornblende, Plagioklas und Epidot beobachtet.

Abb. B.3.7: Beispiel eines Hornblende-Biotit-Gneises aus der Probe HC1260 (lange Bildkante entspr. 2,2 mm, X Nic.).

B.3.5 Mineralogische und chemische Zusammensetzung der Paragneise

mit dem Röntgendiffraktometer gemessene mineralogische Die Zusammensetzung der Paragneise weicht teilweise von den im Gesteinsnamen verwendeten Mineralparagenesen ab. Diese Abweichungen beruhen auf dem methodischen Unterschied zwischen Gesteinsansprache und Röntgendiffraktometeranalyse. Bei der Gesteinsansprache im Binokular oder im Dünnschliff werden noch erkennbare ursprüngliche Paragenesen bestimmt, während mit dem Röntgendiffraktometer die tatsächliche mineralogische Zusammensetzung gemessen wird. Umwandlungen von Biotit zu Chlorit und Plaqioklas oder Sillimanit zu Serizit sind typische Beispiele einer unterschiedlichen Zuordnung der beiden Methoden. Daher liegen für das Gestein namensgebende Minerale wie Sillimanit, Kyanit, Biotit oder Granat teilweise unter der Nachweisgrenze (1 bis 3 Gew.%).

Die Darstellung der Konzentrationen von Hauptmineralen, ausgewählten chemischen Hauptbestandteilen und Spurenelementen als Teufenlog in den Abbildungen B.3.8 und B.3.9 ermöglicht die Charakterisierung der Paragneiseinheiten. Starke Alteration wird durch hohe Chlorit-Konzentrationen bei nur vereinzelt nachweisbarem Biotit z.B. in den ersten Gneiseinheiten von 0 – 500 m angezeigt. Mit dem Röntgendiffraktometer vereinzelt nachgewiesener Titanit, Kalzit, Klinnopyroxen und Skapolith in den Gneisen von 390 – 484 m zeigt zusammen mit erhöhten Fe_2O_3 -, MgO-, CaO- und Nb- Gehalten die dort vorkommenden Kalksilikat-Einschaltungen an.

In den Granat-Sillimanit-Biotit-Gneisen von 546 - 1180 m ist ein deutlicher Trend von einem frischen, Grranat- und Biotitführenden Bereich mit Quarz-Gängen und Quarz-Mobilisatenn zu einer stärker alterierten Zone zu erkennen.

Eine Granat-Amphibolit-Einschaltung von 1450 - 1458 m hebt sich durch die Änderungen im Chemismmus gegenüber dem umgebenden frischen Granat-Sillimanit-Biotit-Gneis ab. Der frische Granat-Sillimanit-Biotit-Gneis von 1586 m bis zur Berichtsteufe 1720 m hat niedrige Muskovit-Gehalte, die teilweise unter der Nachweisgrenze liegen.

Abb. B.3.8 Mineralogische Zusammensetzung der Paragneise 0 - 1720m

-B24-

- B 25 -

Abb. B.3.9 Ausgewählte chemische Hauptbestandteile der Paragneise 0 - 1720m

- B 26 -

B.4 Metabasite

B.4.1 Petrographie

Hauptgemengteile in den Amphiboliten sind Hornblende und Plagioklas. Nebengemengteile sind Klinopyroxen, Quarz, Granat sowie die Produkte der retrograden Metamorphose Biotit, Chlorit, Calcit und Epidot/Klinozoisit. Als Ti-Phasen treten Ilmenit, Rutil sowie Titanit, oft als Saum um Ilmenit oder Rutil, auf. In den Metabasiten III (1183 - 1410 m) ist das Wachstum von Ilm-Hbl-Symplektiten (Abb. B.4.1, z.T. auf Kosten von Titanit) zu beobachten. Akzessorien sind Apatit und Zirkon. Epidot, Prehnit, Laumontit und Adular treten als Kluftmineralisationen auf.

Soweit die Cuttings-Dünnschliffe eine Beurteilung zulassen, überwiegen nicht bis wenig foliierte Amphibolite. Eine ausgeprägte Foliation, die durch eine Formregelung der Hornblenden definiert wird, ist nur in wenigen Proben zu beobachten.

In der Vorbohrung wurde auf Grund von Gefügemerkmalen (reliktische ophitische Gefüge) zwischen Meta-Gabbros und Amphiboliten unterschieden. Da der Beobachtungsmaßstab in den Cuttings-Dünnschliffen eine sichere Unterscheidung nicht zuläßt, wird auf eine derartige Einteilung verzichtet.

In den Proben HC0182, HC0184 und HC1268 treten Chlorit-Hornblendite auf, die als Meta-Ultramafitite interpretiert werden können. Der Volumenanteil an der Dünnschliffprobe liegt unter 2 %. Bestandteile sind Mg- und Mg-Fe-Chlorit, reliktische Hornblende und eine Opakphase.

Mineralbestand und Gefüge der Metabasite spiegeln drei Entwicklungsstadien wieder: (1) eine frühe Hochdruckmetamorphose, (2) eine dominierende amphibolitfazielle Prägung sowie (3) eine retrograde grünschiefer- bis zeolithfazielle Überprägung.

Zu 1: Relikte des frühen Hochdruckstadiums

Als Relikte des frühen Hochdruckstadiums werden Einschlüsse von feinkörnigen Cpx-Plg-Symplektiten in braunen (Ti-reichen) Hornblenden interpretiert (Abb. B.4.2). Diese Symplektite entstanden nach SIGMUND et. al (1990) bei der amphibolitfaziellen Überprägung aus omphazitischem Klinopyroxen. Sie werden bei weiterer Anpassung an die amphibolitfaziellen p-T-Bedingungen in Hbl-Plg-Symplektite und poikiloblastische grüne Hornblende umgewandelt.

Cpx-Plg-Symplektite wurden nur in wenigen Proben der Metabasite III beobachtet. In den Metabasiten I und II treten nur poikiloblastische grüne Hornblenden und sehr selten Hbl-Plg-Symplektite auf. In den Metabasiten III finden sich häufig Säume aus z.T. stark getrübtem Plagioklas um Granat (Abb. B.4.3). Sie entstehen nach SIGMUND et al. (1990) bei der amphibolitfaziellen Überprägung der Hochdruck-Paragenesen und können als Indiz für ein Hochdruckstadium interpretiert werden.

Abb. B.4.1 : Symplektitartige Verwachsungen von Hornblende und Ilmenit. (DS HC1308, lange Bildkante entspr. ca. 2.2 mm, // Nic.).

Abb. B.4.2 : Einschlüsse von Klinopyroxen-Plagioklas-Symplektiten in brauner Hornblende. (DS HC1252, lange Bildkante entspr. ca. 1.4 mm, // Nic.).

Zu 2: Dominierende amphibolitfazielle Prägung

Die dominierende Metamorphose und Gefügeprägung der Metabasite erfolgte unter amphibolitfaziellen p-T-Bedingungen. Die charakteristische Paragenese ist grüne Hornblende + Plagioklas. Das Auftreten von Klinopyroxen ist auf kalksilikatische Lagen beschränkt.

Die Hornblenden sind z.T. chemisch inhomogen mit unregelmäßig über das Korn verteilten grünen oder braunen Domänen, oder zeigen Zonarbaustrukturen mit braunem Kern und grünem Rand. In den Metabasiten III (1183 - 1610 m) sind in den braunen Hornblenden durch Anpassung an niedrigere Temperaturen induzierte Ausscheidungen von Rutil zu beobachten. In kataklastisch unbeanspruchten Bereichen zeigen Hornblende und Plagioklas häufig granoblastisch-polygonale Gefüge mit Großwinkelkorngrenzen und geraden bis leicht gekrümmten Korn- bzw. Phasengrenzen.

Zu 3: Grünschiefer- bis zeolithfazielle Überprägung

Die grünschiefer- bis zeolithfazielle retrograde Metamorphose ist außer in Scherzonen nicht mit einer grundlegenden Neueinstellung der Gefüge verbunden. Die beobachteten Reaktionen sind weitgehend vom Typ pseudomorpher Ersatz. Der Grad der retrograden Überprägung ist beträchtlichen Schwankungen unterworfen, nimmt aber von den Metabasiten I zu den Metabasiten III ab.

Hornblende wird ausgehend von Korn- bzw. Phasengrenzen, Brüchen oder entlang den Spaltbarkeiten pseudomorph durch Aktinolith oder aktinolithische Hornblende, Chlorit oder selten Biotit bzw. Epidot ersetzt (Abb. B.4.4). Die Neubildung von idiomorphem Aktinolith ist selten zu beobachten (Abb. B.4.5). Weitere Reaktionen sind Ersatz von Biotit durch Chlorit, der Ersatz von Granat durch Chlorit <u>+</u> Epidot, sowie das Wachstum von Epidot/-Klinozoisit oder Zoisit auf Kosten der Anorthit-Komponente der Plagioklase.

Der überwiegende Deformationsmechanismus bei den Hornblenden und Plagioklasen ist Kataklase. In einzelnen diskreten Scherzonen kann eine Korngrößenreduktion bis in den submikroskopischen Bereich sowie intensive plastische Deformation beobachtet werden.

B.4.2 Chemische Zusammensetzung der Metabasite

Datenbasis für die geochemische Interpretation der Metabasite sind die RFA-Analysen von Cuttings-Proben aus dem KTB-Feldlabor. Neben Veränderungen im Chemismus bei der Metamorphose sind auch die durch die Art des Probenmaterials bedingte unvollständige Kontrolle über Repräsentativität, Homogenität, Alterationsgrad, Kontamination (Nachfall, Kluftmineralisationen, Mobilisate) sowie Verdünnungseffekte zu berücksichtigen.

Die folgenden Angaben beziehen sich deshalb nur auf Proben, die nach Dünnschliffbeobachtungen und Datenbankabfragen weitgehend frei von Gneis-Nachfall und Kluftmineralisationen sind.

Abb. B.4.3 : Säume von stark alteriertem Plagioklas um Granat. (DS HC1386, lange Bildkante entspr. ca. 2.2 mm, // Nic.).

Abb. B.4.4 : Pseudomorpher Ersatz von Hornblende durch Chlorit und Epidot und Ersatz von Hornblende durch Chlorit ausgehend von den Spaltbarkeiten. (DS HC0092, lange Bildkante entspr. ca. 2.2 mm, x Nic.).

Abb. B.4.5: Neubildung von idiomorphem Aktinolith in stark retrograd überprägtem Amphibolit. (DS HC0168, lange Bildkante entspr. ca. 0.56 mm, x Nic.).

Besonders bei den Metabasiten III (1183 - 1410 m) sind zusätzlich Veränderungen im Chemismus durch die starke kataklastische Überprägung zu erwarten (s.a. ZULAUF 1990).

Alle drei Metabasit-Komplexe zeigen basaltischen Hauptelementund Spurenelementchemismus. Einen Überblick über die chemische Zusammensetzung gibt Tabelle B.4.1. Die Metabasite I (69 – 203 m) und III sind mit 46.0 – 55.0 % SiO₂ hy- bis q-normativ (CIPW-Norm, berechnet mit Fe_2O_3 -/FeO=0.15). Die Metabasite II (309 – 329 m) sind dagegen mit 43.2 – 45.8 Gew.-% SiO₂ deutlich SiO₂-ärmer und ne-normativ (bis ca. 7 % ne).

Um eine vergleichende Übersicht über die einzelnen Metabasitkomplexe zu ermöglichen, sind in der Abb. B.4.6 der Mg-Wert als Fraktionierungsindex (Mg#=100*MgO/(MgO+FeO_{total}) sowie Cr, Ni, TiO₂, Zr, Nb, Zr/Y, Zr/Nb und Ti/V in Form eines Teufenlogs dargestellt. Einen Überblick über die Modalbestände gibt Abb. B.4.7. Die Teufenangaben beziehen sich auf die Lag-Teufe, nicht auf die Profil-Teufe. Die Metabasite III sind auf Grund der starken Kontamination mit Gneis-Nachfall erst ab einer Lag-Teufe von 1200 m dargestellt.

Bei relativ konstanten Elementverhältnissen (z.B. Zr/Y) zeigen der Mg-Wert und die Gehalte der kompatiblen und der inkompatiblen Elemente erhebliche, meist gegenläufige Variationen. In der Regel ist nur das generelle Muster, wie z.B. die Abnahme der Cr und Ni-Gehalte bei gleichtzeitiger Zunahme der inkompatiblen Elemente, sinnvoll interpretierbar. Eine Reihe kleinerer und

	Metab	asite I	(n=65)	Metab	Metabasite II (n=10)			Metabasite III (n=70)			
(Gew%)	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	b. rch	
SiO2	46.0	55.0	50.9	43.2	45.8	44.5	47.1	54.8	51 0	ns c	
TiO2	0.89	2.03	1.44	1.86	2.08	1.95	1.10	3.39	1 86	h.	
A1203	13.2	16.5	14.7	12.6	14.3	13.6	13.8	17.0	15 5	р. 4 ц. •	
Fe203	8.3	12.1	9.7	11.5	12.6	12.1	7.3	13.8	9 7	← ⊢	
MnO	0.12	0.18	0.15	0.18	0.20	0.19	0.11	0.20	0.15	Ċ.	
MgO	5.5	8.7	6.9	6.2	7.8	7.0	4.9	7.7	6.1	C L	
CaO	5.40	8.49	7.44	8.48	12.52	10.96	4.95	8.89	7.41	le	
Na20	2.6	4.5	3.5	2.3	2.9	2.7	2.7	4.0	3.2	r ni	
K20	0.60	2.02	1.14	0.89	1.30	1.08	0.71	1.57	1.06	Me	
P205	0.15	0.60	0.27	0.34	0.39	0.37	0.13	0.40	0.23	et h	
S	0.0	0.6	0.1	0.1	0.7	0.2	0.1	0.6	0.2	a b	
(ppm)										Zus asi	
Sr	229	437	308	268	371	315	198	326	271	ce	
Rb	26	103	52	22	39	30	13	50	274	пe	
Y	20	44	32	31	34	33	18	15	30	Ì	
Zr	78	237	149	150	170	161	94	207	131	Цo	
Nb	4	17	9	18	22	21	8	207	13	T ct	
Cr	68	249	141	157	236	189	47	215	132	u u	
Ni	30	97	56	102	170	127	16	116	53	d no	
Zn	81	145	102	92	116	103	71	125	89	н	
V	135	261	201	252	290	273	143	435	239	Ľ 🦳	
Cu	22	112	40	42	67	55	29	71	39	- A	
Th	< 5	8	-	< 5	< 5		< 5	9	-	n	
U	< 5	< 5	-	< 5	< 5	-	< 5	< 5	1211	i m	

mum, Maximum und

- B 32 -

Abb. B.4.6 : Teufenlogs der Parameter Mg-Wert, Cr (ppm), Ni (ppm), TiO₂ (Gew.-%), Zr (ppm), Nb (ppm), Zr/Y, Zr/Nb und Ti/V für die Metabasite I bis III (RFA-Daten, KTB-Feldlabor).

70 80 90 100 120 130 140 150 160 170 180 190 100 100 101 120 130 140 150 160 170 180 190 100 100 100 100 100 100 100 100 100 100 100 100									ևուհակակակակակակակակակակելը
320									FALL
1200 1210 1210 1220 1200 1200 1200 1200 1200 1200 1200 1300 10								and a second sec	հարտհարտհարտհարտհարտհարտհարտհարտհարտհարտ
QRZ	PLG	HBL	GNT	CHL	EPD	PRE	E MgC) CaO	

Abb. B.4.7 : Teufenlogs der Modalbestände (RDA-Daten, KTB-Feldlabor) an Quarz (QRZ), Plagioklas (PLG), Hornblende (HBL), Granat (GNT), Chlorit (CHL), Epidot (EPD), Prehnit (PRE) sowie der Gehalte an MgO (Gew.-%) und CaO (Gew.-%, RFA-Daten).

z.T. sehr scharfer Peaks ist nur schwer erklärbar und dürfte auf Effekte wie z.B. Kontamination (s.o.) zurückzuführen sein.

Die Werte für MgO, Mg#, Cr und Ni der Metabasite I bis III liegen im Bereich 4.86 - 8.69 Gew.-%, ca. 30 - 51, 47 - 249 ppm und 16 - 170 ppm. Diese niedrigen Werte sprechen gegen das Vorhandensein mächtigerer Einschaltungen von Meta-Ultramafititen, wie sie aus den entsprechenden Metabasitkomplexen in der Vorbohrung beschrieben wurden (bis zu 24 Gew.-% MgO, 870 ppm Cr und ca. 500 ppm Ni, STROH et al. 1988). Da die Meta-Ultramafitite bei ca. 182 m nur einen kleinen Cr-, Ni- und MgO-Peak verursachen, ist damit zu rechnen, daß sehr geringmächtige Einschaltungen von Meta-Ultramafititen auf Grund eines Verdünnungseffektes nicht mehr eindeutig detektiert werden können.

Innerhalb der Metabasitkomplexe I und III sind Cr bzw. Ni mit den Mg-Werten positiv und mit den inkompatiblen Elementen negativ korreliert. Das bedeutet, daß die chemischen Variationen theoretisch durch Akkumulations-/Fraktionierungsprozesse erklärbar sind.

In der Abb. B.4.8a sind die wenig mobilen inkompatiblen Elemente Ti, Y, Nb und P gegen Zr als Fraktionierungsindex aufgetragen. Die Gehalte aller drei Gruppen liegen im Bereich 0.89 – 3.39 Gew.-% TiO_2 , 18 – 45 ppm Y, <5 – 22 ppm Nb, 0.13 – 0.6 Gew.-% P_2O_5 und 78 – 237 ppm Zr.

Im Vergleich zu den Metabasiten I sind bei entsprechenden Zr-Gehalten die Metabasite III z.T. deutlich angereichert an Nb und TiO₂ und weniger deutlich ausgeprägt an Y. Im Gegensatz dazu zeigen die Metabasite II nur eine signifikante Anreicherung von Nb und eine wenig ausgeprägte Anreicherung von TiO₂ bei vergleichbaren Zr-Gehalten.

Die durchschnittlichen Werte für Zr/Nb und Zr/Y für die Metabasite I, II und III liegen bei ca. 18, 8 und 10 bzw. ca. 5, 5 und 4. Die Ti/Zr-Verhältnisse liegen bei ca. 60, 81 und 71. Die Werte für Ti/V entsprechen mit ca. 30 bis 56 den Werten für MORB bzw. Intraplattentholeiiten (SHERVAIS 1982, s.a. Abb. B.4.6: Ti/V).

Der subalkaline tholeiitische Chemismus der Metabasite I wird belegt durch die TiO₂-, Zr- und Nb-Gehalte, die Y/Nb-Verhältnisse (>1.5, s.a. PEARCE & CANN 1973) sowie die positive Korrelation von TiO₂, V und FeO mit FeO/MgO. Die ne-normativen Metabasite II liegen wie die Metabasite III im Übergangsbereich zu alkalinen Zusammensetzungen (niedrigere Zr/Nb-Verhältnisse, höhere TiO₂- und Nb-Gehalte). Im Zr/P₂O₅-TiO₂-Diagramm zur Unterscheidung von Tholeiiten und Alkalibasalten von WINCHESTER & FLOYD (1976), Abb. B.4.8b, liegen sie z.T. im Tholeiit- und z.T. im Alkalibasaltfeld.

Das Diagramm Zr vs. TiO₂ (PEARCE 1982, Abb. B.4.8b) ermöglicht einen Vergleich bereits vorliegender chemischer Daten der ZEV-Metabasite mit den Ergebnissen der Cuttings-Proben.

Abb. B.4.8a : Variationsdiagramme Zr vs. TiO_2 , Y, Nb und P_2O_5 für die Metabasite I bis III. Abb. B.4.8b : Diagramme Zr vs. TiO_2 (PEARCE 1982) und Zr/P_2O_5 vs. TiO_2 (WINCHESTER & FLOYD 1976). Signaturen : \Box = Metabasite I (69 - 203 m), \blacksquare = Metabasite II (309 - 329 m), + = Metabasite III (1183 - 1410 m) Die Analysenpunkte liegen im Bereich der Intraplattenbasalte (Metabasite I und II) bzw. streuen als Folge der höheren Ti/Zr-Verhältnisse über das MORB- und Intraplattenfeld.

Eine genetische Interpretation ist auf Grund der oben angeführten Gründe problematisch und soll hier nicht versucht werden. In Abb. B.4.9 ist die Bandbreite der Zusammensetzungen der Metabasite I bis III in MORB-normierten Vatiationsdiagrammen dargestellt. Die Anreicherung der inkompatiblen Elemente vom TiO₂ bis zum Nb und insbesondere die Zr/Y- und Zr/Nb-Verhältnisse aber sprechen für Edukte mit einer Zusammensetzung vergleichbar mit E-type-MORB oder Intraplattentholeiiten.

Abb. B.4.9 : MORB-normierte Variationsdiagramme (Daten für MORB aus PEARCE 1981) für die Metabasite I bis III.

B.5 Lamprophyre

Lamprophyre treten in den Teufenbereichen um 74 m (1 m mächtige Gänge), sowie gehäuft zwischen 410 und 451 m, 728 und 751 m (jeweils cm- bis dm-mächtige Gänge) und zwischen 1534 und 1600 m (m-mächtige Gänge) auf. Eine eindeutige Lokalisierung der Gesteine im Bohrprofil anhand der Cuttings ist aufgrund der häufig geringmächtigen Ausbildung und der Vermischung mit Nachfall nur begrenzt möglich. Zuverlässiger läßt sich die Lage im Profil anhand eines deutlichen Anstiegs der natürlichen Gammastrahlung festlegen.

Die meist braunen, fein- bis mittelkörnigen, dichten Lamprophyre durchschlagen Gneise und kataklastische Amphibolite. Über die Verbandsverhältnisse lassen sich mit Hilfe der Cuttinganalysen nur indirekte Aussagen machen.

Im Mikroskop kann ein weiteres Spektrum an Gefügetypen und Mineralbeständen unterschieden werden. In der Regel wird das Bild von einem sperrigen Grundmassengefüge mit Einsprenglingen von Hornblende, Biotit und Plagioklas geprägt (Abb. B.5.1). Die Plagioklasleisten können vollständig sericitisiert sein. In HC1541 zeigen die Plagioklase deutlichen Zonarbau. Die Regelung der Plagioklaseinsprenglinge bildet in z.B. DS HC0415K und HC1544 eine Fließtextur ab.

Pseudomorphosen, vermutlich überwiegend nach Olivin mit rautenförmigen und sechseckigen Querschnitten bestehen aus Aktinolith, Calcit, Chlorit und weiteren Schichtsilikaten (Abb. B.5.2). Olivin ist nirgends erhalten. Klüfte sind mit Epidot, Prehnit, Adular und Kalzit verheilt.

Aus neun Teufenbereichen (HC0074, HC0410, HC0432, HC 0739, HC0749, HC1540, HC1542, HC1550, HC1562) wurden 16 reine Lamprophyrproben unter dem Binokular für RFA- und RDA-Analysen separiert (Tab. B.5.1). Nach mikroskopischen Kriterien wurden von einer Probe bis zu drei Varietäten unterschieden. Aussagen über eine eventuelle Zonierung der Gänge sind daraus allerdings nicht abzuleiten. Nach Mineralbestand und chemischer Zusammensetzung handelt es sich um Kalkalkali-Lamprophyre.

- Es lassen sich zwei Varietäten unterscheiden (vgl. Tab. B.5.1): - Spessartite in den Teufenbereichen um 74 m und zwischen 1534 und 1600 m sind gekennzeichnet durch Hornblende als dominierenden dunklen Gemengteil. Plagioklas dominiert gegenüber Kalifeldspat, Quarz fehlt.
- Kersantite im Teufenbereich zwischen 410 und 451 m sowie zwischen 728 und 751 m zeigen deutliche Quarzgehalte sowie ebenfalls eine Vormacht von Plagioklas gegenüber Kalifeldspat. Hornblende fehlt, Biotit kann unter dem Mikroskop beobachtet werden, liegt jedoch unter der Nachweisgrenze der RDA. Bei der Probe HC0410 handelt es sich um ein Zwischenglied von Kersantit und Minette; die Gehalte an Kalifeldspat und Plagioklas sind gleich, das Gestein ist reich an Biotit.

Abb. B.5.1: Aktinolithpseudomorphose in feinkörnigem Lamprophyr, vermutlich nach Olivin. In der Pseudomorphose sind kleine idiomorphe Pyritkristalle sowie Andeutungen von bis zu 5 μ m großen Spinellen zu erkennen. (Probe HC1540, lange Bildkante entspr. 0.56 mm, // Nic.)

Abb. B.5.2: Übersicht eines grobkörnigen Lamprophyrs mit Aktinolitheinsprenglingen in einer Plagioklasmatrix. (Probe HC1582, lange Bildkante entspr. 1.41 mm, x Nic.)

Abb. B.5.3: Idiomorphe Spinell-Einzelkörner, wahrscheinlich in Olivin-Pseudomorphosen in einem Lamprophyr. Hellgraue, dünne Säume bestehen möglicherweise aus Magnetit. Pyrit bildet Einzelkörner (weiß).

(Probe HC0436, Ölimm., lange Bildkante entspr. 300 µm, // Nic.)

Nach den RFA- und RDA-Analysen unterscheiden sich die Lamprophyre im Vergleich zu denen der Vorbohrung durch eine Vormacht von Amphibolen gegenüber Biotit. Der dominierende Anteil von Plagioklas gegenüber Kalifeldspat wurde auch in der Vorbohrung beobachtet. Erwähnenswert ist, daß in den Teufenbereichen bei ca. 74 m und zwischen 1540 und 1562 m Quarz fehlt. In den Lamprophyren der Vorbohrung ist Quarz stets vorhanden (z.B. RÖHR et al. 1989).

Erzmineralisation

Die Erzmineralisation in den Lamprophyren ist sehr feinkörnig. Einzelkörner erreichen nur selten Größen bis 50 μ m. Weit verbreitet sind oxidische Ti-Phasen (Anatas, Leukoxen) aus der Ilmenit-Alteration in der Grundmasse des Gesteins. Ilmenit ist nur noch selten reliktisch erhalten; er zeigt stengelige Formen und wird von mehr oder weniger stark ausgebildeten Titanit-Säumen umgeben.

Idiomorphe Spinelle mit quadratischen Umrissen erreichen selten eine Korngröße von 35 μ m (HC1540); zumeist wird das Mineral in Gruppen von Induviduen mit Korndurchmessern von 5 – 20 μ m in Pseudomorphosen nach Olivin entdeckt. Wahrscheinlich handelt es sich bei diesem Mineral um den Cr-Spinell Picotit , der auch in Lamprophyren der Vorbohrung bestimmt wurde. Die dort häufigen Magnetit-Säume werden lokal auch hier vermutet (Abb. B.5.3).

Die geringe, disseminierte Sulfidmineralisation besteht aus meist <10 μ m großen Einzelkörnern von Pyrit, Chalkopyrit, Pyrrhotin und Sphalerit.

(Gew%) 1	grob HC0074	fein HC0074	misch HC0410	misch I HC0432	misch II HC0432	misch HC0739	misch HC0749	fein HC1540	grob HC1540	misch HC1542	fein HC1542	fein HC1550	fein HC1562	
SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 S	47.8 1.63 15.7 10.4 0.15 6.1 7.27 3.0 2.45 0.42 nd	46.6 2.11 15.1 12.2 0.18 7.4 5.23 2.9 2.16 0.44 nd	49.7 0.97 13.3 7.5 0.18 6.0 0.9 3.55 0.67 0.2	48.8 1.66 15.3 10.4 0.17 7.9 3.62 2.4 1.70 0.36 0.2	48.3 1.81 15.2 11.0 0.19 8.7 3.50 2.3 1.48 0.40 nd	47.3 1.76 14.7 10.3 0.19 9.2 4.41 1.7 1.02 0.42 nd	50.6 1.71 14.9 10.3 0.19 8.1 3.96 2.1 1.39 0.39 0.3	49.0 1.52 14.4 9.0 0.13 8.2 6.90 2.5 2.09 0.38 nd	48.0 1.56 14.5 9.1 0.14 8.5 6.81 2.1 2.46 0.42 nd	48.0 1.54 15.0 9.1 0.14 8.6 7.94 2.2 1.87 0.41 0.1	48.5 1.47 14.3 8.9 0.14 8.1 7.18 2.2 2.42 0.40 nd	48.1 1.51 14.0 8.7 0.14 8.2 7.97 2.2 2.15 0.40 nd	49.5 1.53 14.5 9.1 0.14 8.1 6.47 2.4 2.49 0.37 nd	
(ppm)														
Sr Rb Zr Nb Cr Ni Zn V Cu Th U	338 107 37 221 125 43 123 173 20 10 <5	190 114 37 213 20 166 60 149 194 25 9 <5	250 102 33 338 19 380 131 108 140 41 30 7	115 71 40 263 25 288 119 92 192 192 134 13 <5	105 60 41 257 23 328 125 90 199 28 14 <5	238 48 30 242 22 384 150 106 197 34 14 <5	216 56 31 239 21 350 145 105 185 23 23 14 <5	378 70 25 234 20 345 136 92 166 14 13 <5	433 84 25 242 20 373 155 96 166 28 14 <5	507 62 25 238 153 83 177 28 13 <5	384 84 25 234 20 349 139 88 167 21 15 <5	303 74 25 240 368 150 91 163 23 12 <5	365 86 26 234 21 367 148 85 166 27 12 <5	
CIPW-Norm	CIPW-Norm, berechnet mit Fe2O3/FeO = 0.2													
q or ab an c di hy ol mt il ap	0.0 15.4 27.0 23.6 0.0 9.8 2.3 15.8 1.9 3.3 1.0	0.0 13.7 26.3 23.4 0.0 1.1 12.3 15.6 2.3 4.3 1.1	$\begin{array}{c} 8.5\\ 23.8\\ 8.6\\ 24.7\\ 0.0\\ 4.3\\ 24.9\\ 0.0\\ 1.5\\ 2.1\\ 1.8\end{array}$	$\begin{array}{c} 4.9\\ 11.0\\ 22.2\\ 17.1\\ 4.2\\ 0.0\\ 34.3\\ 0.0\\ 2.0\\ 3.5\\ 0.9\end{array}$	4.6 9.5 21.2 16.0 4.8 0.0 37.1 0.0 2.1 3.7 1.0	7.0 6.7 16.0 21.2 4.2 0.0 38.2 0.0 2.0 3.7 1.1	$\begin{array}{c} 9.0 \\ 8.9 \\ 19.2 \\ 18.4 \\ 4.0 \\ 0.0 \\ 34.3 \\ 0.0 \\ 1.9 \\ 3.5 \\ 1.0 \end{array}$	0.0 13.2 22.7 23.5 0.0 8.5 21.0 5.5 1.7 3.1 0.9	$\begin{array}{c} 0.0\\ 15.7\\ 19.2\\ 24.7\\ 0.0\\ 7.1\\ 20.5\\ 6.9\\ 1.7\\ 3.2\\ 1.1 \end{array}$	0.0 11.8 19.8 27.2 0.0 9.6 18.0 7.9 1.7 3.1 1.0	0.0 15.4 20.1 23.7 0.0 9.6 19.8 5.8 1.6 3.0 1.0	$\begin{array}{c} 0.0\\ 13.7\\ 20.1\\ 23.7\\ 0.0\\ 13.1\\ 17.4\\ 6.3\\ 1.6\\ 3.1\\ 1.0 \end{array}$	$\begin{array}{c} 0.0\\ 15.7\\ 21.6\\ 22.8\\ 0.0\\ 7.1\\ 22.0\\ 5.0\\ 1.7\\ 3.1\\ 0.9 \end{array}$	
Modalbestand (RDA-Daten)														
KFS PLG AMF BIO QRZ CHL EPD PRH CAL TIT	9 35 32 nd 24	11 32 19 nd 17 20	19 18 nd 44 12 4	nd 39 nd 23 36 3	nd 51 34 14	44 nd 31	51 nd 37 11	15 41 37 nd 7	10 46 36 nd	10 46 35 nd 9	11 46 30 nd 13	14 43 34 nd 8	16 40 38 nd 6	

Tab. B.5.1: Chemische stand der Lamprophyre Zusammensetzung, CIPW-Norm und Modalbe-

- B 43 -

B.6 Erzmineralisation

Die Verteilung der Erzminerale in den Gesteinen ist meist erratisch und qualitativ wie quantitativ inhomogen. Eine Differenzierung in der Art bzw. Ausbildung des Opakmineral-Bestandes in Abhängigkeit von der Lithologie ist nur in Ausnahmefällen, z.B. hinsichtlich Ilmenit, Graphit und Spinell möglich. Die makroskopisch sichtbaren Erzminerale sind im wesentlichen Pyrit, Pyrrhotin, seltener Chalkopyrit oder Ilmenit. Eine Anreicherung disseminierter bzw. linsenförmiger sulfidischer Erzminerale ist häufig mit Graphit-führenden, kataklastisch überprägten Zonen zu korrelieren.

In Cuttings aus Kataklase-Zonen konnten Kluftbeläge aus Graphit und Pyrit identifiziert werden. Kleine, Millimeter-dünne, diskordante Sulfid-Gängchen durchziehen gelegentlich die Cuttings.

Supergene Alterationseinflüsse sind nur in unmittelbarer Nähe zur Erdoberfläche bzw. in tiefreichenden Störungszonen in Form von Eisenhydroxiden (Lepidokrokit) bis maximal 20 m Teufe aktiv. In stark gestörten bzw. geklüfteten Abschnitten finden sich lokal Goethit und Lepidokrokit und auch Covellin.

Mikroskopisch setzt sich der opake Mineralbestand der durchteuften Gesteine aus folgenden Mineralen zusammen, die nach der Häufigkeit ihres Auftretens aufgelistet sind:

Pyrit, Pyrrhotin, Chalkopyrit, Sphalerit, Pentlandit, Markasit, Galenit, Molybdänit, Covellin, Arsenopyrit

Ilmenit, Rutil, Anatas, Leukoxen, Titanit, Lepidokrokit, Magnetit, (Cr?-)Spinell, Hämatit, Goethit, Zirkon, Scheelit, Graphit.

Das Auftreten von Millerit wird vermutet.

B.6.1 Sulfidische Erzminerale

Pyrit und Pyrrhotin stellen die dominierenden sulfidischen Erzminerale dar.

Pyrit findet sich im wesentlichen in zwei verschiedenen Ausbildungen:

a): idiomorphe bis xenomorphe Einzelkörner in der Gesteinsgrundmasse weisen ein breites Korngrößenspektrum und vermehrt Einschlüsse aus teilweise assoziiertem Chalkopyrit und Pyrrhotin auf. Dieser Pyrit ist häufig stark kataklastisch deformiert; Chalkopyrit und wenig Galenit stellen Rißfüllungen dar; randnahe Markasit-Alterationen (HC0920) wurden identifiziert.

b): metablastisch gebildeter Pyrit besteht aus idiomorphen verwachsenen Einzelkörnern mit zahlreichen kantenparallelen Gesteinseinschlüssen. Die Aggregate erreichen Durchmesser bis 0.5 mm. Einlagerungen in Pyrit umfassen Graphit, Titanit, Rutil und Zirkon. Metablastischer Pyrit ist in höherem Maße Bestandteil alterierter Gesteinsabschnitte, was auf die Freisetzung des Fe aus Umwandlungen der gesteinsbildenden Minerale hinweist.

Das erste individuelle Auftreten von **Pyrrhotin** wurde in der Probe HC0288 registriert. Oberflächennäher tritt Pyrrhotin lediglich in Form von Einschlüssen in Pyrit auf. Teilweise sind diese <20µm großen, rundlichen Einschlüsse kogenetisch mit Chalkopyrit assoziiert.

Unterhalb 288 m bildet Pyrrhotin zumeist xenomorphe Einzelkörner und verwachsene Aggregate zwischen 20 und 500 μ m mit einer Häufung der Korngrößen im Bereich 250 bis 300 μ m (Abb. B.6.1, B.6.2). Die Individuen weisen buchtige Kornformen auf, flammenförmige Pentlandit-Entmischungen sind vertreten. Stellenweise findet randlich eine Umwandlung zu Markasit statt. Aufwachsungen oder saumartige Verdrängungen durch Chalkopyrit und untergeordnet Sphalerit sind in zahlreichen Proben vorhanden. Im Bereich kataklastisch überprägter Abschnitte kann Pyrrhotin eine deformationsbedingte Lamellierung aufweisen. Pyrrhotin ist weiterhin als ein Alterationsprodukt aus Ilmenit vertreten (Abb. B.6.3)

Der Übergang aus den Gneisen in Amphibolit bei 1180 m zeigt keine qualitiative Veränderung, jedoch eine geringe quantitativen Zunahme in der Pyrrhotin-Führung. Pyrrhotin im Amphibolit besitzt vermehrt Pentlandit-Entmischungen.

Chalkopyrit tritt in der Grundmasse der Gesteine in xenomorphen Einzelkörnern auf, die selten eine Größe von 100 μ m überschreiten. Das Mineral bildet kogenetisch mit Pyrrhotin Einschlüsse in dem nicht-metablastischen Pyrit, was eine Bildungstemperatur von 334 ± 17 °C (YUND & KULLERUD 1966) belegt. Generell deutet aber Chalkopyrit durch seine Verteilung und sein Erscheinungsbild zumeist eine relativ späte Bildungsphase an. Das Mineral zeigt

- nadelförmige Körner, die in die Spaltflächen von Glimmern eingeregelt sind;
- Zwickelfüllungen in Hornblendeaggregaten in Amphibolit;
- Rißfüllungen in metablastischem Pyrit;
- eine enge Zuordnung zu leukokraten Mobilisaten;
- randliche Aufwachsungen oder Verdrängungen von Pyrrhotin.

Sphalerit ist oft mit Chalkopyrit verknüpft, tritt aber quantitativ stark zurück. Das Mineral wurde in zahlreichen Anschliffen identifiziert; die Verteilung ist der des Chalkopyrits sehr ähnlich. Sphalerit weist bräunlich-gelbe bis rotbraune Innenreflexe auf. Häufig wurden Einzelkörner mit rundlichen Einschlüssen von Chalkpoyrit bzw. einem Chalkopyritähnlichem Mineral beobachtet (HC0540, HC0600, HC0620, HC0940). Pentlandit tritt sowohl in Gneisen als auch in Amphiboliten als flammenförmige Entmischung zumeist in Randnähe in Pyrrhotin auf.

Markasit wurde fast ausschließlich als Alterationsprodukt von Pyrrhotin identifiziert. Nur in der Probe HC0920 wurde er bisher als Verdränger von Pyrit beobachtet. Markasit bildet flammen- bis lanzettförmige Aggregate in Randnähe der Wirtsminerale oder in zentraleren Bereichen, von Inhomogenitäten ausgehend. Die Alteration läuft unter Volumenverlust ab, wodurch der Markasit porös erscheint.

Galenit konnte nur untergeordnet in Form von wenigen xenomorphen Einzelkörnern, in Rißfüllungen in Pyrit und in leukokraten Mobilisaten bestimmt werden. Er ist paragenetisch mit Chalkopyrit und Sphalerit verknüpft.

Molybdänit weist eine signifikante Verknüpfung mit Graphit durch eine enge Nachbarschaft oder durch Einschlüsse in Graphitaggregaten auf. Das Mineral bildet in Gneisen und Amphiboliten selten >50µm lange, wenig geknickte Einzelleisten; bei HC0079 findet sich ein tafeliges Aggregat neben Graphit an Ilmenit. Stellenweise ist Molybdänit in Zwickeln von Sulfiden eingelagert.

Covellin ist bisher nur in der Probe HC0170 im Amphibolit als ein verbreitetes Alterationsmineral des Chalkopyrits, den er meist saumartig oder auch vollständig verdrängt, vertreten.

Arsenopyrit wurde bisher in einem Sulfidkonzentrat aus sehr stark kataklastisch überprägtem Amphibolit (HC1528) identifiziert. Das Mineral bildet in hypidiomorpher Ausbildung einfache Kornverwachsungen (Anlagerungen) mit Pyrrhotin.

Millerit tritt evtl. als wenige μ m großer Einschluß in einem Chalkopyrit-Mobilisat in der Probe HC0444 auf.

B.6.2 Oxidische Erzminerale

Ilmenit bildet in unterschiedlicher Ausbildung das dominierende oxidische Opakmineral in Gneis- und Metabasit-Einheiten. Alterationen des Ilmenits zu anderen Ti- und Fe-Mineralen (Titanit, Rutil, Anatas, Sulfide) sind in unterschiedlich starker Ausprägung fast stets vorhanden (Abb. B.6.3).

In Gneisen bildet der aus der Alteration der Biotite gebildete Ilmenit längliche bis leistenähnliche Formen entlang der Glimmerspaltflächen oder füllt intergranulare Zwickel. Die langgestreckten Aggregate erreichen selten Längen über 100 μ m, ihr Durchmesser liegt überwiegend unter 10 μ m. Dieser Ilmenit zeigt selbst wiederum unterschiedlich starke Alterationen, die in den hangenden Gneisen vermehrt aus feinstkörnigem Anatas bzw. Leukoxen, mit zunehmender Teufe überwiegend aus Rutil, Anatas und Titanit bestehen. Abb. B.6.1: Xenomorpher Pyrrhotin (FES) und stengeliger Graphit (CCC) folgen undeutlich dem metamorphen Lagenbau in stark alteriertem Granat-Sillimanit-Biotit-Gneis; Rutil (RUT) mit Titanitsaum weist jüngere Anlagerungen aus Graphit und Pyrrhotin auf; Graphit als Anlagerungen an Pyrrhotin;

(HC0444II, Luft, // Nic.).

Abb. B.6.2: Alterierter Granat-Sillimanit-Biotit-Gneis mit eingeregeltem xenomorphem Pyrrhotin (FES) und leistenförmigem Graphit wird von diskordantem Calcit-Gang (CAL) mit Pyrit (PYR) durchschlagen (von oben rechts nach unten links). (HC0410, Luft, // Nic.).

Abb. B.6.3: Ilmenit (ILM) mit sehr dünnem Plagioklas-Saum (dunkelgrau, Dünnschliff-Befund) und mächtigerem Titanit-Saum (TIT, mittelgrau) wird in frischem Granat-Amphibolit von Plagioklas(?)-Gang durchschlagen; oben rechts xenomorpher Pyrrhotin (FES); graue Granat-Aggregate am unteren Bildrand besitzen ebenfalls einen sehr dünnen, aufgefaserten Plagioklas-Saum. (HC1300K, Luft, // Nic.).

In Amphiboliten findet sich Ilmenit in Form von xenomorphen, buchtigen Individuen oder Verwachsungen; seine Korngröße kann 0.5 mm erreichen, variiert aber in der Regel zwischen 150 und 300 μ m. Fast stets ist Ilmenit von Alterationen betroffen, die sich in der Umwandlung zu Rutil und Titanit äußern. Titanit bildet dabei meist saumartige Verdrängungen (Abb. B.6.3), Rutil ersetzt den Ilmenit von den Kornzentren ausgehend. Teilweise bildet das aus der Umwandlung freigesetzte Eisen je nach Schwefelangebot innerhalb oder randlich von Ilmenit Pyrrhotin oder Pyrit (Abb. B.6.3). Die Alteration kann zur vollständigen Umwandlung des Ilmenit führen. Weitere Alterationsprodukte sind Anatas (und bei entsprechendem Ca-Angebot Calcit) und im Amphibolit zwischen 70 und 210 m auch Magnetit und Hämatit (siehe auch Abb. B.6.7). Ilmenit und Hornblende sind stellenweise symplektitartig verwachsen (Abb. B.6.4).

Rutil ist überwiegend als Alterationsmineral des Ilmenit verbreitet; er bildet aber auch in Gneisen und Amphiboliten rundliche bis ovale, selten >100 μ m große Einzelkörner mit einer charakteristischen Zwillingsstreifung aus. Die oft flächigen Innenreflexe sind gelblich braun bis grau-weiß. Saumartige Anlagerungen von Titanit sind vorhanden. Lokal (HC0640) sind sehr kleine Rutil-Einschlüsse in Granat orientiert eingeregelt.

Anatas und Leukoxen, ein feinstkörniges Gemenge aus Rutil, Anatas und Titanit, stellen weit verbreitete Alterationsprodukte von Ilmenit und evtl. älteren Ti-Mineralen (Rutil?) dar. Anatas fällt stets durch seine blauen Innenreflexe auf; das Mineral liegt häufig in feinstkörniger Form vor. Leukoxen stellt bei gekreuzten Polarisatoren ein auffälliges, "punkthaufen"-förmiges, mikroskopisch nicht auflösbares Mineralgemenge dar. Es stellt das Haupterzmineral in Lamprophyren dar.

Die Fe-Oxide bzw. Fe-Hydroxide Magnetit, Lepidokrokit, Hämatit und Goethit treten als Alterationsprodukte von Sulfiden auf. Sie finden sich in oberflächennahen Proben und auch in der Umgebung von prägnanten Störungen, entlang derer zirkulierende Wässer eine Oxidierung ermöglichten.

Magnetit ist in Amphiboliten bis 190 m Teufe ein weit verbreitetes Alterationsmineral des Ilmenit (siehe Kap. B.6.5 und Abb. B.6.7). Es handelt sich um feinstkörnige, fast stets symplektitartig mit Rutil, Ilmenit und evtl. weiteren Fe-Ti-Mineralen verwachsene Vorkommen; verleichbare Erscheinungsformen wurden von HAGGERTY (1976) als typisch für magmatische Gesteine beschrieben. Die einzelnen Minerale sind mikroskopisch kaum auflösbar. Eine undeutliche Ferrofluid-Fixierung an Ilmenit deutet evtl. auch in der Probe HC1280 auf Spuren von Magnetit als Alterationsmineral hin.

Im oberen Abschnitt der Bohrung sind wenig Magnetit-Einschlüsse in Pyrit identifiziert worden (HC0079). In einem Anschliff (HC0190) tritt Magnetit auch in kataklastisch überprägten Einzelkörnern auf. Spinell, möglicherweise entsprechend der Vorbohrung der Cr-Spinell Picotit (SIGMUND et al. 1990) konnte in Form von maximal 35 μ m großen, idiomorphen Einzelkörnern in Lamprophyr (HC1540) bestimmt werden. Das Mineral findet sich in Gruppen von Einzelkörnern in Olivin-Pseudomorphosen (Kap. B.5, Abb. B.5.3). Sehr dünne, helle Säume bestehen wahrscheinlich aus Magnetit (siehe auch HAGGERTY 1976).

Lepidokrokit (Rubinglimmer) ist in oberflächennahen Proben (HC0010), in der Nachbarschaft Laumontit-führender Klüfte in foliiertem Amphibolit (HC0130) sowie als dominierendes Erzmineral im Bereich stark kataklastisch überprägter Gneise in Störungszonen bei HC0252 und HC0261 vertreten. Lepidokrokit bildet langgetreckte, leistenähnliche Formen aus, die porös erscheinen (Abb. B.6.5). Die Leisten sind lokal aufgerollt und manchmal enger mit Graphit und auch Leukoxen assoziiert.

Hämatit wurde ausschließlich als Alterationsprodukt des Ilmenit bestimmt. Das Mineral bildet Entmischungen entlang von Inhomogenitäten (Risse, Lamellen) in Ilmenit aus Amphiboliten zwischen ca. 70 und 210 m. Diese gleichsinnig orientierten, scheiben- bis linsenförmigen Entmischungen erscheinen deformationsbedingt flammen- oder wellenförmig (siehe Kap. B.6.5, Abb. B.6.7).

Kolloidaler Goethit verdrängt Pyrit auf breiter Front bei HC0170 (Abb. B.6.6). Innerhalb des zonar aufgebauten Alterationsminerals sind Pyrit-Relikte erhalten. In dieser Teufe treten als weitere sekundäre Umwandlungsminerale Hämatit und Covellin auf.

Scheelit wurde bisher lediglich in Cuttings aus einer Plagioklas reichen und Kalksilikat führenden Einschaltung in dem Probenbereich HC0965 bis HC0973 mittels UV-Lampe detektiert.

B.6.3 Sonstige Erzminerale

Titanit ist fast stets als Alterationsmineral der verschiedenen Ilmenite in Gneisen und Amphiboliten (Abb.B.6.3, B.6.4) vertreten. Auch in idiomorphen Einzelkörnern ist das Mineral in Korngrößen zwischen 50 und 200 µm weit verbreitet. In dieser Form tritt Titanit sowohl in Amphiboliten als auch in mehr oder weniger stark kataklastisch überprägten Gneisen auf. Rundliche Rutil- oder Sulfideinschlüsse wurden lokal beobachtet (z.B. HC0390). Der Anschliff der Probe HC0410 weist einen leistenförmigen Graphit-Einschluß in Titanit auf; bei HC0620 wird das Mineral von einem dünnen Pyrit-Saum umgeben.

Graphit erlangt in einigen kataklastisch überprägten Zonen in den Gneisen als dominierendes Opakmineral Bedeutung. Er ist in Gneiseinheiten im allgemeinen in Form von Leisten und Tafeln verbreitet, die parallel der Glimmerspaltflächen orientiert sind (Abb. B.6.1, B.6.2). In Amphiboliten tritt mobilisierter Abb. B.6.4: Ilmenit (ILM) in symplektitartiger Verwachsung mit Hornblende in Granat-Amphibolit. Ilmenit alteriert zu Titanit (TIT, diffus, mittelgrau, saumartig). In Zwickeln ist untergeordnet Calcit (CAL, "erhaben", dunkelgrau) und Pyrrhotin (FES) vertreten. (HC1340K, Luft, // Nic.).

Abb. B.6.5: Disken-artiger und radialstrahliger Lepidokrokit als Hinweis auf oxidierende Einflüsse aus der Störungszone zwischen 250 und 285 m; daneben einige Graphit-Leisten (CCC). (HC0252, Luft, // Nic.).

Abb. B.6.6: Kolloidaler Goethit (dunkelgrau) verdrängt Pyrit auf breiter Front oder von Rissen aus fast vollständig; in Amphibolit. (HC0170 (Gneis-Nachfall?), Luft, // Nic.).

Graphit im Zusammenhang mit einer kataklastischen Überprägung auf; disseminierter Graphit in der Gesteinsgrundmasse ist selten.

In Kataklasezonen bildet der Graphit langgestreckte, girlandenförmige Gebilde, die den einzelnen Kataklasebahnen folgen; daneben sind derbe Massen vorhanden, die Aggregatgrößen bis zu 1 mm erreichen (z.B. HC1003). Lokal bildet das Mineral in Gneisen und in Amphiboliten sphärolithische Formen aus. In beiden Gesteinstypen wurde die enge Paragenese von Graphit und Molybdänit bestätigt.

Zirkon ist untergeordnet ein Bestandteil in fast jedem untersuchten Anschliff aus den Gneiseinheiten. Er bildet ovale bis isometrische Kornformen aus, deren Durchmesser fast stets unter 50 μ m liegen. Selten finden sich Zirkon-Einlagerungen in Granat.

B.6.4 Altersstellung der Erzminerale

Eine altersmäßige Einordnung der auftretenden Erzminerale ist aufgrund der komplexen tektono-metamorphen Geschichte der durchteuften Einheiten erschwert.

Insgesamt werden alle identifizierten Erzminerale den von KONT-NY et al. (1990) unterschiedenen Mineralisationstypen zugeordnet. Eine Differenzierung unterschiedlicher Generationen von Einzelmineralen ist mittels optischer Methoden stellenweise nicht möglich; hier helfen eventuell mikro-analytische Methoden.

Aufgrund der mikroskopischen Befunde ergibt sich für die Gneise und Metabasite die in Tabelle B.6.1 schematisch dargestellte relative Altersabfolge.

Der überwiegende Anteil des Opakmineralbestandes ist relativ jung. Lediglich Zirkon, Ilmenit, disseminierter Rutil und disseminierter, kleine Korngrößen aufweisender, meist xenomorpher Pyrit werden älteren Mineralisationsphasen zugerechnet.

Idiomorpher Titanit, Pyrrhotin, Graphit, Molybdänit und metablastischer Pyrit stehen im Zusammenhang mit der kataklastischen Überprägung der Gesteine. Dabei wird durch die Ausbildung der Minerale und ihre Verwachsungsarten erkennbar, daß Rutil und Titanit älter sind als Pyrrhotin und Pyrrhotin älter als Graphit (Abb. B.6.1). Chalkopyrit, Sphalerit, (Galenit), Arsenopyrit und Pyrit sind als Anlagerungen an diese Minerale vertreten oder füllen lokal Risse in kataklastisch zerbrochenen Aggregaten. Die zahlreichen diskordanten, sehr dünnen Calcitgängchen (Abb. B.6.2) durchschlagen alle Lithologien und auch kataklastisch deformierte Aggregate. Andere junge Gangfüllungen aus Plagioklas(?) durchtrennen in Abb. B.6.3 Ilmenite und ihre jungen Titanit-Säume.

Tab. B.6.1: Relative Altersabfolge der identifizierten Opakminerale in Gneisen und Metabasiten (unter Verwendung der in der KTB-Datenbank ("KTBase") verwendeten Mineralkürzel): Gneise: alt - ---> jung PYR (FES) ILM RUT ATS LEX SUL (in Glimmern) RUT (Individuen) TIT (Individuen, idiom., Rißfüll. aus FES) FES PYR (metablastisch) FEK CPY ZNS PBS CCC MOS CAL (Gängchen), PYR (metablastisch) ASP CUV LPK GOE Metabasite alt ---> jung ILM PYR RUT ATS MGN HAM TIT SUL (Alterat. des ILM) TIT (Säume) FES FEK CCC MOS CPY ZNS CAL (Gängchen) LPK ASP = Arsenopyrit LPK = Lepidokrokit ATS = Anatas MGN = Magnetit CAL Calcit MOS Molybdänit == = CCC Graphit = PBS = Galenit CPY Chalkopyrit PYR Pyrit = = Covellin CUV RUT = Rutil FEK = Markasit SUL Sulfide = FES = Pyrrhotin TIT = Titanit GOE = Goethit ZNS = Sphalerit HAM = Hämatit ILM = Ilmenit LEX = Leukoxen

B.6.5 Erzmineralführung und Suszeptibilität

Die Werte der magnetischen Suszeptibilität (siehe Kap. D) ergeben für die oberen Bereiche der Bohrung bis ca. 600 m Teufe ein recht heterogenes Bild.

Die Anomalien werden bis ca. 210 m Teufe durch Magnetit mit niedrigen Ti-Gehalten verursacht, der neben anderen Fe-Ti-Mineralen als Alterationsprodukt aus den in den Amphiboliten verbreiteten Ilmeniten entsteht (Abb. B.6.7). Hervorzuheben sind die Teufenabschnitte bei ca. 86, 162 und 190 m.

Der Haupträger der Suszeptibilität ist jedoch wie in der Vorbohrung Pyrrhotin (Abb. B.6.8). Das Mineral tritt bereits in Oberflächennähe (ab HC0024) in Form von Einschlüssen in Pyrit auf. Diese Einschlüsse sind jedoch antiferromagnetisch, wie die Ferrofluidbelegung der Präparate ergibt. Pyrrhotin-Individuen, ebenfalls antiferromagnetisch, finden sich untergeordnet bei HC0094. Ferrimagnetischer Pyrrhotin tritt zum ersten Mal als Einzelkorn ab einer Teufe von ca. 288 m auf (HC0288.2). Der Übergang von antiferro- zu ferrimagnetischem Pyrrhotin erfolgt bei ca. 288 m Teufe in einem sehr engen Bereich.

Die Anomalien zwischen ca. 295 und 335 m werden somit ausschließlich durch ferrimagnetischen Pyrrhotin verursacht, der in wechselnder Quantität mit Korngrößen bis 0.5 mm Bestandteil der Proben ist. Auch in diesem Teufenabschnitt wurden unmagnetische Pyrrhotin-Einschlüsse einer älteren Generation in Pyrit identifiziert.

Auch die noch höher anomalen Werte aus ca. 400 bis 550 m werden durch ferrimagnetischen Pyrrhotin bestimmt. In diesen Teufen liegt das Mineral jedoch nicht nur in der magnetischen Form vor; lokal umsäumt ferrimagnetischer Pyrrhotin reliktische antiferromagnetische Bereiche in den Kornzentren (HC0406, HC0410). Den seltenen umgekehrten Fall demonstriert die Abb. B.6.9. Generell dominiert bei weitem der ferrimagnetische Pyrrhotin.

Ferrimagnetischer Pyrrhotin liegt auch zwischen 550 und 1070 m vor. Jedoch tritt er quantitativ stark zurück. In einer Kataklasezone unterhalb 1060 m steigt die Pyrrhotin-Führung abrupt an, um mit nachlassender kataklastischer Überprägung allmählich abzunehmen. Pyrrhotin erreicht Korngrößen bis 0.5 mm; seine Kornränder erscheinen angelöst, Alterationen zu Markasit sind verbreitet.

Im Übergang von Gneis zu Amphibolit bei 1180 m weist Pyrrhotin keine Veränderungen in seinem magnetischen Charakter und nur eine geringe Zunahme in der quantitativen Verteilung auf. Der liegende Amphibolit/Gneis-Kontakt zeigt mikroskopisch bezüglich der Pyrrhotin-Führung keine Auffälligkeiten. Abb. B.6.7: Beispiel für die Ilmenit-Alteration in der hangenden, Granat-führenden Amphibolit-Serie: Als Alterationsprodukte sind Rutil und Magnetit sehr fein symplektitartig verwachsen (b); entlang von Rissen verdrängen Titanit (dunkelgrau) und flammenförmiger Hämatit (weiß-grau), vom Korninneren her Rutil den Ilmenit (a, b); die Magnetit-Verteilung wird durch die Ferrofluid-Zugabe verdeutlicht (c). (HC0190KII, Luft)

a) // Nic.

b) X Nic.

c) // Nic., Ferrofluid-Aufgabe.

Abb. B.6.8: Pyrrhotin aus verschiedenen Subkörnern mit unterschiedlicher Auslöschung (a), die bei Ferrofluid-Belegung keine Abwichungen in der magnetischen Orientierung zeigen (b); in Granat-Amphibolit. (HC1340K, Luft, // Nic.).

a) lange Bildkante entspr. 560 μm

b) lange Bildkante entspr. 450 µm, Ferrofluid-Aufgabe.

Abb. B.6.9: Überwiegend Ferrofluidfreier, antiferromagnetischer Pyrrhotin mit geringer Markasit-Alteration im Randbereich; im rechten Korn ist zentral ferrimagnetischer Pyrrhotin erhalten; in sulfidreichem, kataklastischem Amphibolit. (HC01530K, Luft, // Nic.).

Eine weitere durch die Suszeptibilitätswerte angezeigte Anomalienzone ist mit einer Amphibolit-Einschaltung bei 1520 m zu korrelieren. Oberhalb des Kontaktes findet sich in den teilweise kataklastisch überprägten Gneisen antiferromagnetischer Pyrrhotin in geringen Anteilen in der Gesteinsgrundmasse. Ferrimagnetische Komponenten sind dagegen oftmals nur an einzelne, sulfidreichere Cuttings gebunden. Der Verdacht auf nachgebrochenes Material aus geringeren Teufen (1080 - 1100 m) liegt nahe.

In kataklastisch deformiertem Amphibolit bei 1520 m ist Pyrrhotin verbreitet, der ausschließlich in der magnetischen Form vorliegt. Pyrrhotin scheint zum großen Teil als Alterationsprodukt aus Ilmenit bei gleichzeitigem Schwefel-Angebot vorzuliegen. Daneben wurden auch ferrimagnetische Individuen mit hexagonalen Umrissen beobachtet.

In der sich nach unten hin anschließenden heterogenen Wechselfolge aus Gneisen mit eingeschalteten Amphiboliten und diskordanten Lamprophyren zeigt die teufenabhängige Darstellung der Suszeptibilität gegenüber den ab ca. 1575 m folgenden Gneisen leicht erhöhte Werte. Verursacher ist auch hier ferrimagnetischer Pyrrhotin; in den Gesteinen dominiert aber lokal antiferromagnetischer Pyrrhotin (Abb. B.6.9).

In den diskordant die Gesteine durchschlagenden Lamprophyren kann nach Erkenntnissen aus der KTB-Vorbohrung auch Magnetit auftreten. Bisher wurde er jedoch in den untersuchten Anschliffen nicht identifiziert.

Unterhalb 1575 m weist die Suszeptibilität die für Gneise typischen niedrigen Werte ohne herausragende Anomalien auf. In diesen Gesteinen tritt Pyrrhotin nur sehr untergeordnet als antiferromagnetischer Typ auf.

Die Abbildung B.6.10 vergleicht die mit röntgenographischen Methoden bestimmten Schwefel-Gehalte mit der magnetischen Suszeptibilität und der Pyritführung der Gesteine. Es zeigt sich so auch in den analytischen Methoden, wie sich im Teufenbereich 300 – 550 m die Schwefel-Fixierung vom Pyrit zum Pyrrhotin verlagert. Ebenso deutet der Schwefelpeak in Übereinstimmung mit ansteigenden Werten der Suszeptibilität bei ca. 1180 m (Übergang Gneis/Amphibolit) die mikroskopisch bestätigte Zunahme von Pyrrhotin an. - B 57 -

Abb. B.6.10: Teufenabhängige, quantitative Verteilung von Schwefel (RFA) und Pyrit (RDA) im Vergleich zur gemessenen magnetischen Suszeptibilität.

B.7 Strukturen und Gefüge

Für strukturelle Aussagen stehen Cuttings, mehrere Zentimeter große Probenstücke aus der Bohrlochwand sowie Logs des Formation Micro Scanners (FMS) und Formation Micro Imagers (FMI) zur Verfügung.

Nach den Logs fällt die Foliation bis 763 m generell mit 40° -70° nach SSW. Zwischen 405 und 418 m sowie zwischen 495 und 518 m schwenkt das Einfallen der Foliation einige Male für jeweils einen oder wenige Meter nach NW um (vgl. Geologisches Profil Maßstab 1:200 im Anhang). Dies wird entweder durch offene asymmetrische Falten oder Flexuren an Störungen verursacht. Eine dieser Zonen bei 495 m ist mit Pyrit vererzt.

B.7.1 Faltenstrukturen

In der "Sandfalle" treten vorwiegend im Bereich von Störungen mehrere cm große kataklastische Probenstücke auf. In mehreren Proben, die bis zu 8 cm groß sind, sind verschiedene Faltentypen dokumentiert. Zum einen sind dies einige Stücke verfalteter Kataklasite mit Graphitharnischen (Abb. B.7.1, I und Kap. B.7.2). Den anderen Typ repräsentieren verfaltete Gneise. Diese Stücke sind beim Bohren wahrscheinlich aus der Bohrlochwand oberhalb des Meißels ausgebrochen.

Von 1580 bis 1596 m treten im alterierten Muskovit-Biotit-Gneis halboffene Falten auf. Sie zeigen mit Graphit belegte Harnische auf der Foliation und/oder parallel zu den Faltenachsenflächen (Abb. B.7.1). In der Probe HFG1596 verläuft ein Graphit-Quarz- Harnisch mit Linear auf der ac-Kluft der Falte. Die Falten sind älter als die Graphit-Harnische.

Quarz und stark serizierter Plagioklas haben in diesen Falten eine Korngröße von durchschnittlich 200 μ m. Alle Phyllosilikate sind deformiert. Im Faltenscharnier kann eine starke Pyritvererzung mit idiomorphen Aggregaten bis zu mehreren mm Größe vorhanden sein. Die Deformation konzentrierte sich auf diskreten Scherbahnen in den phyllosilikatreichen Lagen. Diese verlaufen bei Umbiegen der Foliation durch die Faltenachsenfläche und sind teilweise mit Graphit mineralisiert. Im Bereich dieser etwa 100 μ m mächtigen Scherbahnen sind alle Minerale spröd deformiert, nur Quarz ist lokal feinkörnig rekristallisiert.

B.7.2 Kataklasite und kataklastisch deformierte Gesteine

Spröd deformierte, feinkörnige Gesteine aus Scherzonen (vgl. auch ZULAUF 1990) werden hier generell als Kataklasite bezeichnet. Mit Ausnahme der Störungszone von 247 – 254 m liegt ihr Volumenanteil in der Regel unter 5 %. Zwischen frischen, undeformierten Gesteinsbruchstücken und Kataklasit liegen in den Mischproben alle Übergänge vor. Spröd deformierte Gesteine, - B 59 -

Abb. B.7.1: Faltenstrukturen in Sandfallenproben

in denen man den Hauptmineralbestand makroskopisch ansprechen kann, erhalten den Präfix "kataklastisch" (Abb. B.7.2).

Kataklasite mit Graphit sind makroskopisch schwarz und häufig mit Pyrit imprägniert, der auch mm-große Nester bildet. Zwischen 1543 m und 1580 m bilden einzelne Kataklasite offene Falten (vgl. Abb B.7.1 I). In den Sandfallenproben finden sich im Bereich von Störungen mehrere cm große, eckige Stücke, die an Trennflächenverschneidungen aus der Bohrlochwand gebrochen sind, selten bis zu handtellergroße, plattige Stücke. Zwischen 1200 und 1400 m sowie zwischen 1500 und 1600 m sind jedoch durchgehend cm-große Ausbruchstücke vorhanden. Viele Stücke sind linsige Gneis-Scherlinge, deren Oberflächen mit Graphit-Harnischen belegt sind (Abb. B.7.3). Erwähnenswert ist, daß auch die Amphibolit-Kataklasite zwischen 1200 und 1400 m Graphit führen. In der Vorbohrung wurden Graphit-Harnische nur in den Gneisen beobachtet.

In der Regel belegt Graphit als schlierige Opakphase die 50 – 100 μ m mächtigen Scherbahnen, während der Pyrit idiomorph vorliegt. Die Intensität der Spröddeformation des Ausgangsgesteines zwischen den häufig netzartig verlaufenden Scherflächen ist variabel zwischen schwach deformiert (kataklastisches Gestein) und zerbrochen oder völlig zerrieben (Kataklasit). Im Quarz treten stellenweise feinkörnige Rekristallisate mit Korngrößen < 50 μ m auf (Abb. B.7.4).

Das Mikrogefüge der oben genannten linsigen Gneis-Scherlinge im Amphibolitkörper 1200 - 1400 m ist durch starke Deformation gekennzeichnet. Der Scherling aus Probe HFG1347 besteht aus kataklastischem, alterierten Muskovit-Biotit-Gneis mit mm-großen Plagioklas-Klasten. Plagioklas und die Glimmer sind zerbrochen und verbogen. Quarz ist zum größten Teil rekristallisiert und besitzt variable Korngrößen bis 200 µm. Die Scherlinge haben einen Saum aus Graphit und idiomorphem Pyrit.

Kataklasite ohne Graphit sind grau (Ausgangsgestein: Gneis) bis grünlich-grau (Ausgangsgestein: Amphibolit). Sie sind makroskopisch nicht immer zweifelsfrei von Lamprophyren zu unterscheiden.

Im Mikrogefüge der Gneis-Kataklasite und kataklastischen Gneise wechseln Scherbahnen von 100 – 200 μ m Dicke aus zerriebenen Phyllosilikaten und Leukoxen, häufig mit Sulfiden mit Domänen, in denen das ursprüngliche Quarz-Plagioklas Gefüge erhalten ist (Abb. B.7.5). Die Deformation der Klasten in dieser Matrix zeigt sich im Quarz durch Deformationsbänder und im Plagioklas durch Versatz der Zwillingslamellen. Der Übergang zum kataklastischen Gneis ist fließend. Die Scherbahnen sind dann diskreter und lassen die Gneis-Foliation noch erkennen.

Im Mikrogefüge der Amphibolit-Kataklasite und kataklastischen Amphibolite bilden fein zerriebene Hornblende, Epidot und Chlorit und Leukoxen die Hauptmasse der dichten, dunkelgrünen Matrix. Darin schwimmen 20 – 200 μ m große Klasten, die aus

Abb. B.7.2: Amphibolit, Lamprophyr, kataklastischer Gneis und Granat-Sillimanit-Biotit-Gneis. (Probe HC1562, x Nicols 20°, lange Bildkante entspr. ca. 7,1 mm)

Abb. B.7.3: Linsige Gneisscherlinge mit Graphit-Harnischen innerhalb des kataklastisch überprägten Amphibolits. (Probe HFG1268)

Abb. B.7.4: Aggregat aus zerbrochenem, stark serizitisierten Plagioklas, der von einer Quarzkluft abgeschnitten wird; der Quarz hat Deformations- und Rekristallisationsgefüge und ist von einer jüngeren Kluft mit idiomorphem Prehnit durchzogen; die Probe ist zu 40% aus Lamprophyr sowie zu etwa gleichen Teilen aus sowohl frischem wie auch kataklastischen Granat-Amphibolit und Muskovit-Biotit-Gneis zusammengesetzt. (Probe HC1550, x Nicols, lange Bildkante entspr. ca. 1,3 mm)

Abb. B.7.5: Kataklasit, entstanden aus Gneis: Quarz- und Plagioklas-Klasten schwimmen in einer Matrix aus zeriebenem Plagioklas, Quarz, Serizit und Chlorit. (DS HC0901, // Nicols, lange Bildkante entspr. ca. 1,8 mm) Quarz, Plagioklas, Hornblende, Granat und Epidot bestehen (Abb. B.7.6). In Quarz-Klasten ist bisweilen randlich wie auch entlang diskreter Bahnen feinkörnige Rekristallisation zu beobachten. Eine Imprägnation mit Ilmenit, Pyrit und Phyrrhotin kann auftreten. Gelegentlich bilden diskrete Scherzonen ein s-Flächengefüge.

Zwischen 195 und 204 m, 1210 und 1400 m sowie zwischen 1500 und 1578 m sind bis zu etwa 5% der Amphibolite kataklastisch überprägt und stärker alteriert (Abb. B.7.7). Hornblende ist zerbrochen und häufig von Spaltrissen ausgehend und randlich chloritisiert. Die Plagioklase sind stark saussuritisiert.

B.7.3 Kluftmineralisation

Quarzgänge scheinen teilweise an Störungen innerhalb der Gneise gebunden zu sein. So sind beispielsweise die kataklastisch überprägten Gneise zwischen 710 und 790 m lokal mit Quarz und Sulfiden mineralisiert. Die Quarzgänge sind häufig deformiert.

Zwei m-mächtige Gänge liegen bei 257 m (Probe HC0260) und 269 m (Probe HC0270) in einer Störungszone. Die Quarz-Komponenten sind bis 5 mm groß, schwach gerundet und können von einem feinen Saum aus Sulfiden und Graphit umgeben sein; sie sind häufig Komponenten einer Störungsbrekzie (vgl. Kap. B.7.4). Die Großwinkelkorngrenzen sind in der Regel nicht eben. Die starke Deformation bei niedrigen Temperaturen ist außerdem durch undulöses Auslöschen und Deformationslamellen dokumentiert; zerbrochene Aggregate sind mit Calcit imprägniert (Abb. B.7.8).

Auffallend sind einige foliationsparallele Quarz-Gänge in den Proben HC0428, HC0468 sowie zwischen 1530 und 1550 m. Diese treten in allen Fällen neben den Lamprophyren auf (Abb. B.7.9). Die Quarz-Körner sind bis 1 mm groß. Undeformierte Körner sind selten. Undulöses Auslöschen, Deformationsbänder und feinkörnige Rekristallisation entlang von diskreten, etwa 10 μ m starken Scherbahnen sind die Regel.

Im Mikrogefüge der Proben zwischen HC1540 und HC1550 fallen neben den oben beschriebenen Gängen Quarz-Aggregate auf, die ein statisch getempertes, polygonales Pflastergefüge besitzen (Abb. B.7.10). Die Korngröße beträgt 20 – 50 μ m. In einem Aggregat ist der Übergang zwischen kalt deformiertem und statisch getemperten Quarz zu sehen (Abb.B.7.11). Die Ursache für dieses in der Bohrung ungewöhnliche Gefüge könnte in einer Temperung der Quarz-Gänge durch die Lamprophyre liegen. Die zugeführte Energie bewirkte anscheinend eine für die Gefügeänderung ausreichende Aufheizung des Nebengesteines im Bereich dieser etwas mächtigeren Lamprophyre, die auch durch überdurchschnittliche Korngrößen gekennzeichnet sind.

Neben der Quarz- und Sulfidmineralisation (Kap. B.6) treten als Kluftminerale Epidot, Prehnit, Adular, Laumontit und Calcit auf.

Abb. B.7.6: Kataklasit, entstanden aus Amphibolit: Hornblende- und Plagioklas-Klasten in einer Matrix aus zerriebenem und stark serizitisierten Plagioklas, zerriebener und chloritisierter Hornblende und Ilmenit als Opakphase. (DS HC1200, x Nicols , lange Bildkante entspr. ca. 2,2 mm)

Abb. B.7.7: Titanit, Epidot und Aktinolith und stark alterierter Plagioklas bilden die Hauptkomponenten des retrograd überprägten Amphibolits; eingeregelte Bruchstücke dieser Minerale schwimmen in der Prehnit-Kluft. (DS HC1562, // Nicols, lange Bildkante entspr. ca. 1,8 mm)

Abb. B.7.8: Deformierter Quarz-Gang, der mit Calcit verheilt ist; die opake Phase ist Graphit; das umgebende Gestein ist kataklastischer, alterierter Muskovit-Biotit-Gneis. (DS HC0264, // Nicols, lange Bildkante entspr. ca. 2,2 mm)

Abb. B.7.9: Kluft mit Quarz (QRZ) und Biotit/Ilmenit (BIO) im Grant-Sillimanit-Biotit-Gneis; das untere Biotit-Band enthält Quarz-Klasten. Die untere, keilförmige Begrenzung besteht aus Serizit und Quarz (SER). Der obere, linke Ecke und der Sinus am rechten Bildrand ist das Einbettungsmittel. (DS HC0468, // Nicols, lange Bildkante entspr. ca. 4,5 mm)

Abb. B.7.10: Statisch getempertes Gefüge mit ebenen Großwinkelkorngrenzen eines Quarz-Ganges, rechts Kataklasit; die Probe besteht zum größten Teil aus Lamprophyr und kataklastischem Amphibolit. (DS HC1540, x Nicols, lange Bildkante entspr. ca. 1,3 mm)

Abb. B.7.11: Die Quarz-Lagen dieses Ganges zeigen Deformationsgefüge und gehen kontinuierlich in ein spannungsfrei getempertes Pflastergefüge über; die Probe enthält Lamprophyr, kataklastischen Amphibolit, untergeordnet Granat-Sillimanit-Biotit-Gneis und Kataklasit. (DS HC1544, x Nicols, lange Bildkante entspr. 2,2 mm)
Lokal bis zu 5 Vol% **Epidot** auf Klüften und in Gängen ist im Amphibolit von 155 bis 165 m und von 198 bis 208 m vorhanden. Die Epidot-Aggregate sind bis zu 1 mm groß.

Prehnit ist gelegentlich in o.g. Epidot-Klüften vorhanden. Reine Prehnitklüfte treten besonders im Amphibolit von 1213 bis 1242 m auf. Prehnit-Aggregate sind bis 2 mm groß. Die idiomorphen Kristalle werden häufig zur Kluftmitte hin größer und erreichen bis 500 μ m. In der Probe HC1240 deutet ein Kristallrasen auf lokal offene Klüfte hin (Abb. B.7.12).

Adular ist gelegentlich in kataklastischen Gneisen zu finden (z.B. Probe HC0720: Abb. B.7.13). Von 1226 bis 1242 m und in den Proben HC1544 und HC1546 tritt er in Paragenese mit Prehnit in (kataklastischen) Amphiboliten auf.

Der Großteil des Laumontits tritt zwischen 1226 und 1242 m zusammen mit Prehnit und Adular (Abb. B.7.14) auf.

Calcitimprägnation tritt besonders stark zwischen 240 und 286 m sowie zwischen 298 und 310 m hervor.

In der Probe HC0156 ist die Abfolge 1) Epidot, 2) Laumontit, 3) Calcit in einer mehrfach reaktivierten Kluft dokumentiert. Im Randbereich sind Epidot und Laumontit deformiert. Zur Mitte hat idiomorpher Laumontit, der im Calcit schwimmt, eine Korngröße von durchschnittlich 40 μ m (Abb. B.7.15).

B.7.4 Störungszonen

Die größte Störungszone in der Hauptbohrung wurde zwischen 248 und 290 m durchteuft. Sie beißt am W-Rand des Bohrplatzes mit SSE Streichen aus und fällt mit 60° - 65° nach E, wobei sie die Vorbohrung in der Teufe 40 - 60 m schneidet. Das Maximum der Gesteinszerstörung liegt zwischen 250 und 254 m, wo neben Kataklasiten eine verlettete Störungsbrekzie gebildet wurde (Abb. B.7.16). Die Gesteinsbruchstücke sind wenige mm groß und teilweise kantengerundet. Zwischen 260 und 280 m ist die Störung mit Ankerit mineralisiert, bei 270 m ist das Maximum der Graphit-Mineralisation, bei 290 m das Maximum der Pyrit-Vererzung. Ein wesentliches Kriterium für die Korrelation dieser Störung mit der Vorbohrung ist eine Ankerit-Mineralisation; diese wurde auch dort mit neuen Vergleichsmessungen nachgewiesen.

Die chemische Zusammensetzung von in 25%-iger Salzsäure gelösten Ankerit-Konzentraten aus Hauptbohrung und Vorbohrung wurde mit ICP-AES bestimmt. Die Konzentrationen der gemessenen Kationen sind in Tab. B.7.1 als Oxide aufgeführt. Neben der Ankerit-Zusammensetzung kommen in dem Konzentrat der Hauptbohrung noch deutliche Anteile von Barium vor.

Abb. B.7.12: Idiomorpher Prehnit als Kluftmineral im Amphibolit in der Cuttings-Schüttprobe. (HC1242, lange Bildkante entspr. ca. 2,2 mm).

Abb. B.7.13: Adular-Kluft in alteriertem Muskovit-Biotit-Gneis; die Kristalle werden zur Kluftmitte hin größer. (DS HC0720, x Nicols, lange Bildkante entspr. ca. 2,2 mm).

Abb. B.7.14: Senkrecht zur Kluft im Amphibolit gewachsene Laumontit-Kristalle. (DS HC1394, x Nicols, lange Bildkante entspr. ca. 0,5 mm)

Abb. B.7.15: Diese Kluft im Amphibolit wurde mehrfach reaktiviert; im Randbereich sind Epidot und Laumontit deformiert; zur Mitte wird Laumontit idiomorph und schwimmt im Calcit. (DS HC0156, x Nicols, lange Bildkante entspr. ca. 1,4 mm) Im tieferen Teil des Amphibolit-Körpers von 69 - 203 m wurden neben der beschriebenen, starken Kluftmineralisation Chlorit-Harnische und kataklastische Überprägung beobachtet. Dies spricht für eine tektonische Natur des Kontaktes zur liegenden Gneisserie.

Tab. B.7.1: Chemische Zusammensetzung von Ankeritkonzentraten

Bohrung	KTB HB	KTB VB1
Probe	HC0272K	VB0043K
Teufe	272 m	43 m
CaO	30,8 %	29,5 %
MgO	8,9 %	13,0 %
FeO	12,8 %	13,0 %
MnO	0,8 %	0,7 %
SrO	0,09 %	0,03 %
BaO	1,3 %	0,05 %

In dem überwiegend aus Gneisen bestehenden Teufenintervall von 330 bis 1180 schneiden kleinere Störungszonen die Bohrung in regelmäßigem Abstand von 20 bis 40 m. Sie sind häufig mit Graphit und/oder Sulfiden schwach vererzt und verlaufen parallel bis spitzwinklig zur Foliation. Dies gilt für den Teufenbereich bis 763 m, darunter ist noch kein FMS verfügbar. Innerhalb dieser Zonen erweitert sich das Bohrloch bevorzugt durch Ausbrüche aus der Bohrlochwand.

Zwischen 1250 und 1320 m schneiden mehrere Störungsbündel den Amphibolit. In vielen Proben ist bis 5 Vol-% kataklastischer, alterierter Muskovit-Biotit-Gneis enthalten. Nach Auswertung der Kalibermessungen vom 12.02., 24.02. und 04.03.91 kam es beim Durchteufen dieses Abschnittes zu keinen Bohrlocherweiterungen im gesamten Bohrloch oberhalb 1180 m (Hangendgrenze des Amphibolitkörpers). Deshalb ist ein Gneis-Nachfall in dieser Größenordnung praktisch auszuschließen. Wahrscheinlich sind diese Gneise tektonisch aus den räumlich nur einige 10-er m entfernten Gneisen eingeschuppt. Dafür spricht auch das Interngefüge der linsigen Gneisscherlinge.

Die geringmächtige, störungsgebundene Granat-Amphibolit-Einschaltung bei 1450 und die stark gestörte Wechsellagerung zwischen Granat-Amphibolit und Muskovit-Biotit-Gneis/Granat-Sillimanit-Biotit-Gneis von 1500 bis 1575 m interpretieren wir als verschuppte und gestapelte Liegendgrenze des Amphibolites bei 1410 m. Der Wechsel zwischen Gneisen und Amphiboliten hat in diesem Bereich andere Ursachen als die Abschnitte mit Wechsellagerung zwischen 290 und 523 m.

Abb. B.7.16: Die unterschiedlich stark zerbrochenen, kantengerundeten Einzelkomponenten einer Störungsbrekzie sind mit Calcit verheilt; Ausgangsgestein ist der Kalksilikat-führende, Plagioklas-reiche Gneis. (DS HC0256, x Nicols, lange Bildkante entspr. 5,6 mm)

KTB-Report	91-3	7 Seiten	3 Abb.	Hannover 1991	
------------	------	----------	--------	---------------	--

Tiefbohrung KTB-Oberpfalz HB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 0 bis 1720 m:

B.8 Korrelation Vorbohrung - Hauptbohrung

G. Hirschmann¹⁾ und J. Kohl²⁾

Anschrift der Autoren:

1)	Niedersächsisches Landesamt	für	Bodenforschung,
	Stilleweg 2, D-3000 Hannove	er 51	•
21	MMD Deldleben Deetfeel (7	D 0	106 Mindinshaabaabaabaab

2) KTB-Feldlabor, Postfach 67, D-8486 Windischeschenbach

B.8 Korrelation Vorbohrung - Hauptbohrung

G. Hirschmann & J. Kohl

Der Ansatzpunkt der Hauptbohrung befindet sich 185 m östlich des Ansatzpunktes der Vorbohrung. Zwischen beiden Punkten und dicht westlich der Vorbohrung verlaufen nach Aufschlußbearbeitungen und Oberflächenkartierung (ROHRMÜLLER 1987, 1988, ROHRMÜLLER et 1989, STETTNER et al. 1990) mehrere NNW-SSE gerichtete Stöal. Die Mehrzahl dieser Störungen fällt - soweit bekannt rungen. steil nach ENE ein. Im Bereich dieser Zone werden nicht nur die lithologischen Einheiten gegeneinander versetzt, sondern es treten auch Gänge und verschieden große Körper von Lamprophyr und Aplit auf (Abb. B.8.2). Auch Störungssysteme anderer Raumlage (WNW-ESE, NW-SE, NE-SW) sind durch die Oberflächenkartierung und die Vorbohrung bekannt geworden. Auch für diese muß eventuell mit größeren Versatzbeträgen gerechnet werden (STETTNER 1989, 1990). Für einen Großteil der Störungszonen ist nach ZULAUF (1990) eine komplexe kinematische Geschichte anzunehmen, die sich in Stadien der Aufschiebung, Blattverschiebung und Abschiebung äußert. Es war daher nicht von vornherein klar, inwieweit die Korrelation zwischen beiden Bohrungen gelingen würde.

Die NNW-SSE gerichteten Störungen des Bohrplatzbereiches gehören zu einer bedeutsamen Störungszone (Nottersdorfer Störungszone). Aus dem Kartenbild ist zu schließen, daß die Scholle östlich der Störungszone gegenüber der westlichen relativ gehoben ist. Die bedeutendste in der Hauptbohrung angetroffene Störungszone zwischen 248 und 290 m ist eine der wichtigen Einzelstörungen des Nottersdorfer Systems. Sie kann an der Oberfläche entweder mit der Störung westlich des Bohrplatzes (in der Vorbohrung 40 und 60 m angetroffen?) oder der Störung zwischen zwischen Vor- und Hauptbohrung korreliert werden. Für die erste Variante sprechen einige gemeinsame Merkmale (z.B. das Auftreten ankeritführender Kataklasite - Abb. B.8.1), die zweite Variante jedoch wegen der geometrischen Konstruktion wahrscheinist licher. Das Profil der Hauptbohrung unterhalb der genannten Störungszone gehört wie das Profil der Vorbohrung zur westlichen, das Profil oberhalb der Störung zur östlichen Scholle. Andere Störungen besitzen demgegenüber für den Gesamtprofilaufbau und die Korrelation zwischen Vor- und Hauptbohrung untergeordnete Bedeutung. In Abb. B.8.1 ist eine Auswahl derartiger Störungen in teilweise schematischer Form eingetragen.

Das lithologische Grobprofil der westlichen Scholle zeigt bis zur Berichtsteufe – im wesentlichen übereinstimmend für Vor- und Hauptbohrung – folgenden Aufbau: - B 74 -

Abb. B.8.1: Korrelation lithologischer Einheiten zwischen Vorbohrung und Hauptbohrung

Gneiseinheit gl: (Muskovit-)Biotitgneis

Vorbohrung: bis ~81 m (Zugehörigkeit der Gneise oberhalb der Störungszone von 40 - 60 m zu dieser Einheit ist fraglich)

Hauptbohrung: wie die höheren Teile der nachfolgenden Einheit bl tektonisch unterdrückt

Metabasiteinheit b1: Wechsellagerung von Amphibolgneis, Amphibolit und Biotitgneis mit kalksilikatischen Einschaltungen, in der unteren Hälfte erstes Auftreten von Kyanit/Sillimanit

Vorbohrung: ~81 bis ~460 bzw. ~527 m (tieferer Bereich tektonisch stärker gestört) Hauptbohrung: ~290 bis ~523 m (höhere Teile einschließlich

Marmorhorizont tektonisch unterdrückt)

Gneiseinheit g2: Granat-Kyanit/Sillimanit-Biotitgneis, im tieferen Teil Einschaltung von quarzarmem, plagioklasreichem, kalksilikatführendem Gneis

Vorbohrung: 527 bis ~1160 m (Teile des Profils mit plagioklasreichem, kalksilikatführendem Gneis tektonisch unterdrückt?) Hauptbohrung: 523 bis ~1183 m, plagioklasreicher, kalksilikatführender Gneis von ~947 bis ~994 m

Metabasiteinheit b2: Granat-Amphibolit mit Einschaltungen von Metagabbro und Lagen von Meta-Ultramafitit

Vorbohrung: ~1160 bis ~1610 m Hauptbohrung: ~1183 bis ~1410 bzw. ~1573 m (Meta-Ultrabasite bisher nicht erkannt, tiefe Profilteile tektonisch stärker gestört: Verschuppung? Kombination von Auf- und Abschiebungen?)

Gneiseinheit g3: Granat-Sillimanit-Biotitgneis

Vorbohrung:	ab	~1610	m
Hauptbohrung:	ab	~1573	m

Das Profil der östlichen (gehobenen) Scholle in der Hauptbohrung wird insbesondere durch den zwischen ~69 und ~203 m angetroffenen (Granat-)Amphibolit gekennzeichnet, der geringe Meta-Ultramafititeinschaltungen enthält und einerseits mit der Metabasiteinheit b2 der westlichen Scholle (s.o.) und andererseits mit dem Amphibolit (mit Eklogitrelikten) der Seismik-Bohrung VSP 1 und dem nordöstlich benachbarten Oberflächenausstrich von Amphibolit korreliert werden kann (Abb. B.8.2). Die im Hangenden und Liegenden begleitenden Muskovit-Biotit- bzw. Granat-Sillimanit-Biotitgneise sind wahrscheinlich der Gneiseinheit g2 zuzuordnen. In sie sind (ähnlich wie zwischen 947 und 994 m) sowohl von 0 bis 16 m als auch von ~242 bis ~247 m plagioklasreiche, kalksi-

Abb. B.8.2: Geologie des Bohrplatzbereiches (nach ROHRMÜLLER 1987 mit Ergänzungen durch KTB Feldlabor/Geologie, 1990) mit Eintragung des Bohrlochverlaufs der Vorbohrung und Projektion auf die Schnittlinie durch die Hauptbohrung

likatführende Gneise eingeschaltet. Das Profil ist also allem Anschein nach durch mehrfache tektonische Wiederholungen einzelner lithologischer bzw. lithostratigraphischer Abschnitte gekennzeichnet.

gegenseitigen räumlichen Beziehungen der Profile von Vor-Die Hauptbohrung lassen sich besser verstehen, wenn man unter und Berücksichtigung der ermittelten Lagerungsverhältnisse das Profil der Vorbohrung auf einen Schnitt projiziert, der senkrecht Streichen durch die Hauptbohrung konstruiert wird. Für die zum Vorbohrung wurde im Teufenbereich von 500 bis 4000 m ein mitt-leres Streichen der Foliation von 130° errrechnet. Die für die Meßstrecke in der Hauptbohrung bis 1700 m vorliegenden Werte zeigen eine gute Übereinstimmung mit den Werten der entsprechenden Teufenbereiche der Vorbohrung. Dementsprechend wurde in der Abb. B.8.2 eine 40° orientierte Schnittlinie gewählt. Ausgehend vom tatsächlichen abweichungsbedingten Bohrungsverlauf wurde das Profil der Vorbohrung teufengerecht auf diese Schnittlage projiziert und in Abb. B.8.3 zusammen mit dem Profil der Hauptbohrung dargestellt. Die Zusammengehörigkeit der lithologischen Großeinheiten (s.o.) ist deutlich erkennbar. Die Lagerungsverhältnisse werden bis zur Obergrenze der Metabasiteinheit b2 durch vorwiegend mittelsteiles (bis steiles) Einfallen nach SW bestimmt. Der in der Vorbohrung bis etwa 500 m angetroffene Bereich sehr steilen Einfallens ist an das Nottersdorfer Störungssystem gebunden und in der Hauptbohrung weniger ausgeprägt zu beobachten. Der von der Obergrenze der Metabasiteinheit b2 nach unten folgende Bereich wird durch steiles bis sehr steiles Einfallen mit zahlreichen Verbiegungen um die Vertikale (Einfallen nach SW oder NE) bestimmt. Störungen und ihre Versatzbeträge sind nur auswahlweise und halbschematisch dargestellt. Den größten Versatz von größenordnungsmäßig 1000 m besitzt die im oberen Teil der Hauptbohrung angetroffene, zum Nottersdorfer Störungssystem gehörige Störung.

Nach den bisherigen Ergebnissen sind folgende Schlußfolgerungen möglich:

- Die geologischen Profile von Vor- und Hauptbohrung lassen sich in lithologischer und tektonischer Hinsicht (bisher) sehr gut korrelieren.
- Trotz des insgesamt komplizierten tektonischen Bauplanes wird es möglich sein, ein schlüssiges räumliches geologisches Bild der Bohrlokation zu gewinnen.
- 3. Die unterscheidbaren lithologischen Haupteinheiten sind durch eine regelmäßige und prognostizierbare Relativabfolge miteinander verknüpft. Dieser Befund muß bei geologischen (strukturellen, stratigraphischen), petrologischen, geochronologischen und anderen Analysen und Interpretationen berücksichtigt werden.

- B 78 -

4. Die gute Korrelierbarkeit gestattet eine relativ weitgehende übertragbarkeit von Ergebnissen, die in der Vorbohrung an Material und mit Verfahren gewonnen wurden, welche in der Hauptbohrung nicht oder nur eingeschränkt zur Verfügung stehen.

Danksagungen

Herr Prof. Dr. Emmermann und Herr Prof. Dr. Stöckhert übernahmen dankenswerterweise die Durchsicht des Manuskriptes. Herrn Dr. Hirschmann danken wir für die Überlassung der Strukturdaten der visuellen Übersichtsauswertung des FMS und FMI. Dem Bayerischen Geoinstitut in Bayreuth (D. Krauße) und dem Institut für Mineralogie und Lagerstättenlehre der RWTH Aachen (A. Kontny, A Wiechowsky) sei für qualitative und quantitative Mikrosondenanalysen gedankt. Unsere technischen MitarbeiterInnen unterstützten uns bei der Erstellung dieses Berichts.

Abkürzungsverzeichnis

Kfs	Kalifeldspat
Plg	Plagioklas
Amf	Amphibol
Bio	Biotit
Qrz	Quarz
Chl	Chlorit
Epd	Epidot
Prh	Prehnit
Cal	Calcit
Tit	Titanit
FMI	Formation Micro Imager
FMS	Formation Micro Scanner
HC	Probenbezeichnung : Hauptbohrung Cuttings
HCK	Probenbezeichnung : separierte Probe
HFG	Probenbezeichnung : Cuttings aus der Sandfalle (grobkörnig)

B.9 Literaturverzeichnis

BLÜMEL P. (1983): The western margin of the Bohemian Massif in Bavaria.- Fortschr. Mineral., 61, Beiheft 2:171-195, Stuttgart.

EMMERMANN R. & LAUTERJUNG J. (1990): Double X-Ray analysis of cuttings and rock flour: a powerful tool for rapid and relieable determination of borehole lithostratigraphy. Scientific Drilling, 1:269-282.

EMMERMANN R. & WOHLENBERG J. (1989): The German Continental Deep Drilling Program (KTB). Springer Verlag, Berlin, 553 p.

EMMERMANN R., LAUTERJUNG J. & STROH A. (1989): Das lithostratigraphische Profil der KTB-Vorbohrung bestimmt durch röntgenographische Phasenanalyse von Bohrklein. - KTB Report 89-3, Beiträge zum 2. KTB-Kolloquium, 152-164, Hannover.

FRANKE W. (1989): The Geological Framework of the KTB Drill Site, Oberpfalz.- In EMMERMANN R. & WOHLENBERG J. (eds.): The German Continental Deep Drilling Program (KTB), pp 37-54.

HAGGERTY S. (1976): Opaque mineral oxides in terrestrial igneous rocks.- In El GORESY A., HAGGERTY S.E., HUEBNER J.S., LINDSLEY D.H. & RUMBLE III D.: Oxide Minerals.- Short Course, Min. Soc. America, Hg101-269, Blacksburg.

KONTNY A., VOGTMANN-BECKER J., FRIEDRICH G., HERZIG P. & KEYSSNER S. (1990): Erzmineralparagenesen und Mineralisationstypen in der KTB-Vorbohrung.- KTB Report 90-4:65-75, Hannover.

KREUZER H., SEIDEL E., SCHÜSSLER U., OKRUSCH M., LENZ K.-L., & RASCHKA H. (1989): K-Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif.-Tectonophysics, 157:149-178.

O'BRIEN P.J. (1989): The petrology of retrograded eclogites of the Oberpfalz Forset, northeast Bavaria, West Germany.- Tectonophysics, 157:195-212.

PEARCE J.A. (1982): Trace element characteristics of lavas from destructive plate boundaries.- In THORPE R.S. (ed.): Andesites, Wiley & Sons, New York, pp 525-548.

PEARCE J.A. & CANN J.R. (1973): Tectonic setting of basic volcanic rocks determined using trace element analyses.- Earth Planet. Sci. Lett., 19:290-300.

PEARCE J.A., ALABASTER T., SHELTON A.W. & SEARLE M.P. (1981): The Oman ophiolite as a Cretaceous arc basin complex: evidence and implications.- Phil. Trans. R. Soc. London, A 300:299-317.

REINHARD J. & KLEEMANN U. (1989): Phasenpetrologische Analyse und Geothermobarometrie der Metapelite in der Zone von Erbendorf-Vohenstrauß (ZEV), Oberpfalz.- Europ. J. Mineralogy, 1, Beih.:152. (Abstr.), Stuttgart.

ROHRMÜLLER J. (1987): Geologische Dokumentation der Straßenaufschlüsse im Bereich Windischeschenbach – Burggrub und der temporären Aufschlüsse am KTB-Bohrplatz.- Manuskript Ludwig-Maximilians-Universität München (unveröffentlicht).

ROHRMÜLLER J. (1988): Die Geologie im Umfeld der KTB-Bohrlokation Windischeschenbach, Oberpfalz - Geologisch-Petrographisch-Tektonische Untersuchungen im Gebiet zwischen Windischeschenbach, Burggrub und Bach. Unveröff. Diplomarbeit, Univ. München, 241 S.

ROHRMÜLLER J., GÜNZEL F., HÖLL R. & STETTNER G. (1989): Geologische Karte des KTB-Umfeldes.- In: HÖLL et al.: Geologische Kartierung im Umfeld der KTB-Bohrung.- KTB-Report 89-3:346 und Anlage.

RÖHR C., HACKER W., KEYSSNER S., KOHL J. & MÜLLER H. (1989): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich 1709 bis 2500 m: B. Geologie.- KTB Report 89-2:B1-B114.

RÖHR C., KOHL J., HACKER W., KEYSSNER S., MÜLLER H., SIGMUND J., STROH A. & ZULAUF G. (1990): German Continental Deep Drilling Program (KTB) - Geological Survey of the Pilot Hole "KTB Oberpfalz VB".- KTB-Report 90-8:B1-B55, Hannover.

SHERVAIS J.W. (1982): Ti-V-plots and the petrogenesis of modern and ophiolitic lavas.- Earth Planet. Sci. Lett., 59:101-118.

SIEGESMUND S., VOLLBRECHT A. & WEBER K. (1990): Gefügekundliche Untersuchungen im KTB.- Die Geowissenschaften, 9:287-294.

SIGMUND J., HACKER W., KEYSSNER S., KOHL J., MÜLLER H., RÖHR C., STROH A. & TAPFER M. (1990): Tiefbohrung KTB-Oberpfalz VBla und 1b, Ergebnisse der geowissenschaftlichen Bearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 3500 bis 4000.1 m.- KTB Report 90-2:B1-B142, Hannover.

SOFFEL H.C. (1968): Die Beobachtung von Weiss'schen Bezirken auf einem Titanomagnetitkorn mit einem Durchmesser von 10 μ m in einem Basalt.- Z. Geophys., 34:175-181.

STETTNER G. (1989): Geologische Kartierungen im engeren und weiteren Umfeld der Tiefbohrung, Beispiele von deren Auswertung in Beziehung zum Profil der Vorbohrung und das Vorhaben einer geologischen Umfeldkarte 1 : 10000.- KTB-Report 89-3:10-23.

STETTNER G. (1990): KTB Umfeldgeologie. Das geologische Umfeld der Kontinentalen Tiefbohrung in der Oberpfalz. Ein Überblick mit Exkursionshinweisen.- Bay. Geologisches Landesamt, München.

STETTNER G. mit Beiträgen von BURGER R., ROHRMÜLLER J. & TROLL

G. (1990): Geologische Karte des KTB-Umfeldes Oberpfalz 1 : 10000. Blatt Krummenaab.- Hannover 1990.

STROH A., HEINSCHILD H.-J., HOMANN K.D. & TAPFER M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 92 bis 1530 m : C. Geochemie.- KTB-Report 88-6:C1-C109.

TEUFEL H. (1988): Vergleichende U-Pb- und Rb-Sr-Altersbestimmungen an Gesteinen des Übergangsbereichs Saxothuringikum/Moldanubikum, NE-Bayern.- Göttinger Arb. Geol. Paläont., 35, 87 S.

VOLLBRECHT A., WEBER K. & SCHMOLL J. (1989): Structural model for the Saxothuringian-Moldanubian suture in the Variscan basement of the Oberpfalz (Northeastern Bavaria, F.R.G.) interpreted from geophysical data.- Tectonophysics, 157:123-133.

WEBER K. & VOLLBRECHT A. (1989): The Crustal Structure at the KTB Drill Site, Oberpfalz.- In: EMMERMANN R. & WOHLENBERG J. (eds): The German Continental Deep Drilling Program (KTB), pp 5-36.

WINCHESTER J.A. & FLOYD P.A. (1976): Geochemical magma type discrimination : Application to altered and metamorphosed basic igneous rocks. - Earth Planet. Sci. Lett., 28:459-469.

YUND R.A. & KULLERUD G. (1966): Thermal stability of assemblages in the Cu-Fe-S system.- J. of Petrol., 7:454-488.

ZULAUF G. (1990): Spät- bis postvariszische Deformationen und Spannungsfelder in der nördlichen Oberpfalz (Bayern) unter besonderer Berücksichtigung der KTB-Vorbohrung.- Frankfurter geowiss. Arb., Serie A, Bd. 8, 285 S., Frankfurt a.M.

Anlage 1a: Teufenlog der mineralogischen Zusammensetzung

Anlage 1b: Teufenlog der mineralogischen Zusammensetzung (Fortz.)

- B 85 -

Anlage N 2 .. Teufenlog der chemischen Hauptbestand ltei F Ð

- KTB HB 0-1000m AGRU Geochemie Stand: 25.03.91

- Kataklasit, Ankerit-führend
- />/、störungsgebundene Lamprophyre
- 」[□] Kalksilikat-Einschaltungen
- ~~ Muskovit-Biotit Gneis
- Störungszone
- AAA Metabasite

monotoner Granat-führender Sillimanit-Biotit Gneis

Wechsellagerung (hornblende)—Biotit Gneis Sillimanit/Kyanit—führender Biotit Gneis

22

2/~/2

E.

Β

86

1

Anlage Teufenl 2b Log Q D F che mi S chen Hauptb D S ta indt D μ. F D -T 0 F rt S D

rt

Sung

-

KTB HB 0-1000m AGRU Geochemie Stond: 25.03.91

Anl

à

9

D

w Q

..

Te

C

H

enl

0

Q

A D

3

S

pur

en

D \vdash

ement

D

* erstes Auftreten von Sillimonit/Kyanit

www. Kataklasit, Ankerit-führend

- /~/~ störungsgebundene Lamprophyre
- J^Γ Kalksilikat−Einschaltungen
- ~~ Muskovit-Biotit Gneis
- Störungszone
- AAA Metabasite

Kalksilikat-führender Plagioklasreicher Gneis ----

monotoner Granat-führender ~2 Sillimonit-Biotit Gneis

Wechsellagerung (hornblende)—Biotit Gneis Sillimanit/Kyanit—führender Biotit Gneis A. In

1 Ξ 88 Т

An \vdash Q Q D w 0 .. Э eufenl 0 Q Q D 17 S pu re ne le E D D 1 Φ -1-I 0 F († S D CT zun Q

-

- 68 B

1

C. Geochemie

Ch. Figgemeier J. Hansmann H.-J. Heinschild H. Kamm

KTB Report	91-3	C1-C41	14 Abb.	Hannover 1991
			A second s	

Tiefbohrung KTB-Oberpfalz HB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor – Teufenbereich von 0 bis 1720 m:

C.Geochemie

Ch. Figgemeier, J. Hansmann, H.-J. Heinschild und H. Kamm *)

Inhaltsverzeichnis:

Seite

	Zusammenfassung C Abstract C	2 2
C.1	Einleitung C	3
C.2 C.2.1 C.2.2 C.2.3 C.2.4	Bohrspülungsanalytik C Bohrspülungszusatz - Dehydril-HT C Aufbereitungsverfahren und Meßmethoden C Spülungstechnische Parameter und Maßnahmen C Ergebnisse und Diskussion C	4 4 6 7
C.3 C.3.1 C.3.2 C.3.3 C.3.4 C.3.4.1 C.3.4.2 C.3.4.2 C.3.4.3 C.3.4.4 C.3.5	Gasanalytik. C Allgemeines. C Analysenmethoden. C Probennahme. C Ergebnisse. C Gasfreisetzung während des Bohrens. C Tripgase. C Heliumeinleitungsteste. C Einfluβ der Bohrspülung auf die Gasfreisetzung. C Diskussion. C	13 13 14 18 20 22 23 25
C.4	Schriftenverzeichnis C	26
C.5	Danksagung C	27
C.6	AnhangC Zusammenstellung sämtlicher Spülungseinleitungen	28

*) Anschrift der Autoren: KTB Feldlabor 8486 Windischeschenbach

Zusammenfassung

Dieser Arbeitsbericht umfaβt die Ergebnisse der Gas- und Spülungsanalysen im Teufenabschnitt 0 - 1720 m.

In der KTB Hauptbohrung wird der gleiche Spülungstyp verwendet, der auch schon in der Vorbohrung im Einsatz war. Es handelt sich hierbei um ein Gemisch von Wasser mit etwa 1.5 % Dehydril-HT, einem anorganischen temperaturbeständigen Spülungszusatz, der mit Wasser ein kolloidales System mit thixotropen Eigenschaften bildet.

Die Ergebnisse der Bohrspülung belegen eine Aufkonzentrierung einzelner Elemente, die durch Bohrspülungs/Gesteinswechselwirkungen (Lösungs- und Oxidationsprozesse) verursacht werden.

Eine Interpretation der Kationenergebnisse im Teufenbereich 1180 – 1720 m ist nicht möglich, da die Kationenanalytik durch Sodazugaben stark beeinträchtigt wurde. Soda kam aus Korrosionsschutzgründen zum Einsatz. Die Anionenanalytik wurde dadurch nicht gestört.

Mit den kontinuierlich durchgeführten Bohrspülungsanalysen konnte für den Teufenbereich 0 1720 ----m kein Zuflußhorizont eindeutig detektiert werden. Die Kationen- und Anionenergebnisse des 1720 durchgeführten bei m Zirkulationstests geben ebenfalls keinen Hinweis auf höher mineralisierte Oberflächen- bzw. Formationswässer.

Durch die kontinuierlich durchgeführte Analyse der aus der Bohrspülung freigesetzten Gase lassen sich im Teufenbereich 0 – 1720 m zwei Zonen eingrenzen, die sich durch deutliche Methan- sowie Radonanreicherungen auszeichnen. Diese Bereiche korrelieren mit dem Auftreten von stark graphitführenden Kataklasezonen.

Mittels Heliumeinleitungen in die Bohrspülung wurde die Effiziens der eingesetzten Quirlentgaser bestimmt und ins Bohrloch zugetretene Methanmengen quantifiziert.

Abstract

In this first KTB report on the Hauptbohrung the results of chemical analysis of the drilling fluid and dissolved gases from 0 - 1720 m are presented.

During drilling of the main hole the same drilling fluid system is being used as that of the pilot hole. This drilling fluid is a mixture of water with 1.5 % Dehydril-HT, an inorganic viscosifier with high temperature stability, giving an fluid with thixotropic porperties. The results of the drilling fluid analyses show enrichments of particular elements produced by fluid/rock interactions (leaching- or oxidation procecces).

An interpretation of cation-analysis in the depth interval 1180 - 1720 m is not possible due to additions of soda. Soda was added to the drilling fluid in order to pervent the corrosion of the drill pipe.

Continuous analysis of the drilling fluid gave no indication of influxes of formation waters from 0 - 1720 m.

The results of continuous analysis of dissolved gases indicated two zones of methane and radon enrichment within 0 - 1720 m. These zones coincide with graphite bearing cataclastic horizons.

The efficiency of the degassing system was tested by heliuminjections into the drilling fluid. Therefore the volume of pure methane influx could be quantified.

C.1 Einleitung

In diesem Teil des ersten Arbeitsberichts der KTB-Hauptbohrung werden die Ergebnisse der kontinuierlichen Spülungsund Gasuntersuchungen (Atomemissionsspektrometer, Ionenchromatograph, Massenspektrometer, Gaschromatograph, Radon-Meßstand) des Teufenbereichs 0 - 1720 m vorgestellt und diskutiert.

Die Zielsetzung besteht in der frühzeitigen Erkennung und Lokalisierung von Zuflußhorizonten migrierender Fluide und Gase, die eine gezielte Probennahme ermöglicht.

Die Bohrspülung wurde in Abständen von 2 bzw. 4 m auf ihre Kationen- und Anionengehalte untersucht.

Die Analysenabstände der aus der Bohrspülung freigesetzten Gase sind bei gegebenem Bohrfortschritt von der Meßzeit der eingesetzten Meßgeräte (Prozeßgas-Massenspektrometer = 2 Minuten, Gaschromatograph = 3 Minuten, Radon-Meßstand = 50 Minuten) abhängig.

C.2 Bohrspülungsanalytik

C.2.1 Bohrspülungszusatz - Dehydril-HT

KTB wird erstmalig bei einer Bohrung überhaupt ein Bei temperaturbeständiger Spülungszusatz mit anorganischer, der Bezeichnung Dehydril-HT (Hersteller Henkel KGaA) verwendet. Dieser Zusatz, der hauptsächlich aus den Elementen Si, Ma. Na, Li und O besteht, wird für den bohrtechnischen Einsatz in Form von Pulver in maximal 1 - 2,5 %-iger Konzentration mit Leitungswasser angesetzt. Dieses Gemisch ergibt ein kolloidales System mit thixotropen Eigenschaften. Die Thixotropie und ist abhängig von der D-HT Konzentration, dem pH-Viskosität Wert und dem Elektrolytgehalt (HEROLD et al., 1987).

Die D-HT Spülung bewirkt im Vergleich zu ölbasischen Spülungstypen eine nur relativ geringe chemische Kontamination der Spülung selbst, des Bohrkleins und der Kerne. Ferner erlaubt die konstante chemische Zusammensetzung jederzeit eine Stoffbilanzierung sowie die Erkennung von Fluidzutritten. Die aktuelle D-HT Konzentration bzw. die Gehalte der anderen durch den Zusatz eingebrachten Elemente, können mit Hilfe des Lithiumgehaltes in der Bohrspülung bestimmt werden.

C.2.2 Aufbereitungsverfahren und Meßmethoden

a) Kationen

Die qualitative und quantitative Analyse der Kationen erfolgt mit Hilfe eines Atomemissionsspektrometers der Firma ARL (3580, Vakuum). Die verwendete Meßmethode ist in STROH, 1988 beschrieben. Es werden die Elemente Na, K, Li, Mg, Ca, Sr, Ba, Fe, Zn und Al bestimmt.

Probenaufbereitung erfolgt nach einem Verfahren, das in Die KTB-Pilotbohrung entwickelt und optimiert wurde (siehe der al., 1988). Aufgrund der chemisch-physika-HEINSCHILD et lischen Eigenschaften der Bohrspülung ist eine einfache Aufwie Verdünnung und Filtration, nicht möglich. bereitung, im vorherigen Kapitel beschrieben wurde, bildet das Wie Gemisch Wasser und Spülungszusatz D-HT ein kollodiales System auf der Basis silikatischer Strukturen. Charakteristisch für dieses System ist die Ausbildung negativ geladener Ladungswolken, die zu einer Adsorption der in der Bohrspülung ent-Filtrationsversuche Kationen führt. zeigten haltenen deutliche Kationenminderbefunde, so daß diese Methode zur Abtrennung des in der Spülung enthaltenen Bohrmehls verworfen wurde. Das entwickelte Aufbereitungsverfahren ist in der Abb. C.2.1 dargestellt.

b) Anionen

Die Anionengehalte der Bohrspülung werden chromatographisch bestimmt. Das verwendete Analysenverfahren ist im KTB-Report 88-2 (HEINSCHILD et al., 1988) beschrieben. Da die Anionen von dem Spülungszusatz nicht adsorbiert werden, kann die Abtrennung des Bohrmehls durch Filtration erfolgen. Den Aufbereitungsgang zeigt die nachfolgende Abbildung.

Abb. C.2.1: Fließdiagramm zur Kationen- und Anionenanalyse

C.2.3 Spülungstechnische Parameter und Maßnahmen

Zur Interpretation der Kationen- und Anionenergebnisse müssen spülungstechnische Parameter berücksichtigt werden. Die wichtigsten Parameter wie Spülungseinleitungen, pH-Wert und Gesamtvolumen der zirkulierenden Bohrspülung (TCV in m³) sind in den Tabellen C.6.1.1 und C.6.1.2 (Anhang) zusammengestellt. Die in diesen Listen angegebenen Teufen beziehen sich auf den Beginn einer Einleitung und sind in den Teufenlogs der Kationen und Anionen markiert.

Zu Beginn der KTB-Hauptbohrung wurde eine 1.9 %-ige D-HT Spülung verwendet, der Natronlauge zur pH-Werteinstellung (pH 9.9-10.1) und Soda aus Viskositätsgründen zugesetzt wurde. Die Spülung weist niedrige Initialgehalte für die Elemente Na (350 ppm), K (10 ppm), Ca (42 ppm), Sr (0.2 ppm), Li (58 ppm), Mg (2640 ppm), Cl⁻ (10 ppm) und SO4²⁻ (60 ppm) auf. Ab 58 m wurde die Bohrspülung mit Wasser auf einen D-HT Gehalt von 1.7 % verdünnt und diese Konzentration bis zur Teufe von 304 m beibehalten.

Nach dem Erreichen dieser Teufe wurde das Bohrloch bis 144 m von 17.5 Zoll auf 28 Zoll erweitert. Anschließend erfolgte eine Rückzementierung des Teufenbereichs von 246 bis 304 m. Danach wurde die Erweiterung bis 305 m fortgeführt und das Bohrloch vollständig verrohrt.

Das Aufbohren der zementierten Strecke und des Rohrschuhs bei 305 m verursachte eine erhebliche Kontamination der Spülung durch Anreicherung von Ca (1730 ppm) und Sr (9 ppm). Mittels Zugabe von NaHCO3 konnte ein Teil des Ca und Sr in Form von Karbonat ausgefällt werden. Die hohe Ca-Zufuhr bewirkte einen großen Verlust des Spülungszusatzes D-HT, dem durch Zusetzen von 2.5 - 3.5 %-iger D-HT Spülung ("dicke Pille") entgegen gewirkt wurde. Aufgrund der entstandenen instabilen rheologischen Eigenschaften der Spülung wurde sie nach dem Durchbohren des Rohrschuhs vollständig ausgetauscht.

Die neu angesetzte Bohrspülung wurde auf einen D-HT Gehalt von 1.4 - 1.5 % und einen pH von 9.8 - 10.1 eingestellt. Es wurde folgende Anfangszusammensetzung bestimmt: 530 ppm Na, 15 ppm K, 67 ppm Ca, 0.3 ppm Sr, 43 ppm Li, 2000 ppm Mg, 15 ppm Cl⁻ und 50 ppm SO4²⁻.

Eine immer stärker auftretende Korrosion des Bohrstranges war Anlaß für die Zugabe von Soda ab 750 m. Die Gesamtzugabe belief sich im Teufenabschnitt 750 - 1450 m auf ca. 1.5 t und bewirkte eine "Griesbildung" in der Spülung (siehe dazu Kap. C.2.4). Da die Gestängekorrosion trotz der Sodazugabe drastisch fortschritt, wurde die Zugabe wieder eingestellt. Die darauf folgende Anhebung des pH-Werts (ab 1500 m) von 10 auf 11 war ein weiterer Versuch der Korrosion entgegen zu wirken. Das zirkulierende Spülungsvolumen bei 1720 m beträgt 458 m³ und ist 7.5 mal gröβer als in der Vorbohrung bei gleicher Teufe. Die durchschnittliche Pumprate liegt bei 3.5 m³/min. Zum Vergleich wurde während der Vorbohrung beim Seilkernverfahren mit 0.22 m³ und beim Rotary-Bohrverfahren mit 0.6 -0.7 m³ Spülung pro Minute gepumpt.

C.2.4 Ergebnisse und Diskussion

Die Spülungsergebnisse sind im Anhang als Teufenlogs im Maßstab 1:3000 dargestellt.

Wie aus der Tabelle C.6.1.1 hervorgeht, wurde der ersten Ansatzspülung aus bohrtechnischen Gründen Wasser, "frische" Spülung und Natronlauge zugesetzt. D-HTTrotz dieser Spülungsverdünnungen belegen die Kationen- und Anionenergebnisse eine sukzessive Anreicherung der Elemente Ca, Sr, Al, Fe und SO42-. Eine deutliche Aufkonzentrierung der Κ, Spülungsausgenannten Elemente zeigt sich nochmals nach dem tausch bei 306 m. Die Elementanreicherungen beruhen auf Austauschbzw. Oxidationsprozesse zwischen Spülung und durchteuftem Gestein, wie durch Laborexperimente belegt werden kann (HOMANN und MÜLLER, 1989).

Die Elemente Ca und Sr werden durch "Leaching-Effekte" der Bohrspülung mit den Mineralen Hornblende, Calcit und vor allem Plagioklas angereichert. Der deutliche Calciumanstieg ab 260 m läßt sich mit dem großen Calciumangebot des hier auftretenden karbonathaltigen Kataklasits und den Kalksilikat-Einschaltungen des Gneises, die ab der Teufe von 288 m durchbohrt wurden, erklären.

Die K- und Al- Anreicherungen sind darauf zurückzuführen, daß feinschuppige Schichtsilikate (Muskowit, Biotit) im alkalischen Milieu der Bohrspülung in eine Kolloidform überführt und schichtparallel in die Gel-Struktur des Dehydrils eingebaut werden (STROH et al., 1988).

Der Eisengehalt ist neben dem Anteil, der durch Gestängabrieb in Lösung geht, auf Bohrspülungsreaktionen mit Fe-haltigen Mineralen wie Hornblende, Chlorit, Biotit und insbesondere Pyrit und Pyrrhotin zurückzuführen.

Die Wechelwirkung Spülung/Pyrit und Pyrrhotin führt neben der Eisenanreicherung auch zu einer Sulfatbildung, die in den Teufenabschnitten 260 – 300 m und 400 – 550 m beobachtet wurde. Sie erklärt sich aus einer Oxidationsreaktion, die nach folgender Gleichung verläuft

 $2 \text{ FeS}_2 + (15/2)O_2 + 4 H_2O \iff \text{Fe}_2O_3 + 4 SO_4^2 - + 8 H^+$

In der Abb. C.2.2 sind die Sulfatgehalte der Bohrspülung und die Schwefelgehalte der Cuttings (RFA-Analyse) dargestellt. Der erste signifikante Sulfatanstieg ab 260 m korreliert mit einer Schwefelanreicherung, die durch einen pyrithaltigen Biotit-Hornblende Gneis hervorgerufen wird. Der sprunghafte Abfall des Sulfatgehaltes bei 306 m ist auf den Spülungsaustausch zurückzuführen. Der im Teufenbereich 400 - 550 m durchteufte pyrit- und pyrrhotinreiche Granat-Sillimanit-Biotit-Gneis führt zu einer einmaligen Anhebung des "Sulfat-Backgrounds" um 150 ppm.

Abb. C.2.2: Sulfatgehalte der Spülung und Schwefelgehalte der Cuttings KTB HB

Der Natriumgehalt der Spülung geht überwiegend auf die Zugaben von Natronlauge und Soda zurück. Natrium kann somit als Zuflußindikator nur bedingt verwendet werden. Punktuell zugegebene große Einleitungsmengen führen zu den sprunghaften Anstiegen, die oftmals in den Teufenlogs zu beobachten sind.

750 m kam Soda als erste Korrosionsschutzmaβnahme Ab verstärkt zum Einsatz. Die Zugabe von 1.5 t innerhalb des Teufenabschnitts 750 - 1450 m bewirkte eine äußerlich gut sichtbare "Griesbildung" in der Spülung. Die chemischen Analysen dieser Spülungsproben dokumentieren eine deutliche Mg- und Li- Abnahme, die nur auf einen Verlust des Spülungszusatzes D-HT zurückgeführt werden kann. Die adsorptive Eigenschaft Zusatzes (negativ geladenes Kolloid) des hinsichtlich der Kationen führt folglich auch zu einem signifikanten Minderbefund der Elemente Ca, Sr, Al und Fe. Der Effekt spiegelt sich beispielhaft, nach der ersten größeren (300 kg) bei 750 m, in den Teufenlogs der genan-Sodazugabe nten Kationen wieder. Anfänglich konnte die "Griesbildung" durch starke Scherung der Spülung wieder aufgehoben werden. Die Zugabe von 400 kg bei 1180 m führte dann aber zu einer bleibenden "Griesbildung". Für die Elemente Ca, Sr, Li, Mg, und Fe ergeben sich im Teufenbereich 1180 - 1720 m große A1 Variationsbreiten, die eine sehr inhomogene Spülung widerspiegeln. Identische Kurvenverläufe belegen die Adsorptionswirkung des Zusatzes D-HT für diese Elemente. In Abb. der C.2.3 a und b ist der D-HT Gehalt gegen einzelne Kationen im Teufenabschnitt 750 -1720 m dargestellt. Anhand der D-HT/Kationen-Diagramme kann die adsorptive Wirkung des Zusatzes D-HT bezüglich der ein-, zwei- und dreiwertigen Kationen aufgezeigt werden. Es stellt sich heraus, daß nur die zwei- und dreiwertigen Kationen durch den D-HT Verlust deutlich beeinflußt werden.

Abb. C.2.3a: D-HT/Kationen - Diagramm KTB HB (750 - 1720 m)

Abb. C.2.3b: D-HT/Kationen - Diagramme KTB HB (750 - 1720 m)

Der Sodazusatz hat außerdem zur Folge, daß ein Teil der Kationen als Karbonat (z.B. CaCO₃, SrCO₃, FeCO₃, etc.) ausfällt. Eine Interpretation der Kationenergebnisse ist in dem Teufenbereich 1180 - 1720 m daher nicht mehr möglich.

Die Anionenanalytik wurde durch den Sodaeinsatz nicht beeinträchtigt. Das Anion Chlorid erwies sich in der Vorbohrung als ein sehr empfindlicher Zuflußindikator. Chlorid-Die gehalte der Spülung zeigen eine Variationsbreite von 20 bis 50 ppm. Im Teufenabschnitt 1340 - 1400 m tritt eine leichte Anreicherung (50 - 90 ppm) auf, die auf einen Zufluβ hindeuten könnte. Anreicherungen der Elemente Na, Ca und Sr, die in der Vorbohrung oftmals mit einem Chloridanstieg verbunden waren, konnten nicht beobachtet werden.

Vergleich der Hauptbohrung zur Vorbohrung muβ die Bei dem "Zufluß-Nachweisempfindlichkeit der Herabsetzung der indikatorelemente" bedingt durch bedeutend höheren Spülungsvolumina und Spülungspumpraten in der Hauptbohrung (Kap. C.2.3) berücksichtigt werden.

- C 10 -
Nach Erreichen der Teufe 1720 m wurde die Bohrung für ein 50-stündiges geophysikalisches Meßprogramm unterbrochen. Die Bohrspülung wurde während dieser Zeit nicht zirkuliert, sondern nur durch ein- und ausfahrende Meßsonden durchbewegt.

Mögliche Zuflüsse führen zu einer lokalen Veränderung der chemischen Zusammensetzung der Spülungssäule. Eine enge Beprobung der Säule ermöglicht daher das Auffinden von Zuflüssen. Bei bekannter Pumprate, sowie bekanntem Ringraumund Gestängeverdrängungsvolumen, ist es möglich den genommenen Proben jeweils eine Teufe zuzuordnen. In Tabelle C.2.1 sind die Kationen- und Anionenergebnisse der Spülungsproben, die während der Auszirkulation genommen wurden, gegen die Teufe dargestellt.

Die geringe Chlorid-Schwankungsbreite (30 - 45 ppm) deutet auf keinen Zufluß höher mineralisierter Oberflächen- bzw. salinarer Formationswässer hin. Die großen Variationsbreiten aller bestimmten Kationen dokumentieren eine chemisch sehr inhomogene Spülungssäule. Tab. C.2.1: Anionen- und Kationengehalte des Zirkulationstests (1720 m) (Alle Angaben in ppm)

Teufe (m)	Na	K	Li	Mg	Ca	Sr	Fe	Al	Cl	s04 ²⁻
100	2280	230	53	2620	149	1.13	677	663	30	255
200	2150	180	27	1420	86	0.68	433	450	30	255
300	2150	200	32	1610	97	0.76	480	500	35	245
400	2290	240	57	2790	165	1.24	749	731	30	275
500	2200	210	37	1900	114	0.87	539	559	35	270
600	2240	250	59	2980	169	1.27	787	742	40	265
700	2110	190	31	1580	94	0.74	486	485	40	260
800	2080	170	24	1210	74	0.60	385	413	35	260
900	2180	200	36	1790	107	0.83	519	541	30	260
1000	2080	180	24	1210	76	0.60	396	422	30	260
1100	2080	180	29	1410	78	0.63	429	453	30	255
1200	2140	200	37	1840	108	0.84	555	573	30	255
1220	2080	170	23	1150	70	0.56	370	400	30	250
1240	2140	200	34	1700	102	0.79	522	546	30	250
1260	2220	220	54	2620	150	1.13	685	664	35	240
1280	2160	220	42	2090	124	0.96	626	625	35	245
1300	2210	230	56	2820	158	1.19	728	689	35	245
1320	2100	200	36	1800	110	0.85	556	564	40	245
1340	2000	150	21	1090	66	0.53	351	364	35	265
1360	2160	240	55	2610	164	1.23	734	716	30	250
1380	2040	200	36	1810	106	0.82	523	517	25	245
1400	2070	220	43	2210	127	0.97	639	621	25	255
1420	1950	170	26	1300	77	0.61	403	412	30	270
1440	1980	180	25	1240	79	0.63	414	436	30	270
1460	2030	190	36	1820	108	0.82	531	536	50	280
1480	2030	200	34	1690	104	0.76	515	535	40	320
1500	1910	150	21	1030	63	0.52	350	379	30	280
1540	1960	180	32	1630	95	0.73	509	498	40	275
1580	2030	180	24	1200	66	0.56	391	425	30	280
1620	2100	180	27	1340	77	0.62	423	462	45	285
1660	2120	200	37	1870	100	0.81	544	560	40	265
1690	2100	200	33	1670	98	0.75	507	521	35	270

C.3 Gasanalytik

C.3.1 Allgemeines

Die Erfahrungen, die beim Abteufen der KTB VB erzielt wurden, haben gezeigt, daß Fluidzutritte ins Bohrloch durch eine kontinuierlich durchgeführte on-line-Analyse der in der Bohrspülung gelösten Gase am besten, schnell und sicher erkannt werden können.

Die Analyse der aus der Bohrspülung freigesetzten Gasphase erfolgt mit unterschiedlichen Analysengeräten:

- Gaschromatograph (Methan, Ethan, Propan und Butan),
- Prozeβgas-Massenspektrometer (Stickstoff, Sauerstoff, Argon, Kohlendioxid, Methan, Wasserstoff und Helium) und
- Radonmeβanlage (^{2 2 2} Rn).

Die Analysenergebnisse stellen die prozentualen Volumenanteile der gemessenen Gase in der aus der Bohrspülung freigesetzten Gasphase dar.

C.3.2. Analysenmethoden

Seit Beginn der KTB HB im September 1990 ist ein Gaschromatograph (F-30 D) der Firma GEO-data mit Schreiberaufzeichnung im Betrieb. Ab 307 m wurden die Meßdaten auf einem PC gesichert und ein neues Gassammelsystem installiert.

Der Gaschromatograph ist mit einem Flammenionisationsdetektor (FID) ausgerüstet. Mit Hilfe eines Trägergases (Druckluft) wird eine definierte Probenmenge in eine mit Wasserstoff und Luft brennende Flamme geführt. Gase, die C-C- und/oder C-H-Bindungen besitzen, werden in dieser Wasserstoff-Flamme ionisiert. In der normalerweise kaum ionisierten Wasserstoff-Flamme entstehen durch die Ionisation Ladungsträger (CH + O-> CHO + e⁻), die durch ein elektrisches Feld an einer Sammelelektrode aufgefangen werden. Der Brenner dient als Kathode, während die Anode dicht über der Flamme angebracht ist (vgl. Abb. C.3.1).

Abb.C.3.1: Schematische Darstellung eines Flammenionisationsdetektors (aus BENDER, 1984) Bei der thermischen Dissoziation kohlenstoffhaltiger Gase wird die Wasserstoff-Flamme den gebildeten Ionen entsprechend leitend. Das Signal ist der pro Zeiteinheit durchgesetzten Gasmenge proportional. Die Auflösung des Gaschromatographen betrug 10 ppm; ab 1720 m wurde sie durch eine Gerätemodifizierung auf 1 ppm verbessert. Zusätzlich ist der Gaschromatograph mit einem automatischen Gassammelsystem ausgerüstet. Dadurch besteht die Möglichkeit, in Abhängigkeit von ihren Konzentrationen Gase an Methan, Ethan, Propan und Butan in vier Gasbehälter (Gasmäuse) automatisch einzuschließen. An diesen Proben werden detaillierte Unteruchungen durchgeführt. Für jede Gasmaus kann die Gasart sowie ein Schwellenwert angegeben werden. Das Schließen eines Gasbehälters erfolgt beim Erreichen bzw. Überschreiten des gewählten Schwellenwertes. Wird eine Gasprobe in einer Gaseingeschlossen, lassen sich die Angaben über den Zeitmaus punkt der Probennahme sowie die entsprechende Analyse am Bildschirm ablesen.

Das Meβprinzip des eingesetzten **Prozeβgas-Massenspektrometers** (MM8-80) der Firma VAKUUM GENERATORS (jetzt FISONS) ist im KTB Report 88-6 von STROH et al. 1988 beschrieben.

Der apparative Aufbau, die Meßmethode sowie erste Ergebnisse der **Radon-Meßanlage** (F&E-Projekt von Dr. J. ERZINGER, Institut für Geowissenschaften und Lithosphärenforschung der Justus-Liebig-Universität Gießen und Dr. G. KELLER, Fachrichtung 3.6 Biophysik und Physikalische Grundlagen der Medizin, Universität des Saarlandes, Homburg) sind Bestandteil eines gesonderten Kapitels I in diesem Report.

C.3.3 Probennahme

Die Freisetzung der in der Bohrspülung gelösten Gase erfolgt durch zwei Quirlentgaser der Firma GEO-data. Das Funktionsprinzip ist bei STROH et al. 1989 beschrieben. Beide Quirlentgaser sind vor den Schüttelsieben (hängend in der Bohrspülung) positioniert.

Die Zeitdauer zwischen der Gasfreisetzung mittels Quirlentgaser und der Erfassung mit einem Prozeßgasmassenspektrometer in einem Container auf dem Bohrplatz beträgt 12 Minuten. Hinweise auf den Zutritt von Fluiden stehen mit 12 minütiger Verzögerung zur Verfügung.

Aus sicherheitstechnischen Gründen wurde vor den Schüttelsieben und somit auch vor den Quirlentgasern ein Gasseparator installiert. Dieser Gasseparator soll bei einer hohen Gasbeladung der Bohrspülung eine Gasfreisetzung vor den Schüttelsieben bewirken. Abb. C.3.2 zeigt ein idealisiertes Schema des eingesetzten Gasseparators.

Schüttelsiebe

Abb.C.3.2: Schematischer Aufbau des Gasseparators (vereinfachte Darstellung der ITAG-Zeichnung Nr. ZF 1-19/1650.10)

Die aus dem Bohrloch über eine Rohrleitung fließende Bohrspülung prallt im Gasseparator gegen steilstehende Bleche und wird anschließend über weitere Rohrleitungen auf die Schüttelsiebe verteilt. Die bei diesem Prozeß freiwerdende Gasphase entweicht über einen Kamin ins Freie. Um Aussagen über eine Bohrspülungsentgasung mit dem Gasseparator machen zu können, erfolgte am Kamin im Teufenbereich 54 - 306 m eine kontinuierliche Beprobung (Absaugen der Gasphase) der freigesetzten Gasphase. Eine Bohrspülungsentgasung findet innerhalb des Gasseparators statt, wenn sich die analysierte Gasphase von der Luftzusammensetzung unterscheidet. Der Vergleich der Kohlendioxidgehalte der Gasphasen aus Quirlentgaser und Gasseparator (Abb. C.3.3) zeigt eine Luftkontamination der aus der Bohrspülung am Gasseparator freigesetzten Gasphase.

Abb.C.3.3: Vergleich der CO₂-Gehalte von Gasphasen, die mit Quirlentgaser und Gasseparator freigesetzt wurden

Die im Gasseparator freigesetzten Gase fehlen der Gasmenge, die mit den Quirlentgasern gewonnen wird. Das bedeutet, daß die Nachweisempfindlichkeit der gasanalytischen Untersuchungen zur Detektion fluider Phasen herabgesetzt wird. Die durch die zwei Quirlentgaser aus der Bohrspülung freigesetzten Gasphasen werden in drei Aliquote (drei verschiedene Analysengeräte) aufgeteilt, so daß die zu untersuchende für das Prozeßgas-Massenspektrometer, Gasprobe den Gaschromatographen und der Radonme β anlage gleiche Zusammensetzung aufweist. In der Abbildung C.3.4 sind die Methangehalte von Gasphasen, die durch Analysen des Prozeßgas-Massenspektrometers ermittelt wurden, gegen die entsprechenden Methananalysen des Gaschromatographen dargestellt.

Abb.C.3.4: Vergleich von Methananalysenergebnissen des Prozeβgas-Massenspektrometers mit denen des Gaschromatographen

Der Vergleich der Ergebnisse der massenspektrometrischen und der gaschromatographischen Bestimmung belegt die Richtigkeit der durchgeführten Methananalysen sowie die generelle Eignung beider Meßmethoden.

8

Teufe

C.3.4.1 Gasfreisetzung während des Bohrens

In den nachfolgenden Abbildungen sind einige ausgewählte Gase gegen die Teufe dargestellt. Größere Datenlücken entstanden durch Geräteausfälle, Umzug der Analysengeräte vom Feldlabor in einen Doppelcontainer an der Bohranlage sowie durch Ausfall der Quirlentgaser.

Die Effizienz der Quirlentgaser war im 1350 Teufenbereich 305 m aus technischen Gründen vermindert. In He (ppm) 0 5 10 15 diesem Bereich können bis auf eine mini-0 Juniumini male Anreicherung bei 1140 m kein Methan -----50 E und nur geringe Wasserstoffvariationen 100 튁 1 in der Bohrspülung nachgewiesen werden. 150 200 250 300 350 アイモニア Gasanreicherungen, die durch Tripgase T verursacht wurden, sind in der Abb.C.3.6 turum nicht mit aufgeführt. 400 450 500 550 600 650 700 750 800 950 1000 1050 1100 1150 N. MAR Die analytischen Untersuchungen der "Bohrspülungsgase" während des Abteufens der KTB VB zeigen, daβ sich ins Bohrloch - HARNY eintretende Gase durch Methanund Heliumanreicherungen in der Bohrspülung nachweisen lassen. Im Teufenbereich 0 - 1720 m können einmral werden zelne Zone eingegrenzt werden, die sich durch Methananreicherungen (bis 540 ppm) in der Gasphase auszeichnen. Die beiden Hauptzonen im Bereich um 1450 m und 1530 m korrelieren mit stark graphitführenden He L Neben CH4 Kataklasezonen. konnte dort ein deutlicher Radonanstieg nachgewiesen 5 werden. 1200 클 Die Heliumgehalte zwischen 4 und 7 ppm 1250 1 sind auf Kontamination der Bohrspülung 1300 mit Luft (5 ppm He) durch den Einsatz 1350 -Anano part in the spirit mail des Gasseparators sowie durch Luftauf-1400 1450 nahme der Bohrspülung vor dem Verpumpen ins Bohrloch zurückzuführen. 1500 1550 1600 1650 1700 den Wasserstoffgehalten handelt Bei 65 sich, wie schon im KTB Report 88-6 unter Stroh et al., 1988 beschrieben wurde, um artifizielles Gas.

Abb.C.3.5: Helium-Teufenlog

Abb.C.3.6: Teufenlogs der Gase H2, CH4, Rn und CO2

- C 19 -

Die Variationen der CO2 -Gehalte der aus der Bohrspülung freigesetzten Gasphase wird durch den pH-Wert der Bohrspülung bestimmt und durch Mitansaugen von Fremdluft durch die Quirlentgaser z.T. verfälscht. In Abb. C.3.7 sind die CO2-Gehalte der Gasphasen gegen den pH-Wert der Bohrspülung aus dem Teufenabschnitt 1480 -1550 m dargestellt.

Abb.C.3.7: Abhängigkeit der CO₂-Gehalte der aus der Bohrspülung freigesetzten Gasphase vom pH-Wert der Bohrspülung

C.3.4.2 Tripgase

Nach längeren Bohrstillstandsphasen treten in der Bohrspülung sogenannte Tripgase auf. Tripgase sind Bohrstillstandsgase, die sich bei der Unterbrechung der Spülungszirkulation in der Regel im Bereich der Bohrlochsohle anreichern. Diese Gasanreicherungen werden nach Wiederaufnahme der Spülungszirkulation entsprechend der Aufstiegszeit auszirkuliert. In den nachfolgenden Abbildungen C.3.8 und C.3.9 sind bei-

spielhaft einige Tripgaszusammensetzungen als Funktion der Zeit dargestellt.

Abb.C.3.8: Tripgas vom 19.02.1991

Abb.C.3.9: Tripgas vom 06.03.1991

Für jedes "Tripgasereignis" sind die Parameter Methan, 222Radon, Helium und Wasserstoff in den ausgewählten Abbildungen zusammengefaßt. Generell lassen sich unterschiedliche Trends für die einzelnen Gase aufzeigen. Methan und 222 Rn reichern im Bohrlochsohlenbereich in der Bohrspülung sich an. Für Helium kann infolge der geringen Gehalte keine eindeutige Aussage gemacht werden. Die Heliumanreicherung in der Gasphase nach dem Gestängeeinbau vom 06.03.91 ist bedingt durch einen vorher durchgeführten Heliumeinleitungstest. Wasserstoff ist dagegen schon kurz nach Beginn der Bohrspülungszirkulation in der freigesetzten Gasphase nachweisbar. In Abb.C.3.9 startete die Zirkulation um ca. 200 Uhr. Bei der hier beobachteten Wasserstoffanreicherung dürfte es sich um Korrosionswasserstoff, und damit eine künstliche Wasserstoffquelle, handeln.

C.3.4.3 Heliumeinleitungsteste

Die Effizienz des eingesetzten Gasfreisetzungssystems (Quirlentgaser) kann nur durch Gaseinleitungen in die Bohrspülung ermittelt werden. Mit Hilfe der daraus berechneten Freisetzungsraten können erste Bilanzierungen von Gaszutritten ins Bohrloch durchgeführt werden.

Dazu wird das Gas über eine Dotierlanze in den Saugtank der Spülungstankanlage geleitet. Die Dotierlanzenöffnung befindet sich vor dem Ansaugstutzen einer Spülungspumpe, so daß die mit dem eingeleiteten Gas versetzte Bohrspülung sofort ins Bohrloch verpumpt wird. Die Gasaufstiegszeit ist abhängig von Pumprate und dem Bohrlochvolumem. Der zeitliche Verzug der zwischen der Gaseinleitung und der Detektion ermöglicht die Berechnung von exakten Bohrspülungsumlaufzeiten, die eine genaue Teufenzuordnung erlaubt. Als Dotiergas wird routinemäßig Helium verwendet, da Helium inert, die Löslichkeit in der Bohrspülung gering und die Detektion in geringsten Konzentrationen möglich ist. Außerdem sind die Untergrundgehalte der Bohrspülung an Helium mit < 7 ppm sehr gering. In Abb. C.3.10 sind die Heliumanalysen der aus der Bohrspülung freigesetzten Gasphase während einer Heliumeinleitung gegen die Zeit dargestellt.

Abb.C.3.10: Heliumkonzentration als Funktion der Zeit in der aus der Bohrspülung freigesetzten Gasphase nach einer Heliumeinleitung

Zeitpunkt 0 erfolgte die Heliumeinleitung in die Bohr-Zum spülung. Nach 1.1 Stunden ist eine Heliumanreicherung in der signifikant nachweisbar. Deutlich ist der schnelle Gasphase Einsatz des Heliums sowie ein leichter Verzug (asymmetrische Peakform). Dieser Effekt entsteht durch die Verdünnung der aktuellen Gasphase mit den jeweils neu freigesetzten Gasen. Berechnet man die insgesamt freigesetzte Heliummenge über die so kann für die zwei Heliumeinleitungen Peakfläche, eine Freisetzungsrate der eingesetzten Quirlentgaser von ca. 0.2 % bestimmt werden; d.h. treten 10 1 reines Helium in die Bohrbeträgt die freigesetzte Heliummenge noch spülung ein, 0.021.

C.3.4.4 Einfluß der Bohrspülung auf die Gasfreisetzung

Ab einer Teufe von 1480 m erfolgte durch den Einsatz von NaOH sukzessive Anhebung des pH-Wertes der Bohrspülung von eine die 9.5 auf 11. Die pH-Werte der Bohrspülung sowie ca. und Radongehalte der Methan-, Wasserstoffaus der Bohrfreigesetzten Gase sind im Teufenabschnitt 1400 spülung 1720 m in Abb.C.3.11 dargestellt.

Nach den dargestellten Ergebnissen scheint ein Zusammenhang zwischen dem pH-Wert der Bohrspülung und den Untergrundwerten (ohne Gaspeaks) der gemessenen Gase zu bestehen.

Abb.C.3.11: Vergleich zwischen dem pH-Wert der Bohrspülung und der Zusammensetzung der aus ihr freigesetzten Gasphase

Ein möglicher Grund für diesen Effekt ist, daβ der pH-Wert-Anstieg eine Viskositätserhöhung der Bohrspülung verursacht. Daraus könnte

- a) eine schlechtere Vorentgasung der Bohrspülung durch den eingesetzten Gasseparator,
- b) eine verminderte Luftzuführung zur Bohrspülung durch den Gasseparator (wodurch die "CH₄-H₂-Rn-Gasphase" weniger verdünnt wird) und /oder
- c) eine insgesamt schlechtere Bohrspülungsentgasung durch den Gasseparator, Quirlentgaser, BURGES-Bohrspülungsentgaser, Schüttelsiebe und Zentrifugen mit nachfolgender Aufkonzentrierung

resultieren.

C.3.5 Diskussion

In Teufe 1527 m konnte in der aus der Bohrspülung freigesetzten Gasphase eine Methananreicherung festgestellt werden. Infolge technischer Maßnahmen (Gestängeausbau und Einbau) wurde die Bohrspülung bei 1539 m 17 Stunden lang nicht zirkuliert. In diesem Zeitraum fand eine Anreicherung an Methan und ²²²Rn (vgl. Abb. C.3.8) in der Bohrspülung des Bohrlochsohlenbereiches statt. Legt man die berechneten Effizienzdaten der eingesetzten Quirlentgaser zugrunde, so sind ca. 3 1 reines Methan ins Bohrloch eingetreten. Wie bei HEINSCHILD (1990) beschrieben besteht eine Abhängigkeit von der Zusammensetzung des Dotiergases vor der Zuführung in die Bohrspülung und der prozentualen Wiederfindung nach der Freisetzung aus der Bohrspülung. Danach ist für Helium die Wiederfindung um den Faktor 2 größer als für Methan. Dies wird durch die bessere Löslichkeit des Methans in der Bohrspülung im Vergleich zum Helium verursacht. Wird dies berücksichtigt, so kann zusammenfassend gesagt werden, daß im Teufenbereich 0 - 1720 m die Größenordnung für reine Methanzutritte unter 10 1 (gilt nur für die Bereiche, in denen Gasanalysen vorliegen) liegen. Für eine genaue Aussage über die in die Bohrspülung eingetre-

tene Methanmengen sind Methaneinleitungen in die Bohrspülung geplant.

C.4 Literaturübersicht

- BENDER, F. (1984): Angewandte Geowissenschaften, Band III -Geologie der Kohlenwasserstoff, Hydrogeologie, Ingenieurgeologie, Angewandte Geowissenschaften in Raumplanung und Umweltschutz. Ferdinand Enke Verlag Stuttgart.
- HEINSCHILD, H.J., HOMANN, K.D., STROH, A.& TAPFER, M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 0 - 480 m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-1: C1-C73, Hannover.
- HEINSCHILD, H.J., HOMANN, K.D., STROH, A.& TAPFER, M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 480 - 992 m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-2: C1-C107, Hannover.
- HEINSCHILD, H.-J. (1990): Kontaminationsfreie Bohrspülungsentgasung. In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 90-2: I1-I10, Hannover.
- HEROLD, C.P., MÜLLER, H., von TAPAVICZA, S. (1987): A New High Temperature Stable Mud Additive for Geological and Deep Drilling Operations. Third International Symposium on Deep Drilling in Crystalline Bedrock. Mora, Sweden 1987.
- HOMANN, K.D. & MÖLLER, H. (1989): Wechselwirkung zwischen Dehydril HT-Bohrspülung und Gesteinsmehl. Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 1709 bis 2500 m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 89-2: F1-F45, Hannover.
- STROH, A., HEINSCHILD, H.J., HOMANN, K.D. & TAPFER, M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich 992 - 1530 m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-6: C1-C109, Hannover.

STROH, A., HEINSCHILD, H.J., HOMANN, K.D., TAPFER, M. & ZIMMER, M. (1989): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich 1709 - 2500m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 89-2: C1-C104, Hannover.

C.5 Danksagung

Unser Dank gilt den technischen Mitarbeitern der Geochemiegruppe im Feldlabor Frau I. Hermann und Herrn S. Merz. Für die kritische Durchsicht des Manuskripts danken wir Herrn Prof. Dr. R. Emmermann und Herrn Dr. Lauterjung.

- C.6 Anhang
- C.6.1 Teufenlogs der Kationen- und Anionengehalte der Bohrspülung
- C.6.1.1 Zusammenfassung der Spülungseinleitungen der KTB HB im Teufenbereich 0 - 305 m
- C.6.1.2 Zusammensetzung der Spülungseinleitungen der KTB HB im Teufenbereich 306 - 1720 m

-C31 -

- C 36 -

C.6.1.1: Zusammenfassung der Spülungseinleitungen der KTB-HB (17.5 Zoll Bohrloch) im Teufenbereich von 0 - 305 m.

Nr.	Datum	Teufe (m)	Technische Einleitungen	TCV (m ³)	pH-Wert
1	06.10.90	3	20 m³ 2.5% D-HT 2 kg NaOH 29 m³ 2.5% D-HT	151	9.9
2	07.10.90	17	10 m³ 2.5% D-HT 20 m³ 2.5% D-HT 50 kg Na₂CO₃	158	10.1
3	11.10.90	58	15 m³ Wasser	170	10.0
4	14.10.90	77	20 m³ Wasser	170	9.9
5	15.10.90	128	15 m³ Wasser 2 kg NaOH	170	9.8
6	16.10.90	172	10 m³ Wasser	170	9.8
7	17.10.90	231	15 m³ 1.8% D-HT 5 kg NaOH	166	9.8
8	18.10.90	264	15 m³ 1.5% D-HT 3 kg NaOH	172	9.9
9	19.10.90	288	15 m³ Wasser 10 kg NaOH 10 m³ 1 5% D-HT	180	9.9
		301	10 m ³ Wasser 20 kg NaOH		

Teufe (m) TCV (m³) Nr. Datum Technische pH-Wert Einleitungen 10 13.11.90 306 50 m³ 1.5% D-HT 142 11.1 11 15.11.90 345 45 m³ 1.5% D-HT 231 10.1 12 21.11.90 415 12 kg NaOH in Umlauf 269 9.8 416 45 m³ 1.5% D-HT 13 22.11.90 436 13 kg NaOH in Umlauf 282 9.7 15 m³ Wasser 444 25 kg NaOH 24.11.90 14 453 50 kg NaOH 283 9.6 in 10 m³ Umlaufspülung 15 28.11.90 521 15 m³ 0.5% D-HT 315 9.8 50 kg NaOH 16 02.12.90 585 8 m³ Wasser 310 10.0 50 kg NaOH 17 03.12.90 603 15 m³ 1.25% D-HT 315 10.2 50 kg NaOH 04.12.90 18 624 30 m³ 1.5% D-HT 327 10.1 19 10.12.90 678 25 m³ 0.5% D-HT 316 9.9 12.12.90 704 15 m³ 0.5% D-HT 20 320 9.7 709 10 m³ Wasser 21 13.12.90 723 44 m³ 1.25% D-HT 330 9.9 22 15.12.90 736 15 m³ 0.5% D-HT 327 9.9 50 kg NaOH 10.0 23 18.12.90 750 15 m³ 0.5% D-HT 317 50 kg NaOH 300 kg Na₂CO₃ 24 23.12.90 786 30 m³ 0.7% D-HT 321 10.0 9.9 25 24.12.90 790 6 m³ Wasser 302

15 m³ 0.5% D-HT

10 m³ Wasser

9.8

9.8

315

321

26.12.90

27.12.90

818

833

26

27

C.6.1.2: Zusammenfassung der Spülungseinleitungen der KTB-HB nach einem Spülungsaustausch bei 306 m. -C39-

Fortsetzung der Tabelle C.6.1.2:

Nr.	Datum	Teufe (m)	Technische Einleitungen	TCV (m ³)	pH-Wert
28	29.12.90	852	5 m³ Wasser NaOH, Na₂CO₃	335	9.7
29	30.12.90	857	10 m³ 0,1% D-HT 10 kg Na₂CO₃ NaOH	335	9.8
30	03.01.91	897	20 m³ 0.3% D-HT 20 kg Na₂CO₃	351	9.8
31	08.01.91	909	15 m³ 0.8% D-HT 15 kg Na₂CO₃	345	9.6
32	12.01.91	986	15 m³ 1.6% D-HT 50 kg NaOH	350	9.4
33	14.01.91	1010	15 m³ 0.5% D-HT 15 kg Na₂CO₃ 50 kg NaOH	348	9.5
34	15.01.91	1021	15 m³ 0.5% D-HT 15 kg Na₂CO₃	350	9.5
35	17.01.91	1050 1055	15 m ³ 0.8% D-HT 15 kg Na2CO ₃ 15 m ³ 0.3% D-HT 15 kg Na2CO ₃	352	9.4
36	18.01.91	1071	15 m³ 0.5% D-HT 15 kg Na₂CO₃	358	9.4
37	20.01.91	1076	15 m³ 0.7% D-HT 15 kg Na₂CO₃	360	9.3
38	22.01.91	1094	15 m³ 0.8% D-HT 15 kg Na2CO3 50 kg NaOH	370	9.2
39	23.01.91	1095	15 m³ 0.8% D-HT 15 kg Na2CO3	373	9.3
40	25.01.91	1120	15 m ³ 0.5% D-HT 15 kg Na2CO ₃ 25 kg NaOH		9.2
		1125	15 m ³ 0.5% D-HT 15 kg Na2CO ₃ 25 kg NaOH		9.4

Fortsetzung der Tabelle C.6.1.2:

Nr.	Datum	Teufe	(m)	Technische Einleitungen	TCV (m ³)	pH-Wert
41	29.01.91	1139		30 m³ 1.6% D-HT	385	9.5
42	30.01.91	1144		30 m³ 1.5% D-HT	385	
43	05.02.91	1144		30 m³ 1.5% D-HT 30 kg Na₂CO₃	387	9.3
44	06.02.91	1173		12 m ³ 1.5% D-HT	388	9.3
45	08.02.91	1185		25 m ³ 0.3% D-HT 25 kg Na2CO ₃ 50 kg NaOH	395	9.2
		1188		400 kg Na ₂ CO ₃		9.5
46	09.02.91	1199		10 m ³ 1.5% D-HT	400	9.8
		1202		15 m ³ 2.5% D-HT 10 kg Na ₂ CO ₃		9.8
47	10.02.91	1224		15 m³ 2.5% D-HT	400	9.7
48	11.02.91	1237		15 m³ 2.5% D-HT		9.7
49	13.02.91	1247		15 m³ 2.5% D-HT 50 kg Na₂CO₃	400	9.5
50	15.02.91	1303		15 m³ 2.5% D-HT 50 kg Na₂CO₃	408	9.6
51	16.02.91	1334		15 m³ 2.5% D-HT 50 kg Na₂CO₃	408	9.5
52	18.02.91	1352		15 m³ 2.5% D-HT 50 kg Na₂CO₃	410	9.5
53	19.02.91	1372		15 m³ 2.5% D-HT 15 kg Na₂CO₃	415	9.4
54	20.02.91	1394		15 m³ 2.5% D-HT 50 kg Na₂CO₃	418	9.5
55	21.02.91	1437		15 m³ 2.5% D-HT 15 kg Na₂CO₃	422	9.5
56	22.02.91	1474		15 m³ 2.5% D-HT 30 kg NaOH	425	9.4
57	23.02.91	1504		30 m³ 2.5% D-HT 120 kg NaOH		9.5

-C40-

Fortsetzung der Tabelle C.6.1.2:

Nr.	Datum	Teufe (m)	Technische Einleitungen	TCV (m ³)	pH-Wert
58	24.02.91	1533	15 m³ 2.5% D-HT 60 kg NaOH	430	9.8
59	25.02.91	1539	30 m³ 2.5% D-HT 120 kg NaOH	437	10.9
60	26.02.91	1588	30 m³ 2.5% D-HT 30 kg NaOH	448	11.1
61	27.02.91	1657	30 m³ 2.5% D-HT	454	11.1
62	01.03.91	1701	30 m³ 2.5% D-HT 50 kg NaOH	458	10.9

D. Geophysik

Ch. Bücker E. Lippmann D. Pribnow A. Rauen J. Wienand

 -		
	- 1	
		-
 ~		

KTB-Report 91-3 26 Seiten 18 ADD. Hannover 199	KTB-Report	91-3	26 Seiten	18 Abb.	Hannover 1991
--	------------	------	-----------	---------	---------------

Tiefbohrung KTB-Oberpfalz HB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 0 bis 1720 m:

D. Geophysik

Bücker, Ch., Lippmann, E., Pribnow, D., Rauen, A., Wienand, J.

Inhaltsverzeichnis:

D	Einleitung	*****	D2
D.1. D.1.1 D.1.2 D.1.3	Dichte Meβmethod Darstellu Vergleich	lik ung der Meβergebnisse n Haupt- / Erweiterungsbohrung	D3 D3 D4 D6
D.2. D.2.1 D.2.2	Gamma-Spekt Methodenk Ergebniss	troskopie Deschreibung Se	D7 D7 D8
D.3. D.3.1 D.3.2	Suszeptibil Methodenb Ergebniss	lität Deschreibung Se	D16 D16 D17
D.4. D.4.1 D.4.2 D.4.3 D.4.4 D.4.5	Wärmeleitfä Meßmethod Auswertun Berechnun Ergebniss Zusammenf	hhigkeit de ng ng der WLF aus Modalbestand se assung	D20 D20 D21 D21 D22 D22 D24
D.5.	Literaturve	erzeichnis	D25
Anschrift der	Autoren: KTB-Feld Wissensc Postfach	llabor chaftliche Einrichtungen n 67	

D-8486 Windischeschenbach

D Einleitung

Für die Messungen der physikalischen Parameter liegt aus dem Teufenbereich 0-1720m Bohrkleinmaterial mit Korngrößen von 63µ bis zu > 5mm vor. Die Parameter NRM (natürliche remanente Magnetisierung), v_p und v_s (seismische p- und s-Wellengeschwindigkeiten), elektrische Leitfähigkeit, Permeabilität, Porosität und innere Oberfläche können daher nicht ermittelt werden. Als Probenmaterial stehen jeweils ca. 350 g der Gesamtfraktion im gewaschenen und getrockneten Zustand zur Verfügung. Es werden kontinuierlich Messungen der Dichte, der natürlichen Radioaktivität, der Suszeptibilität und der Wärmeleitfähigkeit mit Probenabständen von 2-10m durchgeführt. Testuntersuchungen zeigten, daß für die Messungen der einzelnen Parameter an Bohrklein verschiedene Fraktionen am besten geeignet sind. Die Fraktionen werden durch Trocken-Siebung hergestellt. In den folgenden Kapiteln wird näher auf die Testuntersuchungen eingegangen. Die Tabelle gibt Aufschluß über die jeweils verwendeten Fraktionen und Meßpunktabstände.

Tabelle:

Übersicht über die mittleren Meßpunktabstände und die verwendeten Kornfraktionen für die Messungen der physikalischen Parameter.

Parameter	Dichte	nat. Radio- aktivität	Suszepti- bilität	Wärmeleit- fähigkeit
Meβpunkt- abstand	2 m	5 m	2 m	10 m
Fraktion	2-5mm	63µ-2mm	2-5mm	63µ-2mm
D.1.2 Meßmethodik

Bis zur Teufe von 300 m wurden zur Bestimmung der Dichte handelsübliche Pyknometer verwendet. Das Meßprinzip und der Meßablauf sind bei BÜCKER et al., (1988) und RAUEN et al., (1988) beschrieben. Da sich diese Methode als sehr zeitaufwendig und umständlich erwies, wurden parallel zu den laufenden Routinemessungen Versuche durchgeführt, um die Dichte der Cuttings auch nach dem "Archimedischen Prinzip" zu bestimmen. Das "Archimedische Prinzip" zur Dichtebestimmung ist im KTB-Report 88-1 (BÜCKER et al., 1988) für Kerne näher beschrieben. Ein Fehler durch Luftbläschen bei der Volumenberechnung ist dadurch zu vermeiden, daß die Cuttingsmenge sorgfältig durchgerührt wird. Beide Meßverfahren weisen annähernd gleiche Ergebnisse auf, wie dies in Abb. D.1.1 dargestellt ist. Es ist kein systematischer Unterschied erkennbar.

Abb. D.1.1: Vergleich der Dichtewerte zwischen Pyknometerund Archimedes-Methode. Die Dichtewerte stimmen gut überein.

Die jeweiligen Differenzen liegen in der Schwankungsbreite der Einzelmessungen, so daß dieses Verfahren, welches sich als schneller und anwenderfreundlicher erwies, ab 300 m ausschließlich benutzt wurde. Weiter wurde untersucht, welche Korngrößenfraktion sich zur Dichtebestimmung besser eignet. Es zeigte sich, daß die Archimedes-Messungen mit der Grobfraktion (> 2mm) besser reproduzierbare Ergebnisse lieferte.

D.1.3 Darstellung der Meßergebnisse

In Abb. D.1.2 ist die Häufigkeitsverteilung der Dichtewerte bis 1720 m der KTB-Hauptbohrung zu sehen. Das deutliche Maximum bei der Dichte von 2.73 g/cm³ entspricht den erbohrten Gneisen. Bei den erbohrten Metabasiten läßt sich kein deutliches, sondern ein breites, verschmiertes Maximum von 2.80 - 2.90 g/cm³ in der Häufigkeitsverteilung erkennen.

Abb. D.1.2: Häufigkeitsverteilung der Dichtewerte. Die Gneise weisen eine mittlere Dichte von 2.73 g/cm³ auf. Diese Dichte wurde auch für die Gneise der Vorbohrung ermittelt.

Die Einzeldichtewerte für den Teufenbereich bis 1720 m sind in Abb. D.1.3 gegen die Teufe aufgetragen. Über den gesamten Teufenbereich ergibt sich eine mittlere Dichte von 2.78 ± 0.07 g/cm³ mit den beiden Extrema von 2.65 g/cm³ aus einer Teufe von 8 m und 3.05 g/cm³ aus einer Teufe von 326 m.

Abb. D.1.3: Teufenlog der Dichte gemessen an Cuttings. Die Metabasite heben sich deutlich durch höhere Dichten ab.

D.1.4 Vergleich zwischen Haupt- und Erweiterungsbohrung

Im Bereich von 193 - 215 m wurde ein Vergleich zwischen der Hauptbohrung (17.5") und der Erweiterungsbohrung (28") angestellt. Es ergaben sich jeweils vergleichbare Werte. Allerdings tritt der Lithologiewechsel zwischen 203 und 205 m bei der Erweiterungsbohrung deutlicher hervor, als bei den Daten aus der Hauptbohrung. Bei den Dichtedaten der Hauptbohrung ist der Lithologiewechsel über 10 m verschleppt.

Abb. D.1.4: Vergleich: Haupt-/Erweiterungsbohrung

D.2 Gamma-Spektroskopie

D.2.1 Methodenbeschreibung

Für die Bestimmung der Gehalte an natürlichen Radionukliden wie Kalium, Uran und Thorium in den Bohrkleinproben stehen ein NaJ-Szintillations-Detektor und ein Germanium-Halbleiter-Detektor in kommerziellem Aufbau zur Verfügung. Ausführliche Beschreibungen der Funktionsprinzipien sind z.B. bei KNOLL (1989), KUNZE (1986) zu finden. Der Germanium-Detektor ist vom 45%-Typ, d.h. der Detektor hat für die Co-60 Linie bei 1.33 MeV 45 % der Effektivität eines gleichgroßen NaJ-Detektors. Dabei ist der Ge-Detektor dem NaJ-Detektor bezüglich Auflösung (1.95 keV bei 1.33 MeV) und Peak-Compton-Verhältnis deutlich überlegen. Dadurch können mit dem Ge-Detektor wesentlich kürzere Meßzeiten realisiert werden.

Der prinzipielle Aufbau des Gamma-Spektroskopie-Meßplatzes im Feldlabor ist bei HUENGES et al. (1989) beschrieben. Zur Abschirmung gegen den natürlichen Strahlungsuntergrund sind die Detektoren in eine 10 cm starke Bleiabschirmung eingebaut. Zusätzlich ist der Innenraum der Meßkammern gegen sekundäre Strahlung mit 2 mm Kupfer und 10 mm Plexiglas ausgekleidet. Als Probenbehälter dienen Marinelli-Becher mit 250 cm³ Volumen, die durch ihren π-förmigen Querschnitt den Detektor weitgehend umschließen. Sowohl für den NaJ- als auch für den Gemanium-Detektor können dieselben Probenbehälter verwendet werden. Es können Bohrklein-, Spül- und Zentrifugenproben gemessen werden. Die Bohrkleinproben werden in gewaschenem, gesiebtem und getrocknetem Zustand gemessen. Für eine ausreichende Statistik sind Meßzeiten von 10 Stunden bei dem NaJ-Detektor und bis zu 2 Stunden bei dem Ge-Detektor notwendig.

Die Kalibrierung wurde bei beiden Detektoren mit denselben Eichproben vorgenommen. Als Eichproben wurden Standards des 'South African Bureau of Standards' (SABS) (NIM-L, vgl. STEELE et al., 1978) sowie eine Ringprobe (QLO-1, vgl. SOBORNOV & ZOLOTUKHINA, 1987; GLADNEY & ROELANDTS, 1988) verwendet. Darüberhinaus wurden Vergleichsmessungen in Zusammenarbeit mit dem Geochemischen Institut der Universität Göttingen durchgeführt (vgl. HAAK et al., 1990).

Zur Auswertung der Gamma-Spektren, die zur weiteren Verarbeitung komplett abgespeichert werden, stehen verschiedene Software-Pakete zur Verfügung. Für die NaJ-Spektren wird das Programm SODIGAM (Fa. Westmeier, Marburg) und für die Germanium-Spektren das Programm MINIGAM (Fa. EG&G ORTEC, München) verwendet. Über einen Kalibrierfaktor, der aus mehreren Eichmessungen bestimmt wurde, werden Zählraten des Germanium-Detektors an die Zählraten des NaJ-Detektors angeglichen. Die Zählraten werden jeweils im gesamten Spektrum im Energiebereich von 40 keV - 3 MeV bestimmt und auf die Probenmenge normiert. Aufgrund von apparativen Problemem mit dem Ge-Detektor (Detektor und Elektronik mußten nach langwieriger Fehlersuche komplett ausgetauscht werden) sind quantitative Auswertungen der Germanium-Spektren noch in Arbeit.

Testmessungen zeigten, daß für die Gamma-Spektroskopie die Korngrößen-Fraktionen 63 μ - 5 mm bzw. 63 μ - 2 mm am ehesten repräsentativ sind. In Tabelle 1 sind die spezifischen Netto-Zählraten für verschiedene peaks in den Gamma-Spektren für zwei Gneisproben und eine Amphibolitprobe mit den Korngrößenfraktionen 63 μ - 5 mm, 63 μ - 2 mm und 2 mm - 5 mm aufgeführt. Es ist zu erkennen, daß bei den meisten Messungen die maximalen Zählraten in den Korngrößenfraktionen 63 μ - 2 mm auftraten. Da davon ausgegangen werden kann, daß die Korngrößenfraktion 63 μ - 2 mm voraussichtlich über die gesamte Bohrung zur Verfügung stehen wird, wird diese für alle Gamma-Spektroskopie-Messungen verwendet.

Ganma-Spektroskopie Testmessungen Auswertung Korngrößen-Fraktionierungen

\ Peak		\ Korngrδβe \ Probe \		2-5 mm THC24_1	>63 µ THC42_2	63µ-2 mm THC24_3	>63 µ THC86_1	63µ-2mm THC86_2	2-5 mm THC86_3	>63µ THC216_1	2-5mm THC216-2	63µ-2mm THC216_2
Th	1	Pb212	238.6	658.6	660.8	691.8	137.5	136.1	143.5	513.0	490.5	500.5
U	2	Pb214	351.9	396.6	404.0	423.7	153.5	218.7	188.7	328.5	286.9	296.8
Th	3	T1208	583.2	156.4	176.7	180.7	24.6	34.6	34.3	132.9	117.4	142.9
U	4	B1214	609.3	286.9	299.2	297.7	110.4	166.6	149.3	225.4	212.0	212.7
Th	5	Ac228	911.2	107.9	120.7	124.8	23.7	21.7	9.8	84.5	83.0	75.5
Th	6	Ac228	969.0	46.1	40.8	35.0	11.3	7.5	5.3	18.3	22.2	38.6
Th	7	B1214	1120.3	62.9	66.0	60.7	31.5	37.7	38.0	54.1	36.2	40.7
K	8	K40	1460.8	687.9	718.3	766.6	269.2	264.2	268.6	583.1	520.4	592.1
Nu)	11	d	keV		Gneis	1		Amphiboli	t	1	Gneis	1

Warte: Peak-Nettoflächen, jeweils auf 100 g Probenmenge normiert.

D.2.2 Ergebnisse

Gamma-Spektroskopie-Messungen in dem Teufenbereich von 0 – 1720 m wurden an insgesamt 358 Bohrkleinproben vorgenommen. Dies entspricht einem mittleren Meßpunktabstand von \approx 5 m. Der Standard-Meßpunktabstand beträgt 10 m, in lithologischen Übergangsbereichen 2 m.

Tabelle 1: Ergebnisse der Korngrößenfraktionen-Testmessungen. Die Werte in der Tabelle sind peak-Nettoflächen in counts/sec, auf 100 g Probenmenge normiert. In der ersten Spalte sind die verwendeten peaks mit ihren Gamma-Energien bezeichnet. Die maximalen peak-Nettoflächen wurden hauptsächlich in den Korngrößenfraktion 63 μ - 2 mm und 63 μ -5 mm detektiert. Die Fraktion 63 μ - 2 mm wird für die Proben-Messungen verwendet.

Das Teufenlog der spezifischen Zählrate der Cuttings (in der Einheit counts/ sec*kg) ist in Abb. D.2.1 dargestellt. Zum Vergleich ist auch das Gamma-ray-log der Bohrlochmessung (KTB Referat Bohrlochmessungen) eingezeichnet. Die lithologischen Einheiten der Hauptbohrung zeichnen sich in der Zählrate gut ab. Die Gneise weisen im Mittel 50 c/s*kg auf, während die Metabasite deutlich niedrigere Zählraten um 25 c/s*kg haben. Zur Verdeutlichung ist am rechten Rand der Abb. D.2.1 ein vereinfachtes lithologisches Profil eingezeichnet. Die skalenmäßige Übereinstimmung zwischen Bohrloch-Gamma-ray und Cutting-Gamma-ray ist rein zufällig. Bedingt durch den größeren Bohrlochdurchmesser und der dadurch längeren Absorptionsstrecke in der Spülung sind die Zahlenwerte auch nicht absolut mit den Zahlenwerten aus der Vorbohrung vergleichbar. Insgesamt zeigt sich eine gute Übereinstimmung zwischen den Bohrloch- und den Cutting-Messungen.

Bei einem Vergleich der Labor- und Bohrlochmessungen fallen Teufenunterschiede als auch Amplituden-Differenzen auf. Die Teufenunterschiede zwischen Labor- und Bohrlochmessungen sind unterschiedlich groß und nicht systematisch. Zur Verdeutlichung dieses Sachverhaltes ist der Teufenabschnitt von 0 - 300 m in Abb. D.2.2 vergrößert dargestellt. Bei dem Lithologiewechsel von Gneis zu Amphibolit bei 71 m ist kein wesentlicher Teufenversatz zu erkennen, Bohrlochund Labormessung stimmen gut überein. Ein deutlicher Teufenversatz ist hingegen bei dem nächsten Lithologiewechsel bei 209 m und in der Wechsellagerung darunter zu erkennen. Hier liegen die Labormessungen bis zu 6 m unter der Bohrlochmessung. Bei dem Amphibolit/Gneis-Übergang bei 1410 m ist kein signifikanter Teufenversatz auszumachen (vgl. a. Abb. D.2.1). Die Ursache für diese Teufendifferenzen lag in technischen Problemen für die Teufenangaben des Bohrmeisters. Die Gamma-ray-Messung an Bohrklein bietet damit die Möglichkeit, Teufendifferenzen zu erkennen und zu korrigieren.

In der Häufigkeitsverteilung (Abb. D.2.3) der Gamma-ray Labor- und Bohrlochmessungen stimmen die Mittelwerte für die Gneise gut überein. Die Metabasit-Werte liegen jedoch bei den Bohr-lochmessungen unter denen der Labormessungen. Die Ursache ist wahrscheinlich zum Teil in dem Mischproben-Charakter der Cuttings zu suchen. Weiterhin fällt auf, daß die Halbwertsbreite der Häufigkeitsverteilung für die Gneise (Mittelwert 55 c/s*kg bzw. GAPI) bei den Bohrlochmessungen deutlich größer ist als bei den Labormessungen. Dies ist möglicherweise auf die relativ hohe Fahrgeschwindigkeit der Gamma-ray-Messung im Bohrloch und damit verbunden einer statistischen Unsicherheit der Messungen zurückzuführen. Der peak zwischen den Häufigkeitsverteilungen für Gneise und Metabasite der Cuttings bei 35 c/s*kg ist künstlich und verursacht durch die Verdichtungsmessungen in den Lithologie-Übergängen.

Abb. D.2.1: Teufenlog der spezifischen Zählrate von Cuttings (Gamma-ray). Zum Vergleich ist die Gamma-ray Bohrlochmessung (KTB Referat Bohrlochmessungen) mit eingezeichnet. Die Bohrlochmessung wurde über 4 m gleitend gemittelt. Unterschiede zwischen Bohrloch- und Cutting-Messungen sind im Text erläutert.

- D 10 -

Abb. D.2.2: Ausschnitt aus dem Gamma-ray Teufenlog, Teufenbereich 0 - 300 m. Der Teufenversatz zwischen Bohrloch- und Cuttings-Messungen beträgt bei 209 m bis zu 6m.

Abb. D.2.3: Häufigkeitsverteilungen der Gamma-ray Cuttingsund Bohrlochmessungen. Die beiden Maxima können den lithologischen Einheiten Metabasite und Gneise zugeordnet werden. Das Zwischenmaximum ist artefiziell.

Abb. D.2.4: Ausschnitt aus dem Gamma-ray Teufenlog im Teufenbereich von 500 - 800 m (linke Seite) und Bohrlochkaliber (KTB Referat Bohrlochmessungen). Die Differenzen zwischen Bohrloch- und Labormessungen im Teufenbereich von 600 - 730 m werden durch die Bohrlochrandausbrüche hervorgerufen.

In Abb. D.2.4 ist der Teufenbereich von 500 - 800 m vergrößert dargestellt. Die gute Übereinstimmung zwischen Bohrloch- und Labormessung bei 530 m belegt, daß hier der Teufenversatz gleich Null ist. Auffallend ist die Amplituden-Differenz zwischen Bohrloch- und Labormessungen im Teufenbereich von 600 - 730 m. Diese Differenz wird durch die starken Bohrlochrandausbrüche und der dadurch bedingten größeren Entfernung Quellen-Detektor hervorgerufen. Im rechten Teil der Abb. D.2.4 ist die Bohrloch-Kalibermessung (KTB Referat Bohrlochmessungen) dargestellt. In dem Teufenbereich von 600 - 730 m ist eine Kalibererweiterung bis über 80 cm zu erkennen. Auch kleinere Kalibererweiterungen zum Beispiel bei 530 m verursachen Minima im Gamma-ray. Dies erschwert die Interpretation der Gamma-ray Messungen. Eine Verbesserung könnte sicherlich durch eine Kaliber-Korrektur der Gamma-ray Bohrloch-Messung erzielt werden. Der Zusammenhang zwischen Zählrate und Dichte der cuttings ist in Abb. 5 wiedergegeben. Wie zu erwarten, nimmt die Zählrate mit zunehmender Dichte der Gesteine ab, im allgemeinen weisen die Gneise höhere Zählraten auf als die Metabasite (vgl. a. Abb. D.2.3).

Abb. D.2.5: Zusammenhang zwischen Zählrate und Dichte der Bohrkleinproben. Die Metabasite mit den höheren Gesteinsdichten weisen die niedrigeren Zählraten auf.

Die Ergebnisse der quantitativen Auswertungen der NaJ-Gamma-Spektren hinsichtlich der Kalium-, Uran- und Thorium-Gehalte zeigt Abb. D.2.6. Die Wärmeproduktionsrate Ao ist mit der Dichte der Cuttings nach der Formel von RYBACH (1976) berechnet. Aus Abb. 6 können mittlere Werte für die Gehalte an Kalium, Uran und Thorium entnommen werden. Die Gneise weisen mittlere Kalium-Gehalte von 2 %, Uran-Gehalte von 2-3 ppm und Thorium-Gehalte von 6 - 12 ppm auf. Die Metabasite haben im Mittel niedrigere Gehalte: Kalium um 1 %, Uran um 1 ppm und Thorium um 2 ppm.

Die kataklastische Störungszone bei 520 m zeichnet sich durch erniedrigte Kalium- und Thorium- Gehalte und erhöhte Uran-Gehalte aus. Das sehr Quarz-arme Plagioklas-Gestein bei 950 m ist durch erniedrigte Kalium-Gehalte gekennzeichnet. Ein signifikanter Unterschied in den Uran- und Thorium-Gehalten in diesem Teufenbereich gegenüber den Gneisen im Hangenden und Liegenden kann nicht erkannt werden. Die Wärmeproduktionsrate liegt im Mittel für die Gneise zwischen $1 - 2 \mu Wm^{-3}$ und für die Metabasite um 0.5 μWm^{-3} , in guter Übereinstimmung mit den Werten aus der Vorbohrung (vgl. SOFFEL et al., 1991).

Abb. D.2.6: Kalium-, Uran- und Thorium-Gehalte der Cuttings. Die Wärmeproduktionsrate A₀ in der rechten Spalte ist nach der Formel von RYBACH (1976) berechnet.

Abb. D.2.7: Zusammenhang zwischen den Thorium- und Uran-Gehalten der Cutting-Proben im Teufenbereich 0 -1720 m. Die durchgezogene Linie stellt ein Th/U-Verhältnis von 4:1 dar.

Der Zusammenhang zwischen den Thorium- und Uran-Gehalten ist in Abb. D.2.7 dargestellt. Insbesondere im Teufenbereich bis 300 m weicht das Th/U-Verhältnis nur wenig vom dem Mittelwert von 4.0 für granitoide Oberkrustengesteine ab. In diesem Zusammenhang ist interessant, daß im Teufenbereich von 0 - 300 m auch Dichte und Suszeptibilität (vgl. Abschnitt "Suszeptibilität" in diesem Report) sowie Dichte und Zählrate gut korrelieren. Diese Korrelationen sind unterhalb von 300 m nur noch schwach ausgeprägt.

D.3. Magnetische Suszeptibilität

D.3.1. Methodenbeschreibung

Die Suszeptibilitätsmessungen an Cuttings wurden mit dem Meßgerät M.S.2. und dem Sensor M.S.2.B. von der Firma BARTINGTON durchgeführt (siehe BÜCKER et al., 1988). Der auf dem Digital-Display des Meßgerätes abgelesene Meßwert wurde nach Eichkorrekturen durch Multiplikation mit der Probendichte und Division durch das Probengewicht in die Volumensuszeptibilität (kurz Suszeptibilität) in 10⁻³ SI-Einheiten umgerechnet.

Messungen an verschiedenen Stichproben aus der getrockneten Mischfraktion der Korngrößenverteilung 63 µm bis > 5 mm (Probe HC58, ca. 58 m Teufe) ergaben stark schwankende Ergebnisse (Abb. D.3.1.). Aus der Mischprobe durch Trockensiebung abgetrennte Fraktionen < 2 mm und > 2 mm wurden ebenfalls stichprobenartig vermessen. Es ergaben sich bei der Grobfraktion (> 2 mm) die beste Reproduzierbarkeit und höhere und stärker streuende Suszeptibilitäten in der Feinfraktion (Abb. D.3.1.). In der Abbildung D.3.2. sind die Ergebnisse an Fraktionen > 1 mm und < 1 mm aus einer weiteren Mischprobe (HC42, ca. 42 m Teufe) dargestellt. Hier streuen die Ergebnisse der gröberen Fraktion (> 1 mm) noch recht stark, stärker als die Ergebnisse der Grobfraktion > 2 mm aus der Probe HC58.

In beiden Beispielen liegen die Suszeptibilitäten der feineren Fraktion höher und streuen stärker. Dies ist möglicherweise bedingt durch erhöhten Gehalt an metallischem Abrieb

Abb. D.3.1.: Messungen an verschiedenen Stichproben (je ≈ 10 g) der Cuttingsprobe HC58 (ca. 58 m Teufe). Die ungesiebte Originalprobe (63 µm bis > 5 mm) wurde ebenso vermessen wie abgesiebte Fraktionen größer und kleiner als 2 mm. Die beste Reproduzierbarkeit und geringste Streuung zeigt die Grobfraktion (größer 2 mm).

vom Bohrwerkzeug und Bohrgestänge, der sich in der Feinfraktion anhäuft. Aus den Ergebnissen dieser Versuche an verschiedenen Korngrößenfraktionen ließ sich die Forderung nach möglichst grobem Material ableiten. Im Routine-Meßbetrieb wurde daher aus der Mischprobe zunächst eine Grobfraktion (> 2 mm) durch Trocken-Siebung abgetrennt und danach an dieser Fraktion die Suszeptibilität an 5 Stichproben (je \approx 10 g) bestimmt.

D.3.2. Ergebnisse

Das Log der magnetischen Suszeptibilität ist in der Abbildung D.3.3. gezeigt, zusammen mit einem stark vereinfachten lithologischen Profil. Die höchsten gemessenen Suszeptibilitäten (bis 10⁻² SI) liegen in der bunten Wechselfolge zwischen HC400 und HC520. Beide Amphibolit-Pakete zeigen nur schwach erhöhte Suszeptibilitäten. Ein lokales Maximum um HC1100 ist in Gneisen gemessen worden. Ähnlich hohe Suszeptibilitäten wie in der Vorbohrung (bis zu 0.1 SI, BÜCKER et al., 1990) sind bisher in der Hauptbohrung nicht aufgetreten.

In der Gegenüberstellung der Dichte gegen die Suszeptibilität (Abb. D.3.4.) zeichnen sich hohe Dichten durch relativ geringe Suszeptibilitäten aus. Eine Trennung der gesamten Daten in Gneis- und Amphibolit-Bereiche und in Bereiche der Wechselfolgen (gemäß der Lithosäule in Abb. D.3.3.) ordnet den Amphiboliten den Bereich erhöhter Dichten und wenig erhöhter Suszeptibilitäten zu. Die höheren Suszeptibilitäten erscheinen bevorzugt bei relativ geringen Dichten (zwischen

Abb. D.3.3.: Log der magnetischen Suszeptibilität, gemessen an jeweils 5 Stichproben einer Probe (Grobfraktion > 2 mm). Dargestellt ist das arithmetische Mittel der Einzelmessungen und die Variation vom kleinsten zum größten Meßwert, sowohl in linearer, als auch in logarithmischer Teilung. Rechts ein sehr stark vereinfachtes lithologisches Profil (G=Gneis, A=Amphibolit, W=Wechselfolge).

2.75 g/cm³ und 2.85 g/cm³) in den Gneisen und in Gesteinen der Wechselfolgen.

Das Histogramm der Häufigkeitsverteilung in der Abbildung D.3.5. zeigt ein deutliches Maximum der Häufigkeitsverteilung um $0.3*10^{-3}$ SI und ein Nebenmaximum bei $0.7*10^{-3}$ SI. Durch die Datentrennung kann das Hauptmaximum den Gneisen und das Nebenmaximum den Amphiboliten zugeordnet werden. Deutlich wird auch, daß Suszeptibilitäten > $1*10^{-3}$ SI kaum in den Amphiboliten meßbar waren.

Abb. D.3.4.: Crossplot Dichte gegen Suszeptibilität. Die Mittelwerte aller Messungen im Teufenbereich 8 m bis 1720 m sind in die 3 Hauptgesteinseinheiten (siehe lithologisches Profil der Abb. D.3.2.) getrennt und gegeneinander dargestellt.

Abb. D.3.5.: Häufigkeitsverteilung der magnetischen Suszeptibilität (Mittelwerte aus allen Einzelmessungen zwischen 8 m und 1720 m, zusätzlich abgetrennt sind Bereiche mit Gneisen und Amphiboliten). Das Suszeptibilitätsintervall von (0.1 bis 10) * 10⁻³ SI wurde logarithmisch in 50 Intervalle zerlegt.

D.4 Wärmeleitfähigkeit

D.4.1 Meßmethode

Die Wärmeleitfähigkeit (WLF) wird in der Hauptbohrung an Bohrklein gemessen. Das Meßprinzip der Halbraum-Linienquelle (HLQ), das sich bei den Kernmessungen der Vorbohrung bewährt hat, ist beibehalten worden: Aus der Aufheizkurve einer zylindrischen Quelle, die in einen thermischen Isolator eingebettet ist, wird die WLF des Halbraums berechnet (RAUEN el al., 1988; HUENGES et al., 1990).

Bohrklein der Fraktion 63 μ – 2 mm wird mit Wasser vermischt. Mit dieser feineren Fraktion kann eine dichtere Raumpackung erreicht werden. Mit einem Druck von 20 bis 40 bar wird über die HLQ das überschüssige Wasser herausgepreßt (Abb. D.4.1). Die anschließende Messung dauert 100 Sekunden. Während des Temperaturangleichs wird jede Messung ausgewertet. Routinemäßig werden sieben Messungen alle 10 m durchgeführt.

Abb. D.4.1: Meβapparatur zur Bestimmung der Wärmeleitfähigkeit mit der Halbraum-Linienquelle an einem Bohrklein-Wasser-Gemisch

D.4.2 Auswertung

Die Aufheizkurve wird wie bei den Messungen an Kernen der Vorbohrung ausgewertet (HUENGES et al., 1990). Das Ergebnis einer Messung an Bohrklein stellt das geometrische Mittel der Wärmeleitfähigkeiten eines zwei-Phasen-Gemisches dar (SASS et al., 1971):

$$k_{g} = k_{r}^{1-\tilde{\Phi}} \star k_{w}^{\tilde{\Phi}}$$
(1)

Über die verwendeten Massen und Dichten von Wasser und Bohrklein läßt sich die Gesteins-WLF berechnen:

dr - Dichte Gestein

D.4.3 Berechnung der WLF aus Modalbestand

Ebenfalls über das geometrische Mittel kann die Matrix-WLF aus den Werten gesteinsbildender Minerale berechnet werden (SASS et al., 1971):

 $k_r = k_1^{\Phi_1} * k_2^{\Phi_2} * \dots * k_1^{\Phi_1}$ (3)

 Φ_1 - Volumenanteil eines Minerals k_1 - WLF des Minerals

Tabelle D.4.1 zeigt die Werte der WLF für die zehn wichtigsten gesteinsbildenden Minerale der KTB.

Mineral	Dichte g/cm ³	Wärmeleitfähigkeit W/m K
Quarz	2.67	6.60
Chlorit	2.95	5.14
Amphibol	3.15	3.12
Kalifeldspat	2.58	2.49
Pyrit	5.02	19.2
Biotit	2.86	1.73
Granat	4.0	3.55
Plagioklas	2.68	2.31
Hellglimmer	2.8	2.32
Sillimanit	3.25	9.1

Tabelle D.4.1: WLF-Werte der zehn wichtigsten gesteinsbildenden Minerale für KTB (HUENGES et al., 1990)

D.4.4 Ergebnisse

Erste Messungen an einem mit dem Backenbrecher gebrochenem Eichkörper (Macor), dessen Homogenität und Isotropie bekannt sind, zeigen sehr gute Übereinstimmung mit dem Sollwert. Der Einfluß des Wassers kann also mit dem Gleichung (2) zugrunde liegenden Modell vollständig eliminiert werden. Anhand dieses Eichkörpers werden Einflüsse von Anpreßdruck, Fraktion, Wasseranteil, etc. untersucht. Ergebnisse von Messungen an zermahlenen Kernen der Vorbohrung stimmen bei isotropen Amphiboliten mit den vorher am Kern gemessenen Werten überein. Bei Messungen an zermahlenen anisotropen Gneisen spiegeln die Ergebnisse das geometrische Mittel der drei Hauptachsen der WLF gut wider.

Durch Umrechnung der Ergebnisse der Modalanalyse von Gewichtsprozent in Volumenprozent ist die Matrix-WLF alle 2 m mit Gleichung (3) berechnet worden. Die Bohrkleinproben wurden alle 10 m nach dem oben beschriebenen Verfahren vermessen und ausgewertet. Abbildung D.4.2 zeigt den Vergleich zwischen gemessener und berechneter WLF. Die Werte korrelieren gut (r=0.85), wobei die gerechnete WLF durchschnittlich 10% über der gemessenen liegt. Bei ähnlichen Vergleichen in der Vorbohrung (HUENGES et al., 1989) lag diese Differenz bei 20%. Einflüsse der Gesteinsstruktur, die bei der Berechnung der WLF aus dem Modalbestand nicht berücksichtigt werden, spielen bei Messungen an Bohrklein offensichtlich eine geringere Rolle.

Abb. D.4.2: Gemessene und aus Modalbestand berechnete WLF

	Vorbo	ohrung	Hauptbohrung			
	Teufe [m]	WLF [W/m/K]	Teufe [m]	WLF [W/m/K]		
Gneis	530-990	3.7 ± 0.5	530-1180	3.5 ± 0.2		
Amphi-	1160-1610	2.6 ± 0.4	80- 200	2.7 ± 0.2		
bolit			1190-1390			
Gneis	1610-2480	3.3 ± 0.5	1430-1720	3.4 ± 0.1		

Tabelle D.4.2: Mittelwerte vergleichbarer Gesteine aus der Hauptbohrung und der Vorbohrung In Tabelle D.4.2 sind die Durchschnittswerte für vergleichbare Gesteinsverbände der Vorbohrung und der Hauptbohrung aufgeführt. Sie zeigen innerhalb der Fehlergrenzen gute Übereinstimmung.

D.4.5 Zusammenfassung

Die Übertragung der Linienquellenmethode für Festkörper auf Messungen an einem Bohrklein-Wasser-Gemisch kann als erfolgreich betrachtet werden. Dabei entwickelt sich die HLQ immer mehr zu einer echten Alternative zu den zeitaufwendigen stationären Meßverfahren. Die Ergebnisse der bisherigen Messungen in der Hauptbohrung repräsentieren das geometrische Mittel der drei Hauptachsen der WLF. Ohne weitere Untersuchungen der Anisotropie an Bohrkernen ist die Berechnung der Vertikalkomponente der WLF – wichtig für Temperaturprognosen – unsicher. Durch die große Datenmenge wird ein statistisch sinnvoller Vergleich zu den aus dem Mineralbestand berechneten WLF-Werten möglich.

D.5 Literaturverzeichnis

- BÜCKER, Ch., EIGNER, K.-H., RAUCH, E., RAUEN, A., WIENAND, J. & K.E. WOLTER (1988): Tiefbohrung KTB Oberpfalz VB, Er gebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 0-480 m.- D. Geophysik. In: Emmermann, Dietrich, Heinisch, Wöhrl (Hrsg.), KTB-Report 88-1: D1-D42, NLfB, Hannover.
- HUENGES, E., BÜCKER, Ch., WOLTER, K.E., WIENAND, J., RAUEN, A. & E. LIPPMANN (1989): Deep Drilling KTB-Oberpfalz VB, Results of the Geoscientific Proceedings in the KTB-Laboratory; Depth Interval: 1709 - 2500 m.- D. Geophysik.- In: Emmermann, Dietrich, Heinisch, Wöhrl (Hrsg.), KTB-Report 89-2, D1-D83, Hannover.
- HUENGES, E., BURKHARDT, H. & ERBAS, K. (1990): Thermal Conductivity Profile of the KTB Pilot Corehole. Scientific Drilling, 1, 224-230.
- KNOLL, G.F. (1989): Radiation Detection and Measurement.-John Wiley & Sons, New York Chichester Brisbane Toronto Singapore.
- KUNZE, H.-J. (1986): Physikalische Meßmethoden. B.G. Teubner, Stuttgart.
- GLADNEY, S. & ROELANDTS, I. (1988): 1987 Compilation of Elemental Concentration Data For USGS BHVO-1, MAG-1, QLO-1, RGM-1, SCO-1, SDC-1, SGR-1 and STM-1.- Geostandards Newsletter, Vol. 12, No. 2.
- HAAK, U., GOHN, E., BÜCKER, Ch. and G. ZOTH (1990): Radiogenic heat production measured by laboratory and bore hole methods, a comparison.- Scientific Drilling, 1, 211-216.
- RAUEN, A., LIPPMANN, E., HUENGES, E., BÜCKER, Ch., WIENAND, J. & K.E. WOLTER (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 992 bis 1530 m: D. Geophysik.- In: Emmermann, Dietrich, Heinisch, Wöhrl (Hrsg.), KTB-Report 88-6: D1-D60, Hannover.
- RYBACH, L. (1976): Radiogenic haet production: a physical property determined by the chemistry of rocks. In: Strens, R.G.J. (ed.): The physics and chemistry of rocks. Wiley & Sons, London, pp. 309-318.
- SASS, J., LACHENBRUCH, A. & MUNROE, R. (1971): Thermal Conductivity of Rocks from Measurements on Fragments and its Application to Heat-Flow Determinations. JGR, 76, 3391-3401.

- SOBORNOV, O.P. & ZOLOTUKHINA, T.M. (1987): Radioelements in Standard Samples Pertaining to Magmatic Rocks Included in the Single System of the USSR State Standard Samples (According to Gamma-Spectrometric Data).- Geostandards Newsletter, Vol. 11, No. 1.
- SOFFEL, H.C., BÜCKER, CH., GEBRANDE, H., HUENGES, E., LIPP-MANN, E., POHL, J., RAUEN, A. SCHULT, A., STREIT, K.M. and WIENAND, J. (1991): Physical Properties Measured on Cores and Cuttings from the Pilot Well (0 - 4000.1 m) of the German Continental Deep Drilling Program (KTB) in the Oberpfalz Area, Bavaria, Federal Republic of Germany.- Surveys in Geophysics, in press.
- STEELE, T.W., WILSON, A., GOUDVIS, R., ELLIS, P.J. and A.J. RADFORD (1978): Trace Element Data (1966-1977) for the SIX "NIMROC" Reference Samples.- Geostandards Newsletter, Vol. 2, No. 1.
- WIENAND, J., RAUEN, A., HUENGES, E., BÜCKER, Ch. & K.E. WOLTER (1989): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich 3000 -3500 m: D. Geophysik.- In: Emmermann, Dietrich, Heinisch, Wöhrl (Hrsg.), KTB-Report 89-5, D1-D50, NLfB, Hannover.

E. Felsmechanik

Th. Röckel O. Natau

Tiefbohrung Oberpfalz HB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 0 bis 1720 m

E Felsmechanik

Punktlastversuche; Vorarbeiten und erste Ergebnisse

RÖCKEL, Th.* und NATAU, O.**)

Inhaltsverzeichnis

Seite

E.1	Allgemeines	Ε.	3
E.2	Versuchsdurchführung	E.	4
E.3	Vorversuche an Material der KTB-Vorbohrung	E.	5
E.4	Erste Untersuchungen an Material der KTB-Haupt- bohrung im Testintervall 0 m bis 600 m	E.	6
E.5	Ausblick für weitere Arbeiten	E.	9
E.6	Literaturverzeichnis	Ε.	9

Anschriften der Verfasser)

- * KTB-Feldlabor, D-8486 Windischeschenbach
- ** Lehrstuhl für Felsmechanik Institut für Boden- und Felsmechanik Universität (TH) Fridericiana Karlsruhe 7500 Karlsruhe

E.1 Allgemeines

In der KTB-Hauptbohrung sind bis zu einer Teufe von 4000 m bisher keine Bohrkerne vorgesehen. Es ist somit nicht möglich, einaxiale Druckfestigkeitsversuche und indirekte Zugfestigkeitsversuche durchzuführen. Um dennoch Anhaltspunkte über das festigkeitsmechanische Verhalten des Gebirges zu bekommen, sind Punktlastversuche geplant. Diese liefern Anhaltspunkte für das festigkeitsmechanische Verhalten der Gesteine und sind für die Bohrlochstabilität und weitere bohrtechnische Fragestellungen von großer Bedeutung.

Zur Bestimmung der Punktlastfestigkeiten sind keine vollständigen Bohrkerne notwendig, sie können auch an Gesteinsbruchstücken ermittelt werden. Da die Probengröße (Cuttings) beim Einsatz von Rollenmeißeln beschränkt ist, wurde in Vorversuchen an KTB-Vorbohrungsmaterial getestet, bis zu welcher Probengröße Punktlastversuche durchgeführt werden können.

Zur Untersuchung der Punktlastfestigkeit waren insbesondere Sedimentrohrproben vorgesehen. Aus bohrtechnischen Gründen wurde jedoch bislang auf den Einsatz des Sedimentrohres verzichtet. Zur Untersuchung der Punktlastfestigkeit stand grobstückiges Cuttings-Material und Nachfall aus der Bohrlochwand zur Verfügung (Abb E.1). Diese Material wurde in der "Sandfalle" aufgefangen.

Abb. E.1.: Grobe Cuttings zur Punktlastuntersuchung aus dem Teufenintervall von 70 m bis 72 m.

E.2 Versuchsdurchführung und Versuchsauswertung

Beim Punktlastversuch werden Bohrkerne oder Gesteinsbruchstücke zwischen zwei kegelförmige Spitzen eingespannt und bis zum Bruch belastet (Abb. E.2). Der Punktlastabstand und die Kraft beim Bruch werden ermittelt. Die Punktlastfestigkeit wird auf einen Prüfkörper von 50 mm Durchmesser normiert. Dieser Index-Wert wird als Is(50) Wert bezeichnet.

Theoretische Betrachtungen zeigen, daß die Punktlastfestigkeit ein Maß für die Zugfestigkeit der Gesteine ist (JAEGER&COOK 1969). Darüberhinaus zeigen die Ergebnisse aus Punktlastversuchen auch einen ausreichenden Zusammenhang mit der einaxialen Druckfestigkeit (BIENIAWSKI 1974).

Abb. E.2 .: Punktlastversuch an Cutting der KTB-Hauptbohrung

Für den Zusammenhang zwischen Zugfestigkeit (ot) und Punktlastfestigkeit gilt (ISRM-Empfehlungen 1972 und 1985):

 $\sigma_t \ge 0, 8 = I_{S(50)}$

Für den Zusammenhang zwischen einaxialer Druckfestigkeit (σ_u) und Punktlastfestigkeit gilt (ISRM-Empfehlungen 1979):

 $\sigma_u = 22 \text{ Is(50)}.$

Der Quotient von σ_u/σ_t = 18:1. Über die Aussagefähigkeit der Punktlastversuche gibt folgender Vergleich Auskunft:

In den Metabasiten der KTB Vorbohrung unterhalb von 3575 m betrug das Verhältnis von einaxialer Zylinderdruckfestigkeit zur maximalen bzw. minimalen indirekten Zylinderzugfestigkeiten aus dem Brazilian-Test 19,1 bzw. 25,6. Im Extremfall erreichten die Verhältnisse Werte von 15 bzw. 48 (RÖCKEL&NATAU 1991).

E.3 Vorversuche an Material der KTB-Vorbohrung

Mit Vorversuchen an Probenkörpern der KTB-Vorbohrung sollte festgestellt werden, welche Größe für Probekörper notwendig ist, um noch einen Zusammenhang zwischen Punktlastabstand und Punktlastfestigkeit zu erhalten. Für diese Versuche wurden eine Reihe von Proben mit einem einfachen Feldgerät untersucht.

Abb. E.3.: Punktlastfestigkeit in Abhängigkeit vom Punktlastabstand an einer Metabasitprobe aus der KTB-Vorbohrung aus einer Teufe von 3848 m. Der Punktlastabstand korreliert mit der Bruchkraft mit dem Faktor 0,98.

Bei den Metabasiten korrelierte die Punktlastfestigkeit sehr gut mit dem Punktlastabstand. Die Korrelationskoeffizienten lagen bei den Metabasitproben über 0,90. Bei der Probe 941G1p aus einer Teufe von 3848 m lag der Korrelationskoeffizient sogar bei 0,98. An dieser Probe wurden 80 einzelne Punktlastversuche durchgeführt. Der Punktlastabstand reichte von 2,5 mm bis etwa 35 mm (Abb E.3).

Im zweiten Schritt sollte ermittelt werden, wie stark der bohrtechnische Einfluß auf die Proben ist. Aus der KTB-Vorbohrung 1a standen aus diesem Teufenbereich Bohrkerne zur Verfügung während aus der KTB-Vorbohrung 1b im gleichen Teufenintervall Sedimentrohrproben anfielen, die auf ihre Punktlastfestigkeit untersucht werden konnten. Die Sedimentrohrproben aus dem Teufenbereich von 3856 m bis 3871 m wurden gewonnen, als mit einem Rollenmeißel gebohrt wurde. Beim Bohren wurden grobe Cuttings und Nachfall aus der Bohrlochwand und von der Bohrlochsohle, im Sedimentrohr aufgefangen und beim Ausbau des Gestänges an die Erdoberfläche gebracht.

Der Punktlastabstand der Sedimentrohrproben betrug zwischen 3 mm und 7 mm. Die Proben gingen im Mittel bei 208 N zu Bruch. Dies entspricht am Punktlastgerät einer Manometeranzeige von 2,74 bar bezogen auf einen Millimeter Punktlastabstand. Die Punktlastabstände an den Kernproben aus diesem Teufenintervall (Probe 950D3k aus 3869.68 m) betrugen 3 mm bis 45 mm. Die Grenzkraft betrug im Mittel 222 N (2,92 Bar/mm) pro Millimeter Punktlastabstand und war somit den Werten der Sedimentrohrproben ähnlich. Die Punktlastfestigkeit Is (50) berechnet sich aus der Korrelationsgeraden zu 7,0 MPa. Dies entspricht einer indirekten Zugfestigkeit von 8,8 MPa. Verglichen mit den an Probe 950G1p experimentell bestimmten Zugfestigkeiten von 8,5 MPa und 9,6 MPa ergibt sich sich eine sehr gute Übereinstimmung der experimentel gemessen indirekten Zugfestigkeit und der aus den Punktlastversuchen errechneten.

E.4 Erste Untersuchungen an Material der KTB-Hauptbohung im Testintervall 0 m - 600 m

Die ersten Ergebnisse an Material der KTB-Hauptbohrung waren vielversprechend. Der Punktlastabstand betrug bis zu 14 mm. Die Probe HC78 zeigte mit einem Korrelationskoeffizient von 0,78 noch eine deutliche Abhängigkeit der Probenhöhe von der Kraft, die zum Bruch der Probe nötig war (Abb. E.4). Mit zunehmender Teufe wurde die Größe der Cuttings jedoch kleiner und einheitlicher.

Aus diesem Grunde wurde als Maß für die Punktlastfestigkeit der Quotient aus den Mittelwerten der Punktlastabstände und den Mittelwerten der Kräfte beim Bruch einer größeren Probemenge pro Teufenintervall verwendet. Dieser Quotient wurde gegen die Teufe dargestellt.

Abb. E.5.: Punktlastabstand gegen Bruchkraft bei Probe HC228

Die höchsten Punktlastfestigkeiten finden sich im untersuchten Teufenintervall in den Metabasiten. In den Biotit-Gneisen sind die Werte geringer. Die niedrigste Werte wurden in der Kataklasezone zwischen 253 m und 288 m gemessen (Abb. E.6).

Abb. E.6.: Punktlastfestigkeiten im Testintervall von 0 m bis 600 m. Offene Quadrate = Biotit-Gneise, gechlossenen Quadrate = Metabasite.

E.5 Ausblick für weitere Arbeiten

Während des Abteufens der Hauptbohrung zeigte sich, daß die Cuttings häufig sehr klein waren. Dieses scheint insbesondere dann der Fall zu sein, wenn aus bohrtechnischen Gründen mit geringen Meißellasten gebohrt wird. In diesem Fall ist es nicht mehr möglich, die Proben mit einem einfachen und relativ groben Feldgerät zu prüfen. Nach den ersten und vielversprechenden Versuchen ist es deshalb notwendig, diese Untersuchungen mit einem Laborgerät größerer Meßgenauigkeit durchzuführen. Ein solches Gerät befindet sich zur Zeit in der Planung.

In einigen Teufenbereichen wird es nicht möglich sein, ein durchgängiges Punktlastprofil zu erarbeiten, weil die Cuttings keine ausreichende Größe besitzen. Hilfreich für bohrtechnische Probleme können jedoch sowohl Untersuchungen an Nachfallproben aus Kataklasezonen sein, wie auch Untersuchungen an noch intakten Proben die aus spannungsinduzierten Bohrlochrandausbrüchen stammen.

Diese stark kataklastisch überprägten Gesteine bilden momentan noch deutliche Problemzonen. Doch bereits jetzt beginnen spannungsinduzierte Bohrlochrandausbrüche in frischen, vermutlich steilstehenden, Biotit-Gneisen bohrtechnische Probleme zu verursachen. Diese dürften wegen der zunehmenden deviatorischen Spannungen mit zunehmender Teufe größer werden. Dieses könnte zur Folge haben, daß bei entsprechender Spülungsrheologie, in größeren Teufen auch zunehmend gröbere Gesteinsbruchstücke mit der Bohrspülung ausgetragen werden, die dann zu Punktlastversuchen zur Verfügung ständen.

Neben den Punktlastversuchen ist es darüberhinaus notwendig, zur Charakterisierung der Gesteinfestigkeiten in der KTB-Hauptbohrung zumindest gelegentlich einaxiale Druckversuche und indirekte Zugversuche an Bohrkernen oder Seitenkernen durchzuführen, um die Ergebnisse der Punktlastversuche zu kalibrieren.

E.6 Literaturverzeichnis

- BIENIAWSKI, Z.T. (1974): Estimating the Strength of Rock Materials. - J. South Afr. Inst. Min. Met., 74, 312-320.
- ISRM (1972): Suggested Methods for Determining the Point-Load Strength Index of Rock Materials. - ISRM Comm. on Standard. of Lab. Test, 1, 8-13.
- ISRM (1979): Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. Comm. on Stand. of Lab. & Field Tests, Int. J. Rock Mech. Min Sci&Geomech. Bstr., 16, 135-140.
- ISRM (1985): Suggested Methods for Determining Point-Load Strength. Coom. Test. Meth., Int. J. Rock Mech. Min. SCi&Geomech. Abstr., 22(2), 51-60.
- JAEGER, J.C., COOK, N.G.W. (1969): Fundamentals of Rock Mechaniks. - 1-513, London (Meuthen).
- RÖCKEL, Th., NATAU, O. (1991): Tiefbohrung KTB Oberpfalz VB -Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach, Teufenbereich von 3000 m - 4000 m, H.Felsmechanik. KTB-Report 91-3
F. Bohrkernorientierung und Teufenkorrelation der KTB Vorbohrung

J. Kohl J. Kück J. Sigmund Th. Wöhrl

KTB-Report	91-3	F1-F22	1 Abb.	Windischeschenbach 199	91

Tiefbohrung KTB-Oberpfalz HB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor – Teufenbereich von 0 - 1720 m:

F. Bohrkernorientierung und Teufenkorrelation der KTB Vorbohrung

Abschlußbericht mit Ergebnissen

J. Kohl, J. Kück, J. Sigmund & Th. Wöhrl

Inhalt	Seite
F.1 Allgemeines	F 2
F.2 Methode der Bohrkernorientierung	F 2
F.3 Ergebnisse F.3.1 Orientierung der Bohrkerne F.3.2 Teufenkorrelation Bohrkern/FMS-Log	F 3 F 3 F 3
F.4 Zusammenfassung und Empfehlungen	F 3
F.5 Literatur	F 4

Anschrift der Autoren:

Anhang

KTB Feldlabor 8486 Windischeschenbach

1. Allgemeines

In der KTB-Vorbohrung wurden über den gesamten Teufenbereich von 0 m - 4000,1 m (E.T.) aus den Bohrungen VB 1 und VB1a insgesamt 3267,59 m Kern mit 956 Kernmärschen gewonnen. Mit Ausnahme von 11 Kernmärschen zwischen 2250,8 m und 3715,8 m erfolgte die Kerngewinnung unorientiert, so daß, wie geplant, eine nachträgliche Orientierung der Bohrkerne durchzuführen war.

Diese Aufgabe wurde zunächst als Auftrag an die Fa. DMT (vormals WBK) vergeben. Später übernahm eine Arbeitsgruppe bestehend aus Mitarbeitern des KTB-Referates Bohrlochmessung, des geophysikalischen Institutes der Universität Karlsruhe und des Feldlabors diese Arbeit. In dieser Arbeitsgruppe wurde die Bohrkernorientierung von einem manuell-visuellen Verfahren zu einem rechnergestützten halbautomatischen Verfahren mit visueller Plausibilitätskontrolle weiterentwickelt.

In verschiedenen KTB-Reports (vgl. KESSELS 1988; SCHMITZ et al. 1989; KOHL et al. 1990) wurde der jeweilige Stand der Bohrkernorientierung dokumentiert.

Da die Orientierung der Bohrkerne aus der Vorbohrung nun abgeschlossen ist, werden in diesem Bericht alle Orientierungsdaten noch einmal zusammenfassend dargestellt.

Methode der Bohrkernorientierung

Bei der Inventarisierung im Feldlabor werden die gewonnenen Bohrkerne mit einer Referenzlinie versehen. Diese Referenzlinie wird in der Regel im Streichen der Foliation auf den Kern aufgetragen und ist der Bezug für alle weiteren richtungsbezogenen Meßdaten am Bohrkern. In einem späteren Arbeitsschritt wird mit Hilfe der Bohrlochlogs Formation Micro Scanner Log (FMS) und Bore Hole Televiewer Log (BHTV), die orientiert gefahren werden, der Winkel ermittelt, um den diese Linie gegenüber magnetisch Nord verdreht ist.

Als Datenbasis für die nachträgliche Orientierung dienen die Strukturdaten der Kerne (Bohrmeisterteufe, Neigung bezogen auf die Bohrkernachse, Neigungsrichtung bezogen auf die Referenzlinie), sowie die Strukturdaten aus den Logs (Logteufe, Neigung bezogen auf die Bohrlochachse, Neigungsrichtung bezogen auf magnetisch Nord).

Die Zuordnung dieser Daten erfolgt weitgehend durch das im Referat Bohrlochmessung der KTB-Projektleitung entwickelte Rechenprogramm CREOS (Core Reorientation by Structures). Bei diesem Verfahren werden die Kerndaten mit den Daten der Bohrlochmessungen korreliert und die Lage der größtmöglichsten Übereinstimmung bestimmt. Das Ergebnis ist eine Liste von verschiedenen Möglichkeiten mit einer Angabe über den Teufenversatz zwischen Kern und Bohrlochmessung und mit dem Winkel, um den die Orientierungslinie auf dem Bohrkern gegenüber magnetisch Nord verdreht ist. Für jeden Vorschlag ist zusätzlich ein Qualitätsfaktor angegeben. Eine visuelle Überprüfung der Vorschläge in der Reihenfolge der angegebenen Qualitätsfaktoren mit Hilfe von Bohrkernfotos und der Ausdrucke des FMST und BHTV durch den bearbeitenden Geologen bildet die abschließende Plausibilitätskontrolle.

Ergebnisse

3.1 Orientierung der Bohrkerne

In der Abbildung F.1 sind die gekernten und orientierten Teufenbereiche der KTB-Vorbohrung aufgetragen. Die Ergebnisse der Kernorientierung sind in der Tabelle F.1 aufgeführt. Mit diesen Werten können alle richtungsabhängigen Meßdaten, die sich auf die Referenzlinie des Kerns beziehen, in ihre wahre Lage bezüglich der Bohrlochachse rotiert werden. Die Bohrlochneigung und deren Richtung sind in der Korrektur nicht berücksichtigt und müssen bei Bedarf zusätzlich eingerechnet werden.

3.2 Teufenkorrelation Bohrkern/FMS-Log

Aufgrund der meßtechnisch bedingten Teufendifferenz zwischen der Inventarisierungsteufe der Bohrkerne (Bohrmeisterteufe) und den Logteufen einerseits, sowie zwischen den Logteufen verschiedener Meßphasen anderseits, ist für eine vergleichende Arbeit zwischen den Ergebnissen der Messungen an den Bohrkernen und den Ergebnissen der Bohrlochmessungen eine Erfassung dieser Differenz unbedingt notwendig.

Das Auswerteprogramm CREOS liefert den Teufenunterschied einen Vergleich der statistischen Verteilung der durch Strukturen des Bohrkernes mit denen aus dem FMS-Log. Die Genauigkeit beträgt bei signifikanten Strukturen + 5 cm, die Genauigkeiten für Bohrkernintervalle beträgt + 10 cm. Diese Angaben beziehen sich jedoch nur auf die FMST-Meßfahrten, aus denen für die Rückorientierung die Strukturen herausgelesen wurden. Aufgrund von Teufenverschiebungen zwischen einzelnen Meßfahrten ist eine Korrelation von Strukturen mit anderen Bohlochmessungen nur über das Master-Gamma-Ray-Log möglich. diesem Grund ist in der Ergebnistabelle für die Teufen-Aus differenz (Tab.: F.2) jeweils das Datum und die Referenznummer der Messung aufgeführt, auf die sich die Teufenverschiebung bezieht.

4. Zusammenfassung und Empfehlung

Neben dem orientierten Kernbohren wurde für die KTB-Vorbohrung erstmalig ein rechnergestütztes Verfahren zur nachträglichen Bohrkernorientierung entwickelt und erfolgreich angewandt. Dieses Verfahren liefert den Korrekturwinkel, um den der Bohrkern gegen Nord verdreht werden muß, mit einer Genauigkeit von ca. <u>+</u>10 Grad. Zusätzlich liefert dieses Verfahren die Teufenverschiebung zwischen Bohrkernteufe (Bohrmeisterteufe) und Logteufe mit einer Genauigkeit bis zu + 5 cm.

Besonders geeignet ist dieses statistische Verfahren bei Kernen mit vielen Strukturen. In Bereichen mit keinen oder nur sehr wenigen erkennbaren Strukturen ist eine nachträgliche Orientierung nur schwer oder gar nicht möglich. Aus diesem Grund sollte in der Hauptbohrung mit dem begrenzten Kernprogramm jeder Kernmarsch orientiert gebohrt werden, so daß die Orientierung der Bohrkerne durch zwei voneinander unabhängige Verfahren durchgeführt werden kann.

Um die Teufenkorrelation zu sichern, sollten mehrere Kernmärsche über eine zusammenhängende Kernstrecke von ca. 40 - 50 m abgebohrt werden. Durch ein im KTB-Feldlabor entwickeltes Korrelationsverfahren der natürlichen Gammastrahlung der Bohrkerne (routinemäßige Messung im Feldlabor) mit dem Gamma-Ray-Log (vgl. Bücker et al. 1989) wäre die Teufenzuordnung ebenfalls durch ein zweites Verfahren möglich.

5. Literatur

- KESSELS, W. (1988): Die orientierte Kernentnahme unter Verwendung eines Neigungs- und Richtungsrekorders am Innenkernrohr. - KTB-Report 88-7, 157-161.
- KOHL, J., SCHMITZ, D. & RÖHR, C. (1990): Kernorientierung in der KTB-VB – aktueller Stand. – KTB-Report 90-2, G1 – G5.
- SCHMITZ, D., HIRSCHMANN, G., KOHL; J., RÖHR, C. & DIETRICH, H.-G. (1989): Die Orientierung der Bohrkerne in der KTB-Vorbohrung. - KTB-REPORT 89-3, 100-110.
- BÜCKER, CH. & ZIMMERMANN, G. (1989): Vergleichende Untersuchungen der Gamma-Ray-Messungen (GR) im Bohrloch und an Bohrkernen im Teufenbereich 3000 - 3500 m. - KTB-Report 89-5, E1-E9.

KTB-Feldlabor Wö/Nu 17.04.91

Tabelle F.1: Azimut und Standardabweichung der Referenzlinie zu Nord

Unter Azimut der Referenzlinie (5. Spalte) ist der Winkel angegeben, um den die Referenzlinie im Uhrzeigersinn gegen Nord verdreht ist.

In der sechsten Spalte (σ) ist die Genauigkeit (Meßfehler, Standardabweichung) in Grad angegeben: VB1:

Kernstückbereich		Teufeni	Teufenintervall		0
von	bis	von	bis	Referenz- Linie	
108A	108D	576.80	579.30	290	20
109F	109H	586.07	588.01	204	13
110	110	588.42	593.77	26	15
111	112C	594.40	600.59	200	12
113D	113F	604.62	607.80	208	8
114A	114D	607.18	609.10	293	22
114E	114F	609.61	610.50	350	10
115A	115A	610.00	610.87	278	4
115B	115B	610.87	611.37	235	7
116	116	612.06	616.39	124	9
117A	117E	616.70	620.55	354	14
117F	1171	620.51	622.70	8	10
118	118	622.70	628.50	282	13
119	120	628.68	634.52	168	10
121	123	634.50	639.45	42	9
124	124	640.00	642.90	211	15
125	126	643.04	651.96	111	9
127A	127A	652.50	653.40	139	0
127B	129	653.22	667.84	112	10
130	131C	668.00	674.63	308	16
131D	131D	674.63	675.21	310	0
132A	134C	675.40	680.66	109	0
134D	134F9a	680.87	682.44	84	5
134F9b	134G	682.77	684.18	55	6
135	135	684.60	689.36	111	8
136	138	689.90	703.26	105	15
139	140	703.80	706.90	120	7
141	143A	706.90	716.73	109	11
143B	143C	716.66	718.29	94	5
143E	143E	718.81	719.77	77	6
143F	145C	719.74	725.87	108	12
145D	146A	725.81	727.86	87	6
146B	146C	727.84	728.98	58	10
146D	146D	728.92	729.65	110	0
146E	147D	729.65	733.23	127	8
147E	148	733.15	740.18	108	10
149	154B	740.64	763.71	104	11
154C	154C	763.71	764.48	80	7
154D	156	764.48	768.74	115	6

Kernstückbe	reich	Teufeni	ntervall	Azimut	a
von	DIS	VOII	DIS	Linie	
157	160	770.47	778.63	129	8
161	161	779.00	782.00	304	12
162A	162C	782.00	783.91	138	4
162D	163	783.81	789.19	110	12
164	164	789.20	792.77	130	4
165	170	792.90	807.76	107	11
171	172B	808.11	811.67	112	9
172C	173A	811.47	813.05	92	11
173B	173B	813.05	813.99	83	6
173C	173C	813.99	814.60	50	0
174	187D	814.50	841.58	111	9
187E	187F	841.57	842.97	76	9
188	195	843.33	863.55	111	11
196	199A	864.50	869.27	127	9
199B	202	869.27	876.77	115	11
203	204	876.90	882.30	137	12
205	207	882.50	890.00	105	10
210	216A	890.00	908.69	118	11
216B	216B	908.62	909.51	132	1
216C	233	909.41	941.12	110	10
234	235	941.38	946.40	131	12
230	230	940.34	952.51	135	5
239A	239A	952.50	961 60	118	11
2390	240 243B	961 40	967.92	133	13
243B	2456	968.63	979.15	115	10
247	247	979.40	981.50	144	6
248A	248A	981.47	982.17	111	5
248B	249	982.16	986.64	137	6
250	252	986.90	991.82	118	6
253A	253H	1177.00	1183.00	304	23
254A	255D	1228.80	1232.40	315	15
256A	256J	1232.40	1238.40	277	11
257A	257F	1238.40	1242.06	359	9
257G	257H	1243.00	1243.50	300	10
258	259	1244.20	1245.50	340	14
260A	262A	1245.50	1251.76	300	14
262B	262G	1252.00	1256.28	250	19
262H	2621	1250.28	1267.60	300	7
263B	2030	1250.40	1259.30	11	10
2630	2031	1209.27	1265.20	120	17
204A	2640	1265.86	1269 60	159	11
2651	265B	1269 60	1270 73	137	6
265D	265G	1271.19	1273.92	265	12
265H	266	1273.92	1281.55	349	14
267A	267G	1281.60	1286.65	115	8
268A	268B	1286.65	1287.94	263	6
268C	2681	1287.97	1292.71	319	14
270B4a	270C4d	1294.80	1296.38	290	0
272A3	273H1q	1301.02	1306.37	104	7
274A1a	274H1u	1306.61	1312.62	54	5
275A1a	2751q	1312.60	1317.42	300	15
277A2a	278ilm	1320.65	1326.94	220	8
279A1a	279K1r	1327.00	1333.00	212	/

-	F	8	-	

Kernstückbereich von bis	Teufenir von	ntervall bis	Azimut Referenz- Linie	σ
280B2a 280H211	1333.70	1338.50	284	6
281A1a 281D1k	1338.50	1341.60	280	15
281E11 281H1r	1341.60	1344.20	245	15
282A2a 282I2v	1344.37	1350.51	150	6
283A1a 283I1s	1350.60	1356.48	194	9
284A1a 284K1x	1356.60	1362.60	176	7
285A1a 286H1af	1362.60	1374.20	120	0
287A2a 287F2m	1374.35	1378.21	44	7
287F4 288E1y	1378.38	1382.36	76	5
289C3a 292B1f	1385.50	1402.77	132	1
293A1a 293D11	1404.80	1407.50	322	8
294A1b 294G1af	1410.80	1416.01	122	
295A1a 295H1w	1416.10	1421.97	48	6
298B6a 298H6p	1434.41	1439.38	54	10
300A1a 300H1s	1445.50	1450.51	264	9
300H3a 301I1ad	1450.61	1456.80	220	10
303A1a 305D1s	1460.10	1464.45	330	15
306B4d 308C1g	1465.20	1476.75	280	5
309A2a 309I1s	1476.35	1481.86	242	8 F
310B4a 310I4ac	1482.57	1488.05	110	5
312A1a 312H1v	1493.50	1498.48	0	15
313A1a 313G1aa	1498.50	1503.48	300	15
313G3 319A1d	1503.50	1529.34	24	22
320A3a 322E1gT	1529.40	1539.00	330	8
324A1a 324H1t	1546.70	1552.05	346	/
325A2a 325H2af	1551.85	1557.76	182	9
325H4 326Glae	1557.83	1562.65	50	15
327A1a 327H1at	1563.50	1568.90	140	15
328A1a 329F1r	1568.90	1578.27	162	15
329G2a 329H2C	1578.30	15/9.81	180	15
330A1a 330F1W	1580.00	1585.40	320	15
331Ala 331E1Z	1585.50	1508.73	350	1.5
332A1b 332F1a0	1590.03	1601 11	310	15
333D1p 333G1ae	1596.10	1606 65	330	15
334AZa 334GZX	1602.45	1610.00	270	15
335AZD 335HZaO	1612 60	1612.07	290	15
33bAla 33bhlae	1625 46	1639 50	140	15
342D4D 343D1U	16/1 00	1615 95	290	15
345AZD 345FZI	1646 35	1650 30	280	15
247A22 340F14P	1650 57	1656 05	140	15
240A22 340A14	1656 08	1659 71	320	15
340A2d 340F2C	1660.00	1664 48	270	15
250122 251F12b	1664 80	1673 73	102	4
25211a 25281a	1673 64	1675 25	50	15
35310a 352610	1675 70	1679 27	120	15
354A1a 354B1f	1679 60	1681.21	110	15
35511a 355011	1681 40	1683.77	110	15
355D2b 356C1ab	1683 81	1686.30	110	15
35832a 35001dll	1686 70	1689 43	120	15
360A2a 360R2v	1689.47	1690.39	130	15
361A3a 361B3c	1690.60	1691.71	130	15
362A2a 362A2n	1692.33	1693.18	130	15
363A3a 363B3p	1694.48	1695.50	130	15
368A2a 368C2m	1700.45	1702.01	110	15

Kernstückbe	reich	Teufenin	tervall	Azimut Roforonz-	σ
von	DIS	von	DIS	Linie	
369A3a	36903z	1702.27	1704.09	110	15
369C6a	371B1i	1704.17	1707.73	110	15
372A2b	373A1a	1707.75	1709.76	120	9
VB1a:					
409A1a	409F1be	1802.00	1806.46	128	6
410A1a	410G1an	1806.80	1812.10	148	8
411B2a	411H2ac	1812.74	1817.57	140	5
412A1a	412H1ab	1817.80	1822.89	96	5
413C2e	413G2ab	1825.13	1828.27	130	7
414A1a	414F1ai	1828.34	1832.20	122	9
415A1a	415I1h	1832.60	1838.05	126	8
416A1a	416H1s	1838.10	1843.28	118	8
417A2a	417F2aa	1843.70	1847.91	128	10
419A1a	420G1aD	1853.09	1072 10	134	9
421A1a	422H1aC	1801.10	1072.19	120	5
423A2d	423n2an	1878 20	1883 27	132	g
424A1a 425A1b	425H1ad	1883.70	1888.93	108	4
426112	428G1v	1888.90	1903.70	124	6
429A2b	429H2ab	1903.20	1908.59	110	11
42984a	430H1bf	1908.64	1913.96	302	6
431A1a	432A1d	1914.20	1919.45	305	15
432A3a	433A1d	1919.68	1922.80	286	8
433B5a	433E50	1923.10	1926.01	128	8
434A1a	434B1j	1926.70	1928.01	278	4
435A1a	436D2c	1929.50	1934.10	114	7
437A2a	439H1ap	1934.13	1944.60	314	9
442A2a	442H2ad	1953.00	1958.31	115	15
443A2a	443G2t	1958.50	1963.41	126	10
445A1a	445E1u	1968.00	1970.80	136	15
446A2a	446E2x	1971.83	1975.40	312	9
447A2a	447E2r	1976.40	1979.53	254	8
448A4a	448D4r	1980.26	1982.41	290	8
449A2a	449E4e	1982.52	1986.47	308	8
450B2a	450E2d	1988.10	1989.80	138	18
451A1a	452H1W	1992.50	2004.13	286	11
453A1a	453E1W	2004.54	2007.65	310	3
400A2d	455DZW	2008.95	2011.33	298	111
400AZd	409A1d	2012.12	2019.23	296	8
46211a	462E1m	2027 10	2030.88	312	8
463A1a	463Elak	2030.67	2034.25	298	10
464A1a	464D2c	2034.40	2037.22	294	4
465D4a	465D4i	2040.03	2040.90	260	5
467A2a	467G2as	2042.15	2047.02	302	8
468A1a	469F1u	2047.01	2055.92	304	10
470A1a	470Flax	2056.00	2059.60	292	9
471A1a	471F1w	2059.70	2063.80	282	13
472A2a	472F2q	2063.72	2067.49	300	15
473A1a	473E1r	2068.10	2071.68	310	15
474A1a	474E1n	2072.65	2075.76	310	15
475A1a	475F1r	2076.00	2078.89	290	15
476A1a	476I1c	2079.08	2084.52	310	7

-	F	10	-

Kernstückb von	ereich bis	Teufenin von	bis	Azimut Referenz- Linie	Ø
477112	477H1wT	2084.60	2090.48	315	15
4778112	478H1UT	2090 60	2094.85	300	15
470A1a	47001101	2095 05	2096 78	280	15
470010	4790111	2095.05	2101 91	300	15
4/902d	400012	2102 50	2113 65	306	9
401A2d	402K1dy	2102.50	2123 76	130	2
400A1a	40001a1	2124 00	2125.70	124	8
480A1a	400010	2124.00	2120.79	100	15
48/A1d	40/11dj	2127.50	2132.00	112	7
48/H3d	40012d	2134.90	2130.41	127	15
489A1a	489EIL	2130.32	0141.95	0.8	10
490A1a	490G1aaT	2141.90	2140.90	200	15
491A1a	491D1W	2147.50	2130.23	110	11
492A2a	492G2ak	2150.58	2155.55	110	11
493A1a	493C1n	2156.10	2157.95	90	0
505A2a	506C1p	2180.85	2185.62	280	0
506E5a	507D2aw	2186.51	2189.50	310	11
508A1a	508K1W	2189.65	2195.06	302	15
509A3b	510Claa	2195.77	2197.85	300	10
511A1a	511D1ae	2197.80	2200.43	264	10
512A1a	512B10,	2200.60	2202.20	292	
513A2a	513C2k	2202.29	2204.25	104	9
525A1a	525D1r	2223.23	2226.15	114	5
526B2a	526G2aa	2227.58	2232.07	104	11
527A1a	527B1n	2232.05	2233.82	200	15
529A1a	529C1u	2236.30	2238.44	276	5
530A1a	530A1m	2238.70	2239.37	175	15
531A1a	531B1j	2239.40	2240.65	180	15
533A1a	533D1m	2246.68	2249.09	50	15
534A1a	534B1h	2249.50	2250.62	150	15
536A1a	536I1ah	2256.20	2261.71	136	10
537A1a	539F1ae	2261.75	2269.93	312	10
540A9a	541B11	2270.21	2272.57	126	15
541B3a	542B11	2272.84	2274.63	304	8
543A2b	543B2t	2274.87	2276.69	138	5
544A1a	545F1q	2276.80	2284.75	302	8
546A3a	546D3aa	2285.28	2288.00	86	6
547A1a	547D1ah	2288.00	2291.16	120	11
548A1a	549F1ad	2291.10	2300.24	138	10
550A1a	552F1ad	2300.30	2310.30	126	7
553A2a	553A2g	2310.70	2311.45	120	15
554A1a	554A1n	2311.80	2312.19	120	15
555A1a	555B11	2312.22	2313.47	120	15
556A1a	557C1h	2313.90	2318.20	110	10
558A1a	558E1m	2318.60	2321.22	114	5
559A1a	559G1am	2321.55	2326.75	126	10
561A1a	563C1i	2327.30	2335.07	118	9
563D2a	564C11	2335.14	2337.58	130	15
565A1a	565A1m	2337.70	2338.54	130	15
565B2a	565B2i	2338.53	2339.45	130	15
566A1a	566D1w	2339.30	2342.23	132	6
567A2a	567H2ag	2342.40	2347.58	104	10
567H3a	568E1m	2347.62	2350.82	130	15
56943a	569H3v	2350.71	2356.05	110	8
569H4a	571I1ai	2356.04	2365.72	114	9
572A1a	572G1u	2366.00	2370.67	125	15

Ke:	rnstückbe	reich	Teufenin	tervall	Azimut	0
	von	bis	von	bis	Referenz-	
					Linie	
					120	15
	573A1a	574F1n	2370.65	2375.65	130	15
	575A1a	575C1d	2375.60	2376.69	116	11
	576B3a	576E30	2377.80	2380.55	134	14
	577A1a	577D1k	2380.70	2383.33	112	12
	578A1a	578F1q	2383.40	2386.40	128	11/
	579A1a	579E1u	2386.40	2388.74	92	8
	580A1a	580D11	2389.80	2392.05	320	13
	581A1aR	582I1af	2392.10	2402.37	110	10
	582I3a	587A1b	2402.55	2418.80	112	10
	587C7a	587F7g	2419.90	2421.90	140	15
	588A5a	588E5af	2423.14	2426.33	120	15
	589A1a	589B1C	2426.10	2427.45	92	10
	590A1a	590A1f	2427.50	2428.44	120	15
	591A2a	591H2y	2428.35	2433.85	122	9
	592A1a	592H1ah	2433.90	2439.18	126	10
	595A2a	596E1v	2441.23	2444.00	228	0
	598A1a	600G1x	2449.00	2464.47	100	8
	601A4a	601F4p	2464.94	2468.87	108	10
	602A1R	602G2q	2470.70	2476.35	134	8
	603A1a	608B1c	2476.30	2488.49	124	7
	609A1R	609G2n	2488.45	2493.49	122	9
	609G4a	611A1d	2493.41	2499.23	140	0
	611A2a	612H1u	2499.20	2511.10	102	16
	613A1c	615G1m	2511.18	2526.20	130	16
	616A1a	617H1z	2526.20	2538.00	112	14
	618A1a	620H1p	2538.00	2556.00	124	14
	621A1a	622G1ac	2556.30	2568.00	92	14
	623A1a	624E1u	2568.30	2578.70	158	16
	625A1a	627C1p	2578.90	2588.57	132	7
	628A1b	628E1ab	2592.12	2596.34	150	8
	629A1a	629C1n	2596.50	2598.84	126	5
	631A1a	632G1v	2603.00	2613.34	124	6
	633A2aK	633G2ab	2614.73	2620.10	104	11
	634A1a	637A1a	2620.10	2634.95	126	10
	638A2a	639A1b	2687.12	2689.97	136	12
	639A5a	639D5r	2690.10	2692.22	120	9
	640A2a	640D2s	2692.53	2695.38	130	9
	641A1a	642E3c	2695.35	2701.51	100	9
	643A1a	643B1j	2701.50	2703.07	120	5
	645A1a	645B1d	2703.10	2704.19	106	2
	646A1a	651C11	2704.30	2714.88	108	9
	652A1a	656H1x	2714.95	2737.90	128	0
	657A1a	657B1b	2737.96	2739.35	138	4
	658A1a	658H1ab	2739.60	2745.50	126	8
	659A2a	658H2f	2745.70	2751.55	124	9
	661A1a	666G1x	2752.20	2774.87	118	8
	666C5a	668B1a	2774.94	2778.67	116	7
	669A1a	669A2c	2778.82	2779.35	116	7
	670A3a	670A3e	2779.77	2780.28	116	7
	671A1a	671A1b	2780.30	2780.74	116	7
	671A2a	673B1v	2780.74	2784.02	106	9
	675A6a	675B6h	2786.40	2787.06	136	0
	676A3a	676H3ac	2787.06	2792.90	136	8
	678A1aR	678C1r	2794.10	2796.83	116	8
	6792a	679F2ac	2796.73	2801.13	108	9

Kernstückb von	bereich bis	Teufenir von	ntervall bis	Azimut Referenz- Linie	σ
60107-V	60107-	2002 20	2005 22	104	0
681B/aK	681E/9	2002.30	2003.23	104	0
683A1a	683G1Y	2805.90	2810.49	100	0
685A3a	685E3u	2811.05	2814.45	122	1
686A1a	687F1ad	2814.10	2820.02	114	8
688A4a	690H1x	2820.19	2833.15	106	9
691A2a	691C21	2833.24	2835.40	126	5
692A1a	692H1z	2835.40	2841.18	126	7
692H2b	693E1t	2841.23	2844.44	128	4
694A1a	694D1n	2844.60	2847.89	118	7
696A4a	698A1d	2850.75	2857.90	114	9
699A2a	701I1ab	2857.79	2869.61	108	7
702A1a	703C1q	2869.70	2872.50	116	7
705A1a	708D1n	2873.10	2887.95	116	7
709A2b	710H1ah	2888.30	2899.91	120	9
710H4a	715B1e	2900.03	2917.63	100	8
718B11a	721F1v	2921.56	2935.60	112	10
722B2a	723H1x	2936.95	2947.66	132	8
724A1a	726E1t	2947.80	2963.43	124	8
727A1a	727F1n	2963.68	2968.05	112	8
727F3a	729017	2968.10	2977.54	122	10
720112	730H1m	2977 72	2983 52	102	7
73111a	7330111	2983 70	2993 04	110	7
731AId	722411	2903.70	2007 10	168	8
7242012	7258010	2993.70	3003 49	122	9
734A01d	733001C	2997.20	3014 95	112	10
736A01a	73800411	2012 15	2026 79	120	10
739A01a	740H01Y	3013.45	3020.70	110	13
741A01a	744G01W	3026.75	3048.02	214	11
745A01a	745G01aK	3048.40	3053.90	314	12
746A02b	749C03g	3054.60	3063.40	343	10
751A1a	751B	3063.70	3065.50	328	10
751C	751F	3065.54	3068.27	132	10
752A01a	752H02b	3068.25	3074.32	141	11
753A01a	756H01ao	3074.30	3092.30	344	13
757A01a	758G01ad	3092.36	3102.62	178	15
759A01a	760A02a	3102.70	3108.00	1	12
760B02b	760F02r	3108.76	3112.80	94	16
761A06a	762G12r	3112.97	3122.39	294	18
763A02a	763F02t	3122.65	3126.95	195	12
763G02u	764C01j	3127.26	3129.89	241	12
764C01k	764H01ag	3129.89	3134.16	42	15
765A01a	765H01aa	3134.15	3140.20	253	14
767A03a	767H03ab	3140.50	3146.17	357	12
768A01a	768A01a	3146.20	3146.45	210	14
769A03a	769D031K	3146.51	3149.06	331	17
769D03m	769H03ak	3149.06	3152.11	279	13
770A01a	770E01ag	3152.10	3156.03	14	14
771A01c	771B01s	3155.97	3157.23	50	20
773A02a	775B02e	3162.72	3171.50	332	11
776A01a	776G01ad	3171.60	3177.40	175	15
777A01a	778A01e	3177.40	3182.68	296	10
778B07a	781H01ag	3183.18	3199.03	351	13
782A3a	782B3d	3199.98	3200.40	152	13
783A6a	783F6b1	3203.29	3208.33	120	10
784A2a	784G2ab	3208.62	3214.16	337	10
705130	7850	3214 26	3220 00	56	12

Kernstückbei	reich	Teufenin	tervall	Azimut	σ
von	bis	von	bis	Referenz-	
				Linie	
786A	787E1t	3220.20	3226.80	121	15
788A1a	788G1an	3226.80	3232.75	134	12
789A1a	789G	3232.60	3238.40	33	11
790A	790H1ad	3238.40	3243.72	16	14
791A5a	791C5k	3244.37	3246.09	0	11
791D	791D	3246.20	3246.61	150	0
792A2a	794E1ac	3246.70	3259.70	325	13
795A1a	799G1ax	3259.70	3279.99	342	15
800A1b	804G1ae	3280.00	3302.45	357	10
805A5a	810E	3302.48	3330.90	2	9
811A	815G1ad	3330.90	3353.23	356	9
816A1a	817B1fd	3353.80	3357.40	321	10
818A1a	820A1f	3357.40	3362.63	6	9
821A3a	824H1ad	3362.82	3382.84	332	10
825A1a	825F1v	3382.80	3386.92	4	9
826A1a	826D21	3387.46	3389.93	191	18
827A4a	827G4o	3390.26	3395.00	333	13
828A1a	830H1af	3395.30	3406.45	22	13
831A3a	837G1z	3406.65	3429.02	0	11
838A1a	839F1n	3429.00	3433.71	38	10
840A1a	841A1e	3433.90	3439.85	327	13
842A1a	843G1af	3440.00	3450.76	79	15
843G1ah	844E1nf	3450.85	3454.85	155	14
845A1a	846G1v	3455.00	3464.19	3	10
847A1a	847G1av	3464.60	3470.07	75	10
848A1a	848F1u	3470.10	3475.43	46	9
848F1v	851A1C	3475.43	3478.00	269	17
851A2b	853D2ab	3478.10	3489.82	44	10
854A2a	854G2ag	3489.90	3494.78	66	14
855A2a	856H	3495.30	3503.30	20	9
857A1a	858A1b	3503.30	3506.50	28	7
858A2c	858H2v	3506.50	3511.93	14	9
859A2a	860A1a	3512.26	3516.76	82	4
861A2a	861F2af	3517.40	3521.55	324	10
862132	862G3ae	3521.72	3527.48	30	8
863A2h	864A1h	3527.48	3533.48	332	8
86512ab	865F2ag	3533 86	3538.66	318	9
866112	866F1t	3538 80	3543.90	46	6
86789a	867H9r	3544 66	3549.49	224	7
870192	874H1ad	3550 48	3574 91	230	8
070AJa	876F2av	3580 54	3584 66	299	15
070A2a	87763ak	3585 02	3590 74	152	19
077AJa	97941bf	3590.02	3596 69	38	4
070A10	88031	3597 73	3598 53	16	6
0/9D/d	00UA1	3601 26	3606 88	185	15
002A4d	0020400	3607.05	3618 27	358	13
000AldD	001E1an	3627 78	36/9 /5	184	6
000AJd	000750	3652 16	3663 63	322	9
090A3a	900A3d	3663 63	3676 16	206	g
900B/a	905A11	3676 50	3686 53	354	13
904A1a	907C1v	3682 57	3699 25	196	5
905A4d	011H1ag	3699 30	3721 17	184	5
010102d	916C1r	3721 28	3747 31	344	4
912A4dK	9186	3747 30	3758 50	350	7
91841a	920A11	3758.90	3765.33	202	9
D T OLIT O				1	

Tabelle	F.2:	Teufendifferenz	zwischen	Bohrkernen	und	FMS-
Logs:						

Kernsti	ick-Nummer	Teufe		Teufen-	-	FMS-Log			
von	bis	von	bis	diff.		Datum			
108A	108D	576.80	579.30	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
109F	109H	586.07	588.01	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
110	110	588.42	593.77	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
111	112C	594.40	600.59	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
113D	113F	604.62	607.80	0.00 m	n	21.12.87	Run2	Ref:	H30058LR
114A	114D	607.18	609.10	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
114E	114F	609.61	610.50	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
115A	115A	610.00	610.87	0.00 n	n	21.12.87	Run2	Ref:	H30058LR
115B	115B	610.87	611.37	0.00 m	nl	21.12.87	Run2	Ref:	H30058LR
116	116	612.06	616.39	0.10 m	n	21.12.87	Run2	Ref:	H30058LR
1174	117E	616.70	620.55	0.10 m	n	21.12.87	Run2	Ref:	H30058LR
117F	117T	620.51	622.70	0.10 n	n	21.12.87	Run2	Ref:	H30058LR
118	118	622 70	628.50	0.10 п	n	21.12.87	Run2	Ref:	H30058LR
110	120	628 68	634 52	0.10 m	n	21,12,87	Run2	Ref:	H30058LR
101	122	631 50	639 45	0 15 m	n	21.12.87	Run2	Ref:	H30058LR
101	104	640.00	642 90	0.10 m	"	21 12 87	Run2	Ref:	H30058LR
105	104	642.04	651 96	0.15 m	n	21 12 87	Run2	Ref:	H30058LR
125	120	652 50	653 40	0.15 m	"	21 12 87	Run2	Ref:	H30058LR
127A	12/A	652.00	667 94	0.20 m		21 12 87	Run2	Ref.	H30058LR
1278	129	600.22	674 62	0.20 m	n	21.12.07	Run2	Rof.	H30058LR
130	1310	608.00	675 01	0.20 m	"	21.12.07	Run2	Rof.	H30058LR
131D	131D	674.03	675.21	0.20 1	"	21.12.07	Run2	Rof.	H30058LR
132A	134C	675.40	680.66	0.20	"	21.12.07	Run2	Pof.	H30058LP
134D	134F9a	680.87	682.44	0.20 1		21.12.07	Run2	Ref.	H30058LR
134F9b	134G	682.11	684.18	0.20 1		21.12.07	Run2	Ref.	H30058LR
135	135	684.60	689.30	0.20	"	21.12.07	Run2	Ref.	H30058LR
136	138	689.90	703.20	0.20 1	"	21.12.07	Run2	Ref.	H30058LP
139	140	703.80	706.90	0.25	"	21.12.07	Run2	Ref.	H30058LP
141	143A	706.90	/16./3	0.25 1		21.12.07	Run2	Rel.	H30050LR
143B	143C	716.66	718.29	0.25 1	n	21.12.07	Runz	Rel:	H30058LR
143E	143E	718.81	719.77	0.25 1	n	21.12.07	Runz Dum 2	Rel:	HOODELL
143F	145C	719.74	725.87	0.30 h	n	21.12.07	Runz	Rel:	H20050LR
145D	146A	725.81	727.86	0.30 1	n	21.12.07	Runz	Rel:	HOOLEGID
146B	146C	727.84	728.98	0.25 1	n	21.12.87	Runz	Rel:	HOODERID
146D	146D	728.92	729.65	0.25 1	n	21.12.87	Runz	Rel:	HOOLEOLD
146E	147D	729.65	733.23	0.25 1	n	21.12.87	Runz	Rel:	HOODE OLD
147E	148	733.15	740.18	0.25 1	n	21.12.87	Runz	Rel:	HOUSOLR
149	154B	740.64	763.71	0.30 n	n	21.12.87	Runz	Rel:	H30058LK
154C	154C	763.71	764.48	0.30 n	n	21.12.87	Runz	ReI:	H30058LR
154D	156	764.48	768.74	0.35 n	n	21.12.87	Run2	ReI:	H30058LR
157	160	770.47	778.63	0.35 n	n	21.12.87	Run2	ReI:	H30058LK
161	161	779.00	782.00	0.35 n	n	21.12.87	Run2	Ref:	H30058LR
162A	162C	782.00	783.91	0.35 n	n	21.12.87	Run2	Ref:	H30058LR
162D	163	783.81	789.19	0.35 n	n	21.12.87	Run2	Ref:	H30058LR
164	164	789.20	792.77	0.35 n	n	21.12.87	Run2	Ref:	H30058LR
165	170	792.90	807.76	0.35 n	n	21.12.87	Run2	Ref:	H30058LR
171	172B	808.11	811.67	0.35 n	n	21.12.87	Run2	Ref:	H30058LR
172C	173A	811.47	813.05	0.45 n	n	21.12.87	Run2	Ref:	H30058LR
173B	173B	813.05	813.99	0.45 n	n	21.12.87	Run2	Ref:	H30058LR
173C	173C	813.99	814.60	0.45 m	n	21.12.87	Run2	Ref:	H30058LR

Kernsti	ück-Nummer	Teuf	е	Teufen-	FMS-Log			
von	bis	von	bis	diff.	Datum			
174	1870	814.50	841.58	0.40 m	21.12.87	Run2 F	Ref:	H30058LR
1875	187F	841 57	842.97	0.45 m	21,12,87	Run2 F	Ref:	H30058LR
188	195	843 33	863.55	0.50 m	21.12.87	Run2 F	Ref:	H30058LR
106	1003	864 50	869 27	0.55 m	21 12.87	Run2 F	Ref:	H30058LR
1008	1994	860 27	876 77	0.60 m	21 12 87	Run2 F	Ref:	H30058LR
1990	202	076 00	000.77	0.60 m	21 12 87	Run2 F	Ref.	H30058LR
203	204	070.90	002.50	0.00 m	21.12.07	Run2 F	Rof.	H30058LR
205	207	882.50	000.00	0.55 m	21.12.07	Dun2 E	Dof.	H30058LR
210	216A	890.00	908.09	0.55 m	21.12.07	Runz I	Dof.	H30058LR
216B	216B	908.62	909.51	0.55 m	21.12.07	Run2 E	Dof.	H30058LP
216C	233	909.41	941.12	0.55 11	21.12.07	Runz r	Dof.	H30058LP
234	235	941.38	946.40	0.50 m	21.12.07	Runz r	Ner.	H30050LK
236	238	946.34	952.31	0.60 m	21.12.07	Runz r	xer:	H20050LR
239A	239A	952.30	953.24	0.75 m	21.12.87	KUNZ P	kel:	HOODERLD
239B	240	953.19	961.60	0.75 m	21.12.87	RUNZ P	xel:	HOODER
241	243B	961.40	967.92	0.55 m	21.12.87	Runz F	xel:	HOUDOLK
243B	246	968.63	979.15	0.60 m	21.12.87	Runz r	xer:	HOUDOLK
247	247	979.40	981.50	0.55 m	21.12.87	Runz F	ker:	HJUUJOLK
248A	248A	981.47	982.17	0.60 m	21.12.87	Runz F	ker:	H30058LR
248B	249	982.16	986.64	0.50 m	21.12.87	Runz H	ker:	H30058LR
250	252	986.90	991.82	0.50 m	21.12.87	Runz H	ker:	H30058LK
253A	253H	1177.00	1183.00	0.60 m	28.02.88	Run3 H	ker:	H30088RL
254A	255D	1228.80	1232.40	0.60 m	28.02.88	Run3 H	Ref:	H30088RL
256A	256J	1232.40	1238.40	0.60 m	28.02.88	Run3 H	kei:	H30088RL
257A	257F	1238.40	1242.06	0.60 m	28.02.88	Run3 F	Ref:	H30088RL
257G	257H	1243.00	1243.50	0.60 m	28.02.88	Run3 F	Ref:	H30088RL
258	259	1244.20	1245.50	0.50 m	28.02.88	Run3 F	Ref:	H30088RL
260A	262A	1245.50	1251.76	0.10 m	28.02.88	Run3 F	Ref:	H30088RL
262B	262G	1252.00	1256.28	0.30 m	28.02.88	Run3 F	Ref:	H30088RL
262H	2621	1256.28	1257.60	0.50 m	28.02.88	Run3 F	Ref:	H30088RL
263B	263B	1258.40	1259.30	0.65 m	28.02.88	Run3 F	Ref:	H30088RL
263C	263I	1259.27	1263.20	0.60 m	28.02.88	Run3 F	Ref:	H30088RL
264A	264C	1263.60	1265.67	0.50 m	28.02.88	Run3 F	Ref:	H30088RL
264D	264H	1265.86	1269.60	0.45 m	28.02.88	Run3 F	Ref:	H30088RL
265A	265B	1269.60	1270.73	0.45 m	28.02.88	Run3 F	Ref:	H30088RL
265D	265G	1271.19	1273.92	0.40 m	28.02.88	Run3 H	Ref:	H30088RL
265H	266	1273.92	1281.55	0.40 m	28.02.88	Run3 H	Ref:	H30088RL
267A	267G	1281.60	1286.65	0.40 m	28.02.88	Run3 F	Ref:	H30088RL
268A	268B	1286.65	1287.94	0.40 m	28.02.88	Run3 H	Ref:	H30088RL
268C	268I	1287.97	1292.71	0.40 m	28.02.88	Run3 H	Ref:	H30088RL
270B4a	270C4d	1294.80	1296.38	0.40 m	28.02.88	Run3 H	Ref:	H30088RL
272A3	273H1q	1301.02	1306.37	0.68 m	28.02.88	Run3 H	Ref:	H30088RL
274A1a	274H1u	1306.61	1312.62	0.56 m	28.02.88	Run3 H	Ref:	H30088RL
275A1a	2751q	1312.60	1317.42	0.50 m	28.02.88	Run3 H	Ref:	H30088RL
277A2a	278i1m	1320.65	1326.94	0.26 m	28.02.88	Run3 H	Ref:	H30088RL
279A1a	279K1r	1327.00	1333.00	0.42 m	28.02.88	Run3 H	Ref:	H30088RL
280B2a	280H211	1333.70	1338.50	0.76 m	28.02.88	Run3 H	Ref:	H30088RL
281A1a	281D1k	1338.50	1341.60	0.25 m	28.02.88	Run3 H	Ref:	H30088RL
281E11	281H1r	1341.60	1344.20	0.25 m	28.02.88	Run3 H	Ref:	H30088RL
282A2a	282I2v	1344.37	1350.51	0.26 m	28.02.88	Run3 H	Ref:	H30088RL
283A1a	283I1s	1350.60	1356.48	0.44 m	28.02.88	Run3 H	Ref:	H30088RL
284A1a	284K1x	1356.60	1362.60	0.48 m	28.02.88	Run3 H	Ref:	H30088RL
285A1a	286H1af	1362.60	1374.20	0.50 m	28.02.88	Run3 H	Ref:	H30088RL
287A2a	287F2m	1374.35	1378.21	0.50 m	28.02.88	Run3 H	Ref:	H30088RL
287F4	288E1y	1378.38	1382.36	0.23 m	28.02.88	Run3 H	Ref:	H30088RL
289C3a	292B1f	1385.50	1402.77	0.33 m	28.02.88	Run3 H	Ref:	H30088RL

Kernstü	ck-Nummer	Teufe		Teufen-	FMS-Log			
von	bis	von	bis	diff.	Datum			
202112	203011	1404 80	1407 50	0 68 m	28.02.88	Run3	Ref:	H30088RL
293A10	293D11 204C1af	1/10 80	1416 01	0.00 m	28.02.88	Run 3	Ref:	H30088RL
294AID	205411	1416 10	1421 97	0.59 m	28 02 88	Run 3	Ref:	H30088RL
290A14	295111W	1 4 2 0 . 10	1/30 38	0.50 m	28 02 88	Run 3	Ref:	H30088RL
290D0d	2900410	1434.41	1459.50	0.50 m	28 02 88	Run 3	Ref:	H30088RL
300A1d	201T12d	1445.50	1456.80	0.00 m	28 02 88	Run 3	Ref:	H30088RL
300n3a	20ED1a	1450.01	1450.00	0.00 m	28 02 88	Run 3	Ref:	H30088RL
303AId	305D15	1465 20	1469.45	-0.25m	28 02 88	Run 3	Ref.	H30088RL
306840	306G1 L	1465.20	1409.37	0.77 m	28 02 88	Run3	Rof.	H30088RL
307A1a	307H	1409.40	1475.00	0.17 m	20.02.00	Run3	Ref.	H30088RL
308A	3080	1475.30	14/0.75	0.40 m	28.02.00	Pun 3	Rof.	H30088RL
309AZd	309115	14/0.33	1401.00	0.70 m	28 02 88	Run3	Rof.	H30088RL
310B4a	31014aC	1402.57	1400.00	0.70 m	28 02 88	Run3	Rof.	H30088RL
312A1a	312HIV	1493.50	1490.40	0.05 m	20.02.00	Run3	Rof.	H30088RL
313AIa	313G1dd	1498.00	1500.40	0.45 m	28 02 88	Run3	Rof.	H30088RL
31363	319A10	1503.30	1529.34	0.74 m	21 05 88	Rund	Rof.	H30094MD
320A3a	322EIGT	1529.40	1559.00	0.40 m	31.05.88	Run4 Run/	Ref.	H30094MD
324A1a	324H10	1540.70	1552.05	0.47 m	31 05 88	Run4 Run4	Rof.	H30094MD
325A2a	325H2a1	1551.00	1560 65	0.75 m	31.05.88	Rund	Rof.	H30094MD
32584	326GIde	1562 50	1562.00	0.00 m	21 05 99	Dund	Ref.	H30094MD
32/A1a	32/H1at	1563.50	1570.90	0.55 m	31.05.00	Dun A	Ref.	H30094MD
328A1a	329F1r	1570.90	1570.01	0.09 m	31 05 88	Run4 Run4	Rof.	H30094MD
329G2a	329HZC	1578.30	15/9.01	0.00 m	31.05.88	Run4	Ref.	H30094MD
330A1a	330F1W	1580.00	1500.70	0.00 m	31.05.88	Run4 Dun/	Ref.	H30094MD
331A1a	331E1Z	1585.50	1504 02	0.00 m	31 05 88	Runa	Ref.	H30094MD
332A1D	332F140	1590.03	1601 11	0.80 m	31 05 88	Run4 Run4	Ref.	H30094MD
333DID	224C2w	1602 15	1606 65	0.80 m	31 05 88	Run4	Ref.	H30094MD
334A2d	334GZX	1607 20	1612 57	0.80 m	31 05 88	Run4	Ref.	H30094MD
335A2D	33500ZdO	1612 60	1618 16	0.55 m	31 05.88	Run4	Ref:	H30094MD
242D4b	3/3D11	1635 46	1638 50	0.30 m	31.05.88	Run4	Ref:	H30094MD
346D4D	345E2r	16/1 90	1645 95	0.50 m	31.05.88	Run4	Ref:	H30094MD
246110	346F1an	1646 35	1650 30	0.50 m	31.05.88	Run4	Ref:	H30094MD
340AIC	34811ap	1650 57	1656 05	0.30 m	31.05.88	Run4	Ref:	H30094MD
3/8/232	34852+	1656 08	1659 71	0.30 m	31.05.88	Run4	Ref:	H30094MD
3/0112	340120	1660.00	1664 48	0.60 m	31.05.88	Run4	Ref:	H30094MD
350A2a	351F1ab	1664 80	1673 73	0.56 m	31.05.88	Run4	Ref:	H30094MD
25211a	352B10	1673 64	1675 25	0.50 m	31 05 88	Run4	Ref:	H30094MD
35312a	353527	1675 70	1679 27	0.60 m	31.05.88	Run4	Ref:	H30094MD
35/112	354B1f	1679 60	1681.21	0.60 m	31.05.88	Run4	Ref:	H30094MD
35511a	355010	1681 40	1683 77	0.60 m	31.05.88	Run4	Ref:	H30094MD
355D2b	356C1ah	1683 81	1686 30	0.60 m	31.05.88	Run4	Ref:	H30094MD
358222	359B1d	1686 70	1689.43	0.80 m	31.05.88	Run4	Ref:	H30094MD
360122	360B2V	1689 47	1690.39	0.80 m	31.05.88	Run4	Ref:	H30094MD
3611332	361B3c	1690 60	1691.71	0.80 m	31.05.88	Run4	Ref:	H30094MD
362A2a	362A2n	1692.33	1693.18	0.80 m	31.05.88	Run4	Ref:	H30094MD
36313a	363B3n	1694.48	1695.50	0.80 m	31.05.88	Run4	Ref:	H30094MD
368A2a	368C2m	1700 45	1702.01	0.60 m	31.05.88	Run4	Ref:	H30094MD
369132	369032	1702.27	1704.09	0.60 m	31.05.88	Run4	Ref:	H30094MD
36906a	371B1i	1704.17	1707.73	0.60 m	31.05.88	Run4	Ref:	H30094MD
372A2h	373A1a	1707.75	1709.76	0.48 m	31.05.88	Run4	Ref:	H30094MD
409A1a	409F1be	1802.00	1806.46	1.06 m	31.05.88	Run4	Ref:	H30094MD
410A1a	410G1an	1806.80	1812.10	1.02 m	31.05.88	Run4	Ref:	H30094MD
411B2a	411H2ac	1812.74	1817.57	0.90 m	31.05.88	Run4	Ref:	H30094MD
412A1a	412H1ab	1817.80	1822.89	1.02 m	31.05.88	Run4	Ref:	H30094MD
413C2e	413G2ab	1825.13	1828.27	0.59 m	31.05.88	Run4	Ref:	H30094MD

	Kernstü	ck-Nummer	Teufe		Teufen-		FMS-Log			
	von	bis	von	bis	diff.		Datum			
1			1000 01	1000 00	0.05		21 05 00	Dun 4	Dof.	1120004MD
	414A1a	414F1a1	1828.34	1832.20	0.95	m	31.05.88	Run4	Rel:	H30094MD
	415A1a	415I1h	1832.60	1838.05	0.77	m	31.05.88	Run4	ReI:	H30094MD
	416A1a	416H1s	1838.10	1843.28	0.82	m	31.05.88	Run4	Ref:	H30094MD
	417A2a	417F2aa	1843.70	1847.91	0.81	m	31.05.88	Run4	Ref:	H30094MD
	419A1a	420G1ab	1853.09	1861.00	0.59	m	31.05.88	Run4	Ref:	H30094MD
	421A1a	422H1ac	1861.10	1872.19	1.00	m	31.05.88	Run4	Ref:	H30094MD
	423A2a	423H2an	1872.67	1877.98	1.14	m	31.05.88	Run4	Ref:	H30094MD
	424A1a	424G10	1878.20	1883.27	1.06	m	31.05.88	Run4	Ref:	H30094MD
	425A1b	425H1ad	1883.70	1888.93	0.82	m	31.05.88	Run4	Ref:	H30094MD
	426A1a	428G1v	1888.90	1903.70	0.91	m	31.05.88	Run4	Ref:	H30094MD
	429A2b	429H2ab	1903.20	1908.59	1.50	m	31.05.88	Run4	Ref:	H30094MD
	429H4a	430H1bf	1908.64	1913.96	0.98	m	31.05.88	Run4	Ref:	H30094MD
	431A1a	432A1d	1914.20	1919.45	1.00	m	31.05.88	Run4	Ref:	H30094MD
	432432	433A1d	1919 68	1922.80	1.02	m	31.05.88	Run4	Ref:	H30094MD
	432R5a	433F50	1923 10	1926.01	0.72	m	31.05.88	Run4	Ref:	H30094MD
	433054	433E30	1926 70	1928 01	1 06	m	31.05.88	Run4	Ref:	H30094MD
	434A1a	434013	1020.70	1034 10	0.98	m	31 05 88	Run4	Ref:	H30094MD
	435A1d	430020	1024 12	1934.10	0.90	m	31 05 88	Rund	Ref.	H30094MD
	437A2a	439n1ap	1052 00	1050 31	0.00	m	31 05 88	Rund	Rof.	H30094MD
	442A2a	4426240	1955.00	1950.51	1 25	m	21 05 99	DunA	Pof.	H30094MD
	443AZa	443620	1958.50	1903.41	1.20	m	21 05 88	Run4	Ref.	H30094MD
	445A1a	445E1U	1968.00	1970.80	1.26	m	21 05 00	Run4	Ref.	H30004MD
	446A2a	446E2X	1971.83	1975.40	1.24	m	SI.05.00	Run4	Ref.	H20004MD
	447A2a	447E2r	1976.40	1979.53	1.80	m	31.05.00	Run4	Rel:	H20004MD
	448A4a	448D4r	1980.26	1982.41	1.13	m	31.05.88	Ruff4	Rel:	H20004MD
	449A2a	449E4e	1982.52	1986.47	0.95	m	31.05.88	Run4	Rel:	H30094MD
	450B2a	450E2d	1988.10	1989.80	1.17	m	31.05.88	Run4	ReI:	H30094MD
	451A1a	452H1w	1992.50	2004.13	1.18	m	31.05.88	Run4	ReI:	H30094MD
	453A1a	453E1w	2004.54	2007.65	1.22	m	31.05.88	Run4	ReI:	H30094MD
	455A2a	455D2w	2008.95	2011.53	0.88	m	31.05.88	Run4	ReI:	H30094MD
	456A2a	459A1a	2012.12	2019.23	0.44	m	31.05.88	Run4	Ref:	H30094MD
	461A1a	461K1av	2021.12	2026.74	0.88	m	31.05.88	Run4	Ref:	H30094MD
	462A1a	462E1m	2027.10	2030.88	0.92	m	31.05.88	Run4	Ref:	H30094MD
	463A1a	463E1ak	2030.67	2034.25	1.00	m	31.05.88	Run4	Ref:	H30094MD
	464A1a	464D2c	2034.40	2037.22	1.10	m	31.05.88	Run4	Ref:	H30094MD
	465D4a	465D4j	2040.03	2040.90	1.54	m	31.05.88	Run4	Ref:	H30094MD
	467A2a	467G2as	2042.15	2047.02	0.78	m	31.05.88	Run4	Ref:	H30094MD
	468A1a	469F1u	2047.01	2055.92	0.98	m	31.05.88	Run4	Ref:	H30094MD
	470A1a	470F1ax	2056.00	2059.60	0.73	m	31.05.88	Run4	Ref:	H30094MD
	471A1a	471F1w	2059.70	2063.80	0.81	m	31.05.88	Run4	Ref:	H30094MD
	472A2a	472F2q	2063.72	2067.49	0.75	m	31.05.88	Run4	Ref:	H30094MD
	473A1a	473E1r	2068.10	2071.68	1.00	m	31.05.88	Run4	Ref:	H30094MD
	474A1a	474E1n	2072.65	2075.76	1.00	m	31.05.88	Run4	Ref:	H30094MD
	475A1a	475F1r	2076.00	2078.89	1.00	m	31.05.88	Run4	Ref:	H30094MD
	476A1a	476I1c	2079.08	2084.52	1.05	m	31.05.88	Run4	Ref:	H30094MD
	477A1a	477H1wT	2084.60	2090.48	1.00	m	31.05.88	Run4	Ref:	H30094MD
	478A1a	478H1uT	2090.60	2094.85	1.20	m	31.05.88	Run4	Ref:	H30094MD
	478H1v	479C11T	2095.05	2096.78	1.20	m	31.05.88	Run4	Ref:	H30094MD
	479022	480G1z	2096.85	2101.91	1.20	m	31.05.88	Run4	Ref:	H30094MD
	48142a	482K1ag	2102 50	2113.65	1.30	m	31.05.88	Run4	Ref:	H30094MD
	485112	485G1af	2118.50	2123.76	0.71	m	31.05.88	Run4	Ref:	H30094MD
	486112	486D1v	2124.00	2126.79	1.21	m	31.05.88	Run4	Ref:	H30094MD
	487112	487H1ai	2127.30	2132.86	1.20	m	31.05.88	Run4	Ref:	H30094MD
	487432	488T2a	2132 98	2138.41	1.32	m	31.05.88	Run4	Ref:	H30094MD
	489112	489E1r	2138.52	2141.95	1.30	m	31.05.88	Run4	Ref:	H30094MD
	490A1a	490G1aaT	2141.90	2146.95	1.22	m	31.05.88	Run4	Ref:	H30094MD
	a waa ha ha ha		1000 NOT 100 100 100 100	CONTRACTOR OF THE OWNER OF THE OWNER	1	0.001	A GALES SET & THE REAL PROPERTY OF			

Kernsti	ick-Nummer	d Teuf	e	Teufe	n-	FMS-Log			
von	bis	von	bis	diff		Datum			
						21 05 00	D 4	D.E.	112000 AMD
491A1a	491D1w	2147.50	2150.25	1.22	m	31.05.88	Run4	ReI:	H30094MD
492A2a	492G2ak	2150.58	2155.55	1.22	m	31.05.88	Run4	ReI:	H30094MD
493A1a	493C1n	2156.10	2157.95	1.20	m	31.05.88	Run4	ReI:	H30094MD
505A2a	506C1p	2180.85	2185.62	1.46	m	31.05.88	Run4	Ref:	H30094MD
506E5a	507D2aw	2186.51	2189.50	1.40	m	31.05.88	Run4	Ref:	H30094MD
508A1a	508K1w	2189.65	2195.06	1.48	m	31.05.88	Run4	Ref:	H30094MD
509A3b	510C1aa	2195.77	2197.85	1.20	m	31.05.88	Run4	Ref:	H30094MD
511A1a	511D1ae	2197.80	2200.43	1.49	m	15.10.88	Run5	Ref:	H30145RL
512A1a	512B10,	2200.60	2202.20	1.29	m	15.10.88	Run5	Ref:	H30145RL
513A2a	513C2k	2202.29	2204.25	1.47	m	15.10.88	Run5	Ref:	H30145RL
525A1a	525D1r	2223.23	2226.15	2,27	m	15.10.88	Run5	Ref:	H30145RL
526B2a	526G2aa	2227.58	2232.07	2.03	m	15.10.88	Run5	Ref:	H30145RL
527A1a	527B1n	2232.05	2233.82	1.90	m	15.10.88	Run5	Ref:	H30145RL
529A1a	529C1u	2236.30	2238.44	1.80	m	15.10.88	Run5	Ref:	H30145RL
530A1a	530A1m	2238.70	2239.37	1.85	m	15.10.88	Run5	Ref:	H30145RL
531A1a	531B1 j	2239.40	2240.65	1.85	m	15.10.88	Run5	Ref:	H30145RL
533A1a	533D1m	2246.68	2249.09	1.70	m	15.10.88	Run5	Ref:	H30145RL
534A1a	534B1h	2249.50	2250.62	1.95	m	15.10.88	Run5	Ref:	H30145RL
536A1a	536T1ah	2256.20	2261.71	2.27	m	15.10.88	Run5	Ref:	H30145RL
537A1a	539F1ae	2261.75	2269.93	2.23	m	15.10.88	Run5	Ref:	H30145RL
540A9a	541B11	2270.21	2272.57	2.25	m	15.10.88	Run5	Ref:	H30145RL
541B3a	542B11	2272.84	2274.63	2.29	m	15.10.88	Run5	Ref:	H30145RL
5/322h	543B2t	2274 87	2276.69	2.15	m	15.10.88	Run5	Ref:	H30145RL
541112	545F1a	2276 80	2284 75	2.46	m	15.10.88	Run5	Ref:	H30145RL
546732	546D3aa	2285 28	2288 00	2 29	m	15.10.88	Run5	Ref:	H30145RL
540A3a	540D3aa	2205.20	2200.00	2 31	m	15 10 88	Run5	Ref:	H30145RL
547A1a	547D1an	2200.00	2300 24	2 35	m	15 10 88	Run5	Ref:	H30145RL
546Ald	549Flau	2291.10	2310 30	2.35	m	15 10 88	Run5	Ref:	H30145RL
SSUALA	55272a	2310 70	2311 15	2.30	m	15 10 88	Run5	Ref:	H30145RL
553A2d	555A29	2310.70	2212.40	2.30	m	15 10 88	Run5	Ref.	H30145RL
554A1a	554AIII	2311.00	0010.19	2.30	m	15 10 88	Run5	Rof.	H30145RL
555A1a	555B11	2312.24	2313.47	2.30	m	15 10 88	Runs	Rof.	H30145RL
556A1a	557C1n	2313.90	2310.20	2.41	m	15 10 99	Run5	Ref.	H30145RL
558A1a	558EIM	2318.60	2321.22	2.11	m	15.10.00	Run5	Ref.	H30145RL
559A1a	559Glam	2321.55	2320.75	2.43	m	15.10.00	Runs	Pof.	H30145RL
561A1a	563C11	2327.30	2335.07	2.49	III	15.10.00	Runs	Ref.	H30145RL
563D2a	564C11	2335.14	2337.58	2.50	m	15.10.00	Runo	Rel.	H20145RL
565A1a	565A1m	2337.70	2338.54	2.50	m	15.10.88	RUND	Rel:	H20145RL
565B2a	565B21	2338.53	2339.45	2.50	m	15.10.88	RUND	Rel:	H20145RL
566A1a	566D1W	2339.30	2342.23	2.40	m	15.10.88	Runo	Rel:	H30145RL
567A2a	567H2aq	2342.40	2347.58	2.12	m	15.10.88	Runo	Rel:	H20145RL
567H3a	568E1m	2347.62	2350.82	2.50	m	15.10.88	Runo	Rel:	H20145RL
569A3a	569H3v	2350.71	2356.05	2.47	m	15.10.88	Runs	Rel:	H30145RL
569H4a	571I1ai	2356.04	2365.72	2.49	m	15.10.88	Runs	Rel:	H30145KL
572A1a	572G1u	2366.00	2370.67	2.60	m	15.10.88	Runs	ReI:	H30145KL
573A1a	574F1n	2370.65	2375.65	2.50	m	15.10.88	Runs	Rel:	H30145RL
575A1a	575C1d	2375.60	2376.69	2.38	m	15.10.88	Run5	ReI:	H30145RL
576B3a	576E30	2377.80	2380.55	2.30	m	15.10.88	Run5	ReI:	H30145RL
577A1a	577D1k	2380.70	2383.33	2.38	m	15.10.88	Run5	Ref:	H30145RL
578A1a	578F1q	2383.40	2386.40	2.28	m	15.10.88	Run5	Ref:	H30145RL
579A1a	579E1u	2386.40	2388.74	2.51	m	15.10.88	Run5	Ref:	H30145RL
580A1a	580D11	2389.80	2392.05	2.63	m	15.10.88	Run5	Ref:	H30145RL
581A1aH	R582I1af	2392.10	2402.37	2.43	m	15.10.88	Run5	Ref:	H30145RL
582I3a	587A1b	2402.55	2418.80	2.87	m	15.10.88	Run5	Ref:	H30145RL
587C7a	587F7g	2419.90	2421.90	2.80	m	15.10.88	Run5	Ref:	H30145RL
588A5a	588E5af	2423.14	2426.33	2.30	m	15.10.88	Run5	Ref:	H30145RL

Kernstück-1	Nummer Teuf	e	Teufe	n-	FMS-Log			
von bis	von	bis	diff	•	Datum			
589A1a 5891	B1C 2426.10	2427.45	2.58	m	15.10.88	Run5	Ref:	H30145RL
590A1a 590	Alf 2427.50	2428.44	2.28	m	15.10.88	Run5	Ref:	H30145RL
591A2a 5911	$H_{2v} = 2428.35$	2433.85	2.56	m	15.10.88	Run5	Ref:	H30145RL
50211a 5021	H1ab 2433 90	2439 18	2.70	m	15.10.88	Run5	Ref:	H30145RL
50510 5061	2433.90	2444 00	2 73	m	15 10 88	Run5	Ref:	H30145RL
500x1a 6000	21_{v} 21_{v} 21_{0} 00	2444.00	2 66	m	15 10 88	Run5	Ref:	H30145RL
590AId 0000	2449.00	2404.47	2.00	m	15 10 88	Run5	Ref:	H30145RL
6001A4d 0011	2404.94	2400.07	2 14	m	15 10 88	Run5	Ref:	H30145RL
602AIR 6020	JAQ 2470.70	2470.33	2.55	m	15 10 88	Run5	Ref.	H30145RL
603A18 600	2470.30	2400.49	2.50	m	15 10 88	Run5	Ref.	H30145RL
609AIR 6090	JAII 2400.40	2493.49	2.23	m	15 10 88	Run5	Ref.	H30145RL
609648 6117	AIU 2493.41	2499.23	2.05	m	15 10 88	Run5	Rof.	H30145RL
611AZa 61ZI	11u 2499.20	2511.10	2.05	m	15 10 99	Run5	Ref.	H30145RL
613AIC 6150	2511.18 0506.00	2526.20	2.99	III	15.10.00	Runs	Ref.	H30145RL
616A1a 617	HIZ 2526.20	2538.00	2.94	III	15.10.00	Runs	Rel.	U20145RL
618A1a 6201	HIP 2538.00	2556.00	3.04	111	15.10.00	Runs	Ref.	U20145RD
621A1a 6220	Jlac 2556.30	2568.00	2.87	m	15.10.00	Runs	Rel.	H30145RL
623A1a 624	Elu 2568.30	2578.70	3.19	m	15.10.00	Runo	Rel:	H30145RL
625A1a 6270	2578.90	2588.57	2.87	III	15.10.00	RUIID	Rel.	U20145RL
628A1b 628	Elab 2592.12	2596.34	2.84	m	15.10.00	Runo	Rel:	H20145RL
629A1a 6290	Cln 2596.50	2598.84	3.24	m	15.10.88	Runo	Rel:	H30145RL
631A1a 6320	G1v 2603.00	2613.34	2.97	m	15.10.88	Runs	Rel:	HOUL4OKL
633A2aK6330	G2ab 2614.73	2620.10	3.09	m	15.10.88	Runs	Rel:	H30145RL
634A1a 637	Ala 2620.10	2634.95	2.90	m	15.10.88	Runs	Rel:	H30145RL
638A2a 6397	A1b 2687.12	2689.97	3.07	m	15.10.88	Runo	Rel:	H30145RL
639A5a 639I	05r 2690.10	2692.22	3.31	m	15.10.88	Runo	Rel:	HOUL4OKL
640A2a 6401	02s 2692.53	2695.38	3.00	m	15.10.88	RUND	Rel:	H20145RL
641A1a 6421	E3C 2695.35	2701.51	3.18	m	15.10.88	Runo	Rel:	H20145RL
643A1a 6431	B1j 2701.50	2703.07	3.10	m	15.10.88	Runo	Rel:	H30145RL
645A1a 645	B1d 2703.10	2704.19	3.45	m	15.10.00	Runo	Rel:	H30145RL
646A1a 6510	2704.30	2/14.88	3.19	m	15.10.00	Runo	Rel.	U20145RL
652A1a 656	H1x 2714.95	2737.90	3.29	m	15.10.00	RUID	Rel:	U20145RL
657A1a 6571	B1b 2737.96	2739.35	3.16	m	15.10.88	Runo	Rel:	H30145RL
658A1a 658I	H1ab 2739.60	2745.50	3.20	m	15.10.88	Runo	Rel:	H30145KL
659A2a 658I	H2f 2745.70	2751.55	3.18	m	15.10.88	Runs	Rel:	H30145RL
661A1a 6660	G1x 2752.20	2774.87	3.10	m	15.10.88	Runs	ReI:	H30145RL
666C5a 6681	Bla 2774.94	2778.67	3.28	m	15.10.88	Runo	Rel:	HJ0145RL
669A1a 669A	A2C 2778.82	2779.35	3.28	m	15.10.88	RUND	Rel:	H30145RL
670A3a 670	A3e 2779.77	2780.28	3.28	m	15.10.88	RUIID	Rel:	H20145RL
671A1a 671	A1b 2780.30	2780.74	3.28	m	15.10.88	Runo	Rel:	HOUL4OKL
671A2a 6731	B1v 2780.74	2784.02	3.23	m	15.10.88	Runo	Rel:	H30143KL
675A6a 6751	B6h 2786.40	2787.06	3.17	m	15.10.88	Runs	KeI:	H30145KL
676A3a 6761	H3ac 2787.06	2792.90	3.13	m	15.10.88	Runs	ReI:	H30145KL
678A1aR6780	Clr 2794.10	2796.83	3.07	m	15.10.88	Runs	ReI:	H30145KL
6792a 6791	F2ac 2796.73	2801.13	3.11	m	15.10.88	Runs	KeI:	H30145KL
681B7aK681	E7g 2802.38	2805.23	3.13	m	15.10.88	Runs	ReI:	H30145RL
683A1a 6830	G1y 2805.90	2810.49	3.11	m	15.10.88	Runs	ReI:	H30145RL
685A3a 6851	E3u 2811.05	2814.45	3.03	m	15.10.88	Runs	ReI:	H30145RL
686A1a 6871	Flad 2814.10	2820.02	3.24	m	15.10.88	Run5	Ref:	H30145RL
688A4a 6901	H1x 2820.19	2833.15	3.24	m	15.10.88	Run5	Ref:	H30145RL
691A2a 6910	221 2833.24	2835.40	3.24	m	15.10.88	Runs	ReI:	H30145RL
692A1a 6921	H1z 2835.40	2841.18	3.29	m	15.10.88	Run5	Kef:	H20145KL
692H2b 6931	Elt 2841.23	2844.44	3.35	m	15.10.88	Runs	ReI:	H30145KL
694A1a 6941	Din [2844.60	2847.89	3.31	m	15.10.88	Runo	Rel:	H30145KL
696A4a 698	Ald 2850.75	2857.90	3.57	m	15.10.88	Runs	Ref:	H20145KL
699A2a 701	11ab 2857.79	2869.61	1 3.32	m	00.01.CT	cunz	ver:	1130143KL

Kernstück-Nummer	Teufe	i i	Teufen		FMS-Log			
von bis	von	bis	diff.		Datum			
702A1a 703C1g	2869.70	2872.50	3.16	m	15.10.88	Run5	Ref:	H30145RL
70511a 708D1n	2873 10	2887.95	3.44	m	15.10.88	Run5	Ref:	H30145RL
709A2b 710H1ab	2888 30	2899 91	3.58	m	15.10.88	Run5	Ref:	H30145RL
710442 715P10	2000.03	2017 63	3 37	m	15 10 88	Run5	Ref:	H30145RL
710D4d 715D1e	2900.03	2917.05	3 36	m	15 10 88	Run5	Ref:	H30145RL
/18B11d/21F1V	2921.50	2933.00	2 57	m	15 10 88	Run5	Rof.	H30145RL
722B2a 723H1X	2936.95	2947.00	3.57	m	15.10.00	Run5	Ref.	H30145RL
/24Ala /26Elt	2947.80	2963.43	3.30		15.10.00	Runs	Ref.	H30145RL
727A1a 727F1p	2963.68	2968.05	3.37	m	15.10.00	Runs	Ref.	H30145RL
727F3a 729D1z	2968.10	2977.54	3.39	m	15.10.88	Runo	Rel:	HIDOLASKL
730A1a 730H1m	2977.72	2983.52	3.47	m	15.10.88	Runs	Rel:	H30143KL
731A1a 733C11	2983.70	2993.04	3.61	m	15.10.88	Runo	Rel:	HOUL4ORL
733D3b 733H1v	2993.78	2997.10	3.62	m	15.10.88	Runs	ReI:	H30145RL
734A01a734G1aa	2997.28	3002.10	3.30	m	15.10.88	Run5	ReI:	H30145RL
735A1a 735B1c	3002.20	3003.30	2.38	m	15.10.88	Run5	Ref:	H30145RL
736A01a738C04h	3003.60	3014.95	3.05	m	15.10.88	Run5	Ref:	H30145RL
739A01a739G01y	3013.45	3021.00	1.80	M	15.10.88	Run5	Ref:	H30145RL
740A1a 740H01y	3021.00	3026.78	3.30	m	15.10.88	Run5	Ref:	H30145RL
741A01a741F1w	3026.75	3031.02	3.25	m	15.10.88	Run5	Ref:	H30145RL
742A1a 744G01w	3031.00	3048.02	3.45	m	15.10.88	Run5	Ref:	H30145RL
745A01a745G01ak	3048.40	3053.90	3.45	m	15.10.88	Run5	Ref:	H30145RL
746A02b746F02t	3054.60	3059.34	3.00	m	15.10.88	Run5	Ref:	H30145RL
747A1a 747B1e	3059.05	3060.95	2.25	m	15.10.88	Run5	Ref:	H30145RL
74811a 7490030	3060 95	3063.40	3.08	m	15.10.88	Run5	Ref:	H30145RL
75111a 751B	3063 70	3065 50	3.20	m	15.10.88	Run5	Ref:	H30145RL
751C 751F	3065 54	3068 27	3 20	m	15,10,88	Run5	Ref:	H30145RL
7510 7511 750101-750400b	2069 25	3074 32	1 95	m	15 10 88	Run5	Ref:	H30145RL
752A01d752H02D	2074 20	2096 22	3 10	m	15 10 88	Run5	Ref.	H30145RL
755A01a755C02p	2006 20	2002 20	3 00	m	15 10 88	Run5	Ref ·	H30145RL
756A1a 756H01a0	3086.30	3092.30	3.00	m	15 10 99	Run5	Ref.	H30145RL
757A01a758G01ad	3092.30	3102.02	3.45	m	15 10 88	Runs	Ref.	H30145RL
759A01a760A02a	3102.70	3108.00	3.20	m	15.10.00	Runs	Rel.	H20145RL
760B02b760F02r	3108.76	3112.80	3.10	III	15.10.00	Runs	Ref.	U20145RL
761A06a761E6aa	3112.97	3116.92	3.50	m	15.10.00	Runo	Rel.	H20145RL
762B12a762G12r	3118.61	3122.39	1.90	m	15.10.88	Runo	Rel:	II 201 4 EDI
763A02a763F02t	3122.65	3126.95	3.50	m	15.10.88	Runs	Rel:	H30145RL
763G02u764C01j	3127.26	3129.89	3.50	m	15.10.88	Runs	Re1:	H30145RL
764C01k764H01ag	3129.89	3134.16	3.50	m	15.10.88	Run5	ReI:	H30145RL
765A01a765H01aa	3134.15	3140.20	3.35	m	15.10.88	Runb	Ref:	H30145RL
767A03a767H03ab	3140.50	3146.17	2.70	m	15.10.88	Runb	Ref:	H30145RL
768A01a768A01a	3146.20	3146.45	3.60	m	15.10.88	Run5	Ref:	H30145RL
769A03a769D031K	3146.51	3149.06	3.45	m	15.10.88	Run5	Ref:	H30145RL
769D03m769H03ak	3149.06	3152.11	3.45	m	15.10.88	Run5	Ref:	H30145RL
770A01a770E01ag	3152.10	3156.03	3.65	m	15.10.88	Run5	Ref:	H30145RL
771A01c771B01s	3155.97	3157.23	3.55	m	15.10.88	Run5	Ref:	H30145RL
773A02a773F4x	3162.72	3167.62	3.20	m	15.10.88	Run5	Ref:	H30145RL
774A1a 775B02e	3167.90	3171.50	3.70	m	15.10.88	Run5	Ref:	H30145RL
776A01a776G01ad	3171.60	3177.40	3.65	m	15.10.88	Run5	Ref:	H30145RL
777A01a777A01d	3177.40	3179.20	3.80	m	15.10.88	Run5	Ref:	H30145RL
777B1e 777F2g	3179 20	3181.96	3.79	m	15.10.88	Run5	Ref:	H30145RL
778112 778110	3182 05	3182.68	3.24	m	15.10.88	Run5	Ref:	H30145RL
7788079770X01~	3183 18	3187 50	3 44	m	15,10,88	Run5	Ref:	H30145RL
79031- 790001~	3187 70	3103 57	3 69	m	15.10 88	Run5	Ref:	H30145RL
701A1a 701001a	3102 25	3100 02	2 00	m	15 10 88	Run5	Ref.	H30145RL
TOTALE TOTAULO	2100 00	3200 40	1 00	m	15 10 88	Run5	Ref.	H30145RL
702A3d /82B30	2723.30	3200.40	3 50	m	15 10 00	Runs	Ref.	H30145RL
783Abd 783F6D1	3203.29	2214 16	2 70	101	15 10 00	Runs	Rof.	H30145RL
184A2a 184G2ab	3208.02	3614.10	5.19	111	10.10.00	Rung	uer.	HOOTADKD

Kernstück-Nu	mmer Teu	ıfe	Teufen-	FMS-Log			
von bis	vor	n bis	diff.	Datum			
	2011		2 60	15 10 00	DunE	Dofe	112014EDI
785A3a 785G	3214.	26 3220.00	3.69 m	15.10.88	Runo	Rel:	
786A 787E1	t 3220.	20 3226.80	3.81 m	15.10.88	Runo	ReI:	H30145RL
788A1a 788G1	an 3226.	80 3232.75	3.79 m	15.10.88	Runb	Ref:	H30145RL
789A1a 789G	3232.0	50 3238.40	3.94 m	15.10.88	Run5	Ref:	H30145RL
790A 790H1	ad 3238.	40 3243.72	3.74 m	15.10.88	Run5	Ref:	H30145RL
791A5a 791C5	k 3244.	37 3246.09	3.64 m	15.10.88	Run5	Ref:	H30145RL
791D 791D	3246.	20 3246.61	3.74 m	15.10.88	Run5	Ref:	H30145RL
792A2a 792E2	v 3246.	70 3250.45	4.09 m	15.10.88	Run5	Ref:	H30145RL
79312a 794F1	ac 3251	1 3259 70	3.39 m	15,10,88	Run5	Ref:	H30145RL
705112 70901	22 3250	70 3274 02	3 86 m	15 10 88	Run5	Ref .	H30145RL
70011a 70001	aa 3233.	15 3070 00	3 24 m	15 10 88	Run5	Ref.	H30145RL
799AId 799GI	.dx 5274.	33 3279.99	1 02 m	15 10 88	Run5	Rof.	H30145RL
800A1D 804G1	ae 3280.0	$10 \ 3302.43$	4.02 1	15.10.00	Runs	Ref.	U20145RD
805A5a 810E	3302.	48 3330.90	4.09 m	15.10.00	Runo	Rel:	HOOT 4 JKL
811A 811A1	h 3330.	90 3331.30	4.19 m	15.10.88	Runo	Rel:	H30145RL
812A1a 812J1	ab 3331.1	25 3337.00	4.04 m	15.10.88	Runs	Ref:	H30145RL
813A1a 813G1	x 3337.0	00 3342.62	4.29 m	15.10.88	Run5	Ref:	H30145RL
814A1a 814H1	ak 3342.	30 3348.45	3.99 m	15.10.88	Run5	Ref:	H30145RL
815A1a 815G1	ad 3348.	50 3353.23	4.54 m	15.10.88	Run5	Ref:	H30145RL
816A1a 816C1	k 3353.	80 3356.15	2.55 m	15.10.88	Run5	Ref:	H30145RL
817A1aK817B1	fd 3356.	10 3357.40	1.65 m	13.12.88	Run5	Ref:	H30258RL
818A1a 818D1	d 3357.	40 3360.26	2.55 m	13.12.88	Run5	Ref:	H30258RL
819A1a 820A1	f 3360.	20 3362.63	2.75 m	13.12.88	Run5	Ref:	H30258RL
821A3a 824H1	ad 3362	82 3382 84	2.70 m	13.12.88	Run5	Ref:	H30258RL
021AJa 02411	v 3382	20 3386 92	2 80 m	13 12 88	Run5	Ref:	H30258RL
02JAId 02JII	2207	16 2280 02	2.00 m	13 12 88	Run5	Rof.	H30258RL
020AId 020D2	1 3307.4	10 3309.93	2.00 m	12 12 00	Run5	Pof.	H30258PL
827A4a 827G4	0 3390.	20 3393.00	2.00 11	12.12.00	Runs	Ref.	1130230KL
828A1a 829C1	n 3395.	30 3400.55	2.72 m	13.12.00	Runo	Rel:	HOODEODI
830Ala 830H1	af 3400.4	47 3406.45	2.53 m	13.12.88	Runo	Rel:	H30258KL
831A3a 831B3	W 3406.0	55 3407.99	2.50 m	13.12.88	Runs	ReI:	H30258KL
832A2c 832D6	3407.9	99 3410.29	2.80 m	13.12.88	Runb	Ref:	H30258RL
833A1a 833D2	h 3410.1	17 3412.89	2.93 m	13.12.88	Runb	Ret:	H30258RL
834A1a 834C1	d 3412.9	90 3414.84	2.63 m	13.12.88	Run5	Ref:	H30258RL
835A1a 835B1	.e 3416.	45 3418.38	2.00 m	13.12.88	Run5	Ref:	H30258RL
836A1a 837G1	z 3418.	30 3429.02	2.72 m	13.12.88	Run5	Ref:	H30258RL
838A1a 839F1	n 3429.0	00 3433.71	2.78 m	13.12.88	Run5	Ref:	H30258RL
840A1a 841A1	e 3433.9	90 3439.85	2.77 m	13.12.88	Run5	Ref:	H30258RL
842A1a 843G1	af 3440.0	00 3450.76	2.80 m	13.12.88	Run5	Ref:	H30258RL
843G1ab844E1	nf 3450.1	85 3454.85	2.82 m	13.12.88	Run5	Ref:	H30258RL
84511a 846G1	v 3455	0 3464.19	2.83 m	13,12,88	Run5	Ref:	H30258RL
84711a 847G1	av 3464	50 3470 07	3.05 m	13,12,88	Run5	Ref:	H30258RL
047A1a 04701 040X1a 040E1	u 3470	10 3475 43	3 00 m	13 12 88	Run5	Ref:	H30258RL
040A1d 040F1	a 2470.	12 2479 00	3.00 m	13 12 88	Run5	Rof.	H30258RL
040F1V 001A1	C 3473.	10 2402 20	3.00 m	12 12 99	Pun5	Pof.	H30258PL
851A2D 851G2	X 3478.	10 3403.20	2.00 11	12.12.00	Runs	Ref.	1130250RL
852A1a 852D1	an 3483.	15 3486.90	3.15 m	13.12.88	Runo	Rel:	H20250KL
853A2a 853D2	ab 3486.	/0 3489.32	2.90 m	13.12.88	Runo	Rel:	HOUZOOKL
854A2a 854G2	ag 3489.9	90 3494.78	3.00 m	13.12.88	Runs	ReI:	H30258RL
855A2a 856H	3495.	30 3503.30	3.00 m	13.12.88	Run5	KeI:	H30258RL
857A1a 858A1	b 3503.	30 3506.50	2.92 m	13.12.88	Run5	Ref:	H30258RL
858A2c 858H2	y 3506.	50 3511.93	2.66 m	13.12.88	Run5	Ref:	H30258RL
859A2a 860A1	a 3512.2	26 3516.76	2.64 m	13.12.88	Run5	Ref:	H30258RL
861A2a 861F2	af 3517.	40 3521.55	2.80 m	13.12.88	Run5	Ref:	H30258RL
862A3a 862G3	ae 3521.	72 3527.48	2.92 m	13.12.88	Run5	Ref:	H30258RL
863A2b 864A1	h 3527.	48 3533.48	2.84 m	13.12.88	Run5	Ref:	H30258RL
865A2ab865F2	as 3533.	86 3538.66	3.00 m	13.12.88	Run5	Ref:	H30258RL
866A1a 866F1	t 3538.	30 3543.90	2.94 m	13.12.88	Run5	Ref:	H30258RL

- F 22 -	

Kernsti	ick-Nummer	Teufe	9	Teufe	n –	FMS-Log			
von	bis	von	bis	diff		Datum			
867B9a	867H9r	3544.66	3549.49	2.87	m	13.12.88	Run5	Ref:	H30258RL
870A9a	874H1ad	3550.48	3574.91	3.00	m	13.12.88	Run5	Ref:	H30258RL
876A2a	876E2ay	3580.54	3584.66	3.48	m	13.12.88	Run5	Ref:	H30258RL
877A3a	877G3ak	3585.02	3590.74	3.48	m	13.12.88	Run5	Ref:	H30258RL
878A1a	878H1bf	3590.90	3596.69	3.14	m	13.12.88	Run5	Ref:	H30258RL
879B7a	880A1	3597.73	3598.53	3.46	m	13.12.88	Run5	Ref:	H30258RL
882A4a	882H4bb	3601.26	3606.88	3.75	m	13.12.88	Run5	Ref:	H30258RL
883A1aI	E885A1e	3607.05	3618.27	3.68	m	13.12.88	Run5	Ref:	H30258RL
888A3a	891F1an	3627.78	3649.45	2.34	m	13.12.88	Run5	Ref:	H30258RL
898A3a	900A3a	3653.16	3663.62	2.46	m	13.12.88	Run5	Ref:	H30258RL
900B7a	903A1f	3663.63	3676.46	2.40	m	13.12.88	Run5	Ref:	H30258RL
904A1a	905A1b	3676.50	3686.53	2.38	m	13.12.88	Run5	Ref:	H30258RL
905A4a	907G1x	3682.57	3699.25	2.32	m	13.12.88	Run5	Ref:	H30258RL
907G2a	911H1az	3699.30	3721.17	2.70	m	13.12.88	Run5	Ref:	H30258RL
912A4a)	x916G1r	3721.28	3747.31	2.98	m	13.12.88	Run5	Ref:	H30258RL
917A1a	918G	3747.30	3758.50	2.46	m	13.12.88	Run5	Ref:	H30258RL
918A1a	920A11	3758.90	3765.33	2.56	m	13.12.88	Run5	Ref:	H30258RL

•

G. Gefüge und Deformation

W. Sprenger H. Heinisch A. Zadow

KTB-Report	91-3	G1-G36	4 Abb.	Hannover 1991
------------	------	--------	--------	---------------

Kontinuierliche makroskopische Aufnahme kinematischer Markierungen an Kernen der KTB-Vorbohrung zur qualitativen Abschätzung der duktilen Verformung im Teufenbereich von 2004m bis 3569m.

G. Gefüge und Deformation

W. Sprenger, H. Heinisch & A. Zadow *)

Inhalt

G.1	Einführung	G	2
G.2	Daten	G	3
G.3 G.3.1 G.3.2 G.3.3 G.3.4	Ergebnisse und Interpretation Schersinnumkehr Richtung der Scherbewegung Polarität der Scherrichtung Interpretation der einzelnen Teufenabschnitte	G G G G	4 6 9 9
G.4	Ausblick	G	11
G.5	Literatur	G	11
G.6	Anhang: Datenliste der Scherkriterien von 2004m bis 3569m	G	13

*) Anschrift der Autoren: Institut für Allgemeine und Angewandte Geologie, Universität München, Luisenstraße 37, D-8000 München 2

Seite

G.1 Einführung

Die kontinuierliche makroskopische Kernaufnahme hinsichtlich kinematischer Markierungen der duktilen Verformung wurde in Arbeitsteilung zwischen den Arbeitsgruppen von J. Behrmann (Gießen) und H. Heinisch (München) im KTB-Feldlabor durchgeführt (siehe Tab. G.1.1). Wegen des hohen Personal- und Zeitaufwandes dauerten die Arbeiten bis Mitte des Jahres 1990 an. Die Kernaufnahme wurde von der Münchner Arbeitsgruppe nach Auslaufen der DFG-Förderung abgeschlossen. Dieser Bericht stellt die Fortsetzung zu ZADOW et al. (1990) dar und soll die Kontinuität der Daten-Dokumentation für den zweiten Teil der KTB-VB für Teufen zwischen 2004m und 3569m gewährleisten.

Teufenmeter	Anzahl der Markierungen	Bearbeiter	
480m - 1250m	588	Zadow (München)	
1250m - 1650m	46	Lich/Volp (Gießen)	
1650m - 2432m	651	Lich/Volp (Gießen)	
2432m - 3000m	1014	Sprenger (München)	
3000m - 3600m	1569	Sprenger (München)	

Tab. G.1.1: Aufnahmeaktivitäten

Bei den kinematischen Markierungen handelt es sich um Porphyroklasten-Systeme (o-, δ -Klasten und komplexe o- δ -Klastensysteme aus Feldspat bzw. Feldspat-Quarz-Aggregaten; δ -Klasten aus Granat), Scherbänder, asymmetrische Parasitärfaltung der Foliation, sowie 'bookshelf sliding' in rigiden Mineralen (v.a. Feldspat). Auch asymmetrische Kleinfalten wurden herangezogen, da die Kontrolle durch unmittelbar benachbarte, eindeutige o- bzw. δ -Klasten eine extrem hohe Zuverlässigkeit der Kleinfalten als Schersinnindikatoren anzeigte. Für eine detaillierte Diskussion kinematischer Markierungen im duktilen Niveau wird auf SIMPSON & SCHMID (1983), PASSCHIER & SIMPSON (1986) und COBBOLD et al. (1987) verwiesen.

Ziel der Analyse kinematischer Markierungen über die Gesamterstreckung der Vorbohrung war es, Informationen zur Verifizierung tektonischer Modelle und von Teilbewegungspfaden der tektonischen Dislokation in der frühen Orogenesegeschichte der saxothuringisch-moldanubischen Kruste im Bereich der ZEV zu erhalten. Es wird hierbei angenommen, daß die untersuchten kinematischen Markierungen während der Anlage der ältesten mylonitischen Foliation sensu WEBER & VOLLBRECHT (1987) entstanden sind.

Die Vorgehensweise bei der Kernaufnahme ist ausführlich in ZADOW et al. (1990) beschrieben. Zusätzlich wurden die Para-

meter für die Berechnung der 'vorticity number', einem Maß für die Rotation der Porphyroklasten, erhoben. Daraus läßt sich auf das Strainregime schließen. Die mathematischen Grundlagen sind in PASSCHIER (1987, 1988) erörtert. Ergebnisse aus der Anwendung dieser Methode auf die KTB-Vorbohrung werden in BEHRMANN et al. (1991) dargestellt.

Die Reorientierung der Markierungen in die ursprüngliche Raumlage erfolgte auf der Basis von FMST(Formation Micro-Scanner Tool)- und BGT(Borehole Geometry Tool)-Daten, die von G. Hirschmann, D. Schmitz und J. Kohl zur Verfügung gestellt wurden (siehe auch SCHMITZ et al., 1989). Für die Reorientierung wurden folgende Datensätze verwendet:

108-251	(578-991m) :	FMST (Schmitz)
268-708	(1286-2888m):	FMST (Hirschmann)
709-715	(2888-2917m):	FMST/BGT
716-733	(2917-2997m):	FMST (Hirschmann)
734-784	(2997-3214m):	FMST (Schmitz)
785-786	(3214-3223m):	FMST/BGT
787-798	(3223-3278m):	FMST (Schmitz)
799-815	(3278-3354m):	FMST/BGT
816-834	(3354-3417m):	FMST (Schmitz)
835-840	(3417-3439m):	FMST/BGT
841-856	(3439-3498m):	FMST (Schmitz)
857-874	(3498-3570m):	FMST (Hirschmann)
	108-251 268-708 709-715 716-733 734-784 785-786 787-798 799-815 816-834 835-840 841-856 857-874	108-251 (578-991m) : 268-708 (1286-2888m): 709-715 (2888-2917m): 716-733 (2917-2997m): 734-784 (2997-3214m): 785-786 (3214-3223m): 787-798 (3223-3278m): 799-815 (3278-3354m): 816-834 (3354-3417m): 835-840 (3417-3439m): 841-856 (3439-3498m): 857-874 (3498-3570m):

Die Rohdaten, einschließlich der reorientierten Daten, wurden in einem dBASE-File abgelegt, der dem Feldlabor und interessierten Arbeitsgruppen zur Verfügung steht. Eine Datenauflistung für den Teufenabschnitt '2004m - 3569m' befindet sich im Anhang.

G.2 Daten

Zwischen 2004m und 3569m wurden ca. 3000 Schersinnindikatoren aufgenommen. Als häufigster Typ sind o-Porphyroklastensysteme vertreten (65.7 %), seltener treten δ -Klasten (16.3 %) und duktile Parasitärfalten (13.6 %) auf (Abb. G.2.1). Als Besonderheit sind vereinzelte, komplexe σ - δ -Klastensysteme zu erwähnen, deren erste Generation von Schwänzen primär im Druckschatten rotierender δ -Klasten gebildet und am Ende der Rotation von einer zweiten Generation von σ -Schwänzen überprägt wurde (PASSCHIER, 1987).

Für die teufenabhängige Darstellung im Scher-Log wurden die einzelnen Indikatoren mit ihrem Schersinn auf ein Bohrprofil aufgetragen und Homogenbereiche zusammengefaßt. Das Abgrenzungskriterium für Domänen von 'up-dip'-, 'down-dip'- und symmetrischer Ausbildung lag bei 75%-iger Richtungsidentität. Wie aus Abb. G.2.2 ersichtlich, erfolgt recht häufig eine Umkehr der Scherrichtung. Der Teufenabstand der Umkehrpunkte

Abb. G.2.1: Prozentualer Anteil der verschiedenen Indikatoren-Typen am Gesamtinventar; unter "Sonstige" fallen S-C-Gefüge, Scherbänder, 'bookshelf structures', Boudinage.

variiert in der Größenordnung von wenigen Metern bis 50 m. Aus Übersichtsgründen wurde in die Profildarstellung auch der Teufenbereich '480m - 2004m' einbezogen.

G.3 Ergebnisse und Interpretation

Aus den hier dokumentierten Daten lassen sich Aussagen bezüglich Schersinnumkehr sowie Richtung und Polarität der Scherbewegung ableiten. Da die kinematischen Markierungen bezüglich aller späterer Verstellungen als transportierte Gefüge zu betrachten sind, ist ein direkter Schluß auf Dislokationsvorgänge in der frühen Orogengeschichte nicht möglich. Es ergibt sich die Notwendigkeit schrittweiser palinspastischer Operationen, weswegen der Begriff 'scheinbarer Schersinn' für die Rohdaten benützt wird.

Abb. G.2.2: Scheinbarer Schersinn im Teufenabschnitt 480m bis 3600 m; Bewegung des tektonisch Hangenden in Einfalls richtung der Foliation (down-dip): Schraffur; gegen die Einfallsrichtung der Foliation (up-dip): Punktsignatur; Domänen koaxialen Fließens: ohne Signatur (generalisierte Darstellung, Auflösung 2m).

G.3.1 Schersinnumkehr

Jede Schersinnumkehr wurde bezüglich ihrer Ursache klassifiziert, um ein Bewertungskriterium für die palinspastische Entzerrung späterer bruchhafter und semiduktilen Deformationsereignisse zu erhalten. Dabei galt folgende Fallunterscheidung (vgl. ZADOW et al. 1990):

- Umkehr durch duktile Faltung,
- Umkehr durch Vertikaldurchgang der Schieferung,
- Umkehr an kataklastischer Störung,
- Umkehr an rheologischen Kontrasten (Materialwechsel).

Mit Verfaltung der Foliation kann der überwiegende Teil der Umkehrungen des scheinbaren Schersinns erklärt werden. Hierbei waren teufenabhängig verschieden häufig folgende Faltentypen beteiligt: duktile Scherfaltung mit Parasitärfalten, semiduktile offene Faltung, bruchhafte Knickfaltung.

In den Bereichen nahezu vertikal stehender Foliation war eine Schersinnumkehr besonders häufig. Dies beruht darauf, daß hier bereits eine geringfügige Faltung oder Knickung für einen Vertikaldurchgang der Foliation (Änderung der Einfallsrichtung um 180°) mit entsprechender Schersinnumkehr ausreicht.

In einigen Fällen waren Umkehrungen an das Auftreten von Kataklasezonen gebunden. Die Umkehr an rheologischen Kontrasten beschränkte sich vorwiegend auf die Kontaktbereiche 'Paragneis/Amphibolit'.

G.3.2 Richtung der Scherbewegung

Im Teufenabschnitt '2000m - 3570m' dreht die scheinbare Scherrichtung von NNE (30°) nach E (79°) und wieder zurück nach N (1°). Über die gesamte Kernstrecke ergab die Richtungsanalyse der ableitbaren Scherrichtungen (Klastenposition ca. 90° zur Scherrichtung) Richtungsrosen mit einem mittleren Azimut von 51° bzw 34° und einem relativ schwachen vektoriellen Regelungsgrad von 17% bzw. 42% (Abb. G.3.1a-d; Tab. G.3.1). Da das Vektormittel der Streckungsrichtung symmetrischer und asymmetrischer Klasten sehr ähnlich liegt, kann davon ausgegangen werden daß die symmetrischen Klasten wirklich Ausdruck koaxialer Verformung sind und kein Anschnitteffekt vorliegt.

Fast sämtliche Teilbereiche ergaben ein relativ einheitliches Bild. Lediglich im untersten Teufenabschnitt von 3000 - 3600m zeichnet sich ein differierendes Ergebnis ab (Abb. G.3.2; Tab. G.3.1). In diesem Bereich flacher Foliation und auch im darunter anschließenden Bereich fällt die schlechte Regelung -G7-

Asymmetrische Merker Om - 3.600m

Symmetrische Marker 2.000m - 2.500m

Symmetrische Harker 2.500m - 3.000m

Symmetrische Marker 3.000m - 3.600m

Symmetrische Warker Om - 3.600m

G.3.1: Rich-Abb. tungsrosen und vek-Statistik torielle der im Feldlabor aufgenommenen Schersinn-Indikatoren (480 - 3600m); Markierungen mit zweifelhafter Aussage wurden nicht berücksichtigt; a-d) Entwicklung von einer guten zu einer schlechten Regelung über die gesamte Teufe; e) synoptische Darstellung aller Scherindikatoren der Vorbohrung.
bis Gleichverteilung der Richtungsdaten auf. Dies kann folgende Ursachen haben:

(a) Überlagerung zweier zeitlich getrennter Deformationsregimes mit verschiedener Scherrichtung;

(b) Dominanz koaxialer Deformation bzw. Überlagerung der 'simple shear'-Deformation durch eine höhere 'pure shear'-Komponente;

(c) Ungenauigkeiten bei der Festlegung der Einfallsrichtung der Foliation wegen flacher Raumlage und daraus resultierende Ungenauigkeiten bei der Kern-Reorientierung.

Asymmetrische Marker 3.000m - 3.200m

Asymmetrische Harker 3.350m - 3.450m

Asymmetrische Merker 3.200m - 3.350m

Asymmetrische Harker 3.450m - 3.800

Abb. G.3.2: Richtungsrosen und vektorielle Statistik der im Feldlabor aufgenommenen Schersinn-Indikatoren im Teufenabschnitt mit flacher Foliation und diffuser Hauptscherrichtung (3000 bis 3600m).

Teufenbereich	Anza	ahl	Regelunge	igrad [%]	Vektorn	littel (*)	Schi	ofe	Kurl	tosis
	asymm.	symm.	asymm.	symm.	asymm.	symm.	asymm.	symm.	asymm.	symm.
0m - 2.000m	664	268	52	58	27	31	4.59	3.60	1.19	-46.25
2.000m - 2.500m	414	127	43	56	30	33	-3.42	-4.77	1.44	3.44
2.500m - 3.000m	776	50	19	19	39	46	-2.31	-1.40	1.55	1.79
3.000m - 3.200m	553		0	-	20		-2.45		1.19	7
3.200m - 3.350m	466		25		87		0.13		-0.34	
3.350m - 3.450m	221	143	13	-10	79	129	-0.11	1.15	-0.47	1.00
3.450m - 3.600m	183		14		1		-3.45		-1.96	
0m - 3.600m	3277	588	17	42	51	34	-0.81	-2.71	1.21	-20.25

gesamten Teufenbereich

Tab. G.3.1: Statistik der Schersinn-Indikatoren über den Nach den vorliegenden Daten ist zusammenfassend von einer Scherdeformation der Gesteine in NNE-SSW-Richtung vor ihrer Wiederfaltung und Aufrichtung in steile Foliationslage auszugehen. Dabei ist vorausgesetzt, daß sich bei der Steilstellung der Foliation nur der Fallwert, nicht jedoch die Fallrichtung änderte.

G.3.3 Polarität der Scherrichtung

Der prozentuale Anteil der Domänen unterschiedlicher Scherrichtung bezüglich der im Mittel steil SSW-fallenden Scherfläche läßt sich in Abhängigkeit von der Teufe folgendermaßen darstellen:

Teufe	up-dip	down-dip	koaxial
458 - 992m	60.6 %	26.8 %	12.6 %
1178 - 1566m			
1623 - 1813m	67.1 %	32.9 %	
1709 - 2008m	45.3 %	38.7 %	16.0 %
2008 - 3053m	69.5 %	27.7 %	2.8 %
3053 - 3265m	68.9 %	31.1 %	
3265 - 3570m	33.5 %	65.3 %	1.2 %

Dargestellt sind generalisierte Werte, entnommen aus Abb. G.2.2. Bis auf den letzten Teufenabschnitt überwiegt der Anteil der kinematischen Markierungen, die eine Aufschiebung der Hangendscholle anzeigen. Bezogen auf die Horizontalkomponente der Partikelbewegung ergibt sich eine Hauptbewegungsrichtung nach NNE, bezogen auf die Vertikalkomponente eine Hebung des Südblockes. Im Abschnitt zwischen 458m und 2008m ist der Anteil der koaxial deformierten Klasten relativ hoch. Die Abweichung des Teufenbereichs '3265m - 3570m' in der Polarität der Scherrichtung ist, mit den genannten methodischen Einschränkungen, mit der tektonischen Position im Liegendschenkel einer Großfaltenstruktur in Zusammenhang zu sehen.

G.3.4 Interpretation der einzelnen Teufenabschnitte

Bereich 2008m bis 3053m:

In diesem Abschnitt überwiegt teufenmäßig sehr stark ein Updip-Regime. Der zu Beginn diese Abschnittes sich in den Rohdaten abzeichnende Down-dip-Bereich ist nach Anwendung der in Kap. G.4 beschriebenen palinspastischen Operationen als überkippter NE-fallender Bereich anzusprechen. Die Einfallsrichtung der Foliation wechselt sehr stark, es tritt aber kaum ein Wechsel in der Scherrichtung auf. Die Wechsel sind fast alle als Vertikaldurchgänge mit Knickfaltung zu betrachten.

Bis 2480m ergibt sich eine Aufschiebung des S-Blockes nach NNE. Darunter kehrt sich die Bewegungsrichtung um. Die Ursache liegt offensichtlich in einem Materialwechsel zu Hornblende-Gneisen.

Ab 2480m wird die Foliation flacher. Von 2626m bis 2854m liegt ein mächtiger Up-dip-Bereich in den Hornblende-Gneisen.

Zwischen 2860 und 3053m herrscht eine kleinräumige Schersinn-Umkehr, die ausschließlich auf duktile Scherfaltung zurückzuführen ist. Nach der Entzerrung wäre dieser Bereich als einheitliche Up-dip-Zone zu betrachten.

Bereich 3053m bis 3265m:

Die in den vorhergehenden Teufen häufige duktile Scherfaltung mit vielen Parasitärfalten wird in diesem Abschnitt von einer offenen Faltung überlagert, die jünger als das duktile rotationale Ereignis ist. Bei diesen offenen Falten kommt es auf den Öffnungswinkel und die Position der Falte (Orientierung der B-Achse) an, ob sie eine Schersinn-Umkehr verursachen.

Auch die Knickfaltung der höheren Teile der Bohrung wird in dieser Teufe durch die offene Faltung ersetzt. Dies drückt sich in den Gefügediagrammen in einem Übergang von Zweipunkt-Maxima zu einer Gürtelverteilung der Schieferungsflächen aus (KOHL et al., 1990).

Bei der Scherrichtung überwiegt, wie bereits in den oberen Segmenten, die Up-dip-Komponente. Die Foliation liegt flach.

Bereich 3265m bis 3570m:

Bei 3265m erfolgt zusätzlich zu einer Überlagerung der Scherfaltung durch offene Faltung eine Drehung des Foliationsazimuts.

Im Teufenbereich unterhalb 3570m waren wiederum Metabasite durchteuft worden, die keine rotationalen Gefüge erkennen ließen. Unterhalb 3766m wurden keine Messungen mit dem FMST mehr durchgeführt. Da keine Rückorientierung mehr möglich war, mußte auch die Schersinn-Auswertung unterbleiben.

Generell kommt es im unkorrigierten Scherlog in diesem Abschnitt zu einem starken Übergewicht der Down-dip-Richtung. Dies muß so gedeutet werden, daß in diesem Abschnitt der Liegendschenkel einer Großfalte durchteuft wurde. Unter der Annahme, daß diese Großstruktur den bruchhaften bis semiduktilen Ereignissen zuzuordnen ist, kann nach ihrer Rückformung auch hier von einer Aufschiebung des S-Blockes nach NNE ausgegangen werden.

G.4 Ausblick

Die erhobenen Daten bilden die Ausgangsbasis für Aussagen bezüglich möglicher Deckentransporte während der frühen Orogengeschichte der ZEV und bezüglich des Fließverhaltens der tieferen kontinentalen Kruste unter duktilen Strainbedingungen.

Zur Problemlösung im Falle der KTB-Gesteine mußten hierbei zunächst die Auswirkungen der gut dokumentierten, polyphasen bruchhaften bis semiduktilen Verformungen bewertet werden (ZULAUF & KOHL, 1989; ZULAUF, 1989; RÖHR et al., 1990). Anschließend wurde eine palinspastische Rückrotation und Entzerrung der Log-Daten vorgenommen. Die ZEV bildet heute im Bereich der Bohrung eine Großfaltenstruktur (KOHL et al., 1989). Diese entstand jedoch vergleichsweise spät, im semiduktilen Regime bei Temperaturen zwischen 300° und 500°C. Zur Entzerrung dieser Struktur wurde, ausgehend vom Original-Scherlog, jeder Bereich einzeln bewertet. Vertikaldurchgänge der Schieferung durch Knickfaltung (höherer Teil der Bohrstrecke) und semiduktile offene Faltung (tieferer Teil der Bohrstrecke) wurden rückgeformt. Daraus ergibt sich schrittweise ein korrigiertes, bezüglich der letzten Verformungsinkremente geglättetes Scherlog. Für dessen graphische Ausarbeitung und abschließende Interpretation ist ein weiterer Beitrag (HEINISCH et al., 1991) vorgesehen. Generell zeigt sich nach der Entzerrung eine deutliche Dominanz duktiler NNE-aufschiebender Fließbewegungen, bezogen auf die im Mittel steilstehende, SSW-fallende Foliationsrichtung.

G.5 Literatur

BEHRMANN J.H., HEINISCH H., LICH S., SPRENGER W., VOLP A. & ZADOW A. (1991): Low-Vorticity Ductile Flow in Gneisses of the Bohemian Massif and its Tectonic Significance. Results from German Deep Continental Drilling (KTB).- First draft Oct. 1990, in prep.

COBBOLD P.R., GAPAIS D., MEANS W.D. & TREAGUS S.H. (Eds.) (1987): Shear criteria in rocks: an introductory review.- J. Struct. Geol. 9/5-6, 521-778, Oxford.

HEINISCH H., KOHL J., SPRENGER W. & ZADOW A. (1991): Kinematische Analyse von Porphyroklasten-Systemen in Gneisen der KTB-Vorbohrung auf der Basis kontinuierlicher Kernaufnahme.-KTB-Report, in prep. KOHL J., HACKER W., RÖHR C. & SIGMUND J. (1989): Geowissenschaften im KTB-Feldlabor - Geologie - Geologische Strukturen in Gesteinen und KTB-Vorbohrung.- KTB-Report **89-3**, 467, Hannover.

KOHL J. ZULAUF G. & RÖHR C. (1990): Veränderungen strukturgeologischer Parameter mit der Teufe in der KTB-Vorbohrung.-KTB-Report 90-4, 454, Hannover.

PASSCHIER C.W. (1987): Stable positions of rigid objects in non-coaxial flow - a study in vorticity analysis.- J. Struct. Geol. 9/5-6, 679-690, Oxford.

PASSCHIER C.W. (1988): Analysis of deformation paths in shear zones.- Geol. Rdsch. 77/1, 309-318, Stuttgart.

PASSCHIER C.W. & SIMPSON C. (1986): Porphyroclast systems as kinematic indicators.- J. Struct. Geol. 8, 831-843, Oxford.

RÖHR C., KOHL J., HACKER W., KEYSSNER S., MÜLLER H., SIGMUND J., STROH A. & ZULAUF G. (1990): German Continental Deep Drilling Program (KTB) - Geological survey of the pilot hole "KTB Oberpfalz VB".- KTB-Report 90-8, B1-B55, Hannover.

SCHMITZ D., HIRSCHMANN G., KOHL J., RÖHR C. & DIETRICH H.-G. (1989): Die Orientierung der Bohrkerne in der KTB-Vorbohrung.- KTB-Report 89-3, 100-110, Hannover.

SIMPSON C. & SCHMID S.M. (1983): An evaluation of criteria to deduce the sense of movement in sheared rocks.- Geol. Soc. Am. Bull. 94, 1281-1288, Boulder.

WEBER K. & VOLLBRECHT A. (1987): Ergebnisse der Vorerkundungsarbeiten Lokation Oberpfalz.- 2. KTB-Kolloquium Seeheim/ Odenwald, 186 S.

ZULAUF G. (1989): Tiefbohrung KTB Oberpfalz VB, Brucktektonik im Teufenbereich von 1177 bis 1530m: Ergänzende Untersuchungen.- KTB-Report 89-4, E1-E22, Hannover.

ZULAUF G. & KOHL J. (1989): Tiefbohrung KTB Oberpfalz VB, Bruchtektonik im Teufenbereich von 1177 bis 1530m.- KTB-Report 89-2, E1-E14, Hannover.

TEUPE [m]	RERN- NARSCH	KERN- STÖCK	SF (FNST)	KRITERIUM	SCHERSINN		TEUPE [m]	KBRN- NARSCH	KBRN- STÖCK	SF (FNST)	KRITBRIUM	SCEERSINE
2009	455	A2b	40/70	o (±symm)	220 ud	11	2118	485	A1f	210/80	o (symm)	210
		B2fk	40/70	δ	45 dd				λln	210/80	o (symm)	120
2012	456	B2c	30/68	٥	20 dd		2119		Blg	210/80	o (symm)	90
2013		C2j	30/68	٥	5 dd				C11	30/88	٥	225 ud
2015	457	B2e	30/68	đ	220 ud		2120		Dlr	30/82	o (±symm)	5 ?dd
2022	461	Clq	30/72	ò	65 dd		21.20	407	Diu	30/84	o (synn)	120
2023		RIA	30/73	10	15 00		2128	90/	Rin	200/15	(SYRR)	10 nd
			30/73	2	30 44		2130		Fle	210/85	a	70 ud
2027	462	Alb	30/78	a	60 60		****		115	210/85	σ	45 ud
			30/78	G (SVRR)	65					210/85	٥	80 ud
			30/78	δ	50 dd		2134	488	C1j	40/75	٥	280 ud
			30/78	δ	60 dd		2135		Blr	35/80	δ	285 ud
			30/78	δ	10 dd					35/80	d (symm)	165
		Alc	30/78	٥	30 dd		2136		F1s	35/85	δ	350 dd
			30/78	$\delta(p)\sigma(s)$	180 ud		2137		Blz	30/90	o (isymm)	350 ?dd
2024		Flaj	30/75	o	350 dd		2138	489	Ala	210/90	O	190 dd
2030	463	Ala	20/55	δ	20 dd		2139		Bld	210/90	G (SYMM)	35
2032		Clq	20/55	o (syan)	160				Clo	210/90	o (SYMM)	10
2033	164	DI	20/55	o (symm)	10 44		2140		Cle Cla	210/90	a (teven)	105 211
2034	904	RAF	20/55	S S	20 44		2140		D1h	210/90	d (symm)	190
2037	465	A2d	20/62	$\delta(\mathbf{p})\sigma(\mathbf{s})$	20 dd					210/90	G	20 ud
2038	103	C2p	20/65	0	0 dd		2141		Bli	220/85	δ	65 ud
2040	465	D4a	40/60	σ	40 dd		10000			220/85	c (±symm)	20 ?ud
			40/60	o	10 dd				81m	220/85	٥	30 ud
2043	467	B2g	40/70	σ	25 dd				Flr	220/85	0	25 ud
			40/70	δ	15 dd		2144	490	D1m	245/85	o (±symm)	75 ?ud
			40/70	0	18 dd		2146		F1w	250/85	δ	100 ud
		B2h	40/70	٥	215 ud		2149	491	Cls	200/60	o (synn)	190
2051	468	Hlw	20/78	G	10 dd		2150	492	A23	250/85	a	90 00
			20/18	0			4151		84e	200/60	0	20
		u1.	20/78	0	15 33		2152		C21	200/65	2	20 ud
		014	20/78	a	20 88		2153		R2f	205/70	δ	10 ud
		Jlaa	20/80	0	10 dd				B2g	205/70	σ	0 ud
			20/80	σ	0 dd		2154		F2ac	205/70	δ	240 dd
			20/80	σ	25 dd				G2ai	205/70	σ	25 ud
			20/80	σ	50 dd		2155		G2ak	210/82	δ	5 ud
2054	469	Clf	30/70	٥	40 dd		2156	493	Ala	210/82	δ	180 dd
		D1j	30/70	٥	40 dd					210/82	٥	150 dd
2057	470	Dlr	30/70	o (symm)	180					210/82	o (synn)	200
2059	471	Flag	30/70	0(p)0(s)	30 00				AIC	210/82	d (symm)	150 44
2060	4/1	R1d	30/70	6 (ISYMM)	15 44				AIU	210/82	a	170 dd
2061		Cla	30/70	a	30 dd		2157		Bli	210/82	a	155 dd
		and .	30/70	a	75 dd				,	210/82	C (SYBB)	20
2063		A2a	30/70	٥	50 dd		2157		Bla	210/82	δ	230 dd
2065	472	C2f	30/70	σ	35 dd		2158		C1n	210/82	٥	220 dd
		D2h	30/70	σ (synn)	210		2180	504	B21	20/75	o (symm)	240
2066		B2i	30/70	δ	320 dd		2181	505	B2b	20/75	0	10 dd
		E21	30/70	δ	45 dd		2183	506	Ala	20/75	δ	5 dd
2073	171	Blc	38/65	0	78 dd		2186	507	AZe BD-	30/75	0	10 dd
2074	4/4	pig	38/65	0	DD 80		2107	50.9	DAX D1A	30/15	o (Symm)	240 200
2076	415	51d C1f	45/68	2	50 44		2130	508	DIG	30/78	0 (ISYMM)	200 100
2079	476	Alb	50/70	ð	20 44				CIE	30/78	g (syan)	205
2081	410	D1i	50/70	g (tsvam)	260 ?ud		2191		Bli	35/78	O (SYRB)	230
2084	477	Ala	35/70	O (1SVAB)	35 ?ud		2193		Gle	35/78	0	210 ud
2093	478	Glq	35/80	o (tsymm)	190 ?ud		(mp422234)		H1a	35/78	٥	260 ud
2098	480	D1k	30/80	٥	285 ud		2194		Iln	40/78	σ	60 dd
2099		Dln	25/80	0	235 ud					40/78	٥	30 dd
						1 1						

G.6 Anhang: Datenliste der Scherkriterien von 2004 bis 3569m

- G 13 -

	1	1	1				1		1		
TEUFE [n]	KBRN- MARSCE	KERN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KBRN- MARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUN	SCHERSINN
2196	510	B1k	40/78	G	40 dd	2241	534	Blf	220/65	o	30 ud
			40/78	C (STAR)	80	2256	536	A1b	220/85	σ	70 ud
			40/78	G	30 dd	2260		Blx	50/85	o (synn)	245
			40/78	σ	35 dd				50/85	o (synn)	230
2197	511	Ala	40/75	٥	30 dd				50/85	d (SYMM)	205
		Alb	40/75	o	220 ud				50/85	c (symm)	260
2198		Blq	40/75	a	355 dd				50/85	o (symm)	245
2201	512	Alg	35/80	o (synn)	215	2261		Hly	50/80	c (symm)	230
2203	513	C2k	30/85	a	180 ud	2262	537	Blp	50/75	o (symm)	215
2204	514	Alb	25/88	o	345 ?dd	2263		Clq	50/75	o (symm)	10
		Ald	25/88	٥	55 dd	0.000		Clr	50/75	o (symm)	0
2205		Blg	25/88	o (symm)	195	2264		Dly	40/85	σ	70 dd
2207	515	Blp	25/90	O (SYMM)	245	2015	538	Ale	40/85	C (SYMM)	240
0000		BIS	25/90	d (synn)	195	2260	272	Ald	30/90	U I	10 00
2208	517	BIY	210/70	C (SYRR)	160	2271	540	010	240/05	2	DD C22
2210	510	125	200/90	o (symm)	175	2275	543	B)a	240/75	0	50 00
6616	210	AZD	200/80	C (SYRE)	1/5	2213	543	Bib	50/85	a (cynn)	40
			200/80	o (syam)	45	4417	744	DID	50/85	C (Simm)	190 nd
			200/80	G (+SVBB)	10 2nd	2278		C1a	50/85	a	245 ud
			200/80	o (syam)	5	2279		R1o	50/85	G	260 ud
		A2d	200/80	G (SVRB)	150	2282	545	Din	50/85	c (synn)	235
			200/80	C (SVRR)	355	2283		B10	220/90	o (symm)	10
			200/80	C (SYRE)	50	2286	546	C1n	220/90	σ	55 ud
			200/80	c (synn)	80	2290	547	Dlag	220/85	o (±synn)	95 ?ud
			200/80	o (symm)	35	2291	548	Ala	220/85	٥	45 ud
		A2h	200/80	c (symm)	10	2293		D1h	220/77	σ	70 ud
			200/80	a	200 dd	2294		Flk	220/80	٥	220 dd
			200/80	σ	180 dd			Fin	220/80	δ	5 ud
2213	519	A2f	200/85	o (synn)	220	2295		G1s	220/80	o (symm)	230
			200/85	o (synn)	210				220/80	σ	15 ud
		A21	200/90	G	10 ud	2296	549	Alb	220/75	٥	40 ud
2214	520	Alb	190/80	c (syan)	250			Bld	220/75	o .	10 ud
			190/80	C (SYRR)	13				220/15	0	30 Ud
2210	6.9.1	BIT	190/80	d (synn)	170	2267		ole Cla	220/72	0	10 ud
2210	561	DIG	200/88	0	205 00	2200		Din	210/72	0	40 LLC
2222	6.2.6	110	200/00	0	175 ud	6670		110	210/73	0	20 ud
2224	363	R1a	25/90	d (+evan)	15 244			Dio	210/73	0	10 ud
2225		C10	20/90	o (symm)	5			010	210/73	0	20 ud
888J		D1r	20/90	n (syam)	195				210/73	d (+synn)	15 ?ud
2226	526	Ala	20/90	C (GINN)	210 ud				210/73	δ	70 ud
			20/90	a	190 ud				210/73	٥	350 ud
			20/90	σ	210 ud			E1s	200/75	σ	20 ud
			20/90	σ	235 ud	2299	549	Flad	200/75	o (symm)	190
2227		B1c	200/88	δ	30 ud	2300	550	Ala	200/75	o (symm)	80
2228		D2f	200/85	σ	50 ud	2302		Cli	220/65	c (symm)	60
			200/85	G	335 ud	2303		Elq	230/65	٥	10 ud
_			200/85	σ	345 ud	2304	551	Alb	225/73	δ	5 uđ
2229		E2g	220/83	σ	60 ud	10000000		-	225/73	٥	5 ud
2230		E2h	230/82	٥	85 ud	2307	552	Blf	220/78	o (syan)	40
2232	527	B11	240/82	٥	80 ud			Cih	220/78	o (synn)	240
0.014		B11	240/82	c (synn)	210	2309		Din	220/78	0 Tinhala	270 dd
2236	529	Ald	20/85	0	210 ud	2310	553	84	215/76	o(p)o(s)	235 dd
			20/85	0	210 ud	2316	900	CIT	210/75	o (symm)	105 11
	620		20/85	0	30 00		22/	Ald	210/75	0	102 00
2227	349	C1.	220/00	0	250 44	2210	550	AID	215/73	(SYME)	120 ud/de=
6631		erd	220/00	0 (6785)	30	4313	220	aib	215/73	G	25 ud
2241	512	110	220/65	o (symm)	30 ud			BIA	215/73	δ	180 44
4011	556	Bld	220/65	a (symm)	240			Cle	215/73	δ	195 dd
	534	Blf	220/65	δ	0 ud 1	2320		C1f	215/73	δ	210 dd
							1		Concernance (Concernance)		and the second s

- G 14 -

TEUFE [n]	KERN- NARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- MARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUM	SCEERSINN
2320	558	D1h	215/73	c (syam)	220	2383	578	Ala	210/60	c (synn)	75
2322	559	B1j	220/72	o (symm)	210			B1b	210/60	c (±symm)	170 ?dd
			220/72	σ	220 dd	1			210/60	٥	10 ud
2323		Dlr	220/72	٥	35 ud	2384		Clc	210/65	o (±symm)	80 ?ud
2328	561	Clu	210/60	a lanal	350 ud			Cld	210/65	C (1SYMM)	0 204
2331	202	Dic	210/60	G (SYNA)	235			Die	210/65	a a a a a a a a a a a a a a a a a a a	150 44
2333	563	Alc	210/60	0 (Simm)	95 ud	2385		g1h	210/70	a	95 ud
2334		Cli	215/62	5	65 ud	2386	579	Alb	210/75	o (symm)	60
2335	564	λla	215/63	O (SYRE)	230			Bld	210/75	٥	210 dd
		Alb	215/63	σ	195 dd	2393	581	Clkk	210/80	σ	0 ud
			215/63	o (symm)	175	2394		Din	210/80	٥	5 ud
2337		Clk	215/63	δ	355 ud	2395		Bip	210/80	d (symm)	230
		Alc	215/63	δ	215 dd			Blq	210/80	ð(p)o(s)	35 ud
2339	544	825	220/65	ò	1/0 dd	2398	282	Cle	215/65	C (SYMM)	30
6341	200	C1n	220/65	0	70 ud	2400		Fin	220/60	o (symm)	260
		Dia	220/03	d (cyan)	225	2400	584	112	210/62	u (simm)	105 nd
		Dis	220/65	2 (Slam)	110 ud	1010	304	Blc	210/62	σ	60 ud
2344	567	R2n	215/65	G (SVAR)	165				210/62	G (±SVAR)	10 ?ud
2346		F2ae	215/65	0	270 dd	2407		Glo	200/65	σ	320 ud
2347		H2ak	215/65	σ	205 dd	2411	585	E1k	200/65	σ	20 ud
2349	568	Cld	215/65	δ	95 ud	2413		Glo	200/65	o (symm)	190
2350		Ela	210/65	٥	95 ud	2415	586	B1c	210/70	σ	80 ud
2351	569	B3b	210/65	d (symm)	0	2419	587	C7a	220/70	o (symm)	225
		B3d	210/65	d (symm)	50	2420		D7b	220/70	٥	15 ud
2352		C3ek	210/65	o (symm)	40	2421		FTE	230/60	0	50 ud
		D3f	210/65	o (symm)	15	2423	588	B5e	210/70	l f	250 dd
2353		EJG P35	210/65	C (arral	80 ud	2426	289	Ala	220/68	E S	255 00
		1 1 2 2	210/65	(cyan)	15	2429	591	620	205/75	0	335 ud
2354		GIR	210/65	o (symm)	45	2430		D2hk	210/75	a	75 ud
2355		G31	210/65	0 (0)111	40 ud				210/75	δ	330 ud
2358	570	Blaa	210/65	o (symm)	160				210/75	o (±symm)	185 ?dd
		Flab	210/65	σ	35 ud	2431		B21	205/80	σ	160 dd
2359		Glad	210/65	o (symm)	30				200/80	δ	360 ud
2360	571	Ala	210/75	G (SYMM)	30			1	205/80	c (symm)	55
2362		Dle	210/90	c (symm)	230				200/80	D	155 dd
11/1		FIR	40/85	0	195 Ud				200/80	0	105 44
2363		Ulad	40/85	o c	210 ud	2432		F2n	200/80	o (cyan)	125 QQ 65
2363	572	Cla	200/80	C (+cvaa)	165 244	61.76		627	200/80	a (+symm)	120 2nd
2307	516	D1h	200/80	C (SVBB)	70			var	200/80	C (Tolan)	190 dd
2368		D1k	200/80	δ	20 ud				200/80	σ	320 ud
		E11	200/80	o (symm)	45	2433			200/80	0	360 ud
2370		G1q	200/80	o (tsymm)	20 ?ud				200/80	G	335 ud
	573	Blf	185/80	a	5 ud			E2g	200/80	δ	150 dd
2372	574	B1b	180/80	a	330 ud				200/80	٥	10 ud
2373		Cld	180/85	δ	0 ud			H2V	200/80	c (synn)	55
2374		Dig	180/90	0	170 dd			H2A	200/80	0	50 Ud
1275	575	BID	180/90	o (synn)	160		500	116	200/80	a (com)	15 ud 75
23/5	5/5	C14	180/90	G (SYRE)	190		394	AIL	200/80	o (symm)	345 ud
2377	576	838	30/85	δ (tevam)	165 2nd			A2f	200/80	ō	295 ud
2378		C3b	30/85	g (SVBB)	160	2434		Blg	200/80	a	65 ud
2379		D3c	25/90	C (SYRB)	170				200/80	δ	335 ud
			25/90	Ø	205 ud				200/80	o (symm)	25
		D3i	25/90	o (symm)	350			Blk	200/80	G	70 ud
2380	577	Alb	25/90	o (symm)	265	2435		C11	200/80	σ	320 ud
2381		Ble	200/80	$\delta(p)\sigma(s)$	35 ud				200/80	0	330 ud
0.000			200/80	D	65 ud			01-	200/80	C (SYMM)	10
2382		DIG	200/10	0	au ua				200/80	0	22 80

KBRN- NARSCE	KERN- STOCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [m]	KERN- NARSCH	KERN- STOCK	SF (FMST)	KRITERIUN	SCHERSINN
592	C1r	200/80	c (symm)	145	2465	601	B4f	220/75	σ	65 ud
	D1s	200/80	σ	90 ud				220/75	σ	355 ud
		200/80	a	335 ud	2466		D4j	220/80	٥	130 dd
		200/80	δ	5 ud			D4k	220/80	δ	55 ud
	E1f	200/80	c (±symm)	340 ?ud	1			220/80	o	210 dd
		200/80	$\delta(p)\sigma(s)$	360 ud	2467		E41	220/80	δ	270 dd
	Flu	200/80	σ	5 ud				220/80	o (symm)	70
	F2v	200/80	δ	55 ud				220/80	σ	85 ud
		200/80	$\delta(p)\sigma(s)$	65 ud	2469		H8d	200/75	O	180 dd
	Gly	30/90	δ	70 dd			J8e	200/75	δ	40 ud
		30/90	c (symm)	65				200/75	ð	35 ud
		30/90	δ(p)σ(s)	190 ud	2472	602	B2d	200/75	δ	40 ud
		30/90	a	250 ud			C2e	200/75	P.	15 ud
		30/90	ð	10 dd			CZI	200/15	0	340 ud
		30/90	ô(p)o(s)	150 ud				200/75	o T	155 14
	Bld	30/90	1 2	260 ud	2473		Dag	230/80	0	100 00
502		30/90	C (SYMM)	15 00	44/4		54]K	230/02	5(p)c(c)	30 00
233	111	30/90	o	DD C1			P755	230/04	s	20 110
230	ALD	30/90	0 x	20 00			1488	230/02	0	50 ud
	BIL	30/90	0	55 44	2475	603	112	230/82	8	320 44
	C11	20/90	0	45 44	4410	005	Rib	230/82	0	140 44
	UII	30/90	5	40 66	2477		Cldk	230/82	a	55 ud
		30/90	σ	60 dd			Cldk	230/82	δ	205 dd
	E1u	30/90	a	50 dd				230/82	o	130 ud
		30/90	g (tsvam)	45 ?dd				230/82	σ	55 ud
597	Alb	30/90	a	215 ud				230/82	δ	215 dd
		30/90	a	205 ud	2478		Dlfk	230/82	σ	95 ud
		30/90	٥	55 dd	2479		Bigk	230/82	δ	75 ud
	Alck	30/90	٥	50 dd		i i		230/82	٥	20 ud
598	C1f	200/80	٥	95 ud			Elhk	230/82	ð	280 dd
		200/80	a	10 ud	2480		Fljk	40/85	a	120 dd
	D1j	200/80	F	165 dd	2481	605	Alak	40/85	δ	165 ud
599	C1e	220/85	٥	360 ud	2483	606	Algk	40/85	F	95 dd
	Bik	220/85	٥	40 ud				40/85	ò	85 44
		220/85	o (symm)	45			Bink	40/85	0	120 dd
	Fin	220/85	a	360 ud				40/85	0	350 00
		220/85	0	50 ud				40/85	O C	140 ud
		220/85	G	25 ud	2404			40/05	d	140 Ud
	01-	220/85	o l	360 00	6404		UI J	40/03	5	355 44
	GIS	220/18	0	10				40/05	2	210
	C1	220/70	0	205 44				40/85	Ā	275 ud
600	Alb	220/78	6	260 dd	2485	607	Albk	200/50	δ	165 dd
000	Blf	220/78	δ	15 ud				200/50	δ	160 dd
		220/78	a	15 ud				200/50	o	255 dd
		220/78	C (SVBB)	75	2486		Ble	200/50	δ	15 ud
		220/78	O (±SVAR)	20 ?ud				200/50	σ	175 dd
		220/78	o (symm)	35				200/50	o	185 dd
		220/78	0	45 ud			B1f	200/50	δ	260 dd
	Clg	220/78	o (symm)	45				200/50	δ	20 ud

50 ud

155 dd

70 ud

45 ud

340 ud

45 ud

85 ud

100 ud

180 dd

55 ud

165 dd

2487

2488

2489

2490

608

609

Blc

A2bk

B2ck

C2ek

D2f

200/50

200/50

200/50

200/50

200/50

200/50

200/50

200/50

200/50

200/50

200/50

٥

F

٥

٥

P

F

٥

۵

δ

δ

o (±symm)

220/78

220/78

220/78

220/78

220/78

220/78

220/78

220/78

220/78

220/78

220/75

D1j

D11

B1p

B1p

Glu

٥

٥

٥

٥

٥

٥

٥

٥

٥

۵

٥

110 dex

285 sin

80 ud

270 ?dd

150 dd

340 ud

270 dd

235 dd

230 dex/dd

260 dex/dd

85 dex/ud

TEUFE [n]

2435

2436

2437

2438

2441

2442

2443

2444

2445

2451

2455

2456

2457

2458

2459 2460

2461

2462

2464

TEUPE [n]	KERN- NARSCH	KERN- STÖCK	SF (FNST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- MARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUM	SCEERSINN
2491	609	B2gk	200/50	σ	65 ud	2514	613	Elbk	10/60	o (symm)	0
			200/50	σ	320 ud			B1j	10/60	٥	185 ud
			200/50	٥	345 ud			F1k	10/60	σ (±synn)	50 ?dd
			200/50	σ	70 ud	2515		G11	10/60	o (symm)	135
			200/50	δ	35 ud	2516	614	Alak	10/60	σ	30 dd
2492		F2hk	200/50	σ	360 ud	2517		Cld	220/70	δ	360 ud
			200/50	0	50 10	2518		DIG	220/70	2	250 ud
		141	200/50	c (symm)	20 nd	2012		[[]	220/70	0	20 ud
2494	610	Bibk	210/78	δ	170 dd	2520	615	11a	220/70	a	50 ud
41/1	010	0104	210/78	a	285 dd	2521		Bick	210/65	o	10 ud
			210/78	σ	265 dd				210/65	a	80 ud
2495		Clck	210/78	$\delta(p)\sigma(s)$	285 dd				210/65	0	20 ud
		C1d	210/78	F	270 dd				210/65	δ	320 ud
			210/78	σ	255 dd	2522		Dle	210/65	δ	320 dex/ud
			210/78	$\delta(p)\sigma(s)$	130 dd			1000	210/65	δ	310 dex/ud
		Cle	210/78	σ	140 dd	2523		Elfk	210/65	δ	90 dex/dd
2496		Dlt	210/78	σ τ	120 dex	2524		Flak	210/05	0	40 10
		Dia	210/78	0	160 00	2525		figs c11	210/03	0 0 (cran)	495 SID
		Dig	210/78	0 (ISYMM)	360 ud	2527	616	Blck	210/68	(Slum)	120 dex
		Bibk	210/78	δ(p)σ(s)	30 ud	2301	010	Bld	210/68	σ	110 ud
			210/78	δ	125 dd	2529		Elgk	220/50	C (SYRE)	80
			210/78	δ	160 dd				220/50	δ	80 ud
			210/78	a	300 dex				220/50	0	335 ud
2498		Filk	210/78	σ	80 dd				220/50	σ	330 ud
			210/78	٥	265 dd				220/50	a	5 ud
			210/78	δ	240 dd	25.20		Elgk	220/50	0	20 ud
2499	611	AID	210/78	r .	285 GeX/GQ	2230		FIOK	220/50	0 (cras)	100 ud
		120	210/78	2	100 ud				220/50	δ(n) σ(s)	140 sin
		A2d	210/78	đ	350 ud				220/50	a	140 sin
			210/78	δ	240 dd	2531		G1j	220/50	δ	340 ud
		B2j	210/78	F	330 ud			101	220/50	٥	50 ud
			210/78	δ	260 dd				220/50	P	300 sin
			210/78	δ	40 ud				220/50	δ	295 dd/sin
			210/78	٥	215 dd			G1k	220/50	٥	110 ud
			210/78	δ(p)σ(s)	295 dd	2533	617	Blh	230/58	0	210 dd/dex
2500		CZNK	210/78	0	265 00				230/58	0 (ISYMM)	100 : aa
2501		D2i	210/78	5	300 sin			Cli	230/58	o (syme)	100
2301	1	Del	210/78	a	250 dd	2534		Cikk	230/58	G	10 ud
			210/78	F	170 dd			D11k	230/58	σ	85 ud
		B2k	210/45	σ	105 ud				230/58	σ	80 ud
			210/45	٥	95 ud				230/58	٥	10 ud
2503		G2nk	210/45	δ	35 ud				230/58	0	80 ud
2504		E2p	210/45	F	25 ud	2535		Elm	230/58	0	205 dd
2506	612	Blc	210/45	0	15 Ud				230/58	r	200 dd
2507		0115	210/45	E I	170 dd	2536		FIG	220/58	0	DD 001
2341		Rink	210/60	G	80 ud	2330		110	220/68	σ	350 ud
			210/60	đ	65 ud			Gisk	220/68	a	210 dd
			210/60	F	50 ud				220/68	0	300 dd
2508		Fink	210/60	σ	15 ud	2538		Elaa	220/68	δ	45 ud
2510		Els	210/60	σ	30 ud				220/68	٥	330 ud
			210/60	c (symm)	75				220/68	C .	330 ud
2511	613	Alc	210/60	c (symm)	45		618	Albk	220/68	ò	250 dd
2512		Cle	10/60	0	100 00				220/68	0	290 dd
		C165	10/60	0	205 ud				220/68	a (+evas)	330 2nd
		CIER	10/60	0	250 ud				220/68	δ (LSJMM)	190 dd
			10/60	δ	325 dd				220/68	a	310 dex
		1			1						

KBRN- Stóck	SF (PNST)	KRITERIUM	SCHERSINN	TEUFE (m)	KBRN- NARSCH	KERN- STÖCK	SF (FMST)
Bick	220/68	δ	140 dd	2565	622	Dlq	250/45
	220/68	σ	100 ud			Blr	250/45
	220/68	F	190 dd				250/45
Cld	220/65	c (symm)	40				250/45
	220/65	o	320 dex				250/45
Dlek	220/65	σ	260 dd	2566		Plu	250/45
	220/65	٥	330 ud			£1A	240/45
Glkk	220/65	δ	260 dd				250/45
Dlek	230/62	δ	170 dd				250/45
Fljk	230/62	σ	70 ud	2567		Flwk	250/45
G11	230/62	o (±symm)	90 ?ud				250/45
Him	230/62	δ	100 ud				250/45
	230/62	δ	5 sin	2568	623	Ala	250/45
	230/62	σ	140 ud				250/45
H1o	230/62	σ	40 ud				250/45
Alak	210/45	c (symm)	60		1	B1b	250/45
	210/45	o (±symm)	5 ?ud				250/45
	210/45	٥	50 ud				250/45
Clf	210/45	δ	100 ud	2569		Clck	250/45
B11	210/45	δ	55 ud	2570		Dldk	250/45
Fin	210/45	σ	65 ud				250/45
Glnk	230/50	٥	70 ud	2571		Flek	250/45
	230/50	σ	65 ud	2572		F1f	230/43
	230/50	C (SYMM)	80	2573	624	Ala	230/43
	230/50	σ (synn)	130	2574	6	Bldk	230/43
	230/50	δ	60 ud	2575		Cihk	230/43
81p	230/50	٥	120 ud				230/43
	230/50	a	145 dex				230/43

6333	010	DICK	440/00	0	140 00		0101	040	DIA	030/13	v	55V 44
			220/68	٥	100 ud				Blr	250/45	δ	120 ud
			220/69		100 44					250/45		105 nd
			440/00	1	130 44					230/43		105 44
		Cld	220/65	C (SYEE)	40					200/45	d (SYMM)	10
			220/65	0	320 dex					250/45	σ	90 ud
25.60		Diek	220/65		250 44		2566		Plu	250/45		220 44
2740		DICK	220/03	U	200 44		2300			010/15	•	150 11
			220/65	٥	330 00				11A	240/45	G	120 00
2542		Gikk	220/65	δ	260 dd					250/45	F	175 dd
2546	610	Diek	230/62	x	170 44					250/45	P	310 dd
6340	013	DICK	430/02		170 44		47.63		B1 -1	050/45		200 33
2548		Fljk	230/62	σ	10 Ud		2201		FIWK	250/45	0	730 gg
		G11	230/62	O (±SVBB)	90 ?ud					250/45	٥	215 dd
2549		U1m	230/62	Ā	100 nd		1 3		()	250/45	G (+SVBB)	120 2nd
0747		41M	230/02		100 44			100	14.5	050/45	o (solas)	070 11
			230/62	0	5 S1N		2568	623	Ala	250/45	٥	210 aa
			230/62	σ	140 ud					250/45	٥	10 ud
2550		#1o	230/62		40 nd					250/45	a	100 nd
2770		110	230/02		10 44				841	250/45		20
	620	Alak	210/45	C (SYNN)	60				DIG	400/40	a	20 00
		ł	210/45	O (±SVBB)	5 ?ud			i (1	250/45	٥	45 ud
			210/45		50 nd					250/45	5	355 ud
			210/45		100 44		4574		01-h	250/45		350
2552		Clt	210/45	ð	100 ud		2203		CICK	250/45	đ	720 AG
2553		B11	210/45	δ	55 ud		2570		Dldk	250/45	δ	60 ud
		Fin	210/45		65 nd			1		250/45	٥	6a 09
		I I M	610/45	0	05 44					050/45		105
2554		Glnk	230/50	a	10 10		25/1		Flek	400/40	d	102 00
	1		230/50	σ	65 ud		2572		F1f	230/43	σ	95 ud
			230/50	a (even)	80		2573	624	11a	230/43	đ	20 ud
			230/30	o (SIMM)	100		0574	Val	8131	220/42	a (Janua)	100 144
			230/50	σ (synn)	130		2214		BICK	230/43	O (ISYMM)	200 .00
			230/50	δ	60 ud		2575		Cihk	230/43	σ	350 ud
2555		Hin	230/50	a	120 ud					230/43	a	65 ud
2333		nth	230/50		145 3					220/42		105
			230/50	đ	145 dex		10000		1000	230/43	a	102 00
2556	621	Alak	230/50	c (±symm)	230 ?dd		2576		D12	280/35	٥	70 ud
			230/50	d (SVBB)	15		2577		Bla	280/35	a	100 ud
			220/50	e tolant	20				P1-	200/60		40
			230/30	G	20 UG				PIL	200/00	U	40 00
			230/50	0	170 dex/dd		2578		Fls	280/60	0	140 ud
			230/50	δ	330 ud					280/60	G (±SVRR)	300 ?dd
1557			220/50	- ()	0				P1.	280/60		115 nd
2001		BIC	230/20	d (Symm)	.0				riu	200/00	U	115 44
			230/50	o (synn)	10		2580	625	Alb	240/60	0	60 ud
		1	230/50	δ	40 ud					240/60	σ	55 ud
		C16	220/50		45 114					240/60	A (CUBB)	145
		1 611	230/30		40 40					240/00	o (simm)	45 1
			230/50	٥	30 ud			626	BICK	240/60	σ	45 ud
		C1a	230/50	5	165 sin/dd					240/60	δ	215 dd
			220/50		60 nd					240/60		140 nd
			230/30	U	00 00				0111	240/00	a linnal	210 222
			230/50	O D	300 00		2201		CIGX	440/60	0 (ISYMM)	210 :00
2558		D1h	230/30	σ	50 ud		1 1			240/60	õ	360 dex
2742321		1000	230/30	a (+evas)	250 244		2582		Die	240/60	6	205 dd
			230/30	o (Talmm)	030 .00				210	240/60		270 44
		01]	230/30	d (isynn)	210 :00					440/00	1	210 00
2559		D1k	230/30	O (SYBB)	100				Dlf	250/72	o (symm)	80
			230/30		25 ud					250/72	C (SVBB)	40
		011	010/00		300		2503		Plat	250/72		200 44
		DIT	230/30	0	520 Ud		4383		PTGK	430/14	0	230 00
			230/30	٥	120 ud					250/72	σ	70 ud
		R1m	230/30	8	100 nd				Fihk	250/72	٥	80 nd
		- WAR	220/20		10		2504		0146	250/72		170
			230/30	a	30 ng		\$204		GIL	630/16	0	170 510
		Bln	230/30	σ	130 ud	. 1				250/72	F	260 dd
			230/30	F	340 ud					250/72	7	240 dd
			220/20		010 13					250/72	T	20
2200		111	430/30	0	210 dd					430/14		20 00
		1	230/30	o (symm)	75		2586	627	Aldk	250/72	C (SYMM)	100
		1	230/30	F	310 dd					250/72	C (SYRE)	60
2561		n1-	220/20		210 44		2507		C14	260/62		20
7201		XID	630/30		210 00		4301		(1)	400/04	0	20 UU
			230/30	0	135 dex		2588		Clm	260/62	0	150 ud
2562	622	Ald	230/30	a	190 dd		2592	628	Ala	260/35	σ	50 ud
2564		D1h	220/20		90 ud		2502		8155	260/25	a (evan)	40
2004		DID	230/30	0	50 00		6333		DIAN	200/33	o (ofma)	70 1
			230/30	δ	350 ud					260/35	a	10 ng
		Dio	230/30	a	210 dd		2603	631	Ala	230/35	F	70 ud
			230/20	2	260 44					230/35		90 ud
			\$30/30	1	200 00					aJV/JJ		30 44
		L							L			

KRITERIUM

δ

SCHERSINN

220 dd

KBRN-NARSCE

618

TEUFE

[n]

2539

TEUFE [n]	KERN- NARSCH	KERN- Stock	SF (FMST)	KRITERIUM	SCHBRSINN	TEU [n	RE RERN- MARSCE	KERN- STOCK	SF (PMST)	KRITERIUM	SCHERSINN
2603	631	Ala	230/35	F	50 ud	262	635	Blr	270/68	٥	80 ud
			230/35	σ	340 dex/ud	263)	G1v	270/68	σ	140 ud
2604		Bld	230/35	δ	25 dd	263	636	Alb	220/60	٥	360 ud
2605		D1g	230/50	o (symm)	60				220/60	δ	130 ud
2606		B1k	230/50	σ	40 ud			Blc	220/60	a	70 ud
		P11	230/50	٥	100 ud	263	3	Clg	220/60	δ	90 ud
2607		Fink	230/50	σ	350 ud			011	220/60	F	270 dd
		C1->	230/50	0 P	220 44			CIR	220/60	0	90 ud
		GIER	230/50	r X	70 ud	268	638	C2h	220/60	F	170 dd
			230/50	a	90 ud	268		D2k	220/62	(SVBB)	60
			230/50	δ	5 ud				220/62	0	360 ud
		Glo	230/50	a	80 ud	269	639	A5b	230/65	٥	35 ud
	5 8		230/50	٥	350 ud	269	640	A2c	230/65	δ	175 dd
			230/50	٥	350 ud				230/65	δ	175 dd
			230/50	F	240 dd				230/65	δ	205 dd
	632	Ala	230/50	٥	300 sin/dd				230/65	ð	120 sin/ud
2608		Albk	230/50	0	10 10	200			230/05	d (synn)	100
			230/50	G (ISYMM)	190 :00	209		Dink	210/60	L L	50 00
2609		Blok	230/50	C (SIMM)	150 44	269	641	A1a	210/60	C (SVBB)	0
2003		DICK	230/50	σ	30 ud			1	210/60	0	30 ud
			230/50	σ	40 ud			Alc	210/60	δ	355 ud
			230/50	σ	20 ud	269		Clac	210/60	٥	265 dd
			230/50	σ	360 ud				210/60	δ	265 dd
			230/50	σ	70 ud	269	5	Clx	210/60	σ	40 ud
2610		Clfk	230/50	c (symm)	80			Dlad	210/60	σ	65 ud
			230/50	P	220 dd	269	642	Alc	210/60	o (±synn)	65 ?ud
2611		Dibb	230/50	d (isymm)	160 200				210/60	0	45 UQ
2011		DIUK	200/40	C (STRE)	20	269		110	210/60	a	40 ud
			200/40	C (SIMA)	310 ud			Ble	210/60	a	335 ud
	1		200/40	σ	60 ud	269		Blf	220/78	δ	165 dd
2612		B11	200/40	٥	-10 ud			C1j	220/78	o (±symm)	45 ?ud
		Elnk	200/40	σ (symm)	120				220/78	δ	110 ud
		Flok	200/40	٥	240 dd	270		D10	220/78	٥	360 ud
			200/40	٥	30 ud	270		83a	220/78	δ	20 ud
2(12		81-	200/40	0	40 ud				220/18		20 204
2013		ETh	200/40	P	240 44		643	112	220/78	(T2JHW)	20 ud
		Glak	200/40	δ.	70 ud		045	Alc	220/78	σ	120 ud
2613			200/40	a	60 ud				220/78	σ	40 ud
			200/40	٥	10 ud				220/78	σ	40 ud
2614	1	Glt	200/40	δ	170 dd			10.000	220/78	δ	260 dd
	633	A2ak	200/40	G	210 dd	270	645	Alb	220/78	O	30 ud
		÷ -	200/40	δ	290 dd				220/78	o (synn)	30
2615		8266	200/40	f	250 dd			BIC	220/18	0 c (+cres)	245 QQ
2615		B2C	170/70	0	295 ud	270		RId	220/62	o (ISYMM)	110 ud
2010		C2a	170/70	a	30 ud		646	Ala	220/62	å	25 ud
		cay	170/70	δ	135 dd				220/62	d (symm)	45
			170/70	δ	220 dd	270	647	Alak	220/62	o (symm)	35
2618		P2wk	170/70	δ	120 dd	270		D1h	220/62	٥	80 ud
			170/70	F	170 dd				220/62	O .	70 ud
			170/70	o .	50 sin/ud				220/62	o (symm)	70
2626	634	110	170/70	0	210 dd			n12	220/62	5	65 Ud
2020	634	Ala	170/70	0	200 00		649	112	220/62	2	85 ud
		DICK	170/70	5	170 44		0.60	AId	220/62	a	80 nd
2626	635	λla	230/65	a	260 dd				220/62	δ	310 dex
		B1b	230/65	δ	90 ud				220/62	δ	305 dd/dex
2629		Elr	270/68	σ (±symm)	70 ?ud	270	3	Bld	200/58	δ	60 ud

TEUFE [n]	KBRN- NARSCH	KERN- STÖCK	SF (FMST)	KRITERIUM	SCE	BRSINN	TEUFE	KERN- NARSCH	KERN- STOCK	SF (FNST)	KRITERIUM	SCHERSINN
2708	648	Bld	200/58	0	350	ud	2738	65/	Blg	220/62	F	180 dd
			200/38	0	290	44	27.40	659	110	210/65	0	60 ud
2709		Cla	200/58	0	325	nd	2140	0.10	AIC	210/65	P	280 44
6143		C1f	200/58	5	150	44	1		Bld	210/65		50 ud
2710	649	Alb	200/58	δ	40	ud	2741		Clo	230/30	δ	10 ud
2713	651		210/65	δ(p)σ(s)	220	dd			D1p	240/45	F	310 dd
			210/65	C (SYMM)	100		2747	659	C2c	200/58	o	350 ud
2714		C1c	210/65	Ø	35	ud				200/58	σ	50 ud
			210/65	F	50	ud			D2m	200/58	σ	90 ud
	652	Ala	210/65	P	220	dd	2748		E20	220/65	δ	240 dd
			210/65	σ	230	dd				220/65	σ	200 dd
			210/65	δ	60	ud			E2p	220/65	٥	85 ?ud
			210/65	٥	10	ud			B2qk	220/65	G	25 ud
			210/65	G	90	ud				220/65	a	5 ud
2715		Alb	210/65	a	40	ud				220/65	C (SYBR)	50
		Blc	200/60	G	340	ud	2149		1 ds	220/65	a	355 44
			200/60	0	360	ud			875	220/03	a	155 UQ
2716		01F	200/60	1	320	ud			P2+	220/65	2	345 ud
6110		DIL	200/60	0	30	ud			Fac F2n	220/65	1	40 ud
			200/60	a	10	nd			Iou	220/65	σ	30 ud
		CIh	200/60	σ	10	ud	2750		H2x	0/65	σ	160 ud
			200/60	a	345	ud				220/65	o	70 ud
			200/60	δ(p)σ(s)	340	ud	2751	660	Alc	220/65	σ	50 ud
2717		D1k	200/60	0	320	ud	3752	661	Ala	220/65	δ	45 ud
190.000			200/60	٥	320	ud			Albk	220/65	a	65 ud
			200/60	F	230	dd				220/65	o (symm)	165
2718		E11	200/60	σ	90	ud				220/65	a	40 ud
			200/60	δ	85	ud			Blck	210/60	٥	75 ud
2719	653	A2a	200/60	σ	50	ud	2753		Clf	210/60	σ	90 ud
		A2bk	200/60	σ	310	ud	2754		CIN	210/60	G (SYBR)	150
			200/60	σ	20	ua	1755		Dia	210/60	0	350 ud
2720		Blak	200/60	0	320	ud	4133		R1t	210/60	5	290 sin
4160		DACK	220/68	2	180	44			510	210/60	a	45 ud
			220/68	P	190	dd	2756		P1v	210/60	δ	40 ud
		B2dk	220/68	a	60	ud				210/60	σ	10 ud
			220/68	a	70	ud	2758	662	Ala	210/60	δ	5 ud
		C2ek	220/68	δ	200	dd				210/60	δ	345 ud
- 0			220/68	σ	80	ud			Ald	210/60	d (symm)	20
2721	654	Ala	220/68	σ	70	ud				210/60	o (symm)	0
2722		B1b	220/68	٥	50	ud			Ale	210/60	δ	230 dd
		B1c	220/68	σ	10	ud	2759	663	Ala	210/60	a	30 ud
			220/68	O	350	ud	2760		Clh	210/60	S-C	35 ud
0703		Cld	220/68	σ	50	ud	1761		C1-	210/60	0	55 4
2123		Cle	220/60	D D	100	ud da	2762		CIN R1+	210/60	5-C	315 ud
		DIL	220/60	1	30	ud	4/04		LIC	210/40	r A	15 ud
2724		D1a	220/60	S S	20	ud	2764		Hlan	210/40	S-C	20 ud
2725		Firt	220/50	a	80	ud	2765	664	Bick	210/40	δ	325 ud
2726	655	Blek	220/60	a	80	ud			B1d	210/40	σ	50 ud
2730		G1r	200/70	a	360	ud				210/40	δ	70 ud
89423S			200/70	σ	360	ud	2766		C1f	220/50	σ (symm)	100
2731		Hit	230/50	σ	40	ud			D1h	220/50	٥	50 ud
	656	Ala	230/50	G	40	ud				220/50	O	40 ud
2735		Eljk	200/75	σ	90	ud	2767		Elq	220/50	٥	355 ud
			200/75	σ	90	ud				220/50	Ø	110 ud
		F11	220/68	0	70	ud			Birk	220/50	Q	110 ud
2736		Gim	220/68	f	170	dd	2768		FISK	220/50		215 2
1717	(57	Gin	230/62	0	50	ud	2//0	000	Ald	210/50	o (ISYMM)	340
6131	03/	DIA I	660/00	0	30	44			#1N	010130	v	210 00

TEUFE [n]	KERN- MARSCH	RERN- STOCK	SF (FNST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- MARSCE	KBRN- STÖCK	SF (FMST)	KRITERIUN	SCHERSINN
2770	666	Alb	210/50	٥	40 ud	2826	689	G1y	230/25	F	250 dd
2771	10000	Bld	210/50	σ	330 ud	2827	690	Alb	230/25	σ	65 ud
2772		D1p	210/50	٥	80 ud			Blc	230/25	o (symm)	60
2773		Elq	210/50	S-C	70 ud				230/25	δ	270 dd
2774		Flw	200/65	σ	345 ud	2828		Ble	230/25	σ	110 ud
	668	Ala	200/65	σ	345 ud	2831		Flq	210/45	F	230 dd
2775		A1b	200/65	٥	5 ud				210/45	F	215 dd
			200/65	σ	5 ud		; X		210/45	٥	340 ud
	174		200/65	σ	335 ud	2832		Glt	210/45	O	55 UQ
2780	670	030	240/50	0	10 10	2024	601	824	200/60	0	30 ud
2701	673	311	240/50	o (symm)	80 ud	20J4	031	C24	200/68	0	355 ud
2783	015	Riv	190/35	6	350 ud	2836	692	Blc	210/45	a	20 ud
2786	675	A4a	220/60	a	140 dex	2837		C1h	210/45	o	355 ud
		A5a	220/60	σ	45 ud				210/45	٥	40 ud
		1.111.111.11	220/60	o	15 ud				210/45	٥	330 ud
		B6h	220/60	σ	100 ud			D1j	210/45	σ	60 ud
_			220/60	P	70 ud	2838		D1k	210/45	σ	350 ud
2786			220/60	٥	35 ud			D11	210/45	F	360 ud
2787	676	A3a	220/60	٥	5 ud			Ela	210/45	o (symm)	80
		A3b	220/60	F	40 ud				210/45	٥	35 ud
2700		AJe	220/60	0	290 dd	2010		C1+	210/40	0	50 ud
2/88		взп	200/35	0	50 ud	2040		GIL	210/50	0	310 cin
		C31	200/35	0	310 ein/ud	2841	693	Ma	210/50	0	70 ud
2789		C31	200/35	a (+symm)	280 244	2842	033	Blc	220/45	a	35 ud
2103		D3m	200/35	Q (Talme)	50 ud	2843		Dio	220/45	a	20 ud
			200/35	c (synn)	140	2844	694	Alb	220/45	c (±symm)	285 ?dd
		D3n	200/35	٥	330 ud				220/45	o (±symm)	260 ?dd
2798	678	C1h	210/45	σ	20 ud	2845	-	Ald	220/45	δ	45 ud
	679	D2n	210/45	F	250 dd				220/45	σ	75 ud
2799		E2t	210/45	σ	360 ud			81f	220/45	δ	30 ud
110000000		B2w	210/45	٥	50 ud				220/45	٥	20 ud
2803	681	C7ak	200/60	σ	310 ud	2846		Clh	210/35	6	60 ud
		875	200/60	σ	320 Ud	2847	605	DII	210/35	O (SYMM)	170
2005	602	110	200/60	0	330 ud	4001	030	RASE	220/50	0	30 ud
4003	004	Ald	200/60	0	90 ud			R4j	220/50	δ(p) σ(s)	55 ud
	683	Alb	200/60	F	50 ud	2852		C41	220/50	g (tsynn)	60 ?ud
2806		Alc	200/60	o	50 ud	2853		D4m	220/50	o (±symm)	350 ?ud
		Bld	200/60	F	20 ud	2854		B4s	220/50	σ	60 ud
2807		Clf	200/60	F	350 ud			F4u	220/45	F	200 dd
			200/60	F	50 ud				220/45	P	195 dd
		Clg	200/50	σ	355 ud	2855		G4⊽	220/45	F	260 dd
2809		Flv	200/50	٥	65 ud				220/45	o(p)a(s)	110 ud
2813	685	D3p ·	200/60	P	230 dd	0057			220/45	0	70 Ud
2815	686	BIR	230/60	0	340 Ud	2826		neag ne-	220/43	7	340 ud
2017	08/	Dia	190/60	o (symm)	170 70 ud		697	11b	220/45	1	15 ud
010		DIE	180/60		15 nd		031	115	220/45	δ	360 ud
2819		Els	180/60	a	100 dex				220/45	a	360 ud
		Blt	180/60	0	35 ud				220/45	F	50 ud
2820	688	B4f	180/60	o	110 dex	2860	699	D2j	220/60	F	190 dd
			180/60	٥	60 ud			B2k	220/45	٥	185 dd
2823	689	C1f	200/50	a	90 ud				220/45	F	165 dd
		Clh	200/50	σ	325 ud	2861		F2m	220/45	F	175 dd
		C1k	200/50	C	290 sin			F2n	220/45	P	40 ud
		D11	200/50	0	350 ud	2862		G2w	220/45	0	20 ud
2005			200/50	0	10 10	0000			220/45	P	SU Ud
2825		k 1A	200/50	d	230 04	2863	701	hig	220/45	0	105 ud
2826		G1 v	230/25	0	340 ud	2004	TOT	Ble	220/45	F	150 dd
2020		41			510 44						

|--|

TBUPB [D]	KBRN- Hàrsch	KERN- STOCK	SF (FMST)	RRITERIUM	SCHERSINN	TBUFE [n]	KERN- MARSCE	KERN- STÖCK	SF (FHST)	RRITERIUM	SCHERSINN
2865	701	Clg	220/45	σ	270 dd	2833	707	Gir	210/50	٥	345 ud
		D1h	220/45	F	235 dd	2884	107.244	Hit	210/50	F	130 dd
			220/45	δ	160 dd	2886	708	Bld	210/45	P	40 ud
2866		D1i	220/45	δ	95 ud				210/45	δ	290 dd
			220/45	F	25 ud	2889	709	C2g	202/45	٥	187 dd
ĺ		Elk	210/50	σ	180 dd				202/45	σ	212 dd
			210/50	σ	190 dd	2891		E2nk	172/45	٥	332 ud
2867		Fin	210/50	σ	265 dd			F2ok	202/45	σ	292 dd
			210/50	a	220 dd	2893		H2u	212/45	σ	112 ud
			210/50	٥	265 dd	2894	710	Ala	202/45	a	127 dd
		Gln	210/50	δ	70 ud			Ald	122/45	a	22 ud
2868		Glr	210/50	F	340 ud	2895		Blh	192/45	a	322 ud
		Blt	210/50	c (symm)	140			CIR	162/45	C (ISYMB)	42 :00
			210/50	0	170 GG			CIM	202/45	0	136 00
			210/50	D P	250 44	2006		C10	107/45	0	77 114
		niu .	210/50		250 dd	4030		R1r	192/45	0	102 dex
			210/50	0	240 44			011	192/45	Ā	37 114
2869		J117	210/50	σ	115 dex	2897		P1t	237/45	đ	142 ud
	702	B1d	210/50	ð	40 ud				237/45	0	37 ud
2870	703	Ala	210/50	a	80 ud	2899		Elz	182/45	δ	332 ud
			210/50	٥	340 ud	2901	711	Blc	217/55	δ	177 dd
		A1b	210/50	٥	310 ud				217/55	δ	182 dd
			210/50	δ	40 ud	2902		D11	272/50	δ	102 ud
2871		Blc	210/50	o (±symm)	180 ?dd	2903		Blm	222/50	δ	67 ud
			210/50	٥	130 ?ud			1	222/50	δ	252 dd
	1200	Cld	210/50	٥	65 ud	2904		Pls	212/50	Ø	272 dd
2873	705	Blg	210/50	σ	145 dd			GIV	212/50	0	272 dd
2874		D11	210/50	σ	10 ud	2905		GIX	222/50	r P	102 ud
28/5	206	DIU	210/35	F	140 dd			Rind	222/50	2	282 44
2975	100	ALD B1F	210/35	1	15 ud	2908	712	nifk	222/60	2	262 44
40/0		C11	210/45	0	360 ud	2300	110	DILL	222/60	a	182 dd
			210/45	G	40 ud				222/60	δ	252 dd
2878		Dim	210/45	σ	15 ud	2909		F11	227/40	F	282 dd
			210/45	σ	55 ud	2910		Glaa	222/50	0	232 dd
		D1u	210/45	σ	335 ud	2912	713	B1c	227/45	0	272 dd
		Elp	210/45	δ	60 ud			Bif	237/45	F	222 dd
			210/45	σ	35 ud			C1i	227/45	δ	277 dd
		Blq	210/45	δ	340 ud				227/45	δ	302 dd
			210/45	٥	60 ud			1	227/45	σ	202 dd
		Elu	210/45	P	10 ud	2914	714	Ala	207/40	٥	137 dd
	207		210/45	σ	350 ud	2015		of all	207/40	0	111 00
	101	Ala	210/45	0	350 ud	2312		BICK	222/45	0	501 dd
			210/45	0	290 dd	2016	715	112	222/40	P	182 44
			210/45	0	10 ud	4310	/13	B1b	222/40	7	212 44
			210/45	0	60 01	2924	719	D1k	220/45	a	85 ud
2879		BIC	210/45	5	195 88		1.17	DIN .	220/45	a	40 ud
2475		510	210/45	5	200 dd	2925		B1o	220/45	σ	5 ud
			210/45	P	270 dd	2926		B1r	220/40	0	355 ud
		Bld	210/45	a	80 ud	2927	720	Ble	220/40	σ	60 ud
			210/45	σ	245 dd			Blg	220/40	٥	60 ud
2880		C1e	210/45	F	55 ud	2928		C1h	220/40	σ	40 ud
		C1f	210/45	F	5 ud				220/40	0	20 ud
2881		D1j	210/45	٥	10 ud			Dlo	220/40	o (±synn)	190 ?dd
		B11	210/45	P	195 dd	2929		Blr	210/40	F	60 ud
			210/45	C (SYNN)	55		101		210/40	C (±synn)	330 ?ud
2882		Blm	210/45	C	45 ud	2931	721	Ale	210/40	C (1SYBB)	90 /ud
0000		Flp	210/50	G	145 dd	2025	711	AIL	210/40	1	100
2887		ard	210/50	Sintalat	260 34	2333	166	Ald	210/35	a	360 ud
			\$10/30	o(p)o(s)	200 44				810/33		

	KRITERIUN	SCHERSINN	TEUFE [m]	KBRN- MARSCH	KBRN- STÖCK	SF (FMST)
	δ	40 ud	2973	728	Blaf	210/40
	o (±symm)	110 ?ud	2974	729	Ala	210/40
	0	30 ud			Alc	210/40
	σ	30 ud			S. J. Market St.	210/40
	σ	60 ud	2975		Blf	210/40
	σ	20 ud			C1h	210/40
	σ	310 ud		730	Blq	210/40
1		1 10 1	0004		84.L	110/15

KRITERIUM

SCHERSINN

2935	722	Alb	210/35	δ	40 ud	2973	728	Blaf	210/40	٥	5	ud
2937		D2h	210/35	o (±symm)	110 ?ud	2974	729	Ala	210/40	F	250	dd
			210/35	o	30 ud			Alc	210/40	σ	155	dd
			210/35	۵	30 ud				210/40	σ	130	dd
2938		D2i	210/35	٥	60 ud	2975		Blf	210/40	σ (±symm)	260	?ud
2940		F2q	210/35	σ	20 ud			Clh	210/40	٥	85	ud
2941		G2t	220/15	a .	310 ud		730	Blq	210/40	δ	210	dd
			220/15	σ	30 ud	2981		Blab	210/45	F	330	ud/sin
		G2u	220/15	٥	340 ud	1			210/45	δ	40	ud
		H2V	220/15	٥	130 ud			Flac	210/45	σ	100	ud
		H2w	220/15	a	340 ud			100.00	210/45	F	330	ud
	. Law	H2y	220/15	σ	30 ud	2982		Glad	200/20	٥	350	ud
	723	Ala	220/15	٥	10 ud				200/20	٥	50	?ud
			220/15	a	340 ud				200/20	0	310	ud
			220/15	σ	60 ud				200/20	0	305	ud
2442		B1b	220/15	a	70 ud			Glae	200/20	o	15	ud
2443		Dig	200/35	0	5 ud	2983	222	Glag	200/20	0	350	ud
2945		F1m	200/35	0	60 UG	2004	131	A1a	200/20	0	215	DU
2947		HIL	200/40	o	115 dd	2984		Big	200/20	1	315	Ud
2948	124	Bld	200/40	r	bu 08	2000		21-	200/20	0	10	244
2949		Clg	200/40	σ	250 dd	2380		DIM	200/40	C (ISYMM)	333	rua
		DIL	200/40	σ	145 23				200/40	o (terma)	330	244
		DIK	210/40	0	140 00			Rin	200/40	U (ISYMM)	15	.ud
2050		P1=	210/40	0 P	200 44		1	R10	200/40	F	165	44
2930		BIR R1n	210/40	r x	160 44	2007		RIT	200/40	1	330	ud
8931		rin	210/40	0	145 44	6301	732	112	200/40	0/5-0	50	ud
2952		#1=	210/40	Ā	200 44	2988	1.5.	Blc	200/40	8	315	nd
2953	725	112	210/40	5	150 dd	2300		Blc	200/40	5/F	40	ud
6755	105	114	210/40	8	175 dd			B1d	200/40	δ	360	ud
2954		Alc	210/40	a	215 dd	2989		Clh	200/40	δ	10	ud
			210/40	σ	80 ud	ersone"			200/40	δ	15	ud
		Ble	200/25	σ	230 dd				200/40	σ	40	ud
		Blg	200/25	δ	265 sin/dd			Dik	200/40	δ	295	sin
		B1j	200/25	σ	280 dd				200/40	σ	335	ud
2955		C10	200/25	٥	30 ud				200/40	٥	65	ud
2956		D1p	200/25	0	55 ud			D11	220/40	o/S-C	80	ud
			200/25	δ	320 ud	2991		à1f	220/40	ð/F	100	ud
			200/25	σ	170 dd			λlf	220/40	δ	65	ud
		Dlq	200/25	δ	310 ud	2992		C11	220/40	a	130	dex
2957		Els	200/25	σ	280 dd	2993		C2c	220/40	₀/S-C	95	ud
			200/25	δ	255 dd			D3b	220/50	δ	355	ud
10700		Blt	200/25	O	260 dd				220/50	٥	325	ud
2959		Glac	180/30	o/S-C	290 ud	2995		F3h	220/50	0	110	sin/ud
		Gly	180/30	a	315 ud			0.2	220/50	0	340	DU
2960	726	Bld	180/30	F	105 44	0000		G30	220/50	f	15	ud
		810	190/35	0	110 dex	2330		GJE	230/70	d	305	DD
		Gld	180/30	F	55 ud			GJE	230/70	0	330	ud
2963	121	Ala	150/30	F (amon)	15 UG			# 2	230/70	0	333	ud
7302		Cle	150/30	o (symm)	120				230/70	0/1	245	44
		LII	150/30	D I	140 244			D J V	230/70	F	255	44
		C1a	150/30		hu nu				230/70	0	433	but
2955		Cli	150/30	a (evan)	85				230/70	0	40	nd
2300		D1i	150/30	d (Slam)	20 ud				230/70	F	230	dd
2968	728	110	210/40	δ(n) α(s)	200 44	2997	734	Alb	187/70	с. с	347	der/ud
2,00	140		210/40	P	145 dd	2998		B1h	187/70	a	267	sin
		81f	210/40	a	150 dd	3000		Blr	182/35	P	2	ud
2969		C11	210/40	a	240 dd	3001		Blv	302/20	δ	152	ud
		D1h	210/40	0	80 ud/sin				302/20	F	2	dd
		D10	210/40	δ/F	10 ud				302/20	P	92	ud
2971		B1x	210/40	F	360 ud			Flz	207/20	a	347	ud
								1.200.2	No ma Crance			

TEUPE

[**n**]

KERN-

KERN-

MARSCE STOCK

SF

(FMST)

TEUFE [n]	KBRN- NARSCH	KBRN- STÖCK	SF (PNST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- MARSCH	KERN- STÖCK	SF (FNST)	KRITERIUN	SCHERSINN
3003	735	Blc	52/20	٥	272 ud	30.21	740	A1e	208/35	G	358 ud
	736	Ala	202/20	δ	22 ud				208/35	d (SVBB)	118
3004	150	Blc	202/20	a	127 dd	3022		B1c	208/35	α	108 ud
		Bic	202/20	P	322 ud			B1b	208/35	٥	68 ud
		Bld	202/20		17 nd			Cla	228/35	a	68 ud
3005		C1b	237/35	ā	117 ud				228/35	F	78 ud
3003		UTU .	162/35	F	32 nd	3024		Rin	213/35	σ	53 ud
1006		n1i	202/35		172 dd				213/35	a	18 ud
			202/35	(SVBB)	152			F1v	228/30	F	48 ud
		E10	202/35	6 (0)111/	72 nd				228/30	d (SYBR)	113
3008		Glr	227/35	a	177 dd				228/30	٥	308 sin
3010	737	Ala	212/30	σ	77 ud				228/30	σ	8 ud
3010			212/30	a	92 ud				228/30	a	8 ud
		Alb	197/30	S-C	332 ud	3025		G1w	218/25	σ	138 dex
			197/30	g (symm)	292	1			218/25	δ	278 dd
			197/30	0	7 ud	3026	741	Ala	198/25	σ	348 ud
			197/30	F	37 ud				198/25	F	348 ud
3011		Alc	197/30	o	97 ud				198/25	σ	298 ud
		10000	197/30	a	332 ud				198/25	σ	8 ud
			197/30	a	327 ud				198/25	F	178 dd
		1	197/30	a	352 ud	3028		C1k	208/30	σ	28 ud
			197/30	a	2 ud	3029		Dim	208/30	C (SYMM)	298
		B1d	192/30	a	22 ud	3031	742	Bic	208/15	σ	78 ud
			192/30	a	32 ud	3032		C1f	208/25	σ	18 ud
			192/30	a	42 ud	3033		D1h	208/15	σ	88 ud
			192/30	F	42 ud				208/15	σ	28 ud
			192/30	σ	312 ud	3034		Eln	198/20	δ	268 dd
		Ble	192/30	g (syam)	97	3035		Flr	208/20	δ	28 ud
			192/30	σ	72 ud	3036	8	H3b	208/30	σ	103 ud
3012	738	Alb	192/35	٥	2 ud	3037	743	Alb	233/35	σ	68 ud
3013		A3ck	192/35	σ	302 ud			Ble	218/35	F	68 ud
		B3e	202/35	٥	342 ud	3038		Clh	223/40	٥	28 ud
			192/35	٥	332 ud	3039		Dli	233/45	σ	33 ud
			202/35	σ	342 ud			D1k	238/45	σ	33 ud
		B3f	202/35	Ø	67 ud	3040		B10	218/55	σ	68 ud
			202/35	σ	57 ud	3043	744	Aldk	208/60	o (±symm)	38 ?ud
			202/35	٥	342 ud			B1h	228/50	σ	218 dd
			202/35	d (symm)	122	3044		Blk	223/75	0	73 ud
3014		C3g	202/35	σ	332 ud	3045		D1s	208/65	σ	63 ud
		C4c	202/35	٥	2 ud	3050	745	Clq	179/45	σ	129 ud
			202/35	σ	22 ud		i - 1	Dir	44/45	O	229 ud
			202/35	٥	77 ud	3051		Blu	44/45	P	264 ud
	739	Ala	218/30	٥	48 ud	3052		Flac	44/40	F	254 ud
			218/30	a	13 ud				44/40	F	194 ud
3015		A1b	218/30	o (symm)	98				34/40	r r	244 ud
			218/30	٥	83 ud	3053		Glae	59/35	ð	69 dd
			218/30	٥	68 ud			Glaf	44/35	σ	84 00
		Blck	218/30	a	38 ud				34/35	r	14 /00
			218/30	o (symm)	118	3056	146	BZE	103/20	5-0	223 UQ
3016		Cldk	198/25	δ	33 ud				103/20	S-C	13 14
			198/25	٥	348 ud			C2g	68/20	C (ISYMM)	118 /00
3018		Bink	198/30	Bd	18 ud				63/20	0	93 00
3019		FIDK	218/35	0	68 UG				63/20	0	12 44
		GIT	208/35	T	48 00				63/20	0	E0 11
			208/35	G	63 Ud			C21	53/20	0	109 44
			208/35	G	38 44			020	59/20	0	208
			218/35	0	353 10			631	50/20	a (terrat	01 211
1001	740	GIS	218/35	5-0	353 10	2050		P2-	59/20	U (ISYMM)	13 14
3021	740	AID	208/35	0	348 UQ	3058		54P	92/20	0	143 44
		11	208/35	0	50 02	3023		120	83/20	0	123 44
		ATG	208/35	0	DU 00		747	112	103/20		153 44
			200/33	U	00 00		141	110	103/20	U IIII	100 44
_				and the second data was not as and a	and the second se	the second se	and the second second				

TEUFE [m]	KERN- NARSCE	RERN- STÖCK	SF (PMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KBRN- MARSCH	KERN- STÖCK	SF (PMST)	KRITERIUM	SCHERSINN
3062	749	B2k	103/25	7	333 sin/ud	3087	756	81h	64/45	σ	314 ud
		B21	103/25	σ	323 dex/ud				64/45	δ	164 ud
		C3b	78/25	٥	88 dd			B1j	84/45	σ	234 ud
3063	750	Ala	70/25	F	30 dd	3088		Cim	54/45	δ	294 ud
			70/25	F	130 dd				54/45	δ	294 ud
3064	751	Ald	70/35	P	90 dd			D10	64/40	σ	254 ud
			70/35	F	40 dd	3089		D1p	54/40	0	324 ud
3065		C3d	70/35	σ	30 dd			Blr	54/35	o	114 ud
3066		D3f	70/25	σ	130 dd			Bls	74/35	σ	264 ud
	1	E3g	90/20	F	80 dd				74/35	σ	254 ud
			90/20	P	20 dd				74/35	٥	174 ud
			90/20	F	50 dd	3090		Flt	74/30	0	164 dd
3058	752	Alc	86/30	P	141 dd			F1V	84/30	o .	259 ud
3069		110	316/10	σ	296 dd			YIW	74/30	f	314 Ud
3075	253	filal n1.1	51/20	ľ	21 GG				74/30	0	299 00
3015	155	BIIK	54/35	r a (tarran)	64 :00	2001		6122	74/30	0	494 UQ
1076		Dia	54/35	0 (ISYMM)	234 704	3091		Gldd	74/30	0	164 sin
30/0		Din	84/35	1	324 2ud				74/30	n (+symm)	164 744
1977		DIU	74/35	n (+symm)	84 244			GIX	94/30	d (+synn)	344 ?ud
2211		R1o	64/35	P	204 ?nd				94/30	σ	294 ud
		B1p	84/35	P	64 dd			G1z	94/30	o (synn)	354
3078		F1s	89/35	F	39 dd			Hlab	84/25	σ	304 ud
		Fit	64/35	F	14 dd			Hlag	74/25	٥	354 dd
			64/35	F	9 dd				74/25	σ (±synn)	4 ?dd
		Glu	54/35	σ	34 dd	3092		Blan	94/25	c (±synn)	204 ?ud
			54/35	P	64 dd		757	Ala	268/25	F	283 dd
			54/35	σ	99 dd				268/25	٥	138 ud
			54/35	d (symm)	344				268/25	c (symm)	8
3079		Glvk	54/35	F	114 dd			Alb	268/25	P	298 dd
		Gixk	54/35	F	44 dd			A2b	78/25	σ	248 ud
			54/35	F	14 dd				78/25	σ	278 ud
3080	754	Blek	64/35	o (±synn)	234 ?ud				18/25	o .	263 ud
			64/35	G	254 ud	3093		BAI	88/25	l p	268 UQ
		BIGK	(4/35	C (terrer)	34 QQ				88/43	2	208 11
2002		P1.	C4/40	0 (ISYMM)	94 fdd			C21	68/25	c (evan)	198
2005		pių	64/40	7	224 ud			~s]	68/25	C (SIMA)	218 114
			64/40	2	204 ud	3094		C2k	78/25	đ	288 ud
			64/40	2	224 ud			D21	58/30	a	273 ud
3083		R1r	54/40	C (SVBB)	179				58/30	σ	238 ud
			54/40	F	214 ud				58/30	a	238 ud
		Flu	54/45	o (±symm)	29 ?dd			D2m	68/30	٥	318 ud
			54/45	o (symm)	234				68/30	σ (symm)	333
			54/45	o (symm)	264				68/30	٥	298 ud
3084	755	Ala	94/45	٥	304 ud	3095		D2n	68/35	σ	238 ud
			94/45	o (symm)	264				68/35	σ	328 ud
		A2e	54/45	σ	259 ud			B2p	78/35	F	148 dd
			54/45	G	294 ud			B2q	78/35	F	248 ud
3085		B2g	64/45	o (±symm)	264 ?ud				78/35	c (±synn)	268 ?ud
		C2j	54/45	F	44 dd	3096		F2r	58/40	o (±synn)	108 ?dd
3086		C2m	54/45	0	354 dd			F25	78/40	o (symm)	208
	344	C20	54/45	O (SYEE)	14	1007		127	58/40	O P	258 UG
	/56	AID	84/45	C C	124 00	3031	750	11	10/40	c (terms)	210 DU
		114	64/45	0	224		/ 58	AL	C#\00	o (ISYMM)	148 44
		AIG	64/45	o (evan)	224	1098		B1b	68/35	0	228 nd
		110	64/45	(cypa)	234	3030		010	68/35	σ	108 dd
		Ale Alf	64/45	o (STHE)	234 ud				88/35	σ	98 dd
			64/45	σ	289 ud			81 i	78/35	G	88 dd
3087		B1h	64/45	G (SVBB)	204			Bla	58/35	σ	288 ud
			64/45	0	309 ud				58/35	o (±symm)	358 ?dd
		1	100000000000000000000000000000000000000	1				1	Charles Charles	A REAL PROPERTY OF A REAL PROPER	and the second

TEUFE [n]	KERN- NARSCH	KBRN- STÖCK	SF (PNST)	KRITBRIUM	SCHERSINN	TEUFE [m]	KERN- NARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN
3098	758	C1k	58/25	a	158 ud	3114	761	C6h	110/ 5	٥	309 ud
3099		C11	88/25	o (symm)	248			C6j	110/ 5	F	84 dd
			88/25	c (symm)	188				110/10	F	324 ud
			88/25	o (symm)	348				110/10	F	334 ud
		Clp	68/25	٥	28 dd	3115		D6q	90/10	o (symm)	294
3100		Dir	178/20	o (symm)	358				90/10	d (synn)	99
		Blt	48/25	C (SYRR)	178	3157		D6s	74/10	٥	224 ud
		P1	48/25	G (SYND)	198	3110		ROX	174/10	0	224 44
		BIU	40/40	C (CYNR)	200 uu 188				174/10	0	314 ud
			48/25	o (symm)	218	3117	762	34	190/10	σ	284 dex
			18/25	P (SIMA)	188 ud	3118		ASc	190/10	C (SVRR)	269
3102	759	Alb	81/35	σ	241 ud			A6	190/10	0	109 dex
		λ2a	71/35	σ	281 ud			B12a	354/20	٥	154 ud
			71/35	δ	286 ud	3119		C12a	19/30	٥	129 ud
3103		B2c	181/35	٥	201 dd			C12d	44/30	σ	194 ud
			181/35	σ	231 dd				19/30	σ	154 ud
			191/35	٥	151 dd			D12f	104/30	δ	254 ud
3105		D3j	326/45	o (symm)	231	3120		B12h	74/15	٥	274 ud
1		B31	31/45	F	41 dd			812]	160/15	0	454 UC/S10
1100		P3-	21/45	d	51 dd	2121		B14E	160/15	0	200
3106		830	1/45	P	16 44	3161		DIGI	160/15	0	204 44
		Rin	341/40	r (symm)	281				160/15	δ	64 ud
		1.25	61/40	δ (Sfas)	341 dd			F12m	160/15	δ	29 ud
3107		F3r	331/40	o (±syam)	296 ?dd				160/15	٥	144 dd
			331/40	o (tsynn)	131 ?ud			F120	160/15	o (symm)	69
		G3s	1/30	F	231 ud	3122		G12q	234/15	P	204 dd
			1/30	δ	201 ud		763	A1a	110/15	2	140 dd
		G3t	281/30	٥	191 dex			A2	115/15	S-C	95 dd
3108	760	Ala	36/30	δ	51 dd			A2a	225/10	c (±synn)	265 ?dd
		Alb	41/30	F	221 ud	21.0.2		AZC	195/10	0	55 Ud
		54D	224/20	0	244 QQ 204 ud	3123		820	175/15	r s-r	155 00 45 nd
			24/20	F	274 ud			DAC	175/15	S-C	5 ud
			34/20	F	284 ud			B2f	160/15	c (symm)	315
3109		B2c	4/20	P	54 dd				160/15	0	355 ud
			4/20	٥	24 dd	3124		C2h	80/15	c (symm)	265
		C2d	24/20	0	254 ud				80/15	o (synn)	95
		÷	24/20	0	234 ud			C2j	80/15	٥	220 ud
			24/20	٥	64 dd			C2k	80/15	F	35 dd
			24/20	a	254 ud	3126		FZT	120/15	0	125 00
2110		62.	24/20	G	264 UC			P 7+	120/15	0(p/0(s)	220 ud/der
5110		Lae	24/20	0	114 ud	3127		G2w	160/15	0	336 ud/der
		D2f	69/17	n (symm)	209	5161		0.2.8	160/15	0	1 ud
		Der	94/20	0 (Sime)	254 ud				160/15	a	351 ud
			94/20	σ	284 ud			G2x	160/15	o (symm)	301
		D2g	119/20	٥	319 ud				160/15	٥	181 dd
			129/20	δ	359 ud			G2y	160/15	σ	131 dd
			129/20	δ	359 ud	3128	764	Ala	160/10	δ	21 ud/sin
		D2h	94/20	σ	314 ud				160/10	0	271 ud/sit
2111			94/20	0	334 ud				160/10	5	186 dd
3111		R7]	180/10	C	324 Ud				160/10	0	156 QQ 41 ud/cir
3112		820	150/10	d (syan)	134				160/10	7	191 dd/der
3119		140	150/10	d (tsynn)	104 dd				160/10	σ	291 ud/dex
			150/10	0	324 ud			B1b	160/10	F	16 ud/dex
		F2r	150/10	a	124 dd				160/10	F	31 ud/dez
3113	761	A6d	130/10	δ	334 ud				160/10	σ	71 dex
		B6e	130/ 5	٥	349 ud				160/10	σ	61 ud/sin
		B6f	130/ 5	F	154 dd	3129		Clk	140/10	٥	202 dd/sin

TEUPE [B]	KERN- MARSCE	KERN- STÖCK	SF (FNST)	KRITERIUM	SCHERSINN		TEUFE [n]	KERN- NARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN
3130	764	C1m	120/10	đ	92 dd/sin	1 1	3143	767	E3u	60/10	F	7 dd/sin
			120/10	o (symm)	92					60/10	δ	107 dd/dex
			120/10	o (symm)	152		3144		E3v	60/10	σ (synn)	22
		C1o	120/10	δ	267 ud/dex					60/10	σ (symm)	27
			120/10	o (±symm)	292 ?ud/dex					60/10	o (synn)	132
		Die	120/10	G (1SYMM)	282 ?ud/dex				Flw	60/10	d (synn)	127 dd/dex
3131		DID R1wk	120/10	0 σ (+cvam)	172 2dd/sin				1.2.8	60/10	đ	187 ud/dex
5151		DIAV	120/10	C (ISTAR)	267 ud					60/10	G (±SVAR)	242 ?ud/sin
3133		Hlac	132/10	G (SYRR)	332					60/10	o (±symm)	257 ?ud/sin
		Hlad	112/10	σ	262 ud/sin					60/10	F	127 dd/dex
			112/10	σ	112 dd				-	60/10	d (±symm)	207 ?ud/sin
			112/10	σ	122 ?dd		3145		G3g	60/10	٥	327 sin
3134	765	Alc	343/10	C (SYMM)	253				G3x	60/10	C (terres)	157 ud/sin
			343/10	0	208 ud				#2aa	60/10	G (ISYMM)	207 :ud/s10
		114	343/10	O (SYMM)	203 ud				пјаа	60/10	a	52 dd/dex
		Ble	318/10	n (+symm)	313 244		3145	767	H3aa	60/10	F	67 dd/dex
		010	318/10	8	3 dd					60/10	δ	37 dd/dex
3135		Blg	213/10	P	213 dd		1			60/10	δ	352 dd/dex
			213/10	F	193 dd		3146	768	Ala	60/10	<pre>d (±symm)</pre>	300 ?ud/sin
3136		C11	253/10	σ	253 dd			769	AJa	61/10	٥	111 dd/dex
		D1p	223/10	c (±symm)	288 ?dd/sin					61/10	d (±synn)	181 ?ud/sin
3137		Blq	223/10	0 P	243 dd/s10				AJD	61/10		2/1 ud/dex
3139		P1+	3/10	r c	13 ud/sin				AJC	61/10	o (symm)	151 sin
3130		111	343/10	δ	353 dd					61/10	g (±symm)	181 ?ud/sin
			343/10	C (SVAR)	98				A3d	61/10	0	186 ud
			83/10	c (symm)	233					61/10	<pre>d (tsymm)</pre>	241 ?ud
			343/10	o (±symm)	173 ?ud				A3e	71/10	δ	201 ud
			343/10	σ	358 dd					71/10	٥	231 ud
3140		Elaa	343/20	σ	143 ud					71/10	0	256 ud
	7/7	Elz	343/20	σ	228 ud					/1/10	0	131 dd/dex
	101	AL	201/23	0	187 day					71/10	σ σ	21 dd/dex
		132	201/25	0	292 ud					71/10	g (tsymm)	41 ?dd
		7.74	230/25	δ/F	267 ?dd		3147		B3f	60/10	σ	191 ud/dex
		B3b	230/25	F	57 ud/sin					60/10	δ	231 ud/dex
			230/25	٥	57 ud/sin		- 1		B3g	60/10	٥	201 ud/dex
			230/25	F	37 ud/dex				C3h	60/10	δ	111 dd/sin
			230/25	٥	292 dd/sin					60/10	o (tsymm)	221 ?ud/sin
3141		B3C	230/25	a	112 ud/dex					60/10	C (terma)	121 dd/dex
		830	230/25	0	24/ 00/S10					60/10	a (tevan)	91 7dd/dex
		836	230/25	5	232 dd/sin					60/10	F	91 dd/dex
		220	230/25	C (SYMM)	142					211/10	a	41 ud/dex
		C3g	230/15	P	87 ud/dex					211/10	δ	41 ud
			230/15	δ	142 dex				D3n	189/15	٥	59 ud
		C3h	230/15	F	87 ud/dex		3149			189/15	σ	289 ud
		C3j	230/15	S-C	232 dd/dex					189/15	٥	49 ud
		CJK	230/15	0	J12 00/S10				030	189/15	0	59 UQ
		031	230/15	2	10/ ud/sin					189/15	0	19 ud
3142		D3#	240/10	a/s-c	352 sin					209/15	G	359 ud
3110		D3n	240/10	P	257 dd/sip				E3s	209/15	δ	349 ud
			240/10	a	267 dd/dex		3150		F3t	209/20	σ	159 dd
3143		D30	240/10	δ	52 ud/dex					209/20	δ	124 dex
		D3p	240/10	δ	97 ud/dex					209/20	δ	294 dd
		B3t	67/10	δ	337 sin					209/20	c (±symm)	84 ?ud/sin
		B3u	50/10	0	117 dd/sin					209/20	0	J19 ud/dex
			60/10	o (symm)	142 cin		1152	770	112	174/20	C (ISYAN)	79 2ud/sin
			00/10	U	146 510	IL	1110	110		1.1/20	o (rolws)	13 . WW/ DIU

TBUPE [1]	KERN- MARSCH	KERN- STÖCK	SF (FRST)	KRITERIUM	SCHERSINN	TEUFE [m]	KERN- HARSCE	KBRN- STÖCK	SF (FKST)	KRITBRIUM	SCHERSINN
3152	770	Ala	194/20	٥	264 dd/sin	3178	777	B2a	76/20	٥	296 ud
		A1b	184/20	F	274 dd	3179	0.5041.5	C2ck	96/20	٥	106 dd
			184/20	δ	204 dd				76/20	δ	46 dd
			174/20	σ	144 dd			C2f	56/20	o (±symm)	6 ?dd
		Blh	194/20	σ	264 dd/sin				46/20	o (±symm)	26 ?dd
			194/20	o (±symm)	314 ?ud/sin			D2g	306/20	ð	306 dd
3153		81]	184/20	σ	24 ud	3179			46/20	f (icana)	16 dd
		Clo	204/20	D P	134 UQ	3180		n2i	46/20	o (ISYMA)	46 44
		cie	204/25	5	144 dd	5100		Uaj	66/20	δ	246 ud
			164/25	a	124 dd				66/20	7	96 dd
		C1n	214/25	δ	224 dd				66/20	δ	96 dd
			214/25	٥	209 dd				26/20	δ	336 dd
3154		C1u	214/35	σ	184 dd		1	B2k	51/20	δ	261 ud
			214/35	δ	134 dd				51/20	F	76 dd
			214/35	o (symm)	304			E21k	66/20	F	256 ud
		Clz	244/30	٥	354 ud	3181		F2n	336/25	P	216 ud
			244/30	C (1SYMM)	214 ?dd	3183	118	Bla	86/35	a	261 00
		D1-	174/45	0	354 UQ			CTh	\$1/35	P	171 ud
		DIX	174/45	P	84 44			015	91/35	7	281 ud
3162	773	122	52/15	d (+symm)	172 ?ud/sin	3184		D7d	31/45	7	211 ?ud/sin
3163		λ3	52/15	0 (10)1=0/	212 ud				36/45	o (±symm)	46 ?dd
		λ4a	72/30	F	92 dd		1	D7e	61/45	٥	1 dd/dex
			72/30	σ	292 ud				61/45	σ	1 dd/dex
			62/30	σ	202 ud	3185		F7h	41/60	o (isymm)	211 ?ud/dex
		B4c	52/40	σ	242 ud	3186		F7j	56/60	S-C	46 dd
3164		C4d	52/45	F	142 ud		179	Ala	56/55	0 T	66 dd
		C41	62/45	G	222 ud	2107		110	41/00	0	41 GQ
2165		DAb	52/50	0	227 ud	3189	780	CIAN	101/30	S-C	311 nd
5165		Dan	52/50	(+symm)	2 244	3190	100	Clf	71/30	5	111 dd
3166		84k	62/50	d (svaa)	252				66/30	σ	331 dez
3167		F4n	52/30	0	-212 ud			Dlg	81/30	o (tsymm)	71 ?dd
	774	Ala	24/40	o (symm)	17				81/30	c (tsymm)	76 ?dd
3168		Blf	6/40	o (±symm)	82 ?dd		1		71/30	F	76 dd
3169		Bla	5/40	σ	77 dd			D1h	121/30	δ	231 ud
			5/40	٥	62 dd	3191		Elkk	81/25	S-C	101 dd
			5/40	σ	52 dd				81/25	0	41 00
3168	110	BIC	5/50	0	00 00	3102		G1n	51/25	2	31 44
3173		CID	7/10	d (+syam)	190 ?ud/sin	5172		010	56/25	d (SVBB)	146
5115		D1p	7/10	0 (Tolum)	70 dd/dex				61/25	o (±symm)	201 ?ud/sin
			7/10	o	175 ud/dex				61/25	δ	111 dd
3175		Blsk	9/10	٥	50 dd/dex	3194	781	Ble	311/30	o (±symm)	261 ?dd
-		Fltk	9/10	σ (±symm)	235 ?ud/dex			Blf	46/30	c (±symm)	256 ?ud
3174		Flu	9/10	c (isymm)	135 ?dd/dex				46/30	σ (±symm)	241 ?ud
3176		Flv	9/10	0	25 dd/sin	3195		Cljk	21/35	G	191 ud
		Glw	9/10	d (SYRE)	1/0	1107		sip	231/45	ř P	51 UQ
		GIY	9/10	3-6	115 dd/dex	2731			21/45	r P	61 44
		617	9/10	9	30 dd/sin				21/45	σ	71 dd
			9/10	o (tsynn)	195 ?ud/sin			Flq	231/45	F	66 ud
			90/10	o (tsymm)	63 ?dd/dex	3198		GIV	1/50	σ	211 ud
3177	777	λla	171/20	٥	241 dd			Glw	31/50	٥	251 ud
		Alb	226/20	٥	226 dd	3203	783	A6hk	270/40	F (?)	230 dd
			226/20	o (±symm)	236 ?dd	3204		B6w	220/50	0	270 dd
			236/20	0	26 ud	3206		Sbau Réac	290/20	0 (1SYMM)	310 244
		11.	230/20	O (ISYMR)	110 :00	3201		POGA	300/20	(ISYMM)	310 744
3179		Rio	251/20	d (ISYMM)	51 nd				110/20	F	350 ud
31/0		B2a	146/20	đ	191 dd			F6bf	260/20	δ	270 dd
							1				

TEUFE [n]	KERN- MARSCH	KBRN- STOCK	SF (FNST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- NARSCH	KERN- STÖCK	SF (PNST)	KRITERIUM	SCHERSINN
3208	783	F6bk	240/20	<pre>d (isymm)</pre>	20 ?ud	3233	789	Blj	103/30	σ	63 dd
			215/20	σ (±symm)	75 ?ud				103/30	o (synn)	143
	784	A2b	87/20	σ	67 ?dd	3235		DIO	118/40	0	193 dd
		ALC	72/20	0	157 dd/sin	1226		Fle	93/40	o (+cyna)	123 00
3210		Cak	187/20	c (+cvas)	242 244/sin	1610		R1t	93/40	e (Telmm)	71 88
3211		D2i	97/25	o (toyan)	37 ?dd/sin			Riu	93/40	đ	63 dd
		E21	187/25	0	77 ud			F1v	73/35	S-C	83 dd
3212		F2n	142/25	σ	117 dd	3237		Glac	23/30	S-C	48 dd
			147/25	0	192 dd				23/30	S-C	63 dd
			147/25	σ	72 dd	3238	790	A1e	36/30	a	46 dd
			142/25	٥	92 dd				86/30	٥	16 dd
3213		F2u	160/25	σ	75 dd				36/30	٥	31 dd
		G2W	152/25	0	57 ud				36/30	0	41 dd
			14//25	0	317 ud	1000		114	36/30	0	
		627	157/20	s-c	337 ud	3633		ALL	36/25	C (CVBB)	56
3214	785	a3d	161/15	d (+symm)	346 2114			Bla	36/25	C (SIMM)	211 ud
3215	100	B3e	171/20	C (15) ME	146 dd				36/25	o (symm)	91
			161/20	o (±symm)	171 ?dd			C1j	66/20	δ	41 dd
		B3f	141/20	σ	76 dd	3240		D11	96/20	٥	111 dd
		C3h	121/20	٥	146 dd				96/20	σ	116 dd
			136/20	σ	176 dd	3241		Flr	71/15	٥	346 dd/sin
3216		C3j	111/20	a	56 dd	3242		G1w	76/15	٥	116 dd/dex
			111/20	٥	31 dd				76/15	O	231 ud
1012		C3k	96/20	a	56 dd				76/15	o (isyam)	105 200
321/		DJC	1/1/20	o	131 00			GIX	76/20	2	491 UQ
3410		Flad	106/20	0	66 36	3243		91ah	66/20	O (SYBB)	161
3220	786	A4d	181/25	a	221 dd	2813			66/20	0	246 ud
			151/25	o	141 dd				66/20	σ	261 ud
		B4e	216/25	٥	196 dd	3244	791	B5b	80/25	σ	330 ud/dex
			191/25	σ	181 dd			85c	80/25	G	240 ud
3222		C4j	191/25	F	201 dd				80/25	0	255 ud
		D4k	156/25	o (isyam)	146 ?dd	3245		B5e	70/30	a	270 ud
	ļ	D.f.	136/25	0	116 dd			Сре	70/30	D	230 ud
2222		Dán	111/25	2	41 00				70/30	0 (terms)	160 2dd/dam
2442	797	112	111/35		111 44	3246		Dén	100/25	o (Isymm)	290 ud
	101	414	111/35	8	81 ?dd		792	A2d	55/25	0	265 ud
		Alb	111/35	a	51 dd				55/25	σ	195 ud
		Ald	111/35	a	116 dd				55/25	σ	235 ud
3224		Ble	106/35	٥	181 dd	3247		A2e	55/25	٥	225 ud
		Blf	86/35	σ	66 dd				55/25	σ	220 ud
3225		Cik	91/40	C	51 dd			886	55/25	0	310 ud
2007	700	DII	86/40	0	116 00			BAL	65/25	0 (1SYMM)	1/5 /ud/s10
3441	/88	DIK	106/45	a lternal	114 00			B4G B2b	65/25	a (terma)	255 2nd
		818	145/45	o (ISYMM)	139 44			Den	65/25	(SABB)	35
3228		Bln	134/45	a	114 dd				65/25	G (SYBE)	75
		Clp	302/40	a	282 dd	3248		C2k	65/25	δ	260 ud
			227/40	a	247 dd				65/25	٥	120 dd
3230		Dly	174/35	σ	174 dd				65/25	a	195 ud
		Elae	109/35	σ	119 dd				65/25	٥	195 ud
			109/35	σ	29 dd			D2p	60/30	0	190 ud
3231		Flaj	104/30	δ	34 dd				60/30	٥	205 ud
		Glak	119/30	O	119 dd				60/30	a	235 ud
2222	700	110	114/30	0	74 00	3249		DZQ	60/30	0	230 110
3232	/63	R1h	103/25	o (ISYMM)	00:00			R211	45/30	a	265 ud
3833		910	103/25	a	143 dd	3250		E2v	45/30	a	240 ud
		Blj	103/30	o	93 dd				45/30	G	220 ud

*****	FPRE	FFON	CP	FRTARRTIN	COUPDCINE	-	FPDN-	FPDN-	57	PPT#PPTIM	CONFRICTION
[n]	MARSCH	STOCK	(FMST)	KAIIDKIUN	SCEEKSINN	[n]	MARSCE	STOCK	(FNST)	ANTIBALUA	SCIERSIAN
1250	702	821	45/30		265 ud	1765	707	C11	102/55	3	282 nd
1251	793	bay Ma	65/35	6	225 113	1266	1.01	Din	\$2/50	P	112 dd
7471	133	DIG	65/35	o (cyas)	150	3268		Fish	232/65	(SVBB)	142
		Mb	65/35	o (sjma)	285 114	1260	798	Alb	252/45	X (SIMA)	202 88
		TAD	65/35	a (terma)	175 214	2203	130	111	232/25	0	147 dd/der
		Ma	65/35	c (cyan)	15			111	232/25	0	147 dd/dex
		RAD	65/35	(cyan)	175			811	242/25	a	102 nd
		540	65/35	K 15jmar	265 ud			511	242/25	a	52 ud
			65/35		225 114	3270		Bink	262/35	G	122 ud
3252		Bár	65/40	a	275 ud	3272		Ris	292/40	δ	112 ud
		C4aa	75/40	a	220 ud		1		292/40	7	82 ud
		Cáy	75/40		250 ud			Rit	262/40	a	212 dd
		-1A	75/40	G (+SVBB)	220 Pud				262/40	F	212 dd
3253		D4af	45/40	d (10)mai	310 ud			B1z	202/30	a	322 ud
2000		Diat	45/40	δ	215 ud	3273		Flw	182/30	g (±symm)	212 ?dd
			45/40	٥	300 ud/dex				222/25	a	132 sin
3255	794	Ala	55/25	P	245 ud	3274	799	A1b	142/25	F	152 dd
			55/25	a	360 dd				142/25	σ	162 dd
3256		B1k	75/40	c (+symm)	285 ?ud			Ald	132/25	٥	12 ud
			175/40	g (+symm)	65 ?ud			Ale	122/25	a	82 dd
		Bink	75/55	δ	35 dd				152/25	o (±symm)	22 ?ud
3257		Clok	75/55	δ	285 ud	3275		810	157/30	δ	167 dd
			75/55	δ	235 ud				152/30	P	222 dd/sin
		D1s	75/55	C (SVAR)	45			Clq	112/30	F	142 dd
3258		Dit	76/55	δ	136 dd	3276		Clwk	242/40	7	177 dd
		Blvk	75/55	σ	225 ud	3277		Diab	62/40	2	52 ?dd
			75/55	٥	285 ud			Blae	152/35	o (±symm)	172 ?dd
			75/55	d (±symm)	55 ?dd				152/35	δ	22 ud
			75/55	c (±symm)	345 ?ud/sin	3278		Blal	142/35	d (symm)	22
		Blw	75/55	G (SYBB)	115			Flal	152/35	P	342 ud
3259		Elz	75/80	σ	305 ud	3280	800	Alb	74/35	F	64 dd
		Ely	75/80	σ (symm)	95			Bld	74/45	F	254 ud
			75/80	٥	145 dd	1			74/45	P	274 ud
	795	A2b	67/30	σ	37 dd			C1f	74/45	<pre>d (±symm)</pre>	224 ?ud
			62/30	σ	22 dd	3281		C11	74/50	C	44 dd
		A2d	82/30	٥	22 dd				74/50	F	14 dd
3260		A2gk	67/20	σ	347 dd	3282		D1j	314/35	F	284 dd
		B2hk	72/20	σ	152 dd			Blk	77/25	٥	257 ud
			67/20	٥	2 dd	3283		Fin	74/25	F	24 dd
3261		C2kk	182/45	c (±symm)	162 ?dd	3284	1	G1p	84/50	δ	334 ud
	796	A8b	67/45	٥	217 ud				84/50	٥	314 ud
			67/45	a	252 ud				84/50	σ	294 ud
			82/45	F	42 dd			Gls	84/45	a	104 dd
3262		Asek	87/45	c (±symm)	217 ?ud	3285	801	Alb	74/35	S-C	44 dd
		BSfk	72/45	٥	262 ud	2000			74/35	f	44 00
3263		881	72/50	à	267 ud	3286		CIJ	254/65	σ	214 dd
			257/50	0	14/ ud	3287		011	404/55	0	4/4 GG
		C81	57/50	r	12 / 44	3288		51B	84/45	C (terms)	44 00
			262/50	r	327 dd	1000		FIO	104/40	C (ISYMM)	304 :UQ
	207		102/50	o .	282 UQ	3269		GIQ	100/40		110 222
1000	191	BIA	62/50	0	102 00	3290		UII UI	24/25	o (ISYMM)	244
3404		AIC	62/50	0	252 UQ			Hiac	74/35	o (terma)	276 244
		114	62/50	0	257 Jud			gie .	74/35	o (ISYMM)	274 114
		DIA	62/50	0 (ZSYRR)	201 :00	2005	000	110	74/55	0	234 114
1965		D10	67/50	2	292 10	2731	802	PIN	74/50	0	234 44
7703		DIL D1-	67/55	0	257 44				74/50	0	234 114
		arg	61/33	8	20/ UQ			116	104/50	5	314 114
		011-	62/55	r P	52 dd/dom			AID	104/50	P	174 44
		DIU	62/55	1	52 dd/dex				104/50	Ā	144 44
			62/55	0	12 44				104/50	a	254 ud/ein
		81.1	62/55	R	222 ud			Ble	114/50	a	274 ud
		n1]	40133	4	446 UU				***1 **	1.2	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TEUFE [n]	KERN- NARSCH	KBRN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- NARSCH	KBRN- STOCK	SF (FHST)	KRITERIUM	SCHERSINN
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3291	802	Ble	114/50	σ	99 dd	3306	806	Ble	79/35	o (synm)	49
3292 Bif 124/35 c 329 del del </td <td></td> <td></td> <td></td> <td>114/50</td> <td>σ</td> <td>314 ud</td> <td>3307</td> <td></td> <td>D1bk</td> <td>89/35</td> <td>٥</td> <td>224 ud</td>				114/50	σ	314 ud	3307		D1bk	89/35	٥	224 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3292		Blf	124/35	٥	329 ud		- ×		89/35	σ	324 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				124/35	a	264 ud			D1j	89/35	a .	229 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CIG	84/35		464 UQ				29/35	5	259 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				84/35	P	44 dd			D1k	89/35	σ	249 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CIh	94/20	δ	344 ud				89/35	P	279 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Clik	104/20	٥	314 ud				89/35	o	299 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				104/20	٥	234 ud	3308		Ela	99/40	7	59 dd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				104/20	σ	259 ud				99/40	٥	269 ud
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				104/20	O	249 ud			Elo	109/40	٥	349 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3293		Dikk	84/25	0	244 ud			Flp	109/45	0	284 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DII	144/60	0	24 ud				109/45	o (symm)	34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				144/60	o (Symm)	299 114	3309		Fla	119/45	a	199 sin
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				104/60	a	204 ud/dex			.14	119/45	σ	4 ud/sin
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Din	114/55	δ	334 ud			Gls	109/50	σ	284 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3294		B10	84/50	σ	299 ud/dex	3311	807	Cld	219/55	σ	49 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Elpk	144/45	F	94 dd				219/55	σ	299 sin
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Flqk	74/45	c (symm)	124		l.	D1g	79/68	σ	259 ud
3296 803 Alb 114/35 o 314 ud prio 104/10 o 274 3297 804 Bid 44/35 F 34 dd Fip 114/75 o 374 3298 Bif 74/35 o 224 ud Gitk 124/75 o 354 3298 Bif 74/35 o 224 ud Gitk 104/70 o 344 Gig 44/30 o 179 ud 3315 Gitk 104/70 o 264 3299 D11 64/25 F 34 dd 3316 808 Ble 124/25 o 264 3300 Bin 54/20 o 254 ud 3317 Bitk 114/25 o 254 3301 Giaa 64/35 o 144 dd 3317 Bitk 114/25 o 254 3301 Giaa 64/	1000			74/45	σ (±synn)	304 ?ud	3312			79/68	σ	339 SID
3297 804 Bid 44/35 F 34 dd 514 First 124/75 5 354 dd 3298 Bif 74/35 5 234 ud First 124/75 5 304 304 3298 Bif 74/35 5 234 ud 124/75 5 304 304 3298 Bif 74/35 5 234 ud 124/75 5 304 304 3299 Dil 64/20 7 194 ud 3315 610 94/70 σ (syma) 4 44/30 7 194 ud 3315 610 94/70 σ (syma) 244 114/55 σ 234 ud 3316 81e 124/25 σ 2354 124/25	3296	803	Alb	114/35	O C	314 ud	2214	÷	F10 F1p	104/70	0	244 ud
1227 64 64 54/3 7 64 7 7 64 124/75 5 304 3298 B1f 74/35 a 224 ud 124/75 5 304 3298 C1g 44/30 a 199 ud 3315 614 104/70 a 344 3299 D11 64/25 F 34 dd 114/75 5 224 3300 E1p 54/20 a 234 ud 3316 808 B1e 124/75 a 244 3300 E1p 54/20 a 134 dd 114/75 a 244 3300 E1p 54/20 a 134 dd 124/75 a 134 64/20 a (symm) 174 124/25 a 134 1301 G1aa 64/35 a 94/30 a 114/25 a 124/25 a	3297	804	BIA	44/35	R	34 44	3314		Fick	124/75	a	354 ud
3298 Bif 74/35 a 224 ud 3299 Li 44/30 a 199 ud 104/70 a (syma) 4 3299 Dil 64/25 F 34 dd Glu 94/70 a 244 3299 Dil 64/20 a 234 ud Glu 94/70 a 244 3300 B1p 64/20 a 234 ud 3316 808 B1e 124/25 a 254 3300 B1p 64/20 a 254 ud 3316 808 B1e 124/25 a 254 3300 B1r 74/20 a 284 ud 3317 B1fk 114/25 a 254 B1r 74/20 a 144 dd c Clgk 104/25 a 314 3302 Glae 74/35 F 59 dd/sin 104/25 a	Je11	004	DIG	54/35	δ	234 ud			1154	124/75	δ	304 ud
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3298		Blf	74/35	a	224 ud			Gltk	104/70	σ	344 ud
3299 D11 64/30 c 179 ud 3315 G1u 94/70 c 244 3100 B1n 54/20 c 234 ud 3316 808 B1e 114/65 c 284 3300 B1p 64/20 c 254 ud 3316 808 B1e 124/25 c 254 3300 B1p 64/20 c 54 ud 3316 808 B1e 124/25 c 154 3301 64/20 c (symn) 174 124/25 c 154 124/25 c 154 254 104/25 c 3301 104/25 c 3301 104/25 c 3301 104/25 c 134 104/25 c 334 104/25 c 334 104/25 c 334 104/25 c 334 104/25 c 134 104/25 c 134 104/25 c			C1g	44/30	σ	199 ud				104/70	o (symm)	4
3299 D11 64/25 F 34 4d 61/2 61/2 0 224 3300 Bin 54/20 0 234 ud 3316 808 Bie 114/65 5 284 3300 Bip 64/20 0 254 ud 3316 808 Bie 124/25 0 254 3301 64/20 0 (symm) 174 124/25 0 124/25 0 254 Bir 74/30 5 74 dd 3317 Bifk 114/55 0 254 0 124/25 0 124/25 0 124/25 0 124/25 0 124/25 0 254 0 104/25 0 314 104/25 0 314 104/25 0 314 104/25 0 334 104/25 0 334 104/25 0 334 104/25 0 334 104/25 0 234 <	-			44/30	σ	179 ud	3315		Glu	94/70	a	244 ud
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3299		D11	64/25	1	34 dd			G1y	114/65	a	264 ud
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bln	54/20	0	234 ud	1226	0.00		114/65	0	284 ud
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3300		Rin	54/20	0	194 ud	2210	000	DIE	124/25		314 nd
Bir 74/20 0 128 ud 3317 Bifk 114/25 0 254 3301 Glaa 64/35 0 144 dd 104/25 0 309 3302 Glaa 64/35 0 144 dd 104/25 0 309 3302 Glaa 64/35 0 (symm) 54 104/25 0 114/25 0 314 3302 Glaa 74/30 5 272 ud 104/25 0 334 104/25 0 334 92/30 G symm) 12 104/25 0 234 104/25 0 234 92/30 G symm) 12 104/25 0 234 3303 B5e 82/30 0 322 ud 3318 D10k 110/40 234 3303 B5f 92/30 0 267 ud 3318 <td< td=""><td>3300</td><td></td><td>PTP</td><td>64/20</td><td>d (SVRR)</td><td>174</td><td></td><td></td><td></td><td>124/25</td><td>g (tsymm)</td><td>54 ?dd</td></td<>	3300		PTP	64/20	d (SVRR)	174				124/25	g (tsymm)	54 ?dd
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			B1r	74/20	0	284 ud	3317		Blfk	114/25	G	254 ud
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			F1s	74/30	δ	74 dd				104/25	o	309 ud
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Flt	84/30	σ	144 dd			Clgk	104/25	σ	254 ud
3302 Glae 74/35 F 59 dd/sin 104/25 σ 334 805 Å5a 92/30 ō 272 ud 104/25 σ 234 92/30 σ 322 ud 104/25 σ 234 92/30 σ 237 ud 104/25 δ 14 92/30 σ 237 ud 104/25 δ 14 92/30 σ 237 ud C11 114/30 σ 234 3303 B5e 82/30 σ 322 ud 114/30 σ 234 3303 B5e 82/30 σ 262 ud 114/30 σ 234 B5f 92/30 σ 267 ud 3318 D1ok 110/30 σ 236 B5f 92/30 σ 267 ud 3318 D1ok 110/30 σ 2360 C5j 72/40 σ 162 ud/sin 3319 D1q 100/40 δ 105	3301		Glaa	64/35	o (symm)	54				104/25	σ	314 ud
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3302		Glae	74/35	F	59 dd/sin				104/25	σ	334 ud
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		805	Aba	92/30	0	272 ud				104/25	G	4 UQ
3303 32/30 a 237 ud c 114/30 a 339 3303 35 82/30 F 92 dd 114/30 a 284 3303 35 82/30 a 322 ud 94/30 a 234 355 92/30 a 262 ud 94/30 a 234 356 92/30 a 267 ud 3318 D1ok 114/30 a 239 357 92/30 a 267 ud 3318 D1ok 110/30 a 260 358 82/30 a 312 ud 311 ud 110/40 a 155 C5j 72/40 a 272 ud 3319 D1q 100/40 a 162 . 72/40 a 342 ud/dex 100/40 a 190 100/40 a 190 100/40 a 190 <t< td=""><td></td><td></td><td></td><td>92/30</td><td>C (SVBB)</td><td>12</td><td></td><td></td><td></td><td>104/25</td><td>δ</td><td>14 ud</td></t<>				92/30	C (SVBB)	12				104/25	δ	14 ud
λ5c 82/30 F 92 dd 114/30 σ 284 3303 B5e 82/30 σ 322 ud 94/30 σ 234 B5f 92/30 σ 262 ud 114/30 σ 234 B5g 82/30 σ 267 ud 3318 D1ok 110/30 σ 260 B5g 82/30 σ 312 ud 3318 D1ok 110/30 σ 260 C5j 72/40 σ 162 ud/sin 110/40 σ 170 72/40 δ 232 ud 3319 D1q 100/40 σ 190 3304 C5k 92/45 σ 342 ud/dex 100/40 σ 190 J304 C5k 92/45 σ 342 ud/dex 100/40 σ 190 J304 C5k 92/45 σ (symm) 172 - E1r<				92/30	C (SITE)	237 ud			C11	114/30	0	339 ud
3303 B5e 82/30 σ 322 ud 94/30 σ 234 B5f 92/30 σ 262 ud 3318 114/30 σ 239 B5g 82/30 σ 267 ud 3318 D1ok 110/30 σ 260 B5h 82/30 σ 312 ud 3318 D1ok 110/30 σ 260 C5j 72/40 σ 162 ud/sin 110/40 σ 170 170 72/40 δ 232 ud 3319 D1q 100/40 F 105 72/40 δ 232 ud 3319 D1q 100/40 σ 190 3304 C5k 92/45 σ 342 ud/dex 100/40 σ 190 3304 C5k 92/45 σ (symm) 172 - E1r 100/40 δ 80 1051 82/45 F </td <td></td> <td></td> <td>A5c</td> <td>82/30</td> <td>P</td> <td>92 dd</td> <td></td> <td></td> <td></td> <td>114/30</td> <td>o</td> <td>284 ud</td>			A5c	82/30	P	92 dd				114/30	o	284 ud
B5f 92/30 σ 262 ud 114/30 σ 239 B5g 82/30 σ 267 ud 3318 D1ok 110/30 σ 260 B5h 82/30 σ 312 ud 3318 D1ok D10/40 δ 155 C5j 72/40 δ 272 ud 3319 D1q 100/40 F 105 72/40 δ 232 ud 3319 D1q 100/40 F 105 72/40 δ 232 ud 100/40 σ 190 100/40 σ 190 72/40 δ 232 ud 100/40 σ 190 100/40 σ 190 100/40 σ 190 100/40 σ 190 100/40 σ 215 100/40 δ 80 100/40 σ 215 100/40 5 20 100/40 5 20 100/40 5 20 <td>3303</td> <td></td> <td>B5e</td> <td>82/30</td> <td>σ</td> <td>322 ud</td> <td></td> <td></td> <td></td> <td>94/30</td> <td>0</td> <td>234 ud</td>	3303		B5e	82/30	σ	322 ud				94/30	0	234 ud
B5g 82/30 σ 267 ud 3318 D1ok 110/30 σ 260 B5h 82/30 σ 312 ud 312 ud D1p 110/40 δ 155 C5j 72/40 σ 162 ud/sin 110/40 σ 170 72/40 δ 272 ud 3319 D1q 100/40 P 105 72/40 δ 232 ud 319 D1q 100/40 P 105 72/40 δ 232 ud 319 D1q 100/40 R 190 3304 C5k 92/45 σ 342 ud/dex 100/40 σ 190 190 190 190 100/40 δ 80 190 100/40 δ 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td></td> <td></td> <td>B5f</td> <td>92/30</td> <td>σ</td> <td>262 ud</td> <td></td> <td></td> <td></td> <td>114/30</td> <td>٥</td> <td>239 ud/sin</td>			B5f	92/30	σ	262 ud				114/30	٥	239 ud/sin
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			B5g	82/30	0	267 ud	3318		Dlok	110/30	0	260 ud
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.53	82/30	0	162 ud/air			DID	110/40	0	100 dd/dor
3304 72/40 5 232 ud 100/40 0 80 3304 C5k 92/45 0 342 ud/dex 100/40 0 80 D51 82/45 F 47 dd 100/40 0 80 82/45 G (syma) 172 E1r 110/45 0 215 72/45 F 52 dd 110/45 0 260 215 72/45 F 52 dd 110/45 0 290 D5m 72/45 F 112 dd 3320 F1uk 100/50 g (±syma)			[[]]	72/40	δ	272 nd	3319		Dic	100/40	P	105 dd
3304 C5k 92/45 σ 342 ud/dex 100/40 σ 190 D51 82/45 F 47 dd 100/40 δ 80 2/45 F 47 dd 100/40 δ 80 72/45 F 52 dd 110/45 σ 215 72/45 F 52 dd 110/45 σ 260 D5n 72/45 F 112 dd 3320 F1uk 100/50 σ 100 ?				72/40	δ	232 ud	3313		214	100/40	0	80 dd
D51 82/45 F 47 dd 100/40 δ 80 82/45 o (symm) 172 E1r 110/45 σ 215 72/45 F 52 dd 110/45 σ 260 110/45 σ 260 72/45 F 112 dd 3320 F1uk 100/50 σ 1290 100	3304		C5k	92/45	G	342 ud/dex				100/40	G	190 sin
82/45 σ (symm) 172 Elr 110/45 σ 215 72/45 F 52 dd 110/45 σ 260 110/45 σ 290 110/45 σ 290 110/45 σ 290 100 24 100/50 σ 120 100 24 100 24 100 24 100 24 100 24 100 24 100 24 100 24 100 24 100 24 100 24 100 24 100 100 24 100 24 100 24 100 100 24 100 100 24 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	utransisti -		D51	82/45	F	47 dd				100/40	δ	60 dd
72/45 F 52 dd 110/45 σ 260 72/45 δ 82 dd 110/45 σ 290 290 290 290 110/45 σ 290 10 290 10 10 290 10 290 10 290 10 290 10 290 10 290 10 290 10 290 100 200 100 200 100 200 100 200 100 200 100 200 100 200 200 <t< td=""><td></td><td></td><td></td><td>82/45</td><td>o (symm)</td><td>172</td><td></td><td></td><td>Blr</td><td>110/45</td><td>σ</td><td>215 ud/sin</td></t<>				82/45	o (symm)	172			Blr	110/45	σ	215 ud/sin
72/45 δ 82 dd 110/45 σ 290 D5m 72/45 F 112 dd 3320 Fluk 100/50 σ 120				72/45	P	52 dd				110/45	a	260 ud
I I I I I I I I I I I I I I I I I I I			D/-	72/45	ð	82 dd	1100		P11	110/45	0	290 ud/sin
3305 906 Ath 20/45 a (4eyan) 249 202	2205	806	D 5M	12/45	e (terma)	249 214	3320		FIUK	100/50	O (ISYMM)	240 204
240 10 100 10 125 mm/ 247 244 1 100/50 0 125 mm/ 240 2	2202	000	ALD	89/45	(ISYMM)	39 44				100/50	0 (TSAmm)	265 ud
λ1c 79/45 σ 289 ud 3321 Glae 110/50 σ 75			Alc	79/45	σ	289 ud	3321		Glae	110/50	a	75 dd
109/45 a 304 ud G1z 120/50 5 160				109/45	٥	304 ud			G1z	120/50	δ	160 dd
3306 Ble 79/35 F 59 dd 120/50 a 85 a	3306		Ble	79/35	P	59 dd				120/50	٥	85 dd

TEUFE [n]	KERN- NARSCH	RERN- STÖCK	SF (FMST)	KRITBRIUM	SCHERSINN	TE []	UPE K m] M	KBRN- IARSCE	KERN- STÖCK	SF (FHST)	KRITERIUN	SCHERSINN
3321	809	Alb	140/50	σ	335 ud	33.	37	813	Alb	95/40	٥	275 ud
3322		Ale	140/50	a	360 ud					300/40	δ	60 ud
			140/50	σ	230 ud				A1c	95/45	δ	335 ud
		Blf	210/40	σ	150 dd					95/45	δ	355 ud
			210/40	٥	210 dd				Blek	100/55	F	330 ud
			210/40	٥	210 dd	33.	38		Blf	100/45	1	150 dd
			210/40	a	100 ud				B1 -	100/45	0	130 QQ
1121		C10	150/30	0	120 44				C1h	140/35	F	250 ud
		City	150/30	δ	130 dd	33	39		Cli	140/50		110 dd
			150/30	G	70 dd				Clk	130/50	δ	290 ud
3324		D1h	50/35	a	50 dd					130/50	٥	300 ud
		D1j	90/35	σ	70 dd				Dim	95/50	o (isymm)	230 ud
			90/35	o	110 dd					100/50	F	250 ud
			90/35	o	110 dd	33	40		Dlok	80/55	ð	270 ud
1105		Elk Pil	290/40	G (1SYAR)	180 ?ud/dex					80/55	I I	DD U8
3372		BII	105/35	0	150 00				Fink	00/35	N N N N N N N N N N N N N N N N N N N	56 08
		F1a	105/30	0 (+svam)	315 2nd	33	41		Flu	115/50	a	310 ud
			100/30	G (±SVRR)	60 ?dd		.		Flv	200/50	2	100 ud
3326		Hlp	260/30	P	170 dd				G1x	100/50	o	120 dd
		Hlu	100/35	σ (±symm)	90 dd					90/50	o (tsymm)	270 ?ud
3327	810	A1e	120/35	o (symm)	110					110/50	σ	260 ud
			120/35	c (±symm)	330 ?ud					110/50	σ	150 dd
3328		Blf	125/40	δ	325 ud	33	42	814	Alb	97/60	F	117 dd
			130/40		300 ud				AICK	110/60	0	90 dd
			110/40	C (ISYMM)	260 nd					300/60	δ X	140 ud
		Cli	110/30	0	300 ud	33	43		Bldk	220/55	δ	165 dd
			110/30	a	290 ud				Cle	90/45	a	300 ud
		C1k	290/30	σ	150 ud					120/45	δ	90 dd
3329		C11	110/30	σ	110 dd	334	44		D1f	130/65	F	100 dd
		D1m	110/30	σ	110 dd					0/65	a	240 ud
			120/30	0	100. dd				D1.0	80/65	0	320 ud
2220		21+	125/35	0	40 00 75 dd				DIG	100/65	P	70 44
2220	811	11h	135/35	0	265 nd	133	46		P11	60/50	F	60 dd
			135/35	G	285 ud				Fin	100/50	a	280 ud
3331		Alc	120/35	σ	285 ud					110/50	F	260 ud
	812	Å1j	130/30	o (±symm)	290 ?ud	33	49	815	Blq	100/40	o (symm)	50
			150/30	٥	350 ud					100/40	F	280 ud
			150/30	٥	360 ud			1.1		100/40	σ	260 ud
		Alkk	150/30	ò	100 dd				C1-1	100/40	2	250 ud
2222		8112	110/30	f (terms)	130 00				CISE	100/40	2	280 ud
2224		DIIK	110/20	U (ISYMM)	230 ud					100/40	F	280 ud
			285/20	F	10 dd	33	50		Ditk	100/45	o (tsymm)	280 ?ud
		Cim	120/25	a	230 ud					100/45	δ	60 dd
			120/25	σ	220 ud	33!	51		Eluk	100/50	F	110 dd
			125/25	δ	35 ud					100/50	F	80 dd
3333		Dlo	100/30	o (±symm)	330 ud	33	54	816	Blck	81/45	F (±synm)	241 ?ud
			120/30	ð	180 dd/sin	1 22			Clak	61/50	G (SYRR)	11 205 2nd
		Plak	100/30	C (ISYME)	210 fud/sin	33	22		Clk	56/65	(ISYMA)	31
		prdy	185/40	δ	75 µd				Cla	51/65	F	251 ud
3335		Glsk	80/50	C (±SYRR)	80 dd				Clu	231/65	o (symm)	21
			70/50	0	300 ud	33	56	817	Alc	81/70	٥	221 ud
		Bitk	80/45	0	300 ud					81/70	C (SYBB)	41
3336		Jlab	100/40	o (±symm)	270 ud				A1k	241/75	F	241 dd
3337	813	Ala	90/40	0	260 ud				814	241/75	G (SYMM)	121 44
			110/40	0	310 ud				DIG	71/75	d (SVBB)	141
			110/40	0	210 00					11/13	o (slmm)	

TEUPE [n]	KERN- NARSCH	KERN- STÖCK	SF (PHST)	KRITERIUM	SCHERSINN	TEUFE [m]	KERN- NARSCE	KERN- STOCK	SF (FNST)	KRITERIUM	SCHERSINN
3356	817	Bld	71/75	٥	311 ud	3372	823	Cle	72/40	F	72 dd
			71/75	σ (symm)	131	3373		D1j	62/40	o (symm)	72
3357	818	Ala	106/60	F	96 dd				62/40	0	167 ud
		Albk	76/50	σ (±symm)	46 ?dd				62/40	F	182 ud
3358		Blck	66/45	٥	231 ud			D1k	62/40	٥	272 ud
		C1e	86/50	F	36 dd	3374		B11	62/45	σ	272 ud
1150		nti	66/50	0 (±symm)	326 ?ud				62/45	d (±symm)	52 ?dd
3333		DIJ	66/60	F	266 ?ud			Fluk	52/45	F	77 dd
		D11	66/60	δ	216 ud				52/45	F	102 dd
			66/60	o (±synn)	296 ?ud				52/45	F	32 dd
3361	819	Blt	55/65	C (SYRE)	86	3375	874	GIPK	12/45	C (SVBB)	322 ud
3302		C1i	106/60	d (±symm)	141 ?dd	3377	0.01	Blc	62/45	P	192 ud
	820	Alf	116/60	0	16 ud	3378		Cld	62/50	o (±symm)	312 ?ud
			116/60	٥	276 ud	3379		Dlj	62/50	F	62 dd
	821	A3d	82/55	o	242 ud	2200		P1-	62/50	o (symm)	57
1161		21F	82/55	a	262 Ud	3380		BID	62/60	5	62 dd
3303		B3d	72/60	o (tsymm)	202 ?ud				62/60	G (SYRE)	22
3364		C3h	52/60	o (tsymm)	332 ?dd			Flv	62/60	σ	42 dd
		C3j	52/60	P	52 dd				62/60	σ	72 dd
		C3k	42/60	P	97 dd	3381		G1t	62/65	c (symm)	92
3365		83p	92/60	C (SYRE)	92	3383	825	AID	94/65	C (cran)	249 ud
			102/60	n (symm)	92			Bic	99/65	o (symm)	29 dd
			92/60	c (symm)	42	1			99/65	o (±symm)	64 ?dd
3366		F3q	92/65	a	272 ud				99/65	σ	49 dd
		G3s	42/65	P	72 dd			81dk	99/65	o (symm)	29
3367		G3u	92/65	Ô P	262 Ud			21.46	99/65	G (SYRR)	74
		634	102/65	c c	187 dd	3384		Clek	79/60	0 (ISAWN)	74 dd
			102/65	σ	177 dd			Dig	84/60	δ	74 dd
		G3w	92/65	F	132 dd	3385		Elm	74/50	σ (synn)	109
		H3aa	52/65	δ	272 ud				74/50	d (symm)	79
		U 2~	52/65	F	262 ud	3386		Flp	279/50	0	314 dd
		H3v	42/65	a	232 ud			Pla	259/50	C (SYBB)	54
			42/65	P	212 ud	3388	826	B2c	71/50	P	221 ud
		H3z	42/65	σ	262 ud			C2h	61/50	σ (symm)	21
3368		IGa	82/65	F	22 dd	3391	827	C4ek	73/65	F	113 dd
	822	Ala	52/65	0	182 ud	3392		D4I	78/65	C (SYRE)	13 44
			52/65	F	92 dd				78/65	F	63 dd
		A1b	62/65	٥	82 dd	3393		84g	73/80	c/F	28 dd
			62/65	Ŧ	72 dd				73/80	c (±symm)	253 ?ud
			62/65	٥	32 dd				73/80	o (symm)	18
1160		RIAN	62/65	F	102 dd	3394		F4D	83/75	O C	318 ud
2203		DIGK	62/63	σ	62 dd			G4n	93/70	d (±symm)	143 ?dd
			62/63	F	352 dd				93/70	0	138 dd
			62/63	F/S	302 ud	3395	828	Blf	102/60	F	102 dd
		Blg	72/63	F	92 dd				102/60	S-C	322 ud
		816	72/63	P	262 ud	1396		Cli	82/60	C (ISYMM)	312 nd
		Bikk	72/63	σ	102 dd	3397		D1k	92/60	P	262 ud
3371	823	Ala	82/62	F	42 dd	e energe			102/60	o (symm)	87
			82/62	P	72 dd				102/60	δ	242 ud
		Alb	82/62	σ	292 ud				102/60	P	222 ud
		BIA	82/52	0	14 dd 247 ud			RIP	102/60	(SVBB)	162
		214	20122		511 UV				1.00/00	a (alam)	

TEUFE [n]	KBRN- MARSCH	KERN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUPE [m]	KBRN- MARSCE	KI S'
3398	829	Alb	82/60	a	92 dd	3431	839	B
			82/60	a	232 ud	1		1
			77/60	δ	282 ud			1
			97/60	o	312 ud			D
			97/60	σ	307 ud	3432		D
			97/60	σ	297 ud			B
			92/60	δ	257 ud	3433		P
3399		Bld	117/55	S-C	287 ud			F
3400	830	Alb	92/55	o	302 ud			F
			92/55	σ	300 ud			1
		Blc	97/55	δ	127 dd			
3401		C1d	112/60	σ	262 ud	3434	840	A
		Cle	317/60	c (±symm)	137 ud			B
3402		Dlf	272/60	σ	232 dd	3435		B
			262/60	σ (±symm)	92 ud			
		Dig	82/60	δ	242 ud			C:
			82/60	7	282 ud			
		Blk	102/60	ð	152 dd			1
3403			82/65	F	92 dd			
2404		FIL	142/05	P (annual)	342 UQ	2427		U.
3404		GIPK	122/60	d (symm)	122 44	2421		5.
2403	- X	015	112/50	2	122 00	1419		0
3406	921	Ala	200/55	I C	150	2420		
3410	832	nsk	110/60	0	40 44			G
3410	833	112	100/60	0	240 ud	3439	841	A
			95/60	d (syna)	70	0100		
		Alb	100/60	0	130 dd			
			90/60	G	130 dd		842	A
			100/60	δ	300 ud			
3411		B2d	160/65	d (±symm)	110 dd			
			245/65	o (symm)	35			
		B2e	170/65	F	210 dd	3440		A1
3412		D2h	30/65	P	190 ud			B
annar (834	Ala	55/65	F	225 ud	3441		C1
3413		CId	95/62	o (symm)	170	3442		C
			95/62	٥	275 ud		1	D
			75/62	٥	65 dd			
3417	835	Blc	49/62	C (SYRE)	34			
3418		810	59/40	r .	69 dd	2442		5.
	0.26	110	14/40	[99 QQ	2662		b .
	830	Ald	69/40	O (ISYMM)	29 QQ			
2410		814	134/50	o (symm)	134 nd			
2412		Ble	119/50	S-C	309 ud			R
3420		Cib	129/50	a (symm)	4			l
3460		010	129/50	a (Sjan)	9 nd			
		D1i	94/55	O (SVBB)	104	3444		G
3422		Fin	131/50	a	131 dd			
			119/50	o (±symm)	109 ?dd			1
		Fin	109/50	٥	249 ud			8
			109/50	o	59 dd			
			109/50	δ	249 ud	3445		H
		Glq	109/50	F/S	319 ud			E
3423		Glt	299/50	P	289 dd	3446	843	B
			269/50	F	279 dd			
		GIV	109/50	P	129 dd			
3424	837	Blg	139/55	C (SYMM)	169	3447		0
1400		CIA	139/55	F	119 00	2440		0
3428	0.20	GIX	139/55	1 (Januar 1	109 00	3448		B.
3429	030	Ala	169/50	o (ISYMM)	189 44	5449		2
2420	033	pic	103/20	0	103 00			1 .

TEUPE [m]	KBRN- Nàrsce	KERN- STÖCK	SF (FMST)	KRITERIUN	SCEBRSINN
3431	839	Bld	169/45	F	189 dd
			169/45	ò	189 dd
			169/45	٥	189 00
		Dlf	119/45	o .	149 dd
3432		Dih	149/45	٥	284 ud
		Bli	134/45	σ (±symm)	99 ?dd
3433		F11	119/45	o	304 ud/dex
		Fin	74/45	٥	104 dd
		Fin	164/45	σ	344 ud
			184/45	δ	324 ud
			214/45	F	24 ud
3434	840	Aldk	179/45	٥	189 dd
		Blf	349/45	d (±symm)	344 ?dd
3435		Blg	344/45	c (±symm)	239 ?ud/sin
			344/45	δ	219 ud
		C1h	179/45	o (±symm)	189 ?dd
			179/45	7	174 dd
			169/45	P	194 dd
			179/45	δ	329 ud
		Cljk	341/40	δ	341 dd
3437		E11	359/45	P	359 dd
			179/45	F	189 dd
3438		G1n	169/50	o (±symm)	159 ?dd
			74/50	o (±symm)	169 ?ud
		Glo	129/55	o (symm)	39
3439	841	Ale	177/60	δ	7 ud
			152/60	٥	37 ud
			147/60	δ	32 ud
	842	Alb	134/65	F	49 dd
		1.110.0	134/65	0	214 dd
			134/65	o (symm)	94
			134/65	0	134 dd
3440		Alc	134/65	P	214 dd/sin
a a a a		Bldk	134/65	٥	39 ud
3441		Clek	134/60	a	79 dd
3442		Clg	169/60	d (±symm)	169 ?dd
		D1h	169/60	σ	214 dd
		D1i	169/60	g (symm)	174
			169/60	a	109 dd
		R1k	179/60	δ	179 dd
3443		R1m	169/60	7	189 dd
			169/60	a	199 dd
			169/60	o (syma)	169
		Fin	169/55	0	119 dd
		Flo	159/55	σ	9 ud
			159/55	a	104 ?dd
			159/55	d (synn)	79
3444		G1p	159/55	a	219 dd
			159/55	a	239 dd/sin
			159/55	o (svam)	54
		81g	139/55	F/S	344 ?ud
			139/55	o (symm)	9
3445		Hit	154/55	S-C	9 ud
		Hit	154/55	S-C	349 ud
3446	843	Blg	144/55	a	359 ud
			144/55	٥	24 ud
			144/55	o	4 ud
3447		Clok	149/50	٥	274 ud
		Dip	109/50	o/s-c	329 ud
3448		Bls	284/40	a	154 ud
3449		Blt	279/40	o (syam)	149
		Fiw	134/40	٥	319 ud

TEUFE [n]	KERN- MARSCH	KERN- STÖCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KBRN- NARSCH	KERN- STÖCK	SF (FNST)	KRITERIUM	SCHERSINN
3449	843	Flw	134/40	P	304 ud	3476	849	Blg	254/30	٥	244 dd
		F1x	134/35	٥	339 ud				349/30	٥	299 dd
		Fly	134/35	0	279 ud			B1h	319/30	a	189 ud
3453	844	DIN	105/25	0/S-C	345 ud	3477		B1K	339/25	a	1/9 Ud
		P1	105/25	0/5-6	665 dd	1 I		DIE	299/25	0	159 ud
		51]	105/25	P	145 dd			81n	109/25	δ	289 ud
3455	845	Alb	83/25	0	218 ud				109/25	a	159 dd
			83/25	F	218 ud			C10	139/25	σ	39 ud
		Alc	83/25	F	203 ud				139/25	σ	299 ud
3456		B1k	103/30	٥	13 ud			Clq	149/25	٥	324 ud
			103/30	٥	328 ud	2420	0.54	Cls	144/25	0	264 ud
			103/30	d	13 ud	14/8	851	AZD	124/25	r R	54 GG
			103/30	σ	358 ud	3479		C21k	124/20	o (tsvan)	324 ?ud
3458		Blag	138/40	o	8 ud	3480		D2m	139/20	d	344 ud
		Blai	153/40	o (±symm)	138 ?dd			D2n	134/20	٥	344 ud
		Blak	133/40	7	8 ud	3481		E2r	139/25	٥	299 ud
3459		Blao	133/50	c (isymm)	143 ?dd				144/25	σ	339 ud
	846	Ala	83/50	0	353 ud/dex	3483	852	Alb	134/40	0 P	334 ud
		AID	103/50	d (SYMM)	23	3484		C1w	154/45	1	294 :ud
		BIC	223/50	n n	158 dd	1401		LIX	129/45	P	289 ud
		Blfk	53/50	G (±SYMM)	218 ?ud		÷	D1z	174/45	٥	44 ud
			53/50	δ	248 ud	3486	853	A2c	134/55	٥	334 ud
3461		Dln	153/40	o (±symm)	313 ?ud	3487		A2d	149/55	σ (±symm)	349 ?ud
3462		Bin	103/35	σ	333 ud			A2g	159/55	o (±synn)	99 ?dd
3463		Glxk	193/30	٥	348 ud			A2h	144/55	δ	304 ud
3464	047	GIY	193/30		348 ud	3400		B41 D2=	134/55	f (terms)	314 Ud
2402	09/	AIK	140/25	o (symm)	45	3490	854	B2e	191/55	d (+symm)	141 200
		Bit	165/25	F	205 dd	5170			156/55	P	166 dd
		Blu	205/25	٥	25 ud	3491		C2m	126/50	σ	96 dd
3466			165/25	δ	50 ud				121/50	σ	66 dd
			165/25	σ (symm)	70	1			126/50	F	86 ?dd
		BIV	165/25	0	20 ud				171/50	G (1SYMM)	1/1 :00
		C1x	115/25	(SYMA)	10	3493		n2-	106/50	2	26 262
3467		Diae	155/35	C (SIMM)	245 dex	3494		B2z	86/50	F	6 ?dd
		Dlag	145/35	٥	360 ud				96/50	F	16 dd
			145/35	a	325 ud			G2afk	16/50	F	16 dd
			145/35	٥	25 ud	3495	855	B2g	120/45	F	70 dd
3468		Elan	295/50	o (symm)	90	3496		B2j	110/45	٥	150 dd
		Plan	215/50	C F	45 UG				95/45	σ	175 44
		riau	160/50	δ	175 dd			C2¥	120/45	a	150 dd
3469		Glav	100/45	F	95 dd	3498	856	Blf	150/40	g (±symm)	160 ?dd
3470	848	Ald	166/45	F	106 dd	3499		D1k	150/45	o (±symm)	330 ?ud
			176/45	δ	336 ud	3501		Bir	180/50	o (±symm)	180 ?dd
			146/45	P	166 dd				175/50	σ (±symm)	335 ?ud
3471		Blf	106/40	a	146 dd	1500		Fit	125/50	٥	145 dd
3472		B10	146/35	f leveni	346 UG	3502		GIW E1e	140/50	a	205 44
3474		DIEK	146/35	d (+symm)	266 ?ud/sin			11]	105/50	σ	100 dd
		Din	181/35	g (±symm)	121 ?dd				125/50	٥	165 dd
3473		B1p	136/35	0	36 ud				110/50	٥	135 dd
3474		Flq	181/30	٥	46 ud	3503	857	Alb	250/40	δ(p)σ(s)	350 ud
			181/30	٥	46 ud	3504		Bld	220/40	o (symn)	55
3475	849	Alb	154/30	o (symm)	64			Ble	230/40	0	220 dd
		AIC AIA	154/30	P	169 44			R1F	240/40	a	250 44
3476		Alf	124/30	a	264 ud	3505		D1k	260/35	a	275 dd
5175			104/00								

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ENN
3506 858 A2c 240/35 a 40 ud 3507 B2j 220/35 a 130 ud 3507 B2j 220/35 a 160 dd 3507 B2j 220/35 a 160 dd 3507 B2j 220/35 a 180 dd 3507 B2k 220/35 a 180 dd 3507 B2k 220/35 a 190 dd 3507 B2l 220/35 a 190 dd 3508 C2h 220/35 a 190 dd 3508 C2h 220/35 a 180 dd 200/35 F 170 dd 200/35 a 180 dd 3509 D2p 150/45 a 155 dd 155 dd 3510 F2u 180/45 c 230 dd 180 dd	
3506 858 λ2c 240/35 σ 40 ud 3507 B2j 220/35 σ 130 ud 3507 B2j 220/35 σ 150 dd 3507 B2j 220/35 σ (syma) 10 3507 B2k 220/35 σ (syma) 140 3507 B2l 220/35 σ 190 dd 3508 C2h 220/35 σ 190 dd 3508 C2h 220/35 σ 190 dd 3509 D2p 150/45 σ 180 dd 3510 F2u 180/45 σ 200 dd 3510 F2u 180/45 σ 230 dd 3511 B2x 180/45 σ 230 dd 3511 B2x 130/45 σ 230 dd 3515 B2x 130/45	
A2e 240/35 σ 130 ud 3507 B2j 220/35 σ 160 dd 3507 B2k 220/35 σ (syma) 10 3507 B2k 220/35 σ (syma) 140 3507 B2l 220/35 σ 190 dd 3508 C2h 220/35 σ 190 dd 3508 C2h 220/35 σ 180 dd 200/35 σ 190 dd 200/35 F 170 dd 3509 D2p 150/45 σ 180 dd 200 dd 3510 F2u 180/45 σ 200 dd 115 dd, 3511 B2x 180/45 σ 230 dd 115 dd, 3511 B2x 130/45 σ 205 dd, 115 dd, 3515	
3507 B2j 220/35 σ 160 dd 3507 B2k 220/35 σ (syma) 10 3507 B2k 220/35 σ (syma) 30 3507 B2k 220/35 σ (syma) 140 3508 C2h 220/35 σ 190 dd 220/35 σ 190 dd 3508 C2h 220/35 σ 190 dd 220/35 σ 190 dd 3509 D2p 150/45 σ 180 dd 200 dd 180 dd 200 dd 115 dd 120 dd 200 dd 155 dd <td< td=""><td></td></td<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3507 220/35 0 (symn) 30 3507 220/35 a (symn) 140 B21 220/35 a 190 dd 3508 C2h 220/35 a 190 dd 3508 C2h 220/35 a 190 dd 3509 D2p 150/45 a 180 dd 3510 F2u 180/45 a 200 dd 3510 F2u 180/45 a 115 dd, 180/45 a 115 dd, 115 dd, 3511 H2x 180/45 a 205 dd, 180/45 a 205 dd, 115 dd, 3511 H2x 180/45 a 205 dd, 3515 E2z 90/35 a 155 dd, 3516 F1ad 90/35 a 25 dd,	
3507 B21 220/35 0 (Sym) 140 B21 220/35 a 190 dd 3508 C2h 220/35 a 190 dd 3508 C2h 220/35 a 190 dd 3509 D2p 150/45 a 180 dd 3509 D2p 150/45 a 200 dd 3510 F2u 180/45 a 90 sin 180/45 a 115 dd 180/45 a 230 dd 3511 H2x 180/45 a 230 dd 180/45 a 230 dd 3511 H2x 180/45 a 205 dd 130 45 a 205 dd 3511 H2x 180/45 a 205 dd 115 dd 3515 E2z 90/35 a 255 dd 115 dd	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3508 C2h 220/35 5 190 dd 3509 D2p 150/45 5 190 dd 3509 D2p 150/45 5 190 dd 3509 D2p 150/45 5 155 dd 3510 F2u 180/45 5 155 dd 3511 180/45 5 155 dd 180/45 5 115 3511 B2x 180/45 5 115 dd 180/45 5 115 3511 B2x 180/45 5 115 dd 180/45 5 115 dd 3512 859 B2e 130/45 5 115 dd 3515 E2z 90/35 5 15 dd 110/35 3 80 dd 3516 F1ad 90/35 5 0 sin A1e 80/35 F 70 dd 3517	
3500 120 220/35 a 180 dd 3509 D2p 150/45 a 200/35 F 170 dd 3509 D2p 150/45 a 200 dd 155 dd 3510 F2u 180/45 a 90 sin 180 dd 3510 F2u 180/45 a 90 sin 180/45 a 90 sin 3510 F2u 180/45 a 115 dd 180/45 a 90 sin 3511 B2w 130/45 a 205 dd 115 dd 3512 859 B2w 130/45 a 115 dd 116 116 116 116 116 116 116 116 116 11	
200/35 F 170 dd 3509 D2p 150/45 o 200 dd 3510 F2u 180/45 o 90 sin 3510 F2u 180/45 o 115 dd, 3511 F2u 180/45 o 115 dd, 3511 H2x 180/45 o 230 dd 3511 H2x 180/45 o 230 dd 3512 859 B2e 130/45 o 205 dd, 3515 E2z 90/35 o 155 dd 3516 F1ad 90/35 o 85 dd 3516 F2ac 90/35 o 25 dd 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 o (±symm) 80 ?ud C2o 240/35 5/F 180 dd C2p	
3509 D2p 150/45 σ 200 dd 3510 F2u 180/45 σ 90 sin 3510 F2u 180/45 σ 90 sin 180/45 σ 115 dd 180/45 σ 230 dd 180/45 σ 230 dd 180/45 σ 230 dd 3511 H2x 180/45 σ 265 dd 3512 859 B2e 130/45 σ 205 dd 3515 E2z 90/35 δ 115 dd 110/35 3516 F1ad 90/35 σ 85 dd 78 A1c 90/35 σ 25 dd 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 σ (±symm) 80 ?ud 205 dd 3518 C22 240/35 δ/F 180 dd 225 sin 3519 D2s 185/35 F 30 ud	
3510 F2u 150/45 δ 155 dd 3510 F2u 180/45 σ 90 sin 180/45 σ 115 dd 180/45 σ 115 3511 H2x 180/45 σ 230 dd 180/45 σ 230 dd 3511 H2x 180/45 σ 265 dd 180/45 σ 205 dd 3512 859 B2e 130/45 σ 205 dd 115 dd 3515 E2z 90/35 δ 115 dd 110/35 σ 80 dd 3516 F1ad 90/35 σ 25 dd 110/35 σ 85 dd 3516 F2ac 90/35 σ 25 dd 3517 861 λ2a 160/35 F 70 dd 3518 C21 230/35 σ 153 dd 205 <td< td=""><td></td></td<>	
3510 F2u 180/45 σ 90 sin 180/45 σ 115 ddd 180/45 σ 115 ddd 3511 180/45 σ 230 dd 180/45 σ 230 dd 3511 H2x 180/45 σ 265 dd 180/45 F 100 dd 3512 859 B2e 130/45 σ 205 dd/ 130/45 3515 E2z 90/35 δ 115 dd 110/35 σ 80 dd 3516 F1ad 90/35 σ 25 dd 110/35 σ 85 dd 3517 861 A1c 90/35 σ 25 dd 3518 3518 C21 230/35 σ (±symm) 80 ?ud C20 240/35 δ/F 180 dd 3519 D2s 185/35 F 30 ud 30 ud 30 ud	
180/45 0 115 dd. 180/45 0 230 dd. 180/45 0 230 dd. 3511 H2x 180/45 0 230 dd. 3512 859 B2e 130/45 0 265 dd. 3515 H2x 180/45 F 100 dd. 130/45 5 115 dd. 3515 H2z 90/35 5 115 dd. 110/35 0 80 dd. 3516 Flad 90/35 0 85 dd. 110/35 0 80 dd. 3516 Flad 90/35 0 85 dd. 110/35 0 85 dd. 3517 861 A1c 90/35 0 0 sin A1e 80/35 F 70 dd. 3518 C21 230/35 0 (±symm) 80 ?ud. C20 240/35	0
180/45 0 230 dd 3511 180/45 0 265 dd 3512 859 B2e 130/45 0 205 dd 3515 E2z 90/35 5 115 dd 110/45 0 130/45 3515 E2z 90/35 5 15 dd 110/35 0 80 dd 3516 F1ad 90/35 0 85 dd 110/35 0 85 dd 3516 F2ac 90/35 0 25 dd 110/35 0 sin 3517 861 A1c 90/35 0 0 sin 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 0 1s0 rd c2v 240/35 5/F 180 dd 3519 D2s 185/35 F 30 ud dd	/sin
180/45 σ 265 dd 3511 H2x 180/45 F 100 dd 3512 859 B2e 130/45 σ 205 dd, 3515 E2z 90/35 δ 115 dd 3516 F1ad 90/35 σ 85 dd 3516 F1ad 90/35 σ 85 dd 3516 F1ad 90/35 σ 85 dd 3517 861 A1c 90/35 σ 25 dd 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 σ (±symm) 80 ?ud C20 240/35 δ/F 180 dd C21 230/35 σ (±symm) 80 ?ud C20 240/35 δ/F 180 dd C21 190/35 5 285 si 3519 D2s	
3511 H2x 180/45 F 100 dd 3512 859 B2e 130/45 σ 205 dd, 3515 B2z 90/35 δ 115 dd 3515 E2z 90/35 δ 15 dd 3516 F1ad 90/35 σ 85 dd 3516 F1ad 90/35 σ 85 dd 3517 861 A1c 90/35 σ 25 dd 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 σ 125 dd C2o 240/35 δ/F 180 dd C2p 190/35 δ 285 sin 3519 D2s 185/35 F 30 ud	
3512 859 B2e 130/45 σ 205 dd, 130/45 δ 115 dd, 130/45 δ 115 dd, 115 dd, 110/35 σ 80 dd, 110/35 σ 80 dd, 110/35 σ 80 dd, 110/35 σ 85 dd, 110/35 σ 25 dd, 130/35 σ 130/45 130/45 130/45 σ 130/45 σ 130/45 130/45 130/45 130/45 130/45 130/45 130/45 130/45	
3515 E2z 90/35 δ 115 dd 3515 E2z 90/35 δ 15 dd 3516 F1ad 90/35 σ 80 dd 3516 F1ad 90/35 σ 85 dd 3516 F1ad 90/35 σ 85 dd 860 A1c 90/35 σ 25 dd A1e 80/35 F 70 dd 3517 861 A2a 160/35 F 205 dd 3518 C21 230/35 σ 125 dd 220 240/35 δ/F 180 dd C20 240/35 δ/F 180 dd C22 190/35 δ 285 si in 3519 D2s 185/35 F 30 ud	sin
3515 E2z 90/35 δ 15 dd 3516 Flad 90/35 a 80 dd 3516 Flad 90/35 a 85 dd 3516 Flad 90/35 a 25 dd 860 A1c 90/35 5 0 sin A1e 80/35 F 70 dd 3517 861 A2a 160/35 F 205 dd 3518 C21 230/35 a (±symm) 80 ?ud C2o 240/35 δ/F 180 dd C2p 190/35 δ 285 sin 3519 D2s 185/35 F 30 ud	
3516 F1ad 90/35 o 80 dd 3516 F1ad 90/35 o 85 dd F2ac 90/35 o 25 dd 860 A1c 90/35 o 25 dd 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 o (±symm) 80 ?ud C2o 240/35 6/F 180 dd 225 dd 3519 D2s 185/35 F 30 ud	
J316 Flad 50/35 0 85 dd F2ac 90/35 0 25 dd 860 A1c 90/35 5 0 sin A1e 80/35 F 70 dd 3517 861 A2a 160/35 F 205 dd 3518 C21 230/35 0 (±symm) 80 ?ud C20 240/35 5/F 180 dd C2p 190/35 5 285 sin 3519 D2s 185/35 F 30 ud	
860 A1c 90/35 5 0 13 dd 3517 861 A2a 160/35 F 70 dd 3518 C21 230/35 o (±symm) 80 ?ud C2o 240/35 5/F 180 dd C2p 190/35 5 285 sin 3519 D2s 185/35 F 30 ud	
360 A1c 50/35 6 0 51 A1e 80/35 F 70 dd 3517 861 A2a 160/35 F 205 dd 3518 C21 230/35 o (±symm) 80 ?ud C2o 240/35 5/F 180 dd C2p 190/35 5 285 sin 3519 D2s 185/35 F 30 ud	
Ale 50/55 F 70 60 3517 861 Å2a 160/35 F 205 dd 3518 C21 230/35 o (±symm) 80 ?ud C2o 240/35 5/F 180 dd C2p 190/35 5 285 sin 3519 D2s 185/35 F 30 ud	•
3517 601 π22 100/35 1 205 60 3518 C21 230/35 0 (±symm) 80 ?ud C20 240/35 δ/F 180 dd C2p 190/35 δ 285 sin 3519 D2s 185/35 F 30 ud	
C2o 240/35 5/F 180 dd C2p 190/35 5 285 sin 3519 D2s 185/35 F 30 ud	
C2p 190/35 5 285 sin 3519 D2s 185/35 F 30 ud	
3519 D2s 185/35 F 30 ud	٥
3520 B2z 155/35 F 130 dd	
155/35 F 130 dd	
3521 862 A3b 170/35 5 195 dd	
170/35 F 160 dd	
3522 A3d 170/35 σ (±symm) 170 ?dd	
C3k 120/35 F 150 dd	
150/35 d 115 dd	
150/35 G 320 UQ	
150/35 5 45 44	
1522 Clm 75/35 5 (+cvmm) 300 2ud	
3524 R3t 140/35 g 160 dd	
3526 G3aa 70/35 6/F 40 dd	
3527 863 A2e 170/25 8 55 ud	
λ21 180/25 σ 120 dd	
3528 B2n 180/25 5 265 siz	n
3530 D2aa 210/25 σ 5 ud	
3532 G2am 110/20 c (symm) 145	
3533 865 A2d 90/20 5 190 ud	
3535 B2n 160/20 δ 270 ud	
3536 D2q 170/35 δ 10 ud	
E2v 250/35 a 105 ud	
250/35 a 90 ud	
3538 F2ak 215/35 8 105 ud	
3333 300 BIG 50/35 0 240 Ud	
00 00 CC 100 DC 100 DC	
1540 C1f 100/35 c (+cvm) 340 2ud	
3541 Dihk 190/35 & 295 nd	

TEUFE [m]	KERN- MARSCH	KERN- STÖCK	SF (PNST)	KRITERIUM	SCI	HERSINN
3571	866	D1bk	190/35	δ	295	ud
			190/35	δ	310	ud
		D11	170/35	σ	50	ud
		Dim	170/35	δ/F	280	ud
3542		Blr	170/35	٥	40	ud
3551	870	C9g	35/45	o (±symm)	10	?dd
3552		D9h	30/45	F	240	ud
			30/45	F	180	ud
3554	871	Ble	10/45	o (±symm)	40	?dd
3555		Blg	340/45	٥	290	dd/dex
		C1h	350/45	δ/F	50	dd/dex
3562	872	G1r	140/15	o (symm)	160	
3569	874	Blbk	250/50	g (symm)	160	

Legende: SF (PMST) = Reorientierte Raumlage der Foliation: o = Sigma-Klast: ô = Delta-Klast: symm = symmetrisch: F = Faltung: (p) = primär: (s) = sekundär: SB = Scherbänder; Bk = Bookshelf Structures: S-C = S-C-Gefüge: Bd = Boudinage; ud = up-dip (Bewegung des tektonisch Hangenden gegen die Binfallsrichtung der Foliation): dd = down-dip (Bewegung des tektonisch Hangenden in Einfallsrichtung der Foliation).

H. Felsmechanik

Th. Röckel O. Natau

	KTB-Report	91-3	H1-14	7 Abb.	Hannover 1991
_					

Nachtrag zur KTB-Vorbohrung

Tiefbohrung KTB Oberpfalz VB - Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach, Teufenbereich von 3000 m 4000 m

H Felsmechanik

RÖCKEL, Th.* und NATAU, O.**)

Inhaltsverzeichnis

Seite

H.1	Einleitung	H	3
H.2	Ergebnisse der felsmechanischen Indexversuche	Н	5
H.2.1	Einaxiale Druckfestigkeitsversuche	Н	5
Н.2.1.1	Einaxiale Druckfestigkeiten im Teufenbereich von 3000 m bis 3575 m (Biotit-Gneise)	H	6
H.2.1.2	Einaxiale Druckfestigkeiten im Teufenbereich unterhalb von 3575 m (Metabasite)	Н	8
Н.2.1.3	Einaxiale Druckfestigkeiten im Bereich von Störungs- und Kataklasezonen	Н	10
H.2.2	Indirekte Zugfestigkeitsversuche	Η	11
H.2.2.1	Indirekte Zugfestigkeiten im Teufenbereich von 3000 m bis 3575 m (Biotit-Gneise)	Н	13
Н.2.2.2	Indirekte Zugfestigkeiten im Teufenbereich unterhalb von 3575 m (Metabasite)	Н	13
Н.3	Literaturverzeichnis	Н	14

Anschriften der Verfasser)

- * KTB-Feldlabor, D-8486 Windischeschenbach
- ** Lehrstuhl für Felsmechanik Institut für Boden- und Felsmechanik Universität (TH) Fridericiana Karlsruhe 7500 Karlsruhe

H.1 Einleitung

Die Ergebnisse der felsmechanischen Indexversuche von 3000 m bis 4000,1 m werden in diesem Arbeitsbericht zusammengefaßt. Es wurden 37 einaxiale Druckfestigkeitsversuche und 54 indirekte Zugfestigkeitsversuche durchgeführt. Die Ergebnisse sind in Tab. H.1 aufgelistet. Die überwiegende Anzahl der Versuche wurde im KTB-Feldlabor mit einer servogeregelten 1000 kN Prüfmaschine durchgeführt. Einige einaxiale Druckfestigkeitsversuche, bei denen zusätzlich die Querdehnung gemessen wurde, sind mit einer servogeregelten 5000 kN Prüfmaschine am Lehrstuhl für Felsmechanik in Karlsruhe durchgeführt worden. Die Versuchsbedingungen sind bei RÖCKEL&NATAU (1989a) beschrieben.

Tab H.1.: Ergebnisse der einaxialen Druckfestigkeitsversuche Legende: ou = Einaxiale Druckfestigkeit, BIO-GNS =Biotit-Gneis, LAM = Lamprophyr, GNT-AMP = Granat-Amphibolit, MET-GAB = Metagabbro, MET-UMA = Meta-Ultramafitit, x = massig.

Kernstück	Lithologie	Teufe	Einfall- winkel	(MPa)	E-Modul (GPa)
737A1c 742B1c 746E2nk 75C3G1ab 769A3e 776D1q 778F7h 781D1e 784B2d 784C2gKb 797B1e 801A1c 804G1aa 810C11 814G1q 816A1bKk 830C1e 836F1u 846B1fk 836F1u 846B1fk 836C1e 836F1u 846B1fk 836C1e 836C1e 836C1e 836C1c 883C1fk 836C1p 890B1g 890B1g 8902G2wk 9909F1k 911B1j 923D1pk 939B1b	BIO-GNS BIO-GN	3011.29 3032.321.32 3057.915.30 31134.209.3146.984.33146.984.33196.2204.33146.993.3146.999.31745.984.33196.2204.3322645.754.3322645.759.322645.333247.155.220.332465.759.322645.333342.2490.43345388.834468.855599.3055446.81855599.3055446.81855599.3355599.34222.4704.33453.883355599.3054.466.81855599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.33555599.3355599.33555599.33555599.335555599.335555599.335555599.33555559559555595555595555559555559555555	40500020020020020020020020020020020020020	$\begin{array}{c} 47.5\\ 53.390\\ 7.21\\ 26653936\\ 8831.5\\ 1424163.8\\ 1055721.5\\ 1424163.8\\ 105572.11544000\\ 0304440\\ 11928637.8\\ 455772.11544000\\ 1335060.0\\ 0304440\\ 1240954.\\ 133546240\\ 153672.115440\\ 122624\\ 2587640\\ 133546240\\ 122624\\ 2587640\\ 133546240\\ 122624\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 2587640\\ 122640\\ 122640\\ 2587640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 122640\\ 12266$	44444444444444444444444444444444444444

Bedingt durch bohrtechnische Probleme stehen Bohrkerne aus der Vorbohrung 1a nur bis zu einer Teufe von 3893 m zur Verfügung.

Der Probendurchmesser betrug 94 mm. Die einaxialen Druckfestigkeiten einiger Metabasitproben unterhalb von 3575 m wurde an 50 mm Plugs geprüft, weil die 94 mm Probekörper mit der 1000 KN Prüfmaschine (144,0 MPa) nicht mehr zu Bruch gefahren werden konnten. In der Metabasit-Abfolge unterhalb von 3575 m waren einige Kernstrecken durch Core-Disking (BORM et al. 1989, NATAU et al. 1989) und Axial-Splitting Strukturen so stark beansprucht, daß in diesen Bereichen keine einaxialen Druckfestigkeitsversuche und indirekten Zugfestigkeitsversuche durchgeführt werden konnten.

Abb. H.1.: Einaxiale Druckfestigkeiten und E-Moduli im Teufenbereich von 3000 m bis 4000 m. Offene Quadrate = Biotit-Gneise, schwarze Quadrate = Metabasite.
H.2.1 Einaxiale Druckfestigkeitsversuche

Im Teufenintervall unterhalb von 3000 m zeichnet sich eine deutliche Abhängigkeit der einaxialen Druckfestigkeiten von der Lithologie ab. Bis 3575 m wurden im wesentlichen Biotit-Gneise durchteuft, die nur gelegentlich von geringmächtigen Lamprophyrgängen und bei 3200 m von einigen Metabasit-Einschaltungen unterbrochen wurden. Im Teufenbereich bis 3575 m dominieren lagige Muskovit-Biotit-Gneise über feinkörnigstrafflagige (Granat) Biotit-Gneise (MÜLLER et al. 1989). Das Einfallen der Foliation ist recht wechselhaft, gelegentlich liegt sie söhlig.

Unterhalb dieser mächtigen Biotit-Gneise folgen bis zur Endteufe Metabasite die hauptsächlich aus Amphiboliten und einigen Meta-Gabbros bestehen (SIGMUND et. al. 1990). Diese Metabasite sind makroskopisch meist recht massig und isotrop ausgebildet. Die einaxialen Druckfestigkeiten und die E-Moduli der Proben in Abhängigkeit von der Teufe sind in Abb. H.1 dargestellt.

Abb. H.2.: Einaxialer Druckfestigkeitsversuch an einer Biotit-Gneis Probe mit 45° einfallender Foliation aus einer Teufe von 3185,98 m. Der Scherbruch erfolgte bevorzugt entlang der Foliationsflächen.

H.2.1.1 Einaxiale Druckfestigkeiten im Teufenbereich von 3000 m bis 3575 m (Biotit-Gneise)

Die Werte für die einaxialen Druckfestigkeiten der Biotit-Gneise im Teufenbereich von 3000 m bis 3575 m streuen über weite Bereiche. Der Mittelwert für die einaxialen Druckfestigkeiten dieser meist flach einfallenden Biotit-Gneise beträgt 81,0 MPa. Er ist deutlich höher als der Mittelwert von 42,8 MPa für die steil einfallenden Biotit-Gneise zwischen 1610 m und 2480 m (RÖCKEL&NATAU 1989b).

EINAXIALER DRUCKVERSUCH: KTB/VB/GK 76461 29.03.89

Belastungs-Geschwindigkeit: 2.0 MN/m²min Zahl der Lastzyklen: 1 Lastwechsel-Pause: 2.0 min $dmax = 151.1 \text{ MN/m}^2 = E 40-60 = 49207 \text{ MN/m}^2 = V 40-60 = 0.22$

Abb. H.3.: Arbeitslinie eines söhlig lagernden Biotit-Gneises aus einer Teufe von 3133,2 m. Neben der Längsdehnung wurde auch die Querdehnung gemessen. Die Bruchfestigkeit beträgt 151,0 MPa, der E-Modul 49,2 GPa und die Poissonzahl 0,22. Den niedrigsten Wert für die einaxiale Druckfestikgeit in der untersten Biotit-Gneis-Abfolge besitzt die Probe 797B1c aus einer Teufe von 3264,89 m mit 28,3 MPa. Der E-Modul, dieser Probe deren Foliation mit 40° einfällt, ist mit 10,5 GPa sehr niedrig. In Probe 778F7h trat der Scherbruch bevorzugt entlang der Foliation ein, die mit etwa 45° einfällt (Abb. H.2).

Die höchste einaxiale Druckfestigkeit wurde mit 151,0 MPa am Kernstück 764Glab aus einer Teufe von 3133,2 m gemessen. Der E-Modul dieser Probe ist mit 49,2 GPa für einen Biotit-Gneis recht hoch. Die Foliation in diesem Kernmarsch fällt sehr flach ein, in der untersuchten Probe lag sie söhlig. Das Spannungs-Dehnungs-Diagramm zeigt über weite Belastungsbereiche ein lineares Verhalten. Nur zu Beginn der Belastung ist die Arbeitslinie konkav gekrümmt. Vorhandene Mikrorisse werden geschlossen und parallel zur Foliation eingeregelte Schichtsilikate werden deformiert. Von 50 MPa aufwärts besitzt die Probe bis zum Bruch ein lineares Spannungs-Dehnungs-Verhalten. Bei dieser Probe wurde auch die Querdehnung bestimmt. Die Poissonzahl beträgt 0,22 (Abb. H.3).

Die einaxiale Druckfestigkeit und die E-Moduli sind in den Biotit-Gneisen stark vom Einfallwinkel der Foliation abhängig. Bei sehr flacher Foliation sind die Werte recht hoch. Sie nehmen mit zunehmendem Einfallwinkel sehr stark ab, um bei 55° bis 60° Einfallen die geringsten Werte zu erreichen. Hier kann es leicht zum Scherbruch entlang der Foliationsflächen kommen. Mit weiter zunehmendem Einfallwinkel der Foliation nehmen die Festigkeiten wieder leicht zu (Abb. H.4). Da in diesem Teufenintervall die Biotit-Gneise die niedrigsten Einfallwerte in der KTB-Vorborhung besitzen, ist es verständlich, daß die Festigkeiten in diesem Teufenintervall relativ hoch sind.

In die Biotit-Gneise sind gelegentlich geringmächtige Metabasitkörper und Lamprophyrgänge eingeschaltet. Die Metabasitprobe 784B2d aus einer Teufe von 3209,7 m besitzt ein E-Modul von 51,7 GPa. Die einaxiale Druckfestigkeit beträgt 141,6 MPa, wobei sich der Bruch bei dieser Probe schon relativ früh durch eine deutliche Verflachung der Arbeitslinie andeutete.

Bei 3347 m ist in die Biotit-Gneise ein Lamprophyrgang eingeschaltet. Dieser Lamprophyr ist feinkörnig, massig und isotrop ausgebildet. Die einaxiale Druckfestigkeit des Kernstücks 814G1p aus einer Teufe von 3347,15 m beträgt 108,8 MPa bei einem E-Modul von 40,4 GPa.

Abb. H.4.: Abhängigkeit der einaxialen Druckfestigkeiten der Biotit-Gneise vom Einfallwinkel der Foliation Teufenintervall von 3000 m bis 3575 m.

H.2.1.2 Einaxiale Druckfestigkeiten im Teufenbereich unterhalb 3575 m (Metabasite)

Die Metabasit-Abfolge unterhalb von 3575 m reicht bis zur Endteufe der Vorbohrung und besteht hauptsächlich aus Amphiboliten und Meta-Gabbros (SIGMUND et al. 1990). In diese Metabasit-Abfolge ist zwischen 3716,7 m und 3720,2 m ein Meta-Ultramafitit-Körper eingeschaltet.

Die Metabasite besitzen im Mittel mit 207,6 MPa die höchsten einaxialen Druckfestigkeiten und mit 66,4 GPa die höchsten durchschnittlichen E-Moduli aller Gesteinseinheiten in der KTB-Vorbohrung. Die Proben verhalten sich nach der Schließung der Mikrorisse bei Belastungsbeginn bis zum Bruch der Probe weitgehend linear-elastisch. Die höchste einaxiale Druckfestigkeit in der Vorbohrung wurde am Kernstück 931D2fK aus einer Teufe von 3816,59 m mit 265,4 MPa gemessen.

Die Querdehnung wurde in diesem Teufenbereich an einem Granat-Amphibolit (Kernstück 909F1k) aus einer Teufe von 3709,32 m gemessen. Das Spannungs-Dehnungs-Diagramm dieser Probe zeigt kein ausgprägtes linear-elastisches Verhalten. Mit zunehmender Belastung wird die Arbeitslinie zunehmend steiler, bei einer Belastung von 110 MPa kam es zu ersten Rissen in der Probe. Der Bruch der Probe erfolgte bei einer Belastung von 167,3 MPa. Der E-Modul dieser Probe war mit 90,0 GPa sehr hoch. Die Poissonzahl, die im Bereich von 40% und 60% der Bruchspannung ermittelt wurde, beträgt 0,33 (Abb. H.5) und ist somit deutlich höher als in der Bioitit-Gneisprobe mit söhliger Foliation.

Abb. H.5.: Einaxialer Druckfestigkeitsversuch mit Querdehnungsmessung an einer Metabasit-Probe aus einer Teufe von 3709,32 m. Die einaxiale Druckfestigkeit beträgt 167,3 MPa, der E-Modul 90,0 GPa und die Poissonzahl 0,33.

H.2.1.3 Einaxiale Druckfestigkeiten im Bereich von Störungszonen und offenen Klüften

Die Kataklasite unterhalb von 3000 m sind nur noch einige Zentimeter mächtig und weniger verbreitet (MÜLLER et al. 1989). Bei 3199,7 m wurde eine dm-mächtige steile Störungszone bei vollem Kerngewinn erbohrt. Sie besteht aus einem 2cm mächtigen mit Quarz und Feldspat mineralisierten Kataklasit und einem 0,5 cm starken tonig weichen Ultra-Kataklasit.

Die einaxiale Druckfestigkeit des Kernstücks 781D1e aus einer Teufe von 3196,24 m, nur etwa 3 Meter von der Störungszone entfernt, betrug 129,2 MPa und besaß somit einen der höchsten Werte in der Biotit-Gneis Abfolge bis 3575 m. Unterhalb der Störung waren die einaxialen Druckfestigkeiten, bis zu einer Entfernung von ca. 10 m Entfernung, mit 116,6 MPa in den Biotit-Gneisen und 141,6 MPa in den Metabasiten recht hoch. Dies ist ein wichtiger Unterschied zu den graphitischen Kataklasezonen wie z.B. zwischen 2156 und 2187 m. In dieser Zone standen zwischen 2128 m und 2192 m praktisch keine geeigneten Kerne für die einaxialen Druckfestigkeitsuntersuchungen zur Verfügung. Bei 2128 m, über 30 m vom Kern der Kataklasezone entfernt, besaß die Probe 478B1h eine einaxiale Druckfestigkeit von nur 18,8 MPa (RÖCKEL&NATAU 1989).

Dies deutet darauf hin, daß mit zunehmender Teufe die Mächtigkeiten der Störungszonen abnehmen und sich ihr Einfluß relativ rasch wieder verliert. Wenige Meter von diesen tiefen Störungszone entfernt können sich wieder hohe Festigkeiten einstellen.

Abb. H.6.: Offene Kluft mit Fluidzutritten in das Bohrloch aus einer Teufe von 3817 m.

In der KTB-Vorbohrung wurden bei 3447 m und bei 3817 m offene Klüfte durchteuft, wobei es zu deutlichen Zuflüssen von hochsalinaren Fluiden in das Bohrloch kam. Das Kernstück 931D2fK, das weniger als ein Meter von dieser offenen Kluft entfernt war (Abb. H.6), besitzt eine einaxiale Druckfestigkeit von 265,4 MPa und ist somit die höchste einaxiale Druckfestigkeit die in der gesamten Vorbohrung gemessen wurde. Dieses deutet darauf hin, daß in großen Teufen das Gebirge durch solche Klüfte nur über sehr kurze Entfernungen gestört wird. Andernseits ist die hohe Druckfestigkeit ein Indiz dafür, daß sich in solchen Bereichen sehr hohe Spannungen akkumulieren können.

H.2.2 Indirekte Zugfestigkeitsversuche

Im Teufenbereich von 3000 m bis 4000 m wurden 27 Probenpaare auf ihre indirekte Zugfestigkeit untersucht. Bei den foliierten Gneisen wurden jeweils ein indirekter Zugversuch parallel und senkrecht zur Streichrichtung der Foliation durchgeführt. Die Metabasite wurden parallel und senkrecht zur bevorzugten Rissrichtung geprüft.

Tab. H.2.: Ergebnisse der indirekten Zugfestigkeitsversuche. Legende: rt max = Zugfestigkeit parallel zur Streichrichtung der Foliation in den Biotit-Gneisen und maximale Zugfestigkeit in den Metabasiten, rt min = Zugfestigkeit senkrecht zur Streichrichtung der Foliation in den Biotit-Gneisen und minimale Zugfestigkeiten in den Metabasiten.

Kern- stück	Lithologie	Teufe (m)	rt max.	rt min.	Einf. Fol.	
742C1f 764G1ab 769D31k 780G1n 784C2gk 805B5f 810C11 816A1bk 822B1hk 836E1k 836E1k 846B1fk 846B1fk 846B1fk 851D2m 855C2k 859C2k 859C2k 859C2k 859C2k 859C2k 859C2k 86D2p 891A1af 902G2wK 909F1k 910E1j 923D1p 931D2fk 939B1d 950D3d	BIO-GNS CONS CONS CONS CONS CONS CONS CONS CO	3032.96 3148.79 3198.25 3210.827 3329.23 3329.23 3359.26 3421.52 3421.52 34496.74 3496.74 35539.26 3627.19 36	9.9 115.66 14.66 108.05 127.52 109.06 109.06 127.58 109.06 123.58 109.06 123.56 109.06 123.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 10.52 14.66 10.52 10.55 10	7.4 6.59 3.80 13.00 11.6 6.88 7.55 4.02 13.6 2.3524 8.7 10.55 90.8 18.5	4 050005005500550 X X X X X X X X X X X X	

Die Rissrichtung wurde entweder anhand der Ergebnisse der seismischen Untersuchungen oder anhand von Core-Disking Strukturen untersucht. In Abb. H.7 ist die Abhängigkeit der Zugfestigkeiten von der Teufe dargestellt und in Tab. H.2 aufgelistet.

Abb. H.7.: Zugfestigkeiten in Abhängigkeit von der Teufe. Linke Spalte; indirekte Zugfestigkeit parallel zur Streichrichtung der Foliation der Biotit-Gneise (offene Quadrate) und maximale Werte in den Metabasiten (schwarze Quadrate). Rechte Spalte; indirekte Zugfestigkeit senkrecht zur Streichrichtung der Foliation der Biotit-Gneise und minimale Werte in den Metabasiten.

H.2.2.1 Indirekte Zugfestigkeiten im Teufenbereich 3000 m bis 3575 m (Biotit-Gneise)

Die Zugfestigkeiten in den Biotit-Gneisen sind Richtungsabhängig (RÖCKEL&NATAU 1989b). Parallel zur Streichrichtung der Foliation beträgt sie im Mittel 9,6 MPa. Den höchsten gemessenen Wert, parallel zur Streichrichtung der Foliation, besaß die Probe 784D2fK aus einer Teufe von 3210,82 m mit 14,6 MPa. Der Einfallwinkel der Foliation ist mit nur 10° sehr flach. Den niedrigsten Wert, parallel zur Streichrichtung der Foliation, wies die Probe 769D31K aus einer Teufe von 3148 m mit 5,4 MPa indirekter Zugfestigkeit auf. Der Einfallwinkel der Foliation betrug 45°.

Senkrecht zur Streichrichtung der Foliation lagen die Mittelwerte für die indirekte Zugfestigkeit der Biotit-Gneise im Teufenbereich von 3000 m bis 3575 m bei durchschnittlich 7,3 MPa. Verglichen mit den Werten der steilstehenden Biotit-Gneise aus dem Teufenbereich von 1610 m bis 2480 m mit durchschnitlich 4,2 MPa sind diese Werte deutlich höher. Im Teufenintervall von 3000 m bis 3575 m besaß die Probe 784D2fK mit 13.8 MPa die höchste Zugfestigkeit senkrecht zur Streichrichtung der Foliation. Der niedrigste Wert wurde an der Probe 769D31K mit 2,9 MPa gemessen. Der Einfallwinkel der Foliation betrug bei dieser Probe 45°.

H.2.2.2 Indirekte Zugfestigkeit im Teufenbereich unterhalb 3575 m (Metabasite)

Die indirekten Zugfestigkeiten der Metabasite in der Teufe unterhalb von 3575 m betrugen im Mittel 12,7 MPa für die maximalen Werte bzw. 9,5 MPa für die minimalen Werte von Probenpaaren. Die höchste indirekte Zugfestigkeit von 16,9 MPa wurde am Kernstück 883ClfK, einem Meta-Gabbro, aus einer Teufe von 3609,34 m gemessen. Die niedrigste indirekte Zugfestigkeit von 5,2 MPa wies Kernstück 923Dlp, ein Granat-Amphibolit, aus einer Teufe von 3784,91 m auf. Vergleicht man die Zugfestigkeit dieser beiden Proben mit den einaxialen Druckfestigkeiten dieser Kernstücke mit 250,4 MPa bzw 249,4 MPa zeigt sich, daß die einaxialer Druckfestigkeit 15 bis 48 mal höher ist als die indirekte Zugfestigkeit.

In diesen Teufen sind in den Metabasiten häufig Core-Disking- und Axial-Splitting-Strukturen entwickelt. Diese Strukturen sind auf makroskopische Zugbrüche zurückzuführen. In einigen Proben sind diese Zugbrüche deutlicher entwickelt und in anderen eher schwach. Der Grund für die gelegentlich niedrigen Zugfestigkeiten bei hohen Druckfestigkeiten ist auf Mikrorisse in den Proben zurückzuführen. Diese können beim einaxialen Druckversuch bei Belastung geschlossen werden, während sie beim indirekten Zugversuch bei entsprechender Orientierung zur Belastungsrichtung weiter geöffnet werden bis der Zugbruch bei relativ niedrigen Zugfestigkeitswerten eintreten kann.

H.3 Literaturverzeichnis

- BORM,G., LEMPP,Ch., NATAU, O. & RÖCKEL, TH. (1989): Instabilities of Borehole and Drillcores in Crystalline Drillings, With Examples from the KTB Pilot Hole. Scientific Drilling, 1: 105-114, Springer, Heidelberg -New York - Tokyo.
- MÜLLER, H., HACKER, W., KEYSSNER, S., RÖHR, C., SIGMUND, J., KOHL, J., STROH, A. & TAPFER, M. (1989): Tiefbohrung KTB-Oberpfalz Vb 1a, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 3009.7 - 3500 m: B. Geologie KTB-Report 89-5, B1-B94
- NATAU, O., BORM, G. & RÖCKEL, Th. (1989): Influence of Lithology and Geological Structure on the Stability of the KTB Pilot Hole. In: MAURY, V. and FORMAINTRAUX, D. (Eds) Rock at Great Depth, Proc. Int. Symp. ISRM, Vol. 3, 1487-1490, Pau, France.
- RÖCKEL, Th., NATAU, O. (1989a): Tiefbohrung KTB Oberpfalz VB - Erste Ergebnisse felsmechanischer Index-Versuche bis 1998 m. KTB-Report 89-2
- RÖCKEL, Th., NATAU, O. (1989b): Tiefbohrung KTB-Oberpfalz VB - Erste Ergebnisse felsmechanischer Index-Versuche im Teufenbereich von 1998 m bis 3000 m. KTB-Report 89-5
- SIGMUND, J., HACKER, W., KEYSSNER, S., KOHL, J., MÜLLER, H., RÖHR, C., STROH, A. & TAPFER, M. (1989): Tiefbohrung KTB Oberpfalz VB 1a, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 3500 m - 4000,1 m, B. Geologie. KTB-Report 90-2

I. Das automatische Probenahmesystem für die Hauptbohrung des KTB

M. Heinisch

KTB-Report	91-3	I1 -I3	1 Abb.	Windischeschenbach	1991	
------------	------	--------	--------	--------------------	------	--

I. Das automatische Probenahmesystem f ür die Hauptbohrung des KTB

M. Heinisch

Rückblick

Um die Reproduzierbarkeit von Analysedaten zu gewährleisten, hat die gleichbleibende Qualität der Probenahme höchste Priorität. Es gilt der Grundsatz, daß jede Analyse nur so gut sein kann wie die Probe, auf der sie beruht. Deshalb war bereits im Vorfeld der Vorbohrung ein automatisches Probenahmesystem angestrebt worden, konnte jedoch aus zeitlichen und finanziellen Gründen seinerzeit nicht realisiert werden. Für die Beprobung von Feststoffen in der Hauptbohrung war ein solches Probenahmesystem ursprünglich Planungsbestandteil der rechnergesteuerten "großen Bohranlage"; die Reduzierung der Investitionskosten hatte jedoch auch den Wegfall des automatischen Probenahmesystems zur Folge.

Bei der Vorstellung des komplizierten Spülungszirkulationssystems der Bohranlage für die Hauptbohrung zu Beginn des Jahres 1990 wurde erneut deutlich, daß eine sinnvolle, repräsentative Probenahme von Feststoffmaterial aller anfallenden Korngrößen – dem in Anbetracht des zu erwartenden geringen Kernerhalts nahezu alleinigen Probenmaterial für Analysen in einem geowissenschaftlichen Großprojekt – sowie der Bohrspülung selbst bei den geplanten Bohrlochdurchmessern und Pumpraten nur mittels eines automatisch arbeitenden Probenahmesystems möglich sein würde. Zur Planung und Entwicklung eines geeigneten Systems wurde die Firma ITAG, Celle, mit einer Studie beauftragt, die zu Ende des Jahres 1990 in den Auftrag zum Bau des Probenahmesystems mündete.

Anlagenbeschreibung

Das Probenahmesystem ist im Prinzip eine Spülungsaufbereitungsanlage in kleinindustriellem Maßstab, die mit einem repräsentativen, regelbaren Spülungsteilstrom gespeist wird. Die groben Feststoffe werden, wie auch bei der Spülungsaufbereitungsanlage der Bohranlage, durch ein Schüttelsieb, die feinen durch eine Zentrifuge aus der Bohrspülung abgetrennt. Zusätzlich wird hier auch eine Probe der Bohrspülung selbst abgezapft. Alle drei Proben werden automatisch pro Probenintervall in separate Behältnisse abgefüllt. Der Spülungsteilstrom ist automatisch so geregelt, daß unabhängig von Bohrfortschritt und Pumprate eine konstante Menge Gesteinsprobe über die Länge eines Probenintervalls ("Schlitzprobe") anfällt. Gegenüber der Spülungsaufbereitungsanlage der Bohranlage befinden sich im Spülungsteilstrom

PROBENAHMESYSTEM

Abb. 1: Prinzipskizze des automatischen Probenahmesystems

- 2-

zwischen den Beprobungsstellen keine unkontrollierbaren Spülungsvolumina, so daß die drei parallel gewonnenen Proben einer gemeinsamen Teufe zuzuordnen sind.

Während die Bohrspülung im Auslaufrohr von der Bohrung zur Spülungsaufbereitungsanlage fließt, kommt es zwangsläufig zu einer Entmischung der unterschiedlichen Feststofffraktionen. Homogenisierung des Feststoffs ist im Auslauf Zur ein statischer Spiralmischer (Abb. 1) installiert. Hinter diesem Mischer zweigt ein variabler Probenehmer in Gestalt einer regelbaren Schlauchmembrankolbenpumpe einen Spülungsteilstrom mit konstanter Feststoffbeladung ab. Die Regelung der Pumpe erfolgt über ein kontinuierliches Signal der "Lag Depth", einer Größe, in die der Bohrfortschritt, der Bohrlochdurchmesser, die Pumprate und die Bohrstrangkonfiguration eingehen, so daß an den beiden Probenahmestellen Doppeldeckerrundschüttelsieb und Dekanter zusammen etwa 2 1 unzerstörtes Gesteinsvolumen (ca. 4 1 Schüttvolumen) pro manfallen. Die Verteilung zwischen beiden Probenahmestellen kann in Abhängigkeit von den Spülungseigenschaften über die Siebbespannung des Schüttelsiebs geregelt werden.

Die Beprobung der Spülung selbst erfolgt über eine Schlauchrollenpumpe vor dem Dekanter, da durch salinare Zuflüsse hervorgerufene Flockung durch diesen ausgeworfen und somit nicht detektierbar wäre.

Die Proben von Schüttelsieb, Schlauchrollenpumpe und Dekanter werden von Probenbehältern auf Rundschalttischen aufgefangen, wobei letztere nach Ende des Probenahmeintervalls auf das nächste Probengefäß umschalten. Der nötige Steuerimpuls wird ebenfalls aus der "Lag Depth" abgeleitet und von der Mud Logging Unit (Bohrdatenerfassung und -verarbeitung) zur Verfügung gestellt.

Wartung und Bedienung des Probenahmesystems (Entleeren von Gefäßen, Beschicken der Schalttische mit frischen Gefäßen), Umfüllen und Behandeln der Proben erfolgt durch das Probenahmepersonal.

Anschrift des Verfassers:

KTB-Bohrlokation, 8486 Windischeschenbach

