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Prefa
eWhen Gerhard Müller 
hose to leave us on 9 July 2002 be
ause of his illness, welost a tea
her and 
olleague. Part of his lega
y is several le
ture notes whi
h hehad worked on for more then 20 years. These notes have be
ome the ba
kboneof tea
hing seismi
s and seismology at basi
ally all German universities. Whenasked some years before his death if he had 
onsidered to translate "TheorieElastis
her Wellen" into English and publish it as a book, his answer was "Iplan to do it when I am retired". We hope that our e�ort would have found hisapproval.We would like to thank R. and I. Coman (Universität Hamburg) for preparing a�rst, German draft in LATEX of this s
ript, A. Siebert (GFZ Potsdam) for herhelp in preparing the �gures and our students for pointing out errors and askingquestions. We would like to thank A. Priestley for proof-reading the s
ript andturning Deuts
hlish into English and K. Priestley for his many 
omments.We thank the GFZ Potsdam and the Dublin Institute for Advan
ed Studies fortheir support during a sabbati
al of MW in Dublin, where most of this bookwas prepared. We would also like to thank the GFZ for 
ontinuing support inthe preparation of this book.
M. Weber G. Rümpker D. GajewskiPotsdam, Frankfurt, HamburgJanuary 2007This �le 
an be downloaded from http://gfz-potsdam.de/mhw/tew/

tew_2007.ps(64MB) + tew_2007.pdf(3.5MB)3
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4Prefa
e of the German Le
ture NotesThis s
ript is the revised and extended version of a manus
ript whi
h was usedfor several years in a 1- to 2-semester le
ture on the theory of elasti
 wavesat the universities of Karlsruhe and Frankfurt. The aim of this manus
ript isto give students with some ba
kground in mathemati
s and theoreti
al physi
sthe basi
 knowledge of the theory of elasti
 waves, whi
h is ne
essary for thestudy of spe
ial literature in monographs and s
ienti�
 journals. Sin
e this isan introdu
tory text, theory and methods are explained with simple modelsto keep the 
omputational 
omplexity and the formulae as simple as possible.This is why often liquid media instead of solid media are 
onsidered, and onlyhorizontally polarised waves (SH-waves) are dis
ussed, when shear waves inlayered, solid media are 
onsidered. A third example is that the normal modetheory for point sour
es is derived for an ideal wave guide with free or rigidboundaries. These simpli�
ations o

asionally hide the dire
t 
onne
tion toseismology. In my opinion, there is no other approa
h if one aims at presentingtheory and methods in detail and introdu
ing at least some aspe
t from thewide �eld of seismology. After working through this s
ript students should, Ihope, be better prepared to read the advan
ed text books of Pilant (1979), Akiand Ri
hards (1980, 2000), Ben-Menahem and Sing (1981), Dahlen and Tromp(1998), Kennett (2002) and Chapman (2004), whi
h treat models as realisti
allyas possible.This manus
ript has its emphasis in the wave seismi
 treatment of elasti
 bodyand surfa
e waves in layered media. The understanding of the dynami
 prop-erties of these two wave types, i.e., their amplitudes, frequen
ies and impulseforms, are a basi
 prerequisite-requisite for the study of the stru
ture of theEarth, may it be in the 
rust, the mantle or the 
ore, and for the study ofpro
esses in the earthquake sour
e. Ray seismi
s in inhomogeneous media andtheir relation with wave seismi
s are dis
ussed in more detail than in earlierversions of the s
ript, but seismologi
ally interesting topi
s like eigen-modes ofthe Earth and extended sour
es of elasti
 waves are still not treated, sin
e theywould ex
eed the s
ope of an introdu
tory le
ture.At several pla
es of the manus
ript, exer
ises are in
luded, the solution of theseis an important part in understanding the material. One of the appendi
es triesto 
over in 
ompa
t form the basi
s of the Lapla
e and Fourier transform andof the delta fun
tion, so that these topi
s 
an be used in the main part of thes
ript.I would like to thank Ingrid Hörn
hen for the often tedious writing and 
orre
t-ing of this manus
ript. Gerhard Müller
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Chapter 1LiteratureThe following list 
ontains only books, that treat the propagation of elasti
waves and a few text books on 
ontinuum me
hani
s. Arti
les in journals arementioned if ne
essary. Their number is kept to a minimum.A
henba
h, J.D.: Wave propagation in elasti
 solid, North-Holland Publ. Comp.,Amsterdam, 1973Aki, K. and P.G. Ri
hards: Quantitative seismology - theory and methods (2volumes), Freeman and Co., San Fran
is
o, 1980 and 2002Ben-Menahem, A. and S.J. Singh: Seismi
 waves and sour
es, Springer, Heidel-berg, 1981Bleistein, N.: Mathemati
al methods for wave phenomena, A
ademi
 Press,New York, 1984Brekhovskikh, L.M.: Waves in layered media, A
ademi
 Press, New York, 1960Brekhovskikh, L., and Gon
harov, V.: Me
hani
s of 
ontinua and wave dynam-i
s, Springer-Verlag, Berlin, 1985Budden, K.G.: The wave-guide mode theory of wave propagation, Logos Press,London, 1961Bullen, K.E., and Bolt, B.A.: An introdu
tion to the theory of seismology,Cambridge University Press, Cambridge, 1985Cagniard, L.: Re�e
tion and refra
tion of progressive waves, M
Graw-Hill BookComp., New York, 1962� ervéný, V., I.A. Molotov and I. P²en
ík: Ray method in seismology, UniverzitaKarlova, Prague, 1977Chapman, Ch.: Fundamentals of seismi
 wave propagation, Cambridge Univer-sity Press, 2004 9
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10 CHAPTER 1. LITERATUREDahlen, F. A. and J. Tromp: Theoreti
al global seismology, Prin
eton Univer-sity, Prin
eton, New Jersey, 1998Ewing, M., W.S. Jardetzky and F. Press: Elasti
 waves in layered media,M
Graw-Hill Book Comp., New York, 1957Fung, Y.C.: Foundations of solid me
hani
s, Prenti
e-Hall, Englewood Cli�s,N.Y., 1965Grant, F.S. and G.F. West: Interpretation theory in applied geophysi
s, M
Graw-Hill Book Comp., New York, 1965Hudson, J.A.: The ex
itation and propagation of elasti
 waves, Cambridge Uni-versity Press, Cambridge, 1980Kennett, B.L.N.: The seismi
 wave �eld (2 volumes), Cambridge UniversityPress, Cambridge, 2002Landau, L.D. and E.M. Lifs
hitz: Elastizitätstheorie, Akademie Verlag, Berlin,1977Love, A.E.H.: A treatise on the mathemati
al theory of elasti
ity, 4th edition,Dover Publi
ations, New York, 1944Pilant, W.L.: Elasti
 waves in the Earth, Elsevier, Amsterdam, 1979Riley, K.F., M.P. Hobson and S.J. Ben
e: Mathemati
al methods for physi
s andengineering, A 
omprehensive guide, Cambridge University Press, Cambridge,2nd edition, 2002Sommerfeld, A.: Me
hanik der deformierbarenMedien, Akad. Verlagsgesells
haft,Leipzig, 1964Tolstoy, I.: Wave propagation, M
Graw-Hill Book Comp., New York, 1973Tolstoy, I. and C.S. Clay: O
ean a
ousti
s-theory and experiment in underwatersound, M
Graw-Hill Book Comp., New York, 1966White, J.E.: Seismi
 waves-radiation, transmission and attenuation, M
Graw-Hill Book Comp., New York, 1965
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Chapter 2Foundations of elasti
itytheoryCommentsIn this 
hapter symboli
 and index notation is used, i.e., a ve
tor (symboli
notation −→f ) is also written as fi (
omponents f1, f2, . . . , fn), the lo
ation ve
tor(symboli
 −→x ) as xi (
omponents x1, x2, x3 ), and a matrix (symboli
 a) as aij(i = line index = 1, 2, . . . ,m, j = row index= 1, 2, . . . , n). The produ
t of matrix
aij with the ve
tor fj is the ve
tor

gi =

n
∑

j=1

aijfj (i = 1, 2, . . . ,m).A short notation for this is (summation 
onvention = SC )
gi = aijfj.In the following text, if a produ
t on the right o

urs in whi
h there is a repeatedindex, this index takes all values from 1, 2, ..., n (usually n = 3) and all produ
tsare summed.If the symboli
 notation is simpler, e.g., for the 
ross produ
t of two ve
tors orfor divergen
e or rotation, the symboli
 notation is used.

11
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12 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY2.1 Analysis of strain2.1.1 Components of the displa
ement ve
torConsider a body that is deformed by an external for
e. Before deformation, thepoint P has the lo
ation ve
tor xi and the in�nitesimal 
lose point Q has thelo
ation ve
tor xi + yi. The 
omponents of yi are assumed to be independentvariables; this is why dxi was not used. After deformation, P has been displa
edby the displa
ement ve
tor ui to P', and Q has been displa
ed to Q' by theve
tor (expansion up to linear terms)
zi = ui + dui = ui +

∂ui

∂xj
yj (SC).

Fig. 2.1: Neighbourhood of P and Q before and after deformation.Ve
tor zi des
ribes (for variable Q in the neighbourhood of P) the 
hanges nearP due to the deformation. In general, these 
hanges 
onsist of: a translation,a rotation of the whole region around an axis through P and the a
tual de-formation, whi
h 
hanges the length of lines (rotation and deformation will bedis
ussed later in more detail)
zi = ui + dui = ui + ǫijyj + ξijyjtranslation deformation rotation

ǫij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

, ξij :=
1

2

(

∂ui

∂xj
− ∂uj

∂xj

) (2.1)
ǫij = ǫji (2.2)
ξij = −ξji (⇒ ξ11 = ξ22 = ξ33 = 0) . (2.3)
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2.1. ANALYSIS OF STRAIN 13The matri
es ǫij and ξij are tensors of 2nd degree. ǫij is symmetri
 due to (2.2)and ξij is anti-symmetri
 due to (2.3). ǫij is 
alled deformation tensor and ξijis 
alled rotation tensor.2.1.2 Tensors of 2nd degreeA tensor of 2nd degree, tij , transforms a ve
tor into another ve
tor (e.g., ǫijtransforms ve
tor yi into the deformation part of dui; another example of this isthe inertial tensor transforms the ve
tor of the angular velo
ity into the rotationimpulse ve
tor (rotation of a rigid body)). If the 
oordinate system is rotated,the tensor 
omponents have to be transformed as follows to yield the originalve
tor
t,kl = aikajltij (SC twi
e) (2.4)

amn = cos γmn (see sket
h).
t,kl = Tensor 
omponent in the rotated 
oordinate system (dashed line in sket
h).

Fig. 2.2: Coordinate system of tensors of 2nd degree.For a 
ertain orientation of the rotated system, the non-diagonal elements
t′
12
, t′

13
, t′

21, ... vanish. These 
oordinate axis are 
alled main axes of the tensor,and the tensor is in diagonal form. In the diagonal form, many physi
al relationsbe
ome simpler. Certain 
ombinations of tensor 
omponents are independentof the 
oordinate system of the tensor. These are the three invariants (T1, T2,
T3 are the diagonal elements of the tensor in diagonal form). More on tensors
an be found in, e.g., Riley, Hobson and Ben
e.
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14 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
I1 =

∣

∣

∣

∣

∣

∣

t11 t12 t13
t21 t22 t23
t31 t32 t33

∣

∣

∣

∣

∣

∣

= T1T2T3 (determinant)
I2 = t11 + t22 + t33 = T1 + T2 + T3 (tra
e)
I3 = t11t22 + t22t33 + t33t11−

t12t21 − t23t32 − t31t13 = T1T2 + T2T3 + T3T1.2.1.3 Rotation 
omponent of displa
ementThe rotation 
omponent of displa
ement follows from




0 ξ12 ξ13
−ξ12 0 ξ23
−ξ13 −ξ23 0









y1
y2
y3



 =





ξ12y2 + ξ13y3
−ξ12y1 + ξ23y3
−ξ13y1 − ξ23y2



 =
−→
ξ ×−→ywith −→

ξ = (−ξ23, ξ13,−ξ12) =
1

2
∇×−→u .Ve
tor −→ξ × −→y des
ribes an in�nitesimal rotation of the region of P aroundan axis through P with the dire
tion of −→ξ . The rotation angle has the abso-lute value ∣∣

∣

−→
ξ
∣

∣

∣
and is independent of −→y (show). A prerequisite is that −→ξ isin�nitesimal. A su�
ient 
ondition for this is that

∣

∣

∣

∣

∂ui

∂xj

∣

∣

∣

∣

≪ 1 for all i and j. (2.5)2.1.4 Deformation 
omponent of displa
ementAfter separating out the rotation term, only the deformation term is of interestsin
e it des
ribes the for
es whi
h a
t in a body. The deformation is des
ribed
ompletely by the six 
omponents ǫij whi
h are, in general, di�erent. Thesedimensionless 
omponents will now be interpreted physi
ally.The starting point is dui = ǫijyj, i.e., we assume no rotation.a) During this transformation, a line remains a line, a plane remains a plane, asphere be
omes an ellipsoid and parallel lines remain parallel.b) Deformation 
omponents ǫ11, ǫ22, ǫ33Coordinate origin at P and spe
ial sele
tion of Q : y1 6= 0, y2 = y3 = 0.
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2.1. ANALYSIS OF STRAIN 15
du1

du2

y
1 1P

Q’

Q

2

Fig. 2.3: Sket
h for deformation 
omponents.
du1 = ǫ11y1

du2 = ǫ21y1

du3 = ǫ31y1 = 0 (assumption : ǫ 31 = 0).

ǫ11 = du1

y1
is the relative 
hange in length in dire
tion 1 (not the relative 
hangein length of PQ, see also d). Stret
hing o

urs if ǫ11 > 0 and shortening if

ǫ11 < 0. Similarly, ǫ22 and ǫ33 are the relative length 
hanges in dire
tion 2 and3.
) Shear 
omponents ǫ12, ǫ13, ǫ23

Fig. 2.4: Sket
h for shear 
omponents.
Q1 → Q′

1 : du2 = ǫ21y1 = ǫ12y1

Q2 → Q′
2 : du1 = ǫ12y2
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16 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
tanα ≃ α ≃ du2

y1
= ǫ12

tanβ ≃ β ≃ du1

y2
= ǫ12.This means, ǫ12 is the angle around whi
h the 1- or 2-axis is rotated. Theright angle at P is redu
ed by 2ǫ12. If the parallelogram is not in the 1-2 planeafter deformation (sin
e ǫ13, ǫ23 or ǫ33 is non-zero), these statements hold forthe verti
al proje
tion in this plane.Similar results hold for ǫ13 and ǫ23.d) Length 
hanges of distan
e PQ

Fig. 2.5: Sket
h for length 
hanges of distan
e PQ.
PQ = l0 =

{

3
∑

i=1

y2
i

}1/2

P ′Q′ = l =

{

3
∑

i=1

(yi + ǫijyj)
2

}1/2

=

=

{

3
∑

i=1

y2
i + 2ǫijyiyj +

3
∑

i=1

(ǫijyj)
2

}1/2

.The 1st, 2nd and 3rd term require SC on
e, twi
e and three times, respe
tively.The 3rd term 
ontains only squares of ǫij and 
an, within the framework ofin�nitesimal strain theory treated here, be negle
ted relative to the 2nd term(the prerequisite for this is (2-5))
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2.1. ANALYSIS OF STRAIN 17
l = l0

(

1 +
2

l20
ǫijyiyj

)
1
2

= l0 +
1

l0
ǫijyiyj.Relative length 
hanges

l − l0
l0

= ǫij
yiyj

l20
= ǫijninj (SC twi
e; quadrati
 form in nk)

ni =
yi

l0
= unit ve
tor in dire
tion of yi.Approa
hes for �nite strain theory exist (see, e.g., Bullen and Bolt). Su
h atheory has to be developed from the very start. Then, for example, the simpleseparation of the rotation term in the displa
ement ve
tor, whi
h is possiblefor in�nitesimal deformations, is no longer possible. The deformation tensor ǫijalso be
omes more 
ompli
ated.e) Volume 
hanges (
ubi
 dilatation)We 
onsider a �nite (not in�nitesimal) volume V 
ontaining point P surfa
ewith S. After deformation, for whi
h we assume without loss of generality thatP remains in its position, volume V is 
hanged by ∆V .

Fig. 2.6: Sket
h for volume 
hanges.
∆V =

∫

S

undf.Transformation of this surfa
e integral with Gauss' law gives
∆V =

∫

V

∇ · −→u dV,
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18 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYand the relative volume 
hange 
an be written as
∆V

V
=

1

V

∫

V

∇ · −→u dV. (2.6)Into the limit V → 0 (shrinking to point P), this be
omes
lim
V →0

∆V

V
= Θ.This limit is 
alled 
ubi
 dilatation.From (2.6) with (2.1), it follows that

Θ = ∇·−→u :=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= ǫ11+ǫ22+ǫ33 (tra
e of the deformation tensor).For Θ > 0 the volume in
reases, for Θ < 0 the volume de
reases.2.1.5 Components of the deformation tensor in 
ylindri
al and spher-i
al 
oordinates

ϕ r

z

P

Fig. 2.7: Cylindri
al 
oordinates r, ϕ, z.
−→u = (ur, uϕ, uz)

ǫrr =
∂ur

∂r

ǫϕϕ =
1

r

∂uϕ

∂ϕ
+
ur

r

ǫzz =
∂uz

∂z

2ǫrϕ =
1

r

∂ur

∂ϕ
+
∂uϕ

∂r
− uϕ

r
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2.1. ANALYSIS OF STRAIN 19
2ǫrz =

∂ur

∂z
+
∂uz

∂r

2ǫϕz =
∂uϕ

∂z
+

1

r

∂uz

∂ϕ
.The 
omponents refer to the lo
al Cartesian 
oordinate system in P.

λ

r

P

υ

Fig. 2.8: Spheri
al 
oordinates r, ϑ, λ.
−→u = (ur, uϑ, uλ)

ǫrr =
∂ur

∂r

ǫϑϑ =
1

r

∂uϑ

∂ϑ
+
ur

r

ǫλλ =
1

r sinϑ

∂uλ

∂λ
+
ur

r
+

cotϑ

r
uϑ

2ǫrϑ =
1

r

∂ur

∂ϑ
+
∂uϑ

∂r
− uϑ

r

2ǫrλ =
1

r sinϑ

∂ur

∂λ
+
∂uλ

∂r
− uλ

r

2ǫϑλ =
1

r sinϑ

∂uϑ

∂λ
+

1

r

∂uλ

∂ϑ
− cotϑ

r
uλ.Exer
ise 2.1How does a re
tangular 
ube with edges parallel to the main axis system of thedeformation tensor deform (length of edges a, b, 
)? Con�rm the equation

Θ = ǫ11 + ǫ22 + ǫ33 .
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20 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYExer
ise 2.2Split the deformation tensor into one part that is pure shear (no volume 
hange)and another part that is pure volume 
hange (no shear).Exer
ise 2.3:Derive the 
omponents of the deformation tensor in 
ylindri
al 
oordinates.Hint:
P(r,   ,z)ϕ Q(r+dr,   +d   ,z+dz)ϕ ϕ

ui

y
i

u+dui i

y’=y +du
i i i Q’

P’

Fig. 2.9: Displa
ement ve
tors to be used.With respe
t to the lo
al Cartesian 
oordinate system in P, it holds that
y1 = dr
y2 = rdϕ
y3 = dz

u1 = ur

u2 = uϕ

u3 = uz.Determine �rst the 
ylindri
al 
oordinates of P' and Q' under the 
ondition ofin�nitesimal displa
ement and deformation. Then give the 
omponents of theve
tor y′
i

= yi + dui in the lo
al Cartesian 
oordinate system of P', similar tothe de�nition of yi, in the system of P. This requires linearisation. This thenallows the derivation of ve
tor dui in the form
dui = vijyjand the determination of tensor vij . The deformation tensor is the symmetri
part of vij

ǫij =
1

2
(vij + vji).
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2.2. ANALYSIS OF STRESS 212.2 Analysis of stress2.2.1 StressIn a deformed body, a volume element is subje
t to body for
es (proportionalto volume, e.g., gravity, 
entrifugal for
e, inertial for
e) and to surfa
e for
es,whi
h originate from neighbouring volume elements (proportional to surfa
e).The later is the topi
 here. We 
onsider a body K1 with the surfa
e S withina deformed body K2 (see Fig. 2.10). If K2 is removed, K1 will, in general,assume a new equilibrium 
on�guration. This indi
ates that K2 has exertedfor
es through S on K1. To bring K1 ba
k to its original form, Ersatz for
es−→
P ∆f (∆f=surfa
e element) have to be applied on S.The same for
es were exerted by K2. −→P with the dimension for
e/surfa
e is
alled tra
tion. Its dire
tion and size depend on:1. The lo
ation of the surfa
e element ∆f2. Its normal dire
tion −→n (de�ned as the dire
tion pointing out of K1).

Fig. 2.10: Body K1 within a deformed body K2.The 
omponent of −→P parallel to −→n is 
alled normal tra
tion (= pull or pressuretra
tion).The 
omponent of −→P perpendi
ular to −→n is 
alled tangential tra
tion, sheartra
tion or thrust tra
tion.If −→P is known everywhere in the body and for all dire
tions −→n , the stress withinthe body is known. For this, six fun
tions must be known.2.2.2 Stress tensor pijWe 
onsider a body in an in�nitesimal tetrahedron ABCD and assume, thatthe tra
tion of the three sides ABD, ABC, and ACD are known.
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22 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

Fig. 2.11: In�nitesimal tetrahedron ABCD.From this, we will 
ompute the tra
tion tensor −→P of BCD. Be
ause the tetrahe-dron is small, all tra
tions are 
onstant over their 
orresponding surfa
es. Thenormal dire
tions and surfa
es areABD : negative 2-dire
tion, ∆f2ABC : negative 3-dire
tion, ∆f3ACD : negative 1-dire
tion, ∆f1BCD: −→n = (n1, n2, n3), ∆f

∆fj = ∆fnj . (2.7)We assume that the for
es and tra
tion ve
tors on ABD, ABC and ACD areknown for the positive 2-, 3- and 1-dire
tion, respe
tivelyABD: −→P2∆f2,
−→
P2 = (p21, p22, p23)ABC: −→P3∆f3,
−→
P3 = (p31, p32, p33)ACD: −→P1∆f1,
−→
P1 = (p11, p12, p13).This means that nine fun
tions pij are known. After negle
ting the body for
es(whi
h de
rease faster then the surfa
e for
es for a shrinking tetrahedron), thefor
e balan
e at the tetrahedron 
an be written as

−−→Pj∆fj +
−→
P ∆f = 0.With (2.7), it follows (SC)

−→
P =

−→
Pjnj . (2.8)
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2.3. EQUILIBRIUM CONDITIONS 23Therefore, it is su�
ient to know the tra
tion ve
tors of three perpendi
ularsurfa
e elements to determine the tra
tion ve
tor for an arbitrarily orientedsurfa
e element. In index notation, (2.8) 
an be written as (note: Pj is a
omponent of −→P ,−→Pj is a ve
tor)
P1 = p11n1 + p21n2 + p31n3.In general, it holds that Pj = pijni. (SC)The nine fun
tions pij form the stress tensor. It is valid for a 
ertain right-angle
oordinate system. The 
omponents pi1, pi2, pi3 give the tra
tion ve
tor for asurfa
e element, the normal of whi
h is in the dire
tion of the positive i-axis.

pii (e.i., p11, p22, or p33) is the normal stress, the two other 
omponents are thetangential stresses, respe
tively. As will be shown in the next se
tion (see alsoexer
ise 2.6), the stress tensor is symmetri
, i.e.,
pij = pji.Therefore, Pj = pjini or in the usual notation
Pi = pijnj . (2.9)In general, the stress tensor has six independent 
omponents.Exer
ise 2.4a) Give the stress tensor for hydrostati
 pressure p.b) Give the stress tensor for the interior of an in�nite plate whi
h is �xed atone side (bottom), whereas at the other side (top) the shear tra
tion τ a
tseverywhere in the same dire
tion.Exer
ise 2.5Show that if −→P is the tra
tion for dire
tion −→n , and −→P ′ for the dire
tion −→n′ , itholds that −→P −→n′ =

−→
P ′−→n .2.3 Equilibrium 
onditionsThe equilibrium 
onditions for a �nite volume V in a deformable body requirethat the resulting for
e and the resulting angular moment vanish
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24 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
∫

V

−→
F dV +

∫

S

−→
P df = 0 (resulting for
e) (2.10)

∫

V

(−→x ×−→F )dV +

∫

S

(−→x ×−→P )df = 0 (resulting moment) (2.11)
P

n

F
x

S
V

dV
df

OFig. 2.12: Finite volume V in a deformable body.where −→F = body for
es in
luding inertial for
e (dimension: for
e/ volume =for
e density) and
−→
P = tra
tion ve
tor on S (normal −→n towards the outside).Equation (2.10) gives the equation of motion of the elasti
 
ontinuum. For ea
h
omponent (only Cartesian 
omponents 
an be used)

∫

V

FidV +

∫

S

Pidf =

∫

V

FidV +

∫

S

pijnjdf = 0.

pijnj 
an be understood as the normal 
omponent Pin of the tra
tion −→Pi =
(pi1, pi2, pi3) relative to the ith-dire
tion. Appli
ation of Gauss' theorem gives

∫

S

Pindf =

∫

V

∇ · −→PidV,therefore,
∫

V

(Fi +∇ · −→Pi)dV = 0.This holds for every arbitrary volume V. Therefore, the integrand has to vanish
Fi +

∂pi1

∂x1
+
∂pi2

∂x2
+
∂pi3

∂x3
= 0
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2.3. EQUILIBRIUM CONDITIONS 25or
Fi +

∂pij

∂xj
= 0 (SC)with the 
omponents of F : Fi = −ρd2ui

dt2 + fi (ρ = density).The �rst term is the inertial for
e; fi 
ontains all other body for
es. Within theframework of the theory of in�nitesimal deformation, the impli
it di�erentiation
d
dt 
an be repla
ed by the lo
al di�erentiation, i.e., partial di�erentiation ∂

∂t

dA

dt
=
∂A

∂t
+
∂A

∂xi

∂xi

∂t
≈ ∂A

∂t
(A = in�nitesimal parameter, e.g. ui).Then, this gives the equation of motion (SC)

ρ
∂2ui

∂t2
=
∂pij

∂xj
+ fi. (2.12)At rest, normally pij 6= 0 and the remaining stress is 
alled the initial stress.It exists, when obje
ts 
omposed of materials with di�erent thermal expansions
oe�
ients are 
ooled, or by the self-
ompression of obje
ts in their own gravity�eld (in this 
ase the initial stress is the hydrostati
 pressure). Assume that fora body at rest pij = p

(0)
ij and fi = f

(0)
i . Then (2.12) holds and

∂p
(0)
ij

∂xj
+ f

(0)
i = 0. (2.13)The pre-stressed body will be deformed by time-dependent body for
es (e.g., anearthquake in the Earth's 
rust). In the 
ase of a su�
iently small additionalstress (and only then), the following separation is valid

pij = p
(0)
ij + p

(1)
ij fi = f

(0)
i + f

(1)
i .With (2.13), it follows from (2.12), that

ρ
∂2ui

∂t2
=
∂p

(1)
ij

∂xj
+ f

(1)
i .This means that the displa
ement ui from the pre-stressed state depends onlyon the additional stress and the additional body for
es. In the following, pijand fi in (2.12) will always be understood in that sense, i.e., at rest pij = 0 and
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26 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
fi = 0. This assumption is su�
ient for the study of elasti
 body and surfa
ewaves in the Earth. In the 
ase of normal modes and tides, where large depthranges and even the whole Earth moves, pij in (2.12) is the 
omplete stresstensor, in
luding the hydrostati
 
ontribution. In this 
ase, fi represents allexternal for
es, in
luding the gravitational for
e of the Earth itself. The reasonfor this is that, in this 
ase, be
ause of the large size of the hydrostati
 pressureduring deformation, the 
hange of this pressure 
annot be negle
ted. A simpleexample is seen in the the radial modes of a sphere whi
h have larger periods ifhydrostati
 pressure and gravitational for
e are in
luded.Exer
ise 2.6Derive the equation of motion without assuming the symmetry of the stresstensor pij ; then derive this symmetry from the moment equation (2.11). Hint:In the �rst part, use the stress ve
tor in the form Pi = pjinj instead of (2.9). Inthe se
ond part, write (2.11) by 
omponents and use the result of the �rst part.2.4 Stress-strain relations2.4.1 Generalised Hooke's LawIf a body in an unperturbed 
on�guration shows a deformation asso
iated witha length 
hange, this body is under stress. This means that in ea
h point of thebody a relation between the 
omponents of the stress tensor and the deformationtensor exists

pij = fij(ǫ11, ǫ12, . . . , ǫ33; a1, a2, . . . , an). (2.14)As indi
ated, other independent parameters ak, su
h as time and temperature,
an o

ur. Generally, pij at time t 
an depend on the previous history at times
τ with −∞ < τ < t. If, for example, a beam has su�ered extreme bendingin the past, its behaviour will be di�erent. The general study of (2.14) and a
orresponding 
lassi�
ation of materials as elasti
, plasti
 and vis
o-elasti
, et
.is the topi
 of rheology. For seismology, generally the most simple form of (2.14)is su�
ient, namely that pij at a point depends only on the present values of
ǫkl at that point. In this 
ase, from ǫkl = 0 , it follows pij = 0, i.e., deformation
eases instantly if the stress 
eases. This means

pij = fij(ǫ11, ǫ12, . . . , ǫ33) (2.15)
fij(0, 0, . . . , 0) = 0.If these 
onditions hold, this state is 
alled ideal elasti
ity. Under in�nitesimaldeformation, pij is a linear fun
tion of all ǫkl (expansion of (2.15) at ǫkl = 0 )
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2.4. STRESS-STRAIN RELATIONS 27
pij = cijklǫkl (SC twi
e) (2.16)
cijkl = elasti
ity 
onstants.Linear elasti
ity theory studies elasti
 pro
esses in bodies under the followingassumptions:1. The deformations are in�nitesimal.2. The stress-strain relations are linear.The important assumption is 1.The well-known Hooke's Law, for the stret
hing of a wire or the shearing of a
ube, is a spe
ial 
ase of (2.16). Equation (2.16) is, therefore, 
alled generalisedHooke's law. Its range of appli
ability has to be determined by experimentsor observation. The relation in the following sket
h holds, for example, for thestret
hing of a wire. Between A and B the relation between for
e per squareunit of the 
ross se
tion p11 and the relative 
hange in length ǫ11 is linear and
orresponds to (2.16) (E = Young's modulus).

Fig. 2.13: Sket
h for the stret
hing of a wire.Between B and C the relation is no longer linear but still 
orresponds to idealelasti
 behaviour, i.e., if p11 is redu
ed to zero, no deformation ǫ11 remains.Beyond C irreversible deformation o

urs (plasti
 behaviour, �ow of material).Finally the wire ruptures.
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28 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYThe tensor of 4th degree cijkl has 81 (9 x 9 =) 
omponents. Due to the symmetryof the deformation and stress tensors, only 36 (6 x 6 =) 
omponents are inde-pendent from ea
h other. Sin
e the elasti
 deformation energy (= elasti
 energyper unit volume) is 
onserved, this number redu
es further to 21 
omponents(see, e.g., pg. 268-269 in Sommerfeld). This is the maximum number of elas-ti
ity 
onstants an anisotropi
 body 
an have. For spe
ial forms of anisotropy,and espe
ially for isotropy, this number redu
es further. For isotropi
 bodieswhi
h do not have preferred dire
tions, only two elasti
 
onstants remain. Thestress-strain relations (2.16) 
an then be written as
pij = λθδij + 2µǫij (2.17)where λ and µ are Lamés elasti
ity 
onstant and elasti
ity parameter, respe
-tively (both of whi
h 
an be spatially dependent),

θ = ǫ11 + ǫ22 + ǫ33 is the 
ubi
 dilatation, and
δij =

{

1 for i = j
0 otherwise } : is the Krone
ker symbol or unit tensor2.4.2 Derivation of (2.17)We 
hoose the main axis system of the stress tensor as the 
oordinate system,whi
h under isotropy is identi
al to that of the deformation tensor. We, fur-thermore, have the main stress and deformation 
omponents P1, P2, P3 and themain deformations E1, E2, E3, respe
tively, whi
h have a linear relation. In theisotropi
 
ase, this be
omes

P1 = aE1 + b(E2 + E3)

P2 = aE2 + b(E1 + E3)

P3 = aE3 + b(E1 + E2).The 
oe�
ient of E2 and E3 in the equation for P1 have to be the same, sin
efor an isotropi
 body the main axes 2 and 3 
ontribute equally to the main stress
P1. The same holds for the other two equations. From this, it follows that

Pi = (a− b)Ei + b(E1 + E2 + E3) (2.18)
= 2µEi + λ(E1 + E2 + E3),where the 
onstants a and b have been repla
ed by the Lamé parameters λ and

µ, respe
tively. This shows that (2.17) for the main axis 
oordinate system hasno shear 
omponent of the deformation tensor and no shear stress.
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2.4. STRESS-STRAIN RELATIONS 29Using (2.4) for the transformation of tensor 
omponents, the stress and defor-mations 
omponents in any 
oordinate system 
an be given as
p11 = a2

11P1 + a2
21P2 + a2

31P3 ǫ11 = a2
11E1 + a2

21E2 + a2
31E3

p22 = a2
12P1 + a2

22P2 + a2
32P3

...
p12 = a11a12P1 + a21a22P2 + a31a32P3 ǫ12 = a11a12E1 + a21a22E2

+a31a32E3

p23 = a12a13P1 + a22a23P2 + a32a33P3

...... ... (2.19)For the dire
tional 
osines it holds that
aikail = δkl (SC).Using (2.18) in the left equation of (2.19) and using the equations on the rightgives

p11 = 2µǫ11 + λ(E1 + E2 + E3)

p22 = 2µǫ22 + λ(E1 + E2 + E3)

p12 = 2µǫ12

p23 = 2µǫ23...The relations for shear stress already have the �nal form; those for the normalstress 
an be brought to the �nal form with the tensor invariants E1+E2+E3 =
ǫ11 + ǫ22 + ǫ33. This 
on
ludes the proof of (2.17).Expressing ǫkl in terms of the derivative of the displa
ement ve
tor, (2.17) 
anbe written in Cartesian 
oordinates as

pii = λ(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
) + 2µ

∂ui

∂xi
(no SC!)

pij = µ(
∂ui

∂xj
+
∂uj

∂xi
) (i 6= j).Equation (2.17) also holds in 
urved, orthogonal 
oordinates, like 
ylinder andspheri
al 
oordinates, respe
tively, if the deformation tensor is given in these
oordinates (
ompare se
tion 2.1.5). pij refers then to the 
oordinate surfa
es
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30 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYof the 
orresponding system. Finally, it should be noted that pij is usuallyunderstood as a stress added to a pre-stressed 
on�guration.The assumption that ro
ks and material of the deep Earth are isotropi
 is of-ten valid. The 
rystals whi
h make up the ro
k building minerals are, on theother hand, mostly anisotropi
, but if they are randomly oriented, the materialappears ma
ros
opi
ally isotropi
.2.4.3. AdditionsThermo-elasti
 stress-strain relationsThese are examples of relations in whi
h stress not only depends on deforma-tion, but also on other parameters, e.g., temperature (α = volume expansion
oe�
ient, T − T0 = temperature 
hange)
pij = λΘδij + 2µǫij − (λ+

2

3
µ)α(T − T0)δij .Relation between λ and µ and other elasti
ity parameters

E = Young's modulus
σ = Poisson's ratio
k = Bulk modulus
τ = Rigidity

E =
µ(3λ+ 2µ)

λ+ µ
σ = λ

2(λ+µ) k = λ+
2

3
µ

τ = µ λ = σE
(1+σ)(1−2σ) µ =

E

2(1 + σ)
.In ideal �uids τ = µ = 0, there is no resistan
e to shearing. Then k = λ and σ =

0.5. Within the framework of elasti
ity theory, �uids and gases behave identi-
ally, but the bulk modulus of �uids is signi�
antly larger than that of gases.Their Poisson's ratio σ lies between -1 and 0.5; negative σ values are rare (
om-pare Exer
ise 2.8). For ro
ks, σ is usually 
lose to 0.25; σ = 0.25 means λ = µ.Exer
ise 2.7Derive the formula for k. k is de�ned as the ratio − p
Θ in an experiment in whi
ha body is under pressure p from all sides and has the relative volume 
hange

Θ < 0. Des
ribe the deformation and the stress tensor and then the stress-strainrelation.
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2.5. EQUATION OF MOTION, BOUNDARY AND INITIAL ... 31Exer
ise 2.8Derive the formula for E and σ. E is de�ned as the ratio p11

ǫ11
and σ is theratio − ǫ22

ǫ11
in an experiment, in whi
h a wire or rod is under extension for
e p11in the 1-dire
tion (ǫ11 = extension, − ǫ22 = perpendi
ular 
ontra
tion, ǫ33 =

?, p22 =?, p33 =?). Pro
eed as in exer
ise 2.7. What is the meaning of σ < 0?2.5 Equation of motion, boundary and initial 
on-ditions2.5.1 Equation of motionUsing (2.17) in the equation of motion (2.12), whi
h depends on pij , this equa-tion only depends on the 
omponents of the displa
ement ve
tor
ρ
∂2ui

∂t2
= ∂

∂xj
(λΘδij + 2µǫij) + fi

= ∂
∂xi

(λΘ) + ∂
∂xj

[

µ
(

∂ui

∂xj
+

∂uj

∂xi

)]

+ fi . (2.20)If λ and µ are independent of lo
ation (homogeneous medium) it follows that
ρ
∂2ui

∂t2
= λ

∂Θ

∂xi
+ µ

[

∂2ui

∂x2
1

+
∂2ui

∂x2
2

+
∂2ui

∂x2
3

+
∂

∂xi

(

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)]

+ fi

ρ
∂2ui

∂t2
= (λ+ µ)

∂Θ

∂xi
+ µ∇2ui + fi. (2.21)This is the equation of motion for homogeneous media in Cartesian 
oordinates.In symboli
 notation (Θ = ∇ · −→u )

ρ
∂2ui

∂t2
= (λ+ µ)∇∇ · −→u + µ∇2−→u +

−→
f . (2.22)This is only valid for Cartesian 
oordinates. ∇2−→u is the ve
tor (∇2u1,∇2u2,∇2u3).In Cartesian 
oordinates

∇2−→u = ∇∇ · −→u −∇× ∇×−→u . (2.23)(Verify that in 
urved orthogonal 
oordinates (2.23) de�nes the ve
tor ∇2−→u ,and it is not identi
al with the ve
tor, whi
h results from the appli
ation of ∇2on the 
omponents.) Inserting (2.23) in (2.22) gives
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32 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
ρ
∂2−→u
∂t2

= (λ+ 2µ)∇∇ · −→u − µ∇× ∇×−→u +
−→
f . (2.24)This form of the equation of motion is independent of the 
oordinate system.It is the starting point for the following se
tion: a

ording to se
tion 2.3, −→f
ontains only the body for
es whi
h a
t in addition to those of the for
es at rest.2.5.2 Boundary 
onditionsOn a surfa
e in whi
h at least one material parameter ρ, λ or µ is dis
ontinuous,the stress ve
tor, relative to the normal dire
tion of this surfa
e, is 
ontinuous.To show this, 
onsider a small �at 
ir
ular 
ylinder of thi
kness 2d whi
h en
losesthe boundary between the two media. The sum of all for
es a
ting on the
ylinder (body for
es in the interior and surfa
e for
es on its surfa
e) has to bezero.

P1

P2-P2

n

n
-n

Medium 1

Medium 2

2d

Fig. 2.14: Cir
ular 
ylinder of thi
kness 2d en
losing the boundary between twomedia.In the limit d → 0, only the surfa
e for
es on the top and bottom surfa
e ∆f ,have to be 
onsidered
−→
P1∆f + (−−→P2)∆f = 0.From this, it follows that −→P1 =
−→
P2. This means that at boundaries normal andtangential stress are 
ontinuous.For the displa
ement, it holds that at a solid-solid boundary, all 
omponentsare 
ontinuous (no sliding possible). At a solid-liquid or liquid-liquid boundaryonly the normal displa
ement is 
ontinuous.Example: A body 
onsists of two half-spa
es, separated by a plane at z = 0.The displa
ements are ux, uy, uz, and the stresses are pxx, pyy, pzz, pxy, pxz, pyz.The boundary 
onditions z = 0 for the di�erent 
ombinations of half-spa
es are
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2.5. EQUATION OF MOTION, BOUNDARY AND INITIAL ... 33solid− solid : ux, uy, uz, pxz, pyz, pzz 
ontinuoussolid− �uid : uz, pzz 
ontinuous, pxz = pyz = 0�uid− �uid : uz, pzz 
ontinuoussolid− rigid : ux = uy = uz = 0�uid− rigid : uz = 0solid− va
uum�uid− va
uum :
:

pxz = pyz = pzz = 0
pzz = 0

} free surfa
e .If at a surfa
e with the normal ve
tor ni, the stress is not zero (stress ve
tor
Pi), the stress ve
tor in the body has to a
quire this boundary value

p
(r)
ij nj = Pi. (2.25)

p
(r)
ij are the boundary values of the 
omponents of the stress tensor at the sur-fa
e, and they 
an be 
al
ulated from (2.25).Example: P (t) on a plane surfa
e. For the 
ase of pressure

n
....x=0

x

P(t)

Fig. 2.15: Pressure on a plane surfa
e.
−→n = (−1, 0, 0) = (n1, n2, n3)
−→
P = (P (t), 0, 0) = (P1, P2, P3) .Equation (2.25) yields −p(r)

i1 = Pi or
p11 = pxx = −P (t)
p12 = pxy = 0
p13 = pxz = 0







for x = 0.Similarly, displa
ements 
an be pres
ribed on the surfa
es of a body.
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34 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY2.5.3 Initial 
onditionsThe initial 
onditions pres
ribe the spatial distribution of 
ertain parameters,in our 
ase the displa
ement ui(x1, x2, x3, t) and the parti
le velo
ity ∂ui/∂t for
t = 0

ui(x1, x2, x3, 0) = f1(x1, x2, x3),
∂ui

∂t
(x1, x2, x3, 0) = f2(x1, x2, x3).The general wave propagation solution is an initial and a boundary problem,i.e., in addition to the equation of motion, the boundary and initial 
onditionshave to be satis�ed. Normally in seismologi
al appli
ations f1 = f2 = 0, andno spe
ial initial 
onditions have to be satis�ed. The main problems are thento 
onsider the boundary 
onditions.2.6 Displa
ement potentials and wave types2.6.1 Displa
ement potentialsA ve
tor −→u 
an, in general, be des
ribed as

−→u = ∇Φ +∇×−→Ψ (2.26)where Φ is a s
alar potential and −→Ψ a ve
tor potential. In our 
ase, where −→u isa displa
ement �eld, both are 
alled displa
ement potentials. (Do not 
onfusethem with the elasti
 potential, i.e., the elasti
 deformation energy.)
Φ is 
alled 
ompression potential and −→Ψ shear potential. If the ve
tor −→u isgiven, Φ and −→Ψ 
an be 
omputed (
ompare exer
ise 2.9)

Φ =
1

4π

∫ −→u · −→r
r3

dV

−→
Ψ =

1

4π

∫ −→u ×−→r
r3

dV. (2.27)Ve
tor −→r (with absolute value r) points from the volume element dV to thepoint where Φ and −→Ψ are 
omputed. The integration 
overs the whole volume.For −→Ψ , there is the additional requirement that
∇ · −→Ψ = 0. (2.28)

−→
Ψ has to be determined in Cartesian 
oordinates.
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2.6. DISPLACEMENT POTENTIALS AND WAVE TYPES 35
∇ Φ in (2.26) is 
alled 
ompressional part of −→u . It is free of rotation and
url. A

ording to se
tion 2.1.4, the volume elements su�er no rigid rotation,but only a deformation, whi
h, in general, 
onsists of a volume 
hange and ashear 
omponent (in the sense of exer
ise 2.2; se
tion 2.1). In the main axissystem of the deformation tensor, only volume 
hanges o

ur (
ompression ordilatation). The 
ontribution ∇ × −→Ψ in (2.26) is 
alled shear 
omponent. Itis free of divergen
e and sour
e 
ontributions; the volume elements su�er novolume 
hange, but shear deformation and rigid rotation.Similarly to (2.26), the body for
e −→f in (2.24) 
an be split into

−→
f = ∇ϕ+∇× −→ψ . (2.29)Do not 
onfuse the ve
tor potentials −→Ψ and −→ψ .Using (2.26) and (2.29) in (2.24) gives

ρ

[

∇∂
2Φ

∂t2
+∇× ∂2−→Ψ

∂t2

]

= (λ+2µ)∇∇2Φ−µ∇× ∇× ∇× −→Ψ +∇ϕ+∇× −→ψ .(2.30)We try now to equate all the gradient terms and also, separately, the rotationterms of this equation. If the resulting di�erential equations 
an be solved,(2.30) and, therefore, (2.24) are satis�ed. This leads to
∇
[

ρ
∂2Φ

∂t2
− (λ+ 2µ)∇2Φ− ϕ

]

= 0

∇×
[

ρ
∂2−→Ψ
∂t2

+ µ∇× ∇× −→Ψ −−→ψ
]

= 0.Sin
e the 
ontent of the square bra
kets has to vanish
∇2Φ− 1

α2

∂2Φ

∂t2
= − ϕ

λ+ 2µ
α2 =

λ+ 2µ

ρ

−∇× ∇× −→Ψ − 1

β2

∂2−→Ψ
∂t2

= −
−→
ψ

µ
β2 =

µ

ρ
. (2.31)The potentials ϕ and −→ψ have to be determined from −→f using (2.27). If nobody for
es a
t, ϕ = 0 and −→ψ = 0. The equation for Φ is an inhomogeneouswave equation. In Cartesian 
oordinates the 
omponents of −→Ψ give also inho-mogeneous wave equations due to (2.23) and (2.28). In other 
oordinates, theequations for the 
omponents of −→Ψ look di�erent (
ompare exer
ise 2.10).
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36 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYBoth simpli�
ations used are, as experien
e has shown, justi�ed. The problem
an, therefore, be solved either via (2.24) or (2.31). In more 
ompli
ated 
ases,(2.31) is easier to solve. In this 
ase, the boundary 
onditions for displa
ementand stress have to be expressed as those for Φ and −→Ψ .2.6.2 Wave typesThe general dis
ussion of the di�erential equations (2.31) shows that they havesolutions whi
h 
orrespond to waves (for details, see se
tion 3.1). Perturbationsin the 
ompressional part of the displa
ement ve
tor propagate as 
ompressionalwaves with the velo
ity α = ((λ+ 2µ)/ρ)
1/2 through the medium. Perturba-tions in the shear part propagate as shear waves with the velo
ity β = (µ/ρ)1/2.Thus, we have found the two basi
 wave types, whi
h 
an propagate in a solidmedium. For ro
ks, it usually holds that λ = µ. In this 
ase, it follows that

α/β = 31/2. In liquid or gases, only 
ompressional waves (sound waves) 
anpropagate sin
e µ = 0.Often 
ompressional waves are 
alled longitudinal waves and shear waves are
alled transverse waves. The displa
ement ve
tor in a longitudinal wave is par-allel to the propagation dire
tion and perpendi
ular to it in a transverse wave.A 
ompressional wave is, in general, primarily longitudinally polarised, and ashear wave is primarily transversely polarised. The identi�
ation is, therefore,not fully valid. There exist spe
ial 
ases in whi
h a 
ompressional wave istransversal and a shear wave is longitudinal (see se
tion 3.5.1 and exer
ise 3.5in 
hapter 3).The seismologi
al names for 
ompressional and shear waves are P-waves andS-waves, respe
tively. This indi
ates that the P-wave is the �rst wave arrivingat a station from an earthquake (P from primary), whereas the S-wave arriveslater (S from se
ondary).In a homogeneous medium, 
ompressional waves and shear waves are de
oupled,i.e., they propagate independently from ea
h other. This no longer holds for in-homogeneous media in whi
h λ, µ and/or ρ, and, therefore, α and β, vary frompoint to point. But in this 
ase, usually two wave types propagate throughthe medium, and the travel times of their �rst onsets are determined by thevelo
ity distribution of α and β, respe
tively. The faster of the two waves is nolonger a pure 
ompressional wave but 
ontains a shear 
omponent. The slowerwave is, 
orrespondingly, not a pure shear wave but 
ontains a 
ompressional
ontribution. This be
omes plausible if one approximates an inhomogeneousmedium by pie
e-wise homogeneous media. Satisfying the boundary 
onditionsat the interfa
es between the homogeneous media usually requires, on both sides,the existen
e of 
ompressional and shear waves. Details on this will be givenin se
tion 3.6.2. Compressional and shear waves whi
h are de
oupled in ho-mogeneous se
tions of the medium, 
reate re�e
ted and refra
ted waves of theother type, respe
tively, at interfa
es. This 
hange in wave type o

urs 
ontin-uously in 
ontinuous media and is stronger the stronger the 
hanges in α, β,
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2.6. DISPLACEMENT POTENTIALS AND WAVE TYPES 37and/or ρ per wave length are. The theory for 
ontinuous inhomogeneous mediais mu
h more 
ompli
ated then the theory for pie
e-wise homogeneous media.Media in whi
h α, β and ρ depend only on one 
oordinate, e.g., depth, 
an,for many seismologi
al appli
ations, be approximated by layers of homogeneousmedia. For su
h 
on�gurations, e�e
tive methods for the use of 
omputers exist.Exer
ise 2.9Show (2.27) by 
omparing (2.26) with the equation
∇2−→a = ∇ ∇ · −→a −∇× ∇×−→aand 
onsider, that the Possion equation ∇2−→a = −→u has (in Cartesian 
oordi-nates) the solution

−→a = − 1

4π

∫

−→u 1

r
dV.Exer
ise 2.10Write (2.26) in 
ylindri
al 
oordinates (r, ϕ, z) under the 
ondition that themedium is 
ylindri
ally symmetri
, and the ϕ-
omponent of −→u is zero (Ψr =

Ψz = 0). What is the form of (2.31) for vanishing body for
es?Exer
ise 2.11Show that in a liquid with 
onstant density ρ, but variable 
ompressional module
k and pressure p, satis�es the wave equation∇2p = 1

α2
∂2p
∂t2 with spatially varyingsound velo
ity α = (k/ρ)1/2.Hint: Derive from the equation of motion (2.12) without body for
es, the equa-tion ρ∂2−→u /∂t2 = −∇ p and apply then the divergen
e operation i.e. (p =

−k ∇ · −→u ).
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38 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
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Chapter 3Body waves
3.1 Plane body wavesThe most simple types of waves 
an be derived, if for an unbounded medium(full-spa
e), solutions of the equation of motion are determined whi
h dependonly on one spatial 
oordinate. For example, we look for a solution of (2.21)or (2.24) in the form of −→u = (ux(x, t), 0, 0), i.e., −→u points in x -dire
tion anddepends only on x and the time t. Alternatively, we look for a solution in theform of −→u = (0, uy(x, t), 0), i.e., −→u points in y-dire
tion and depends also onlyon x and t. In the �rst 
ase, it follows from (2.21) for fi = 0

∂2ux

∂x2
=

1

α2

∂2ux

∂t2
, α2 =

λ+ 2µ

ρ
,and in the se
ond 
ase,

∂2uy

∂x2
=

1

β2

∂2uy

∂t2
, β2 =

µ

ρ
.These are one dimensional wave equations. In the following, we 
onsider thegeneral form

∂2u

∂x2
=

1

c2
∂2u

∂t2
. (3.1)The most general solution of this equation is

u(x, t) = F (x− ct) +G(x + ct), (3.2)39
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40 CHAPTER 3. BODY WAVESwhere F(x) and G(x) are any twi
e di�erentiable fun
tions (
he
k that (3.2)solves (3.1)). Another form is
u(x, t) = F

(

t− x

c

)

+G
(

t+
x

c

)

. (3.3)The �rst and the se
ond term in (3.2) and (3.3) have to be interpreted as wavespropagating in the positive and negative x -dire
tion, respe
tively. For example,the �rst term in (3.3) for x = x1 
an be written as
u(x1, t) = F

(

t− x1

c

)

= F1(t).For another distan
e x2 > x1

u(x2, t) = F
(

t− x2

c

)

= F

(

t− x2 − x1

c
− x1

c

)

= F1

(

t− x2 − x1

c

)

.This means that for time t at distan
e x2 the same e�e
ts o

ur as at distan
e
x1 at the earlier time t − (x2 − x1)/c. This 
orresponds to a wave whi
h hastravelled from x1 to x2 in the time (x2 − x1)/c. The propagation velo
ity is,therefore, 
. The wavefronts of this wave, i.e., the surfa
es between perturbedand unperturbed regions, are the planes x = 
onst. Therefore, these are planewaves. If G(x) in (3.2) or G(t) in (3.3) are not zero, two plane waves propagatein opposite dire
tions.In the 
ase of u = ux, we have a longitudinal wave (polarisation in the dire
tionof propagation); in 
ase of u = uy, we have a transverse wave (polarisationperpendi
ular to the dire
tion of propagation).Harmoni
 waves 
an be represented as

u(x, t) = Aexp
[

iω(t− x

c
)
]

= Aexp [i(ωt− kx)]with A= Amplitude (real or 
omplex), ω= angular frequen
y ν = ω/2π= fre-quen
y, T = 1/ν= period, k = ω/c= wavenumber and Λ = 2π/k= wave length.Between c,Λ and ν the well-known relation c = Λν holds. The use of the 
om-plex exponential fun
tion in the des
ription of plane harmoni
 waves is more
onvenient than the use of the real sine and 
osine fun
tions. In the following,only the exponential fun
tion will be used.3.2 The initial value problem for plane wavesWe look for the solution of the one-dimensional wave equation (3.1) whi
h sat-is�es the initial 
onditions
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3.2. THE INITIAL VALUE PROBLEM FOR PLANE WAVES 41
u(x, 0) = f(x) for displa
ement and
∂u

∂t
(x, 0) = g(x) for parti
le velo
ity.This is an initial value problem of a linear ordinary di�erential equation, e.g.,the problem to determine the movement of a pendulum, if initial displa
ementand initial velo
ity are given. We start from (3.2). For t=0, it also holds that

F (x) +G(x) = f(x) (3.4)
−cF ′(x) + cG′(x) = g(x). (3.5)Integrating (3.5) with respe
t to x, gives
F (x)−G(x) = −1

c

∫ x

−∞

g(ξ)dξ. (3.6)From the addition of (3.4) and (3.6), it follows that
F (x) =

1

2

{

f(x)− 1

c

∫ x

−∞

g(ξ)dξ

}

,and from the subtra
tion of these two equations that
G(x) =

1

2

{

f(x) +
1

c

∫ x

−∞

g(ξ)dξ

}

.From this, it follows that
u(x, t) =

1

2
{f(x− ct) + f(x+ ct)}+

1

2c

∫ x+ct

x−ct

g(ξ)dξ.This solution satis�es the wave equation and the initial 
onditions (
he
k). Wewill dis
uss two spe
ial 
ases.3.2.1 Case 1
g(x) = 0, i.e., the initial velo
ity is zero. Then

u(x, t) =
1

2
{f(x− ct) + f(x+ ct)} .
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42 CHAPTER 3. BODY WAVESTwo snap shots (Fig. 3.1) for t=0 and for t>0, illustrate this result.
u(x,0)

ct ct

u(x,t)

x

x

f(x)

f(x+ct) f(x-ct)

t=0

t>0

Fig. 3.1: Snap shots of two plane waves.Two plane waves propagate from the point of ex
itation in both dire
tions withthe velo
ity 
. A pra
ti
al example is a stret
hed rope with the form f(x) fort=0.3.2.2 Case 2
f(x) = 0, i.e., the initial displa
ement is zero. Furthermore, we assume g(x) =
V0δ(x). δ(x) is Dira
's delta fun
tion (see appendix A.3). g(x) 
orresponds toan �impulse� at x = 0. V0 has the dimension of velo
ity times length. Then

u(x, t) =
V0

2c

∫ x+ct

x−ct

δ(ξ)dξ.The sket
h (Fig. 3.2) shows the value of the integrand and the integrationinterval for a �xed point in time t > 0 and for a lo
ation x > 0.
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3.3. SIMPLE BOUNDARY VALUE PROBLEMS FOR PLANE WAVES 43

Fig. 3.2: Value of the integrand and the integration interval of u(x,t).Only when the integration interval in
ludes the point ξ = 0, does the integralbe
ome non-zero. Then it always has the value of 1
u(x, t) =











V0

2cH(t− x
c ) for x>0

V0

2cH(t+ x
c ) for x<0

H(t) is the Heaviside step fun
tion, H(t) = 0 for t < 0, H(t) = 1 for t ≥ 0.The displa
ement jumps at t = |x| /c from zero to the value V0/2c.3.3 Simple boundary value problems for planewavesThe simplest boundary value problem is to determine the displa
ement withina half-spa
e for a time dependent pressure P (t) at the surfa
e x = 0 of thishalf-spa
e. Sin
e the displa
ement −→u only has an x-
omponent, ux and sin
e xis the only expli
it spatial 
oordinate, the one-dimensional wave equation (3.1)for a plane 
ompressional wave is appli
able
∂2ux

∂x2
=

1

α2

∂2ux

∂t2
.The solution for the 
ase 
onsidered here is

ux(x, t) = F
(

t− x

α

)

,
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44 CHAPTER 3. BODY WAVESsin
e a wave 
an only propagate in +x -dire
tion. Fun
tion F (t) has to bedetermined from the boundary 
ondition that the stress ve
tor adapts withoutjump to the imposed stress ve
tor at the free surfa
e x = 0 (
ompare (2.25) andin se
tion 2.5.2)
pxx = −P (t) and pxy = pxz = 0 for x = 0.The stress-strain relation (2.17) gives �rst, that pxy and pxz are zero everywherein the medium, and se
ond that

pxx = (λ + 2µ)
∂ux

∂x
= −λ+ 2µ

α
F ′
(

t− x

α

)

= −ραF ′
(

t− x

α

)

.For x = 0, it follows that
−ραF ′(t) = −P (t)and after integration

F (t) =
1

ρα

∫ t

−∞

P (τ)dτ =
1

ρα

∫ t

o

P (τ)dτ.For this, we assumed that P (t) = 0 for t < 0. Then, the displa
ement 
an bewritten as
u(x, t) =

1

ρα

∫ t−x/α

0

P (τ)dτ.The displa
ement is proportional to the time integral of the pressure on thesurfa
e of the half-spa
e. If a short impulse P (t) = P0δ(t) a
ts, it follows that,
ux(x, t) =

P0

ρα
H
(

t− x

α

)

.

P0 has the dimension pressure times time (see also appendix A, se
tion A.3.1).At the time t = x/α, all points in the half-spa
e are displa
ed instantly by
P 0/ρα in +x-dire
tion and remain �xed in this position. For P 0 = 1 bar se
 =
9.81 Nse
/
m2 ≈ 106 dyn se
/
m2, ρ = 3 g/
m3 and α = 6 km/se
 the displa
e-ment is approximately 0.5 
m.This boundary value problem is simple enough so that it 
ould be solved dire
tlywith the equation of motion (2.21) or (2.24). One 
ould have also worked with
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3.4. SPHERICAL WAVES FROM EXPLOSION POINT SOURCES 45displa
ement potentials Φ and −→Ψ and their di�erential equations (2.31) (show).Exer
ise 3.1The tangential stress T (t) a
ts on the surfa
e of a half-spa
e. What is thedispla
ement in the half-spa
e? Appli
ation: The tangential stress on the rup-ture surfa
e of earthquakes is 50 bar = 50 · 106 dyn/
m2 (stress drop). What isthe parti
le velo
ity (on the rupture surfa
e) for (ρ = 3 g/
m3, β = 3.5 km/se
)?Exer
ise 3.2An elasti
 layer of thi
kness H overlies a rigid half-spa
e. Pressure P (t) a
ts onthe top of the elasti
 layer. What is the movement in the layer? Examine the
ase P (t) = P 0δ(t).Exer
ise 3.3Solve the stati
 problem of exer
ise 3.2 (
onstant pressure P1 on the surfa
e).3.4 Spheri
al waves from explosion point sour
esIn the previous se
tions, we 
onsidered in�nitely extended waves. They arean idealisation, be
ause they 
annot be produ
ed in reality sin
e they requirein�nitely extended sour
es. The most simple wave type from sour
es with �-nite extension are spheri
al waves, i.e., waves whi
h originate at a point (pointsour
e) and propagate in the full-spa
e. Their wavefronts are spheres.In the most simple 
ase, the displa
ement ve
tor is radially oriented and alsoradially symmetri
 relative to the point sour
e, i.e., the radial displa
ement ona sphere around the point sour
e is the same everywhere. If a spheri
al explo-sion in a homogeneous medium far from interfa
es is triggered, the resultingdispla
ement has these two properties. Therefore, we 
all these explosions pointsour
es. The results derived with the linear elasti
ity theory 
an only be appliedto spheri
al waves from explosions in the distan
e range in whi
h the prerequi-sites of the theory (in�nitesimal deformation, linear stress-strain relation) aresatis�ed. In the plasti
 zone, the shattered zone and the non-linear zone (this isa rough 
lassi�
ation with in
reasing distan
e from the 
entre of the explosion)these requirements are not met. For a nu
lear explosion of 1 Megaton TNTequivalent (approximately mb = 6.5 to 7.0), the shattered zone is roughly 1 to2 km wide.We plan to solve the following boundary problem: given the radial displa
ementat distan
e r = r1 from the point sour
e U(r1, t) = U1(t), we want to �nd U(r, t)for r > r1.We start from the equation of motion (2.24) with −→f = 0. This is how theproblem is solved in appendix A (appendix A.2.2) using the Lapla
e transform.
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46 CHAPTER 3. BODY WAVESHere, more simply, the displa
ement potential from se
tion 2.6 will be used. Inthis 
ase, the shear potential is zero, sin
e a radially symmetri
 radial ve
tor
an be derived solely from the 
ompressional potential
Φ(r, t) =

∫ r

U(r′, t)dr′.In spheri
al 
oordinates (r, ϑ, λ), it holds that
∇Φ =

(

∂Φ
∂r ,

1
r

∂Φ
∂ϑ ,

1
r sin ϑ

∂Φ
∂λ

)

= (U(r, t), 0, 0).For Φ, the wave equation with ϕ = 0 
an by written a

ording to (2.31) as
∇2Φ =

∂2Φ

∂r2
+

2

r

∂Φ

∂r
=

1

r

∂2(rΦ)

∂r2
=

1

α2

∂2Φ

∂t2

∂2(rΦ)

∂r2
=

1

α2

∂2(rΦ)

∂t2
. (3.7)In the 
ase of radial symmetry, the wave equation 
an be redu
ed to the formof a one-dimensional wave equation for Cartesian 
oordinates for the fun
tion

rΦ,
∂2u

∂x2
=

1

α2

∂2u

∂t2
,.The most general solution for (3.7) is ,therefore,

Φ(r, t) =
1

r

{

F (t− r

α
) +G(t+

r

α
)
}

.This des
ribes the superposition of two 
ompressional waves, one propagatingoutward from the point sour
e and the other propagating inwards towards thepoint sour
e. In realisti
 problems, the se
ond term is always zero and
Φ(r, t) =

1

r
F
(

t− r

α

)

. (3.8)Fun
tion F (t) is often 
alled the ex
itation fun
tion or redu
ed displa
ementpotential. The wavefronts are the spheres r =
onst. The potential as afun
tion of time has the same form everywhere, and the amplitudes de
reasewith distan
e as 1/r. The radial displa
ement of the spheri
al wave 
onsists oftwo 
ontributions with di�erent dependen
e on r
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3.4. SPHERICAL WAVES FROM EXPLOSION POINT SOURCES 47
U(r, t) =

∂Φ

∂r
= − 1

r2
F
(

t− r

α

)

− 1

rα
F ′
(

t− r

α

)

. (3.9)These two terms, therefore, 
hange their form with in
reasing distan
e. Gen-erally, this holds for the displa
ement of waves from a point sour
e. The �rstterm in (3.9) is 
alled near-�eld term sin
e it dominates for su�
iently small r.The se
ond term is the far-�eld term and des
ribes with su�
ient a

ura
y thedispla
ement for distan
es from the point sour
e whi
h are larger then severalwave lengths (show this for F (t) = eiωt). That means there the displa
ementredu
es proportional to 1/r.From the boundary 
ondition r = r1, it follows that
− 1

r1α
F ′
(

t− r1
α

)

− 1

r21
F
(

t− r1
α

)

= U1(t).We 
hoose the origin time so that U1(t) only begins to be non-zero for t = r1/α.It, therefore, appears as if the wave starts at time t = 0 at the point sour
e(r = 0). If U1

(

t− r1

α

)

= U1(t), it holds that U1(t) is already non-zero for t > 0.With τ = t− r1

α , it follows that
1

r1α
F ′(τ) +

1

r21
F (τ) = −U1(τ). (3.10)The solution of (3.10) 
an be found with the Lapla
e transform (see se
tionA.2.1.1 of appendix A).Sin
e the 
riterion (A.16) of appendix A is satis�ed for all physi
ally realis-ti
 displa
ements U1(τ), the initial value F (+0) of F (τ) is zero. Therefore,transformation of (3.10)with F (τ)←→ f(s) and U1(τ)←→ u1(s) gives

1

r1

(

s

α
+

1

r1

)

f(s) = −u1(s)

f(s) = −r1α
1

s+ α
r1

u1(s) . (3.11)With (s+ α
r1

)−1

←→ e−
α
r1

τ (see appendix A, se
tion A.1.4), and using 
on-volution (see appendix A, equation A.7), the inverse transformation of (3.11)reads as
F (τ) = −r1α

∫ τ

0

U1(ϑ)e
− α

r1
(τ−ϑ)

dϑ.From this, it follows
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48 CHAPTER 3. BODY WAVES
F ′(τ) = −r1αU1(τ) + α2

∫ τ

0

U1(ϑ)e−
α
r1

(τ−ϑ)dϑ.The radial displa
ement for r > r1 then 
an be written using (3.9) as
U(r, t) =

r1
r

{

U1(τ) + α

(

1

r
− 1

r1

)∫ τ

0

U1(ϑ)e
− α

r1
(τ−ϑ)

dϑ

} (3.12)with the retarded time τ = t− r
α . This solves the boundary problem.Appli
ations1. U1(t) = U0δ

(

t− r1

α

)

, i.e., U1(t) = U0δ(t).The dimension of U0 is time times length. Equation (3.12) is valid also inthis 
ase (see appendix A)
U(r, t) =

r1
r
U0

{

δ(τ) + α

(

1

r
− 1

r1

)

e−
α
r1

τH(τ)

}

.

(t=r/α )

τ
τ=0 

Fig. 3.3: U(r,t) as a fun
tion of time.2. U1(t) = U0H
(

t− r1

α

)

, i.e. U1(t) = U0H(t).The dimension of U0 is length. From (3.12), it follows
U(r, t) =

r1
r
U0

{

H(τ) + α

(

1

r
− 1

r1

)

e−
α
r1

τ
[r1
α
e

α
r1

ϑ
]ϑ=τ

ϑ=0
H(τ)

}

=
r1
r
U0H(τ)

{

1 +
(r1
r
− 1
)(

1− e−
α
r1

τ
)}

=
r1
r
U0H(τ)

{r1
r

+
(

1− r1
r

)

e
− α

r1
τ
}

.
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 49
r1

2

r 2 U0

U0
r1
r

ττ=0Fig. 3.4: U(r,t) as a fun
tion of time.Exer
ise 3.4Pressure P (t)
(

P (t) = 0 for t < r1

α

) a
ts in a spheri
al 
avity with radius r1.What is the di�erential equation for the ex
itation fun
tion F (t) (analogue to3.10)? In the 
ase of radial symmetry, the radial stress prr is 
onne
ted to theradial displa
ement U as (show)
prr = (λ + 2µ)

∂U

∂r
+ 2λ

U

r
.Whi
h frequen
ies are preferably radiated (eigenvibrations of the 
avity)? This
an be derived / seen from the di�erential equation without solving it (
ompareto the di�erential equation of the me
hani
al os
illator, see appendix A.2.1.1).Solve the di�erential equation of P (t) = P 0δ(t− r1/α).3.5 Spheri
al waves from single for
e and dipolepoint sour
es3.5.1 Single for
e point sour
eA single for
e in the 
entre of a Cartesian 
oordinate system a
ting in z-dire
tionwith a for
e-time law K(t) has the for
e density (
ompare appendix A.3.3)

−→
f = (0, 0, δ(x) δ(y) δ(z)K(t)) .
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50 CHAPTER 3. BODY WAVES

y

z

x

K(t)

Fig. 3.5: Cartesian 
oordinate system with for
e-time law K(t).The separation −→f = ∇ϕ+∇×−→ψ is possible with the help of (2.27)
ϕ(x, y, z, t) =

1

4π

∫∫∫ +∞

−∞

1

r′3
(z − ζ)δ(ξ)δ(η)δ(ζ)K(t)dξdηdζ

=
K(t)z

4πr3
, r2 = x2 + y2 + z2 (3.13)

−→
ψ (x, y, z, t) =

1

4π

∫∫∫ +∞

−∞

1

r3
{−(y − η), x − ξ, 0} δ(ξ)δ(η)δ(ζ)K(t)dξdηdζ

=
K(t)

4πr3
(−y, x, 0). (3.14)If (3.13) and (3.14) are used in the di�erential equation (2.31) of the displa
e-ment potentials, it follows that for the shear potential −→Ψ = (Ψx,Ψy,Ψz) Ψz =

0 and that for Ψx and Ψy, due to (2.23) and (2.28), the following wave equationshold; the same is true for the 
ompression potential Φ

∇2Φ− 1

α2

∂2ϕ

∂t2
= − K(t)z

4πρα2r3

∇2Ψx −
1

β2

∂2Ψx

∂t2
=

K(t)y

4πρβ2r3

∇2Ψy −
1

β2

∂2Ψy

∂t2
= − K(t)x

4πρβ2r3
.The solution of the inhomogeneous wave equation
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 51
∇2a− 1

c2
∂2a

∂t2
= f(x, y, z, t)
an for vanishing initial 
onditions, be written as

a(x, y, z, t) = − 1

4π

∫∫∫ +∞

−∞

1

r′
f

(

ξ, η, ζ, t− r′

c

)

dξdηdζ (3.15)with
r′2 = (x− ξ)2 + (y − η)2 + (z − ζ)2.Equation (3.15) is Kir
hho�'s Equation for an in�nite medium. It is the ana-logue to the well-known Poisson's di�erential equation whi
h is also a volumeintegral over the perturbation fun
tion (
ompare exer
ise 2.9). Equation (3.15)
an also be 
omputed in non-Cartesian 
oordinates, something we now use.Appli
ation of the wave equation for ΦWe introdu
e the spheri
al 
oordinates (r′, ϑ, λ) relative to point P . λ is de�ned,see sket
h, via an additional Cartesian 
oordinate system (x, y, z).

Fig. 3.6: Additional Cartesian 
oordinate system (x, y, z).The x-axis of of this 
oordinate system is identi
al to the line OP. The z-axis isin the plane de�ned by the zandζ-axis and the line OP. Then the z, ζ-axis hasthen in the x− y − z-system the dire
tion of the unit ve
tor
−→n = (cos γ, 0, sinγ) =

{

z

r
, 0,

(

1− z2

r2

)
1
2

}

.
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52 CHAPTER 3. BODY WAVESVe
tor −→r′′ from O to Q 
an be written in the same system as
−→
r′′ = (r − r′ cosϑ, r′ sinϑ sinλ, r′ sinϑ cosλ).These two ve
tors are needed later. Equation (3.15) 
an for Φ then be writtenas

Φ(x, y, z, t) =
1

16π2ρα2

∫ ∞

0

∫ π

0

∫ 2π

0

ζ

r′′3
·
K
(

t− r′

α

)

r′
· r′2 sinϑ dλdϑ dr′.We still must express ζ and r′′ in terms of r′, ϑ and λ

ξ =
−→
r′′ · −→n =

z

r
(r − r′ cosϑ) +

(

1− z2

r2

)
1
2

r′ sinϑ cosλ

r′′2 = r2 + r′2 − 2rr′ cosϑ (rule of 
osine).This gives
Φ(x, y, z, t) =

1

16π2ρα2

∫ ∞

0

∫ π

0

∫ 2π

0

z
(

1− r′

r cosϑ
)

+ r′
(

1− z2

r2

)
1
2

sinϑ cosλ

r3
(

1 + r′2

r2 − 2 r′

r cosϑ
)

3
2

·K
(

t− r′

α

)

· r′ sinϑ dλdϑ dr′.The part of the integrand with cosλ does not 
ontribute to the integration over
λ. The other part has only to be multiplied by 2π. With a = r/r′ and
∫ π

0

(1− a cosϑ) sinϑ

(1 + a2 − 2a cosϑ)
3
2

dϑ =

∫ (1+a)2

(1−a)2

1 + 1
2 (u− 1− a2)

2au
3
2

du

=
1

4a

∫ (1+a)2

(1−a)2

(

1

u
1
2

+
1− a2

u
3
2

)

du

=
1

4a

{

2u
1
2 + 2(a2 − 1)u−

1
2

}(1+a)2

(1−a)2

=
1

2a
{1 + a− |1− a|}

+
1

2a

{

(a+ 1)(a− 1) ·
(

1

1 + a
− 1

1− a

)}

=

{

2 for 0 < a < 1
0 for a > 1

u = 1 + a2 − 2a cosϑ
du = 2a sinϑdϑ
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 53it follows that
Φ(x, y, z, t) =

z

4πρα2r3

∫ r

0

r′K

(

t− r′

α

)

dr′

=
z

4πρr3

∫ r
α

0

K(t− τ)τdτ.The wave equations for Ψx and Ψy are solved in a similar fashion. Therefore,it is possible to write the potentials of the single for
e point sour
e as
Φ(x, y, z, t) = z

4πρr3

∫ r
α

0
K(t− τ)τdτ

Ψx(x, y, z, t) = − y
4πρr3

∫

r
β

0 K(t− τ)τdτ

Ψy(x, y, z, t) = x
4πρr3

∫

r
β

0 K(t− τ)τdτ

Ψz(x, y, z, t) = 0

with

r2 = x2 + y2 + z2.















































































(3.16)
Before we derive the displa
ements, we 
hange to spheri
al 
oordinates (r, ϑ, λ)relative to the single for
e point sour
e

λ

r

P

υ

x
y

z

K(t)

Fig. 3.7: Spheri
al 
oordinates (r, ϑ, λ).
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54 CHAPTER 3. BODY WAVES
x = r sinϑ cosλ

y = r sinϑ sinλ

z = r cosϑ.In spheri
al 
oordinates, the shear potential has no r- and ϑ-
omponent (show),and for the λ-
omponent it holds that
Ψλ = −Ψxsinλ+ Ψycosλ.

Ψy

Ψx

x

y

λFig. 3.8: x-y-plane of Fig. 3.7.This gives
Φ(r, ϑ, t) = cos ϑ

4πρr2

∫ r
α

0 K(t− τ)τdτ

Ψλ(r, ϑ, t) = sin ϑ
4πρr2

∫

r
β

0 K(t− τ)τdτ.











(3.17)This equation does not depend on λ. The displa
ement ve
tor
−→u = ∇Φ +∇×−→Ψ 
an be written in spheri
al 
oordinates (show) as

ur = ∂Φ
∂r + 1

r sin ϑ
∂

∂ϑ (sin ϑΨλ)

uϑ = 1
r

∂Φ
∂ϑ − 1

r
∂
∂r (rΨλ)

uλ = 0.























(3.18)
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 55This shows that the P -wave following from Φ is not purely longitudinal, but it
ontains a transverse 
omponent (in uϑ). Similarly, the S -wave following from
Ψλ is not purely transverse sin
e ur 
ontains a shear 
omponent. The �rst termin uϑ and the se
ond in ur are near �eld terms (
ompare exer
ise 3.5). Herewe 
ompute only the far-�eld terms of ur and uϑ (only di�erentiation of theintegrals in(3.17))

ur ≃ cos ϑ
4πρα2rK

(

t− r
α

)

(longitudinal P − wave)
uϑ ≃ − sin ϑ

4πρβ2rK
(

t− r
β

)

(transversal S − wave).  (3.19)The far-�eld displa
ements have, therefore, the form of the for
eK(t) de
reasingwith 1/r. The single for
e point sour
e has dire
tionally dependent radiation,and the far-�eld radiation 
hara
teristi
s are shown in Fig. 3.9.

Fig. 3.9: Far �eld radiation 
hara
teristi
s of single for
e point sour
e.The radiation 
hara
teristi
s (P- and S-waves) are ea
h two 
ir
les. Those forthe S -waves have a radius whi
h is α2/β2 larger then those of the P-waves. Ifthe radiation angle ϑ is varied for �xed r, the displa
ements ur are proportionalto the distan
e OP 1, and the displa
ements uϑ are proportional to the distan
e
OP 2. The sign of the displa
ement ur 
hanges in transition from the �rst P -radiation 
ir
le to the se
ond. The full 3-D radiation 
hara
teristi
s followsfrom that shown in Fig. 3.9 by rotation around the dire
tion of the for
e.Within the framework of the far-�eld equations (3.19), no S-wave is radiated inthe dire
tion of the for
e, and perpendi
ular to it, no P -wave is radiated (but
ompare exer
ise 3.5).The pra
ti
al use of the single for
e point sour
e, a
ting perpendi
ular on thefree surfa
e, is that it is a good model for the e�e
t of a drop weight, ex
itationby vibro-seis and often also for explosions detonated 
lose to the surfa
e. A
omplete solution requires the 
onsideration of the e�e
ts of the free surfa
e,but that is signi�
antly more 
ompli
ated. Furthermore, the di�eren
es to the
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56 CHAPTER 3. BODY WAVESfull-spa
e models for all P -waves and for S-waves, for radiation angles smallerthen 30 to 40 degrees, are small, respe
tively.Exer
ise 3.5Compute the 
omplete displa
ement (3.18) using (3.17) and examine in parti
-ular, the dire
tions ϑ = 0 and ϑ = 900. Whi
h polarisation does the displa
e-ment ve
tor have, and at whi
h times are arrivals to be expe
ted? Compute for
K(t) = K0H(t) the stati
 displa
ement (t > r/β).3.5.2 Dipole point sour
esA for
e dipole 
an be 
onstru
ted from two opposing single for
es whi
h area
ting on two neighbouring points. Fig. 3.10 shows, on the left, a dipole withmoment for whi
h the line 
onne
ting the for
es is perpendi
ular to the dire
tionof the for
e. The 
onne
ting line for a "dipole without moment" points in thedire
tion of the for
e.

Fig. 3.10: Single 
ouple and double 
ouple 
onstru
ted from single for
es.Two dipoles with moment for whi
h the sum over the moments is zero (rightin Fig. 3.10), are a good model for many earthquake sour
es, i.e., in the 
asewhere the spatial radiation of earthquake waves of su�
iently large wave lengthis similar to that of a double 
ouple model. The a
tual pro
esses a
ting in theearthquake sour
e are naturally not four single for
es. Usually, the ro
k breaksalong a surfa
e if the shear strength is ex
eeded by the a

umulation of shearstress (shear rupture). Another possibility is that the shear stress ex
eeds thestati
 fri
tion on a pre-existing rupture surfa
e. Sour
e models from single for
esand dipoles are only equivalent point sour
es.In the following, we derive the far-�eld displa
ement of the single 
ouple modeland give the results for the double 
ouple model. We start from the single
ouple (with x0 6= 0) in Fig. 3.11 and 
ompute �rst from (3.19) the P -wave
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 57displa
ement of for
e K(t) with Cartesian 
omponents cosϑ = z/r, r2 = (x −
x0)

2 + y2 + z2

ux

uy

uz







= z
4πρα2r2K

(

t− r
α

)

·







(x− x0)/r
y/r
z/r.

x0

-K(t)

K(t)
υ

λ

P(x,y,z)

r

y

z

xεFig. 3.11: Single 
ouple model.The displa
ements u′x, u′y, u′z of for
e −K(t) with the two neighbouring points ofa
tion shifted by ǫ, 
an be determined using the Taylor expansion of ux, uy, uzat the sour
e 
oordinate x0 and trun
ating after the linear term. This leads, forexample, to
u′x = −

(

ux +
∂ux

∂x0
ǫ

)

.The single 
ouple displa
ement then follows by superposition
u′′x = ux + u′x = −∂ux

∂x0
ǫ.To obtain the far-�eld displa
ement requires only the di�erentiation of the for
e

K(t − r/α) with respe
t to r, and additional di�erentiation ∂r/∂x0 = −(x −
x0)/r. The other terms with x0 
ontribute only to the near �eld, the amplitudeof whi
h de
reases faster then 1/r. This leads to

u′′x = − z

4πρα2r2
K ′
(

t− r

α

) −1

α

−(x− x0)

r
ǫ
x− x0

r
.
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58 CHAPTER 3. BODY WAVESThe y- and z-displa
ement are treated similarly. Therefore,
u′′x
u′′y
u′′z







= − z(x−x0)
4πρα3r3K

′
(

t− r
α

)

ǫ·







(x− x0)/r
y/r
z/r.

(3.20)As expe
ted, the P -displa
ement of the single 
ouple is also longitudinal.The for
e dipole is de�ned stri
tly by the limit ǫ → 0, 
ombined with a simul-taneous in
rease of K(t), so that
lim
ǫ→0

K(t) ǫ = M(t)remains �nite (but non-zero). M(t) is 
alled moment fun
tion of the dipolewith the dimensions of a rotational moment.From (3.20) with z/r = cosϑ and (x − x0)/r = sinϑ cosλ, it follows that the
P -wave displa
ement of the single 
ouple in r-dire
tion is

ur = −cosϑ sinϑ cosλ

4πρα3r
M ′
(

t− r

α

)

.In 
on
luding, we now assume that x0 = 0. For the S-wave, it follows similarly
uϑ =

sinϑ sinϑ cosλ

4πρβ3r
M ′

(

t− r

β

)

.As for the single for
e, the azimuthal 
omponent is zero. The following showsthe results for the single 
ouple and the radiation in the x− z-plane (y = 0)

y

z

x

r

λ
υ

P

Fig. 3.12: Single 
ouple in the x-z-plane.
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 59
ur = − sin 2ϑ cos λ

8πρα3r M ′
(

t− r
α

)

uϑ = sin2 ϑ cos λ
4πρβ3r M ′

(

t− r
β

)

uλ = 0.



























(3.21)
-+

- +

z

x

S

P

Fig. 3.13: Far �eld displa
ement of a single 
ouple.The ratio of the maximum S-radiation (for ϑ = 900) to the maximum P -radiation (for ϑ = 450) is about 10, if α ≈ β
√

3. The radiation 
hara
teristi
sin planes other then y = 0 follow from the one shown by multipli
ation with
cosλ. Plane x = 0 is a nodal plane for P - as well as for S-radiation; the plane
z = 0 is one only for P .The far-�eld displa
ements for a double 
ouple in the x−z-plane are (see exer
ise3.6)

y

z

x

r

λ
υ

P

Fig. 3.14: Double 
ouple in the x-z-plane.
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60 CHAPTER 3. BODY WAVES
ur = − sin 2ϑ cos λ

4πρα3r M ′
(

t− r
α

)

uϑ = − cos 2ϑ cos λ
4πρβ3r M ′

(

t− r
β

)

uλ = cos ϑ sin λ
4πρβ3r M ′

(

t− r
β

)

.































(3.22)The moment fun
tion in (3.22) is that of one of the two dipoles of the double
ouple. The radiation 
hara
teristi
s in the x− z-plane are shown in Fig. 3.15.
P

S-+

- +

z

x

Fig. 3.15: Far �eld displa
ement of a double 
ouple.The P -radiation of the double 
ouple has the same form as that of a single
ouple but is twi
e as large; the ratio of the maximum radiation of S to P isnow about 5 (for λ ≈ β
√

3). P -nodal planes are the planes with x = 0 and
z = 0. The S-wave has no nodal planes, but only nodal dire
tions (whi
h?).An (in�nitesimal) shear rupture, either in the plane z = 0 with relative dis-pla
ement in x-dire
tion or in the plane x = 0 with relative displa
ement in
z-dire
tion, radiates waves as a double 
ouple, i.e., (3.22) holds. A shear rup-ture or earthquake, therefore, radiates no P -waves in the dire
tion of its ruptureand perpendi
ular to it. If, by using the distributions of the signs of �rst motionof the P wave, the two nodal planes have been determined, the two possible rup-ture surfa
es are found. The determination of the P -nodal plane of earthquakes
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 61(fault plane solution), is an important aid in the study of sour
e pro
esses aswell as the study of large-s
ale te
toni
s of a sour
e region. Often the de
isionbetween the two options for the rupture surfa
e 
an be made based on geologi
alarguments.The moment fun
tion of an earthquake with a smooth rupture, is, to a goodapproximation, a step fun
tion with non-vanishing rise time T and �nal value
M0, the moment of the earthquake (see Fig. 3.16). The far-�eld displa
ementsare then, a

ording to (3.22), one-sided impulses.

0M

M’

t

t

T

T0

0

M

Fig. 3.16: Moment fun
tion and far-�eld displa
ement of a smooth rupture.Propagation e�e
ts in layered media, e.g., the Earth's 
rust, 
an 
hange theimpulse form. In reality, the displa
ements look very often di�erent, relative tothe one shown here, due to 
ompli
ated rupture pro
esses.Exer
ise 3.6Derive the double 
ouple displa
ement ur in (3.22) from the 
orresponding single
ouple displa
ement in (3.21). Use equation (3.20) in Cartesian 
oordinates.
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62 CHAPTER 3. BODY WAVES3.6 Re�e
tion and refra
tion of plane waves atplane interfa
es3.6.1 Plane waves with arbitrary propagation dire
tionIn se
tions 3.1 to 3.3 plane waves travelling in the dire
tion of a 
oordinate axiswere used. In the following, we need plane waves with an arbitrary dire
tion ofpropagation. They 
an be des
ribed by the following potentials
Φ = A exp

[

iω

(

t−
−→x−→k
α

)] (3.23)
−→
Ψ = B exp

[

iω

(

t−
−→x−→k
β

)]

−→n . (3.24)Their variation with time is also harmoni
. This assumption is su�
ient formost 
on
lusions. A and B are 
onstant, −→k and −→n are 
onstant unit ve
tors,
−→x is the lo
ation ve
tor, ω is the angular frequen
y and i the imaginary unit.
Φ and the 
omponents of −→Ψ satisfy the wave equation (please 
on�rm)

∇2Φ =
1

α2

∂2Φ

∂t2
, ∇2Ψj =

1

β2

∂2Ψj

∂t2
(Cartesian 
oordinates).Sin
e, a

ording to (3.23) and (3.24), the movement at all times and lo
ationsis non-zero, the wavefronts 
an no longer be de�ned as surfa
es separatingundisturbed-disturbed from disturbed regions. We, therefore, 
onsider wavefronts as surfa
es of 
onstant phase ω(t − −→x−→k /c) with c = α or c = β. Thesesurfa
es are de�ned by

d

dt

(

t−
−→x−→k
c

)

= 0.They are perpendi
ular to ve
tor −→k , whi
h also gives the dire
tion of propaga-tion. The wavefronts move parallel with respe
t to themselves with the phasevelo
ity 
. Ve
tor −→k multiplied by the wavenumber ω/α or ω/β, is 
alled thewavenumber ve
tor.The polarisation dire
tion of the 
ompressional part
∇Φ = − iω

α
A exp

[

iω

(

t−
−→x−→k
α

)]

−→
k (3.25)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 63is longitudinal (parallel to −→k ) and that of the shear 
omponent
∇× −→Ψ = − iω

β
B exp

[

iω

(

t−
−→x−→k
β

)]

−→
k ×−→n (3.26)

(rot(f · −→n ) = f · ∇ × −→n − −→n × ∇ f) is transversal (perpendi
ular to −→k ).From (3.26), it follows, that for −→Ψ , without loss of generality, the additional
ondition of orthogonality of −→k and −→n 
an be introdu
ed. (Separation of −→n in
omponents parallel and perpendi
ular to −→k ).3.6.2 Basi
 equationsWe 
onsider a 
ombination of two half-spa
es whi
h are separated by a planeat z = 0. The 
ombination is arbitrary (solid-solid, solid-va
uum, liquid-liquid,...). We use Cartesian 
oordinates as shown in Fig. 3.17.
Fig. 3.17: Two half-spa
es in Cartesian 
oordinates.The y-axis points out of the plane. The displa
ement ve
tor is

−→u = (u, v, w),and its 
omponents are independent of y, i.e., we treat a plane problem in whi
hon all planes parallel to the x − z-plane, the same 
onditions hold. The mostsimple way to study elasti
 waves, under these 
onditions, is to derive u and wbut not v, from potentials. Writing
−→u = ∇Φ +∇× −→Ψby 
omponents,
u =

∂Φ

∂x
− ∂Ψ2

∂z

v =
∂Ψ1

∂z
− ∂Ψ3

∂x

w =
∂Φ

∂z
+
∂Ψ2

∂x
,
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64 CHAPTER 3. BODY WAVESit is obvious that for v two potentials Ψ1 and Ψ3 are required, and these do noto

ur in u and w. For v, it is better to use dire
tly the equation of motion (2.21)without body for
es, whi
h under these 
onditions be
omes a wave equation
∇2v =

1

β2

∂2v

∂t2
.The basi
 equations, therefore, are, if Ψ instead of Ψ2 is used

∇2Φ =
1

α2

∂2Φ

∂t2

∇2Ψ =
1

β2

∂2Ψ

∂t2

∇2v =
1

β2

∂2v

∂t2
(3.27)

∇2 =
∂2

∂x2
+

∂2

∂z2

u = ∂Φ
∂x − ∂Ψ

∂z

w = ∂Φ
∂z + ∂Ψ

∂x .







(3.28)The boundary 
onditions on the surfa
e z = 0 between the half-spa
es requires
ontinuity of the stress 
omponents
pzz = λ∇ · −→u + 2µ

∂w

∂z
= λ∇2Φ + 2µ

∂w

∂z

pzx = µ

(

∂w

∂x
+
∂u

∂z

)

pzy = µ
∂v

∂z
,or

pzz = λ
α2

∂2Φ
∂t2 + 2µ

(

∂2Φ
∂z2 + ∂2Ψ

∂x∂z

)

pzx = µ
(

2 ∂2Φ
∂x∂z + ∂2Ψ

∂x2 − ∂2Ψ
∂z2

)

pzy = µ∂v
∂z .































(3.29)Whi
h of the displa
ement 
omponents is 
ontinuous depends on the spe
ial
ombination of the half-spa
es.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 65Sin
e no 
onne
tion of v with Φ and Ψ exists via the boundary 
onditions and,therefore, with u and w, it follows, that the S-waves, the displa
ement of whi
his only horizontal (in y-dire
tion: SH-waves), propagate independently from the
P -waves, following from Φ, and the S-waves, following from Ψ, that also havea verti
al 
omponent (in z-dire
tion: SV-waves). If a SH-wave impinges on aninterfa
e, only re�e
ted and refra
ted SH-waves o

ur, but no P- or SV-waves.If, on the other hand, a P − (SV−)wave intera
ts with an interfa
e, re�e
tedand refra
ted SV −(P−)waves o

ur, but no SH -waves o

ur. These statementshold, in general, only for the 
ase of an interfa
e between two solid half-spa
es.In liquids, neither SH- nor SV-waves propagate; in a va
uum a rigid half-spa
e,or no waves propagate at all. Correspondingly, the situation is even more simpleif su
h half-spa
es are involved.The de
oupling of P-SV- and SH-waves holds for plane problems not only inthe simple 
ase of an interfa
e z=
onst between two homogeneous half-spa
es,but also in the more 
ompli
ated 
ase of an inhomogeneous medium, as longas density, wave velo
ity, and module are only fun
tions of x and z. One 
on-sequen
e of this de
oupling is that in the following, re�e
tion and refra
tionof P - and SV-waves 
an be treated independently from that of the SH-waves.Furthermore, it is possible to disse
t an S-wave of arbitrary polarisation in itsSV- and SH-
omponent and to study their respe
tive re�e
tion and refra
tionindependently from ea
h other.In ea
h 
ase, we assume for the in
ident plane wave a potential Φ or −→Ψ inthe form of (3.23) or (3.24), respe
tively, (in the se
ond 
ase −→Ψ has only the
y-
omponent Ψ). In 
ase of a SH-wave, we assume that v 
an be des
ribed byan equation in the form of (3.23) with β instead of α. The angle of in
iden
e ϕis part of the dire
tion ve
tor −→k

Fig. 3.18: In
ident plane wave and angle of in
iden
e ϕ.
−→
k = (sinϕ, 0, cosϕ). (3.30)
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66 CHAPTER 3. BODY WAVESFor the re�e
ted and refra
ted wave an ansatz is made with di�erent amplitudesA and B, respe
tively, and di�erent dire
tion ve
tors −→k . The relation betweenthe new dire
tion ve
tors and (3.30) is via Snell's law. The relation betweenthe displa
ement amplitudes of the re�e
ted and the refra
ted wave with thein
ident wave, is 
alled re�e
tion 
oe�
ient and refra
tion 
oe�
ient, respe
-tively, and it depends on the angle of in
iden
e and the material properties inthe half-spa
es. Rpp, Rps, Bpp, Bps, Rss, Rsp, Bss, Bsp will be the 
oe�
ientsfor P-SV-waves, rss and bss those for the SH-waves. The �rst index indi
atesthe type of in
ident wave, the se
ond the re�e
ted and refra
ted wave type,respe
tively.We dis
uss, in the following, only relatively simple 
ases, for whi
h illustratethe main e�e
ts to be studied.3.6.3 Re�e
tion and refra
tion of SH-wavesRe�e
tion and refra
tion 
oe�
ientsThe displa
ement v0 of the in
ident SH-wave in y-dire
tion is
v0 = C0 exp

[

iω

(

t− sinϕ

β1
x− cosϕ

β1
z

)]

. (3.31)
ϕ1

ϕ2

µ ,ρ ,β  22 2

µ ,ρ ,β  1 1 1

z

ϕ

v0 v1

v2

xz=0

Fig. 3.19: In
ident, re�e
ted and di�ra
ted SH-waves at a plane interfa
e.The ansatz for the re�e
ted and refra
ted SH-wave as plane waves with re�e
tionangle ϕ1 and the refra
tion angle ϕ2, respe
tively, and the same frequen
y asthe in
ident wave isre�e
tion : v1 = C1 exp

[

iω

(

t− sinϕ1

β1
x+

cosϕ1

β1
z

)] (3.32)refra
tion : v2 = C2 exp

[

iω

(

t− sinϕ2

β2
x− cosϕ2

β2
z

)]

. (3.33)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 67The unknowns are the angles ϕ1 and ϕ2, the re�e
tion 
oe�
ient rss = C1/C0and the refra
tion 
oe�
ient bss = C2/C0.The boundary 
onditions require at z = 0 the 
ontinuity of displa
ement (that isa reasonable requirement) and 
ontinuity for the normal and tangential stresses.This leads to
v0 + v1 = v2

µ1
∂
∂z (v0 + v1) = µ2

∂v2

∂z

} for z = 0. (3.34)The stress 
omponents pzz and pzx are zero everywhere, sin
e no P- and/or SV-wave o

ur. Insert (3.31), (3.32) and (3.33) into (3.34). From the �rst boundary
ondition this leads to
C0 exp

[

iω

(

t− sinϕ

β1
x

)]

+C1 exp

[

iω

(

t− sinϕ1

β1
x

)]

= C2 exp

[

iω

(

t− sinϕ2

β2
x

)]

.(3.35)We plan to �nd solutions v1 and v2 of the problem, for whi
h the amplitudes
C1 and C2 are independent of lo
ation, sin
e only then 
an we be sure that v1and v2 are solutions of the 
orresponding wave equation. C1 and C2 be
omeonly independent of lo
ation if in (3.35)

sinϕ

β1
=

sinϕ1

β1
=

sinϕ2

β2
, (3.36)sin
e only then the exponential term 
an be 
an
elled. Equation (3.36) is thewell-known Snell's Law whi
h states that the re�e
tion angle ϕ1 is equal to theangle of in
iden
e ϕ and that for the refra
tion angle ϕ2 is

sinϕ2

sinϕ
=
β2

β1
.With (3.35), this leads to

C2 − C1 = C0. (3.37)The se
ond boundary 
ondition in (3.34) gives
µ1iω

(

−cosϕ

β1
C0 +

cosϕ1

β1
C1

)

= −µ2iω
cosϕ2

β2
C2.With ϕ1 = ϕ and µ1,2/β1,2 = ρ1,2β1,2, it follows that
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68 CHAPTER 3. BODY WAVES
ρ1β1 cosϕ(C1 − C0) = −ρ2β2 cosϕ2C2or

ρ2β2 cosϕ2

ρ1β1 cosϕ
C2 + C1 = C0. (3.38)From (3.37) and (3.38) follow the re�e
tion and refra
tion 
oe�
ients

rss =
C1

C0
=

ρ1β1 cosϕ− ρ2β2 cosϕ2

ρ1β1 cosϕ+ ρ2β2 cosϕ2
(3.39)

bss =
C2

C0
=

2ρ1β1 cosϕ

ρ1β1 cosϕ+ ρ2β2 cosϕ2
. (3.40)With (3.36), this leads to

cosϕ2 = (1− sin2 ϕ2)
1
2 =

(

1− β2
2

β2
1

sin2 ϕ

)
1
2

. (3.41)For perpendi
ular in
iden
e (ϕ = 0)
rss =

ρ1β1 − ρ2β2

ρ1β1 + ρ2β2
and bss =

2ρ1β1

ρ1β1 + ρ2β2
.In this 
ase, rss and bss depend only on the impedan
es ρ1β1 and ρ2β2 of thetwo half-spa
es. For grazing in
iden
e (ϕ = π/2), rss = −1 and bss = 0. Theabsolute value of the amplitude of the re�e
ted wave is never larger then that ofthe in
ident wave; that of the refra
ted wave 
an be larger if ρ2β2 < ρ1β1 (e.g.,for ϕ = 0).If rss is negative, this means that in one point of the interfa
e the displa
ementve
tor of the re�e
ted wave points in −y-dire
tion, if the displa
ement ve
torof the in
ident wave points in +y-dire
tion. For impulsive ex
itation (see alsolater), this means that the dire
tion of �rst motion of the in
ident and there�e
ted wave are opposite.The following �gure shows |rss| as a fun
tion of ϕ for di�erent velo
ity ratios

β1/β2 > 1 and ρ1 = ρ2.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 69

Fig. 3.20: |rss| as a fun
tion of ϕ for di�erent velo
ity ratios.Total re�e
tionIf β2 < β1, as in Fig. 3.20, cosϕ2 is real for all angles of in
ident ϕ, the sameis true for rss and bss. Total re�e
tion,, i.e., |rss| = 1, is then only possible forgrazing in
iden
e.If β2 > β1, cosϕ2 is only real as long as
ϕ =< ϕ∗ = arcsin

β1

β2
.

ϕ∗ is the 
riti
al angle (or limiting angle of total re�e
tion). A

ording to (3.41),
ϕ = ϕ∗ is 
onne
ted to the 
ase with grazing propagation of the wave in these
ond half-spa
e (ϕ2 = π/2).If ϕ > ϕ∗, cosϕ2 be
omes imaginary, or, to be more exa
t, negative imaginaryfor positive ω and positive imaginary for negative ω, sin
e only then v2 for
z → +∞ remains limited. rss and bss be
ome 
omplex. v1 and v2 still solvethe wave equations and satisfy the boundary 
onditions, even when posing theansatz (3.32) and (3.33) have not expli
itly been 
hosen in 
omplex form. There�e
tion 
oe�
ient 
an then be written as

rss = a−ib
a+ib = exp

(

−2i arctan b
a

)

a = ρ1β1 cosϕ

b = −ρ2β2

(

β2
2

β2
1

sin2 ϕ− 1
)

1
2 ω

|ω|



























. (3.42)
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70 CHAPTER 3. BODY WAVESIt has the absolute value 1 and a phase that depends on the angle of in
iden
e.Its sign 
hanges with the sign of the frequen
y. Values of |rss| are shown in Fig.3.21 for a few 
ombinations.

Fig. 3.21: |rss| as a fun
tion of ϕ for di�erent velo
ity ratios.The refra
ted wave propagates for ϕ > ϕ∗ parallel to the interfa
e with the ve-lo
ity β1/ sinϕ. Its amplitude is not only 
ontrolled by bss, but is also 
ontrolledby the exponential term whi
h depends on z. The amplitude of the refra
tedwave de
ays, therefore, exponentially with in
reasing distan
e from the interfa
e(inhomogeneous or boundary layer wave). It follows that (please 
he
k)
v2 = bssC0 exp

[

−|ω|
β2

(

β2
2

β2
1

sin2 ϕ− 1

)
1
2

z

]

exp

[

iω

(

t− sinϕ

β1
x

)]

.Other 
asesThe treatment of the re�e
tion of plane P -waves at an interfa
e between twoliquids gives similar results to the one dis
ussed above (see also exer
ise 3.9).If the interfa
e between two solid half-spa
es is 
onsidered, the 
omputationale�ort is signi�
antly larger, sin
e now re�e
ted and refra
ted SV -waves have tobe in
luded. We, therefore, skip the details. The absolute value of the re�e
tion
oe�
ient Rpp is shown in Fig. 3.22.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 71
|Rpp |

β2

α1= −ϕ∗∗sinα 1 β2 α2< <

0
0

ϕ∗ ϕ∗∗ π/2 ϕ

|Rpp |

α1
α2
−sin ϕ∗ =α 1 α22β  < <

ϕ∗ π/2 ϕ
0

0Fig. 3.22: Absolute value of the re�e
tion 
oe�
ient Rpp.For ϕ = 0, Rpp = ρ2α2−ρ1α1

ρ2α2+ρ1α1
(
ompare also exer
ise 3.9).

|Rpp| for ϕ∗ < ϕ < π/2 is smaller then 1 for two reasons. First, the re�e
tedSV -wave also 
arries energy; se
ond, for the 
ase on the left of Fig. 3.22, aSV -wave propagates in the lower half-spa
e for all ϕ, and, similarly, for the
ase on the right of Fig. 3.22, for ϕ < ϕ∗∗. ϕ < ϕ∗∗ is the se
ond 
riti
al anglewhi
h exists only for α1 < β2 < α2

ϕ∗∗ = arcsin
α1

β2
> ϕ∗ = arcsin

α1

α2
.

For angles ϕ larger then ϕ∗∗, the se
ond energy loss is no longer possible, andtotal re�e
tion o

urs. The re�e
ted energy is then, to a smaller part, alsotransported in the SV -wave.Some numeri
al results for re�e
tion and refra
tion 
oe�
ients for a P-SV-
aseare given in Fig. 3.23 (model of the 
rust-mantle boundary (Moho) with α1 =
6.5km/sec, β1 = 3.6km/sec, ρ1 = 2.8g/cm3, α2 = 8.2km/sec, β2 = 4.5km/sec, ρ2 =
3.3g/cm3).
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72 CHAPTER 3. BODY WAVES

Fig. 3.23: Absolute value of re�e
tion and refra
tion 
oe�
ients Rpp, Rps, Bppand Rss.Transition to impulsive ex
itationThe transition from the harmoni
 
ase, treated up to now, to the impulse 
ase,
an be done with the Fourier transform (
ompare appendix A.1.7). Instead of(3.31), the SH-wave
v0 = F

(

t− sinϕ

β1
x− cosϕ

β1
z

)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 73may impinge on the interfa
e, and we disse
t F (t) with the aid of the Fourierintegral in partial vibration
F (t) =

1

2π

∫ +∞

−∞

F (ω)eiωtdω

F (ω) =

∫ +∞

−∞

F (t)e−iωtdt Fourier transform of F (t).We then study, as before, re�e
tion and refra
tion of the partial waves
dv0 =

1

2π
F (ω) exp

[

iω

(

t− sinϕ

β1
x− cosϕ

β1
z

)]

dωand then sum the re�e
ted partial waves to derive the re�e
ted SH -wave
v1 =

1

2π

∫ +∞

−∞

rssF (ω) exp

[

iω

(

t− sinϕ

β1
x+

cosϕ

β1
z

)]

dω. (3.43)As long as the re�e
tion 
oe�
ient rss is frequen
y independent (whi
h is the
ase for β2 < β1 or for ϕ < ϕ∗ with β2 > β1), it 
an be moved before theintegral, thus, yielding
v1 = rssF

(

t− sinϕ

β1
x+

cosϕ

β1
z

)

.The re�e
ted impulse has, in this 
ase, the same form as the in
ident impulse.The amplitude ratio of the two impulses is equal to the re�e
tion 
oe�
ient.Then rss, a

ording to (3.42), be
omes dependent from ω for ϕ > ϕ∗ with
β2 > β1. One then has to pro
eed di�erently. We disse
t rss into real andimaginary parts

rss = R(ϕ) + iI(ϕ)
ω

|ω|

R(ϕ) =
a2 − b2
a2 + b2

I(ϕ) = − 2ab

a2 + b2
(b for ω > 0).A

ording to (3.43), it holds that

v1 = R(ϕ)F (τ) + I(ϕ)
1

2π

∫ +∞

−∞

iω

|ω|F (ω)eiωτdω (3.44)
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74 CHAPTER 3. BODY WAVESwith
τ = t− sinϕ

β1
x+

cosϕ

β1
z.The fun
tion, with whi
h I(ϕ) in (3.44) is multiplied, 
an be written, here viaits Fourier transform, as (iω/ |ω|) ·F (ω). This is a simple �lter of fun
tion F (τ)(
ompare general 
omments on �lters in appendix A.3.4). Ea
h frequen
y ω in

F (τ) keeps its amplitude, but its phase is 
hanged. The phase 
hange is +900for ω > 0 and −900 for ω < 0. This 
orresponds to a Hilbert transform and isshown in appendix B. The fun
tion with whi
h I(ϕ) in (3.44) is multiplied is,therefore, the Hilbert transform FH(τ) of F (τ)

FH(τ) =
1

π
P

∫ +∞

−∞

F (t)

t− τ dt =
1

π

∫ +∞

−∞

ln |t|F ′(τ − t)dt. (3.45)
P indi
ates the main value (without the singularity at t = τ), and the se
ondform of FH(τ) follows from the �rst by partial integration. Thus,

v1 = R(ϕ)F (τ) + I(ϕ)FH(τ). (3.46)Due to the se
ond term in (3.46), the form of the re�e
ted wave is di�erentfrom that of the in
ident wave. Fig. 3.24 shows the results of the re�e
tion ofSH-waves and angle of in
iden
e ϕ from 0 to 900.For pre-
riti
al angles of in
iden
e ϕ < ϕ∗ = 480, the re�e
tion has the form ofthe in
ident wave with positive and negative signs. Beyond the 
riti
al angle,in the range of total re�e
tion, impulse deformations o

ur until at ϕ = 900 thein
ident wave form appears again, but with opposite sign (
orresponding to are�e
tion 
oe�
ient rss = −1). The phase shift of rss at ϕ = 550 is about ±900,with the 
onsequen
e that R(ϕ) ≈ 0. The re�e
tion impulse for this angle ofin
iden
e is, therefore, 
lose to the Hilbert transform FH(τ) of F (τ) (the exa
tHilbert transform is an impulse that is symmetri
 with respe
t to its minimum).
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 75

Fig. 3.24: Re�e
tion of SH-waves for di�erent angle of in
iden
e ϕ.
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



76 CHAPTER 3. BODY WAVESExer
ise 3.7:Whi
h sign does the re�e
tion 
oe�
ient rss have in Fig. 3.20 and Fig. 3.21, inthe regions where it is real?Exer
ise 3.8:Determine the angle of in
iden
e for whi
h rss is zero (Brewster angle), andgive the 
onditions under whi
h this a
tually happens (
ompare ϕ ≈ 400 in Fig.3.24).Exer
ise 3.9Compute the re�e
tion and refra
tion 
oe�
ients for a plane surfa
e betweentwo liquids and for a plane harmoni
 longitudinal wave under angle of in
iden
e
ϕ impinges. Give, qualitatively, the trend of the 
oe�
ients for ρ1 = ρ2 with
α1 > α2 and α1 < α2. Hint: Use an ansatz for the displa
ement potential inthe form of (3.31) to (3.33) and express the boundary 
onditions via potentialsas dis
ussed in se
tion 3.6.2.3.6.4 Re�e
tion of P-waves at a free surfa
eRe�e
tion 
oe�
ientsThe study of the re�e
tion of P-waves from a free surfa
e is of pra
ti
al im-portan
e for seismology. P -waves from earthquakes and explosions propagatethrough the Earth and impinge at the seismi
 station from below. Horizon-tal and verti
al displa
ement are modi�ed by the free surfa
e. Furthermore,re�e
ted P - and S -waves are re�e
ted downwards and re
orded at larger dis-tan
es, sometimes with large amplitudes. It is, therefore, useful and ne
essaryto know the re�e
tion 
oe�
ient of the Earth's surfa
e. For the moment, wenegle
t the layered nature of the 
rust in our model, thus, only giving a �rstapproximation to reality.Based on the 
omments given at the end of se
tion 3.6.2, we sele
t the followingansatz for the potentialsin
ident P − wave

Φ0 = A0 exp

[

iω

(

t− sinϕ

α
x− cosϕ

α
z

)] (3.47)re�e
ted P − wave
Φ1 = A1 exp

[

iω

(

t− sinϕ1

α
x+

cosϕ1

α
z

)] (3.48)re�e
ted SV − wave
Ψ1 = B1 exp

[

iω

(

t− sinϕ′
1

β
x+

cosϕ′
1

β
z

)]

. (3.49)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 77

Fig. 3.25: In
ident P-wave and re�e
ted P- and S-wave .The boundary 
onditions at z = 0 require vanishing normal and tangential stress
pzz = pzx = 0. No boundary 
onditions for the displa
ement exist. With (3.29)and Φ = Φ0 + Φ1 (Ψ = Ψ1 = y − 
omponent of −→Ψ), it follows that

1

α2

∂2

∂t2
(Φ0 + Φ1) +

2µ

λ

[

∂2

∂z2
(Φ0 + Φ1) +

∂2Ψ1

∂x∂z

]

= 0 z = 0 (3.50)
2
∂2

∂x∂z
(Φ0 + Φ1) +

∂2Ψ1

∂x2
− ∂2Ψ1

∂z2
= 0 z = 0. (3.51)As in the last se
tion, Snell's law follows from the boundary 
onditions

sinϕ

α
=

sinϕ1

α
=

sinϕ′
1

β
. (3.52)From this, it follows that ϕ1 = ϕ and ϕ′

1 = arcsin
(

β
α · sinϕ

)

< ϕ.With (3.47), (3.48), (3.49) and
µ

λ
=

µ

λ+ 2µ− 2µ
=

ρβ2

ρα2 − 2ρβ2
=

β2

α2 − 2β2(3.50) leads to
1

α2
(A0 +A1) (iω)2

+
2β2

α2 − 2β2

[

(A0 +A1)

(

iω

α
cosϕ

)2

+B1

(

− iω
β

sinϕ′
1

)(

iω

β
cosϕ′

1

)

]

= 0.Then
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78 CHAPTER 3. BODY WAVES
A0 +A1 +

2α2β2

α2 − 2β2

[

(A0 +A1)
cos2 ϕ

α2
−B1

sinϕ′
1 cosϕ′

1

β2

]

= 0.with
1 +

2β2

α2 − 2β2
cos2 ϕ =

2β2

α2 − 2β2

(

α2

2β2
− 1 + cos2 ϕ

)

=
2β2

α2 − 2β2

(

α2

2β2
− sin2 ϕ

)

=
β2

α2 − 2β2

(

α2

β2
− 2 sin2 ϕ

)

=
γ − 2 sin2 γ

γ − 2and (γ = α2

β2 > 2
), it follows that
γ − 2 sin2 ϕ

γ − 2
(A0 +A1)−

2γ sinϕ′
1 cosϕ′

1

γ − 2
B1 = 0.From this

(γ − 2 sin2 ϕ)
A1

A0
− 2 sinϕ(γ − sin2 ϕ)

1
2
B1

A0
= 2 sin2 ϕ− γ. (3.53)Equation (3.51) then gives

2A0

(

− iω
α

sinϕ

)(

− iω
α

cosϕ

)

+ 2A1

(

− iω
α

sinϕ

)(

iω

α
cosϕ

)

+B1

(

− iω
β

sinϕ′
1

)2

−B1

(

iω

β
cosϕ′

1

)2

= 0or
2 sinϕ cosϕ

α2
(A0 −A1) +

sin2 ϕ′
1 − cos2 ϕ′

1

β2
B1 = 0.Equation (3.52) then gives

2 sinϕ cosϕ
A1

A0
+
(

γ − 2 sin2 ϕ
) B1

A0
= 2 sinϕ cosϕ. (3.54)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 79From (3.53) and (3.54), it follows that the amplitude ratios are
A1

A0
=

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 −

(

γ − 2 sin2 ϕ
)2

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2

(3.55)
B1

A0
=

4 sinϕ cosϕ
(

γ − 2 sin2 ϕ
)

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2
. (3.56)To derive displa
ement amplitudes (that is how the 
oe�
ients Rpp and Rps inse
tion 3.6.2 were de�ned) from the ratios of potential amplitudes given here,we use (3.25) and (3.26). The displa
ement amplitude of the in
ident P -wave is

− iω
α A0; that of the re�e
ted P -wave is− iω

α A1. This then gives the PP -re�e
tion
oe�
ient (see also (3.55))
Rpp =

A1

A0
. (3.57)Equation (3.26) gives the displa
ement amplitude of the re�e
ted SV -wave as

− iω
β B1. Thus, the PS -re�e
tion 
oe�
ient is (see also (3.56))

Rps =
α

β

B1

A0
. (3.58)

Rpp and Rps are real and frequen
y independent for all angles of in
ident ϕ. Rpsis always positive. For ϕ = 0 and ϕ = π
2 , Rpp = −1 and Rps = 0, respe
tively,and only a P -wave is re�e
ted.

Fig. 3.26: Re�e
tion and refra
tion 
oe�
ients of P-waves for di�erent anglesof in
iden
e ϕ.
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



80 CHAPTER 3. BODY WAVESThe meaning of the negative signs in the re�e
tion 
oe�
ients be
omes 
lear, ifthe displa
ement ve
tor of the in
ident and re�e
ted waves are represented via(3.25) and (3.26)
−→u 0 = ∇Φ0 = − iω

α
A0 exp

[

iω

(

t− sinϕ

α
x− cosϕ

α
z

)]

−→
k 0

−→u 1 = ∇Φ1 = − iω
α
A0Rpp exp

[

iω

(

t− sinϕ

α
x+

cosϕ

α
z

)]

−→
k 1

−→u ′
1 = ∇× −→Ψ = − iω

α
A0Rps exp

[

iω

(

t− sinϕ′
1

β
x+

cosϕ′
1

β
z

)]

−→
k

′

1 ×−→n .

Fig. 3.27: Polarity of re�e
ted P- and SV-waves.
Rpp < 0, therefore, means that if the displa
ement of the re�e
ted P -wave in apoint on the interfa
e (z = 0) points in the dire
tion of −−→k 1, the in
ident wavepoints in the dire
tion of −→k 0. For Rps < 0, the displa
ement of the re�e
ted SV -wave would, for su
h an in
ident wave, be pointing in the dire
tion of −−→k ′

1×−→n .These 
onne
tions be
ome more obvious if we go from the harmoni
 
ase tothe impulsive 
ase (
ompare se
tion 3.6.3, transition to impulse ex
itation).For the problem studied, the re�e
tion 
oe�
ients are frequen
y independent.Therefore, the re�e
ted waves have always the same form as the in
ident wave
−→u 0 = F

(

t− sinϕ

α
x− cosϕ

α
z

)

−→
k 0 (3.59)

−→u 1 = RppF

(

t− sinϕ

α
x+

cosϕ

α
z

)

−→
k 1 (3.60)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 81
−→u ′

1 = RpsF

(

t− sinϕ′
1

β
x+

cosϕ′
1

β
z

)

−→
k

′

1 ×−→n (3.61)
ϕ′

1 = arcsin

(

β

α
sinϕ

)

.In the 
aseRpp < 0, if the �rst motion of the in
ident P -wave is dire
ted towardsthe interfa
e z = 0, this also holds for the re�e
ted SV -wave and the re�e
tedP -wave; otherwise, the �rst motion of the re�e
ted P -wave points away fromthe interfa
e. Fig. 3.28 shows the 
ase for Rpp < 0.

Fig. 3.28: De�nition of the �rst motion of re�e
ted P- and SV-waves.Displa
ements at the surfa
eFinally, we 
ompute the resulting displa
ement at the free surfa
e (z=0) inwhi
h the three waves (3.59), (3.60) and (3.61) superimpose.Horizontal displa
ement (positive in x -dire
tion):
u = [(1 +Rpp) sinϕ+Rps cosϕ′

1]F

(

t− sinϕ

α
x

)

u = fu(ϕ)F

(

t− sinϕ

α
x

)

fu(ϕ) =
4γ sinϕ cosϕ

(

γ − sin2 ϕ
)

1
2

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2

(3.62)and Verti
al displa
ement (positive in z -dire
tion):
w = [(1−Rpp) cosϕ+Rps sinϕ′

1]F

(

t− sinϕ

α
x

)
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82 CHAPTER 3. BODY WAVES
w = fw(ϕ)F

(

t− sinϕ

α
x

)

fw(ϕ) =
2γ cosϕ

(

γ − 2 sin2 ϕ
)

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2
. (3.63)

The ampli�
ation fa
tors (or transfer fun
tions of the surfa
e) fu(ϕ) and fw(ϕ),respe
tively, are given in Fig. 3.29 for the 
ase γ = 3.

Fig. 3.29: Transfer fun
tions of the free surfa
e.Therefore, a linearly polarised wave with the apparent velo
ity α/ sinϕ propa-gates at the surfa
e. The polarisation angle ǫ, (see Fig. 3.30), is not identi
alto the angle of in
iden
e ϕ. ǫ is also 
alled the apparent angle of in
iden
e.
ǫ = arctan

( u

w

)

= arctan





2 sinϕ
(

γ − sin2 ϕ
)

1
2

γ − 2 sin2 ϕ



 .
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 83

Fig. 3.30: Polarisation angle ǫ and angle of in
iden
e ϕ.
2
π

2
πO

ε=ϕ

ε(ϕ)

ε

ϕFig. 3.31: Qualitative relationship between ǫ and ϕ .
ǫ
(π

2

)

= arctan

(

2 (γ − 1)
1
2

γ − 2

)

ǫ′(0) =
2

γ
1
2

.In
ident SV -waveIf a SV -wave, instead of the P -wave 
onsidered up until now, impinges on thefree surfa
e, no P -wave is re�e
ted for angles of in
iden
e ϕ > ϕ∗ = arcsin β
α ,but only an SV -wave (|Rss| = 1) is re�e
ted. This follows from 
onsiderationssimilar to that for an in
ident P -wave. For ϕ < ϕ∗, the displa
ement at thefree surfa
e is linearly polarised, but for ϕ > ϕ∗, it is polarised ellipti
ally.
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84 CHAPTER 3. BODY WAVESThis property is observed: SV -waves from earthquakes for distan
es smallerthen about 400 are ellipti
ally polarised, but are linearly polarised for largerdistan
es.
Fig. 3.32: Polarisation of SV -waves from earthquakes .
3.6.5 Re�e
tion and refra
tion 
oe�
ients for layered me-diaMatrix formalismIn the last two se
tions, we studied the re�e
tion and refra
tion of plane waves atone interfa
e. The re�e
tion and refra
tion 
oe�
ients depend, then, mainly onthe properties of the half-spa
es and the angle of in
iden
e. Only if the 
riti
alangle is ex
eeded, a weak frequen
y dependen
e o

urs: the sign of the phase(the 
oe�
ients be
ome 
omplex) is 
ontrolled by the sign of the frequen
y ofthe in
ident wave (
ompare se
tion 3.6.3). The frequen
y dependen
e be
omesmu
h more pronoun
ed when the re�e
tion and refra
tion of plane waves ina (sub-parallel) layered media is 
onsidered (two or more interfa
es). Then,generally, interferen
e phenomena o

ur and for spe
ial frequen
ies (or wavelengths) 
onstru
tive or destru
tive interferen
es o

ur.Here, we will study the re�e
tion and refra
tion of P -waves from a pa
ket ofliquid layers between two liquid half-spa
es. The 
orresponding problem for SH -waves in solid media 
an be solved similarly. There is a 
lose similarity betweenP -waves in layered liquid media and SH -waves in layered solid media. Thetreatment of P-SV-waves in solid media (possibly with interspersed liquid layers)is, in prin
iple, the same, but the derivation is signi�
antly more 
ompli
ated.In all these approa
hes, a matrix formalism is used, whi
h is espe
ially e�e
tivefor implementing on 
omputers.We 
hoose the annotation of the liquid-layered medium as given in Fig. 3.33.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 85

Fig. 3.33: Liquid-layered medium with n layers.The displa
ement potential Φj in the j -th layer (j = 1, 2, . . . , n) satis�es thewave equation
∂2Φj

∂x2
+
∂2Φj

∂z2
=

1

α2
j

∂2Φj

∂t2
.Solutions of this equation, whi
h 
an be interpreted as harmoni
 plane waves,have the form

exp [i (ωt± kjx± ljz)]with k2
j + l2j = ω/α2

j , where kj is the horizontal, lj the verti
al wavenumber,respe
tively. We assume positive frequen
ies ω and non-negative horizontalwavenumbers kj . Then, we 
an disregard the sign �+� of kjx, sin
e it 
orre-sponds to waves whi
h propagate in -x-dire
tion. This is not possible for oursele
tion of the in
ident wave, (see Fig. 3.33). The two signs of ljz have tobe kept, sin
e in all layers (ex
ept the n-th) waves propagate in +z - and in-z -dire
tion. We then 
ome to the potential ansatz
Φj = Aj exp [i (ωt− kjx− lj(z − zj))] (3.64)

+Bj exp
[

i
(

ωt− k′jx+ l′j(z − zj)
)]

z1 = z2 = 0, k2
j + l2j = k′2j + l′2j =

ω2

α2
j

(3.65)
Bn = 0. (3.66)
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86 CHAPTER 3. BODY WAVESIn (3.64), we have assumed, for the moment, that the wavenumbers of the wavespropagating in +z- and -z-dire
tion are di�erent. Furthermore, we have repla
edz by z − zj . This does not 
hange the meaning of the terms but simpli�es the
omputations.The part A1 exp [i (ωt− k1x− l1z)] of Φ1 will be interpreted as in
ident P -wave(
ompare, e.g., (3.47)). This means that k1 and l1 are 
onne
ted with the angleof in
iden
e ϕ as
k1 = ω

α1
sinϕ

l1 = ω
α1

cosϕ.







(3.67)The part B1 exp [i (ωt− k′1x+ l′1z)] of Φ1 is the wave re�e
ted from the lay-ered half-spa
e z > 0. We want to 
ompute the re�e
tion 
oe�
ient Rpp andthe refra
tion 
oe�
ient Bpp (again de�ned as the ratio of the displa
ementamplitudes)
Rpp = B1

A1

Bpp = α1

αn
· An

A1
.







(3.68)The boundary 
onditions for the interfa
es z = z2, z3, . . . , zn require 
ontinuityof the verti
al displa
ement ∂Φ/∂z and of the normal stress pzz = λ∇2Φ =
ρ∂2Φ/∂t2. For z = zj , this gives

∂Φj

∂z =
∂Φj−1

∂z and ρj
∂2Φj

∂t2 = ρj−1
∂2Φj−1

∂t2 .From the �rst relation, it follows that (the phase term eiωt is negle
ted in thefollowing sin
e it 
an
els out),
−ljAj exp [−ikjx] + l′jBj exp

[

−ik′jx
]

= −lj−1Aj−1 exp [i (−kj−1x− lj−1dj−1)]

+ l′j−1Bj−1 exp
[

i
(

−k′j−1x+ l′j−1dj−1

)]

.The se
ond relation gives
ρjAj exp [−ikjx] + ρjBj exp

[

−ik′jx
]

= ρj−1Aj−1 exp [i (−kj−1x− lj−1dj−1)]

+ ρj−1Bj−1 exp
[

i
(

−k′j−1x+ l′j−1dj−1

)]

.Both equations hold for j = 2, 3, . . . , n, and dj−1 = zj−zj−1 (d1 = 0). As before,we require that the exponential terms depending on x must 
an
el, leading to
kj = k′j = kj−1 = k′j−1. This, then, gives (with (3.67))
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 87
k′n = kn = k′n−1 = kn−1 = . . . = k′1 = k1 =

ω

α1
sinϕ.This is an alternative form of Snell's law. With (3.65), this leads to

l′j = lj =

(

ω2

α2
j

− k2
1

)
1
2

=
ω

αj

(

1−
α2

j

α2
1

sin2 ϕ

)
1
2

. (3.69)If sinϕ > α1/αj, lj is imaginary (and even negative imaginary), only then for
j = n is the amplitude of the potentials limited for z → ∞. This leads to thefollowing system of equations, whi
h 
onne
ts Aj and Bj with Aj−1 and Bj−1,respe
tively

Aj −Bj =
lj−1

lj

[

Aj−1e
−ilj−1dj−1 −Bj−1e

ilj−1dj−1
]

Aj +Bj =
ρj−1

ρj

[

Aj−1e
−ilj−1dj−1 +Bj−1e

ilj−1dj−1
]

.In matrix form, this 
an be written as (please 
he
k)
(

Aj

Bj

)

=
e−ilj−1dj−1

2ljρj

(

lj−1ρj + ljρj−1 (−lj−1ρj + ljρj−1)e
2ilj−1dj−1

−lj−1ρj + ljρj−1 (lj−1ρj + ljρj−1)e
2ilj−1dj−1

)

·
(

Aj−1

Bj−1

) (3.70)
= mj ·

(

Aj−1

Bj−1

)where mj is the layer matrix.Repeated appli
ation of (3.70) gives
(

An

Bn

)

= mn ·mn−1 · . . . ·m3 ·m2

(

A1

B1

)

= M

(

A1

B1

)

=

(

M11M12

M21M22

)(

A1

B1

)

.On 
omputers, the produ
tM of the layer matri
esmn tom2 
an be determinedqui
kly and e�
iently. First, the angular frequen
y ω and the angle of in
iden
e
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88 CHAPTER 3. BODY WAVES
ϕ are given; then, the lj 's are determined with (3.69), and the matri
es aremultiplied. This gives the elements of M . From

An = M11A1 +M12B1 and Bn = M21A1 +M22B1with (3.66), it follows that
B1

A1
= −M21

M22
and An

A1
= M11 −

M12M21

M22
.The re�e
tion 
oe�
ient Rpp and the refra
tion 
oe�
ient Bpp of the layeredmedium, therefore, 
an be written a

ording to (3.68) as

Rpp = −M21

M22
and Bpp =

α1

αn

(

M11 −
M12M21

M22

)

. (3.71)Two homogeneous half-spa
esIn this very simple 
ase, it follows (with d1 = 0) that
M = m2 =

1

2l2ρ2

(

l1ρ2 + l2ρ1 −l1ρ2 + l2ρ1

−l1ρ2 + l2ρ1 l1ρ2 + l2ρ1

)and, therefore, a

ording to (3.71)
Rpp =

−l2ρ1 + l1ρ2

l2ρ1 + l1ρ2

Bpp =
α1

α2

(l1ρ2 + l2ρ1)
2 − (l2ρ1 − l1ρ2)

2

2l2ρ2(l2ρ1 + l1ρ2)
=
α1

α2

2l1ρ1

l2ρ1 + l1ρ2
.With l1 = ω

α1
cosϕ and l2 = ω

α2

(

1− α2
2

α2
1

sin2 ϕ
)

1
2

= ω
α2

cosϕ2 (ϕ2=angle ofrefra
tion), it follows that
Rpp =

ρ2α2 cosϕ− ρ1α1 cosϕ2

ρ2α2 cosϕ+ ρ1α1 cosϕ2

Bpp =
2ρ1α1 cosϕ

ρ2α2 cosϕ+ ρ1α1 cosϕ2(
ompare with exer
ise 3.9). For ϕ = 0 (→ ϕ2 = 0), it follows that
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 89
Rpp =

ρ2α2 − ρ1α1

ρ2α2 + ρ1α1
and Bpp =

2ρ1α1

ρ2α2 + ρ1α1
. (3.72)These are equations that also hold for an interfa
e between two solid half-spa
es.Lamella in full-spa
eWe limit our study here to verti
al re�e
tions from a lamella.

0=2z  
α ,ρ11

α2,ρ2

α3=α1 ,ρ3=ρ1

d2=d

x

zFig. 3.34: Lamella of thi
kness d.In this 
ase, n = 3, l1 = l3 = ω/α1 and l2 = ω/α2. Then with (3.70) and d1 = 0,
d2 = d

m2 =
α2

2ρ2

( ρ2

α1
+ ρ1

α2
− ρ2

α1
+ ρ1

α2

− ρ2

α1
+ ρ1

α2

ρ2

α1
+ ρ1

α2

)

=
α2

2α1

(

1 + γ −1 + γ
−1 + γ 1 + γ

)

m3 =
α1e

−iω d
α2

2α2

(

1 + γ′ (−1 + γ′)e2iω d
α2

−1 + γ′ (1 + γ′)e
2iω d

α2

)with γ = ρ1α1

ρ2α2
and γ′ = ρ2α2

ρ1α1
= 1

γ . This leads to
M = m3m2 =

e−iω d
α2

4γ

(

(1 + γ)2 − (1− γ)2e2iω d
α2 γ2 − 1 + (1− γ2)e2iω d

α2

1− γ2 + (γ2 − 1)e
2iω d

α2 −(1− γ)2 + (1 + γ)2e
2iω d

α2

)

.We now 
ompute the re�e
tion 
oe�
ient Rpp (a

ording to (3.71))
Rpp = −M21

M22
=

(1− γ2)(1 − e2iω d
α2 )

(1− γ)2 − (1 + γ)2e
2iω d

α2

= R0
1− e−2iω d

α2

1−R2
0e

−2iω d
α2

(3.73)with
R0 =

1− γ
1 + γ

=
ρ2α2 − ρ1α1

ρ2α2 + ρ1α1
.
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90 CHAPTER 3. BODY WAVES
R0, a

ording to (3.72), is the re�e
tion 
oe�
ient of the interfa
e z = 0. Forrelatively small re�e
tion 
oe�
ients R0, whi
h are typi
al for dis
ontinuities inthe Earth (|R0| < 0.2), one 
an write as a good approximation

Rpp = R0

(

1− e−2iω d
α2

)

. (3.74)Dis
ussion of Rpp

Rpp, in the form of (3.73) or (3.74), is zero for angular frequen
ies ω, for whi
h
2ω d

α2
is an even multiple of π. With the frequen
y ν and the wave length Λ inthe lamella (α2 = νΛ), the 
ondition for destru
tive interferen
e is

d

Λ
=

1

2
, 1,

3

2
, 2, . . . (3.75)The lamella has to have a thi
kness of a multiple of the half wave-length sothat in re�e
tion destru
tive interferen
e o

urs with Rpp = 0. In this 
aserefra
tions show 
onstru
tive interferen
e.A

ording to (3.74), Rpp is maximum (|Rpp| = 2 |R0|) if 2ω d

α2
is an unevenmultiple of π. Then

d

Λ
=

1

4
,
3

4
,
5

4
,
7

4
, . . . (3.76)In this 
ase, the waves interfere 
onstru
tively for re�e
tion and destru
tivelyfor refra
tion.The periodi
ity of Rpp, visible in (3.75) and (3.76), holds generally so

Rpp

(

ω + n
α2π

d

)

= Rpp(ω), n = 1, 2, 3, . . .To 
on
lude, we dis
uss how the re�e
tion from a lamella looks for an impul-sive ex
itation. We assume that the verti
ally in
ident P -wave has the verti
aldispla
ement w0 = F
(

t− z
α1

) and that F (ω) is the spe
trum of F (t). Theverti
al displa
ement w1 of the re�e
ted wave is then (
ompare se
tion 3.6.3)
w1 =

1

2π

∫ +∞

−∞

Rpp(ω)F (ω)e
iω
(

t+ z
α1

)

dω (3.77)with Rpp(ω) from (3.73). In pra
tise, integral (3.77) is 
omputed numeri
ally,sin
e fast numeri
al methods for Fourier analysis exist and 
omputation ofthe spe
trum from the time fun
tion ( F (ω) from F (t)) and Fourier synthesis,i.e., 
omputation of the time fun
tion from its spe
trum (w1 from its spe
trum
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 91
Rpp(ω)F (ω)eiωz/α1). Su
h numeri
al methods are known as Fast Fourier trans-form (FFT).Insight into the pro
esses o

urring during re�e
tion, the topi
 of this 
hapter,
an be a
hieved as follows: we expand (3.73) (whi
h due to R2

0 < 1 always
onverges)and get
Rpp(ω) = R0

(

1− e−iω 2d
α2

)

∞
∑

n=0

(

R2
0e

−iω 2d
α2

)n

= R0 −R0

(

1−R2
0

)

e
−iω 2d

α2 −R3
0

(

1−R2
0

)

e
−iω 4d

α2 (3.78)
−R5

0

(

1−R2
0

)

e
−iω 6d

α2 − . . .Substitution of this into (3.77) and taking the inverse transform of ea
h elementgives
w1 = R0F

(

t+
z

α1

)

−R0

(

1−R2
0

)

F

(

t+
z

α1
− 2d

α2

) (3.79)
− R3

0

(

1−R2
0

)

F

(

t+
z

α1
− 4d

α2

)

−R5
0

(

1−R2
0

)

F

(

t+
z

α1
− 6d

α2

)

− . . .The �rst term is the re�e
tion from the interfa
e z = 0. Its amplitude, asexpe
ted, is the re�e
tion 
oe�
ient R0 of this interfa
e. The se
ond termdes
ribes a wave whi
h is delayed by twi
e the travel time through the lamella,thus, 
orresponding to the re�e
tion from the interfa
e z = d. Its amplitude hasthe expe
ted size; the re�e
tion 
oe�
ient of this interfa
e is −R0. The produ
tof the re�e
tion 
oe�
ients of the interfa
e z = 0 for waves travelling in +z−and −z−dire
tion, 2ρ1α1/(ρ2α2 +ρ1α1) and 2ρ2α2/(ρ1α1 +ρ2α2), is 1−R2
0. Inthe same way, the third and fourth term of (3.79) 
an be interpreted as multiplere�e
tions within the lamella (with three and �ve re�e
tions, respe
tively). Theterms in (3.79) 
orrespond to the rays shown in Fig. 3.35.

=z  d

0=z  Fig. 3.35: Re�e
ted and multiple re�e
ted rays in a lamella.Equation (3.79) is a de
omposition of the re�e
ted wave �eld in (in�nite many)ray 
ontributions. It is fully equivalent to (3.77).
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92 CHAPTER 3. BODY WAVESThe approximation (3.74) for Rpp(ω) 
orresponds to the trun
ation of the ex-pansion in (3.78) after the term for n = 0 and, therefore, the limitation on thetwo primary re�e
tions from the interfa
es z = 0 and z = d, respe
tively (andnegle
ting R2
0 relative to 1).Exer
ise 3.10Show that for the refra
tion 
oe�
ient in (3.71), it holds that

Bpp =
α1

αn

detM

M22
with detM =

l1ρ1

lnρn
.Apply this formula in the lamella, in 
ases in whi
h (3.75) and (3.76) hold.Exer
ise 3.11The P -velo
ity of the lamella is larger then that of the surrounding medium:

α2 > α1. Does then total re�e
tion o

ur? Dis
uss this qualitatively.3.7 Re�e
tivity method: Re�e
tion of spheri
alwaves from layered media3.7.1 TheoryThe results of se
tion 3.6.5 
an, with relative ease, be extended to the ex
itationby spheri
al waves. For simpli�
ation of representation, we again assume thatwe deal, at the moment, only with P -waves in liquids.

Fig. 3.36: Explosive point sour
e over liquid, layered medium.
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3.7. REFLECTIVITY METHOD: REFLECTION OF ... 93The spheri
al waves are ex
ited by an explosion point sour
e lo
ated at highth above the layered medium. The displa
ement potential of this sour
e forharmoni
 ex
itation is (
ompare se
tion 3.4)
Φ1e =

1

R
e

iω
(

t− R
α1

) (3.80)with R2 = r2 + (z + h)2. Be
ause of the symmetry under rotation around thez -axis, 
ylindri
al 
oordinates r and z are used. The wave equation for thepotential Φj in the j -th layer is
∂2Φj

∂r2
+

1

r

∂Φj

∂r
+
∂2Φj

∂z2
=

1

α2
j

∂2Φj

∂t2
. (3.81)Elementary solutions of this equation are (please 
he
k)

J0(kr) exp [i (ωt± lj (z − zj))] with k2 + l2j =
ω2

α2
j

, lj =

(

ω2

α2
j

− k2

)
1
2 (3.82)(
ompare se
tion 3.6.5 for notation). J0(kr)is the Bessel fun
tion of �rst kindand zeroth order (
ompare appendix C).Equation (3.82) is an analogue to the solutions e−ikjx ·ei(ωt±lj(z−zj)) of the waveequation ∂2Φj/∂x

2+∂2Φj/∂z
2 = (1/α2

j)∂
2Φj/∂t

2 dis
ussed in the last 
hapter.In (3.82), the index j of the horizontal wavenumber k has been dropped, sin
ek is a parameter over whi
h one 
an integrate (furthermore, it was shown inse
tion 3.6.5 that all kj 's are identi
al).With (3.82), the fun
tions
∫ ∞

0

f(k)J0(kr)e
i(ωt±lj (z−zj))dk (3.83)are also solutions of (3.81) if the integral 
onverges. Thus, we 
ome to thepotential ansatz

Φj =

∫ ∞

0

J0(kr)
{

Aj(k)e
i(ωt−lj(z−zj)) +Bj(k)e

i(ωt+lj(z−zj))
}

dk. (3.84)Note the 
lose relation of (3.84) to (3.64). Whether this ansatz a
tually has asolution, depends �rstly, if Φ1e from (3.80) 
an be represented in the integralform (3.83) and se
ondly, if Φj in (3.84) satis�es the boundary 
onditions for
z = z2, z3, . . . zn.
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94 CHAPTER 3. BODY WAVESThe �rst requirement is satis�ed sin
e the following integral representation isvalid (Sommerfeld integral, 
ompare appendix D)
1

R
e

iω
(

t− R
α1

)

=

∫ ∞

0

J0(kr)
k

il1
ei(ωt−l1|z+h|dk. (3.85)We, therefore, 
an interpret the �rst part

∫ ∞

0

J0(kr)A1e
i(ωt−l1z)dk (3.86)of Φ1 (with z1 = 0) as the in
ident wave (see also se
tion 3.6.5) Φ1e (the se
ondpart is the re�e
ted wave Φ1r). We have to 
ompare (3.85) and (3.86) forlo
ations in whi
h the spheri
al wave passes on in
iden
e at the interfa
e z = 0,i.e., for −h < z ≤ 0. In this 
ase, |z + h| = z + h and the 
omparison gives

A1(k) = (k/il1)e
−il1h.The boundary 
onditions for the interfa
es 
an be taken from se
tion 3.6.5. Thepotentials (3.84) are di�erentiated under the integral. The identity followingfrom the boundary 
onditions is only satis�ed for all r, if the integrands areidenti
al. This leads to the same system of equations for Aj(k) and Bj(k) asin se
tion 3.6.5, i.e., (3.70). In 
ontrast to the previous se
tion, the verti
alwavenumbers lj have to be 
onsidered now as fun
tions of k (and not of theangle of in
iden
e ϕ). k and ϕ are 
onne
ted via

k =
ω

α1
sinϕ. (3.87)Following se
tion 3.6.5, the re�e
tion 
oe�
ient Rpp = B1/A1 = −M21/M22 hasbeen 
omputed as a fun
tion of the angular frequen
y ω and angle of in
iden
e

ϕ;; then the dependen
e on k 
an be introdu
ed via (3.87): Rpp = Rpp(ω, k).The se
ond part of Φ1, the re�e
ted wave, 
an then be written as
Φ1r =

∫ ∞

0

J0(kr)A1(k)Rpp(ω, k)e
i(ωt+l1z)dk

=

∫ ∞

0

k

il1
J0(kr)Rpp(ω, k)e

i(ωt+l1(z−h))dk.The 
orresponding verti
al displa
ement is
w1r(r, z, ω, t) =

∂Φ1r

∂z
= eiωt

∫ ∞

0

kJ0(kr)Rpp(ω, k)eil1(z−h)dk (3.88)and the horizontal displa
ement (with J ′
0(x) = −J1(x))
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3.7. REFLECTIVITY METHOD: REFLECTION OF ... 95
u1r(r, z, ω, t) =

∂Φ1r

∂r
= eiωt

∫ ∞

0

−k2

il1
J1(kr)Rpp(ω, k)eil1(z−h)dk. (3.89)The integrals in (3.88) and (3.89) are best 
omputed numeri
ally, espe
ially,in the 
ase of many layers. For solid media, (3.88) and (3.89) also hold, butthe re�e
tion 
oe�
ient Rpp(ω, k) is more 
ompli
ated than for liquid mediaand w1r and u1r des
ribe only the 
ompressional part of the re�e
tion from thelayered half-spa
e z ≥ 0. For the shear part, similar results hold, whi
h onlynow 
ontain the re�e
tion 
oe�
ients Rps(ω, k).The transition to impulse ex
itation

Φ1e =
1

R
F

(

t− R

α1

)instead of (3.80) is relatively simple (see se
tion 3.6.3). If F (ω) is the spe
trumof F (t), it holds that
Φ1e =

1

2πR

∫ +∞

−∞

F (ω)e
iω
(

t− R
α1

)

dω.The 
orresponding displa
ements of the re�e
ted wave are
W1r(r, z, t)
U1r(r, z, t)

}

= 1
2π

∫ +∞

−∞ F (ω)

{

w1r(r, z, ω, t)
u1r(r, z, ω, t)

}

dω (3.90)with w1r from (3.88) and u1r from (3.89). The integrals in (3.88) and (3.89),multiplied by F (ω), are, therefore, the Fourier transforms of the displa
ement.The numeri
al 
omputation of (3.88), (3.89) and (3.90) is 
alled the Re�e
tivitymethod ; it is a pra
ti
al approa
h for the 
omputation of theoreti
al seismogramsof body waves. With it, the amplitudes of body waves from explosions andearthquakes 
an be studied, thus, progressing beyond the more 
lassi
al traveltime interpretation.3.7.2 Re�e
tion and head wavesAn example for theoreti
al seismograms is given in Fig. 3.37 (from K. Fu
hs:The re�e
tion of spheri
al waves from transition zones with arbitrary depth-depended elasti
 moduli and density. Journ. of Physi
s of the Earth, vol. 16,Spe
ial Issue, S. 27-41, 1968). It is the result for a simple model of the 
rust,assumed to be homogeneous. The point sour
e and the re
eivers are at theEarth's surfa
e; the in�uen
e of whi
h has been negle
ted here. The transition
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96 CHAPTER 3. BODY WAVESof the 
rust to the upper mantle (Mohorovi£i¢-zone, short Moho) is a �rstorder dis
ontinuity, i.e., the wave velo
ities and the density 
hange abruptly(for a dis
ontinuity of 2nd order these parameters would still be 
ontinuous, buttheir derivative with depth would have a jump).

Fig. 3.37: Syntheti
 seismogram for re�e
tion and refra
tion from a 1st orderdis
ontinuity (from K. Fu
hs, 1968, Journ. of Physi
s of the Earth).The dominant wave is the re�e
tion from the Moho. For distan
es from thesour
e beyond the 
riti
al point r∗ = 74.91 km, 
orresponding to the 
riti
alangle of in
iden
e ϕ∗, the �rst onset is the head wave with the apparent velo
ityof 8.2 km/se
. Its amplitude de
ays rapidly with in
reasing distan
e, and itsform is the time integral of the re�e
tion for r < r∗. For pre-
riti
al distan
e
r, the form of the re�e
tion is pra
ti
ally identi
al to that of the in
ident wave.At the 
riti
al point, it begins to 
hange its form. This was already dis
ussedin se
tion 3.6.3 in terms of the properties of the re�e
tion 
oe�
ient for planewaves (this holds for P- and SH-waves, respe
tively). For large distan
es, theimpulse form is roughly opposite to that for r < r∗. This is also expe
ted,sin
e the re�e
tion 
oe�
ient Rpp for the angle of in
iden
e ϕ = π/2 is equalto −1 (for liquids, this follows from the formulae given in se
tion 3.5.6). Theamplitude behaviour of the re�e
tion is relatively similar to the trend of theabsolute value |Rpp| of the re�e
tion 
oe�
ient, if |Rpp| is divided by the path
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3.7. REFLECTIVITY METHOD: REFLECTION OF ... 97length and if one 
onsiders the verti
al 
omponent (see, e.g., Fig. 3.22 and
orresponding equations). The main dis
repan
ies are near the 
riti
al point.A

ording to |Rpp|, the re�e
ted wave should have its maximum dire
tly at the
riti
al point, whereas in reality, it is shifted to larger distan
es. This shift islarger, the lower the frequen
y of the in
ident wave.

Fig. 3.38: Re�e
tion amplitude versus o�set as a fun
tion of frequen
y.The 
onsideration of this shift is important when determining the 
riti
al pointfrom observed re�e
tions, e.g., in re�e
tion seismi
s.
3.7.3 Complete seismogramsFig. 3.39 shows the potential of the re�e
tivity method. This shows 
ompleteSH -seismograms for a pro�le at the surfa
e of a realisti
 Earth model. Thesour
e is a horizontal single for
e at the Earth's surfa
e, a
ting perpendi
ularto the pro�le. The dominant period is 20 se
. The most pronoun
ed phases arethe dispersive Love waves (for surfa
e waves, see 
hapter 4), whose amplitudesare mostly 
lipped. The propagation paths of the largest body wave phases(mantle wave S and SS, 
ore re�e
tion S
S and di�ra
tion at the 
ore Sdiff arealso sket
hed.) A detailed des
ription of the re�e
tivity method is given in G.Müller: The re�e
tivity method: A tutorial, Journ. eophys,., vol. 58, 153-174,1985.
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98 CHAPTER 3. BODY WAVES

Fig. 3.39: Complete SH -seismograms for a pro�le at the surfa
e of a realisti
Earth model.3.8 Exa
t or generalised ray theory - GRTWe 
ontinue the 
hapter on elasti
 body waves with the treatment of re�e
tionand refra
tion of 
ylindri
al waves radiated from a line sour
e and re�e
tedand refra
ted at a plane interfa
e whi
h is parallel to the line sour
e. Thisproblem is more simple and less pra
ti
al than the 
ase 
onsidered in se
tion3.7 of a point sour
e over a layered medium. On the other hand, we will learna totally di�erent way of treating wave propagation whi
h leads to relativelysimple analyti
al (and not only numeri
ally solvable) results. This is the mainaim of this se
tion. This method, originally developed by Cagniard, de Hoopand Garvin (see, e.g., W.W. Garvin: Exa
t transient solution of the buried linesour
e problem, Pro
. Roy. So
. London, Ser. A, vol 234, pg. 528-541, 1956),
an also be applied for layered media and be modi�ed for point sour
es. Inthat form it is, similar to the re�e
tivity method, usable for the 
omputation oftheoreti
al body-wave seismograms in the interpretation of observations.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 99Again, we limit ourselves to treat the problem of a liquid model (see Fig. 3.40),sin
e we 
an then study the main ideas with a minimum of 
omputation.
Fig. 3.40: Explosive line sour
e in a liquid medium.We work with the displa
ement potentials Φ1 = Φ1e + Φ1r in half-spa
e 1
(Φ1e = in
ident,Φ1r = re�e
ted P − wave) and Φ2 in half-spa
e 2. The threepotentials satisfy the wave equations

∇2Φ1e,r =
1

α2
1

∂2Φ1e,r

∂t2
, ∇2Φ2 =

1

α2
2

∂2Φ2

∂t2
. (3.91)The Lapla
e transform of these equations gives

∇2ϕ1e,r =
s2

α2
1

ϕ1e,r and ∇2ϕ2 =
s2

α2
2

ϕ2, (3.92)where ϕ1e, ϕ1r and ϕ2 are the transforms of Φ1e,Φ1r and Φ2, respe
tively, and
s is the transform variable (see appendix A). We assume that the P -wave startsat time t=0 at the line sour
e. Therefore, the initial values of Φ1e,Φ1r and Φ2,and their time derivatives for t=+0, are zero outside the line sour
e. The timederivatives have to be 
onsidered in the se
ond derivative with respe
t to t in(3.91).3.8.1 In
ident 
ylindri
al waveFirst, we have to study the in
ident wave. Sin
e the line sour
e is explosive andhas, therefore, 
ylindri
al symmetry around its axis, it holds that

∇2ϕ1e =
∂2ϕ1e

∂R2
+

1

R

∂ϕ1e

∂R
=
s2

α2
1

ϕ1e (3.93)with R2 = x2 + (z + h)2. The solution of (3.93), whi
h 
an be interpreted as a
ylindri
al wave in +R dire
tion, is
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100 CHAPTER 3. BODY WAVES
ϕ1e = f(s)

1

s
K0(

R

α1
s), (3.94)where f(s) is the Lapla
e transform of an arbitrary time fun
tion F(t) and

K0(
R
α1
s) is one of the modi�ed Bessel fun
tions of zeroth order.Proof: Using the substitution x = Rs

α1
, (3.93) 
an be expressed as the di�erentialequations of the modi�ed Bessel fun
tion

x2 d
2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0.In the 
ase 
onsidered here, n=0. The di�erential equation has two independentlinear solutions, K0(x) and I0(x), respe
tively. For real x, Fig. 3.41 shows theirqualitative behaviour.

I0 (x)

K0 (x)

1 2 30

1

2

3

0
xFig. 3.41: Behaviour of linear solutions K0(x) and I0(x).This shows that only K0(x) is a possible solution, sin
e I0(x) grows in�nitelyfor x→∞. (Referen
e: M. Abramovitz and I.A. Stegun: Handbook of Mathe-mati
al Fun
tions, H. Deuts
h, Frankfurt, 1985).Taking the inverse Lapla
e transform of (3.94) in the time domain, and usingthe 
orresponden
e

f(s) •−◦ F (t) (F (t) ≡ 0 for t < 0)

1

s
K0

(

R

α1
s

)

•−◦
{

0 for t < R/α1

cosh−1(α1t
R ) for t > R/α1with a typi
al behaviour of the solution given in Fig. 3.42;
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 101
R/α1 tFig. 3.42: Behaviour of the solution.the potential 
an be written as

Φ1e =

∫ t

R/α1

F (t− τ) cosh−1(
α1τ

R
)dτ (t ≥ R/α1). (3.95)By varying F(t), the 
ylindri
al wave 
an be given di�erent time dependen-
ies. Equation (3.95) is the analogue to the potential Φ1e = 1

RF
(

t− R
α1

) of aspheri
al wave from an explosive point sour
e.In the following, we treat the spe
ial 
ase F (t) = δ(t), for whi
h all importante�e
ts 
an be studied. If realisti
 ex
itations have to be treated, the resultsfor the potentials and displa
ements of the re�e
ted and di�ra
ted waves, re-spe
tively, derived with time dependent F (t) = δ(t), have to be 
onvolved withrealisti
 F(t). For F (t) = δ(t)

Φ1e = cosh−1(
α1t

R
),and the 
orresponding radial displa
ement in R-dire
tion is

UR =
∂Φ1e

∂R
= − t

R
(

t2 − R2

α2
1

)1/2
(t >

R

α1
). (3.96)

Fig. 3.43: Displa
ement in R dire
tion.
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102 CHAPTER 3. BODY WAVESThe 
orresponding point sour
e results are
Φ1e =

1

R
H

(

t− R

α1

)

UR =
∂Φ1e

∂R
= − 1

R2
H

(

t− R

α1

)

− 1

Rα1
δ

(

t− R

α1

)

.

Fig. 3.44: Displa
ement in R dire
tion.3.8.2 Wavefront approximation for URIf we write (3.96) as
UR =

−t

R
(

t+ R
α1

)1/2 (

t− R
α1

)1/2
,and 
onsider values of t near R

α1
, we �nd the approximation

UR ≈
−1

(2Rα1)
1/2
· 1
(

t− R
α1

)1/2
. (3.97)This approximation is more a

urate the 
loser t is to R/α1, and, therefore,this is 
alled wavefront approximation. It is more a

urate for large R, and itis, therefore, also the far-�eld approximation of the 
ylindri
al wave.Within the framework of the wavefront approximation (3.97), the impulse formof the 
ylindri
al wave is independent from R, and its amplitude is proportionalto R−1/2. Both statements be
ome espe
ially obvious if (3.97) is 
onvolvedwith realisti
 ex
itation fun
tions F (t). The singularity in (3.96) and (3.97) isintegrable.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 1033.8.3 Re�e
tion and refra
tion of the 
ylindri
al waveThe 
oordinates most appropriate for the study of re�e
tion and refra
tion arethe Cartesian 
oordinates x and z. Equation (3.92), then, takes the form
∂2ϕ

∂x2
+
∂2ϕ

∂z2
=
s2

α2
ϕ.Appropriate elementary solutions have the form cos(kx) exp(±imz) with k2 +

m2 = −s2/α2. From these elementary solutions, more 
ompli
ated solutions inintegral form (similar to se
tion 3.7.1) 
an be 
onstru
ted
ϕ =

∫ ∞

0

f(k) cos(kx)e±imzdk,with whi
h we 
an try to satisfy �rstly, the potential (3.94) of the in
identwave, and se
ondly, the boundary 
onditions for z = 0. Spe
i�
ally, we use thefollowing ansatz
ϕ1e =

∫∞

0 A1(k) cos(kx)e−im1zdk (z > −h)

ϕ1r =
∫∞

0 B1(k) cos(kx)eim1zdk

ϕ2 =
∫∞

0 A2(k) cos(kx)e−im2zdk























(3.98)
m1,2 = −i

(

k2 +
s2

α2
1,2

)1/2

(negative imaginary for positive radi
ands).ForK0

(

R
α1
s
) in (3.94) an integral representation, similar to (3.85) for the spher-i
al wave, 
an be found. With this ϕ1e (with f(s)=1, sin
e F (t) = δ(t)) it followsthat

ϕ1e =
1

s

∫ ∞

0

1
(

k2 + s2

α2
1

)1/2
cos(kx) exp

[

− |z + h|
(

k2 +
s2

α2
1

)1/2
]

dk. (3.99)A 
omparison with ϕ1e from (3.98) for z>-h gives
A1(k) =

e−im1h

ism1
.
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104 CHAPTER 3. BODY WAVESThe boundary 
onditions for z=0 are (
ompare se
tion 3.6.5)
∂

∂z
(Φ1e + Φ1r) =

∂Φ2

∂z
, ρ1

∂2

∂t2
(Φ1e + Φ1r) = ρ2

∂2Φ2

∂t2
.The Lapla
e transform gives

∂

∂z
(ϕ1e + ϕ1r) =

∂ϕ2

∂z
, ρ1 (ϕ1e + ϕ1r) = ρ2ϕ2.From (3.98), it follows that

m1 (A1(k)−B1(k)) = m2A2(k)

ρ1 (A1(k) +B1(k)) = ρ2A2(k),and from this
B1(k) = Rpp(k)A1(k) and A2(k) = Bpp(k)A1(k).Thus,

Rpp(k) =
ρ2m1 − ρ1m2

ρ2m1 + ρ1m2
and Bpp(k) =

2ρ1m1

ρ2m1 + ρ1m2
. (3.100)The potentials ϕ1r and ϕ2 are, therefore,

ϕ1r =

∫ ∞

0

A1(k)Rpp(k) cos(kx)eim1zdk

ϕ2 =

∫ ∞

0

A1(k)Bpp(k) cos(kx)e−im2zdk.The Lapla
e transforms w and u of the verti
al and horizontal displa
ement Wand U, respe
tively, 
an, in general, be written as w = ∂ϕ
∂z and u = ∂ϕ

∂xand spe
i�
ally
w1r

u1r

}

=
∫∞

0
Rpp(k)
sim1

{

im1 cos(kx)
−k sin(kx)

}

e−im1(h−z)dk

w2

u2

}

=
∫∞

0
Bpp(k)
sim1

{

−im2 cos(kx)
−k sin(kx)

}

e−i(m2z+m1h)dk.















(3.101)
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 105These Lapla
e transforms must now be transformed ba
k. This is impossiblewith (A.9) in appendix A. One, rather, uses an approa
h that is based in trans-forming (3.101) several times with fun
tion theory methods until the integralsare of the form
w
u

}

=
∫∞

0 Z(t)e−stdt. (3.102)The inverse { W (t)
U(t)

}

= Z(t) 
an then be identi�ed dire
tly.An important limitation has to be mentioned �rst: we only 
onsider positivereal s, i.e., we do not 
onsider the whole 
onvergen
e half-plane of the Lapla
etransform, but only the positive real axis. This simpli�es the 
omputationssigni�
antly, without limitation of its generality, sin
e the Lapla
e transform isan analyti
al fun
tion. It is, therefore, determined in the whole 
onvergen
ehalf-plane by its values on the real axis, where the integral (3.101) is real.With cos(kx) = Re(e−ikx) and sin(kx) = Re(ie−ikx), (3.101) 
an be written as
w1r

u1r

}

= Re
∫∞

0
Rpp(k)

sm1

{

m1

−k

}

e−i(kx+m1(h−z))dk

w2

u2

}

= Re
∫∞

0
Bpp(k)

sm1

{

−m2

−k

}

e−i(kx+m1h+m2z)dk















. (3.103)The next step is a 
hange of the integration variables
u =

ik

sso that the integration path is now along the positive imaginary u-axis. Thetransformation of the square root m1,2 gives
m1,2 = −i

(

−s2u2 +
s2

α2
1,2

)1/2

= −is
(

−u2 + α−2
1,2

)1/2

= −s
(

u2 − α−2
1,2

)1/2
= −sa1,2with

a1,2 =
(

u2 − α−2
1,2

)1/2
. (3.104)The transformed integration path is, therefore, in the sheet of the Riemannplane of the square root a1,2, in whi
h a1,2 ≃ u for |u| → ∞ holds (and not inthe sheet with a1,2 ≃ −u). Introdu
ing (3.104) in (3.100), gives
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106 CHAPTER 3. BODY WAVES
Rpp(u) =

ρ2a1 − ρ1a2

ρ2a1 + ρ1a2
and Bpp(u) =

2ρ1a1

ρ2a1 + ρ1a2
. (3.105)With k = −isu and dk = −isdu, it follows from (3.103)

w1r

u1r

}

= Re

∫ +i∞

0

Rpp(u)

{

−i
− u

a1

}

e−s(ux−ia1(h−z))du (3.106)
w2

u2

}

= Re

∫ +i∞

0

Bpp(u)

{

ia2

a1

− u
a1

}

e−s(ux−ia1h−ia2z)du. (3.107)These expressions already have a 
ertain similarity with (3.102) sin
e s onlyo

urs in the exponential term. The next step is, therefore, a new 
hange in theintegration variablein (3.106)
t = ux− ia1(h− z) (3.108)in (3.107)
t = ux− ia1h− ia2z. (3.109)From both equations, u has to be determined as a fun
tion of t and has tobe inserted in (3.106) and (3.107), respe
tively. This will be dis
ussed laterin more detail. At the same time, the integration path has to be transformeda

ordingly. For u = 0, it follows from (3.108) and (3.109), respe
tively, that

t(0) = t0 = h−z
α1

t(0) = t0 = h
α1

+ z
α2
.

} (3.110)The transformed integration paths C1 (for (3.106)) and C2 (for (3.107)), re-spe
tively, start on the positive real t-axis. For u → +i∞, they approa
h anasymptote in the �rst quadrant whi
h passes through the 
entre of the 
oor-dinate system and has the slope tan γ = x/(h − z) (for the 
ase (3.108)) and
tan γ = x/(h + z) (for the 
ase (3.109)). In (3.108), z is always negative in(3.109) always positive. The transformed integration paths are shown in Fig.3.45.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 107

Fig. 3.45: Transformed integration paths.In the 
ase of the re�e
ted wave (left in Fig. 3.45), C1 is part of a hyperbola;in the 
ase of the refra
ted wave, C1 is part of a 
urve of higher order whi
h issimilar to a hyperbola. We then get
w1r

u1r

}

= Re

∫

C1

Rpp(u(t))

{

−i
− u(t)

a1(u(t))

}

du

dt
e−stdt (3.111)

w2

u2

}

= Re

∫

C2

Bpp(u(t))

{

ia2(u(t))
a1(u(t))

− u(t)
a1(u(t))

}

du

dt
e−stdt. (3.112)The last step is now to deform the paths C1 and C2 towards the real axis a
-
ording to Cau
hy's integral. The path C1,2 
an now be repla
ed by the path

C1,2 + C′
1,2 in Fig. 3.46 if no poles of the integrands in (3.111) and (3.112) arelo
ated inside the two paths.

t0

C1,2

C’1,2

C1,2

Re t

tIm

Fig. 3.46: Integration paths in the 
omplex plane.
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108 CHAPTER 3. BODY WAVESThis is satis�ed be
ause the only singularities of a1 and a2 are the bran
h points
u = ±α−1

1 and u = ±α−1
2 , respe
tively, and these bran
h points are integrablesingularities and not poles. Finally, the 
ontribution of the 
urve C′

1,2 goes tozero if its radius be
omes in�nite. Thus,
w1r

u1r

}

=

∫ ∞

h−z
α1

Re

[

Rpp(u(t))

{

−i
− u(t)

a1(u(t))

}

du

dt

]

e−stdt

+

∫
h−z
α1

0

[0] e−stdt (3.113)
w2

u2

}

=

∫ ∞

h
α1

+ z
α2

Re

[

Bpp(u(t))

{

ia2(u(t))
a1(u(t))

− u(t)
a1(u(t))

}

du

dt

]

e−stdt

+

∫ h
α1

+ z
α2

0

[0] e−stdt. (3.114)In these expressions, only the real part of the square bra
kets has to be 
onsid-ered sin
e e−st is real and the integration is only over real t. The addition of these
ond integral with vanishing 
ontribution was only done for formal reasons, toallow integration over t from 0 to∞ a

ording to (3.102). Equation (3.113) and(3.114) have, therefore, the standard form of a Lapla
e transform, from whi
hthe original fun
tion 
an be read dire
tly. The displa
ements W1r and U1r ofthe re�e
ted wave are, therefore, zero between the time 0 and (h−z)/α1. This isnot surprising sin
e (h− z)/α1 is the travel time from the sour
e perpendi
ulardown to the re�e
ting interfa
e and ba
k to level z of the sour
e. This timeis, therefore, smaller, or at most equal, to the travel time of the �rst re�e
tedonsets at this point. For t > (h− z)/α1 it holds that
W1r

U1r

}

= Re

[

Rpp(u(t))

{

−i
− u(t)

a1(u(t))

}

du

dt

] (3.115)with u(t) from (3.108).Similarly, the displa
ements W2 and U2 of the di�ra
ted wave for 0 ≤ t <
h/α1 + z/α2 are zero, and for t > h/α1 + z/α2, it holds that

W2

U2

}

= Re

[

Bpp(u(t))

{

ia2(u(t))
a1(u(t))

− u(t)
a1(u(t))

}

du

dt

] (3.116)with u(t) from (3.109).All that is needed to 
al
ulate these relatively simple algebrai
 fun
tions, is thesolutions of (3.108) and (3.109), with respe
t of u as a fun
tion of real times
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 109
t > t0 (from (3.110)) and the knowledge of the derivative du

dt . In the 
ase of(3.108), this is very easy sin
e here u 
an be given expli
itly
u(t) =







x

R
2 t− h−z

R
2

(

t21 − t2
)

1
2 for h−z

α1
≤ t ≤ t1 = R

α1

x

R
2 t+ ih−z

R
2

(

t2 − t21
)

1
2 for t > t1.

(3.117)
R =

(

x2 + (h− z)2
)1/2 is the distan
e of the sour
e point from its mirror image,i.e., from the point with the 
oordinates x = 0 and z = +h; t1 = R/α1 is,a

ording to Fermat's prin
iple, the travel time of the a
tual re�e
tion from theinterfa
e. The 
urve of u(t) is given in Fig. 3.47. The derivative du/dt 
an be
omputed dire
tly from (3.117). It has a singularity at t = t1.

Fig. 3.47: The path of u(t) in the 
omplex plane.In the 
ase of the refra
ted wave, u(t) has to be 
omputed numeri
ally with asimilar 
urve as for the re�e
ted wave (Fig. 3.47).

Fig. 3.47: The path of u(t) for the refra
ted wave in the 
omplex plane.
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110 CHAPTER 3. BODY WAVESThe numeri
al 
omputations of u(t), and its derivative, are possible withouta large e�ort. In the following se
tion, we fo
us on the re�e
ted wave using(3.115) and (3.117).3.8.4 Dis
ussion of re�e
ted wave typesWe assume that the P -velo
ity in the lower half-spa
e is larger than that ofthe upper half-spa
e 
ontaining the line sour
e; α2 > α1. First, we 
onsiderre
eivers P (x, z) for whi
h u(t1) = x/(Rα1) < α−1
2 . Sin
e x/R = sinϕ (ϕ=angle of in
iden
e), this means that sinϕ < α1/α2 = sinϕ∗ (ϕ∗= 
riti
al angleof in
iden
e), and this implies pre-
riti
al in
iden
e of the 
ylindri
al wave.

Fig. 3.49: Sket
h for line sour
e and its mirror point.In this 
ase, u(t) for t < t1 is smaller than α−1
2 and, thus, even smaller than α−1

1 .Therefore, a1(u(t)) and a2(u(t)), a

ording to (3.104), are positive imaginary,and Rpp(u(t)), a

ording to (3.105), is real. Sin
e du/dt is real for the times
onsidered, it follows with (3.115) that the real part of the square bra
kets for all
t < t1 is zero. For t > t1, u(t) be
omes 
omplex, and the real part is non-zero.Not surprisingly, the displa
ement, therefore, starts at t = t1.If α1 < α2, this argument holds for arbitrary re
eiver lo
ations in the upperhalf-spa
e.If u(t1) = x/(Rα1) > α−1

2 , the angle of in
iden
e ϕ is larger than the angle ϕ∗,and we expe
t a head wave as the �rst onset. In this 
ase, a2(u(t)) be
omesreal at the time t2 whi
h is de�ned via u(t2) = α−1
2 . The same does not hold for

a1(u(t)). Thus, Rpp(u(t)) has non-zero real and imaginary parts for t > t2, and,therefore, (3.115) is already non-zero for t > t2. Putting u = α−1
2 in (3.108), itfollows that

t2 =
x

α2
+ (h− z)(α−2

1 − α−2
2 )

1
2 < t1.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.8. EXACT OR GENERALISED RAY THEORY - GRT 111This is the arrival time of the head wave as expe
ted a

ording to Fermat'sprin
iple for the ray path from Q to P(x,z) in Fig. 3.50.
Fig. 3.50: Path of head wave from sour
e Q to re
eiver P.Considering this 
ase at time t = t1, we expe
t, due to the sudden 
hange in the
urve on whi
h u(t) propagates, signi�
ant 
hanges in the displa
ement (3.115),i.e., that the re�e
tion proper gives a signi�
ant signal, and this is somethingwhi
h indeed 
an be observed.Our derivation has shown that the head wave, and also the re�e
tion, 
an bederived from the potential Φ1r, i.e., no separate des
ription was ne
essary for thehead wave. If we had studied solid media, we, possibly, 
ould have identi�eda se
ond arrival whi
h is an additional interfa
e or boundary wave (P to S
onversion) (
ompare, e.g., the work by Garvin quoted earlier). In se
tion 3.7(see head wave in Fig. 3.37), we en
ountered a similar situation in that thehead wave was in
luded in the solution. Both methods (re�e
tivity method inse
tion 3.7 and GRT this se
tion) give a 
omplete solution unless simpli�
ationsfor numeri
al reasons are introdu
ed.

Fig. 3.51: Sket
h of the displa
ement (in horizontal and verti
al dire
tion) forpre-
riti
al (left) and post-
riti
al (right) in
iden
e, respe
tively.
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112 CHAPTER 3. BODY WAVESFor t → ∞, the limit of the displa
ement is non-zero, as for the 
ase of the in-
ident wave (
ompare (3.96)). The singularities at t = t1 are always integrable.Therefore, 
onvolution with a realisti
 ex
itation fun
tion F(t) is always possi-ble. On the right side of Fig. 3.51, the displa
ement starts before the re�e
tionproper arriving at t1. Fermat's prin
iple, therefore, does not give exa
tly thearrival time of the �rst onset in the 
ase where the re�e
tion is not the �rstarrival.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 113Fig. 3.52: Theoreti
al seismograms (verti
al displa
ement) for a 
rustal model.Parameters: α1 = 6, 4km/s, α2 = 8, 2 km/s, ρ1 = 3, 0 g/
m3, ρ2 = 3.3 g/
m3,h = 30 km, z = −30 km. On the left, the exa
t seismograms (GRT) andon the right a wavefront approximation is shown. From G. Müller: Exa
tray theory and its appli
ation to the re�e
tion of elasti
 waves from verti
allyinhomogeneous media, Geophys. Journ. R.A.S. 21, S. 261-283, 1970.For realisti
 F(t), this dis
repan
y is usually small. A full example using thetheory of this se
tion, is given in Fig. 3.50b. For a des
ription of the di�erentwave types et
., see also se
tion 3.7.2.In the 
ase of a layered medium with more than one interfa
e, the wave �eld 
anbe broken into separate ray 
ontributions, as was done for the lamella in se
tion3.6.5. For ea
h ray 
ontribution, a formula of the type of (3.115) or (3.116) 
anbe given, whi
h 
an 
ontain head or boundary wave 
ontributions. This is thereason for the name "exa
t or generalised ray theory". Another 
ommon nameis the "Cagniard-de Hoop-method".Exer
ise 3.12:Give wavefront approximations for the re�e
ted wave and head wave, i.e., ex-pand (3.115) around the arrival times t1 (of the re�e
tion) and t2 (of the headwave), respe
tively. Distinguish between slowly varying 
ontributions, whi
h
an be repla
ed by their values for t = t1 and t = t2, respe
tively, and rapidlyvarying terms, whi
h depend on t− t1, t1 − t and t− t2, respe
tively.3.9 Ray seismi
s in 
ontinuous inhomogeneousmediaWith the re�e
tivity method and the GRT, we have dis
ussed wave-seismi
methods, whi
h if applied in 
ontinuous inhomogeneous media (in our 
ase ver-ti
ally inhomogeneous media), require a segmentation in homogeneous regions(in our 
ase homogeneous layers). Wave-seismi
 methods for 
ontinuous in-homogeneous media, without this simpli�ed representation of real media, areoften more 
ompli
ated (
ompare example in se
tion 3.10). In this se
tion, wewill now sket
h the ray-seismi
 (or ray-opti
al) approximation of the wave the-ory in inhomogeneous media. We will also show that it is the high frequen
yapproximation of the equation of motion (2.20) for the inhomogeneous elasti

ontinuum. We restri
t our dis
ussion again to a simpli�ed 
ase, namely thepropagation of SH -waves in a two-dimensional inhomogeneous medium. Thesour
e is assumed to be a line-sour
e in the y-dire
tion where density ρ, S -velo
ity β and shear modulus µ depend only on x and z. The only non-zerodispla
ement 
omponent is in the y-dire
tion v = v(x, z, t).
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114 CHAPTER 3. BODY WAVES3.9.1 Fermat's prin
iple and the ray equationFermat's prin
iple states that the travel time of the (SH -)wave from the sour
eQ to an arbitrary re
eiver P along the seismi
 ray is an extremum and, there-fore, stationary, i.e., along ea
h in�nitesimally adja
ent path between P and Q(dashed in Fig. 3.53) the travel time is either larger or smaller.
Fig. 3.53: Ray with extremum path and in�nitesimally adja
ent ray.In most 
ases, the travel time along a seismi
 ray is a minimum, but thereare also 
ases, where it is a maximum (e.g., the body waves PP, SS, PKKP).If we des
ribe an arbitrary path from P to Q via a parameter representation
{x = x(p), z = z(p)}, the element of the ar
 length s 
an be written as

ds =

[

(

dx

dp

)2

+

(

dz

dp

)2
]

1
2

dp. (3.118)We 
onsider now many su
h paths from Q to P. They all have the same value
p = p1 at Q and p = p2 at P, respe
tively. Therefore, p 
annot be identi
al tos ; p 
ould, for example, be the angle between the line 
onne
ting the 
oordinate
entre to the point along the way and the x- or z-axis. The seismi
 ray is thepath for whi
h
T =

∫ p2

p1

β−1 (x(p), z(p))

[

(

dx

dp

)2

+

(

dz

dp

)2
]

1
2

dp =

∫ p2

p1

F

(

x, z,
dx

dp
,
dz

dp

)

dp

dx

dp
= x′,

dz

dp
= z′is an extremum. The determination of the seismi
 ray has, therefore, beenredu
ed to a problem of 
al
ulus of variations. This leads to the Euler-Lagrangeequations

∂F

∂x
− d

dp

∂F

∂x′
= 0 and ∂F

∂z
− d

dp

∂F

∂z′
= 0.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 115This gives then, for example,
(

x′2 + z′2
)

1
2
∂

∂x

(

1

β(x, z)

)

− d

dp

[

1

β(x, z)

x′

(x′2 + z′2)
1
2

]

= 0.Division by (x′2 + z′2)1/2, multipli
ation of nominator and denominator of thesquare bra
ket with dp, and use of (3.118) gives
d

ds

(

1

β

dx

ds

)

=
∂

∂x

(

1

β

)

. (3.119)Similarly,
d

ds

(

1

β

dz

ds

)

=
∂

∂z

(

1

β

)

. (3.120)Equations (3.119) and (3.120) are the di�erential equations of the seismi
 ray inthe parameter representation {x = x(s), z = z(s)} where s is now the ar
 lengthof the ray. With
dx

ds
= sinϕ,

dz

ds
= cosϕ(ϕ= angle of the ray versus the z -dire
tion), it follows that

d
ds

(

sin ϕ
β

)

= ∂
∂x

(

1
β

)

d
ds

(

cos ϕ
β

)

= ∂
∂z

(

1
β

)







. (3.121)
��

����

��
��
��

��
��
��

Q

P

dx
dzϕ

ds

z

x

Fig. 3.54: Ray in x-z 
oordinate system.These two equations 
an now be 
onverted into another form of the ray equation(show)
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116 CHAPTER 3. BODY WAVES
∂ϕ

ds
=

1

β

(

sinϕ
∂β

∂z
− cosϕ

∂β

∂x

)

. (3.122)This di�erential equation for ϕ(s) is well suited for numeri
al 
omputations ofthe ray path. The inverse of dϕ/ds
r =

ds

dϕ
= β

(

sinϕ
∂β

∂z
− cosϕ

∂β

∂x

)−1 (3.123)is the radius of the 
urvature of the ray. The ray is 
urved strongly (r is smaller)where the velo
ities 
hange strongly (∇β large).Spe
ial 
asesa) β= 
onst.From (3.122), it follows that dϕ/ds = 0. The ray is straight.b) β = β(z) (no dependen
e on x )The �rst equation in (3.121) gives, after integration,
sinϕ

β
= q = const (3.124)along the whole ray (Snell's law) where q is the ray parameter of the ray. Forsour
es and re
eivers at the level z = 0 the ray is symmetri
 with respe
t to itsapex S. The ray parameter q is 
onne
ted to the take-o� angle ϕ0, the seismi
velo
ities β(0) at the sour
e and the turning point β(zs), respe
tively, via

q =
sinϕ0

β(0)
=

1

β(zs)
.

�� ��
��
��
��

��

����

��������������������

z

xQ P

ϕ
S

zs

∆z=0

Fig. 3.55: Ray in 1-D medium.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 117A turning point depth zs is only possible if β(z) < β(zs) for all z < zs. Fordistan
e ∆ in whi
h the ray reappears at level z = 0, it holds (using (3.124))that
∆(q) = 2

∫ S

Q

dx = 2

∫ zs

0

tanϕdz = 2q

∫ zs

0

[

β−2(z)− q2
]

1
2 dz. (3.125)The ray's travel time is

T (q) = 2

∫ S

Q

ds

β
= 2

∫ zs

0

dz

β cosϕ
= 2

∫ zs

0

β−2(z)
[

β−2(z)− q2
]− 1

2 dz. (3.126)Equations (3.126) and (3.127) are parameter representations of the travel time
urve of the model. An example for ray paths and travel time 
urves in a modelwith a transition zone is given in Fig. 3.56.

Fig. 3.56: Ray paths and travel time 
urves in a model with a transition zone.The slope of the travel time 
urve is (show)
dT

d∆
= q. (3.127)
) β = a+ bx+ cz (linear dependen
e from x and z )In this 
ase, it follows from

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



118 CHAPTER 3. BODY WAVES
dϕ

ds
=
c sinϕ− b cosϕ

βand by di�erentiation with respe
t to s (ϕ and β are fun
tions of s via x and z )
d2ϕ

ds2
=
c cosϕ+ b sinϕ

β

dϕ

ds
− c sinϕ− b cosϕ

β2
(b sinϕ+ c cosϕ) = 0.This implies dϕ/ds is a 
onstant and, therefore, the 
urvature radius along thewhole ray. The ray is, therefore, a 
ir
le, or a se
tion of it. Its radius r followsfrom (3.123) if β is 
hosen identi
al to the value at the sour
e Q and ϕ equalto the take-o� angle ϕ0. M, the 
entre of the 
ir
le, 
an be found from Q asshown in Fig. 3.57.

Fig. 3.57: Ray paths in a model with a linear velo
ity law in x and z.The travel time from Q to P is
T =

∫ P

Q

ds

β
=

∫ ϕ1

ϕ0

dϕ

c sinϕ− b cosϕ
=
(

c2 + b2
)− 1

2 ln







tan
[

(ϕ1−δ)
2

]

tan
[

(ϕ0−δ)
2

]





with δ = arctan(b/c).An arbitrary velo
ity law β(x, z), given at dis
rete points (xn, zn) in a model,
an linearly be interpolated pie
e-wise between three neighbouring points. Thenthe laws derived here 
an be applied. The ray then 
onsists of several se
tions of
ir
les, and at the transition between two regions with di�erent linear velo
itylaws, the tangent to the ray is 
ontinuous. A 
orresponding travel time andplotting program is, for many pra
ti
al appli
ations, already su�
ient.Exer
ise 3.13a) Show that point M is on the line β = 0.b) Derive the formula for T given above.
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 1193.9.2 High frequen
y approximation of the equation ofmotionThe equation of motion for inhomogeneous, isotropi
 media (2.20) 
an for SH -wave propagation in two-dimensional media without volume for
es, be simpli�edto
ρ
∂2v

∂t2
=

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂z

(

µ
∂v

∂z

)

. (3.128)For the time harmoni
 
ase we use the ansatz
v(x, z, t) = A(x, z) exp [iω (t− T (x, z))] . (3.129)This is an ansatz for high frequen
ies sin
e only for su
h frequen
ies 
an weexpe
t that amplitude A(x,z) and travel time fun
tion T(x,z) to be frequen
yindependent in inhomogeneous media. In homogeneous media far from inter-fa
es, this is true for all frequen
ies as long as one is a few wavelengths awayfrom the sour
e. Using (3.129) in (3.128), and sorting with respe
t to powers of

ω, it follows that
ω2A

{

µ

[

(

∂T

∂x

)2

+

(

∂T

∂z

)2
]

− ρ
}

+iωA

{

∂µ

∂x

∂T

∂x
+
∂µ

∂z

∂T

∂z
+ µ

(

∂2T

∂x2
+
∂2T

∂z2

)

+ 2µ

(

∂ lnA

∂x

∂T

∂x
+
∂ lnA

∂z

∂T

∂z

)}

−
{

∂µ

∂x

∂A

∂x
+
∂µ

∂z

∂A

∂z
+ µ

(

∂2A

∂x2
+
∂2A

∂z2

)}

= 0. (3.130)For su�
iently high frequen
ies, the three terms of this equation are of di�erentmagnitudes. To satisfy (3.130), ea
h term has then to be zero independently,espe
ially the �rst two terms
(

∂T

∂x

)2

+

(

∂T

∂z

)2

=
1

β2
(3.131)

2µ

(

∂ lnA

∂x

∂T

∂x
+
∂ lnA

∂z

∂T

∂z

)

= −∂µ
∂x

∂T

∂x
− ∂µ

∂z

∂T

∂z
− µ∇2T. (3.132)Equation (3.131) is the Eikonal equation, and it 
ontains on the right side thelo
ation-dependent S -velo
ity β = (µ/ρ)1/2. After solving the Eikonal, T isinserted in in the transport equation (3.132), and lnA and A are determined.This, in prin
iple, solves the problem. The frequen
y-independent third term
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120 CHAPTER 3. BODY WAVESin (3.130) will usually not be zero with A from (3.132). Solution (3.129) is,therefore, not exa
t, but be
omes more a

urate, the higher the frequen
y.We still have to derive the 
onditions under whi
h the �rst two terms of (3.130)are indeed of di�erent order and, therefore, the separation into (3.131) and(3.132) is valid. The 
ondition follows from the requirement that ea
h singlesummand in the se
ond term has to be small with respe
t to ea
h single sum-mand in the �rst term, for example,
∣

∣

∣

∣

ω
∂µ

∂x

∂T

∂x

∣

∣

∣

∣

≪ ω2µ

(

∂T

∂x

)2

.From (3.131), it follows roughly |∂T/∂x| = 1/β. Thus,
∣

∣

∣

∣

β

µ

∂µ

∂x

∣

∣

∣

∣

≪ ω.With µ = ρβ2, it follows
∣

∣

∣

∣

β

ρ

∂ρ

∂x
+ 2

∂β

∂x

∣

∣

∣

∣

≪ ω. (3.133)Similar relations follow from the other summands in (3.130). Usually, the re-quired 
onditions are formulated as follows: the high frequen
y approximations(3.131) and (3.132) are valid for frequen
ies whi
h are large with respe
t to thevelo
ity gradients
ω ≫ |∇β| =

[

(

∂β

∂x

)2

+

(

∂β

∂z

)2
]

1
2

. (3.134)Equation (3.133) shows also, that density gradients have also an in�uen
e.Equation (3.134) 
an be expressed even more physi
ally: the relative 
hangeof the velo
ity over the distan
e of a wavelength has to be smaller then 2π(show).ExampleWe solve (3.131) and (3.132) in the simplest 
ase of a plane SH -wave propagatingin z-dire
tion with the assumption that ρ, β and µ depend only on z. Ansatz(3.129) then simpli�es to
v(z, t) = A(z) exp [iω (t− T (z))] . (3.135)The solution of (3.131) is
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 121
dT

dz
=

1

β(z)
, T (z) =

∫ z

0

dζ

β(ζ)where T (z) is the S-wave travel time, with respe
t to the referen
e level z = 0.Equation (3.132) 
an be written as
2µ

β

d lnA

dz
= − 1

β

dµ

dz
+

µ

β2

dβ

dz
.Thus,

d lnA

dz
=

1

2

(

d ln β

dz
− d lnµ

dz

)

=
d ln (ρβ)

− 1
2

dz

A(z) = A(0)

[

ρ(0)β(0)

ρ(z)β(z)

]
1
2

.The amplitudes of the SH -wave vary, therefore, inversely proportional to theimpedan
e ρβ. The �nal solution of (3.135) is
v(z, t) = A(0)

[

ρ(0)β(0)

ρ(z)β(z)

]
1
2

exp

[

iω

(

t−
∫ z

0

dζ

β(ζ)

)]

. (3.136)From these results we 
on
lude that, in the 
ase 
onsidered, an impulsive, highfrequent SH -wave propagates without 
hanging its form.Exer
ise 3.14Vary the velo
ity β and the density ρ not 
ontinuously from depth 0 to depthz, but via a step somewhere in between. Then the amplitudes 
an be derivedexa
tly via the SH -refra
tion 
oe�
ient (3.40). Show that (3.136) gives thesame results if the relative 
hange in impedan
e is small with respe
t to 1.Hint: Expansion in both 
ases.3.9.3 Eikonal equation and seismi
 raysFrom (3.129), it follows that surfa
es of 
onstant phase are given by
t− T (x, z) = const.In the impulse 
ase, these surfa
es are the wavefronts separating perturbed andunperturbed regions. This is why the term wavefront is used also here. Completedi�erentiation with respe
t to t gives
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122 CHAPTER 3. BODY WAVES
∂T

∂x

dx

dt
+
∂T

∂z

dz

dt
= ∇T ·

−→
dx

dt
= 1, (3.137)where −→dx/dt = (dx/dt, 0, dz/dt) is the propagation velo
ity of the wavefront.The obvious interpretation of (3.137) for isotropi
 media is that −→dx/dt and theve
tor∇T , whi
h is perpendi
ular to the wavefront, are parallel, sin
e a

ordingto the Eikonal equation (3.131) |∇T | = 1/β, it holds that ∣∣∣−→dx/dt∣∣∣ = β. Thismeans that the wavefronts propagate perpendi
ular to themselves with the lo
alvelo
ity β.The orthogonal traje
tories of the wave are de�ned as seismi
 rays. We still haveto show that they are the rays de�ned via the Fermat's prin
iple. We demon-strate this by showing that the di�erential equations of the seismi
 ray, (3.119)and (3.120), also follow from the Eikonal equation. As before, we des
ribe theray via its parameter representation {x = x(s), z = z(s)} with the ar
 lengths. Ve
tor −→dx/ds = (dx/ds, 0, dz/ds) is a unit ve
tor in ray dire
tion for whi
h,using the statements above, we 
an write

−→
dx

ds
= β∇T = β(∂T/∂x, 0, ∂T/∂z). (3.138)Instead of (3.119), we, therefore, have
d

ds

(

1

β

dx

ds

)

=
d

ds

(

∂T

∂x

)

.Using (3.138) and the Eikonal equation on the right side, we derive
d

ds

(

1

β

dx

ds

)

=
∂2T

∂x2

dx

ds
+

∂2T

∂x∂z

dz

ds
= β

(

∂2T

∂x2

∂T

∂x
+

∂2T

∂x∂z

∂T

∂z

)

=
β

2

∂

∂x

[

(

∂T

∂x

)2

+

(

∂T

∂z

)2
]

=
β

2

∂

∂x

(

1

β2

)

=
β

2

(−2)

β3

∂β

∂x
= − 1

β2

∂β

∂x
=

∂

∂x

(

1

β

)

.That is identi
al to (3.119) and a similar derivation holds for (3.120). Thefollowing is the ray equation in ve
tor form, whi
h is also valid in the three-dimensional 
ase
d

ds

(

1

β

−→
dx

ds

)

= ∇ 1

β
. (3.139)
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 123This shows that ray seismi
s is a high frequen
y approximation of wave seis-mi
s. We have, until now, limited the dis
ussion on kinemati
 aspe
ts of wavepropagation, i.e., on the dis
ussion of wave paths, travel times and phases.Dynami
 parameters, espe
ially amplitudes, were not dis
ussed ex
ept in thesimple example in se
tion 3.9.2. The following se
tion gives more details on thisaspe
t.Before doing this, we give the form of (3.139) whi
h is often used in numeri
al
al
ulations, espe
ially in three dimensions. The single ordinary di�erentialequation of 2nd order for −→x (3.139) is repla
ed by a system of two equations of1st order for −→x and the slowness ve
tor −→p = 1
β

−→
dx
ds (ve
tor in ray dire
tion withthe absolute value 1

β )
−→
dx

ds
= β−→p ,

−→
dp

ds
= ∇ 1

β
.E�e
tive numeri
al methods for the solution of systems of ordinary di�erentialequations of 1st order exist, e.g., the Runge-Kutta-method.3.9.4 Amplitudes in ray seismi
 approximationWithin the framework of ray seismi
s developed from Fermat's prin
iple, am-plitudes are usually 
omputed using the assumption that the energy radiatedinto a small ray bundle, remains in that bundle. This assumption implies thatno energy exits the bundle sideways via di�ra
tion or s
attering and no energyis re�e
ted or s
attered ba
kwards. This is only valid for high frequen
ies. Inthe following, we derive a formula whi
h des
ribes the 
hange of the displa
e-ment amplitude along a ray radiated from a line sour
e in a two dimensionalinhomogeneous medium. The medium shall have no dis
ontinuities.We 
onsider (see Fig. 3.58) a ray bundle emanating from a line sour
e Q witha width of dl(M) at the referen
e point M 
lose to Q and a width of dl(P ) nearthe point P.

�
�
�
�

��

��
��
��
��

dl(M)

dl(P)
P

M

Q

z

x

Fig. 3.58: Ray bundle emanating from the sour
e Q.
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124 CHAPTER 3. BODY WAVESEquation (3.129) holds for the displa
ement in M and P, or in real form
v = A sin [ω(t− T ] .Our aim is the determination of the amplitude ration A(P )/A(M). We �rst de-termine the energy density of the wave, i.e., the sum of kineti
 and potential en-ergy per unit volume. The kineti
 energy density is 1

2ρv̇
2 = 1

2ρω
2A2 cos2 [ω(t− T )].Averaged over the period 2π/ω, the potential and kinemati
 energy density havethe same value 1

4ρω
2A2 sin
e the average of cos2 x is identi
al to 1

2 . Then theenergy density averaged over a period 
an be written as
∆E

∆V
=

1

2
ρω2A2.Consider a 
ube with the volume ∆V = dl dy ds; its 
ross se
tion dl dy is per-pendi
ular to the ray bundle and its length ds is exa
tly 1 wavelength β2π/ω.The energy

∆E =
1

2
ρω2A2∆V = πωρβA2dl dy
ontained within this 
ube �ows per period through the 
ross se
tion dl dy ofthe ray bundle. Sin
e no energy leaves the bundle, ∆E at P is the same as atM. From this the amplitude ratio follows as

A(P )

A(M)
=

[

ρ(M)β(M)dl(M)

ρ(P )β(P )dl(P )

]
1
2

. (3.140)As in (3.136), impedan
e 
hanges o

ur along the ray. The square root ofthe 
hange in the 
ross se
tion is the important parameter for the amplitudevariation. In the most general three-dimensional 
ase, dl has to be repla
ed bythe 
ross se
tion surfa
e of the three-dimensional ray bundle.Equation (3.140) 
an be approximated by tra
ing su�
iently many rays throughthe medium using the methods dis
ussed previously, and then determining theirperpendi
ular distan
es (or 
ross-se
tion surfa
es in three dimensions). Thesemethods are based mainly on the solution of the ray equation (3.139), whi
h isalso 
alled the equation of the kinemati
 ray tra
ing. A more stringent approa
hto 
al
ulate (3.140) is based on di�erential equations whi
h are dire
tly validfor the 
ross se
tion of a ray bundle; they are 
alled equations of the dynami
ray tra
ing. Their derivation 
annot be treated here; for details, see the bookof �ervený, Molotov and P²en
ík (1977).For point P on a horizontal pro�le, e.g., at z = 0, a 
loser look at (3.140) andFig. 3.59 helps in understanding the physi
al meaning.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 125
ϕ0

∆ d

∆ d
dϕ0

ϕ0dl(P)=cos ϕ d

x,∆

ϕ0dl(M)=ad
��

�
�
�
�

��
��
��
��Q

z

M

P

∆

ϕ
a

Fig. 3.59: Ray paths in an inhomogeneous medium.The horizontal distan
e of P is ∆(ϕ0) with the take-o� angle ϕ0 of the ray fromQ to P. The distan
e of the referen
e point M from Q is a. With dl(M) and
dl(P ) from Fig. 3.59, it follows from (3.140) that

A(P )

A(M)
=

[

ρ(M)β(M)

ρ(P )β(P )

]
1
2

·





a

cosϕ
∣

∣

∣

d∆
dϕ0

∣

∣

∣





1
2

. (3.141)This expression shows that problems o

ur if P is on, or 
lose to, the neigh-bourhood of turning points of the travel time 
urve on the horizontal pro�le(
ompare, e.g., the travel time 
urve in Fig. 3.56). At these points, d∆/dϕ0
hanges its sign, and that 
an happen either with a 
ontinuous or non-
ontinuouspass through a zero. In the �rst 
ase, in�nite amplitudes o

ur in P ; in the se
-ond 
ase, the amplitudes be
ome non-
ontinuous. Both 
ases are unrealisti
and nonphysi
al. Equations (3.141) and (3.140), respe
tively, 
an, therefore,only be used at some distan
e from the turning points (
austi
s) of the traveltime 
urves. Unfortunately, this means that the points with some of the largestamplitudes 
annot be treated properly under these assumptions; more sophisti-
ated methods (like the WKBJ method, to be dis
ussed later, or the GaussianBeam method) must be employed.Despite this disadvantage, the formulae given above (and their 
orrespondingequations in three dimensions) are very useful in seismologi
al appli
ations.They 
an be easily extended to in
lude refra
tions and re�e
tions at dis
on-tinuities. This requires the determination of 
hanges in the 
ross se
tion ofthe ray bundle at dis
ontinuities, and the in
lusion of re�e
tion and refra
tion
oe�
ients.A further problem of the energy ansatz used in this se
tion is that it onlygives the amplitudes of a seismi
 ray but no information on its phase 
hangesthat o

ur in addition to the phase 
hanges in the travel time term. It is notalways su�
ient to add exp [iω(t− T )] to (3.140) and (3.141), respe
tively, e.g.,on retrograde travel time bran
hes in the 
ase that the velo
ities are only a
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126 CHAPTER 3. BODY WAVESfun
tion of z. The WKBJ method and the Gaussian Beam method solve thisproblem by tra
king an additional parameter, the KMAH index named afterKeller, Maslov, Arnold and Hormander, whi
h 
ounts the 
austi
s en
ounteredalong the ray.In the following se
tion, the WKBJ theory for verti
al inhomogeneous media,whi
h avoids some of the ray theory problems dis
ussed, is presented; it 
ontainsmore wave seismi
 elements.Exer
ise 3.15Use the ray parameter q instead of the take-o� angle ϕ0 in the amplitude formula(3.141) in the 
ase of a verti
ally inhomogeneous medium and then use (3.127).What is the relation between the amplitudes and the travel time 
urve T (∆)?3.10 WKBJ methodNow we will 
onsider total re�e
tion at a verti
ally inhomogeneous mediumusing the WKBJ method.3.10.1 Harmoni
 ex
itation and re�e
tion 
oe�
ientWe 
onsider a medium whose velo
ity β(z) for z ≤ 0 is β(0), i.e., 
onstant andfor z > 0 
an be any 
ontinuous fun
tion of z, i.e., no dis
ontinuities existin the medium. A plane SH -wave may propagate obliquely in the lower half-spa
e z < 0 with the horizontal wavenumber k = ω sinϕ/β(0) (ray parameter
q = sinϕ/β(0) (ϕ = angle of in
iden
e). Note the di�eren
e to the example in
hapter 3.9.2 with verti
al propagation.Then the ray seismi
s of the verti
ally inhomogeneous medium, se
tion 3.9.1,suggests inserting ∂T/∂x = q = constant in the Eikonal equation (3.131) (
om-pare with (3.127)). This then, gives

T (x, z) = qx+

∫ z

0

[

β−2(ζ)− q2
]

1
2 dζ,and, thus, the travel time of the S-wavefront from the interse
tion of the originto the point (x,z ). The rest of the dis
ussion is as in se
tion 3.9.2., and leads to

v0(x, z, t) = A(0)

[

µ(0)s(0)

µ(z)s(z)

]
1
2

exp

[

iω

(

t− qx−
∫ z

0

s(ζ)dζ

)](3.142)
s(ζ) =

[

β−2(ζ)− q2
]

1
2 . (3.143)
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3.10. WKBJ METHOD 127q is the horizontal and s is the verti
al slowness of the wave. For q=0, (3.142)is identi
al to (3.136). Equation (3.142) is the WKBJ -approximation of theS -wave. It is a useful high frequen
y approximation, as long as β−1(z) > q,i.e., as long as the seismi
 ray whi
h 
an be asso
iated with the wave is notpropagating horizontally. If the velo
ity, e.g., with in
reasing depth de
reases orif it in
reases, but does not rea
h the value q−1, (3.142) is appli
able for all z.For 
ases of interest and a medium with in
reasing velo
ities for in
reasingdepth, a depth zs is rea
hed where β(zs) = q−1. At this depth, where the raypropagates horizontally, (3.142) diverges. Equations (3.129), (3.131) and (3.132)are insu�
ient for the des
ription of the wave�eld near the turning point ofrays. If (3.142) is 
onsidered for z > zs with β(z) > β(zs), i.e., the velo
ity
ontinues to in
rease, a stable result 
an, again, be obtained. The integral inthe exponential term from zs to z is imaginary, thus, giving an exponentialde
ay of the amplitudes with in
reasing z, i.e., below the ray's turning point theamplitude of the SH -wave de
reases as expe
ted. For z < zs, the wave�eld isinsu�
iently des
ribed by (3.142) sin
e (3.142) represents only the downwardpropagating in
ident SH -wave. A similar equation 
an be given for the re�e
tedSH -wave upward propagating from the turning point
v1(x, z, t) = RA(0)

[

µ(0)s(0)

µ(z)s(z)

]
1
2

exp

[

iω

(

t− qx+

∫ z

0

s(ζ)dζ

)]

. (3.144)That this wave propagates upwards 
an be seen from the positive sign before theintegral in the exponent. R is, as 
an be seen by the sele
tion z=0 in (3.142) and(3.144), the amplitude ratio v1(x, 0, t)/v0(x, 0, t) of the re�e
ted to the in
identwave; in other words, the re�e
tion 
oe�
ient of the inhomogeneous half-spa
eis z>0. Its determination requires a quantitative 
onne
tion of the whole �eld
v0 + v1 for z < zs with the already mentioned exponentially de
aying �eld for
z > zs. To tie these two solutions together is, as mentioned before, not possiblewith the high frequen
y approximation of the equation of motion used untilnow.The required 
onne
tion be
omes possible with another high frequen
y approx-imation of (3.128), namely a wave equation with depth dependent velo
ity

∇2V = ∂2V
∂x2 + ∂2V

∂z2 = 1
β2(z)

∂2V
∂t2

v = 1

µ
1
2 (z)

V

}

. (3.145)This high frequen
y approximation is valid under 
ondition (3.134), as 
an beshown by inserting in (3.128). For plane waves, it follows from the ansatz
V (x, z, t) = B(z) exp [iω(t− qx)]
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128 CHAPTER 3. BODY WAVESvia (3.145) an ordinary di�erential equation for B(z)
B′′(z) + ω2

[

β−2(z)− q2
]

B(z) = 0. (3.146)This equation has now to be solved for large ω. The solutions of B′′(z) +
ω2f(z)B(z) = 0 in the neighbourhood of a zero of f(z) and for large ω is generally
alledWKBJ -solution after the authors - Wentzel, Kramers, Brillouin, Je�reys.For z < zs, the previously dis
ussed superposition of (3.142) and (3.144) of thein
ident and re�e
ted wave of v results. For z > zs the exponentially de
ayingsolution follows. The 
ase that z is in the immediate neighbourhood of zshas to be examined in more detail. We approximate the 
oe�
ient ω2s2(z)of B(z) (with s(z) from (3.143)) linearly and get, with s2(zs) = 0, β(zs) =
q−1 and β′(zs) > 0,

B′′(z)− 2ω2q3β′(zs)(z − zs)B(z) = 0. (3.147)This equation 
an, with the substitution,
y(z) =

[

2ω2q2β′(zs)
]

1
3 (z − zs) (3.148)be transformed into the di�erential equation of the Airy fun
tions

C′′(y)− yC(y) = 0.The solution of interest to us, C(y) = Ai(y), is dis
ussed in appendix E (moreon Airy fun
tions 
an be found in M. Abramovitz and I.A. Stegun: Handbookof Mathemati
al Fun
tions, H. Deuts
h, Frankfurt, 1985). The depths z < zs(z > zs) 
orrespond to arguments y < 0 (y > 0) of Ai(y). From Fig. E.2,it follows that the transition from the os
illatory solution B(z) of (3.147) with
z < zs to the exponentially damped solution for z > zs is without singularity.This then, also holds for the displa
ement v, in 
ontrast to what one wouldexpe
t from (3.142) and (3.144).The os
illatory behaviour of B(z) for z < zs indi
ates that the in
ident wave
v0 and the re�e
tion v1, build a standing wave with nodes of the displa
ementat depths whi
h 
orrespond to the zeros of the Airy fun
tion. The re�e
tion
oe�
ient R in (3.144) is now determined in su
h a way, that the superpositionof (3.142) and (3.144), in the term that depends on z, is identi
al to the Airyfun
tion. Due to the high frequen
y assumption, the asymptoti
 form of Ai(y)for large negative y 
an be used

Ai(y) ≃ π− 1
2 |y|−

1
4 sin

(

2

3
|y|

3
2 +

π

4

)

. (3.149)Furthermore, for z < zs
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3.10. WKBJ METHOD 129
v0 + v1 = A(0)

[

µ(0)s(0)
µ(z)s(z)

]
1
2

exp
[

iω
(

t− qx−
∫ zs

0
s dζ

)]

·
{

exp
[

iω
∫ zs

z s dζ
]

+R exp
[

2iω
∫ zs

0 s dζ
]

· exp
[

−iω
∫ zs

z s dζ
]}

.(3.150)The z -dependen
e of v0 + v1 is given by the 
urved bra
ket. It will nowbe determined in approximation. With the approximation (3.147) ω2s2(ζ) =
2ω2q3β′(zs)(zs − ζ), it follows

ω

∫ zs

z

s dζ = ±
[

2ω2q3β′(zs)
]

1
2

∫ zs

z

(zs − ζ)
1
2 dζ

= ±
[

2ω2q3β′(zs)
]

1
2

2

3
(z − zs)

3
2

= ±2

3
|y|

3
2

= ±Ywith y = y(z) from (3.148). The positive (negative) sign holds for positive(negative) frequen
ies. Thus, for the 
urved bra
kets in (3.150)
{· · ·} = e±iY + Ze∓iYwith the abbreviation

Z = R exp

[

2iω

∫ zs

0

s dζ

]

. (3.151)With Z = ±i for ω <0 (>0), it follows that
{· · ·} = (1± i)(cosY + sinY ) = 2

1
2 (1± i) sin

(

Y +
π

4

)

= 2
1
2 (1± i) sin

(

2

3
|y|

3
2 +

π

4

)

,and, therefore, the required agreement with the main term in (3.149). Z = ±iin (3.151) gives then the re�e
tion 
oe�
ient in the WKBJ-approximation
R = i ω

|ω| exp
[

−2iω
∫ zs

0
s(ζ)dζ

]

s(ζ) =
[

β−2(ζ) − q2
]

1
2

β(zs) = q−1 = β(0)
sin ϕ .











(3.152)
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130 CHAPTER 3. BODY WAVESIts absolute value is 1 (total re�e
tion). It des
ribes only the phase shifts,i.e., a 
onstant phase shift of ±π/2 for ω < 0 (ω > 0) is added to the phaseshifts due to the travel time in the exponential term of R. Compared to there�e
tion 
oe�
ients of layered media, derived earlier without approximation;the form of (3.152) is simple. It is only valid for su�
iently high frequen
ies(
ondition (3.134)) and for angle of in
iden
e ϕ with total re�e
tion. Re�e
tion
oe�
ients of the type of (3.152) are useful in seismology but even more so forthe propagation of sound waves in o
eans or the propagation of radio waves inthe ionosphere (
ompare, e.g., Budden (1961) and of Tolstoy and Clay (1966)).The re�e
ted SH-wave observed at the 
oordinate 
entre follows, then, by in-serting (3.152) in (3.144)
v1(0, 0, t) = A(0)i

ω

|ω| exp

[

iω

(

t− 2

∫ zs

0

s(ζ)dζ

)]

. (3.153)Then
τ(q) = 2

∫ zs

0

s(ζ)dζis the delay time, , i.e., the time between the interse
tion of the in
ident andthe re�e
ted wave with the 
oordinate 
entre. This time delay 
orresponds tothe ray segments AC, BD, or OP.

Fig. 3.60: Constru
tion of a 
austi
 from the envelopes of rays.Note that the wavefronts are 
urved for z>0; only in the homogeneous regionz<0 are the wavefronts plane.Fig. 3.60 shows also that the line z = zs is the envelope of all rays. Su
henvelopes are 
alled 
austi
s, and they are 
hara
terised by large energy 
on-
entrations. Within the amplitude approximation formula (3.140), and due to
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3.10. WKBJ METHOD 131dl(P)=0 for a point P on the 
austi
 z = zs, in�nite amplitudes would resultthere. The additional phase shift of ±π
2 , as dis
ussed before, 
an be interpretedphysi
ally as the e�e
t of the strong intera
tion of ea
h ray with its neighbouringrays in the vi
inity of the 
austi
. More 
ompli
ated 
austi
s o

ur in verti
allyinhomogeneous media, if the in
ident wave is from a point or line sour
e, re-spe
tively. In su
h 
ases, the phase shift per 
austi
 en
ountered, is ±π

2 . More
ompli
ated 
austi
s are en
ountered in two and three dimensional media.3.10.2 Impulsive ex
itation and WKBJ-seismogramsIf an impulsive wave, produ
ing a displa
ement v0(0, 0, t) = F (t) at the 
oor-dinate 
entre, instead of a harmoni
 wave is in
ident, it follows from (3.153)that the 
orresponding re�e
tion is the time delayed Hilbert transform of F(t)(
ompare se
tion 3.6.3)
v1(0, 0, t) = FH(t− τ(q)). (3.154)This means that the re�e
tion for all angles of in
iden
e ϕ (or ray parametersor horizontal slowness q) have the same form ex
ept for the time delay τ(q).This is, therefore, di�erent from the results for a dis
ontinuity of �rst order in
hapter 3.6.3 (there the impulse form 
hanged in the 
ase of total re�e
tion alsowith the angle of in
iden
e ϕ).When 
ylindri
al waves are 
onsidered, the prin
iple of superposition is used.The 
ylindri
al wave, assumed to originate from an isotropi
ally radiating linesour
e in the 
oordinate 
entre, is represented by many plane waves with radi-ation angles ϕ from 0 to π/2. This 
orresponds to positive values of q. There�e
tions are superimposed similarly. First, (3.154) is generalised for arbitrary

x > 0

v1(x, 0, t) = FH (t− τ(q)− qx) = FH(t) ∗ δ (t− τ(q) − qx) .Then these plane waves are integrated over ϕ from 0 to π/2 and, thus, theWKBJ-seismogram at distan
e x from the line sour
e is derived
v(x, 0, t) = FH(t) ∗

∫ π
2

0

δ (t− τ(q) − qx) dϕ = FH(t) ∗ I(x, t). (3.155)The impulse seismogram I(x, t) 
an now be derived numeri
ally via
I(x, t) =

∑

i δ(t− ti)∆ϕi

ti = τ(qi) + qix , qi = sin ϕi

β(0) .

} (3.156)Usually, the ϕi are 
hosen equidistant (∆ϕi = ∆ϕ = const). The delta fun
tionsare shifted from the times ti to their immediate neighbouring time points I(x, t)
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132 CHAPTER 3. BODY WAVESand possibly amass there, i.e., in the dis
retised version of I(x, t), multiples of
∆ϕ o

ur there. I(x, t) is then 
onvolved with FH(t). The most time-
onsumingpart is the 
omputation of the delay time τ(qi); on the other hand, e�
ient ray-seismi
 methods exist for that. In 
omparison to the re�e
tivity method and theGRT, the WKBJ-method is signi�
antly faster. There are also other numeri
alrealisations of this method than (3.155) and (3.156).WKBJ-seismograms have other phase relations and impulse forms than ex-pe
ted from (3.152) and (3.154), respe
tively. This is due to the summationof many plane waves. Pro-grade travel time bran
hes (see Fig. 3.56) show nophase shift, i.e., the impulse form of the in
ident 
ylindri
al wave is observedthere. Phase shifts and impulse form 
hanges only o

ur on retro-grade traveltime bran
hes. Furthermore, the seismogram amplitudes are �nite in the vi
in-ity of the turning points of travel time 
urves, i.e., the WKBJ-method is validat 
austi
s.WKBJ-seismograms for a simple 
rust-mantle model and a line sour
e at theEarth's surfa
e are shown in Fig. 3.61. The 
omputations were performed witha program for SH -waves; even so, the velo
ity model (Fig. 3.62) is valid for P-waves. An a
ousti
 P-wave 
omputation would give, in prin
iple, the same resultfor pressure. The travel time 
urve of the re�e
tion PMP from the 
rust-mantleboundary (Moho) is retrograde and the travel time bran
h of the refra
ted wave
Pn from the upper mantle is prograde. Times are redu
ed with 8 km/s.

Fig. 3.61: WKBJ-seismograms for a simple 
rust-mantle model and a line sour
eat the Earth's surfa
e.
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3.10. WKBJ METHOD 133

Fig. 3.62: Velo
ity model used in Fig. 3.61.The impulse forms of these waves are as expe
ted: Pn has the form of theradiated wave, whereas PMP is roughly the Hilbert transform of it. At distan
essmaller than the 
riti
al distan
e (
a. 100 km), the amplitudes in
rease strongly.At the 
riti
al point, whi
h is lo
ated on a 
austi
 within the 
rust, the wave�eld remains �nite.In seismologi
al appli
ations of WKBJ-seismograms, their approximate nature,due to the high frequen
y approximation (3.152) for the re�e
tion 
oe�
ient,should be kept in mind. This approximation is insu�
ient in regions of theEarth where wave velo
ity and density 
hange rapidly with depth, e.g., at the
ore-mantle boundary or at the boundary of the inner 
ore of the Earth.
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Chapter 4
Surfa
e waves
4.1 Free surfa
e waves in layered media4.1.1 Basi
 equationsIn addition to the body waves that penetrate to all depths in the Earth, anothertype of wave exists whi
h is mostly limited to the neighbourhood of the surfa
e ofthe Earth 
alled surfa
e waves. These waves propagate along the surfa
e of theEarth, and their amplitudes are only signi�
ant down to the depth of a few wavelengths. Below that depth, the displa
ement is negligible. Be
ause surfa
e wavesare 
onstrained to propagate 
lose to the Earth's surfa
e, their amplitude de
ayas a fun
tion of sour
e distan
e is smaller than for body waves, whi
h propagatein three dimensions. This is why surfa
e waves are usually the dominatingsignals in the earthquake re
ord. Another signi�
ant property is their dispersion,i.e., their propagation velo
ity is frequen
y dependent. Therefore, the frequen
ywithin a wave group varies as a fun
tion of time (
ompare example in 4.1.4).These are some of the main observations and explanations for surfa
e waves.The �rst s
ientists to study surfa
e waves (Rayleigh, Lamb, Love, Stoneley etal.) found the theoreti
al des
riptions explaining the main observations. Thefundamental tenet of this approa
h is the des
ription of surfa
e waves as aneigenvalue problem but omitting the sour
e of the elasti
 waves. We 
onsider alayered half-spa
e with parameters as given in Fig. 4.1 with a free surfa
e.135
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136 CHAPTER 4. SURFACE WAVES

Fig. 4.1: Layered half-spa
e with free surfa
e.We work with Cartesian 
oordinates x,y,z and assume independen
e from y.Then, the equations from se
tion 3.6.2 
an be used whi
h have been derivedto des
ribe re�e
tion and refra
tion. The separation of the displa
ement intoP-, SV- and SH -
ontributions holds as before, as does the fa
t, that the P-SV-
ontributions propagate independently from the SH-waves. Surfa
e waves of theP-SV-type are 
alled Rayleigh waves. They are polarised in the x-z-planehorizontal displa
ement u = ∂Φ
∂x − ∂Ψ

∂zverti
al displa
ement w = ∂Φ
∂z + ∂Ψ

∂x .
(4.1)The potentials Φ and Ψ, in ea
h layer, satisfy the wave equation

∇2Φ =
1

α2

∂2Φ

∂t2
, ∇2Ψ =

1

β2

∂2Ψ

∂t2
. (4.2)Surfa
e waves of the SH -type are 
alled Love waves. They are polarised in y-dire
tion, and for the displa
ement v in ea
h layer the following wave equationholds

∇2v =
1

β2

∂2v

∂t2
. (4.3)The boundary 
onditions are given in se
tion 3.6.2. The ansatz forΦj ,Ψj and vjin the j-th layer of the model for harmoni
 ex
itation (ω > 0) is

Φj

Ψj

}

=

{

Aj(z)
Bj(z)

}

exp
[

iω
(

t− x

c

)]

=

{

Aj(z)
Bj(z)

}

exp [i (ωt− kx)](4.4)
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 137and
vj = Cj(z) exp

[

iω
(

t− x

c

)]

= Cj(z) exp [i (ωt− kx)] . (4.5)Consider the 
onditions for whi
h a plane wave exists, whi
h propagates in x-dire
tion with the phase velo
ity 
, where 
 is identi
al in all layers. How largeis 
? Then the fun
tions Aj(z), Bj(z) and Cj(z) exist, so that
lim

z→∞







An(z)
Bn(z)
Cn(z)







= 0. (4.6)This problem is an eigenvalue problem, and 
 and the wavenumber k = ω/c,respe
tively, are the 
orresponding eigenvalues. In many 
ases (for �xed ω), a�nite number (≤ 1) of eigenvalues exist. The problem is 
omparable to that ofdetermining the frequen
ies of natural os
illations (or free os
illations) of �nitebodies (beams, plates, bodies et
.) (
ompare exer
ise 4.1).Here we are only interested in the 
ase where the eigenvalues are real (>0). Thishas the largest pra
ti
al appli
ation. The 
orresponding surfa
e waves are 
allednormal modes. There exist also waves whi
h 
an be des
ribed with 
omplex k :
k = k1 − ik2 (k1,2 > 0). These surfa
e waves are 
alled leaking modes sin
etheir amplitude de
reases exponentially with exp(−k2x). Their phase velo
ityis ω/k1.The ansatz with plane waves negle
ts the in�uen
e of ex
itation. This, then,leads to a major simpli�
ation of the problem. Su
h surfa
e waves are 
alled freein 
ontrast to for
ed surfa
e waves whi
h are ex
ited by spe
i�
 sour
es. Theanalogy to the free and for
ed resonan
es of limited bodies is also helpful here inthe 
ontext of ex
itation. The treatment of free surfa
e waves is an importantrequirement for the study of for
ed surfa
e waves (
ompare se
tion 4.2). We willsoon show that the dispersive properties of both wave types are identi
al. Sin
ethis property depends on the medium, they 
an be used to determine mediumparameters. This is why the study of the dispersion of free surfa
e waves is ofgreat pra
ti
al importan
e.Exer
ise 4.1The radial os
illations of a liquid sphere with P -velo
ity α are des
ribed bythe potential Φn(r, t) ∼ (eiωnt/r) sin(ωnr/α) (n=1,2,3...). Determine the eigenfrequen
ies ωn from the 
ondition that the surfa
e of the sphere at r=R is stressfree (prr from exer
ise 3.4); give the radial displa
ement. Where are the nodalplanes?
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138 CHAPTER 4. SURFACE WAVES4.1.2 Rayleigh waves at the surfa
e of an homogeneoushalf-spa
eThe half-spa
e (z>0) has the velo
ities α and β for P - and S -waves, respe
tively.Inserting the ansatz
Φ = A(z) exp [i (ωt− kx)] and Ψ = B(z) exp [i (ωt− kx)] (4.7)into the wave equation (4.2) with ∇2 = ∂2/∂x2 + ∂2/∂z2, gives the di�erentialequations for A(z) and B(z), e.g.,

A′′(z) + k2

(

c2

α2
− 1

)

A(z) = 0.The general solution of this equation is
A(z) = A1e

−ikδz +A2e
ikδz with δ =

(

c2

α2
− 1

)
1
2

.Due to (4.6), δ has to be purely imaginary. Then, A2 = 0 has to hold. Fromthe properties of δ, a �rst statement on the phase velo
ity of the Rayleigh wavebe
omes possible: c < α. It also holds that
A(z) = A1e

−ikδz ,and, similarly, it follows that
B(z) = B1e

−ikγzwith γ =
(

c2/β2 − 1
)1/2 (negative imaginary). This further limits 
: c < β.The potential ansatz (4.7) 
an now be written as

Φ = A1 exp [i (ωt− kx− kδz)] , Ψ = B1 exp [i (ωt− kx− kγz)] . (4.8)Inserting the boundary 
onditions pzz = pzx = 0 for z=0 with pzz and pzx from(3.29), it follows that
−ω

2

α2

λ

µ
A1 + 2

(

−k2δ2A1 − k2γB1

)

= 0

−2k2δA1 +
(

−k2 + k2γ2
)

B1 = 0.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 139Division by −k2 and use of λ/µ = (α2 − 2β2)/β2 gives
[

c2

α2

α2 − 2β2

β2
+ 2

(

c2

α2
− 1

)]

A1 + 2γB1 = 0

2δA1 +

(

2− c2

β2

)

B1 = 0.This leads to
(

c2

β2 − 2
)

A1 + 2γB1 = 0

−2δA1 +
(

c2

β2 − 2
)

B1 = 0.







(4.9)This system of equations only has non-trivial solutions A1 and B1, if its deter-minant is zero. This leads to an equation for 
:
(

c2

β2
− 2

)2

+ 4δγ = 0.In the range of interest 0 < c < β, we have
(

c2

β2
− 2

)2

= 4

(

1− c2

β2

)
1
2
(

1− c2

α2

)
1
2

.Squaring this gives
c2

β2

[

c6

β6
− 8

c4

β4
+

(

24− 16
β2

α2

)

c2

β2
− 16

(

1− β2

α2

)]

= 0. (4.10)Solution c = 0 is not of interest, therefore, only the terms in the bra
ket haveto be examined. For c = 0, it is negative, and for c = β, positive. Therefore, atleast one real solution of (4.10) exists between 0 and β. The eigenvalue problemhas, thus, a solution, i.e., along the surfa
e of a homogeneous half-spa
e a wave
an propagate, the amplitudes of whi
h de
ay with depth. In this simple 
aseno dispersion o

urs and 
 is independent of ω.In the spe
ial 
ase λ = µ (i.e., α = β
√

3), c = 0, 92β. In general, the Rayleighwave is only slightly slower than the S -wave.We now examine the displa
ement of the Rayleigh wave
u =

(

−ikA1e
−ikδz + ikγB1e

−ikγz
)

exp [i (ωt− kx)] .
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140 CHAPTER 4. SURFACE WAVESWith γB1 = −
(

c2/2β2 − 1
)

A1 (from (4.9)), it follows
u = −ikA1

[

e−ikδz +

(

c2

2β2
− 1

)

e−ikγz

]

exp [i (ωt− kx)] (4.11)
e−ikδz +

(

c2

2β2
− 1

)

e−ikγz =: a(z).Similarly,
w =

(

−ikδA1e
−ikδz − ikB1e

−ikγz
)

exp [i (ωt− kx)] .With B1 = δA1

(

c2/2β2 − 1
)−1 (from (4.9)), it follows

w = −ikδA1

[

e−ikδz +

(

c2

2β2
− 1

)−1

e−ikγz

]

exp [i (ωt− kx)] (4.12)
e−ikδz +

(

c2

2β2
− 1

)−1

e−ikγz =: b(z).We assume that A1 is positive real and 
onsider the real parts of (4.11) and(4.12)
u = kA1a(z) sin(ωt− kx)
w = −|δ|kA1b(z) cos(ωt− kx).For z=0, it holds that a(0)>0 and b(0)<0. In the 
ase of u and w, show thebehaviour given in Fig. 4.2 (e.g., for x = 0). The displa
ement ve
tor des
ribesan ellipse with retro-grade motion.

Fig. 4.2: Behaviour of u and w.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 141

Fig. 4.3: Theoreti
al seismograms for an explosive point sour
e in a homoge-neous half-spa
e and re
orders at its surfa
e (
omputed with the GRT for pointsour
es, 
ompare se
tion 3.8).For su�
iently large z, the se
ond term in a(z) and b(z) dominates due to
|γ| < |δ| so that both fun
tions are negative there. The displa
ement ve
tor,again, des
ribes an ellipse but now with prograde dire
tion. The transition fromretro-grade to pro-grade motion o

urs at the depth where a(z)=0. For λ = µ,this is the 
ase at about z = 0, 2Λ where Λ = 2πc/ω = 2π/k is the wavelength.This depth is, therefore, a nodal plane of the horizontal displa
ement.
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142 CHAPTER 4. SURFACE WAVESEllipti
al polarisation of the displa
ement ve
tor and the existen
e of nodalplanes of the displa
ement 
omponents, are also 
hara
teristi
s of free Rayleighwaves in layered media, with the additional feature of dispersion.The Rayleigh wave is, therefore, for
ed. The arrows above the seismogramsindi
ate the theoreti
al arrival times r/
 where 
 is the phase velo
ity of thefree Rayleigh wave. Fig. 4.4 shows a hodograph of a point at the surfa
e, i.e., itstra
e during the passage of a Rayleigh wave whi
h has roughly ellipti
al form.

w

u

r=32 km
z=0

Fig. 4.4: Hodograph at a point at the surfa
e (see Fig. 4.3).The results of the theory of the free Rayleigh wave are, therefore, relatively well
on�rmed.Exer
ise 4.2Does the homogeneous half-spa
e have free Love waves?4.1.3 Love waves at the surfa
e of a layered half-spa
eMatrix formalism and mode 
on
eptWe now study Love waves, i.e., waves of the SH-type, for example, surfa
e wavesin layered media. First, we dis
uss the general 
ase of arbitrarily many layersand give the numeri
al method, with whi
h the dispersion relation c = c(ω) or
k = k(ω) 
an be determined; then the 
ase of a single layer over a half-spa
e isdis
ussed in more detail.We start from the basi
 equations in se
tion 4.1.1 and use the ansatz (4.5) forLove waves in the wave equation (4.3) for the displa
ement in y-dire
tion. Bythis, we derive, in analogy with (4.8), in the j-th layer
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 143
vj = Dj exp [i (ωt− kx+ kγj(z − zj))] +Ej exp [i (ωt− kx− kγj(z − zj))] ,(4.13)where Dj and Ej are now 
onstants and

γj =

(

c2

β2
j

− 1

)
1
2

.We postulate, that γj is positive real or negative imaginary, depending on itsradi
and being positive or negative, respe
tively. In the half-spa
e (j = n), γnhas to be negative imaginary due to (4.6), i.e., c < βn, and
Dn = 0. (4.14)The boundary 
onditions require for z = z1, z2, . . . , zn 
ontinuity of the tangen-tial stress µ∂v/∂z and for z = z2, z3, . . . , zn 
ontinuity of the displa
ement v.From ∂v1/∂z = 0 for z = z1 = 0, it follows that
E1 = D1. (4.15)For z = zj (j ≥ 2) with vj = vj−1 and µj∂vj/∂z = µj−1∂vj−1/∂z, the followingequations for Dj and Ej with dependen
e on Dj−1 and Ej−1, 
an be derived

Dj + Ej = Dj−1e
ikγj−1dj−1 + Ej−1e

−ikγj−1dj−1

Dj − Ej =
µj−1γj−1

µjγj

[

Dj−1e
ikγj−1dj−1 − Ej−1e

−ikγj−1dj−1
]

.As in se
tion 3.6.5, this 
an be expressed in matrix form
(

Dj

Ej

)

=
1

2
eikγj−1dj−1

(

1 + ηj (1− ηj)e
−2ikγj−1dj−1

1− ηj (1 + ηj)e
−2ikγj−1dj−1

)(

Dj−1

Ej−1

)or (4.16)
(

Dj

Ej

)

= layer matrix mj

(

Dj−1

Ej−1

)

ηj =
µj−1γj−1

µjγj
.Su

essive appli
ation of (4.16) leads to
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144 CHAPTER 4. SURFACE WAVES
(

Dn

En

)

= mn·mn−1 . . .m3·m2

(

D1

E1

)

= M

(

D1

E1

)

=

(

M11M12

M21M22

)(

D1

E1

)

.

M is the produ
t of the layer matri
es. With (4.14) and (4.15), the equation for
 or k as a fun
tion of ω and the layer parameters 
an be given as a dispersionequation
M11 +M12 = 0. (4.17)This equation is ordinarily solved numeri
ally. For this, a value of 
 within theinterval from 0 to βn is 
hosen, and then M11 +M12 is 
omputed via the multi-pli
ation of the layer matri
es as fun
tion of ω in the relevant frequen
y range.Finally, their zeros are determined. Then, 
 is varied and the 
orrespondingshifted zeros are determined, et
. If zeros exist, their lo
ation depends on theS -velo
ity and the density as a fun
tion of depth. Ea
h zero gives one bran
hof the dispersion 
urve of the phase velo
ity ci(ω) (see Fig. 4.5).

Fig. 4.5: Dispersion 
urves of the phase velo
ity.Ea
h bran
h has a (lower) 
uto� frequen
y νi = ωi/2π. Theoreti
al dispersion
urves are 
omputed as a fun
tion of frequen
y, period or wavenumber, respe
-tively (in the last 
ase the frequen
y is �xed). Experimentally determined 
urvesare mostly given as a fun
tion of period.The wave behaviour in the half-spa
e, 
orresponding to a 
ertain bran
h of thedispersion 
urve, is 
alled mode. For Love waves, these are normal modes of
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 145the SH -type that propagate undamped. The 
on
ept of modes also holds forRayleigh waves and damped surfa
e waves. Modes are 
lassi�ed by their order:1st mode, 2nd mode, et
. Often the �rst mode is also 
alled fundamental modeand the numbering starts after it. Besides their dispersive properties, modesdi�er by their number of node surfa
es. This number is (up to ±1) identi
alwith their order. Whi
h modes o

ur in reality, depends on the frequen
y rangein whi
h the sour
e radiates, as well as its depth (
ompare se
tion 4.2). Forearthquakes usually, only a few modes 
ontribute, and often only the funda-mental mode 
ontributes to the surfa
e waves. In Fig. 3.39, the Love waves
onsist mainly of the fundamental modes.Spe
ial 
ase n=2In the 
ase of a single layer over a half-spa
e, the dispersion equation (4.17) 
anbe written as
e−2ikγ1d1 =

η2 + 1

η2 − 1
=
µ1γ1 + µ2γ2

µ1γ1 − µ2γ2
(4.18)with γ1,2 = (c2/β2

1,2 − 1)1/2. γ2 is negative imaginary and c < β2.If β1 > β2, γ1 is also negative imaginary. Then, the right side of (4.18) is realand larger than 1. The left side is also real, but smaller than 1. Therefore, noreal solution 
 of (4.18) exists in this 
ase.The S -velo
ity in the half-spa
e, therefore, has to be larger than that of thelayer, i.e., β2 > β1. In this 
ase, we 
an ex
lude values of 
 between 0 and β1with the same arguments as for β1 > β2. This leaves values for 
 between β1and β2. In this 
ase γ1 is positive real, and both sides in (4.18) are 
omplex.The absolute value of both sides is 1. Thus, the mat
hing of the phases givesthe dispersion equation of the Love waves
−2kγ1d1 = −2 arctan

µ2|γ2|
µ1γ1

.From this, it follows with ω = kc

µ2

(

c−2 − β−2
2

)
1
2

µ1

(

β−2
1 − c−2

)
1
2

= tan
[

ωd1

(

β−2
1 − c−2

)
1
2

]

. (4.19)This trans
endent equation is solved by sele
ting 
 with β1 < c < β2 and inver-sion of the radi
and, thus, giving the 
orresponding ω (or the the 
orresponding
ω′s). For a general dis
ussion, we introdu
e a new variable x
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146 CHAPTER 4. SURFACE WAVES
x(c) = ωd1

(

β−2
1 − c−2

)
1
2

c(x) = ωd1
(

ω2d2
1

β2
1

−x2

) 1
2
.



















(4.20)The left side of (4.19) 
an then be written as
µ2

(

c−2 − β−2
2

)
1
2

µ1

(

β−2
1 − c−2

)
1
2

=
µ2

µ1x

[

ω2d2
1

(

β−2
1 − β−2

2

)

− x2
]

1
2 = f(x, ω).Equation (4.19) 
an then be expressed (see also Fig. 4.6) as

f(x, ω) = tanx.

Fig. 4.6: f(x, ω) and tan x.
f(x, ω) is real between x=0 and its zero

x0 = ωd1

(

β−2
1 − β−2

2

)
1
2 . (4.21)This zero moves to the right as a fun
tion of ω and 
reates, thus, more inter-se
tions of f(x, ω) with tanx. The interse
tion xi = xi(ω) gives, substitutingin 
(x) from (4.20), the dispersion relation of the i-th mode (i = 1, 2, . . .)

ci(ω) =
ωd1

(

ω2d2
1

β2
1
− x2

i (ω)
)

1
2

. (4.22)
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 147The i-th mode o

urs only if x0 > (i − 1)π. With (4.21), its 
uto� frequen
ybe
omes
νi =

ωi

2π
=

i− 1

2d1

(

β−2
1 − β−2

2

)
1
2

. (4.23)The i-th mode exists only for frequen
ies ν > νi. The �rst mode (fundamentalmode, i=1) exists, due to ν1 = 0, at all frequen
ies.The phase velo
ity of ea
h mode at its 
uto� frequen
y is most simply derivedfrom the fa
t that at this point the tangent is zero in (4.19)
ci(ωi) = β2. (4.24)For ω →∞, xi → (i−1/2)π and the tangent in (4.19) approa
hes∞. Therefore,

lim
ω→∞

ci(ω) = β1. (4.25)An upper-limiting frequen
y does not exist, and the velo
ities of the layer andthe half-spa
e are the limiting values of the phase velo
ity.A 
al
ulated example for the dispersion 
urves of the �rst three Love modes ofa 
rust-mantle model, 
onsisting of a half-spa
e with a layer above, is given inFig. 4.7.

Fig. 4.7: Dispersion 
urves of the �rst three Love modes of a 
rust-mantlemodel.
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148 CHAPTER 4. SURFACE WAVESIn addition to the 
urves of the phase velo
ities 
, the group velo
ities U areshown
U =

dω

dk
= c+ k

dc

dk
= c− Λ

dc

dΛ
=

c

1− ω
c

dc
dω

=
c

1 + T
c

dc
dT

. (4.26)(Λ= wavelength, T= period). The group velo
ity 
ontrols, as we will see, thepropagation of an impulse from the sour
e to a re
eiver, i.e., ea
h frequen
ytravels with its group velo
ity from the sour
e to the re
eiver, not with itsphase velo
ity. Phase and group velo
ities 
an be determined from observations(see se
tion 4.1.4 and 4.1.5). Thus, both 
an be used for interpretation.Nodal planes and eigen fun
tionsFinally, we examine the nodal planes of the Love modes for the 
ase just dis-
ussed, i.e., the surfa
es on whi
h the displa
ement is zero. From (4.13) with(4.14) and (4.15), it follows that
v1 = 2E1 cos(kγ1z) exp [i (ωt− kx)]
v2 = E2 exp (−ikγ2(z − d1)) exp [i (ωt− kx)]where v1 and v2 are for the layer and the half-spa
e, respe
tively. These expres-sions also hold for ea
h individual mode, and the dispersion relation (4.22) hasto be used. The relation between E1 and E2 is E2 = 2E1 cos(kγ1d1); E1 
an be
hosen arbitrarily.This means that at the surfa
e z = 0, the maximum displa
ement is alwaysobserved, and that nodal planes 
an only o

ur in the layer, but not in thehalf-spa
e. Their position is determined by the zeros of the 
osine. For the i-thmode they 
an be derived via the equation

kγ1z = ω
(

β−2
1 − c−2

i

)
1
2 z = (2n− 1)

π

2
(n = 1, 2, . . . , Ni), (4.27)where Ni is their number determined by z ≤ d1.For the lower frequen
y limit ω = ωi, from (4.23), it follows due to (4.24)

(i− 1)π
z

d1
= (2n− 1)

π

2
.This is satis�ed for

z =
2n− 1

2i− 2
d1 with n = 1, 2, . . . , Ni = i− 1.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 149For ω = ωi, therefore, i− 1 nodal planes exist. Their spa
ing is
∆z =

d1

i− 1
(i = 3, 4, . . .).The �rst mode (i=1) has no nodal plane, neither for ω = ω1 = 0 nor for �nite

ω > 0.The other extreme on the frequen
y s
ale of ea
h mode is ω = ∞. From thedis
ussion of the behaviour of ci(ω) for ω →∞ (see (4.25)), it follows that
lim

ω→∞
ω
(

β−2
1 − c−2

i

)
1
2 = lim

ω→∞

xi(ω)

d1
=

(

i− 1

2

)

π

d1
.Equation (4.27) leads to the fa
t that all z ≤ d1 have to be determined whi
hsatisfy the relation

(

i− 1

2

)

π
z

d1
= (2n− 1)

π

2
.These are the values

z =
2n− 1

2i− 1
d1 with n = 1, 2, . . . , Ni = i.For ω =∞, therefore, i nodal planes exist with the spa
ing

∆z =
d1

i− 1
2

(i = 2, 3, . . .).The 
hange relative to the situation where ω = ωi holds, is �rst, the de
rease inthe spa
ing of the nodal planes, se
ond a general move to shallower depth and�nally, the addition of the i-th nodal plane z = d1. This means that for ω =∞the half-spa
e remains at rest.Fig. 4.8 shows quantitatively the amplitude behaviour of the �rst three modesas a fun
tion of depth for the 
rust-mantle model used for Fig. 4.7. The periodis also indi
ated. Su
h amplitude distributions are 
alled eigen fun
tions of themodes. They follow from the z-dependent part of the displa
ement v1 and v2dis
ussed above.
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150 CHAPTER 4. SURFACE WAVES

Fig. 4.8: Quantitative amplitude behaviour of the �rst three modes as a fun
tionof depth for the 
rust-mantle model used for Fig. 4.7.Exer
ise 4.3Derive the dispersion equation for free Rayleigh waves in a liquid medium 
on-sisting of a layer over a half-spa
e and 
ompare this to (4.19). Sket
h a �guresimilar to Fig. 4.6. What is the di�eren
e, espe
ially for the �rst mode?4.1.4 Determination of the phase velo
ity of surfa
e wavesfrom observationsIn the last se
tion, we saw how the phase velo
ity of a Love mode in a layeredhalf-spa
e 
an be determined if the half-spa
e is known. In the same way (butwith more 
ompli
ations), the same 
an be done for Rayleigh waves. We nowdis
uss the derivation of the phase velo
ity from observations. We assume thatonly one mode is present. If that is not the 
ase, �lters have to be used toseparate the di�erent modes. Sin
e these are sometimes 
ompli
ated methods,they are not dis
ussed here. An overview, and appli
ations for surfa
e waves,
an be found, e.g., in Aki and Ri
hards, Dahlen and Tromp, and Kennett.We work here with plane surfa
e waves, i.e., we negle
t the sour
e term. Themethod for the determination of the phase velo
ity thus derived, is su�
ientlya

urate for pra
ti
al purposes. The modal seismogram of any displa
ement
omponent at the Earth's surfa
e 
an be written for propagation of the modein x -dire
tion as
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



4.1. FREE SURFACE WAVES IN LAYERED MEDIA 151
u(x, t) =

1

2π

∫ +∞

−∞

A(ω) exp

[

iω

(

t− x

c(ω)

)]

dω. (4.28)This is a superposition of the previously dis
ussed harmoni
 surfa
e waves withthe aid of the Fourier integral. c(ω) is the phase velo
ity of the mode to bederived from the re
ordings of u(x, t). Sin
e 
 is frequen
y dependent, the seis-mograms for di�erent x are di�erent. A(ω) is the spe
trum of the displa
ementat (arbitrary) x=0. The amplitude spe
trum is |A(ω)| and the phase spe
trum
Φ(ω) = argA(ω), i.e.,

A(ω) = |A(ω)|eiΦ(ω).We assume that u(x, t) is known for x = x1 and x = x2 > x1 and apply aFourier analysis to the seismograms
u(x1,2, t) =

1

2π

∫ +∞

−∞

G1,2(ω)eiωtdω, (4.29)where G1,2(ω) is the spe
trum of the seismogram for x = x1,2. The 
omparisonof (4.29) with (4.28) gives
G1,2(ω) = |G1,2(ω)|eiϕ1,2(ω) =

A(ω) exp

[

−iω x1,2

c(ω)

]

= |A(ω)| exp

[

i

(

Φ(ω)− ω x1,2

c(ω)

)]

.If the time t=0 is identi
al for both seismograms, and, if possible, jumps of ±2πhave been removed from the numeri
ally determined phases ϕ1,2(ω) (usuallybetween −π and +π), the phases of the top (observation G1,2(ω)...) and thebottom ( |A(ω)|...) 
an be mat
hed and give
ϕ1,2(ω) = Φ(ω)− ω x1,2

c(ω)
.Subtra
ting ϕ1(ω) from ϕ2(ω), the unknown phase spe
trum Φ(ω) of u(0, t)
an
els and the following result for the phase velo
ity is left

c(ω) =
(x2 − x1)ω

ϕ1(ω)− ϕ2(ω)
. (4.30)For pra
ti
al appli
ations of this method, the surfa
e waves have to be re
ordedat two stations whi
h are on a great 
ir
le path with the sour
e. In 
ase threestations are available, this requirement 
an be 
ir
umvented by 
onstru
ting atriangle between the stations. In both approa
hes, the phase velo
ities derivedare representative for the region between the stations.
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152 CHAPTER 4. SURFACE WAVES

Fig. 4.9: Example for seismograms of Rayleigh waves from L. Knopo�, et al.,1966. The tra
es have been shifted.The interpretation based on the phase velo
ity from Fig. 4.9 is given in Fig.4.10. It shows short period group velo
ity observations from near earthquakesas well as phase-velo
ity measurements for the region of transition (Central Alpsto northern Foreland, Fig. 4.9) (from L. Knopo�, St. Müller and W.L. Pilant:Stru
ture of the 
rust and upper mantle in the Alps from the phase velo
ity ofRayleigh waves, Bull. Seism. So
. Am. 56, 1009-1044, 1966).

Fig. 4.10: Short period group velo
ity observations from L. Knopo�, et al.,1966.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 1534.1.5 The group velo
itySeismograms with dispersion, as shown in Fig. 4.9, often have a very slowvariation of frequen
y with time, so that one frequen
y 
an be asso
iated witha 
ertain time. If this is done for two di�erent distan
es x1 and x2 (on a great
ir
le through the sour
e), and if the times, for whi
h frequen
y ω is observedare t1(ω) and t2(ω), it follows that
U(ω) =

x2 − x1

t2(ω)− t1(ω)
. (4.31)

U(ω) is the velo
ity with whi
h this frequen
y, or a wave group with a smallfrequen
y band ∆ω around the frequen
y ω, propagates. U is, therefore, 
alledthe group velo
ity. The theory of surfa
e waves from point sour
es in se
tion4.2 gives the even simpler formula U(ω) = r/t(ω), whi
h only requires oneseismogram; r is the distan
e from the sour
e, and t(ω) is relative to the timewhen the wave started (sour
e time). In pra
ti
e, this seismogram is �lteredin a narrow band with the 
entral frequen
y ω. The arrival time t(ω) is atthe maximum of the envelope of the �ltered seismogram. The group velo
ity
an, therefore, in prin
ipal be determined without di�
ulty from observations.Another question is, how the group velo
ity is 
onne
ted with the phase velo
ityand, thus, with the parameters of the Earth, i.e., the velo
ity of P - and S -wavesand density, as a fun
tion of depth.To study this relation, we start from the des
ription of the modal seismogram(4.28) and express it using the wavenumber k = ω/c as
u(x, t) =

1

2π

∫ +∞

−∞

A(ω) exp [i (ωt− kx)] dω. (4.32)For su�
iently large x and, therefore, also large t, the phase
ϕ(ω) = ωt− kxis rapidly varying 
ompared to A(ω). This means, for example, that for 
hanging

ω ϕ(ω) has 
hanged by 2π, whereas A(ω) is pra
ti
ally un
hanged, and the ω-interval, therefore, does usually not 
ontribute to the integral (4.32). This isespe
ially true if ϕ(ω) 
an be approximated linearly. This no longer holds for
ω = ω0, for whi
h ϕ(ω) has an extremum (see Fig. 4.11), i.e., when it be
omesstationary.
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154 CHAPTER 4. SURFACE WAVES
Fig. 4.11: Extremum of ϕ(ω).This frequen
y ω0 depends on t and follows from

ϕ′(ω0) = t− x dk
dω
|ω=ω0 = 0. (4.33)The frequen
y ω0, whi
h satis�es (4.33), dominates at time t in the modal seis-mogram. Sin
e for plane surfa
e waves lo
ation and time origin are arbitrary,(4.33) 
an be written for two distan
es x1 and x2 and 
orresponding times t1(ω0)and t2(ω0), respe
tively. Subtra
tion gives the basi
 formula for the group ve-lo
ity

x2 − x1

t2(ω0)− t1(ω0)
= U(ω0) =

dω

dk
|ω=ω0 . (4.34)

ω and k are 
onne
ted via the phase velo
ity c = ω/k. Using this, the expli
itgroup velo
ity (4.26) 
an be derived dire
tly from (4.34) (see exer
ise 4.4).The arguments sket
hed here are the 
entral ideas of the method of stationaryphase. We will use it later to 
al
ulate integrals of the form (4.32) approxi-mately; here, it was only used to demonstrate that it is the group velo
ity whi
hdetermines the sequen
e and possible interferen
e in the modal seismogram.To make this statement more obvious, we 
onsider an arbitrary mode of theRayleigh waves of a liquid half-spa
e with a layer at the top. Its dispersion 
urvesfor phase and group velo
ity look like those in Fig. 4.12 (
ompare exer
ise 4.3).
Fig. 4.12: Dispersion 
urves for a liquid half-spa
e with a top layer.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 155Instead of (4.31), or the left of (4.34), we use U(ω) = r/t(ω), whi
h refers tothe sour
e, to interpret the 
urve of the group velo
ity.From the trend in Un, we 
on
lude that for the mode 
onsidered, the frequen
iesin the neighbourhood of the lower limiting frequen
y ωn arrive at an arbitrarydistan
e r from the sour
e. This assumes that su
h frequen
ies are a
tuallyex
ited at the sour
e. Their group velo
ity is α2, and their group travel timeis r/α2. For later times, whi
h are still smaller than r/α1, the frequen
y of thearriving os
illations slowly in
reases, 
orresponding to the steep trend in the
urve of Un. This wave train is 
alled the fundamental wave. At later timesgreater then r/α1 there are two frequen
ies, ω′ and ω′′, whi
h 
ontribute to theseismogram. This has the e�e
t that the higher frequen
y waves (water waves)ride on the fundamental waves. The frequen
ies of the two waves approa
h ea
hother for in
reasing time and be
ome identi
al at time r/Unmin. Here, Unminis the minimal group velo
ity. The 
orresponding wave group is the Airy phase,and it 
onstitutes the end of the modal seismogram. Exa
t 
omputations ofmodal seismograms, dis
ussed later, 
on�rm these qualitative statements. Theexample in Fig. 4.13 shows the behaviour of pressure of the fundamental mode(from C.L. Pekeris: Theory of propagation of explosive sound in shallow water,Geol. So
. Am. Memoir No. 27, 1948).

Fig. 4.13: Pressure of the fundamental mode from C.L. Pekeris, 1948. α1 =1500 m/s , α2 = 1650 m/s, ρ1 = 1 g/ cm3, ρ2 = 2 g/ cm3, d1 = 20 m.The dispersion of the fundamental wave of the example in Fig. 4.13, shownfor a sour
e distan
e of 9200 m , i.e., de
reasing group velo
ity with in
reasingfrequen
y (in
rease of frequen
y with time), is 
alled regular dispersion. For thewater wave, the group velo
ity grows with the frequen
y (frequen
y in
reaseswith in
reasing time); this is 
alled inverse dispersion. The notation regularand inverse dispersion should not be 
onfused with the expressions normal and
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156 CHAPTER 4. SURFACE WAVESanomal dispersion, whi
h express, that the group velo
ity is larger or smallerthan the phase velo
ity, respe
tively.Fig. 4.14 is a sket
h to demonstrate the basi
 propagation properties of a dis-persive wave train. It assumes that the sour
e radiates an impulse with 
onstantspe
trum in the frequen
y band ω1 ≤ ω ≤ ω2 and that the medium produ
esonly regular dispersion. The larger the propagation distan
e, the longer thewave train be
omes. At the same time, the amplitudes de
rease (not shown inFig. 4.14).

Fig. 4.14: Basi
 propagation properties of dispersive wave trains.Constant frequen
ies o

ur on straight lines through the origin (r = 0, t = 0)with a slope of dr/dt that is identi
al to the group velo
ity. Constant phases,e.g., a 
ertain maximum or an interse
tion with zero, are situated on 
urvedlines, and the frequen
y varies along these 
urves. The lo
al slope dr/dt ofthese 
urves is the phase velo
ity for the dominating frequen
y at this time.Exer
ise 4.4Derive (4.26) for the group velo
ity. How does dc/dω behave for normal andabnormal dispersion, respe
tively?
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 157Exer
ise 4.5a) What is the form of the most general phase velo
ity c(ω) for whi
h the groupvelo
ity U(ω) is 
onstant? Interpret the 
orresponding seismogram (4.28).b) What is the most general 
onne
tion between phase velo
ities c1(ω) and
c2(ω) with identi
al group velo
ities U1(ω) and U2(ω)? Use 1/U = dk/dω =
d(ω/c)/dω.4.1.6 Des
ription of surfa
e waves by 
onstru
tive inter-feren
e of body wavesUp to this point, surfa
e waves have been treated for the most part theoreti
ally,namely based on an ansatz for the solution of di�erential equations. Input inthese equations have been the 
on
entration of the wave amplitude near thesurfa
e, propagation along the surfa
e and dispersion. We have not rea
hed aphysi
al understanding how these waves 
an be 
onstru
ted. In this se
tion, wewill show for the simple example of Love waves in a half-spa
e with one layerat the top, that surfa
e waves 
an basi
ally be understood as arising from 
on-stru
tive interferen
e of body waves whi
h are re�e
ted between the interfa
es.We 
onsider SH -body waves whi
h propagate up and down in the layer withan angle of in
iden
e and re�e
tion ϕ. The re�e
tion at the surfa
e is lossfree; the re�e
tion 
oe�
ient a

ording to (3.39) equals +1. During re�e
tionat the lower boundary of the layer (z = d1), energy loss through re�e
tiono

ur, as long as ϕ < ϕ∗ = arcsin(β1/β2). In this 
ase, the amplitude of there�e
ted waves de
rease with the number of re�e
tions at the lower boundary.If on the other hand, ϕ > ϕ∗, the re�e
tion 
oe�
ient at the lower interfa
ehas the absolute value of +1 (see (3.42)). Thus, no wave in the lower half-spa
e exists transporting energy away from the interfa
e and the amplitudeof ea
h single multiple re�e
tion is preserved. The wave �eld in this layer isthen basi
ally 
ontrolled by the interferen
e of all multiple re�e
tions. For
ertain values of ϕ there will be 
onstru
tive interferen
e and for other valuesthere will be destru
tive interferen
e, respe
tively. We try to determine those
ϕ whi
h show 
onstru
tive interferen
e. To a
hieve this, we approximate themomentary wave�eld pi
ture of Fig. 4.15, lo
ally, by plane parallel wavefrontswith a 
orresponding angle of in
iden
e ϕ (see Fig. 4.16).
Fig. 4.15: Pi
ture of momentary wave �eld.
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158 CHAPTER 4. SURFACE WAVES
Fig. 4.16: Approximation of Fig. 4.15 by plane, parallel wavefronts.This approximation is better at larger distan
es from the sour
e. The limitationon plane waves means that we 
onsider free normal modes.The phases of neighbouring wavefronts 1, 2, 3 are Φ1 (arbitrary), Φ2 = Φ1 + ǫ1and Φ3 = Φ1 + ǫ1 + ǫ2, respe
tively, where ǫ1 and ǫ2 are the phase shifts of there�e
tions in A and B, respe
tively. To ensure that wave 1 and 3 are in phase,the phase di�eren
e Φ3 −Φ1 has to be equal to the phase di�eren
e due to thetravel time ωs/β1 plus a multiple of 2π. With

s = 2
d1

tanϕ
sinϕ = 2d1 cosϕ,we derive the following 
ondition for 
onstru
tive interferen
e

ǫ1 + ǫ2 =
2ωd1

β1
cosϕ+ 2nπ, n = 0, 1, 2, . . . . (4.35)The phase shifts; ǫ1 and ǫ2 are the phases of the re�e
tion 
oe�
ients for planeSH -waves. Sin
e we only 
onsider post-
riti
al ϕ > ϕ∗ = arcsin(β1/β2), itfollows for ǫ1 from (3.42) and with ω > 0

ǫ1 = −2 arctan
b

a
= −2 arctan







−ρ2β2

(

β2
2

β2
1

sin2 ϕ− 1
)

1
2

ρ1β1 cosϕ






.For the re�e
tion at B, it holds that ǫ2 = 0, sin
e a

ording to (3.39), there�e
tion 
oe�
ient at the free surfa
e is always +1.Substituting all of the above into (4.35), we get an equation for those angles ofin
iden
e ϕ, whi
h produ
e a for given ω, 
onstru
tive interferen
e

arctan







ρ2β2

(

β2
2

β2
1

sin2 ϕ− 1
)

1
2

ρ1β1 cosϕ






=
ωd1

β1
cosϕ+ nπ, n = 0, 1, 2, . . . (4.36)
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 159In this equation, we introdu
e the apparent velo
ity
c =

β1

sinϕ
(4.37)with whi
h the wavefronts propagate in a horizontal dire
tion. With cosϕ =

β1(β
−2
1 − c−2)1/2 and ρ1,2β

2
1,2 = µ1,2, we derive by reversing (4.36), an equationfor 


µ2

(

c−2 − β−2
2

)
1
2

µ1

(

β−2
1 − c−2

)
1
2

= tan
[

ωd1

(

β−2
1 − c−2

)
1
2

]

.This equation is identi
al with the dispersion equation (4.19) of Love waves.We would have found the same equation, if we had 
onsidered waves whi
hpropagate upwards (and not downwards) in Fig. 4.16. The superposition of bothgroups of waves gives, for reason of symmetry, a wave with verti
al wavefronts.Therefore, 
 is not only an apparent velo
ity, but also the phase velo
ity of thisresulting wave.We also see that the Love waves in the half-spa
e with a top layer are produ
edby 
onstru
tive interferen
e of body waves whi
h have a post-
riti
al angle ofin
iden
e. For these angles of in
iden
e, no energy is lost from the layer intothe half-spa
e. The energy remains in the layer whi
h a
ts as a perfe
t waveguide. This is generally true for normal modes of Love and Rayleigh waves inhorizontally layered media, in whi
h 
ase that normal modes exist. From this,we 
an also 
on
lude that the phase velo
ity of normal modes 
an, at most, beequal to the S -velo
ity of the half-spa
e under the layers
c ≤ βn.If it were larger, energy would be radiated into the half-spa
e in the form of anS -wave. Leaking modes also o

ur by 
onstru
tive interferen
e of body waves.In this 
ase, the angles of in
iden
e are pre-
riti
al, and the phase velo
ity islarger than βn. Thus, radiation into the lower half-spa
e o

urs and the waveguide is not perfe
t.Finally, it should be noted that the explanation of surfa
e waves via 
onstru
-tive interferen
e of body waves 
annot be applied to the fundamental mode ofRayleigh waves. The Rayleigh wave of the homogeneous half-spa
e, for example,exists without additional dis
ontinuities at the surfa
e. No simple explanationexists for the fundamental mode of Rayleigh waves.Exer
ise 4.6Determine the dispersion 
urves for a liquid layer whose boundaries are (1) bothfree, (2) both rigid, (3) one rigid and one free, respe
tively. Use the argumentsof se
tion 4.1.6 and 
ompare with the solution of the 
orresponding eigenvalueproblem. Give the group velo
ity and sket
h the pressure-depth distributions.
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160 CHAPTER 4. SURFACE WAVES4.2 Surfa
e waves from point sour
es4.2.1 Ideal wave guide for harmoni
 ex
itationExpansion representation of the displa
ement potentialsWe study the propagation of mono
hromati
 sound waves from an explosivepoint sour
e in a liquid layer with a free surfa
e situated above a rigid half-spa
e.

Fig. 4.17: Explosive point sour
e in a liquid layer with a free surfa
e atop arigid half-spa
e.This is an ideal wave guide sin
e no waves 
an penetrate the half-spa
e. Forsu
h a s
enario, the key features of surfa
e waves from point sour
es 
an bestudied without too mu
h mathemati
al e�ort.For the displa
ement potential Φ in the layer, we assume the following integralansatz, using the analogy to (3.84) and applying (3.85) for the potential of thespheri
al wave from the sour
e. In the following, the time-dependent term eiωtis omitted
Φ =

∫ ∞

0

J0(kr)

[

k

il
e−il|z−h| +A(k)e−ilz +B(k)eilz

]

dk (4.38)
l =

(

ω2

α2
− k2

)
1
2

.

J0(kr) is the Bessel fun
tion of �rst kind and zeroth order, k and l are the hori-zontal and verti
al wavenumber, respe
tively. The square root l is, as in se
tions3.6.5 and 3.7, either positive real or negative imaginary. It 
an be shown that Φis a solution of the wave equations in 
ylindri
al 
oordinates. The �rst term in(4.38) is the wave from the sour
e, the se
ond and third 
orrespond to the waves
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4.2. SURFACE WAVES FROM POINT SOURCES 161propagating in positive and negative z -dire
tion, respe
tively. A(k) and B(k)follow from the boundary 
onditions for the interfa
es
z = 0 : stress pzz = ρ

∂2Φ

∂t2
= −ρω2Φ = 0 or Φ = 0

z = d : normal displa
ement ∂Φ

∂z
= 0.This gives

A(k) +B(k) = − k
il
e−ilh

A(k)− e2ildB(k) = − k
il
eilh.The solution of this system of equation is (please 
he
k)

A(k) = −k cos [l(d− h)]
il cos(ld)

B(k) =
k sin(lh)

l cos(ld)
e−ild.Inserting them into (4.38) gives

0 ≤ z ≤ h : Φ = 2

∫ ∞

0

kJ0(kr)
sin(lz) cos [l(d− h)]

l cos(ld)
dk (4.39)

h ≤ z ≤ d : Φ = 2

∫ ∞

0

kJ0(kr)
sin(lh) cos [l(d− z)]

l cos(ld)
dk. (4.40)Before these expressions are solved with methods from 
omplex analysis, itshould be noted that an ex
hange of sour
e and re
eiver does not 
hange thevalue of Φ. Displa
ement and pressure are also the same for this 
ase. This isan example for re
ipro
ity relations, whi
h is important in the theory of elasti
waves.The poles kn of the integrand in (4.39) and (4.40) are determined via

dln = d

(

ω2

α2
− k2

n

)
1
2

= (2n− 1)
π

2
, n = 1, 2, 3 . . .This gives
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162 CHAPTER 4. SURFACE WAVES
kn =

(

ω2

α2
− (2n− 1)2π2

4d2

)
1
2

. (4.41)The in�nite number of poles are situated on the real axis between −ω/α and
+ω/α and on the imaginary axis, respe
tively. The number of poles on the realaxis depends on ω. Due to these poles, the integration path in (4.39) and (4.40)have to be spe
i�ed in more detail. We 
hoose path C1 in Fig. 4.18 whi
h
ir
umvents the poles in the �rst quadrant.

Fig. 4.18: Integration path C1 whi
h 
ir
umvents the poles in the �rst quadrant.In the following, we dis
uss only (4.39) in detail. Equation (4.40) 
an be solvedsimilarly. We use the identity
J0(kr) =

1

2

[

H
(1)
0 (kr) +H

(2)
0 (kr)

]

,where H(1)
0 (kr) and H(2)

0 (kr) are Bessel fun
tions of the third kind (=Hankelfun
tions) and zeroth order (Appendix C, equations (C.2) and (C.3), respe
-tively). Then,
Φ =

∫

C1

k
[

H
(1)
0 (kr) +H

(2)
0 (kr)

] sin(lz) cos [l(d− h)]
l cos(ld)

dk. (4.42)Using relation (C.6) from appendix C,
H

(1)
0 (x) = −H(2)

0 (−x)
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4.2. SURFACE WAVES FROM POINT SOURCES 163the �rst part of the integral in (4.42) 
an be written as
−
∫

C1

kH
(2)
0 (−kr)sin(lz) cos [l(d− h)]

l cos(ld)
dk =

∫

C2

uH
(2)
0 (ur)

sin(lz) cos [l(d− h)]
l cos(ld)

duwhere u=-k is used. The integration path C2 is point-symmetri
al to the path
C1 with respe
t to the 
oordinate 
entre, but it goes from −∞ to 0. Insertingthis in (4.42) and with 
onsistent use of k as integration variable, gives

Φ =

∫

C

kH
(2)
0 (kr)

sin(lz) cos [l(d− h)]
l cos(ld)

dk =

∫

C

I(k)dk. (4.43)

Fig. 4.19: Integration path C from −∞ to +∞ 
ir
umventing the poles on thereal axis.Integration path C, therefore, is, as indi
ated in Fig. 4.19, from −∞ to +∞and 
ir
umventing the poles on the real axis.Despite the non-uniqueness of the square root l in (4.43), I(k) is a uniquefun
tion of k. The reason for this is that I(k) is an even fun
tion of l, thus, thesign of the square root of l does not matter. For more 
ompli
ated wave guides,e.g., if the half-spa
e is not rigid, I(k) is not unique and the theory be
omesmore 
ompli
ated (introdu
tion of bran
h 
uts).Now we apply the remainder theorem on the 
losed integration path shown inFig. 4.20 whi
h 
onsists of path C and a half 
ir
le with in�nite radius. Theonly singularities in
luded are the poles of I(k).
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164 CHAPTER 4. SURFACE WAVES

Fig. 4.20: Integration path C and half 
ir
le with in�nite radius.Then
∫

C

+

∫

L

= −2πi

∞
∑

n=1

ResI(k)|k=kn .

L indi
ates the 
lo
kwise integration in the lower plane of Fig. 4.20, and ea
hterm in the sum is the residue of I(k) at the pole k = kn.If the asymptoti
 representation of the Hankel fun
tion is used, it follows forlarge arguments (Appendix C, equation (C.4))
H

(2)
0 (kr) ≃

(

2

πkr

)
1
2

e−i(kr−π
4 ). (4.44)We see that their values on the semi-
ir
le in the lower half-plane, where k hasa negative imaginary part, be
omes zero (for R going to∞). The 
orrespondingintegral also goes to zero, and we have found a representation of the potential Φas an in�nite sum of residuals. The determination of the residue of the quotient

f1(k)/f2(k) at the lo
ation kn with f2(kn) = 0 is done with the formula
Res

f1(k)

f2(k)

∣

∣

∣

∣

k=kn

=
f1(kn)

f ′
2(kn)

,if kn is a pole of �rst order. In our 
ase, kn follows from (4.41) and is eitherpositive real or negative imaginary. The 
orresponding l is
ln =

(2n− 1)π

2d
.Furthermore, it holds here, that f2(k) = cos(ld), f2(kn) = cos(lnd) = 0 and

f ′
2(kn) = d

kn

ln
sin(lnd).
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4.2. SURFACE WAVES FROM POINT SOURCES 165Finally,
cos [ln(d− h)] = cos(lnd) cos(lnh) + sin(lnd) sin(lnh) = sin(lnd) sin(lnh).Thus,

Res I(k)|k=kn
=

1

d
H

(2)
0 (knr) sin(lnz) sin(lnh).We, therefore, get the following representation of the potential Φ as an expan-sion, for whi
h eiωt has now to be added again for 
ompleteness

Φ = −2πi

d

∞
∑

n=1

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

]

H
(2)
0 (knr)e

iωt. (4.45)This expression not only holds for 0 ≤ z ≤ h but also for arbitrary depth,sin
e a

ording to (4.40) the same expansion 
an be found. From (4.45) thedispla
ement 
omponents ∂Φ/∂r and ∂Φ/∂z and the pressure p = −pzz = ρω2Φ
an be derived.For the ideal wave guide the �eld 
an be 
onstru
ted solely from the 
ontribu-tions from the poles, ea
h of whi
h represents a mode, as will be shown later.For 
ompli
ated wave guides, 
ontributions in the form of 
urve integrals in the
omplex k -plane have to be added to the pole 
ontributions. These additional
ontributions 
orrespond mostly to body waves.Modes and their propertiesEa
h term in (4.45) represents a mode. This is only a de�nition, but it �ts wellinto the mode 
on
ept introdu
ed in the previous se
tions for free surfa
e waves.If we 
onsider, for example, the terms in (4.45) for large distan
es r, we 
an use(4.44) (|knr| > 10)

Φ =
−2
√

2πiei π
4

d

∞
∑

n=1

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

] 1

(knr)
1
2

ei(ωt−knr).(4.46)The most important terms in (4.46) are those with positive kn. Their num-ber is �nite and in
reases with ω. They 
orrespond to waves with 
ylindri
alwavefronts whi
h propagate in +r-dire
tion with the frequen
y dependent phasevelo
ity
cn(ω) =

ω

kn
= α

[

1− (2n− 1)2π2α2

4d2ω2

]− 1
2

. (4.47)
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166 CHAPTER 4. SURFACE WAVESIf the eigenvalue problem for free surfa
e waves in the same wave guide is solved(
ompare exer
ise 4.6), it follows for the n-th free normal mode
Φn = A sin

[

(2n− 1)
πz

2d

]

e
iω
(

t− x
cn(ω)

)

, (4.48)with cn(ω) from (4.47). Furthermore, the terms in (4.46) and (4.48) agree, thatdes
ribe the z-dependen
e agree. It, therefore, makes sense to name the singleterms in (4.45) and (4.46) the n-th for
ed normal mode, if kn > 0. The di�eren
ewith respe
t to (4.48) is in the amplitude redu
tion proportional to r−1/2 and inthe addition of a term that depends on the sour
e depth h. This term is namedthe ex
itation fun
tion of the mode. If the the sour
e is lo
ated at a nodal planeof the free mode (4.48), the ex
itation fun
tion is zero, and the mode is notex
ited. Maximum ex
itation o

urs, if the sour
e is at a depth where the freemode has its maximum.From the 
omparison of the free and the for
ed normal modes, the importan
e ofthe study of free modes be
omes obvious. It des
ribes the dispersive propertiesand the amplitude-depth distributions (eigen fun
tions) of the for
ed normalmodes and, therefore, their most important property. This also holds for more
ompli
ated wave guides.The terms in (4.46) with negative imaginary kn are not waves but representos
illations with amplitudes that de
rease exponentially in r -dire
tion. Theyonly 
ontribute to the wave �eld near the sour
e, where (4.45) has to be usedfor 
ompleteness. The far-�eld is dominated by normal modes.The number of nodal planes of the n-th mode is n, and their spa
ing is 2d/(2n−1)
(n = 2, 3 . . .). The potential Φ, horizontal displa
ement ∂Φ/∂r and pressure phave a node for z = 0 and a maximum for z = d, respe
tively (see Fig. 4.21).The opposite is true for the verti
al displa
ement ∂Φ/∂z.

Fig. 4.21: Modes and nodal planes, n = 1, 2, 3, 4.The phase velo
ity (4.47) of the n-th mode 
an be written as
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4.2. SURFACE WAVES FROM POINT SOURCES 167
cn(ω) = α

[

1−
(ωn

ω

)2
]− 1

2 (4.49)with the lower frequen
y limit
ωn =

(2n− 1)πα

2d
.In�nitely high phase velo
ities 
an o

ur. A

ording to (4.26), the group velo
ityis

Un(ω) = α

[

1−
(ωn

ω

)2
]

1
2

. (4.50)

Fig. 4.22: Group and phase velo
ities.An important property of the ideal wave guide with a rigid and a free interfa
eis that the angular frequen
ies ω < ω1 = πα/2d (or the frequen
ies ν < α/4dand waves length Λ > 4d, respe
tively) 
annnot propagate undamped. This nolonger holds for the ideal wave guide with two rigid walls (
ompare exer
ise 4.6).In this 
ase, an additional fundamental mode exists, in addition to the modesdis
ussed before, but with di�erent limiting frequen
ies. That mode 
an o

urat all frequen
ies, and its phase velo
ity is frequen
y independent and equal to
α.4.2.2 The modal seismogram of the ideal wave guideIn this se
tion, we will 
ompute the 
orresponding modal seismogram for anarbitrary summand in (4.45), exa
tly. In the next se
tion, we will use themethod of stationary phase to do this.
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168 CHAPTER 4. SURFACE WAVESThe potential (4.45) 
orresponds to time harmoni
 ex
itation, i.e., for the po-tential of the explosion point sour
e
Φ0 =

1

R
F

(

t− R

α

)

, (4.51)it holds that F (t) = eiωt. From this mode of ex
itation, we now will move tothe ex
itation via a delta fun
tion, F (t) = δ(t). Multiplying (4.45), without thefa
tor eiωt, with the spe
trum of the delta fun
tion F (ω) = 1, gives the Fouriertransform of the displa
ement potential. Finally, the result is transformed ba
kinto the time domain. These modal seismograms 
an then be 
onvolved withrealisti
 ex
itation fun
tions F (t), but the basi
 features 
an already be under-stood for F (t) = δ(t).For this, we 
onsider the n-th mode in the expansion (4.45). Its Fourier trans-form for ex
itation via a delta fun
tion is, ex
ept for geometry fa
tors, equalto Hn(ω) = iH
(2)
0 (knr) with kn = (ω2 − ω2

n)1/2/α. We now use the Lapla
etransform (
ompare se
tion A.1.7)
hn(s) = Hn(−is) = iH

(2)
0

[

−i r
α

(

s2 + ω2
n

)
1
2

]and the relation
H

(2)
0 (−ix) =

2i

π
K0(x)between the Hankel fun
tion and the modi�ed Bessel fun
tionK0(x) (see se
tion3.8). This gives then

hn(s) = − 2

π
K0

[ r

α

(

s2 + ω2
n

)
1
2

]

.The original fun
tion 
an then be found in tables of the Lapla
e transform. Itis zero for t < r
α , and for t > r

α it holds that
Hn(t) = − 2

π
·
cos

[

ωn

(

t2 − r2

α2

)
1
2

]

(

t2 − r2

α2

)
1
2

.Thus the n-th mode of the potential 
an be written as
Φn =











0 for t < r
α

4
d sin

[

(2n− 1)πh
2d

]

sin
[

(2n− 1)πz
2d

]

cos

[

ωn

(

t2− r2

α2

) 1
2

]

(

t2− r2

α2

) 1
2

for t > r
α .(4.52)
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4.2. SURFACE WAVES FROM POINT SOURCES 169That is a normal mode for all n sin
e the delta fun
tion 
ontains arbitrarily highfrequen
ies, ensuring that the lower limiting frequen
y of ea
h normal mode 
anbe ex
eeded.For simpli
ity, we limit the dis
ussion in the following to the potential Φn.All 
on
lusions also hold for displa
ement and pressure. The seismogram inFig. 4.23 starts at time t = r/α with a singularity that is integrable. Then theamplitudes de
rease with 1/t, for times large 
ompared to r/α, while os
illating.The most important feature of Φn is its frequen
y modulation or dispersion. Thefrequen
ies de
rease from large values to the limiting frequen
y ωn of the mode
onsidered. The dispersion in the example shown is, therefore, inverse.

Fig. 4.23: Seismogram showing frequen
y modulation (dispersion).What we have learned about the group velo
ity in se
tion 4.1.5 
an be 
on�rmedwith (4.52). We �rst ask whi
h frequen
ies ω dominate at a 
ertain time t0 inthe modal seismogram. Outside the singularity, the dis
ussion 
an be limitedto the 
osine fun
tion in (4.52). We plan to linearise f(t) near t = t0 to be ableto approximate the fun
tion cos [f(t)] in the neighbourhood of t = t0 by themono
hromati
 os
illation cos [ϕ0 + ω(t0)t]. Here ϕ0 is a phase that is indepen-dent of t, and ω(t0) is the instantaneous angular frequen
y required. This leadsto
cos [f(t)] ≈ cos [f(t0) + f ′(t0)(t− t0)] .From this, it follows that ω(t0) = f ′(t0). If applied to (4.52), it follows

ω(t0) = ωnt0

(

t20 −
r2

α2

)− 1
2

.
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170 CHAPTER 4. SURFACE WAVESFrom this, we derive the quotient r/t0, i.e., the velo
ity with whi
h a wave groupof frequen
y ω(t0) propagates from the sour
e to the re
eiver, and we get (with
ω0 = ω(t0))

r

t0
= α

[

1−
(

ωn

ω0

)2
]

1
2

= Un(ω0)with Un(ω0) from (4.50), i.e., exa
tly the group velo
ity of the n-th mode. We,therefore, 
on�rm the statement from se
tion 4.1.5: that ea
h frequen
y that isradiated from the sour
e propagates to the re
eiver with the group velo
ity.The 
omplete seismogram in the wave guide is produ
ed by 
onvolving themodal seismogram (4.52) with a realisti
 ex
itation fun
tion F (t), the spe
trumof whi
h has an upper limiting frequen
y, and sum. Only those normal modes(4.52) 
ontribute signi�
antly to the seismogram whi
h have lower limiting fre-quen
ies that are smaller than the upper limiting frequen
y of F (t). Often theresponse of hydro-phones and seismometers, together with the dissipative me
h-anisms in the wave guide, redu
e the number of modes. In pra
tise usually onlya few modes 
ontribute to the observed surfa
e waves.4.2.3 Computation of modal seismograms with the methodof stationary phaseThe 
omputation of modal seismograms is only possible exa
tly for ideal waveguides (with rigid and/or free boundaries, respe
tively). In the following, anapproximation is dis
ussed and demonstrated, whi
h gives the modal seismo-gram for the far-�eld form of a normal mode of the type of (4.46). This is themethod of stationary phase mentioned before.Multiplying a normal mode in (4.46) with the spe
trum F (ω) of the ex
itationfun
tion F (t) in (4.51), then transforming ba
k into the time domain, givesthe modal seismogram as a Fourier integral. To avoid integration over negativefrequen
ies, we use the fa
t that real fun
tions f(t) 
annot only be representedas
f(t) =

1

2π

∫ +∞

−∞

f(ω)eiωtdωbut also as
f(t) =

1

π
Re

∫ ∞

0

f(ω)eiωtdω.This gives the modal seismogram as
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4.2. SURFACE WAVES FROM POINT SOURCES 171
Φn = Re

{

−2
√

2iei π
4

√
πd

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

] 1√
r

∫ ∞

0

F (ω)√
kn

ei(ωt−knr)dω

}

.(4.53)The approximate 
omputation of the integral over ω is based, as in se
tion 4.1.5,on the fa
t that at times t to be 
onsidered, the phase
ϕ(ω) = ωt− knr (4.54)is usually rapidly varying 
ompared to fun
tion F (ω). Su
h frequen
ies 
on-tribute little to the integral in (4.53). This is di�erent for frequen
ies withstationary phase values. Su
h a frequen
y ω0 follows from the equation

ϕ′(ω0) = t− r dkn

dω

∣

∣

∣

∣

ω=ω0

= 0and depends on t. This means that the frequen
y ω0, for whi
h the groupvelo
ity is
Un(ω0) =

dω

dkn

∣

∣

∣

∣

ω=ω0

=
r

t
,dominates the modal seismogram at time t .From this follows the prin
iple of determining the group velo
ity from an ob-served modal seismogram. For a given time t, relative to the sour
e time, themoment frequen
ies and the 
orresponding group velo
ities, using t and sour
edistan
e r, are determined. The sour
e time and epi
entre of the earthquake,therefore, have to be known. This gives a pie
e of the group velo
ity dispersion
urves. One has now to verify this pie
e of the 
urve via forward modelling.The asso
iation of a 
ertain frequen
y to a 
ertain time, ne
essary here, is inprin
iple not unique, but the error asso
iated with it 
an be estimated. Withthis method, applied to surfa
e waves of earthquakes, several important resultson the stru
ture of the Earth were found, for example, the average 
rustal thi
k-ness in di�erent parts of the Earth is shown in the di�erent bran
hes in Fig.4.10. A disadvantage of this method is that the result is only an average overthe whole region between sour
e and re
eiver. Therefore, today several stationsare used in the interpretation of the phase velo
ity (
ompare se
tion 4.1.4).The 
omputation of the modal seismogram requires then the following additionalsteps: for given time t, we expand the phase (4.54) at the frequen
y ω0, whi
his determined by

Un(ω0) =
r

t
(4.55)
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172 CHAPTER 4. SURFACE WAVES
ϕ(ω) = ϕ(ω0) + 1

2ϕ
′′(ω0)(ω − ω0)

2

ϕ′′(ω0) = r
U2

n(ω0)
dUn

dω (ω0)







. (4.56)An important requirement is that ϕ′′(ω0) 6= 0. Then,
∫ ∞

0

F (ω)√
kn

eiϕ(ω)dω ≈
∫ ω0+∆ω

ω0−∆ω

F (ω)√
kn

exp

{

i

[

ϕ(ω0) +
1

2
ϕ′′(ω0)(ω − ω0)

2

]}

dω

≈ F (ω0)e
iϕ(ω0)

√

kn(ω0)

∫ ω0+∆ω

ω0−∆ω

exp

{

i

2
ϕ′′(ω0)(ω − ω0)

2

}

dω.Here, we limited our dis
ussion to the neighbourhood of the frequen
y ω0, where
ϕ(ω) is stationary. The other frequen
ies do not 
ontribute signi�
antly. With
x = (ω − ω0)

(

1
2 |ϕ′′(ω0)|

)1/2, we get
∫ ω0+∆ω

ω0−∆ω

exp

{

i

2
ϕ′′(ω0)(ω − ω0)

2

}

dω =

(

2

|ϕ′′(ω0)|

)
1
2
∫ +∆ω

(

|ϕ′′(ω0|
2

)1/2

−∆ω

(

|ϕ′′(ω0)|
2

)1/2 e
±ix2

dx

≈
(

2

|ϕ′′(ω0)|

)
1
2
∫ +∞

−∞

e±ix2

dx

=

(

2π

|ϕ′′(ω0)|

)
1
2

e±i π
4

(with ∫ +∞

−∞ cosx2dx =
∫ +∞

−∞ sinx2dx =
(

π
2

)
1
2

)

.The positive and the negative sign in the exponential term hold, if ϕ′′(ω0) >
0 and < 0, respe
tively. The extension of the limits of the integration to
x = ±∞ is possible, sin
e they are proportional to √r and r is very large.Furthermore, signi�
ant 
ontributions to the integral 
ome only from relativelysmall values of x (
a. |x| ≤ 5). Putting all this together, the modal seismogramfor the ideal wave guide in the approximation given by the method of stationaryphase (with ϕ′′(ω0) > 0) 
an be written as

Φn = Re

{

−2
√

2iei π
4

√
πd

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

]

· F (ω0)e
iϕ(ω0)

[

2π

rkn(ω0) |ϕ′′(ω0)|

]
1
2

ei π
4

}

. (4.57)
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4.2. SURFACE WAVES FROM POINT SOURCES 173Next, one uses
ϕ(ω0) = ω0t− kn(ω0)r,

kn(ω0) =
ω0

α

[

1−
(

ωn

ω0

)2
]

1
2

,

r

t
= Un(ω0) = α

[

1−
(

ωn

ω0

)2
]

1
2and ϕ′′(ω0) from (4.56) and deletes ω0 = ω0(t) = ωnt

(

t2 − r2/α2
)−1/2 from(4.57). After some 
al
ulations, and for the assumption F (ω0) = 1, whi
h 
or-responds to the ex
itation fun
tion F (t) = δ(t), the following modal seismogram
an be derived (please 
on�rm)

Φn =











0 for t < r
α

4
d sin

[

(2n− 1)πh
2d

]

sin
[

(2n− 1)πz
2d

]

cos

[

ωn

(

t2− r2

α2

) 1
2

]

(

t2− r2

α2

) 1
2

for t > r
α .(4.58)We, therefore, get the stringent results of (4.52). This is surprising, 
onsideringthe approximations used. From this we 
an draw the general 
on
lusion thatthe method of stationary phase is a good approximation for normal modes evenfor more 
ompli
ated wave guides.For frequen
ies ω0 with ϕ′′(ω0) = 0, i.e., with dUn

dω (ω0) = 0 and with stationaryvalues of the group velo
ity (whi
h do not o

ur for ideal wave guides), theexpansion in (4.56) has to be extended by one additional term. The treatmentof the 
al
ulations following is, therefore, slightly di�erent (see, for example,Appendix E). It leads to the behaviour of Airy phases and shows that theyare usually the dominating parts of the modal seismograms (
ompare also Fig.4.13).4.2.4 Ray representation of the �eld in an ideal wave guideIn the last two se
tions we have learned that the wave�eld in an ideal wave guideis 
omposed of for
ed normal modes. Furthermore, we found in se
tion 4.1.6,that free normal modes are 
omposed of multiple re�e
ted plane body waves inthe wave guide. This raises the question, 
an the �eld of a point sour
e in anideal wave guide also be represented by the superposition of multiple re�e
tions?In other words, in this 
ase is there also a ray representation of the wave �eld?In addition, it is interesting to see if mode and ray representations of the wave�eld are then also equivalent.
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174 CHAPTER 4. SURFACE WAVESWe �rst examine the re�e
tion of the spheri
al wave
Φ0 =

1

R0
F

(

t− R0

α

) (4.59)at the interfa
e of the wave guide in the neighbourhood of the point sour
e, e.g.,the free surfa
e.
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h
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0
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1

0

Fig. 4.24: Re�e
tion of a spheri
al wave at the interfa
e of the wave guide inthe neighbourhood of the point sour
e.The potential of the re�e
tion is
Φ1 =

−1

R1
F

(

t− R1

α

)

. (4.60)
R1 is the distan
e between P (r, z) and the image sour
e Q1. As long as there�e
tion from the lower (rigid) interfa
e of the wave guide has not rea
hedthe surfa
e, the potential in the neighbourhood of the surfa
e is Φ0 + Φ1 and,therefore, zero on the surfa
e. Φ0 + Φ1 satisfy, therefore, for su
h times, the
ondition of no stress at the surfa
e z = 0 (pzz = ρ∂2(Φ0 + Φ1)/∂t

2).Similarly, if we 
onsider the re�e
tion of the spheri
al wave from Q0 at theinterfa
e z = d, the potential of the wave re�e
ted there 
an be written as
Φ2 =

1

R2
F

(

t− R2

α

)

, (4.61)whereR2 now has to be determined for a new image sour
e with the z -
oordinate
d + (d − h) = 2d − h. That Φ0 + Φ2 satis�es the boundary 
onditions ∂(Φ0 +
Φ2)/∂z = 0 for z = d (zero normal displa
ement), 
an be seen easily, sin
e forpoints in that interfa
e

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



4.2. SURFACE WAVES FROM POINT SOURCES 175
R0 = R2

∂R0

∂z
=

z − h
R0

∣

∣

∣

∣

z=d

=
d− h
R0

∂R2

∂z
= −2d− h− z

R2

∣

∣

∣

∣

z=d

= −d− h
R2

= −∂R0

∂z
.With the two previously 
onsidered re�e
tions of the spheri
al wave originatingfrom Q0 at the interfa
es of the wave guide, boundary 
onditions 
an only besatis�ed for 
ertain times, e.g., only as long as the re�e
tions Φ1 and Φ2 haverea
hed the opposite interfa
e, respe
tively. Sin
e they are of the same form as

Φ0, higher order re�e
tions 
an be 
onstru
ted in the same way. Ea
h re�e
tionand multiple re�e
tion seems to 
ome from an image sour
e, whi
h was 
reatedby the appli
ation of multiple mirror images of Q0 at the interfa
es (Fig. 4.25).The sign of the 
orresponding potential is negative if the number of re�e
tionsat the surfa
e is odd, otherwise it is positive. Ea
h image sour
e 
orresponds toa ray from the sour
e to the re
eiver whi
h has undergone a 
ertain number ofre�e
tions.

Fig. 4.25: Image sour
es for multiple re�e
tions in the wave guide.
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176 CHAPTER 4. SURFACE WAVESThe ray 
on
ept 
an, without di�
ulties, be generalised for solid media (in
lud-ing S-waves), but this is not true for the 
on
ept of the image sour
e. This iswhy, in general, and also in the 
ase presented here, we speak of a ray represen-tation of the wave �eld. It 
an be expressed as
Φ =

∞
∑

j=0

(−1)j

[

− 1

Rj1
F

(

t− Rj1

α

)

+
1

Rj2
F

(

t− Rj2

α

)

+
1

Rj3
F

(

t− Rj3

α

)

− 1

Rj4
F

(

t− Rj4

α

)] (4.62)with
R2

j1 = (2jd+ h+ z)
2

+ r2

R2
j2 = (2jd− h+ z)2 + r2

R2
j3 = (2(j + 1)d− h− z)2 + r2

R2
j4 = (2(j + 1)d+ h− z)2 + r2.Only those terms in (4.62) are non-zero, for whi
h the argument is positive, andfor whi
h F (t) at t = 0 is not zero. The number of su
h terms is �nite andin
reases with time.For the ideal wave guide, the determination of the 
ontribution of a ray is simple,sin
e it follows the same time law as the exiting spheri
al wave. For other waveguides, methods like those presented in se
tion 3.8 have to be used. The resultingnumeri
al e�ort is then signi�
antly greater and seems only justi�ed if not toomany rays have to be summed up, but that is ne
essary for large horizontaldistan
es from the sour
e where the paths of many rays be
ome very similar.In this 
ase, the representation of the wave �eld as a sum of only a few normalmodes is signi�
antly more e�
ient. The ray representation is most suited forsu
h distan
es from the sour
e where the typi
al normal mode properties of thewave �eld have not yet developed.Finally, we will show that (4.62) for F (t) = eiωt and (4.39) and (4.40), respe
-tively, are two di�erent representations of the same wave �eld. We limit ourdis
ussion �rst to the 
ase h ≤ z ≤ d. If F (t) = eiωt is inserted into (4.62),and the Sommerfeld integral (3.85) for a spheri
al wave is used for ea
h term,it follows (the fa
tor eiωt is again omitted)

Φ =

∫ ∞

0

J0(kr)
k

il

∞
∑

j=0

(−1)j [− exp (−il |2jd+ h+ z|)
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4.2. SURFACE WAVES FROM POINT SOURCES 177
+ exp (−il |2jd− h+ z|)
+ exp (−il |2(j + 1)d− h− z|)
− exp (−il |2(j + 1)d+ h− z|)] dk.If z ≥ h, the 
ontributions are equal to the arguments everywhere. Then

exp(−i2ljd) 
an be separated
Φ =

∫ ∞

0

J0(kr)
k

il





∞
∑

j=0

(

−e−2ild
)j



 [− exp (−il (h+ z))

+ exp (−il (−h+ z))

+ exp (−il (2d− h− z))
− exp (il (2d+ h− z))] dk.The expansion in the �rst square bra
ket has a sum of 1/(1+ e−2ild). From these
ond square bra
ket, e−ild 
an be extra
ted giving

Φ =

∫ ∞

0

J0(kr)
k

2il cos(ld)
[− exp (il (d− h− z))

+ exp (il (d+ h− z))
+ exp (−il (d− h− z))
− exp (−il (d+ h− z))] dk.The remaining square bra
ket is equal to

−2i sin [l (d− h− z)] + 2i sin [l (d+ h− z)] = 4i cos [l (d− z)] sin (lh) .Thus,
Φ = 2

∫ ∞

0

J0(kr)
k

l

cos [l(d− z)] sin(lh)

cos(ld)
dk, (4.63)whi
h agrees with (4.40).If sour
e and re
eiver are ex
hanged in (4.62), the potential of a single ray isun
hanged sin
e it depends only on the path travelled. Therefore, ex
hangingz with h in (4.63) gives the potential for 0 ≤ z ≤ h whi
h leads to (4.39).Thus, the proof of the identity of (4.62) (for F (t) = eiωt) with (4.39) and (4.40),respe
tively, is 
omplete.Finally, we would like to reiterate (
ompare se
tion 4.2.1) that a representationof the wave �eld by normal modes alone is only possible for ideal wave guides
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178 CHAPTER 4. SURFACE WAVESwhi
h have upper and lower boundaries that are 
ompletely re�e
ting for all an-gles of in
iden
e. In other media, additional 
ontributions (body waves, leakymodes) o

ur whi
h are not due to the poles in the 
omplex plane like the nor-mal modes.Exer
ise 4.7Study the polarisation of the displa
ement ve
tor of the se
ond free normalmode of the ideal wave guide (n=2 in (4.48)) as a fun
tion of depth.Exer
ise 4.8An explosive point sour
e is lo
ated at depth h below the free surfa
e of a liquidhalf-spa
e. The displa
ement potential Φ is the sum of the potentials (4.59) ofthe dire
t wave and (4.60) for the re�e
tion. Give an approximation for Φ whi
hholds under the following 
onditions (dipole approximation) :a) The dominant period of the ex
itation fun
tion F (t) is mu
h larger than thetravel time h/α from the sour
e to the surfa
e.b) The distan
e r to the re
eiver is mu
h larger than h.Introdu
e spheri
al 
oordinates R and ϑ relative to the point r = 0, and z = 0(
ompare Fig. 4.24).What is the result, if the surfa
e is not free but rigid?
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Appendix ALapla
e transform and deltafun
tion
A.1 Introdu
tion to the Lapla
e transformA.1.1 LiteratureSpiegel, M.R. : Lapla
e Transformation, S
haum, New York, 1977Riley, K.F., Hobson, M.P. and Ben
e, J.C. : Mathemati
al methods forphysi
s and engineering, A 
omprehensive guide, Cambridge UniversityPress, Cambridge, 2nd edition, 2002A.1.2 De�nition of the Lapla
e transformThe Lapla
e transform asso
iates a fun
tion f(s) with the fun
tion F (t), or ittransforms a fun
tion F (t) into the fun
tion f(s).
f(s) =

∫ ∞

0

e−stF (t)dt = L {F (t)}

F (t) = original fun
tion
f(s) = image fun
tion (Lapla
e− transform, abbreviated L− transform)Symboli
 notation: f(s) •−◦ F (t) (•−◦ = symbol of asso
iation)

t = real variable (of time)
s = σ + iω 
omplex variable179
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180 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.1.3 Assumptions on F(t)1. F(t) is usually a real fun
tion2. F (t) ≡ 0 for t < 0 (satis�ed for many physi
al parameters - 
ausality)3. F (t) should be integrable in the interval [0, T ], and for t > T it shouldhold that
|F (t)| < eγt with real γ.These are su�
ient 
onditions for the existen
e of the L-transform f(s) of F (t)for 
omplex s with Re s > γ (
onvergen
e half-plane). All limited fun
tionsas, e.g., e−αt (α > 0), sinβt et
. have an L-transform but also non-limitedfun
tions as t−1/2, tn and eαt (n, α > 0). Note assumption 2. Many fun
tionsin physi
s also have an L-transform. The fun
tions t−1 and et2 do not have anL-transform.A.1.4 Examplesa)

F (t) = H(t) =

{

0 for t < 0
1 for t ≥ 0

Heaviside step fun
tion (unit step)
f(s) =

∫ ∞

0

e−stdt = −1

s
e−st

∣

∣

∞

0
=

1

s
for Re s > 0 (
onverg. half-plane)

H(t) ◦−• 1

sb)
F (t) =

{

0 for t < 0
eδt for t ≥ 0

f(s) =

∫ ∞

0

e−(s−δ)dt = − 1

s− δ e
−(s−δ)t

∣

∣

∣

∞

0
=

1

s− δ , Re s > δ

eδt ·H(t) ◦−• 1

s− δFor δ = 0 transition to the L-transform of H(t)
)
sin at

a
·H(t) ◦−• 1

s2 + a2
.Tables of many more 
orresponden
es 
an be found in the literature given.
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A.1. INTRODUCTION TO THE LAPLACE TRANSFORM 181A.1.5 Properties of the Lapla
e transformSimilarity theorem a > 0

F (at) ◦−•
∫ ∞

0

e−stF (at)dt =

∫ ∞

0

e−
s
a atF (at)

d(at)

a
=

1

a

∫ ∞

0

e−
s
a τF (τ)dτTherefore,

F (at) ◦−• 1

a
f
( s

a

)

. (A.1)Thus, only the L-transform of F (t) has to be known.Example: A

ording to se
tion A.1.4
et ·H(t) ◦−• 1

s− 1
.With the similarity theorem, it follows that

eat ·H(t) ◦−• 1

a

1
s
a − 1

=
1

s− a ,i.e., the result of the dire
t 
omputation in se
tion A.1.4.Displa
ement theorem
Fig. A.1: Displa
ement theorem.

F (t− ϑ) ◦−•
∫ ∞

0

e−stF (t− ϑ)dt =

∫ ∞

0

e−s(τ+ϑ)F (τ)dτ = e−ϑsf(s)

F (t− ϑ) ◦−• e−ϑsf(s) (A.2)Damping theorem (α arbitrary 
omplex)
e−αtF (t) ◦−•

∫ ∞

0

e−(s+α)tF (t)dt = f(s+ α)

e−αtF (t) ◦−• f(s+ α) (A.3)
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182 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONDi�erentiation theorem
F ′(t) ◦−•

∫ ∞

0

e−stF ′(t)dt = e−stF (t)|∞0 + s

∫ ∞

0

e−stF (t)dtThe �rst term is zero at its upper limit due to the assumption 3 from 
hapterA.1.3. Thus,
F ′(t) ◦−• sf(s)− F (+0)

F (+0) = lim
t→ 0
t > 0

F(t) is the limit from the right side. (A.4)Generalisation:
F ′(t) ◦−• sf(s)− F (+0)
F ′′(t) ◦−• s2f(s)− sF (+0)− F ′(+0)...
F (n)(t) ◦−• snf(s)− sn−1F (+0)− sn−2F ′(+0)

− . . .− sF (n−2)(+0)− F (n−1)(+0)



























(A.5)
Integration theorem

G(t) =

∫ t

0

F (τ)dτ ◦−• 1

s
f(s) (A.6)From this, it follows that

G′(t) = F (t) ◦−• f(s)−G(+0) = f(s).Convolution theorem
∫ t

0

F1(τ)F2(t− τ)dτ ◦−• f1(s)f2(s) (A.7)The integral is 
alled 
onvolution of F1 with F2, symboli
 notation F1 ∗ F2.Furthermore, it holds that
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A.1. INTRODUCTION TO THE LAPLACE TRANSFORM 183
∫ t

0

F1(τ)F2(t− τ)dτ =

∫ t

0

F1(t− τ)F2(τ)dτor
F1 ∗ F2 = F2 ∗ F1,i.e., the 
onvolution is 
ommutative.Further elementary properties of the L-transform are that it is �rstly homoge-neous and linear, i.e., it holds that

a1F1(t) + a2F2(t) ◦−• a1f1(s) + a2f2(s),and se
ondly, that from F (t) ≡ 0 it follows that f(s) ≡ 0 and vi
e versa.An important property, whi
h follows from the de�nition of the L-transform, is
lim

Re s→+∞
f(s) = 0. (A.8)Only then is a fun
tion f(s) an L-transform and 
an be transformed ba
k (seenext 
hapter).A.1.6 Ba
k-transform

F (t) = L
−1 {f(s)} =

1

2πi

∫ c+i∞

c−i∞

etsf(s)ds (A.9)
Fig. A.2: Convergen
e half-plane of Lapla
e inverse-transform.The integration path is parallel to the imaginary axis and has to be situatedin the 
onvergen
e half-plane of f(s), otherwise, 
 is arbitrary. To the right ofthe integration path, f(s) 
annot have singularities, but it 
an have them tothe left. The integration path 
an be deformed in a

ordan
e with Cau
hy'sintegral law and the remainder theorem.
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184 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.1.7 Relation with the Fourier transformA 
ommon representation of the Fourier transform F (ω) of a fun
tion F (t) is
F (ω) =

∫ +∞

−∞

F (t)e−iωtdt. (A.10)
F (ω) is also 
alled the 
omplex spe
trum of F (t); ω is the angular frequen
y.The inverse-transform is given by

F (t) =
1

2π

∫ +∞

−∞

F (ω)eiωtdω. (A.11)This equation 
an be interpreted as the superposition of harmoni
 os
illations.This is the reason why the Fourier transform is often used in physi
s. If thebehaviour of a system, whi
h 
an be des
ribed by linear di�erential equations,is known for harmoni
 ex
itation, its behaviour for impulsive ex
itation 
an bedetermined via (A.11). To do this, the ex
itation has to be broken into itsspe
tral 
omponents a

ording to (A.10). Then, the problem is solved for ea
hspe
tral 
omponent, and, �nally, all spe
tral solutions are superimposed via(A.11). Su
h an approa
h is used in se
tion 3.6.3 in the study of the re�e
tionof impulsive waves at an interfa
e.It is often less physi
al, but often more elegant and simple, to use the L-transform. The 
onne
tion between F (ω) and f(s) is very 
lose for fun
tions
F (t) that are zero for t < 0 (
ausality)

F (ω) =

∫ ∞

0

e−iωtF (t)dt = f(iω),i.e., the Fourier transform is also the L-transform on the imaginary axis of the
omplex s-plane.In an alternative representation of the Fourier transform, the fa
tor 1
2π is notin (A.11) but in (A.10). Then the Fourier transform F (ω) is equal to f(iω)/2π.A.2 Appli
ation of the Lapla
e transformA.2.1 Linear ordinary di�erential equations with 
onstant
oe�
ientsDi�erential equation

L(Y ) = Y (n) + an−1Y
(n−1) + an−2Y

(n−2) + . . .+ a1Y
′ + a0Y = F (t)

F (t) ≡ 0 for t < 0 (A.12)
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 185Initial 
onditions
Y (+0) = Y0, Y

′(+0) = Y ′
0 , . . . , Y

(n−1)(+0) = Y
(n−1)
0L-transform of (A.12) with Y (t) ◦−• y(s), F (t) ◦−• f(s) and (A.5)

(

sn + an−1s
n−1 + . . .+ a1s+ a0

)

y(s) = f(s)

+
(

sn−1 + an−1s
n−2 + . . .+ a2s+ a1

)

Y0

+
(

sn−2 + an−1s
n−3 + . . .+ a3s+ a2

)

Y ′
0

+ . . .

+ (s+ an−1)Y
(n−2)
0

+Y
(n−1)
0 .The polynomials 
an be written as

pi(s) =

n−i
∑

k=0

ak+is
k, i = 0, 1, 2, . . . , n, an = 1.Therefore,

y(s) =
f(s)

p0(s)
+

n
∑

l=1

pl(s)

p0(s)
Y

(l−1)
0 . (A.13)The right side 
ontains the L-transform of the known fun
tion F (t), some poly-nomials, the 
oe�
ients of whi
h are known and the known initial values of thefun
tion Y (t) to be solved for. If it is possible to determine the inverse transformon the right side of (A.13), the problem is solved. In the 
ase presented here,this is not di�
ult. Before this is done, we dis
uss the 
omparison with thestandard method to solve linear ordinary di�erential equations with 
onstant
oe�
ients.First, in the standard method the homogeneous di�erential equation is solvedgenerally (i.e., it 
ontains n undetermined 
oe�
ients); then a spe
ial solutionof the inhomogeneous di�erential equation is determined, e.g., by guessing orby variation of the 
onstants. This is then the general solution of the inho-mogeneous di�erential equation from whi
h the n 
onstants 
an be determinedvia the initial 
onditions. It is not ne
essary to �nd a general solution if theL-transform is used. Here, the solution that 
orresponds to the initial 
ondi-tions is determined dire
tly. That is the great advantage of this method. Thisadvantage is even greater for the solution of partial di�erential equations withboundary and initial 
onditions and is why the L-transform is widely used. Thisis espe
ially true in ele
troni
s. One 
onsequen
e of this is that extensive tableswith inverse transforms for many L-transforms exist.The inverse-transform of (A.13) 
an be split into two steps (but that is not ane
essity).
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186 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION1. f(s) 6= 0, Y0 = Y ′
0 = . . . = Y

(n−1)
0 = 0. This 
orresponds to the solutionof the inhomogeneous di�erential equation with zero initial values (Seese
tion A.2.1.1).2. f(s) = 0, initial value 6= 0. This 
orresponds to the solution of thehomogeneous di�erential equation with non-zero initial 
onditions (Seese
tion A.2.1.2).The sum of solution 1 and 2 is the inverse transform of (A.13) to be determined(See se
tion A.2.1.3).A.2.1.1 Inhomogeneous di�erential equations with zero initial valuesThis 
ase is also of pra
ti
al interest sin
e in many 
ases in whi
h a system iszero up to time t = 0 (i.e., Y (t) ≡ 0 for t < 0), the initial values are zero. Inthis 
ase,

y(s) =
f(s)

p0(s)
.Sin
e 1/p0(s) for n ≥ 1 is always an L-transform (
ompare (A.8)), the inverseexists

1

p0(s)
•−◦Q(t).

Q(t) is the Green's fun
tion of the problem. The 
onvolution theorem (A.7)then gives the solution Y (t)

Y (t) =

∫ t

0

F (t− τ)Q(τ)dτ =

∫ t

0

F (τ)Q(t − τ)dτ. (A.14)The determination of Q(t) is, therefore, the remaining task. To that end, weintrodu
e an expansion into partial fra
tions of 1/p0(s) under the assumptionthat the zeros αk of p0(s) are all di�erent
1

p0(s)
=

n
∑

k=1

dk

s− αkwhere dk is the residue of 1/p0(s) at the lo
ation αk

dk = lim
s→αk

s− αk

p0(s)
= lim

s→αk

1
p0(s)−p0(αk)

s−αk

=
1

p′0(αk)
.
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 187Thus,
1

p0(s)
=

n
∑

k=1

1

p′0(αk)
· 1

s− αk.Inverse-transform, with a result from se
tion A.1.4, gives
Q(t) = H(t) ·

n
∑

k=1

eαkt

p′0(αk)
. (A.15)If αk is real, the 
orresponding summand in Q(t) is also real. If αk is 
omplex,an α1 with α1 = α∗

k (the 
onjugate 
omplex value to αk) exists as part of theother zeros, sin
e p0(s) has real 
oe�
ients. Then,
eαkt

p′0(αk)
+

eα∗

kt

p′0(α
∗
k)

=
eαkt

p′0(αk)
+

e(αkt)∗

p′0(αk)∗

=
eαkt

p′0(αk)
+

(

eαkt

p′0(αk)

)∗

= 2Re
eαkt

p′0(αk)
.

Q(t) is, therefore, always real.Relation to the usual solution methodThe determination of the zeros of p0(s) is 
ompletely identi
al to the determi-nation of the zeros for the 
hara
teristi
 equation p0(λ) = 0 of the homogeneousdi�erential equation. The e�ort involved is, therefore, the same. For the usualmethod, the additional e�ort of �nding a spe
ial solution of the inhomogeneousdi�erential equation and the determination of n 
onstants in the solution of thehomogeneous di�erential equation from the zero initial 
onditions is needed.It is also interesting to see under whi
h 
onditions on F (t) the initial values ofthe solution
Y (t) =

∫ t

0

F (τ)Q(t − τ)dτare indeed equal to zero. One 
an show that
Q(k)(+0) = lim

s→∞

sk+1

p0(s)
(k = 0, 1, . . . , n− 1),and thus,
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188 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION
Q(+0) = Q′(+0) = . . . = Q(n−2)(+0) = 0, Q(n−1)(+0) = 1.If this is used during the di�erentiation of Y (t), it follows that

Y (+0) = Y ′(+0) = . . . = Y (n−2)(+0) = 0,and under the 
ondition that
lim
t→ 0
t > 0

∫ t

0

F (τ)dτ = 0 (A.16)it also holds that Y (n−1)(+0) = 0. This means that due to the fa
t that a phys-i
al fun
tion in general satis�es (A.16) (as long as they have a de�ned start),the assumption of zero initial values is most often satis�ed. Equation (A.14)with (A.15) is then the solution of the problem. An ex
eption 
an be found inexer
ise A.2.Appli
ation exampleThe di�erential equation of the me
hani
al resonator 
an be written as
Ÿ + 2αω0Ẏ + ω2

0Y =
1

m
K(t)with

Y (t) = displa
ement from zero
K(t) = a
ting for
e ( = 0 for t < 0 )
m = mass
α = damping term (α = 1 : aperiodi
 limit)
ω0 = eigen frequen
y of the undamped resonator
ω = ω0(1 − α2)

1
2 eigen frequen
y of the damped resonator .We 
hoose α < 1 (resonator 
ase).The L-transform of the di�erential equation leads to

y(s) =
k(s)

mp0(s)
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 189
p0(s) = s2 + 2αω0s+ ω2

0 = (s− α1)(s− α2)

α1 = −ω0

(

α+ i(1− α2)
1
2

)

= −αω0 − iω
α2 = −αω0 + iω

p′0(s) = 2s+ 2αω0

p′0(α1) = −2iω = −p′0(α2).Thus, the Green's fun
tion 
an be written as
Q(t) =

1

2iω

[

−e−αω0t−iωt + e−αω0t+iωt
]

·H(t)

=
e−αω0t

2iω

[

eiωt − e−iωt
]

·H(t)

Q(t) =
1

ω
e−αω0t sinωt ·H(t)

Q(+0) = 0, Q′(+0) = 1.The solution of the di�erential equation is, therefore, (t ≥ 0)

Y (t) =
1

ωm

∫ t

0

K(t− τ)e−αω0τ sinωτdτ

=
1

ωm

∫ t

0

K(τ)e−αω0(t−τ) sinω(t− τ)dτ. (A.17)If the polynomial p0(s) has several zeros, an extension into partial fra
tions of
1/p0(s) is also possible, but it looks di�erent as if only simple zeros were present.Thus, the 
orresponding Green's fun
tion Q(t) looks di�erent (
ompare also theusual method of solution). Equation (A.14) is also valid in this 
ase.Exer
ise A.1Give the solution of the inhomogeneous equation

L(Y ) = ω2
0Y0H(t),where H(t) is the Heaviside step fun
tion.Exer
ise A.2Solve the di�erential equation of the me
hani
al seismograph

L(Y ) = −Ẍ (X(t) = ground displa
ement)
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190 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONwith the aid of the method of the variation of the 
onstants and with the L-transform. Assume
X(t) ≡ 0 for t < 0, X(+0) = 0, Ẋ(+0) = V0.Derive the initial 
onditions for Y (t) from physi
al prin
iples and show that

Y (+0) = 0, Ẏ (+0) = −V0.In both exer
ises, L(Y ) = Ÿ + 2αω0Ẏ + ω2
0Y, α < 1.A.2.1.2 Homogeneous di�erential equations with arbitrary initial val-uesThis 
ase has also a pra
ti
al appli
ation sin
e it des
ribes the de
ay of os-
illations of physi
al systems. The important points 
an be learned from thefollowing exer
ise.Exer
ise A.3Solve the di�erential equation of the eigen os
illation of a me
hani
al resonatorwith

L(Y ) = 0,with the initial 
onditions Y (+0) = Y0, Ẏ (+0) = 0 using the L-transform, and
ompare the solution with the solution L(Y ) of exer
ise A.1 as done above.A.2.1.3 Inhomogeneous di�erential equations with arbitrary initialvaluesWe superimpose the solutions of se
tion A.2.1.1 and se
tion A.2.1.2. This meansthat Y (t) 
onsists of the two 
ontributions
Y (t) = Y1(t) + Y2(t).

Y1(t) is the solution of the homogeneous di�erential equation that satis�es theinitial 
onditions
Y1(+0) = Y0, Y

′
1(+0) = Y ′

0 , . . . , Y
(n−1)
1 (+0) = Y

(n−1)
0 .

Y2(t) is the solution of the inhomogeneous di�erential equation with zero initialvalues
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



A.2. APPLICATION OF THE LAPLACE TRANSFORM 191
Y2(+0) = Y ′

2(+0) = . . . = Y
(n−1)
2 (+0) = 0.

Y (t) satis�es the di�erential equation and the given initial 
onditions, and is,therefore, the solution of the problem.For physi
al problems, the initial 
onditions always have to be derived fromphysi
al prin
iples, for example:1. Me
hani
al resonator: Ÿ + 2αω0Ẏ + ω2
0Y = 1

mK(t)For t < 0, Y = Y0(t) is given. At time t = 0 the for
e K(t) begins to a
t.Due to the 
ontinuity requirement it must, therefore, hold that
Y (+0) = Y0(−0), Ẏ (+0) = Ẏ0(−0). (A.18)The resonator starts at time t = 0 with the initial values whi
h 
onne
t
ontinuously to the previous values. The 
ontribution of Y1(t) to the dis-pla
ement Y (t) has the initial value given in (A.18) and is, therefore, aneigen resonan
e, whi
h 
ontinues the os
illation Y0(t). The for
ed os
illa-tion Y2(t), given in (A.17), with zero initial values, is then superimposedon that os
illation.2. Me
hani
al seismograph: Ÿ + 2αω0Ẏ + ω2

0Y = −ẌThe ground may be at rest until the time t = 0. Due to the requirementof 
ontinuity, it follows that
Y (+0) = 0, Ẏ (+0) = −Ẋ(+0).Homogeneous equation:

Ÿ1 + 2αω0Ẏ1 + ω2
0Y1 = 0, Y1(+0) = 0, Ẏ1(+0) = −Ẋ(+0)L-transform:

(

s2 + 2αω0s+ ω2
0

)

y1(s) = −Ẋ(+0)Similar to se
tion A.2.1.1, the eigen resonan
e 
an be written as
Y1(t) = − Ẋ(+0)

ω
e−αω0t sinωt ·H(t).Inhomogeneous equation:

Ÿ2 + 2αω0Ẏ2 + ω2
0Y2 = −Ẍ, Y2(+0) = Ẏ2(+0) = 0L-transform:

(

s2 + 2αω0s+ ω2
0

)

y2(s) = −
(

s2x(s)− Ẋ(+0)
)The for
ed resonan
e, therefore, is ( t ≥ 0)

Y2(t) = − 1

ω0

∫ t

0

Ẍ(τ)e−αω0(t−τ) sinω(t− τ)dτ.The 
omplete solution Y (t) = Y1(t) +Y2(t) is the same as in exer
ise A.2.
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



192 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.2.2 Partial di�erential equationsWe now use an example to demonstrate the main points dis
ussed so far. Wewill examine, unlike in se
tion 3.4, the propagation of a 
ompressional wavefrom an explosive point sour
e. The starting point is the equation of motion ofthe elasti
 
ontinuum without body for
es.
ρ
∂2−→u
∂t2

= (λ+ 2µ)∇∇ · −→u − µ∇× ∇× −→u (A.19)(ρ=density, λ and µ=Lamé's parameters).In our problem, for whi
h we use spheri
al 
oordinates, the displa
ement −→u hasonly a radial 
omponent U, and the only spatial 
oordinate is the distan
e rfrom the explosive point sour
e. In this 
ase, ∇×−→u is zero and it holds that
∇ · −→u =

∂U

∂r
+

2

r
U

∇∇ · −→u =

(

∂2U

∂r2
+

2

r

∂U

∂r
− 2

r2
U, 0, 0

)

.With α2 = (λ + 2µ)/ρ (=velo
ity of the 
ompressional waves), it follows from(A.19) that
∂2U

∂r2
+

2

r

∂U

∂r
− 2

r2
U − 1

α2

∂2U

∂t2
= 0. (A.20)The boundary 
onditions assumed are that for r = r1 the displa
ement is pre-s
ribed as

U(r1, t) = U1(t). (A.21)The initial 
onditions are
U(r, 0) =

∂U

∂t
(r, 0) = 0. (A.22)

U1(t), whi
h shall be zero for t < 0, has to start smoothly, so that the initial
onditions are also satis�ed for r = r1.L-transform then gives
u(r, s) =

∫ ∞

0

e−stU(r, t)dt

u1(s) =

∫ ∞

0

e−stU1(t)dt
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 193
L

{

∂U

∂r

}

=

∫ ∞

0

e−st ∂U

∂r
dt =

∂

∂r

∫ ∞

0

e−stUdt =
∂

∂r
u(r, s)

L

{

∂2U

∂r2

}

=
∂2

∂r2
u(r, s).With this and (A.20), equation (A.20) leads to an ordinary di�erential equationfor u(r, s)

d2u

dr2
+

2

r

du

dr
−
(

2

r2
+
s2

α2

)

u = 0. (A.23)For ordinary di�erential equations, the L-transform leads to an algebrai
 equa-tion (polynomials). For partial di�erential equations in whi
h, together with t,only one additional 
oordinate o

urs (the 
ase studied here), the L-transformleads to ordinary di�erential equations. For partial di�erential equations inwhi
h, in addition to t i, more than one 
oordinate o

urs, partial di�erentialequations are derived. In ea
h 
ase, the dependen
e on t is eliminated.We 
hange the variables in (A.23) to x = rs
α

du

dr
=
du

dx
· s
α
,

d2u

dr2
=
d2u

dx2
· s

2

α2
.Thus, (A.23) be
omes

x2 d
2u

dx2
+ 2x

du

dx
−
(

x2 + 2
)

u = 0. (A.24)This is a spe
ial 
ase of the di�erential equations of the modi�ed spheri
al Besselfun
tions
x2 d

2y

dx2
+ 2x

dy

dx
−
(

x2 + n(n+ 1)
)

y = 0.Compare, e.g., M. Abramovitz and I.A. Stegun: Handbook of Mathemati
alFun
tions, H. Deuts
h, Frankfurt, 1985.In our 
ase, n = 1, and the solution of (A.24), whi
h has the properties (A.8)of L-transforms, is
u(x) =

1

x

(

1 +
1

x

)

e−x · F (s), x =
rs

α
. (A.25)As will be
ome 
lear in the following, the integration 
onstant F (s) is important.We now spe
ify (A.25) for r = r1, i.e., x = r1s/α, thus, u(x) has to be
ome the
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194 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONknown L-transform u1(s) of the displa
ement U1(t) given at the limit r = r1(see (A.21))
u1(s) =

α

r1s

(

1 +
α

r1s

)

e−
r1s

α F (s).From this, F (s) 
an be derived. Therefore, (A.25) 
an be written as
u (r, s) =

r1
r

1 + α
rs

1 + α
r1s

e−
r−r1

α su1(s) (A.26)
=
r1
r
·
[

s+ α
r1

+ α
r − α

r1

s+ α
r1

u1(s)

]

· e−
r−r1

α s.The term in the square bra
ket 
an now be given as
u1(s) + α

(

1

r
− 1

r1

)

u1(s)

s+ α
r1

•−◦ U1(t) + α

(

1

r
− 1

r1

)

U1(t) ∗
[

e
− α

r1
t ·H(t)

]

.In the last step, the 
onvolution theorem (A.7) was applied. If the displa
ementtheorem (A.2) is used, the inverse transform of (A.26) follows as
U(r, t) =

r1
r

[

U1

(

t− r − r1
α

)

+ α

(

1

r
− 1

r1

)∫ t−
r−r1

α

0

U1(ϑ)e−
α
r1

(t−
r−r1

α −ϑ)dϑ

]

.The retardation (r− r1)/α refers here not to the explosion point sour
e, but tothe sphere r = r1, from whi
h the wave starts at time t = 0. The retarded timeis, therefore, τ = t − (r − r1)/α, and the arrival of the wave at ea
h re
eiverwith r > r1 follows from τ = 0. Then
U(r, t) =

r1
r

[

U1(τ) + α

(

1

r
− 1

r1

)∫ τ

0

U1(ϑ)e
− α

r1
(τ−ϑ)

dϑ

]

.

A.3 The delta fun
tion δ(t)A.3.1 Introdu
tion of δ(t)We examine the result (A.17) for the me
hani
al resonator
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A.3. THE DELTA FUNCTION δ(T ) 195
Y (t) =

1

ωm

∫ t

0

K(τ)e−αω0(t−τ) sinω(t− τ)dτ,for the for
e K(t) = Iδǫ(t), where I is a 
onstant with the dimension of for
e ×time (=dimension of an impulse) and
δǫ(t) =







0 for t < 0
1
ǫ for 0 < t < ǫ
0 for t > ǫis a square fun
tion as shown in Fig. A.3.

1/ε3

ε1

1/ε

1/ε

δ  (  )

t

tε

2

1

ε2 ε3Fig. A.3: Representation of δǫ(t) as square fun
tions.The area under the 
urve δǫ(t) is always equal to 1. Therefore, independent of
ǫ, always the same impulse I is transfered. Then the displa
ement for t > ǫ 
anbe written as

Yǫ(t) =
I

ωmǫ

∫ ǫ

0

e−αω0(t−τ) sinω(t− τ)dτ

=
I

ωmǫ

∫ t

t−ǫ

e−αω0u sinω u du.
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196 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION

Fig. A.4: Behaviour of the term under integral in Yǫ(t).The mean value theorem for integrals gives (0 < λ < 1):
Yǫ(t) =

I

ωm
e−αω0(t−λǫ) sinω(t− λǫ). (A.27)The next step is the transition to ǫ → 0. For (A.27) follows the result (t isarbitrary)

lim
ǫ→0

Yǫ(t) =
I

ωm
e−αω0t sinωtH(t) =

I

m
Q(t),where Q(t) is the Green's fun
tion of the di�erential equation of the me
hani
alresonator (
ompare se
tion A.2.1.1). For the for
e, the transition ǫ→ 0 meansthat the impulse is transfered to the resonator in shorter and shorter time. Itis physi
ally plausible, that this time then is not important, if it is su�
ientlysmall 
ompared to the de
ay time (αω0)

−1 and the eigenperiod 2π/ω of the eigenresonan
e of the resonator. Therefore, it makes sense to adopt the limiting 
ase
ǫ = 0 also for the for
e, i.e.,

lim
ǫ→0

K(t) = I lim
ǫ→0

δǫ(t) = Iδ(t),where δ(t) is the delta fun
tion
δ(t) = lim

ǫ→0
δǫ(t). (A.28)Other names are impulse fun
tion or unit impulse. It is obvious that δ(t) 
an-not be treated as a standard fun
tion. On the other hand, it would be wrongto study the fun
tion δ(t) separated from the ordinary fun
tions δǫ(t). On the
ontrary, δ(t) has to be understood as a series of {δǫ(t)} with ǫ → 0. Fromthe mathemati
al point of view, δ(t) is part of the generalised fun
tions or dis-tributions, for whi
h extensive theories and literature exist. For our purposes,
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A.3. THE DELTA FUNCTION δ(T ) 197the physi
al approa
h to the delta fun
tion given, will be su�
ient. The def-inition of δ(t) as a series of ordinary fun
tions is the basis of an exa
t theorythat 
an also be understood by non-mathemati
ians; see, e.g., Riley, K.F., M.P.Hobson and S.J. Ben
e: Mathemati
al methods for physi
s and engineering,A 
omprehensive guide, Cambridge University Press, Cambridge, 2nd edition,2002.A.3.2 Properties of δ(t)Due to (A.28)
δ(t) = 0 for t 6= 0.Furthermore, it follows from the properties of δǫ(t), that

∫ +∞

−∞

δ(t)F (t)dt = F (0).The delta fun
tion, therefore, is the value of F (t) at t = 0; su
h that
∫ +∞

−∞

δ(t)dt = 1.Furthermore, it holds that G(t)δ(t) = G(0)δ(t). If G(0) = 0, then G(t)δ(t) ≡ 0.For the delta fun
tion δ(t− τ), whi
h is displa
ed by τ , it holds that
δ(t− τ) = 0 for t 6= τand

∫ +∞

−∞

δ(t− τ)F (t)dt = F (τ).The de�nition of δ(t) is not only possible with the series {δǫ(t)}, the fun
tionsof whi
h are dis
ontinuous. An alternative option is the series {δn(t)} with
δn(t) =

(n

π

)
1
2

e−nt2 .
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t

δ (  )tn

Fig. A.5: Representation of δn(t).In this 
ase,
δ(t) = lim

n→∞
δn(t)

∫ +∞

−∞

δn(t)dt = 1.With the fun
tions δn(t), the derivatives of the the delta fun
tion 
an be de�nedas
δ(k)(t) = lim

n→∞
δ(k)
n (t).

δ (  )tn

t

’

Fig. A.6: Derivative of the delta fun
tion δn(t).It holds that δ(k)(t) = 0 for t 6= 0. Furthermore, it follows that
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A.3. THE DELTA FUNCTION δ(T ) 199
∫ +∞

−∞

δ(k)(t− τ)F (t)dt = lim
n→∞

∫ +∞

−∞

δ(k)
n (t− τ)F (t)dt

= lim
n→∞

(−1)k

∫ +∞

−∞

δn(t− τ)F (k)(t)dt,after k partial integrations. This gives
∫ +∞

−∞

δ(k)(t− τ)F (t)dt = (−1)kF (k)(τ). (A.29)Finally, we dis
uss the 
onne
tion between the delta fun
tion and the step fun
-tion H(t) from se
tion A.1.4. We 
onsider the fun
tion
Hǫ(t) =

∫ t

−∞

δǫ(τ)dτ =







0 for t < 0
t
ǫ for 0 ≤ t ≤ ǫ
1 for t > ǫ

t

H  (t)

ε

ε
1

Fig. A.7: Fun
tion Hǫ(t).This means that
δǫ(t) = H ′

ǫ(t),and in the limit ǫ→ 0

δ(t) = H ′(t).The delta fun
tion is the derivative of the step fun
tion. The same result 
ouldhave been a
hieved with the de�nition of δ(t) with the use of the fun
tions δn(t).It should also be mentioned that H(t) is dimensionless, but δ(t) has the inversedimension of time.
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200 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.3.3 Appli
ation of δ(t)1. The option to des
ribe impulses of for
e (and, similarly, of stress and 
ur-rent) will not be dis
ussed now sin
e that was the topi
 of the introdu
tionof this appendix.2. A point mass m (or similarly a point 
harge) 
an be des
ribed by thefollowing density
ρ = mδ(x)δ(y)δ(z).This holds be
ause ρ = 0 for (x, y, z) 6= (0, 0, 0), and the whole mass 
anbe des
ribed via

∫ ∫ ∫ +∞

−∞

ρ dx dy dz = m ·
∫ +∞

−∞

δ(x)dx ·
∫ +∞

−∞

δ(y)dy ·
∫ +∞

−∞

δ(z)dz = m.3. The 
harge distribution of a point-like dipole 
an be des
ribed by thefollowing line density σ(x) (e.g., Coulomb per meter) on the x -axis as
σ(x) = Mδ′(x), M > 0 (dimension : 
harge * length ),sin
e we de�ne σ(x) by the series {Mδ′n(x)}.

+

-

x

M     (x)δ’n

Fig. A.8: Charge distribution of a point-like dipole.The transition n → ∞ gives then two in�nitely large opposite point
harges, whi
h are in�nitely 
lose to ea
h other.
+ -

x=0
xFig. A.9: Charge distribution of a point-like dipole for two in�nitely largeopposite point 
harges, whi
h are in�nitely 
lose to ea
h other.
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A.3. THE DELTA FUNCTION δ(T ) 201The moment of su
h an arrangement relative to x = 0 is
∫ +∞

−∞

xσ(x)dx = M

∫ +∞

−∞

xδ′(x)dx = −M.The sign is 
orre
t, sin
e the ve
tor of the moment points from the negativeto the positive 
harge. The dimension is also 
orre
t. The spatial 
hargedensity of the dipole would be σ(x, y, z) = M · δ′(x) · δ(y) · δ(z) (e.g.,Coulomb per 
ubi
 meter).4. The role of the delta fun
tion for the solution of inhomogeneous linearordinary di�erential equations.We start with
L(Y ) = Y (n) + an−1Y

(n−1) + . . .+ a1Y
′ + a0Y = δǫ(t). (A.30)The solution is, a

ording to se
tion A.2.1.1,

Y (t) = Yǫ(t) =

∫ t

0

δǫ(τ)Q(t − τ)dτ, (A.31)with Q(t)=Green's fun
tion, and it satis�es the initial 
onditions
Yǫ(+0) = Y ′

ǫ (+0) = . . . = Y (n−1)
ǫ (+0) = 0.The transition ǫ→ 0 in (A.30) and (A.31) gives

L(Y ) = δ(t) (A.32)with the solution
Y (t) = Q(t).The Green's fun
tion of a system, whi
h 
an be des
ribed by a linear ordi-nary di�erential equation, is also the solution of the inhomogeneous equa-tion, whi
h has the delta fun
tion as the term of perturbation. Expresseddi�erently, the Green's fun
tion is the response fun
tion of a perturbationof the system by the delta fun
tion (impulse response).The initial values of Q(t) are

Q(+0) = Q′(+0) = . . . = Q(n−2)(+0) = 0, Q(n−1)(+0) = 1,and are, therefore, di�erent from those of the fun
tions Yǫ(t). This isa 
onsequen
e of the transition ǫ → 0. If (A.32) has, therefore, to be
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202 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONsolved dire
tly, one has to use always zero initial values and not those,whi
h a
tually hold for Q(t). In that situation, it is useful to know theL-transform of δ(t)
L {δ(t)} = f(s) =

∫ ∞

0

e−stδ(t)dt = 1.Sin
e δ(t) is a generalised fun
tion, it does not hold here that lim f(s) = 0for Re s→∞ (
ompare (A.8).Now we 
an give the general solution of the initial value problem for asystem whi
h is at rest up to the time t = 0 and is then ex
ited in anarbitrary way, a new interpretation. The solution (A.14), namely
Y (t) =

∫ t

0

F (t− τ)Q(τ)dτ =

∫ t

0

F (τ)Q(t− τ)dτ, (A.33)is derived by the 
onvolution of the solution Q(t) for the spe
ial ex
itationof the system by F (t) = δ(t) with an arbitrary perturbation F (t).A.3.4 Duhamel's law and linear systemsIn (A.33), we 
hoose F (t) = H(t) (step fun
tion). In this 
ase,
Y (t) = YH(t) =

∫ t

0

Q(τ)dτ (step response)
Y ′

H(t) = Q(t).Integrating by parts, it follows from (A.33)
Y (t) = F (t− τ) YH(τ)|t0 +

∫ t

0

F ′(t− τ)YH (τ)dτ.Thus, due to YH(+0) = 0

Y (t) = F (+0)YH(t) +
∫ t

0
F ′(t− τ)YH(τ)dτ

= F (+0)YH(t) +
∫ t

0 F
′(τ)YH(t− τ)dτ

(A.34)This is Duhamel's law, whi
h des
ribes how solutions for arbitrary F (t) 
an bedetermined from those for F (t) = H(t).
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A.3. THE DELTA FUNCTION δ(T ) 203GeneralisationIf we use Q(t) = Yδ(t) in (A.33), it follows that
Y (t) =

∫ t

0

F (t− τ)Yδ(τ)dτ =

∫ t

0

F (τ)Yδ(t− τ)dτ. (A.35)The relation between Yδ(t) and YH(t) is
Yδ(t) = Y ′

H(t).Equations (A.34) and (A.35) 
ontain the statement that the response of a systemhas to be known only for very spe
ial ex
itations like the delta and the stepfun
tions. From this, the solution for arbitrary ex
itation 
an be given. Thisis not only true for systems whi
h follow linear ordinary di�erential equations,but also for systems whi
h 
an be des
ribed by partial di�erential equationsor systems of simultaneous di�erential equations as long as they are linear andhave time independent 
oe�
ients. One requirement for this to hold is that thesystem is at rest in the beginning. The perturbation 
an, depending on theproblem, have a di�erent form (e.g., for
e, temperature, displa
ement et
.), asindi
ated in Fig. A.10.
input fun
tionorperturbation fun
tion

δ(t)
H(t)
F (t)

output fun
tionorresponse fun
tion
Yδ(t) = Q(t) (impulse response)
YH(t) =

∫ t

0
Q(τ)dτ (step response)

Y (t) a

ording to (A.34) or (A.35)Fig. A.10: Linear system with input and output.Transition into the frequen
y domain using the Fourier transformThe Fourier transform of F (t), Q(t) and Y (t) is F (ω), Q(ω) and Y (ω)

F (ω)
Q(ω)
Y (ω)







=

∫ +∞

−∞







F (t)
Q(t)
Y (t)







e−iωtdt.
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204 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONThe 
lose relation with the L-transform has been dis
ussed in se
tion A.1.7.Therefore, it holds, as for the Fourier transform
Y (ω) = F (ω) ·Q(ω),i.e., the Fourier transform Y (ω) of the input fun
tion Y (t) is the produ
t ofthe Fourier transform F (ω) of the input fun
tion F (t) with Q(ω) of the Green'sfun
tion Q(t). Q(ω) is 
alled the transfer fun
tion of the linear system or �lter.Separation into absolute value and phase gives

Q(ω) = A(ω)eiϕ(ω)

A(ω) = amplitude 
hara
teristi
s of the system
ϕ(ω) = phase 
hara
teristi
s of the system

A(ω) des
ribes the ampli�
ation or de
rease of the 
ir
ular frequen
y ω, re-spe
tively, and ϕ(ω) des
ribes the phase shift. A mono
hromati
 os
illation asinput
F (t) = a sinωt,has the output

Y (t) = A(ω)a sin (ωt+ ϕ(ω)) .The transfer fun
tion of the system has, therefore, a very physi
al meaning, andit is thus, used widely.Exer
ise A.4A sphere of mass m drops from the height h1 on the mass M of a me
hani
al(verti
al-)resonator, is re�e
ted there and rea
hes the height h2. No additionalintera
tions between the two masses follow. Determine the displa
ement of massM:1. Using the homogeneous di�erential equation L(Y ) = 0 and the 
orre-sponding initial 
onditions.2. Using the inhomogeneous di�erential equation L(Y ) =? and zero initialvalues.It holds that
L(Y ) = Ÿ + 2αω0Ẏ + ω2

0Y, α < 1.
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A.3. THE DELTA FUNCTION δ(T ) 205Exer
ise A.5The ground displa
ement of the me
hani
al seismograph (di�erential equation
L(Y ) = −Ẍ) is given by

a) X(t) = t2H(t)
2 ,

b) X(t) = tH(t),

c) X(t) = H(t).Determine, in ea
h 
ase, the displa
ement Y (t) and dis
uss the relation betweenthe three 
ases.A.3.5 Pra
ti
al approa
h for the 
onsideration of non-zeroinitial values of the perturbation fun
tion F(t) of alinear problemFor the me
hani
al seismograph, the perturbation fun
tion of the di�erentialequation is the se
ond derivative of the ground displa
ementX(t), and we noti
ethat the initial values of the displa
ement Y (t) of the mass of the seismometerdepends on the initial values X(+0) and Ẋ(+0), respe
tively (
ompare exer
iseA.2 and se
tion A.2.1.3). This 
onne
tion had to be derived from physi
alprin
iples. Cases exist in whi
h this is di�
ult. Therefore, we would like tohave an approa
h, that 
onsiders the initial values of the perturbation fun
tion.In the following, we de�ne, 
ontrary to the usage up to now, the perturbationfun
tion as the fun
tion, the single (or higher) derivatives of whi
h o

ur in thedi�erential equation as inhomogeneities (we 
onsider an arbitrary linear system).Now F (t) = X(t) for the me
hani
al seismograph and not F (t) = −Ẍ(t). Wethen solve the equation for F (t) = Fn(t), for whi
h the initial values are zero,up to su�
iently high orders. Then, one 
an assume that the initial values ofthe 
orresponding solution Yn(t) are also zero. Thus, Yn(t) 
an be written as
Yn(t) =

∫ t

0

F (i)
n (t− τ)G(τ)dτ. (A.36)Therefore, we know the i-th order of the derivative of Fn(t) (i ≥ 1) and thefun
tion G(t).Given a series of fun
tions Fn(t) whi
h 
onverge versus the perturbation fun
tion

F (t) to be determined (with non-zero initial values),
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206 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION
lim

n→∞
Fn(t) = F (t).Compare also the 
omments to the de�nition of the delta fun
tion in 
haptersA.3.1 and A.3.2. Then, it follows that

lim
n→∞

F ′
n(t) = F ′(t) + F (+0)δ(t)

lim
n→∞

F ′′
n (t) = F ′′(t) + F (+0)δ′(t) + F ′(+0)δ(t)...

lim
n→∞

F (i)
n (t) = F (i)(t) +

i−1
∑

j=0

F (j)(+0)δ(i−j−1)(t). (A.37)
δ(0)(t) is here equal to δ(t).

Fig. A.11: F(t) and its derivative as a fun
tion of time.The general solution Y (t) for arbitrary initial values of F (t) is
Y (t) = lim

n→∞
Yn(t)

=

∫ t

0

F (i)(t− τ)G(τ)dτ +

i−1
∑

j=0

F (j)(+0)

∫ t

0

δ(i−j−1)(t− τ)G(τ)dτ,if (A.37) is used in(A.36). Now
∫ t

0

δ(i−j−1)(t− τ)G(τ)dτ
=

u = t− τ

∫ t

0

δ(i−j−1)(u)G(t− u)du
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A.3. THE DELTA FUNCTION δ(T ) 207
=with (A.29)

(−1)i−j−1

[

di−j−1

dui−j−1
G(t− u)

]

u=0

= (−1)i−j−1

[

di−j−1

dti−j−1
G(t− u)

]

u=0

(−1)i−j−1

= G(i−j−1)(t).The general solution of the problem for arbitrary initial values of the perturba-tion fun
tion F (t) is then
Y (t) =

i−1
∑

j=0

F (j)(+0)G(i−j−1)(t) +

∫ t

0

F (i)(t− τ)G(τ)dτ. (A.38)Appli
ationMe
hani
al seismograph: Ÿ + 2αω0Ẏ + ω2
0Y = −ẌThe assumption that the ground displa
ement Xn(t) starts su�
iently smoothand allows us to put the initial values of Yn(t) equal to zero

Yn(+0) = Ẏn(+0) = 0.The di�erential equation is then solved under this assumption, most easily withthe L-transform (
ompare exer
ise A.2)
Yn(t) = − 1

ω

∫ t

0

Ẍn(t− τ)e−αω0τ sinωτdτ.Compare with (A.36): Fn(t) = Xn(t), i = 2,

G(t) = − 1

ω
e−αω0t sinωt ·H(t).The general solution is, a

ording to (A.38),

Y (t) = X(+0)G′(t) + Ẋ(+0)G(t) +

∫ t

0

Ẍ(t− τ)G(τ)dτ

= X(+0)G′(t) + Ẋ(+0)G(t) +

∫ t

0

Ẍ(τ)G(t − τ)dτ.This result (with X(+0) = 0) was derived dire
tly, ex
ept for the sign, in theexer
ise mentioned above.
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Appendix BHilbert transform
B.1 The Hilbert transform pairThe Hilbert transform H(x) of the real fun
tion h(x) is de�ned by the followingintegral (x and ξ are real)

H(x) =
1

π
P

∫ +∞

−∞

h(ξ)

ξ − xdξ. (B.1)P is the main value of the integral, i.e., the singularity ξ = x of the integrandhas been ex
luded
P

∫ +∞

−∞

..dξ = lim
ǫ→0

(∫ x−ǫ

−∞

..dξ +

∫ +∞

x+ǫ

..dξ

)

.The inverse Hilbert transform 
an be written as (proof follows)
h(x) = − 1

π
P

∫ +∞

−∞

H(ξ)

ξ − xdξ. (B.2)Although this is di�erent from the Lapla
e and the Fourier transform, the two
orresponding fun
tions h(x) and H(x) have the same argument.Some analyti
al Hilbert transform pairs are shown in Fig. B.1.209
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210 APPENDIX B. HILBERT TRANSFORM

Fig. B.1: Analyti
al Hilbert transform pairs.B.2 The Hilbert transform as a �lterEquation (B.1) is a 
onvolution integral
+ε

ε

x

P  (x)

−εFig. B.2: Form of Pǫ(x).
H(x) =

∫ +∞

−∞

h(ξ) · P
{ − 1

π

x− ξ

}

dξ = h(x) ∗ P
{

− 1

πx

}
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B.2. THE HILBERT TRANSFORM AS A FILTER 211
P

{

− 1

πx

}

= lim
ǫ→0

Pǫ(x)

Pǫ(x) =

{

0 for |x| < ǫ
− 1

πx otherwise .Therefore, it holds for the Fourier transforms
H(ω)

h(ω)
P (ω)







=

∫ +∞

−∞







H(x)
h(x)
P
{

− 1
πx

}







· e−iωxdx, (B.3)and a

ording to se
tion A.3.4,
H(ω) = h(ω) · P (ω). (B.4)The Hilbert transform is, therefore, a linear �lter. The Fourier transform andits inverse 
an be e�e
tively 
al
ulated with the method of the Fast Fouriertransform. It is, therefore, advantageous to perform the Hilbert transform inthe frequen
y domain via (B.4). To be able to do this, one needs the transferfun
tion P (ω) of the Hilbert transform. From (B.3), it follows that

P (ω) = − 1

π
P

∫ +∞

−∞

1

x
e−iωxdx, P (0) = 0. (B.5)We 
ompute this integral with methods from 
omplex analysis by deformingthe integration path to a semi-
ir
le with in�nite radius in the upper (lower)x -half-plane for ω < 0 (ω > 0), respe
tively,

Fig. B.3: Integral path of P (ω) in the 
omplex plane.
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212 APPENDIX B. HILBERT TRANSFORM
P

∫ +∞

−∞

e−iωx

x
dx =

∫

e−iωx

x
dx± πiRes e

−iωx

x

∣

∣

∣

∣

x=0

=

∫

U/L

e−iωx

x
dx± πi, (B.6)where the upper (lower) integration path and the + (-) sign for ω < 0 (ω > 0)have to be 
hosen, respe
tively. Note that the �rst term on the right of the�rst equation has to be integrated along the real axis (ex
luding the pole), andthe residual in the se
ond term is identi
al to 1. The integration in the se
ondequation is then along the upper (lower) half 
ir
le U (L), respe
tively.With the new variable ϕ on the half 
ir
les, it follows that

x = Reiϕ, dx = Rieiϕdϕ.This leads to
∫

U/L

e−iωx

x
dx = i

∫ 0

±π

exp [−iωR (cosϕ+ i sinϕ)] dϕ

= i

∫ 0

±π

exp [ωR sinϕ− iωR cosϕ] dϕ

→ 0 for R→∞, sin
e ω sinϕ < 0.Equation (B.6), therefore, redu
es to
P

∫ +∞

−∞

e−iωx

x
dx = ±πi,and the transfer fun
tion P (ω) in (B.5) be
omes the simple expression

P (ω) = i sign ω with signω =







−1 for ω < 0
0 for ω = 0
+1 for ω > 0.

(B.7)If the Hilbert transform is 
onsidered as a �lter of the original fun
tion, it followsfrom (B.4) with (B.7) that the frequen
y 0 is suppressed (P (0) = 0), but allother frequen
ies remain un
hanged in their amplitude (∣∣P (ω)
∣

∣ = 1 for ω 6= 0).At ω 6= 0 only phase shifts are produ
ed. With ω > 0 (ω < 0) a phase shift of
±900 results, respe
tively. In �lter theory, the Hilbert transform is an all-pass�lter with removal of the average.The pra
ti
al 
omputation of the Hilbert transform H(x) of h(x), therefore,requires three steps:
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B.2. THE HILBERT TRANSFORM AS A FILTER 2131. Computation of the Fourier transform h(ω) of h(x)2. Multipli
ation with the transfer fun
tion P (ω)3. Ba
k transformation of H(ω).If the Hilbert transform is applied twi
e, it follows in the frequen
y domain that
g(ω) = h(ω) · P 2

(ω) = −h(ω),and, therefore, g(x) = −h(x). The original fun
tion h(x) is, therefore, obtained,if the sign of the se
ond Hilbert transform is reversed. This proves (B.2) for theinverse Hilbert transform.This proof only holds for 
ases in whi
h h(0) = 0, i.e., in 
ases for whi
h theintegral over h(x) is zero. The third example in Fig. B.1 is su
h a 
ase. Equation(B.2) also holds if h(0) 6= 0. This is shown in the se
ond example of Fig. B.1and 
an be 
on�rmed with methods from 
omplex analysis.The numeri
al Hilbert transform, with (B.4) and (B.7) frequen
y ω = 0, issometimes not treated properly. For numeri
al reasons, it is assumed that dueto P (0) = 0 the integral of the Hilbert transform is always zero. This is nottrue, if h(0) =
∫ +∞

−∞ h(x)dx is not �nite or not 
orre
tly de�ned. The �rst 
aseo

urs, if, e.g., h(x) is a step fun
tion. The se
ond 
ase o

urs, e.g., duringthe inverse-transformation of the Hilbert transform h(x) = −ax/(a2 + x2), thede
ay of whi
h with in
reasing |x| is proportional to −1/x and, therefore, notstrong enough. In su
h 
ases, a 
onstant shift of the numeri
al result in theordinate dire
tion is often su�
ient. The frequen
y ω = 0 is the only frequen
yfor whi
h the Hilbert transform 
omputed numeri
ally 
an then deviate fromthe exa
t result.
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Appendix CBessel fun
tionsIn the following, only the most important equations and properties of Besselfun
tions with integer order are listed. More details 
an be found, e.g., in M.Abramovitz and I.A. Stegun (1985), or in Riley, K.F., M.P. Hobson and S.J.Ben
e (2002).The di�erential equation of the Bessel fun
tion of integer order n = 0, 1, 2, . . . is
x2y′′ + xy′ +

(

x2 − n2
)

y = 0. (C.1)The two linearly independent solutions of this equation are
y = Jn(x) = Bessel fun
tion of �rst kind and n− order
y = Yn(x) =

Bessel fun
tion of se
ond kind andn− th orderor Neumann′s function ofn− th order.Representation as a series
Jn(x) =

∞
∑

k=0

(−1)k

k!(n+ k)!

(x

2

)n+2k

Yn(x) =
2

π

(

0, 577216 + ln
x

2

)

Jn(x)− 1

π

n−1
∑

k=0

(n− 1− k)!
k!

(

2

x

)n−2k

− 1

π

∞
∑

k=0

(−1)k (Φk + Φk+n)

k!(n+ k)!

(x

2

)n+2k

Φl =

l
∑

s=1

1

s 215
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216 APPENDIX C. BESSEL FUNCTIONSThe graphi
 representation for x ≥ 0 is shown in Fig. C.1.

Fig. C.1: Bessel and Neumann fun
tions.Neumann's fun
tions have a singularity at x = 0.The Hankel fun
tions, or Bessel fun
tions of the third kind, are de�ned as
H(1)

n (x) = Jn(x) + iYn(x) Hankel fun
tion of �rst kind (C.2)
H(2)

n (x) = Jn(x) − iYn(x) Hankel fun
tion of se
ond kind . (C.3)
H

(1)
n (x) and H(2)

n (x) are linearly independent. The general solution of (C.1) is,therefore, (with the arbitrary 
onstants A,B,C,D) either
y = AJn(x) +BYn(x)or
y = CH(1)

n (x) +DH(2)
n (x).Analogies to the di�erential equations of the trigonometri
 fun
tions(equation of os
illation)

y′′ + n2y = 0or their well-known solutions cosnx and sinnx, and einx and e−inx, respe
-tively,
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217Bessel fun
tions Trigonometri
 fun
tions
Jn(x) cosnx
Yn(x) sinnx

H
(1)
n (x) einx = cosnx+ i sinnx

H
(2)
n (x) e−inx = cosnx− i sinnx.Asymptoti
 representation for x≫ 1

Jn(x) ≃
(

2
πx

)
1
2 cos

(

x− nπ
2 − π

4

)

Yn(x) ≃
(

2
πx

)
1
2 sin

(

x− nπ
2 − π

4

)

H
(1)
n (x) ≃

(

2
πx

)
1
2 exp

[

i
(

x− nπ
2 − π

4

)]

H
(2)
n (x) ≃

(

2
πx

)
1
2 exp

[

−i
(

x− nπ
2 − π

4

)]























(C.4)Re
ursion formulae (Zn = Jn, Yn, H
(1)
n or H(2)

n )

2n
x Zn(x) = Zn−1(x) + Zn+1(x) (n = 1, 2, 3, . . .)

Z ′
n(x) = n

xZn(x)− Zn+1(x) (n = 0, 1, 2, . . .)

Z ′
n(x) = −n

xZn(x) + Zn−1(x) (n = 1, 2, 3, . . .)























(C.5)Spe
ial 
ases of the se
ond and third re
ursion formulae in (C.5) are then used
J ′

0(x) = −J1(x)

J ′
1(x) = J0(x)−

1

x
J1(x).Up until now, we have 
onsidered the variable x as real and positive. If we alsoassume |x| ≫ 1, all formulae given also hold for 
omplex, x and for (C.4). If
omplex x are used, the following relations are often useful

H(1)
n (−x) = −e−nπiH(2)

n (x)

H(2)
n (−x) = −enπiH(1)

n (x)with spe
ial 
ase n = 0

H
(1)
0 (−x) = −H2

0 (x)

H
(2)
0 (−x) = −H(1)

0 (x).
(C.6)
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Appendix DThe Sommerfeld integralWe 
onsider a time harmoni
 explosion point sour
e at the origin of a 
ylindri
al
oordinate system. Its 
ompressional potential
1

R
eiω(t−R

α ) (

R2 = r2 + z2
)solves the wave equation and 
an, therefore, be 
onstru
ted from more ele-mentary solutions of the wave equation in 
ylindri
al 
oordinates (as long as
ylindri
al symmetry is maintained); see also dis
ussion in se
tion 3.7 leadingto (3.83)

1

R
eiω(t−R

α ) = eiωt

∫ ∞

0

g(k)kJ0(kr)e
−il|z|dk (D.1)

l =

(

ω2

α2
− k2

)
1
2 (positive real ornegative imaginary).To determine g(k), we 
onsider (D.1) at z = 0

1

r
e−iω r

α =

∫ ∞

0

g(k)kJ0(kr)dk (D.2)and use then the Fourier-Bessel transform
g(k) =

∫ ∞

0

G(r)rJ0(kr)dr (D.3)
G(r) =

∫ ∞

0

g(k)kJ0(kr)dk. (D.4)219
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220 APPENDIX D. THE SOMMERFELD INTEGRALg(k) is the Fourier-Bessel transform of G(r), and G(r) is the inverse Fourier-Bessel transform of g(k). Equation (D.2) has the form of (D.4), therefore, G(r) =
e−iωr/α/r. Therefore, (D.3) 
an be used to 
ompute g(k)

g(k) =

∫ ∞

0

e−iω r
α J0(kr)dr

=

∫ ∞

0

cos
(

ω
r

α

)

J0(kr)dr − i
∫ ∞

0

sin
(

ω
r

α

)

J0(kr)dr.With
∫ ∞

0

cos
(

ω
r

α

)

J0(kr)dr =







0 for 0 < k < ω
α

(

k2 − ω2

α2

)− 1
2 for k > ω

α

∫ ∞

0

sin
(

ω
r

α

)

J0(kr)dr =







(

ω2

α2 − k2
)− 1

2 for 0 < k < ω
α

0 for k > ω
α ,it follows that

g(k) =











−i
(

ω2

α2 − k2
)− 1

2 for 0 < k < ω
α

(

k2 − ω2

α2

)− 1
2 for k > ω

α ,or simply g(k) = 1
il . Inserted into (D.1), this gives the Sommerfeld integral

1

R
e−iω R

α =

∫ ∞

0

k

il
J0(kr)e

−il|z|dk. (D.5)
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Appendix E
The 
omputation of modalseismograms
E.1 Numeri
al 
al
ulationsThe treatment of point sour
es in wave guides with arbitrary (horizontal) layer-ing leads to the following general far-�eld form for the �eld values (displa
ement,pressure, potential et
.) of a normal mode

N(t) = r−
1
2Re

∫ ∞

0

M(ω) exp [i (ωt− kr)]dω. (E.1)
M(ω) 
onsists, in prin
ipal, of fa
tors that des
ribe the sour
e spe
trum, theex
itation fun
tion of the mode (depending on sour
e depth, sour
e orientationand, in general, also on ω) and their eigen fun
tion (amplitude-depth distribu-tion). Wavenumber k(ω) = ω/c(ω) 
ontains the dispersion information of themode. Equation (4.53) is a simple spe
ial 
ase of (E.1) withM(ω) ∼ k−1/2(ω) .Integrals of the form (E.1) 
an be solved e�
iently with the help of the FastFourier transform. In the 
ase of the ideal wave guide, for whi
h the modalseismograms 
omputed analyti
ally are given in Fig. 4.3, the following numeri
alresult is derived for the potential (after a low-pass �lter, whi
h has de
ayed tozero at the Nyquist frequen
y). 221
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222 APPENDIX E. THE COMPUTATION OF MODAL SEISMOGRAMS

Fig. E.1: Modal seismogram for the ideal wave guide (
ompare to Fig. 4.23).They agree very well with the analyti
al seismograms in Fig. 4.33.If one is only interested in the study of dispersion on horizontal pro�les, mosttimes it is su�
ient to 
onsider in M(ω) only the sour
e spe
trum. This simpli-�es the studies, sin
e then only the theory of free surfa
e waves is needed (forthe determination of k(ω)).E.2 Method of stationary phaseThe appli
ation of the method of stationary phase in integrals of the type (E.1)has been des
ribed in se
tion 4.2.3. Here, it is shortly outlined again, sin
e theresults are needed as the basis for the treatment of the Airy phases in se
tionE.3. It should be noted that today the results of this and the next se
tion arenot of great importan
e in the numeri
al 
omputation of modal seismograms,sin
e the Fast Fourier transform mentioned in se
tion E.1 is more suited forthat purpose. Here, analyti
al rules for the amplitude de
ay of surfa
e waveswith in
reasing distan
e 
an be derived; this is an important addition to purelynumeri
al methods.The phase ϕ(ω) = ωt−k(ω)r in (E.1) has the following derivatives with respe
tto ω (U = group velo
ity)
ϕ′ = t− rk′ = r − r

U
(E.2)

ϕ′′ = −rk′′ = rU−2U ′ (E.3)
ϕ′′′ = −rk′′′ = r

(

U−2U ′′ − 2U−3U ′
)

. (E.4)
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E.2. METHOD OF STATIONARY PHASE 223Stationary phase values follow from ϕ′(ω0) = 0 and are, therefore, determinedby
U(ω0) =

r

t
. (E.5)Then

U ′(ω0) 6= 0, (E.6)
ϕ(ω) 
an be approximated near ω0 by

ϕ(ω) = ϕ0 +
1

2
ϕ′′

0 (ω − ω0)
2 (E.7)

(ϕ0 = ϕ(ω0), ϕ
′′
0 = ϕ′′

0 (ω0)). The modal seismogram 
an then be written in thestationary phase approximation as
N(t) = r−

1
2Re

∫ ω0+∆ω

ω0−∆ω

M(ω) exp

[

i

(

ϕ0 +
1

2
ϕ′′

0 (ω − ω0)
2

)]

dω (E.8)
≃ r−

1
2Re

{

M(ω0)e
iϕ0

(

2

|ϕ′′
0 |

)
1
2
∫ +∞

−∞

eix2signϕ′′

0 dx

}

with x =

(

|ϕ′′

0 |
2

)1/2

(ω − ω0). With (E.3), we �nally derive (U0 = U(ω0), U
′
0 =

U ′(ω0), k0 = k(ω0) = ω0/c(ω0))

N(t) =
U0

r

(

2π

|U ′
0|

)
1
2

Re
{

M(ω0) exp
[

i
(

ω0t− k0r +
π

4
signU ′

0

)]}

. (E.9)Equation (E.9) holds under the requirement (E.6). Then ω0, t and r are 
on-ne
ted via (E.5) and` this produ
es the frequen
y modulation of the normalmode. Its amplitude is also time dependent; this is mostly due toM (ω0(t)) butalso partially due to U0 and U ′
0 (amplitude modulation).If we 
onsider the amplitudes of the normal mode as a fun
tion of distan
e r, wesee that they de
ay with r−1 as long as (E.9) holds. This statement 
on
erns theamplitudes in the time domain; spe
tral amplitudes de
ay with r−1/2 a

ordingto (E.1).
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224 APPENDIX E. THE COMPUTATION OF MODAL SEISMOGRAMSE.3 Airy phasesFor realisti
 wave guides, one or several frequen
ies exist for whi
h the groupvelo
ity is stationary. In the following, we assume that ω0 is su
h a frequen
y.It also holds that U ′(ω0) = 0, (E.6) is, therefore, violated and (E.9) no longerholds. A su�
ient approximation of the phase is, in this 
ase,
ϕ(ω) = ϕ0 + ϕ′

0(ω − ω0) +
1

6
ϕ′′′

0 (ω − ω0)
3 (E.10)instead of (E.7). From (E.2) and (E.4), it follows that

ϕ′
0 = t− r

U0
, ϕ′′′

0 = rU−2
0 U ′′

0 . (E.11)The phase is no longer stationary at ω0 but has a turning point there. Thethird term in (E.10) has now to be 
onsidered sin
e ϕ′
0 
hanges from negativevalues t < r/U0 to positive values for t > r/U0 and, thus, the se
ond term in(E.10) is not ne
essarily dominant. In analogy to (E.8), the following approxi-mation of the modal seismogram for times near r/U0 
an be derived (Airy phaseapproximation)

N(t) = r−
1
2Re

∫ ω0+∆ω

ω0−∆ω

M(ω)

· exp

[

i

(

ϕ0 + ϕ′
0(ω − ω0) +

1

6
ϕ′′′

0 (ω − ω0)
3

)]

dω

≃ r−
1
2Re

{

H · b ·
∫ +∞

−∞

exp

[

i

(

ϕ′
0 · b · x+

x3

3
signϕ′′′

0

)]

dx

}

= 2r−
1
2Re {H} · b ·

∫ ∞

0

cos

[

signϕ′′′
0 · ϕ′

0 · b · x+
x3

3

]

dxwith x =

(

|ϕ′′′

0 |
2

)
1
3

(ω − ω0), H = M(ω0)e
iϕ0 and b =

(

2

|ϕ′′′

0 |

)
1
3 .The integral 
an be expressed by the Airy fun
tion

Ai(z) =
1

π

∫ ∞

0

cos

(

zx+
x3

3

)

dx,whi
h is shown in Fig. E.2.
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



E.3. AIRY PHASES 225
-2 0 2 4

-8
-6

-4

-0.5

0.5

z

Ai(z)

Fig. E.2: Airy fun
tion.With (E.11), the end result for the Airy phase 
an be written as
N(t) =

2

r
5
6

(

2U0

|U ′′
0 |

)
1
3

Re
{

M(ω0) exp [i(ω0t− k0r]
}

·Ai
[

signU ′′
0

r
1
3

(

2U2
0

|U ′′
0 |

)
1
3
(

t− r

U0

)

]

. (E.12)
This is a mono
hromati
 os
illation with frequen
y ω0 (following from U ′(ω0) =
0), the amplitude of whi
h is modulated by the Airy fun
tion.If signU ′′

0 > 0, i.e., if we are at a group velo
ity minimum, the modal seis-mogram looks qualitatively like that in Fig. E.3 (the argument z of the Airyfun
tion in
reases with t).
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226 APPENDIX E. THE COMPUTATION OF MODAL SEISMOGRAMS
t

N(t)

t=r/u
0Fig. E.3: Modal seismogram.The seismogram ends with strong amplitudes in the neighbourhood of the the-oreti
al arrival times of the Airy phase. Fig. 4.13 gives quantitative results fora liquid wave guide; in the range of the Airy phases, the seismogram has been
omputed with the theory if this 
hapter.If signU ′′

0 < 0 (i.e., we are near a group velo
ity maximum), z de
reases for in-
reasing t, and the Airy fun
tion is sampled from right to left. The seismogram,therefore, starts with large amplitudes.The amplitudes of the Airy phases de
rease with r−5/6 as a fun
tion of distan
er, i.e., they de
rease slower then given in (E.9). This is the reason why the Airyphase dominates for in
reasing distan
es.
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