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Preface

When Gerhard Miiller chose to leave us on 9 July 2002 because of his illness, we
lost a teacher and colleague. Part of his legacy is several lecture notes which he
had worked on for more then 20 years. These notes have become the backbone
of teaching seismics and seismology at basically all German universities. When
asked some years before his death if he had considered to translate "Theorie
Elastischer Wellen" into English and publish it as a book, his answer was "I
plan to do it when T am retired". We hope that our effort would have found his
approval.

We would like to thank R. and I. Coman (Universitdt Hamburg) for preparing a
first, German draft in LATEX of this script, A. Siebert (GFZ Potsdam) for her
help in preparing the figures and our students for pointing out errors and asking
questions. We would like to thank A. Priestley for proof-reading the script and
turning Deutschlish into English and K. Priestley for his many comments.

We thank the GFZ Potsdam and the Dublin Institute for Advanced Studies for
their support during a sabbatical of MW in Dublin, where most of this book
was prepared. We would also like to thank the GFZ for continuing support in
the preparation of this book.

M. Weber G. Riimpker D. Gajewski

Potsdam, Frankfurt, Hamburg
January 2007

This file can be downloaded from http://gfz-potsdam.de/mhw /tew/
tew_2007.ps(64M B) + tew _2007.pdf (3.5M B)
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Preface of the German Lecture Notes

This script is the revised and extended version of a manuscript which was used
for several years in a 1- to 2-semester lecture on the theory of elastic waves
at the universities of Karlsruhe and Frankfurt. The aim of this manuscript is
to give students with some background in mathematics and theoretical physics
the basic knowledge of the theory of elastic waves, which is necessary for the
study of special literature in monographs and scientific journals. Since this is
an introductory text, theory and methods are explained with simple models
to keep the computational complexity and the formulae as simple as possible.
This is why often liquid media instead of solid media are considered, and only
horizontally polarised waves (SH-waves) are discussed, when shear waves in
layered, solid media are considered. A third example is that the normal mode
theory for point sources is derived for an ideal wave guide with free or rigid
boundaries. These simplifications occasionally hide the direct connection to
seismology. In my opinion, there is no other approach if one aims at presenting
theory and methods in detail and introducing at least some aspect from the
wide field of seismology. After working through this script students should, I
hope, be better prepared to read the advanced text books of Pilant (1979), Aki
and Richards (1980, 2000), Ben-Menahem and Sing (1981), Dahlen and Tromp
(1998), Kennett (2002) and Chapman (2004), which treat models as realistically
as possible.

This manuscript has its emphasis in the wave seismic treatment of elastic body
and surface waves in layered media. The understanding of the dynamic prop-
erties of these two wave types, i.e., their amplitudes, frequencies and impulse
forms, are a basic prerequisite-requisite for the study of the structure of the
Earth, may it be in the crust, the mantle or the core, and for the study of
processes in the earthquake source. Ray seismics in inhomogeneous media and
their relation with wave seismics are discussed in more detail than in earlier
versions of the script, but seismologically interesting topics like eigen-modes of
the Earth and extended sources of elastic waves are still not treated, since they
would exceed the scope of an introductory lecture.

At several places of the manuscript, exercises are included, the solution of these
is an important part in understanding the material. One of the appendices tries
to cover in compact form the basics of the Laplace and Fourier transform and
of the delta function, so that these topics can be used in the main part of the
script.

I would like to thank Ingrid Hérnchen for the often tedious writing and correct-
ing of this manuscript.

Gerhard Miiller
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Chapter 2

Foundations of elasticity
theory

Comments

In this chapter symbolic and index notation is used, i.e., a vector (symbolic

notation 7) is also written as f; (components f1, fa, ..., fn), the location vector
(symbolic ') as x; (components 1, x5 x3 ), and a matrix (symbolic a) as a;;
(i =lineindex =1,2,...,m,j =row index=1,2,...,n). The product of matrix

a;; with the vector f; is the vector
n
gi:Zaijfj (i:1,2,...7m).
J=1
A short notation for this is (summation convention — SC')

9i = a;j .

In the following text, if a product on the right occurs in which there is a repeated
index, this index takes all values from 1, 2, ..., n (usually n = 3) and all products
are summed.

If the symbolic notation is simpler, e.g., for the cross product of two vectors or
for divergence or rotation, the symbolic notation is used.

11
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12 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
2.1 Analysis of strain

2.1.1 Components of the displacement vector

Consider a body that is deformed by an external force. Before deformation, the
point P has the location vector x; and the infinitesimal close point ) has the
location vector x; + y;. The components of y; are assumed to be independent
variables; this is why dz; was not used. After deformation, P has been displaced
by the displacement vector u; to P’, and @ has been displaced to @’ by the
vector (expansion up to linear terms)

8ui

6—xjyj (SC)-

zi = u; + du; = u; +

neighbourhood of P
Q \) after deformation

neighbourhood of P

before deformation

Fig. 2.1: Neighbourhood of P and Q before and after deformation.

Vector z; describes (for variable @) in the neighbourhood of P) the changes near
P due to the deformation. In general, these changes consist of: a translation,
a rotation of the whole region around an axis through P and the actual de-
formation, which changes the length of lines (rotation and deformation will be
discussed later in more detail)

zi = ui +du; = u; + €ijY; + &y
translation deformation rotation
1 (91,% 8Uj 1 (91,% 8Uj
= = , = — E——. 2.1
€ 2 (6:5] + 5!&) fj 2 <5{EJ 8%) ( )
€¢j = 6ji (2'2)
§ii = —& (=& =8%2=E83=0). 2.3
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2.1. ANALYSIS OF STRAIN 13

The matrices €;; and §;; are tensors of 2nd degree. €;; is symmetric due to (2.2)
and &;; is anti-symmetric due to (2.3). €;; is called deformation tensor and &;;
is called rotation tensor.

2.1.2 Tensors of 2nd degree

A tensor of 2nd degree, t;;, transforms a vector into another vector (e.g., €;;
transforms vector y; into the deformation part of du;; another example of this is
the inertial tensor transforms the vector of the angular velocity into the rotation
impulse vector (rotation of a rigid body)). If the coordinate system is rotated,
the tensor components have to be transformed as follows to yield the original
vector

ty, = Qikajiti; (SC twice) (2.4)

Qmn = COSYmn (see sketch).

t,,; = Tensor component in the rotated coordinate system (dashed line in sketch).

Fig. 2.2: Coordinate system of tensors of 2nd degree.

For a certain orientation of the rotated system, the non-diagonal elements
t',,t . ,t, ... vanish. These coordinate axis are called main azes of the tensor,
and the tensor is in diagonal form. In the diagonal form, many physical relations
become simpler. Certain combinations of tensor components are independent
of the coordinate system of the tensor. These are the three invariants (11, Tb,
T5 are the diagonal elements of the tensor in diagonal form). More on tensors

can be found in, e.g., Riley, Hobson and Bence.
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14 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

t11 ti2 113

L = | tar taa o = T15T3 (determinant,)
l31 t32 133
Iy = t11 +tag + 33 =T1+Tr+T;s (trace)

Is = ti1tog + tootss + t33tii—

t12t21 — ta3t3z — 31113 =TTy +T5T3 + T5T7.

2.1.3 Rotation component of displacement

The rotation component of displacement follows from

0 12 &3 Y1 &12Y2 + &13Y3 .
&2 0 &3 y2 | = —&eyi+&sys | = E XY
&3 —&3 0 Y3 —&13y1 — §23Y2

. 1
with ? = (—&23,&13, —&12) = §V X .

Vector ? x 7/ describes an inﬁnitesimal_)rotation of the region of P around
an axis through P with the direction of . The rotation angle has the abso-
lute value ‘? and is independent of 7 (show). A prerequisite is that ? is

infinitesimal. A sufficient condition for this is that

8Ui

oz, <1 for all 7 and j. (2.5)

2.1.4 Deformation component of displacement

After separating out the rotation term, only the deformation term is of interest
since it describes the forces which act in a body. The deformation is described
completely by the six components ¢;; which are, in general, different. These
dimensionless components will now be interpreted physically.

The starting point is du; = €;;y;, i.e., we assume no rotation.

a) During this transformation, a line remains a line, a plane remains a plane, a
sphere becomes an ellipsoid and parallel lines remain parallel.

b) Deformation components €11, €22, €33

Coordinate origin at P and special selection of Q : y; # 0,y2 = y3 = 0.
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2.1. ANALYSIS OF STRAIN 15

2
Q!
du,
P Y Q du, 1
Fig. 2.3: Sketch for deformation components.
dup = eny
duy = €y
duz = e31y1 =0 (assumption : €31 =0).

€11 = % is the relative change in length in direction 1 (not the relative change
in length of PQ, see also d). Stretching occurs if €17 > 0 and shortening if
€11 < 0. Similarly, €25 and €33 are the relative length changes in direction 2 and
3.

c) Shear components €12, €13, €23

2 before
du, after

} deformation

Fig. 2.4: Sketch for shear components.

Ql - Qll Dduy = €21Y1 = €12Y1
QQ —>ng duy = €12Y2
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16 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

dUQ
tana ~>a >~ — = €19

Y1

du
tanﬂzﬂz—l = €12.

Y2

This means, €12 is the angle around which the 1- or 2-axis is rotated. The
right angle at P is reduced by 2¢12. If the parallelogram is not in the 1-2 plane
after deformation (since €13, €23 or €33 is non-zero), these statements hold for

3

the vertical projection in this plane.
Similar results hold for €13 and eo3.

d) Length changes of distance PQ

3 1/2
BT 2
P = = {Z(yz + €55Y;) } =
3 3 1/2
{ny + 26559y + ) (eijyj)Q} :
=1 1=1

The 1st, 2nd and 3rd term require SC once, twice and three times, respectively.
The 3rd term contains only squares of ¢;; and can, within the framework of
infinitesimal strain theory treated here, be neglected relative to the 2nd term
(the prerequisite for this is (2-5))
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2.1. ANALYSIS OF STRAIN

2 2 1
l=1p| 1+ 2EaYiYi ) = lo+ T €iaYiYs-
0 0

Relative length changes

I — 1o :e'-%
lo Yoz

n; = ¥i _ unit vector in direction of y;.
lo

= €;;n;n; (SC twice; quadratic form in ny)

17

Approaches for finite strain theory exist (see, e.g., Bullen and Bolt). Such a
theory has to be developed from the very start. Then, for example, the simple
separation of the rotation term in the displacement vector, which is possible
for infinitesimal deformations, is no longer possible. The deformation tensor €;;

also becomes more complicated.

e) Volume changes (cubic dilatation)

We consider a finite (not infinitesimal) volume V containing point P surface
with S. After deformation, for which we assume without loss of generality that

P remains in its position, volume V is changed by AV.

after
deformation

before deformation
(volume V, surface S)

Fig. 2.6: Sketch for volume changes.

AV:/undf.
5

Transformation of this surface integral with Gauss’ law gives

sz/v-mlv,
1%
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18 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

and the relative volume change can be written as

AV 1 .
I . g 2.
T /v V- wdv. (2.6)

Into the limit V' — 0 (shrinking to point P), this becomes

This limit is called cubic dilatation.
From (2.6) with (2.1), it follows that
- 8U1 5u2 5U3

Oy Oxy O

O=V-u:

= €11+€22+€33 (trace of the deformation tensor).

For © > 0 the volume increases, for © < 0 the volume decreases.

2.1.5 Components of the deformation tensor in cylindrical and spher-
ical coordinates

p
Zz
r
o
Fig. 2.7: Cylindrical coordinates , @, z.
T o= (up, Uy, uz)
ou,
€rr =
or
10uy, — uy
€ = ——F 4+ —
v r Jp r
ou,
€2z = S
0z
2%, — 10u, | Ouy  uy

r Jp or r
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2.1. ANALYSIS OF STRAIN 19

9 _ Ou, n ou,
e O or
ou 10u
%, = 24 -z
“o 5z ' r o

The components refer to the local Cartesian coordinate system in P.

Fig. 2.8: Spherical coordinates r, 9, \.

= (urauﬂau)\)
ou,
€rr =
or
10uy  u,
€ = —— 4+ —
o r 0U r
1 Ouy n Uy n cot
€ = — + — U
A rsind O\ r Y
10u, 0
2e,, — LOur  Ouw

r 09 or r

1 Ou, Oun uy
2\ = ——— gur U
rA rsind O\ + or r

Sepy = b Ow  1dun coty
AT Tsind ox 1 o0 P

Exercise 2.1

How does a rectangular cube with edges parallel to the main axis system of the
deformation tensor deform (length of edges a, b, ¢)? Confirm the equation

© = €11 + €29 + €33
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20 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

Exercise 2.2

Split the deformation tensor into one part that is pure shear (no volume change)
and another part that is pure volume change (no shear).

Exercise 2.3:

Derive the components of the deformation tensor in cylindrical coordinates.
Hint:

y’ :yi+ dU‘l

|

P(r,¢,2 Q(r+dr,+dd ,z+d2)
Fig. 2.9: Displacement vectors to be used.

With respect to the local Cartesian coordinate system in P, it holds that

Yy = dr Uy = Up
Yo = rdp Uy = Uy
ys = dz Uz = Uy.

Determine first the cylindrical coordinates of P’ and ()’ under the condition of
infinitesimal displacement, and deformation. Then give the components of the
vector y/ = y; + du; in the local Cartesian coordinate system of P’ similar to
the definition of y;, in the system of P. This requires linearisation. This then
allows the derivation of vector du; in the form

dui = VijY;

and the determination of tensor v;;. The deformation tensor is the symmetric
part of v;;

1
¢ij = 5 (0ij +vji).
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2.2. ANALYSIS OF STRESS 21

2.2 Analysis of stress

2.2.1 Stress

In a deformed body, a volume element is subject to body forces (proportional
to volume, e.g., gravity, centrifugal force, inertial force) and to surface forces,
which originate from neighbouring volume elements (proportional to surface).
The later is the topic here. We consider a body K; with the surface S within
a deformed body K (see Fig. 2.10). If K5 is removed, K; will, in general,
assume a new equilibrium configuration. This indicates that K5 has exerted
forces through S on K. To bring K3 back to its original form, Frsatz forces
PAf (A f—surface element) have to be applied on S.

The same forces were exerted by K. P with the dimension force/surface is
called traction. Its direction and size depend on:

1. The location of the surface element A f

2. Tts normal direction 7 (defined as the direction pointing out of K;).

Fig. 2.10: Body K7 within a deformed body K.

The component of P parallel to 7 is called normal traction (= pull or pressure
traction).

The component of P perpendicular to 7 is called tangential traction, shear

traction or thrust traction.

If P is known everywhere in the body and for all directions 7, the stress within
the body is known. For this, six functions must be known.

2.2.2 Stress tensor p;;

We consider a body in an infinitesimal tetrahedron ABCD and assume, that
the traction of the three sides ABD, ABC, and ACD are known.
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22 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

- P
Fig. 2.11: Infinitesimal tetrahedron ABCD.

From this, we will compute the traction tensor P of BCD. Because the tetrahe-
dron is small, all tractions are constant over their corresponding surfaces. The
normal directions and surfaces are

ABD: negative 2-direction, A fo
ABC'": negative 3-direction, A f3
ACD: negative 1-direction, A f;
BCD: @ = (n1,na,n3), Af

Afj = Afn;. (2.7)

We assume that the forces and traction vectors on ABD, ABC and ACD are
known for the positive 2-, 3- and 1-direction, respectively

ABD: ﬁAfg, 1?2) = (p21, P22, P23)
ABC: E)Afg, 17; = (p31,p32,P33)
ACD: ?{Afl, E) = (p11,P12,P13)-

This means that nine functions p;; are known. After neglecting the body forces
(which decrease faster then the surface forces for a shrinking tetrahedron), the
force balance at the tetrahedron can be written as

~P;Af;+ PAf =0.
With (2.7), it follows (SC)

P =P, (2.8)
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2.3. EQUILIBRIUM CONDITIONS 23

Therefore, it is sufficient to know the traction vectors of three perpendicular
surface elements to determine the traction vector for an arbitrarily oriented
surface element. In index notation, (2.8) can be written as (note: P; is a
component of ?, }3; is a vector)

Py = p1ing + paing + p3ins.

In general, it holds that P; = p;;n,. (SC)

The nine functions p;; form the stress tensor. It is valid for a certain right-angle
coordinate system. The components p;1, pi2, pi3 give the traction vector for a
surface element, the normal of which is in the direction of the positive i-axis.
pii (€d.,p11, P22, orpss) is the normal stress, the two other components are the
tangential stresses, respectively. As will be shown in the next section (see also
exercise 2.6), the stress tensor is symmetric, i.e.,

Pij = Pji.
Therefore, P; = pjn; or in the usual notation

Py = pijn;. (2.9)

In general, the stress tensor has six independent components.

Exercise 2.4
a) Give the stress tensor for hydrostatic pressure p.

b) Give the stress tensor for the interior of an infinite plate which is fixed at
one side (bottom), whereas at the other side (top) the shear traction 7 acts

everywhere in the same direction.

Exercise 2.5

—

Show that if P is the traction for direction 7, and P’ for the direction ?7 it
—

holds that Pn/ = P'7.

2.3 Equilibrium conditions

The equilibrium conditions for a finite volume V in a deformable body require
that the resulting force and the resulting angular moment vanish
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24 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

/ Fav —|—/ Pdf =0 (resulting force) (2.10)

% s

/ (T x F)dV + / (% x P)df =0 (resulting moment) (2.11)
v s

Fig. 2.12: Finite volume V in a deformable body.

where I — body forces including inertial force (dimension: force/ volume —
force density) and

P traction vector on S (normal 7 towards the outside).

Equation (2.10) gives the equation of motion of the elastic continuum. For each
component (only Cartesian components can be used)

/EdV-l—/Pidf:/ FidV+/pijnjdf:0.
\4 S 14 S

pijn; can be understood as the normal component F;, of the traction ]_3: =
(pi1, piz2, pis) relative to the ith-direction. Application of Gauss’ theorem gives

S Vv

therefore,
/(E+V-F;)dvzo.
1%

This holds for every arbitrary volume V. Therefore, the integrand has to vanish

Ipi1 Opi2 Opis
F; =0
+ 83;1 + 8332 + 8333
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2.3. EQUILIBRIUM CONDITIONS 25

or

Opij _
Fit gt =0 (50)

with the components of F : F; = —p% + fi (p = density).

The first term is the inertial force; f; contains all other body forces. Within the
framework of the theory of infinitesimal deformation, the implicit differentiation
% can be replaced by the local differentiation, i.e., partial differentiation %
dA 6A+ 0A Oz;  0A
dt — ot oz ot Ot

(A = infinitesimal parameter, e.g. u;).

Then, this gives the equation of motion (SC)

u;  Opi;
Por = Bz,

+ fi (2.12)

At rest, normally p;; # 0 and the remaining stress is called the initial stress.
It exists, when objects composed of materials with different thermal expansions
coefficients are cooled, or by the self-compression of objects in their own gravity
field (in this case the initial stress is the hydrostatic pressure). Assume that for

a body at rest p;; = pl(?) and f; = fi(o). Then (2.12) holds and

opy;

(0)

=0, 2.13
G+ ! (213)
The pre-stressed body will be deformed by time-dependent body forces (e.g., an
earthquake in the Earth’s crust). In the case of a sufficiently small additional
stress (and only then), the following separation is valid

pij = pg?) +p$—) fi= 1O 4+ 1.

With (2.13), it follows from (2.12), that

Pui _0py) )
o oay T

This means that the displacement u; from the pre-stressed state depends only
on the additional stress and the additional body forces. In the following, p;;
and f; in (2.12) will always be understood in that sense, i.e., at rest p;; = 0 and
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26 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

fi = 0. This assumption is sufficient for the study of elastic body and surface
waves in the Earth. In the case of normal modes and tides, where large depth
ranges and even the whole Earth moves, p;; in (2.12) is the complete stress
tensor, including the hydrostatic contribution. In this case, f; represents all
external forces, including the gravitational force of the Earth itself. The reason
for this is that, in this case, because of the large size of the hydrostatic pressure
during deformation, the change of this pressure cannot be neglected. A simple
example is seen in the the radial modes of a sphere which have larger periods if
hydrostatic pressure and gravitational force are included.

Exercise 2.6

Derive the equation of motion without assuming the symmetry of the stress
tensor p;;; then derive this symmetry from the moment equation (2.11). Hint:
In the first part, use the stress vector in the form P; = p;;n; instead of (2.9). In
the second part, write (2.11) by components and use the result of the first part.

2.4 Stress-strain relations

2.4.1 Generalised Hooke’s Law

If a body in an unperturbed configuration shows a deformation associated with
a length change, this body is under stress. This means that in each point of the
body a relation between the components of the stress tensor and the deformation
tensor exists

pij = fij(€11, €12, .., €33;a1,Q2,...,0n). (2.14)

As indicated, other independent, parameters ay, such as time and temperature,
can occur. Generally, p;; at time ¢ can depend on the previous history at times
T with —oo < 7 < t. If, for example, a beam has suffered extreme bending
in the past, its behaviour will be different. The general study of (2.14) and a
corresponding classification of materials as elastic, plastic and visco-elastic, etc.
is the topic of rheology. For seismology, generally the most simple form of (2.14)
is sufficient, namely that p;; at a point depends only on the present values of
€ at that point. In this case, from € = 0 , it follows p;; = 0, i.e., deformation
ceases instantly if the stress ceases. This means

pij = fij(€i1, €12,.. ., €33) (2.15)
fi;(0,0,...,0) =0.

If these conditions hold, this state is called ideal elasticity. Under infinitesimal
deformation, p;; is a linear function of all e (expansion of (2.15) at ex; =0 )
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2.4. STRESS-STRAIN RELATIONS 27

Dij = Cijkl€kl (SC twice) (2.16)

cijii = elasticity constants.

Linear elasticity theory studies elastic processes in bodies under the following
assumptions:

1. The deformations are infinitesimal.

2. The stress-strain relations are linear.
The important assumption is 1.

The well-known Hooke’s Law, for the stretching of a wire or the shearing of a
cube, is a special case of (2.16). Equation (2.16) is, therefore, called generalised
Hooke’s law. Its range of applicability has to be determined by experiments
or observation. The relation in the following sketch holds, for example, for the
stretching of a wire. Between A and B the relation between force per square
unit of the cross section p;; and the relative change in length €7 is linear and
corresponds to (2.16) (£ — Young’s modulus).

P

11

Hooke’s Law: p = E€,

A €

11
Fig. 2.13: Sketch for the stretching of a wire.

Between B and C the relation is no longer linear but still corresponds to ideal
elastic behaviour, i.e., if py; is reduced to zero, no deformation €17 remains.
Beyond C' irreversible deformation occurs (plastic behaviour, flow of material).
Finally the wire ruptures.
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28 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

The tensor of 4th degree ¢;;; has 81 (9 x 9 =) components. Due to the symmetry
of the deformation and stress tensors, only 36 (6 x 6 =) components are inde-
pendent from each other. Since the elastic deformation energy (= elastic energy
per unit volume) is conserved, this number reduces further to 21 components
(see, e.g., pg. 268-269 in Sommerfeld). This is the maximum number of elas-
ticity constants an anisotropic body can have. For special forms of anisotropy,
and especially for isotropy, this number reduces further. For isotropic bodies
which do not have preferred directions, only two elastic constants remain. The
stress-strain relations (2.16) can then be written as

pij = A00ij + 2pe;; (2.17)

where A and p are Lamés elasticity constant and elasticity parameter, respec-
tively (both of which can be spatially dependent)

3

0 = €11 + €29 + €33 is the cubic dilatation, and

1 fori=j . .
0ij = { 0 otherwise } : is the Kronecker symbol or unit tensor

2.4.2 Derivation of (2.17)

We choose the main axis system of the stress tensor as the coordinate system,
which under isotropy is identical to that of the deformation tensor. We, fur-
thermore, have the main stress and deformation components Py, P>, P; and the
main deformations E1, F5, E3, respectively, which have a linear relation. In the
isotropic case, this becomes

P = aFi+ b(E2 + Eg)
PQ = CLEQ + b(El + Eg)
P3 = CLE3 + b(El + EQ).

The coefficient of F5 and Fj3 in the equation for P; have to be the same, since
for an isotropic body the main axes 2 and 3 contribute equally to the main stress
P;. The same holds for the other two equations. From this, it follows that

P = (a—0b)E; +b(E + Ez + E3) (2.18)
= 2uE; + ANE1 + E2 + E3),

where the constants a and b have been replaced by the Lamé parameters A and
1, respectively. This shows that (2.17) for the main axis coordinate system has
no shear component of the deformation tensor and no shear stress.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



2.4. STRESS-STRAIN RELATIONS 29

Using (2.4) for the transformation of tensor components, the stress and defor-
mations components in any coordinate system can be given as

_ 2 2 2 9 2 2

pi1 = ai Pr+az P +az Ps €11 = aj B+ a3 Ey + a3 B
_ 2 P, 2 P 2 P :

D22 = aipl1 +axelh +azpls :

pi2 = a11a412P + az1a22 P + az1a32P3 €12 = ayab +aziaks

+agiasa s

P23 = @120413P1 + aza23 P + azza33P3

(2.19)

For the directional cosines it holds that
Qi Q1 = 5kl (SC)

Using (2.18) in the left equation of (2.19) and using the equations on the right
gives

pi1 = 2pen + AMEy + Ey + Es)
P22 = 2pez + AL + By + E3)
P12 = 2uern
P23 = 2pegs

The relations for shear stress already have the final form; those for the normal
stress can be brought to the final form with the tensor invariants Fy 4 Es+ E3 =
€11 + €22 + €33. This concludes the proof of (2.17).

Expressing €y in terms of the derivative of the displacement vector, (2.17) can
be written in Cartesian coordinates as

8U1 8u2 6U3 8’1%

= - - —_Z 2 |
pii )\(8331 + 8332 + 83;3) + 2M8$1 (HO SC)
o 8uz 8uj . .

Equation (2.17) also holds in curved, orthogonal coordinates, like cylinder and
spherical coordinates, respectively, if the deformation tensor is given in these
coordinates (compare section 2.1.5). p;; refers then to the coordinate surfaces
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30 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

of the corresponding system. Finally, it should be noted that p;; is usually
understood as a stress added to a pre-stressed configuration.

The assumption that rocks and material of the deep Earth are isotropic is of-
ten valid. The crystals which make up the rock building minerals are, on the
other hand, mostly anisotropic, but if they are randomly oriented, the material
appears macroscopically isotropic.

2.4.3. Additions
Thermo-elastic stress-strain relations

These are examples of relations in which stress not only depends on deforma-
tion, but also on other parameters, e.g., temperature (o = volume expansion
coefficient, T — Ty — temperature change)

2
Pij = )\@5” + 2M€¢j — (/\ + g,u)Oé(T — T())(Sij.

Relation between \ and p and other elasticity parameters

FE = Young’s modulus
o = Poisson’s ratio
k = Bulk modulus

7 = Rigidity
_ u(3)+2p) _ a2
P=xw T FeAt
E
_ _ oE —
T=H A= oz F= o +o)

In ideal fluids 7 = p = 0, there is no resistance to shearing. Then k = X\ and o =
0.5. Within the framework of elasticity theory, fluids and gases behave identi-
cally, but the bulk modulus of fluids is significantly larger than that of gases.
Their Poisson’s ratio o lies between -1 and 0.5; negative o values are rare (com-
pare Exercise 2.8). For rocks, o is usually close to 0.25; o = 0.25 means A = p.

Exercise 2.7

Derive the formula for k. k is defined as the ratio —& in an experiment in which
a body is under pressure p from all sides and has the relative volume change
© < 0. Describe the deformation and the stress tensor and then the stress-strain
relation.
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Exercise 2.8
Derive the formula for F and 0. FE is defined as the ratio ’Eill and o is the

ratio —;Lf in an experiment, in which a wire or rod is under extension force p11

in the 1-direction (e17 = extension, — €39 = perpendicular contraction, e33 =
?, pao =7, ps3 =7). Proceed as in exercise 2.7. What is the meaning of o < 07

2.5 Equation of motion, boundary and initial con-
ditions

2.5.1 Equation of motion

Using (2.17) in the equation of motion (2.12), which depends on p;;, this equa-
tion only depends on the components of the displacement vector

62ui
P o

= a%j()\@éij + 2#6@') + fi

= 200) + o2 [ (8 + )] + (2:20)

If A and g are independent of location (homogeneous medium) it follows that

82ui - /\3_@ + 821“ + aQui aQui 8 % + % + % + f
P ~ ox; H ox? = Ox3 Ozt  Ox; \Om1  Oze  Oxs !
82u1' 8@ 2
P = A tn) oz, NV u; + fi. (2.21)

This is the equation of motion for homogeneous media in Cartesian coordinates.
)

In symbolic notation (0 =V - @

52u1‘
P o

=A+pVV-T+uViT + f. (2.22)

This is only valid for Cartesian coordinates. V2 is the vector (V2uy, V2ug, V2u3).
In Cartesian coordinates
V2T =VV-T-VxVxT. (2.23)

(Verify that in curved orthogonal coordinates (2.23) defines the vector V27,
and it is not identical with the vector, which results from the application of V2
on the components.) Inserting (2.23) in (2.22) gives
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32 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

0*w

P = A+ 2V VT —pV x VX T+ T (2.24)

This form of the equation of motion is independent of the coordinate system.
It is the starting point for the following section: according to section 2.3,
contains only the body forces which act in addition to those of the forces at rest.

2.5.2 Boundary conditions

On a surface in which at least one material parameter p, A or pu is discontinuous,
the stress vector, relative to the normal direction of this surface, is continuous.
To show this, consider a small flat circular cylinder of thickness 2d which encloses
the boundary between the two media. The sum of all forces acting on the
cylinder (body forces in the interior and surface forces on its surface) has to be
Zero.

Medium 1

Medium 2 P,

Fig. 2.14: Circular cylinder of thickness 2d enclosing the boundary between two
media.

In the limit d — 0, only the surface forces on the top and bottom surface Af,
have to be considered

PIAf+(-P)Af =0.

From this, it follows that ]7{ = E) This means that at boundaries normal and
tangential stress are continuous.

For the displacement, it holds that at a solid-solid boundary, all components
are continuous (no sliding possible). At a solid-liquid or liquid-liquid boundary
only the normal displacement is continuous.

Example: A body consists of two half-spaces, separated by a plane at z = 0.
The displacements are u,, uy, u., and the stresses are Pz, Pyy, P2z, Days Dazs Dy=-
The boundary conditions z = 0 for the different combinations of half-spaces are
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solid — solid : Uy Uy, Uz s Pazy Pyz, P2z CONLiNUOUS
solid — fluid : Uz, P, continuous, p,, = p,. =0
fluid — fluid : Uy, Ps, continuous
solid — rigid : Uy = Uy =u; =0
fluid — rigid : u, =0

solid — vacuum : 22 = Pyz = Pzr = 0

fluid — vacuum : ]]jzz = g?! s } free surface .

If at a surface with the normal vector n;, the stress is not zero (stress vector
P;), the stress vector in the body has to acquire this boundary value

pn; = P, (2.25)

pE;) are the boundary values of the components of the stress tensor at the sur-

face, and they can be calculated from (2.25).

Example: P(t) on a plane surface. For the case of pressure

P(t .
N R
y y Lax=0
X

Fig. 2.15: Pressure on a plane surface.

W= (_17070) = (n1;n27n3)

P = (P(1),0,0) = (P1, P>, %)

Equation (2.25) yields —pEI) = P; or

P11 = Pxx = _P(t)

P12 = Pay = 0 for x = 0.

P13 = Pxz = 0

Similarly, displacements can be prescribed on the surfaces of a body.
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34 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

2.5.3 Initial conditions

The initial conditions prescribe the spatial distribution of certain parameters,
in our case the displacement u;(x1, x2, x3,t) and the particle velocity du; /0t for
t=0

ou;
ui(xlvaam:)’aO) = f1($15m25m3)7 _1('7:17'7:27'73370) = fQ(x17x25m3)'

ot

The general wave propagation solution is an initial and a boundary problem,
i.e., in addition to the equation of motion, the boundary and initial conditions
have to be satisfied. Normally in seismological applications f; = f» = 0, and
no special initial conditions have to be satisfied. The main problems are then
to consider the boundary conditions.

2.6 Displacement potentials and wave types

2.6.1 Displacement potentials

A vector W can, in general, be described as

UW=VP+VxVT (2.26)

where ® is a scalar potential and T a vector potential. In our case, where u is
a displacement field, both are called displacement potentials. (Do not confuse
them with the elastic potential, i.e., the elastic deformation energy.)

d is called coanression potential and T shear potential. If the vector W is
given, ® and ¥ can be computed (compare exercise 2.9)
1 - =
d=— av
47 r3
— 1 U X T
=— | ——dV. 2.27
4T r3 (2:27)

Vector 7 (with absolute value r) points from the volume element dV to the

poin‘r._)where ® and ¥ are computed. The integration covers the whole volume.
For W, there is the additional requirement that

V.U =0 (2.28)

— . . . .
WU has to be determined in Cartesian coordinates.
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V @ in (2.26) is called compressional part of @. Tt is free of rotation and
curl. According to section 2.1.4, the volume elements suffer no rigid rotation,
but only a deformation, which, in general, consists of a volume change and a
shear component (in the sense of exercise 2.2; section 2.1). In the main axis
system of the deformation tensor, only volume changes occur (compression or
dilatation). The contribution V x U in (2.26) is called shear component. It
is free of divergence and source contributions; the volume elements suffer no
volume change, but shear deformation and rigid rotation.

Similarly to (2.26), the body force 7 in (2.24) can be split into

T =Ve+Vx . (2.29)

Do not confuse the vector potentials T and @)

Using (2.26) and (2.29) in (2.24) gives

2¢ 2y
p V%?—FVX %71 = (A +2u)VV2® -V x Vx Vx @>+VQP+VX w

(2.30)

We try now to equate all the gradient terms and also, separately, the rotation
terms of this equation. If the resulting differential equations can be solved,
(2.30) and, therefore, (2.24) are satisfied. This leads to

FoRki
v [pﬁ — (A +2u) V2 — w] =0

2—)
- =
V x p6t2 +uVx Vx ¥ -1 = 0.
Since the content of the square brackets has to vanish
1 0%® ® A2
Vo - —— =— 2=
a? Ot? A+ 2u “ p
1 9V E) I
—VXVX?———:—— 2= 2.31

The potentials ¢ and E’ have to be determined from 7 using (2.27). If no
body forces act, ¢ = 0 and E) = 0. The equation for ® is an inhomogeneous
wave equation. In Cartesian coordinates the components of ¥ give also inho-
mogeneous wave equations due to (2.23) and (2.28). In other coordinates, the
equations for the components of ¥ look different (compare exercise 2.10).
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Both simplifications used are, as experience has shown, justified. The problem
can, therefore, be solved either via (2.24) or (2.31). In more complicated cases,
(2.31) is easier to solve. In this case, the boundary conditions for displacement
and stress have to be expressed as those for & and .

2.6.2 Wave types

The general discussion of the differential equations (2.31) shows that they have
solutions which correspond to waves (for details, see section 3.1). Perturbations
in the compressional part of the displacement vector propagate as compressional
waves with the velocity a = (A + 2/1)/p)1/2 through the medium. Perturba-
tions in the shear part propagate as shear waves with the velocity 8 = (u/p)*/?.
Thus, we have found the two basic wave types, which can propagate in a solid
medium. For rocks, it usually holds that A = p. In this case, it follows that
a/f = 31/2. In liquid or gases, only compressional waves (sound waves) can
propagate since p = 0.

Often compressional waves are called longitudinal waves and shear waves are
called transverse waves. The displacement vector in a longitudinal wave is par-
allel to the propagation direction and perpendicular to it in a transverse wave.
A compressional wave is, in general, primarily longitudinally polarised, and a
shear wave is primarily transversely polarised. The identification is, therefore,
not fully valid. There exist special cases in which a compressional wave is
transversal and a shear wave is longitudinal (see section 3.5.1 and exercise 3.5
in chapter 3).

The seismological names for compressional and shear waves are P-waves and
S-waves, respectively. This indicates that the P-wave is the first wave arriving
at a station from an earthquake (P from primary), whereas the S-wave arrives
later (S from secondary).

In a homogeneous medium, compressional waves and shear waves are decoupled,
i.e., they propagate independently from each other. This no longer holds for in-
homogeneous media in which A, x and/or p, and, therefore, o and (3, vary from
point to point. But in this case, usually two wave types propagate through
the medium, and the travel times of their first onsets are determined by the
velocity distribution of o and f3, respectively. The faster of the two waves is no
longer a pure compressional wave but contains a shear component. The slower
wave is, correspondingly, not a pure shear wave but contains a compressional
contribution. This becomes plausible if one approximates an inhomogeneous
medium by piece-wise homogeneous media. Satisfying the boundary conditions
at the interfaces between the homogeneous media usually requires, on both sides,
the existence of compressional and shear waves. Details on this will be given
in section 3.6.2. Compressional and shear waves which are decoupled in ho-
mogeneous sections of the medium, create reflected and refracted waves of the
other type, respectively, at interfaces. This change in wave type occurs contin-
uously in continuous media and is stronger the stronger the changes in «, 3,

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



2.6. DISPLACEMENT POTENTIALS AND WAVE TYPES 37

and/or p per wave length are. The theory for continuous inhomogeneous media
is much more complicated then the theory for piece-wise homogeneous media.
Media in which «, 3 and p depend only on one coordinate, e.g., depth, can,
for many seismological applications, be approximated by layers of homogeneous
media. For such configurations, effective methods for the use of computers exist.

Exercise 2.9

Show (2.27) by comparing (2.26) with the equation
V@ =VV-@-Vx Vx@

and consider, that the Possion equation V2@ = % has (in Cartesian coordi-
nates) the solution

Exercise 2.10

Write (2.26) in cylindrical coordinates (7, ¢, z) under the condition that the
medium is cylindrically symmetric, and the @-component of @ is zero (¥, =
¥, =0). What is the form of (2.31) for vanishing body forces?

Exercise 2.11

Show that in a liquid with constant density p, but variable compressional module

2
k and pressure p, satisfies the wave equation V2p = % % with spatially varying

sound velocity a = (k/p)/2.

Hint: Derive from the equation of motion (2.12) without body forces, the equa-
tion pd?w /0t? = —Vp and apply then the divergence operation i.e. (p =
—kV-).
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Chapter 3

Body waves

3.1 Plane body waves

The most simple types of waves can be derived, if for an unbounded medium
(full-space), solutions of the equation of motion are determined which depend
only on one spatial coordinate. For example, we look for a solution of (2.21)
or (2.24) in the form of W = (uy(z,1),0,0), i.e., @ points in z-direction and
depends only on z and the time ¢. Alternatively, we look for a solution in the
form of @ = (0, uy(z,t),0), i.e., W points in y-direction and depends also only
on z and t. In the first case, it follows from (2.21) for f; =0

02u, 1 0%, o A+2u

) ) « )
ox? a? Ot? p

and in the second case,

0%uy, _ i82uy 5 = Iz
oz (% o2 p

These are one dimensional wave equations. In the following, we consider the
general form

0? 107
gu_ 2 (3.1)

ox? 2 Ot?

The most general solution of this equation is
u(z,t) = F(x — ct) + G(z + ct), (3.2)

39
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40 CHAPTER 3. BODY WAVES

where F(z) and G(z) are any twice differentiable functions (check that (3.2)
solves (3.1)). Another form is

u(x,t):F(t—%)—i—G(t—i—%). (3.3)

The first and the second term in (3.2) and (3.3) have to be interpreted as waves
propagating in the positive and negative z-direction, respectively. For example,
the first term in (3.3) for # = 1 can be written as

w(ar,t) = F (t - “’—Cl) — P (b).

For another distance x2 > 21

S ) B e e ) R (e §

This means that for time ¢ at distance x5 the same effects occur as at distance
x1 at the earlier time ¢ — (2 — x1)/c. This corresponds to a wave which has
travelled from z; to a9 in the time (z2 — x1)/c. The propagation velocity is,
therefore, ¢. The wavefronts of this wave, i.e., the surfaces between perturbed
and unperturbed regions, are the planes = const. Therefore, these are plane
waves. If G(x) in (3.2) or G(t) in (3.3) are not zero, two plane waves propagate
in opposite directions.

In the case of u = u,, we have a longitudinal wave (polarisation in the direction
of propagation); in case of u = u,, we have a transverse wave (polarisation
perpendicular to the direction of propagation).

Harmonic waves can be represented as
u(x,t) = Aexp {iw(t — E)] = Aexpli(wt — kx)]
c

with A— Amplitude (real or complex), w— angular frequency v = w/27— fre-
quency, T = 1/v— period, k = w/c— wavenumber and A = 27/k— wave length.
Between ¢, A and v the well-known relation ¢ = Av holds. The use of the com-
plex exponential function in the description of plane harmonic waves is more
convenient than the use of the real sine and cosine functions. In the following,
only the exponential function will be used.

3.2 The initial value problem for plane waves

We look for the solution of the one-dimensional wave equation (3.1) which sat-
isfies the initial conditions
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3.2. THE INITIAL VALUE PROBLEM FOR PLANE WAVES 41

u(x,0) = f(x) for displacement and

0
8—7:(96, 0) = g(z) for particle velocity.

This is an initial value problem of a linear ordinary differential equation, e.g.,

the problem to determine the movement of a pendulum, if initial displacement,
and initial velocity are given. We start from (3.2). For ¢—0, it also holds that

F)+G() = f(a) (3.4
—cF'(z) + cG'(z) = g(). (3.5)

Integrating (3.5) with respect to z, gives

Fa) - () = — [ " e, (3.6)

From the addition of (3.4) and (3.6), it follows that

r) =3 {01 [ s},

— 00

and from the subtraction of these two equations that

6o =g {1+ [ a0},

— 00

From this, it follows that

r+ct
u(w,t) = 5 {flo—ct)+ for e} + 50 [ gl

2c —ct

This solution satisfies the wave equation and the initial conditions (check). We
will discuss two special cases.

3.2.1 Case 1

g(z) =0, i.e., the initial velocity is zero. Then

u(z,t) = %{f(x—ct)—i—f(x—i—ct)}.
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42 CHAPTER 3. BODY WAVES

Two snap shots (Fig. 3.1) for t=0 and for t>0, illustrate this result.

u(x,0)

/\ ) =0

} X
I
I
I
|
|
I
:
ct 1 ct
T ) T
I I
I I
1 u(xy 1
f(xtct) | f(x-ct)
EEERVEN N A Y
\\ \\ X

Fig. 3.1: Snap shots of two plane waves.

Two plane waves propagate from the point of excitation in both directions with
the velocity ¢. A practical example is a stretched rope with the form f(x) for
t—0.

3.2.2 Case 2

f(x) =0, i.e., the initial displacement is zero. Furthermore, we assume g(r) =
Vod(z). 6(z) is Dirac’s delta function (see appendix A.3). g(x) corresponds to
an “impulse” at x = 0. V{) has the dimension of velocity times length. Then

The sketch (Fig. 3.2) shows the value of the integrand and the integration
interval for a fixed point in time ¢ > 0 and for a location x > 0.
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3.3. SIMPLE BOUNDARY VALUE PROBLEMS FOR PLANE WAVES 43

3()

integration interval
expandﬁ with t

/ \

T
x-ct x>0 x+ct &

Fig. 3.2: Value of the integrand and the integration interval of u(x,t).

Only when the integration interval includes the point £ = 0, does the integral
become non-zero. Then it always has the value of 1

%H(t —2)  for x>0

u(z,t) =
%H(t +2Z)  for x<0

H(t) is the Heaviside step function, H(t) =0 for t <0, H(t) =1 for t > 0.

The displacement jumps at ¢t = |z| /c from zero to the value V;/2c.

3.3 Simple boundary value problems for plane
waves

The simplest boundary value problem is to determine the displacement within
a half-space for a time dependent pressure P(t) at the surface z = 0 of this
half-space. Since the displacement % only has an z-component, u, and since z
is the only explicit spatial coordinate, the one-dimensional wave equation (3.1)
for a plane compressional wave is applicable

0%y 1 9%u,

B

The solution for the case considered here is

ug(x,t) = F (t— E),

«
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44 CHAPTER 3. BODY WAVES

since a wave can only propagate in +z-direction. Function F(t) has to be
determined from the boundary condition that the stress vector adapts without
jump to the imposed stress vector at the free surface = 0 (compare (2.25) and
in section 2.5.2)

Pza = —P(t) and pyy = pg. = 0 for © = 0.

The stress-strain relation (2.17) gives first, that p,, and p,. are zero everywhere
in the medium, and second that

e - A 1) (- 5)

For = = 0, it follows that

F(t)= pioz/_ P(r)dr = pioc P(r)dr.

For this, we assumed that P(¢) = 0 for ¢ < 0. Then, the displacement can be
written as

)= [ Py
u(x,t) = — P(T)dr.
pa/o

The displacement is proportional to the time integral of the pressure on the
surface of the half-space. If a short impulse P(t) = Pyd(t) acts, it follows that,

P,
ug(2,t) = —H (t - E) .
pa a

Py has the dimension pressure times time (see also appendix A, section A.3.1).
At the time ¢ = z/«, all points in the half-space are displaced instantly by
Py/pa in +a-direction and remain fixed in this position. For Py = 1 bar sec =
9.81 Nsec/cm? =~ 10° dyn sec/cm?, p = 3g/cm?® and a = 6 km/sec the displace-
ment is approximately 0.5 cm.

This boundary value problem is simple enough so that it could be solved directly
with the equation of motion (2.21) or (2.24). One could have also worked with
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3.4. SPHERICAL WAVES FROM EXPLOSION POINT SOURCES 45
displacement potentials ® and W and their differential equations (2.31) (show).

Exercise 3.1

The tangential stress T'(t) acts on the surface of a half-space. What is the
displacement in the half-space? Application: The tangential stress on the rup-
ture surface of earthquakes is 50 bar = 50 - 10% dyn/cm? (stress drop). What is
the particle velocity (on the rupture surface) for (p = 3g/cm?®, 3 = 3.5km/sec)?

Exercise 3.2

An elastic layer of thickness H overlies a rigid half-space. Pressure P(t) acts on
the top of the elastic layer. What is the movement in the layer? Examine the
case P(t) = Pod(t).

Exercise 3.3

Solve the static problem of exercise 3.2 (constant pressure P; on the surface).

3.4 Spherical waves from explosion point sources

In the previous sections, we considered infinitely extended waves. They are
an idealisation, because they cannot be produced in reality since they require
infinitely extended sources. The most simple wave type from sources with fi-
nite extension are spherical waves, i.e., waves which originate at a point (point
source) and propagate in the full-space. Their wavefronts are spheres.

In the most simple case, the displacement vector is radially oriented and also
radially symmetric relative to the point source, i.e., the radial displacement on
a sphere around the point source is the same everywhere. If a spherical explo-
sion in a homogeneous medium far from interfaces is triggered, the resulting
displacement has these two properties. Therefore, we call these explosions point
sources. The results derived with the linear elasticity theory can only be applied
to spherical waves from explosions in the distance range in which the prerequi-
sites of the theory (infinitesimal deformation, linear stress-strain relation) are
satisfied. In the plastic zone, the shattered zone and the non-linear zone (this is
a rough classification with increasing distance from the centre of the explosion)
these requirements are not met. For a nuclear explosion of 1 Megaton TNT
equivalent (approximately mb — 6.5 to 7.0), the shattered zone is roughly 1 to
2 km wide.

We plan to solve the following boundary problem: given the radial displacement
at distance r = 1 from the point source U(ry,t) = Uy (t), we want to find U(r, 1)
for r > ry.

We start from the equation of motion (2.24) with 7 = 0. This is how the
problem is solved in appendix A (appendix A.2.2) using the Laplace transform.
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46 CHAPTER 3. BODY WAVES

Here, more simply, the displacement potential from section 2.6 will be used. In
this case, the shear potential is zero, since a radially symmetric radial vector
can be derived solely from the compressional potential

D(r,t) = /T U(r', t)dr'.

In spherical coordinates (r, ¢, \), it holds that

29 109
r 09

r )

Vo =

—~
Q

) rsilnﬂ g_(i)) = (U(’f’, t),0,0)

For @, the wave equation with ¢ = 0 can by written according to (2.31) as

20 200  182(r®) 1 90

V2p=—— 42— =2 7~
or:2  ror r Or? o? Ot?

0?(r@) 1 0%(r®)
ar a2 o (3.

In the case of radial symmetry, the wave equation can be reduced to the form
of a one-dimensional wave equation for Cartesian coordinates for the function
r®,

0%u 1 0%u

0x2 a2 92’
The most general solution for (3.7) is ,therefore,

@@ﬂ:%{F@-@+G@+§ﬁ.

This describes the superposition of two compressional waves, one propagating
outward from the point source and the other propagating inwards towards the
point source. In realistic problems, the second term is always zero and

1 T
Ort) = —F (t a) . (3.8)
Function F(t) is often called the excitation function or reduced displacement
potential. The wavefronts are the spheres r =const. The potential as a
function of time has the same form everywhere, and the amplitudes decrease
with distance as 1/r. The radial displacement of the spherical wave consists of
two contributions with different dependence on r
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3.4. SPHERICAL WAVES FROM EXPLOSION POINT SOURCES 47

Umﬂ:99=—iF@—5)anQ—£) (3.9)

or 72 o ro

These two terms, therefore, change their form with increasing distance. Gen-
erally, this holds for the displacement of waves from a point source. The first
term in (3.9) is called near-field term since it dominates for sufficiently small r.
The second term is the far-field term and describes with sufficient accuracy the
displacement for distances from the point source which are larger then several
wave lengths (show this for F(t) = ¢™!). That means there the displacement
reduces proportional to 1/r.

From the boundary condition r = ry, it follows that

(=) - LR (- ) = v,

riQ « T «

We choose the origin time so that U; (t) only begins to be non-zero for t = r1/a.
It, therefore, appears as if the wave starts at time ¢ = 0 at the point source
(r=0). IfUy (t — Z) = Uy(t), it holds that U1(¢) is already non-zero for ¢ > 0.
With 7 =t — 2 it follows that

[e3%

—LFw+%ﬂﬂ:JMﬁ (3.10)

roa 1

The solution of (3.10) can be found with the Laplace transform (see section
A.2.1.1 of appendix A).

Since the criterion (A.16) of appendix A is satisfied for all physically realis-
tic displacements U;(7), the initial value F'(+0) of F(7) is zero. Therefore,
transformation of (3.10)with F(7) «— f(s) and Uy(1) < @1 (s) gives

f(s) = —ri« w1 (s) . (3.11)

-1

With (s + %) s e T (see appendix A, section A.1.4), and using con-

volution (see appendix A, equation A.7), the inverse transformation of (3.11)
reads as

F(r)= —rloz/ Ul(ﬁ)e_%(T_ﬂ)dﬁ.
0

From this, it follows
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F'(1) = —riaU:(7) + a2/0 T (9)e 17 ay.

The radial displacement for > r; then can be written using (3.9) as

Ulr,t) = %1 {Ul(f) ta (3 - i) /0 Ul(ﬂ)e—%“—ﬂ)dﬁ} (3.12)

r 1
with the retarded time 7 =t — ~. This solves the boundary problem.
Applications

1. Ul(t) = Uo(g (t — %) s i.(—‘:., Ul(t) = U05(t)

The dimension of Uy is time times length. Equation (3.12) is valid also in
this case (see appendix A)

o

U(r,t) = {5(7) +a (1 - i) enTH(T)} .

r 1

=0 (t=r/a)
]

Fig. 3.3: U(r,t) as a function of time.

2. Ui(t) = UpH (t —22), ie. Ui(t) = U H(2).

The dimension of Uy is length. From (3.12), it follows

Ur,t) = %UO {H(r) tfa (1 _ i) T {T_le%ﬂ}ﬂzr H(T)}

r 1 «

- B (2-1) (- 1)

= ZUH S+ (1-2) e
T T T
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n
T Up—

Fig. 3.4: U(r,t) as a function of time.

Exercise 3.4

Pressure P(t) (P(t) =0fort < Z) acts in a spherical cavity with radius r;.
What is the differential equation for the excitation function F'(¢) (analogue to
3.10)7 In the case of radial symmetry, the radial stress p,. is connected to the
radial displacement U as (show)

oU U
o = Q)= + 22—
D (X + 'u)87“+ AT

Which frequencies are preferably radiated (eigenvibrations of the cavity)? This
can be derived / seen from the differential equation without solving it (compare
to the differential equation of the mechanical oscillator, see appendix A.2.1.1).
Solve the differential equation of P(t) = Pyd(t — r1/a).

3.5 Spherical waves from single force and dipole
point sources

3.5.1 Single force point source

A single force in the centre of a Cartesian coordinate system acting in z-direction
with a force-time law K (¢) has the force density (compare appendix A.3.3)

T =1(0,0,8(x) 6(y) 6(z) K(t)).
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K (t)

Fig. 3.5: Cartesian coordinate system with force-time law K ().

The separation 7 =Vp+V x w is possible with the help of (2.27)

+oo
(@, y, 2 t) = /// L (2 = Q83 (m)3(Q) K (t)dedndC
— —47'(7'3’ r? = g2 —|—y 12 (313)
+oo
Tlayzt) = /// A=y = 1), — €0} 5E I K (1) dedndC
= 47TT3(—y,x70). (3.14)

If (3.13) and (3.14) are used in the differential equation (2.31) of the displace-
ment potentials, it follows that for the shear potential T = (U, 0, 0,) U, =
0 and that for ¥, and ¥, due to (2.23) and (2.28), the following wave equations
hold; the same is true for the compression potential &

Vip — i(‘ﬁ_@ - _M
a? o2 4drpa®r3
V2, — i@ = Ky
T2 o2 47 pF2r3
1 0?0 K(t)z
2g, - - % 2T
vy £2 ot? 4w pB2r3

The solution of the inhomogeneous wave equation

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 51

9 1 0%a

a‘_c_gw :f(xayvzvt)

can for vanishing initial conditions, be written as

—+o0 /
a(z,y, 2,t) = —% ///_ %f (g,n,g,t - %) dednd¢ (3.15)

with

= (2 =€)+ (y —n)’ + (= Q)%

Equation (3.15) is Kirchhoff’s Equation for an infinite medium. It is the ana-
logue to the well-known Poisson’s differential equation which is also a volume
integral over the perturbation function (compare exercise 2.9). Equation (3.15)
can also be computed in non-Cartesian coordinates, something we now use.

Application of the wave equation for ¢

We introduce the spherical coordinates (1, 9, \) relative to point P. A is defined,
see sketch, via an additional Cartesian coordinate system (Z,7,Z).

parallel to
»n Z -/axis

O(Em,C)

P(x,y,z)

Fig. 3.6: Additional Cartesian coordinate system (Z,7,%).

The T-axis of of this coordinate system is identical to the line OP. The Z-axis is
in the plane defined by the zand(-axis and the line OP. Then the z, (-axis has
then in the T —J — Z-system the direction of the unit vector

2\ 3
W:(cosy,o,sinv):{f,o, <1_z_2> }
r r
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N
Vector 7" from O to @ can be written in the same system as

i / /- . ’ .
" = (r—r"cosd,r’ sindsin A\, r’ sin v cos \).

These two vectors are needed later. Equation (3.15) can for ® then be written
as

d(z,y, 2 t)—#/oo/w/%ri ;%) 72 sin 0 d\ do dr”’
s C16m2pa? Jo Sy Jo 7B r '

We still must express ¢ and 7" in terms of 7/, and A

1
2\ 2
-7 z z .
§ = 1" W =—(r—rcosV)+ (1 - = | r'sindcos\
r r
112 2 /2 / H
r = 7r° 47" —=2rr' cos? (rule of cosine).

This gives

1
1 oo pm 2wz(1—%/cos19)+r’ (l—j—z)zsinﬂcos)\
(I)(xvy7z7t): 7/ //
1672pa® Jo Jo Jo

3
3 (1+ %2 — 2 cos ) ?
,',,/
K <t — —) -1’ sindd d do dr’.
o

The part of the integrand with cos A does not contribute to the integration over
A. The other part has only to be multiplied by 27. With a = r/r" and

/7T (1 —acos¥)sind i = /(1+a)21+%(u—1—a2)du
o ( (

1+ a2 — 2acos?)? 1—a)? 2aus
1 +a)? /g 1— a2
a (1—a)? u? u?2
1 1 1 (14a)®
= — {27 +2a®-1 ‘5}
4a { ur (CL )u (1—a)?

1
= S {l+a—[1-al}

+21—a{(a+1)(a—1)- (1ia_1ia>}
_ 2 for 0<ax<l1
n 0 for

a>1

u = 1+a%—2acos?
du = 2asinddd
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it follows that

z " / T/ /
fI)(x,y,z,t) = W/O TK(t—E> dr
- /g K(t —7)rd
= — 7)7dT.
dmprd Jo

The wave equations for ¥, and ¥, are solved in a similar fashion. Therefore,
it is possible to write the potentials of the single force point source as

O(z,y,2,t) = ﬁ foﬁ K(t —7)rdr

Vo(w,y,2,1) = —gbs fo% K(t — 7)rdr

B ennt) = e K 616
U (z,y,2,t) = 0

with

r? = 22 +y*+2%

Before we derive the displacements, we change to spherical coordinates (r, 9, \)
relative to the single force point source

Fig. 3.7: Spherical coordinates (r, 4, \).
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= rsindcos A

rsin ¥ sin A

z = rcosd.

In spherical coordinates, the shear potential has no r- and ¥-component (show),
and for the A-component it holds that

Uy = —UusinA+ P cos .
y
W
) =
A
X

Fig. 3.8: x-y-plane of Fig. 3.7.

This gives
O(r,9,t) = ;7‘:;;92 Jo K(t —7)rdr
(3.17)
Uy(r,9,t) = 45':;;92 I K(t —7)rdr.
This equation does not depend on \. The displacement vector
W =V®+V x U can be written in spherical coordinates (show) as
Up = aa_? + Tsilnﬂ%(sinﬂ\lu)
Uy = %8—3—%%(7‘@)\) (3'18)

UAZO.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 55

This shows that the P-wave following from @ is not purely longitudinal, but it
contains a transverse component (in uy). Similarly, the S-wave following from
U, is not purely transverse since u, contains a shear component. The first term
in uy and the second in w, are near field terms (compare exercise 3.5). Here
we compute only the far-field terms of u, and uy (only differentiation of the
integrals in(3.17))

u o~ 2K (t— L) (longitudinal P — wave)

4mwpar

(3.19)

R

Uy ;Tzig;iK (t - %) (transversal S — wave).
The far-field displacements have, therefore, the form of the force K (t) decreasing
with 1/r. The single force point source has directionally dependent radiation,
and the far-field radiation characteristics are shown in Fig. 3.9.

b

P - radiation

S - radiation

polarisation direction
of the S-wave

Fig. 3.9: Far field radiation characteristics of single force point source.

The radiation characteristics (P- and S-waves) are each two circles. Those for
the S-waves have a radius which is a?/3? larger then those of the P-waves. If
the radiation angle ¥ is varied for fixed r, the displacements u,. are proportional
to the distance OP1, and the displacements wuy are proportional to the distance
OP;. The sign of the displacement u, changes in transition from the first P-
radiation circle to the second. The full 3-D radiation characteristics follows
from that shown in Fig. 3.9 by rotation around the direction of the force.
Within the framework of the far-field equations (3.19), no S-wave is radiated in
the direction of the force, and perpendicular to it, no P-wave is radiated (but
compare exercise 3.5).

The practical use of the single force point source, acting perpendicular on the
free surface, is that it is a good model for the effect of a drop weight, excitation
by wibro-seis and often also for explosions detonated close to the surface. A
complete solution requires the consideration of the effects of the free surface,
but that is significantly more complicated. Furthermore, the differences to the
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full-space models for all P-waves and for S-waves, for radiation angles smaller
then 30 to 40 degrees, are small, respectively.

Exercise 3.5

Compute the complete displacement (3.18) using (3.17) and examine in partic-
ular, the directions 9 = 0 and ¥ = 90°. Which polarisation does the displace-
ment vector have, and at which times are arrivals to be expected? Compute for
K(t) = KoH (t) the static displacement (¢ > r/j).

3.5.2 Dipole point sources

A force dipole can be constructed from two opposing single forces which are
acting on two neighbouring points. Fig. 3.10 shows, on the left, a dipole with
moment for which the line connecting the forces is perpendicular to the direction
of the force. The connecting line for a "dipole without moment" points in the
direction of the force.

K(1) dipole with
moment
(single couple)

2 dipoles without
(joint) moment
(double couple)

Fig. 3.10: Single couple and double couple constructed from single forces.

Two dipoles with moment for which the sum over the moments is zero (right
in Fig. 3.10), are a good model for many earthquake sources, i.e., in the case
where the spatial radiation of earthquake waves of sufficiently large wave length
is similar to that of a double couple model. The actual processes acting in the
earthquake source are naturally not four single forces. Usually, the rock breaks
along a surface if the shear strength is exceeded by the accumulation of shear
stress (shear rupture). Another possibility is that the shear stress exceeds the
static friction on a pre-existing rupture surface. Source models from single forces
and dipoles are only equivalent point sources.

In the following, we derive the far-field displacement of the single couple model
and give the results for the double couple model. We start from the single
couple (with z9 # 0) in Fig. 3.11 and compute first from (3.19) the P-wave
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displacement of force K (t) with Cartesian components cos? = z/r,r?> = (v —
zo)? +y? + 22

Uy (x —x0)/7
Uy = 47'rp2¢2r2K (t - g) ’ y/’/’
U z/r.
Z
P(xy,2)

Fig. 3.11: Single couple model.

The displacements u,, u;, v}, of force —K (t) with the two neighbouring points of

action shifted by €, can be determined using the Taylor expansion of wu,, u,, u.
at the source coordinate g and truncating after the linear term. This leads, for

example, to
ou
/ x
Uy, = — | Uy + €.
r ( ¥ 8x0 )

The single couple displacement then follows by superposition

ouy

— €.
6950

" /!
Uy = Ugp + U, =

To obtain the far-field displacement requires only the differentiation of the force
K(t — r/a) with respect to r, and additional differentiation dr/dxg = —(z —
x0)/r. The other terms with xy contribute only to the near field, the amplitude
of which decreases faster then 1/r. This leads to

(07

(&% r r

W K'( r) —1—($—$0)€{E—$0
4 pa®r? '
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The y- and z-displacement are treated similarly. Therefore,

ult (x — x0)/r
wp b= K (- f)e (/v (3.20)

z/r.

As expected, the P-displacement of the single couple is also longitudinal.

The force dipole is defined strictly by the limit ¢ — 0, combined with a simul-
taneous increase of K (t), so that

lim K (t) e = M(%)

e—0

remains finite (but non-zero). M(t) is called moment function of the dipole
with the dimensions of a rotational moment.

From (3.20) with z/r = cos¥ and (x — xg)/r = sind cos )\, it follows that the
P-wave displacement of the single couple in r-direction is

t— —
«

Up = —

cosﬁsirn?cos/\M,( 7“)
4mpadr '

In concluding, we now assume that xg = 0. For the S-wave, it follows similarly

sin 4 sin ¥ cos A r
= "M (t——=]).
o A7 pF3r ( ﬂ)

As for the single force, the azimuthal component is zero. The following shows
the results for the single couple and the radiation in the 2 — z-plane (y = 0)

Fig. 3.12: Single couple in the x-z-plane.
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up = -2 )
wp = LA (1 z) (3.21)
uy = 0.
V4
S
N Fy-)P (
/ -\t \ X
Fig. 3.13: Far field displacement of a single couple.
The ratio of the maximum S-radiation (for ¥ = 90°) to the maximum P-

radiation (for ¢ = 45°) is about 10, if @ ~ 3v/3. The radiation characteristics
in planes other then y = 0 follow from the one shown by multiplication with
cos A. Plane z = 0 is a nodal plane for P- as well as for S-radiation; the plane
z =0 is one only for P.

The far-field displacements for a double couple in the x—z-plane are (see exercise
3.6)

Fig. 3.14: Double couple in the x-z-plane.
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up = —S2eA (- x)
wp = - (i 1) (3.22)
N 7CZSTF1;;§T;AM’(t—%).

The moment function in (3.22) is that of one of the two dipoles of the double
couple. The radiation characteristics in the x — z-plane are shown in Fig. 3.15.

Fig. 3.15: Far field displacement of a double couple.

The P-radiation of the double couple has the same form as that of a single
couple but is twice as large; the ratio of the maximum radiation of S to P is
now about 5 (for A ~ 6\/5) P-nodal planes are the planes with z = 0 and
z = 0. The S-wave has no nodal planes, but only nodal directions (which?).

An (infinitesimal) shear rupture, either in the plane z = 0 with relative dis-
placement in z-direction or in the plane x = 0 with relative displacement in
z-direction, radiates waves as a double couple, i.e., (3.22) holds. A shear rup-
ture or earthquake, therefore, radiates no P-waves in the direction of its rupture
and perpendicular to it. If, by using the distributions of the signs of first motion
of the P wave, the two nodal planes have been determined, the two possible rup-
ture surfaces are found. The determination of the P-nodal plane of earthquakes
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(fault plane solution), is an important aid in the study of source processes as
well as the study of large-scale tectonics of a source region. Often the decision
between the two options for the rupture surface can be made based on geological

arguments.

The moment function of an earthquake with a smooth rupture, is, to a good
approximation, a step function with non-vanishing rise time 7' and final value
My, the moment of the earthquake (see Fig. 3.16). The far-field displacements
are then, according to (3.22), one-sided impulses.

M
Mof == -=---==
|
0 T t
Ml
0 T t

Fig. 3.16: Moment function and far-field displacement of a smooth rupture.

Propagation effects in layered media, e.g., the Earth’s crust, can change the
impulse form. In reality, the displacements look very often different, relative to
the one shown here, due to complicated rupture processes.

Exercise 3.6

Derive the double couple displacement u, in (3.22) from the corresponding single
couple displacement in (3.21). Use equation (3.20) in Cartesian coordinates.
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3.6 Reflection and refraction of plane waves at
plane interfaces

3.6.1 Plane waves with arbitrary propagation direction

In sections 3.1 to 3.3 plane waves travelling in the direction of a coordinate axis
were used. In the following, we need plane waves with an arbitrary direction of
propagation. They can be described by the following potentials

=
& = Aexp |iw <t— i k)] (3.23)
«
Tk
T = Bexp |iw (t - %)1 . (3.24)

Their variation with time is also harmonic. This assumption is sufficient for
most conclusions. A and B are constant, % and W are constant unit vectors,
T is the location vector, w is the angular frequency and 4 the imaginary unit.
® and the components of W satisfy the wave equation (please confirm)

1 9%® 9 1 9%V,

Ve = — 2 =27
a? o2’ 1732 o

(Cartesian coordinates).

Since, according to (3.23) and (3.24), the movement at all times and locations
is non-zero, the wavefronts can no longer be defined as surfaces separating
undisturbed-disturbed from disturbed regions. We, therefore, consider wave
fronts as surfaces of constant phase w(t — ??/C) with ¢ = o or ¢ = 3. These
surfaces are defined by

They are perpendicular to vector ?7 which also gives the direction of propaga-
tion. The wavefron_t)s move parallel with respect to themselves with the phase
velocity ¢. Vector k multiplied by the wavenumber w/a or w/g, is called the
wavenumber vector.

The polarisation direction of the compressional part

iw (t— j)] % (3.25)

8l

Vo= —EAexp
!
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is longitudinal (parallel to ?) and that of the shear component

—- W T’? =
Vx ¥ =——DBexp |iw|t— kxm (3.26)
B B
(rot(f-m) = f-Vx W —T x Vf)is transversal (perpendicular to ).

From (3.26), it follows, that for @), without loss of generality, the additional
—
condition of orthogonality of k& and 7 can be introduced. (Separation of 7 in
—
components parallel and perpendicular to k).

3.6.2 Basic equations

We consider a combination of two half-spaces which are separated by a plane
at z — 0. The combination is arbitrary (solid-solid, solid-vacuum, liquid-liquid,
...). We use Cartesian coordinates as shown in Fig. 3.17.

half-space 1
O(I’Bhpl ,}\1 sy

00, 3,P2. A2 b, x
z half-space 2

z=0

Fig. 3.17: Two half-spaces in Cartesian coordinates.

The y-axis points out of the plane. The displacement vector is

w = (u,v,w),

and its components are independent of y, i.e., we treat a plane problem in which
on all planes parallel to the x — z-plane, the same conditions hold. The most
simple way to study elastic waves, under these conditions, is to derive u and w
but not v, from potentials. Writing

T=Vd+Vx T

by components,

Lo e o
Ox 0z
T
0z ox
R
0z ox’
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it is obvious that for v two potentials ¥; and W3 are required, and these do not
occur in v and w. For v, it is better to use directly the equation of motion (2.21)
without body forces, which under these conditions becomes a wave equation

1 0%v

v2’U = @w

The basic equations, therefore, are, if ¥ instead of W5 is used

1 0%®
Vo = ———
o? Ot?
1 0%V
VU =
52 ot2
1 9%v
0? 0?
v o= 4=
5x2+622
_ 92 9V
U = 9 T o2
R (3.28)

The boundary conditions on the surface z = 0 between the half-spaces requires
continuity of the stress components

P = AV W+ 2u8—w = \V20 + 2ua—w
0z 0z
B ow = Ou
Dz = M (% + E)
B ov
Pzy = Maa
or
P = AT o (224 20)
e = n(2E%+ 5% - 5% (3.29)
Pzy = M%-

Which of the displacement components is continuous depends on the special
combination of the half-spaces.
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Since no connection of v with ® and W exists via the boundary conditions and,
therefore, with u and w, it follows, that the S-waves, the displacement of which
is only horizontal (in y-direction: SH-waves), propagate independently from the
P-waves, following from ®, and the S-waves, following from W, that also have
a vertical component (in z-direction: SV-waves). If a SH-wave impinges on an
interface, only reflected and refracted SH-waves occur, but no P- or SV-waves.
If, on the other hand, a P — (SV —)wave interacts with an interface, reflected
and refracted SV — (P—)waves occur, but no SH-waves occur. These statements
hold, in general, only for the case of an interface between two solid half-spaces.
In liquids, neither SH- nor SV-waves propagate; in a vacuum a rigid half-space,
or no waves propagate at all. Correspondingly, the situation is even more simple
if such half-spaces are involved.

The decoupling of P-SV- and SH-waves holds for plane problems not only in
the simple case of an interface z—const between two homogeneous half-spaces,
but also in the more complicated case of an inhomogeneous medium, as long
as density, wave velocity, and module are only functions of x and z. One con-
sequence of this decoupling is that in the following, reflection and refraction
of P- and SV-waves can be treated independently from that of the SH-waves.
Furthermore, it is possible to dissect an S-wave of arbitrary polarisation in its
SV- and SH-component and to study their respective reflection and refraction
independently from each other.

In each case, we assume for the incident plane wave a potential ® or T in
the form of (3.23) or (3.24), respectively, (in the second case T has only the
y-component ¥). In case of a SH-wave, we assume that v can be described by
an equation in the form of (3.23) with g instead of a. The angle of incidence ¢

is part of the direction vector %

wave front

Fig. 3.18: Incident plane wave and angle of incidence .

¥ = (sing, 0, cos ). (3.30)
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For the reflected and refracted wave an ansatz is made with different amplitudes
A and B, respectively, and different direction vectors 7. The relation between
the new direction vectors and (3.30) is via Snell’s law. The relation between
the displacement amplitudes of the reflected and the refracted wave with the
incident wave, is called reflection coefficient and refraction coefficient, respec-
tively, and it depends on the angle of incidence and the material properties in
the half-spaces. Rpp, Rps, Bpp, Bps: Rss, Rsp, Bss, Bsp will be the coefficients
for P-SV-waves, rss and bgs those for the SH-waves. The first index indicates
the type of incident wave, the second the reflected and refracted wave type,
respectively.

We discuss, in the following, only relatively simple cases, for which illustrate
the main effects to be studied.

3.6.3 Reflection and refraction of SH-waves

Reflection and refraction coefficients

The displacement vy of the incident SH-wave in y-direction is

vg = Cp exp [iw (t - Si;;px - coﬂs;pz)] . (3.31)
Vo v
o] ¢,
HQ .8
z=0
e B X
¢,
V.

Fig. 3.19: Incident, reflected and diffracted SH-waves at a plane interface.

The ansatz for the reflected and refracted SH-wave as plane waves with reflection
angle 1 and the refraction angle ¢s, respectively, and the same frequency as
the incident wave is

reflection: v; = Cjiexp [iw <t B 2l 2 z)} (3.32)
b1 B

refraction: vy = Chexp [iw <t B 2 %z)} . (3.33)
B2 B2
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The unknowns are the angles ¢ and s, the reflection coefficient rys = C1/Cy
and the refraction coefficient bss = Cy/Cp.

The boundary conditions require at z = 0 the continuity of displacement (that is
a reasonable requirement) and continuity for the normal and tangential stresses.
This leads to

Vo +v1 = U9
. for z = 0. 3.34
i (vo+v1) = plz } (3:34)

The stress components p,, and p,, are zero everywhere, since no P- and/or SV-
wave occur. Insert (3.31), (3.32) and (3.33) into (3.34). From the first boundary
condition this leads to

Cp exp [iw <t _ sin SD!E) ] +C1 exp [iw (t _ sing x)] = Cyexp [iw <t _ S x)} .
B B B2
(3.35)

We plan to find solutions vy and vy of the problem, for which the amplitudes
C1 and C5 are independent of location, since only then can we be sure that v;
and vy are solutions of the corresponding wave equation. C; and Cs become
only independent of location if in (3.35)

sing sing;  sings
= = , 3.36
BB B (330

since only then the exponential term can be cancelled. Equation (3.36) is the
well-known Snell’s Law which states that the reflection angle ¢y is equal to the
angle of incidence ¢ and that for the refraction angle s is

sin g _ B2
sing By’
With (3.35), this leads to
Cy — C1 = Ch. (3.37)

The second boundary condition in (3.34) gives

. Ccos COS 1 . COS Y2
w | — Co+ C ) = —l9iw Cs.
M1 < 5 0 3 1 H2 % 2

With Y1 =@ and ,ul’g/ﬂLQ = p1’2ﬂ1727 it follows that
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0151 COS cp(Ol — OO) = —,0262 COS (pQCQ

or

p2/32 cos Y2

plﬁl cos Cy + Cp = Cy. (338)

From (3.37) and (3.38) follow the reflection and refraction coefficients

& P11 cos p — pa B cos g2
Tss =G0 T (3.39)
Co 131 cos ¢ + paf3a cos pa
C 2 S
ey = =2 = P11 cos . (3.40)
Co 131 cos ¢ + paf3a cos pa
With (3.36), this leads to
2 < ﬁ% 2 :
cospy = (1 —sin“y)? = (1 — —=sin“p | . (3.41)
1

For perpendicular incidence (¢ = 0)

2p161

_ p1f— p2fe
p151+ p2f2

= and by, =
p151 + p232

S8

In this case, rgs and bss depend only on the impedances p1 51 and pyfs of the
two half-spaces. For grazing incidence (¢ = 7/2), rss = —1 and bss = 0. The
absolute value of the amplitude of the reflected wave is never larger then that of
the incident wave; that of the refracted wave can be larger if pafs < p131 (e.g.,
for ¢ = 0).

If 55 is negative, this means that in one point of the interface the displacement
vector of the reflected wave points in —y-direction, if the displacement vector
of the incident wave points in 4y-direction. For impulsive excitation (see also
later), this means that the direction of first motion of the incident and the

reflected wave are opposite.

The following figure shows |rys| as a function of ¢ for different velocity ratios
B1/B2 > 1 and p1 = pa.
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1.0

It

Pi1=P: B,> B,

0.8

15 14
1.3 1‘2
0.2 1.1

0.0 —— T

¢

Fig. 3.20: |rss| as a function of ¢ for different velocity ratios.

Total reflection

If B3 < B, as in Fig. 3.20, cos g is real for all angles of incident ¢, the same
is true for rss and bss. Total reflection,, i.e., |rss| = 1, is then only possible for
grazing incidence.

If By > (31, cos s is only real as long as

X . P

=< = arcsin —-.

¥ ¥ B

©* is the critical angle (or limiting angle of total reflection). According to (3.41),

@ = " is connected to the case with grazing propagation of the wave in the
second half-space (p2 = 7/2).

If o > ", cospy becomes imaginary, or, to be more exact, negative imaginary
for positive w and positive imaginary for negative w, since only then vy for
z — 400 remains limited. 74, and bys become complex. vy and vs still solve
the wave equations and satisfy the boundary conditions, even when posing the
ansatz (3.32) and (3.33) have not explicitly been chosen in complex form. The
reflection coefficient can then be written as

Tes = Z;;g = exp (—2iarctan 2)
a = pficosy | (3.42)

[32 2 % w

b = —paf (B—§s1n <p—1) o
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It has the absolute value 1 and a phase that depends on the angle of incidence.
Its sign changes with the sign of the frequency. Values of |rss| are shown in Fig.

3.21 for a few combinations.
(P*
‘////:;;}/v \::::\\\\\\\‘

1.0

SJ

B, < B

60 70 80 90

Fig. 3.21: |rss| as a function of ¢ for different velocity ratios.

The refracted wave propagates for ¢ > ¢* parallel to the interface with the ve-
locity 1/ sing. Its amplitude is not only controlled by b, but is also controlled
by the exponential term which depends on z. The amplitude of the refracted
wave decays, therefore, exponentially with increasing distance from the interface
(inhomogeneous or boundary layer wave). It follows that (please check)

2 3 .
v9 = bssCo exp —M (ﬂ—% sin? @ — 1) z| exp [iw <t — bm(px)] .
62 1 51

Other cases

The treatment of the reflection of plane P-waves at an interface between two
liquids gives similar results to the one discussed above (see also exercise 3.9).
If the interface between two solid half-spaces is considered, the computational
effort is significantly larger, since now reflected and refracted SV-waves have to
be included. We, therefore, skip the details. The absolute value of the reflection
coefficient R, is shown in Fig. 3.22.
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R | |Rep

BZ<G1< (o) 01<B2<02

| |
| | | |
| | | |
| | | |
I | | |
I | | |
I | | |
I | | |
| | | |

0 o0 7K ) 0 ¢0 o0 12 ¢

Fig. 3.22: Absolute value of the reflection coefficient R,,.

- _ praz—pioq .
For ¢ =0, Ry, = 22220 (compare also exercise 3.9).

|Rpp| for ¢* < ¢ < m/2 is smaller then 1 for two reasons. First, the reflected
SV-wave also carries energy; second, for the case on the left of Fig. 3.22, a
SV-wave propagates in the lower half-space for all ¢, and, similarly, for the
case on the right of Fig. 3.22, for ¢ < ¢**. ¢ < ¢©** is the second critical angle
which exists only for a; < B2 < an

. Qg . Q1
©** = arcsin — > " = arcsin —.
2 (e%)

For angles ¢ larger then ¢**, the second energy loss is no longer possible, and
total reflection occurs. The reflected energy is then, to a smaller part, also
transported in the SV-wave.

Some numerical results for reflection and refraction coefficients for a P-SV-case
are given in Fig. 3.23 (model of the crust-mantle boundary (Moho) with «; =
6.5km/sec, 31 = 3.6km/sec, p1 = 2.8g/cm?, an = 8.2km/sec, B2 = 4.5km/sec, py =
3.3g/cm?).
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1 : - 4
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Fig. 3.23: Absolute value of reflection and refraction coeflicients Ry, Rps, Bpp
and Rg;.

Transition to impulsive excitation

The transition from the harmonic case, treated up to now, to the impulse case,
can be done with the Fourier transform (compare appendix A.1.7). Instead of
(3.31), the SH-wave

sin ¢ cos
vo=F|(t— T — z
’ ( B B )
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may impinge on the interface, and we dissect F(t) with the aid of the Fourier
integral in partial vibration

1o
F(t) = o F(w)e™tdw
+oo

F(w) F(t)e ™dt Fourier transform of F'(t).

— 00

We then study, as before, reflection and refraction of the partial waves

1= . sin oS )}
dvg = —F(w)exp |iw [ t — T — z || dw
0 27 @) p[ < B1 B

and then sum the reflected partial waves to derive the reflected SH-wave

1ot i
v = — ros F(w) exp {z’w (t il o COS%)] dw. (3.43)
2 J_ B B

As long as the reflection coefficient r4s is frequency independent (which is the
case for B3 < [ or for ¢ < ¢* with B3 > (31), it can be moved before the
integral, thus, yielding

sin ¢ cos ¢
vy =re |t — T+ z .
' < B B )

The reflected impulse has, in this case, the same form as the incident impulse.
The amplitude ratio of the two impulses is equal to the reflection coefficient.

Then rgs, according to (3.42), becomes dependent from w for ¢ > ¢* with
B2 > (1. One then has to proceed differently. We dissect rss into real and
imaginary parts

. w

rss = R(p)+ ZI(‘P)W
a?® — b?
R) = g
2ab

According to (3.43), it holds that

T G — ,
o = R(G)F(r) + I(w)% / E P d (3.44)

— 00
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with

sin ¢ cos ¢

B ‘ B

T=1—

The function, with which I(y) in (3.44) is multiplied, can be written, here via
its Fourier transform, as (iw/ |w|)- F(w). This is a simple filter of function F(7)
(compare general comments on filters in appendix A.3.4). Each frequency w in
F(7) keeps its amplitude, but its phase is changed. The phase change is +90°
for w > 0 and —90° for w < 0. This corresponds to a Hilbert transform and is
shown in appendix B. The function with which I(p) in (3.44) is multiplied is,
therefore, the Hilbert transform Fy (1) of F(1)

Fy(r) = lP/Jroo mdt _ 1 /Jm In [t| F' (T — t)dt. (3.45)

™ t—T1 T™J_ o

P indicates the main value (without the singularity at ¢ = 7), and the second
form of Fy(7) follows from the first by partial integration. Thus,

v1 = R(p)F () + I(9) Fru (7). (3.46)

Due to the second term in (3.46), the form of the reflected wave is different

from that of the incident wave. Fig. 3.24 shows the results of the reflection of
SH-waves and angle of incidence ¢ from 0 to 90°.

For pre-critical angles of incidence ¢ < ¢* = 487, the reflection has the form of
the incident wave with positive and negative signs. Beyond the critical angle,
in the range of total reflection, impulse deformations occur until at ¢ = 90° the
incident wave form appears again, but with opposite sign (corresponding to a
reflection coefficient rys = —1). The phase shift of rs, at ¢ = 55 is about £90°,
with the consequence that R(p) ~ 0. The reflection impulse for this angle of
incidence is, therefore, close to the Hilbert transform Fp(7) of F(7) (the exact
Hilbert transform is an impulse that is symmetric with respect to its minimum).
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Fig. 3.24: Reflection of SH-waves for different angle of incidence ¢.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



76 CHAPTER 3. BODY WAVES

Exercise 3.7:

Which sign does the reflection coefficient r45 have in Fig. 3.20 and Fig. 3.21, in
the regions where it is real?

Exercise 3.8:

Determine the angle of incidence for which rgs is zero (Brewster angle), and
give the conditions under which this actually happens (compare ¢ ~ 40° in Fig.
3.24).

Exercise 3.9

Compute the reflection and refraction coefficients for a plane surface between
two liquids and for a plane harmonic longitudinal wave under angle of incidence
© impinges. Give, qualitatively, the trend of the coefficients for p; = po with
a1 > ao and a1 < ao. Hint: Use an ansatz for the displacement potential in
the form of (3.31) to (3.33) and express the boundary conditions via potentials
as discussed in section 3.6.2.

3.6.4 Reflection of P-waves at a free surface

Reflection coefficients

The study of the reflection of P-waves from a free surface is of practical im-
portance for seismology. P-waves from earthquakes and explosions propagate
through the Earth and impinge at the seismic station from below. Horizon-
tal and vertical displacement are modified by the free surface. Furthermore,
reflected P- and S-waves are reflected downwards and recorded at larger dis-
tances, sometimes with large amplitudes. It is, therefore, useful and necessary
to know the reflection coefficient of the Earth’s surface. For the moment, we
neglect the layered nature of the crust in our model, thus, only giving a first
approximation to reality.

Based on the comments given at the end of section 3.6.2, we select the following
ansatz for the potentials

incident P — wave

Oy = Agexp |iw <t L COS@z)} (3.47)
i « «
reflected P — wave
B = Ayexp|iw (t _sinpn, _@)} (3.48)
i o «
reflected SV — wave
r : ! !
U, = DBjexp |iw <t - Smﬁ%x + %2)] - (3.49)
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Z

Fig. 3.25: Incident P-wave and reflected P- and S-wave .

The boundary conditions at z = 0 require vanishing normal and tangential stress
Dz = P2z = 0. No boundary conditions for the displacement exist. With (3.29)
and & = &g+ ¢, (¥ = ¥y, =y — component of @))7 it follows that

1 02 2u [ 02 9%y
9@(‘%4—@1)4-7 @(¢0+©1)+8x82 = 0 2=0 (350
0? 9?02,

As in the last section, Snell’s law follows from the boundary conditions

sin ¢ _ sin ¢ _ sin gp’l. (3.52)
« « 16}

Iy

From this, it follows that ¢1 = ¢ and ¢} = arcsin (E - sin <p) < .
With (3.47), (3.48), (3.49) and
p P 3

:)\+2,u—2,u:p042—2pﬂ2 a2 -—2p32

ad
A
(3.50) leads to

% (Ao + Al) (iw)2
232 iw 2 iw iw
(Ag + Aq) <E Cos<p> + B3 (—E sing0’1> <E cosw&)] =0.

+042 — 232

Then
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20232 cos? sin ¢! cos ¢
A0+A1+7a2_262 (Ao + A1) o2 - B 152 Ll =o.
with
2ﬂ2 9 2ﬂ2 042 5
1+m(}08@ = m 2—62—14—605(,0
2ﬂ2 2 5
ﬂQ 0[2
= = o - 2sin? ¢
Y- 2sin? v
= p—

and (7 = g—z > 2), it follows that

— 2sin? 2y sin ] cos ]
Y ¥ (AO + Al) o i Y1 Y1 Bl = 0.
v—=2 v—=2
From this
A B
v — 2sin? 2L _2gin 'y—sin2g0%—1:2sin2g0—'y. 3.53
¥ 2

AO AO

Equation (3.51) then gives

2A0 (—E sin<p> <—Ecos so) + 24, <—z—wsins0) <Ecosw>
« « « «

. 2 , 2
+B; (—%sin@&) - B (%cosg@&) =0

or

2sinpcos
2

02 2,/
S111 — COS
(Ag — Ay) + 24 P 1B, =0

(07

Equation (3.52) then gives

. Al .2 Bl .
2sin ¢ cos goA—O + (v — 2sin® ) T = 2sin p cos . (3.54)
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From (3.53) and (3.54), it follows that the amplitude ratios are

Nl=

Ay 4sin2<,ocosgp(7—sin2 gp) — (7—2sin2 90)2

e - (3.55)
Ao 4sin? peosy (v — sin® p) sy (v — 2sin? cp)z

4si ‘ — 2sin?
& _ Sin ¢ cos ¢ (’y : sin <p) . (3.56)
Ao 4sin? p cos @ (7 — sin? go) 24+ (7 — 2sin? go)

To derive displacement amplitudes (that is how the coefficients R, and R,s in
section 3.6.2 were defined) from the ratios of potential amplitudes given here,
we use (3.25) and (3.26). The displacement amplitude of the incident P-wave is
—%‘“Ag; that of the reflected P-wave is —%“’Al. This then gives the PP-reflection
coefficient (see also (3.55))

Ay

By = 5o (3.57)

Equation (3.26) gives the displacement amplitude of the reflected SV-wave as
—%By. Thus, the PS-reflection coefficient is (see also (3.56))

a31

Ry, and Rps are real and frequency independent for all angles of incident ¢. R,
is always positive. For ¢ =0 and ¢ = 5, Ry, = —1 and R,s = 0, respectively,
and only a P-wave is reflected.

0.c

—05

Fig. 3.26: Reflection and refraction coefficients of P-waves for different angles
of incidence ¢.
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The meaning of the negative signs in the reflection coefficients becomes clear, if
the displacement vector of the incident and reflected waves are represented via
(3.25) and (3.26)

To — Vo — —ayexp [w (t _sne, J)] To
(07 (07 (07
71 = V(I)l = —EA()RM, exp l:iw (t — SlIl—(,Ox + wz) ?1
(07 (07 «
. . / - /
w, = Vx U = —EAORPS exp {iw (t A, S5 z)} ?/1 X .
a B B
k,xn
SV,
P %’5 P
ko !
o ki
)
X
n = unit vector in
. y-direction

Fig. 3.27: Polarity of reflected P- and SV-waves.

Ry, <0, therefore, means that if the displacement of the reflected P-wave in a
point on the interface (z = 0) points in the direction of —?1, the incident wave
S L — .
points in the direction of k(. For R,s < 0, the displacement of the reflected SV-
/
wave would, for such an incident wave, be pointing in the direction of —?1 X .
These connections become more obvious if we go from the harmonic case to
the impulsive case (compare section 3.6.3, transition to impulse excitation).
For the problem studied, the reflection coefficients are frequency independent.
Therefore, the reflected waves have always the same form as the incident wave

Ty = F (t _ e, COWz) o (3.59)
(0] (@]
@ = Ry F (t _sng _@) 7 (3.60)
(@] (@]
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: / o
T, = R,F (t i s WOk ' z) Ty x T (3.61)
g B
/!

- (ﬁ. )
Py = arcsin| —sing ).

In the case R, < 0, if the first motion of the incident P-wave is directed towards
the interface z = 0, this also holds for the reflected SV-wave and the reflected
P-wave; otherwise, the first motion of the reflected P-wave points away from
the interface. Fig. 3.28 shows the case for R,, < 0.

S SX!
P P N u P
7
wave e N
front . /\
Ton g , N
Uo ¢ £
) U
X
Z

Fig. 3.28: Definition of the first motion of reflected P- and SV-waves.

Displacements at the surface

Finally, we compute the resulting displacement at the free surface (z—0) in
which the three waves (3.59), (3.60) and (3.61) superimpose.

3

Horizontal displacement (positive in z-direction):

u = [(14 Ryp)sing + Ry cospi] F (t — 512g0x>
u = fule)F <t - wx)
a

1
4rysin g cos @ (y — sin? ) 2
fule) = ; 2( - ) — (3.62)
4sin” ¢ cos (fy — sin <p) 2+ (’y — 2sin cp)

and Vertical displacement (positive in z-direction):

w = [(1—Rpp)cosp+ Ryssinp)] F <t — Sm@x)
a
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v e (s )

2vcos ¢ (7 — 2sin? ¢
fulp) = =24 ) . (3.63)
4sin® pcosp (v —sin® ) 2 + (7 — 2sin® p)

The amplification factors (or transfer functions of the surface) f, () and f,(p),
respectively, are given in Fig. 3.29 for the case v = 3.

.0 T 1
{
A5F .
1.0F )
fuw

o5+

od

—_— = A 32

p
0 - | L

0 30% 60 49°

Fig. 3.29: Transfer functions of the free surface.

Therefore, a linearly polarised wave with the apparent velocity «/ sin¢ propa-
gates at the surface. The polarisation angle €, (see Fig. 3.30), is not identical
to the angle of incidence ¢. € is also called the apparent angle of incidence.

1
2sing (7 — sin? cp) 2
vy —2sin? ¢

U
€ = arctan (—) = arctan
w
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w,
Z

Fig. 3.30: Polarisation angle ¢ and angle of incidence ¢.

€
e=¢ -
T /
2T o
s ~i€(9)
2
7/ |
/ !
/ 1
7/ |
/ |
7/ |
7 |
Vs |
/ |
I ¢
© 2

Incident SV -wave

If a SV-wave, instead of the P-wave considered up until now, impinges on the
free surface, no P-wave is reflected for angles of incidence ¢ > ¢* = arcsin g,
but only an SV-wave (|Rss| = 1) is reflected. This follows from considerations
similar to that for an incident P-wave. For ¢ < ¢*, the displacement at the
free surface is linearly polarised, but for ¢ > ¢*, it is polarised elliptically.
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This property is observed: SV-waves from earthquakes for distances smaller
then about 40° are elliptically polarised, but are linearly polarised for larger
distances.

source

Fig. 3.32: Polarisation of SV-waves from earthquakes .

3.6.5 Reflection and refraction coefficients for layered me-
dia

Matrix formalism

In the last two sections, we studied the reflection and refraction of plane waves at
one interface. The reflection and refraction coefficients depend, then, mainly on
the properties of the half-spaces and the angle of incidence. Only if the critical
angle is exceeded, a weak frequency dependence occurs: the sign of the phase
(the coefficients become complex) is controlled by the sign of the frequency of
the incident wave (compare section 3.6.3). The frequency dependence becomes
much more pronounced when the reflection and refraction of plane waves in
a (sub-parallel) layered media is considered (two or more interfaces). Then,
generally, interference phenomena occur and for special frequencies (or wave
lengths) constructive or destructive interferences occur.

Here, we will study the reflection and refraction of P-waves from a packet of
liquid layers between two liquid half-spaces. The corresponding problem for SH-
waves in solid media can be solved similarly. There is a close similarity between
P-waves in layered liquid media and SH-waves in layered solid media. The
treatment of P-SV-waves in solid media (possibly with interspersed liquid layers)
is, in principle, the same, but the derivation is significantly more complicated.
In all these approaches, a matriz formalism is used, which is especially effective
for implementing on computers.

We choose the annotation of the liquid-layered medium as given in Fig. 3.33.
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incident wave

,/ )
’ oy, X
2,=0 y 1P
% 2 0l,P2
d3
03503
I
g
d
i
0,Pj
I
I
I
Z
! On»Pn
Z

Fig. 3.33: Liquid-layered medium with n layers.

The displacement potential ®; in the j-th layer (j = 1,2,...,n) satisfies the
wave equation

Ox2 022 af ot

0?®; N 0?®; 1 0%0;

Solutions of this equation, which can be interpreted as harmonic plane waves,
have the form

exp [i (wt + kjxz £1;2)]

with kJQ- + ZJQ- = w/a?, where k; is the horizontal, l; the vertical wavenumber,
respectively. We assume positive frequencies w and non-negative horizontal
wavenumbers k;. Then, we can disregard the sign “4” of kj;x, since it corre-
sponds to waves which propagate in -x-direction. This is not possible for our
selection of the incident wave, (see Fig. 3.33). The two signs of [z have to
be kept, since in all layers (except the n-th) waves propagate in +2z- and in
-z-direction. We then come to the potential ansatz

O, = Ajexpli(wt—kjz—1i(z— z))] (3.64)
+Bjexp [i (wt — Kia +15(z — zj))]
2
— = 22 g2z Y
z1 = 2z2=0, k'] + l] kj + l] a? (365)
B, = 0. (3.66)
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In (3.64), we have assumed, for the moment, that the wavenumbers of the waves
propagating in +7- and -z-direction are different. Furthermore, we have replaced
z by z — z;. This does not change the meaning of the terms but simplifies the
computations.

The part A; exp [i (wt — k1x — l32)] of &1 will be interpreted as incident P-wave
(compare, e.g., (3.47)). This means that k; and [; are connected with the angle
of incidence ¢ as

ki = ail sin @
(3.67)
i = o% CoS .

The part Bjexp[i (wt — kjz +112)] of @1 is the wave reflected from the lay-
ered half-space z > 0. We want to compute the reflection coefficient R, and
the refraction coefficient B, (again defined as the ratio of the displacement

amplitudes)
B
Ry = A_i
(3.68)
An
By = 2‘—; TAL
The boundary conditions for the interfaces z = 29, 23, . . ., 2, require continuity

of the vertical displacement 0®/9z and of the normal stress p,, = AV2® =
pd*®/0t*. For z = z;, this gives

6‘19] _ 6‘19]71
z

%,
0z - '

d Pe;
and p; gz = Pj—-1"p;2

From the first relation, it follows that (the phase term e’ is neglected in the

following since it cancels out),

—lej exXp [—iij] + l;BJ exp [—zk;x} = —ljflAjfl exXp [Z (—kj,lx — ljfldjfl)]
+ l;-lej_l exp [z (—k;fla: + l;fldj_l)] .

The second relation gives

ijj exXp [—iij] + ijj exp [—Zlﬂ;x] = pjflAjfl exp [Z (—kj,lx - ljfldjfl)]
+ pj—1Bj_1exp [Z (—k;,lx + l;ildjfl)] .
Both equations hold for j = 2,3,...,n,and d;j_1 = z;—z;_1 (d1 = 0). As before,

we require that the exponential terms depending on x must cancel, leading to
kj = kj = kj_1 = k’_,. This, then, gives (with (3.67))
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K o=kn =k =kn1=...= K, =k = —sine.
(65}

This is an alternative form of Snell’s law. With (3.65), this leads to

w? : w o2 :
7 2| _ .2
y=1; = <a_§ — k1> “ <1 - oz_j% sin <p> : (3.69)

If sing > aq/aj, I is imaginary (and even negative imaginary), only then for
j = n is the amplitude of the potentials limited for z — oo. This leads to the
following system of equations, which connects A; and B; with A;_; and B;_q,

respectively

AJ - BJ _ l]l—l [Aj_le_“j_ldj_l _ Bj_le“j_ldj_l]
J

AJ +BJ _ Pi—1 I:Aj_le—'ilj_ldj_l _|_Bj_1e’ilj_1dj_1] .
Pj

In matrix form, this can be written as (please check)

< 4; ) _ et ( li1pj +lipj—1  (=lj—1pj + lipj—1)e®lirdim )
J

2lip; —lj1pj +lipi—r (Li—1pj +1ipj—1)e®b-1dim
Aj—l
3.70
( Bj-1 ) (8.70)

A
R ( i )

where m; is the layer matriz.

Repeated application of (3.70) gives

A, Ay
Bn = My, My {1 .. M3 My Bl
Ay
u( )
_ M1 Mo Ay
Moy Moo By )

On computers, the product M of the layer matrices m,, to m, can be determined
quickly and efficiently. First, the angular frequency w and the angle of incidence
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 are given; then, the [;’s are determined with (3.69), and the matrices are
multiplied. This gives the elements of M. From

Ap = M1 A1 + MioBy and B,, = M1 Ay + M2 By

with (3.66), it follows that

Bl M21 A'n, M12M21
_— = - and—:Mn—i.
A1 M22 Al M22

The reflection coefficient R, and the refraction coefficient Bpp of the layered
medium, therefore, can be written according to (3.68) as

M. a My M.
Ryp = — 572 and By, = = <M11 - M) : (3.71)

Two homogeneous half-spaces

In this very simple case, it follows (with d; = 0) that

_ 1 lipa +1lop1  —lip2 + lap1
2lapa \ —lip2 +l2p1 lip2 + lap1

and, therefore, according to (3.71)

R _ —lapr +lip2
e lap1 + l1p2
B - @ (lipa +12p1)? — (lopr —lip2)® a1 2lip
w = =70
o9 2l2p2(l2p1 + l1p2) s lopr + lip2
o? 2 3
With Iy = Zcospandly = = (1 — S3sin (p) = - cosp (p2—angle of
1

refraction), it follows that

P202 COS @ — P11 COS P2
P202 COS Y + P10y COS P2
2p1Qi1 €COS
P202 COS Y + P10y COS P2

Ry, =

By, =

(compare with exercise 3.9). For ¢ = 0 (— 2 = 0), it follows that
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_ P2 —pon o 2p10q

= = 3.72
p20i2 + prov PP paan + pron (8.72)

Pp

These are equations that also hold for an interface between two solid half-spaces.

Lamella in full-space

We limit our study here to vertical reflections from a lamella.

X
=0 9uby

d,=d 02,P2

O3=0q,p= Py
z

Fig. 3.34: Lamella of thickness d.

In this case, n = 3,1; = ls = w/ay and ls = w/ay. Then with (3.70) and d; = 0,
do = d

P2 p1 P2y pr

Q2 (o5} a2 (658 Q2

- 2\ —arta ata
_ G2 1+y —1+7v
-1+ 1+79

2w L

—iw L ’ ’ 2w L
_age e 1+9" (1475
“1+9"  (I+7)e e

with v = 2% and ~/ = £222 — % This leads to

P02 pP1C1
—iw-L 2w 4 2w L
M = m3m2 = © i (1 + 7)2 n (1 N 7)26 . 0:12 72 N 1 + (1 N 72)6 . adz .
I v =72+ (=127 —(1—9)? + (1 +7)%*

We now compute the reflection coefficient R,, (according to (3.71))

]\421 (1 o 72)(1 _ eina—{g) 1 o 6721‘“)0‘_{12
Ryp = o o = Bo————-(3.73)
22 (1—7)2—(1+7)2e" ez 1 — R3e "oz
with
1— —
R, = T P22 — g

1+~ P20 —|—p10¢1'
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Ry, according to (3.72), is the reflection coefficient of the interface z = 0. For
relatively small reflection coefficients Ry, which are typical for discontinuities in
the Earth (|Ro| < 0.2), one can write as a good approximation

Ry = Ro (1-¢77%7). (3.74)

Discussion of R,

R,p, in the form of (3.73) or (3.74), is zero for angular frequencies w, for which
ZwO% is an even multiple of 7. With the frequency v and the wave length A in
the lamella (o2 = vA), the condition for destructive interference is

3
1,-,2,... 3.75
77277 ( )

=l
DO |

The lamella has to have a thickness of a multiple of the half wave-length so
that in reflection destructive interference occurs with R,, = 0. In this case
refractions show constructive interference.

According to (3.74), R,, is maximum (|R,,| = 2|Ry|) if 2w0% is an uneven
multiple of 7. Then

NN

5
1

=] W

(3.76)

) )

1
4’

=l

In this case, the waves interfere constructively for reflection and destructively
for refraction.

The periodicity of Ry, visible in (3.75) and (3.76), holds generally so

Ryp (w—f—na%f) = Rpp(w), n=12,3,...

To conclude, we discuss how the reflection from a lamella looks for an impul-
sive excitation. We assume that the vertically incident P-wave has the vertical
displacement wy = F (t — ail) and that F(w) is the spectrum of F(t). The

vertical displacement w; of the reflected wave is then (compare section 3.6.3)

1 [t

wi=o [ Ryp@)Fw)e® (55) g (3.77)

with R,,(w) from (3.73). In practise, integral (3.77) is computed numerically,
since fast numerical methods for Fourier analysis exist and computation of
the spectrum from the time function ( F'(w) from F(t)) and Fourier synthesis,
i.e., computation of the time function from its spectrum (w; from its spectrum

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 91

Rpp(w)F(w)e™?/21). Such numerical methods are known as Fast Fourier trans-
form (FFT).

Insight into the processes occurring during reflection, the topic of this chapter,
can be achieved as follows: we expand (3.73) (which due to RZ < 1 always
converges)and get

RPP(W) = Ry (1 — eii“’i—(é) i (Rgefiu.ﬂ—fé)”
n=0

= Ry—Ry(1—R2)e ™% — R} (1—R2)e ™
“RS(1-R2)e @i —

4d
2

(3.78)

Substitution of this into (3.77) and taking the inverse transform of each element

gives
2
wi = ROF(Hi)—RO(1—Rg)F<t+i——d) (3.79)
o o ap
4d z 6d
- RO-R)F(t+ = )R -R)F (=20 -
R; (1 Rg) +a1 v Rg (1 - Rg) +Oz1 o

The first term is the reflection from the interface z = 0. Its amplitude, as
expected, is the reflection coefficient Rg of this interface. The second term
describes a wave which is delayed by twice the travel time through the lamella,
thus, corresponding to the reflection from the interface z = d. Its amplitude has
the expected size; the reflection coefficient of this interface is —Ry. The product
of the reflection coefficients of the interface z = 0 for waves travelling in +2z—
and —z—direction, 2p1a1/(p2az + p1a1) and 2paas/(prag + paca), is 1 — R2. Tn
the same way, the third and fourth term of (3.79) can be interpreted as multiple
reflections within the lamella (with three and five reflections, respectively). The
terms in (3.79) correspond to the rays shown in Fig. 3.35.

ARV O A
LN W

z=d

Fig. 3.35: Reflected and multiple reflected rays in a lamella.

Equation (3.79) is a decomposition of the reflected wave field in (infinite many)
ray contributions. It is fully equivalent to (3.77).

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



92 CHAPTER 3. BODY WAVES

The approximation (3.74) for R,,(w) corresponds to the truncation of the ex-
pansion in (3.78) after the term for n = 0 and, therefore, the limitation on the
two primary reflections from the interfaces z = 0 and z = d, respectively (and
neglecting RZ relative to 1).

Exercise 3.10

Show that for the refraction coefficient in (3.71), it holds that
_ o det M

. _ hp
B,, = o, oy with detM = o

Apply this formula in the lamella, in cases in which (3.75) and (3.76) hold.

Exercise 3.11

The P-velocity of the lamella is larger then that of the surrounding medium:
a9 > «ay. Does then total reflection occur? Discuss this qualitatively.

3.7 Reflectivity method: Reflection of spherical
waves from layered media

3.7.1 Theory

The results of section 3.6.5 can, with relative ease, be extended to the excitation
by spherical waves. For simplification of representation, we again assume that
we deal, at the moment, only with P-waves in liquids.

S — s source
h
2,=0 %Py 4
dy
o
2 2’92
d
i Ol3,P3
3
d; .
O ,Pj
|
|
|
Z
! On»Pn
b4

Fig. 3.36: Explosive point source over liquid, layered medium.
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The spherical waves are excited by an explosion point source located at hight
h above the layered medium. The displacement potential of this source for
harmonic excitation is (compare section 3.4)

1 i(en
Pre = e (=) (3.80)

with R? = r?2 + (2 + h)2. Because of the symmetry under rotation around the
z-axis, cylindrical coordinates r and z are used. The wave equation for the
potential ®; in the j-th layer is

P20, 109; 020, 1 0°d,
-7 E—— . 81
or? r Or 022 oz? ot? (3.81)

Elementary solutions of this equation are (please check)

=

2 2
Jo(kr)exp [i (wt £ 1 (2 — z;))] with k? + ZJQ- = %, l; = (% — k2> (3.82)

J J

(compare section 3.6.5 for notation). Jy(kr)is the Bessel function of first kind
and zeroth order (compare appendix C).

Equation (3.82) is an analogue to the solutions e ~#s% . ¢H (%l (2=25)) of the wave
equation 9°®; /92> +0°®; /02 = (1/a3)0?®;/0t* discussed in the last chapter.
In (3.82), the index j of the horizontal wavenumber & has been dropped, since
k is a parameter over which one can integrate (furthermore, it was shown in
section 3.6.5 that all k;’s are identical).

With (3.82), the functions

/ f(k)Jo(kr)et @t =2 g, (3.83)
0

are also solutions of (3.81) if the integral converges. Thus, we come to the
potential ansatz

O; = / Jo(kr){Aj(k)ei(‘“t’lj(z’zf))+Bj(k)ei(‘“t+lf(z’zj))}dk. (3.84)
0

Note the close relation of (3.84) to (3.64). Whether this ansatz actually has a
solution, depends firstly, if ®1, from (3.80) can be represented in the integral
form (3.83) and secondly, if ®; in (3.84) satisfies the boundary conditions for
Z = 22,R3y..-%n-
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The first requirement is satisfied since the following integral representation is
valid (Sommerfeld integral, compare appendix D)

1 sfz >0 .
e (=) :/ Jo(kr)— gilwt—talz+hl g, (3.85)
0 le

We, therefore, can interpret the first part

/ Jo(kr)Apet@t=h2) g (3.86)
0

of ®; (with z; = 0) as the incident wave (see also section 3.6.5) ®1. (the second
part is the reflected wave ®q,). We have to compare (3.85) and (3.86) for
locations in which the spherical wave passes on incidence at the interface z = 0,
ie., for —h < z < 0. In this case, |z 4+ h| = z + h and the comparison gives
Al(k') = (k‘/ill)eiillh.

The boundary conditions for the interfaces can be taken from section 3.6.5. The
potentials (3.84) are differentiated under the integral. The identity following
from the boundary conditions is only satisfied for all r, if the integrands are
identical. This leads to the same system of equations for A;(k) and B;(k) as
in section 3.6.5, i.e., (3.70). In contrast to the previous section, the vertical
wavenumbers [; have to be considered now as functions of k (and not of the
angle of incidence ). k and ¢ are connected via

k= sin . (3.87)
ai

Following section 3.6.5, the reflection coefficient R, = B1/A1 = —Ma1/Mas has
been computed as a function of the angular frequency w and angle of incidence
;; then the dependence on £ can be introduced via (3.87): Ry, = Ryp(w, k).

The second part of @1, the reflected wave, can then be written as

By, — / To(kr) A (k) Ryp (6, k)@ g
0

= / ,iJO(kr)R,,p(w,k)e“wt“l(z—h”dk.
0 le

The corresponding vertical displacement is

Dy, ; o (e
wir(r, z,w,t) = 8321 = et / kJo(kr) Ryp (w, k)et G=M dk; (3.88)
0

and the horizontal displacement (with Jj(x) = —J1(z))
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aq)l'r

oo 1.2 .
— piwt / —kjl(kr)Rpp(w,k)e”l(z’h)dk. (3.89)
87‘ 0

upy(r, z,w,t) = i
The integrals in (3.88) and (3.89) are best computed numerically, especially,
in the case of many layers. For solid media, (3.88) and (3.89) also hold, but
the reflection coefficient R,,(w, k) is more complicated than for liquid media
and wy, and w1, describe only the compressional part of the reflection from the
layered half-space z > 0. For the shear part, similar results hold, which only
now contain the reflection coefficients Rps(w, k).

The transition to impulse excitation

1 R
b, =—F(t——
! R ( (11)

instead of (3.80) is relatively simple (see section 3.6.3). If F(w) is the spectrum
of F(t), it holds that

o 1 e iw(tfaﬁ)
¢1e—ﬁ[w F(w)e 1) dw.

The corresponding displacements of the reflected wave are

Wiy (r,z,1) } - 4 +°°F(w){ wir(r, 2,0, ) }dw (3.90)

Uir(r, z,t) 2m J—oo ury(r, z,w, t)

with wi, from (3.88) and wuy, from (3.89). The integrals in (3.88) and (3.89),
multiplied by F(w), are, therefore, the Fourier transforms of the displacement.

The numerical computation of (3.88), (3.89) and (3.90) is called the Reflectivity
method; it is a practical approach for the computation of theoretical seismograms
of body waves. With it, the amplitudes of body waves from explosions and
earthquakes can be studied, thus, progressing beyond the more classical travel

time interpretation.

3.7.2 Reflection and head waves

An example for theoretical seismograms is given in Fig. 3.37 (from K. Fuchs:
The reflection of spherical waves from transition zones with arbitrary depth-
depended elastic moduli and density. Journ. of Physics of the Earth, vol. 16,
Special Issue, S. 27-41, 1968). It is the result for a simple model of the crust,
assumed to be homogeneous. The point source and the receivers are at the
Earth’s surface; the influence of which has been neglected here. The transition
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96 CHAPTER 3. BODY WAVES

of the crust to the upper mantle (Mohorovic¢ié-zone, short Moho) is a first
order discontinuity, i.e., the wave velocities and the density change abruptly
(for a discontinuity of 2nd order these parameters would still be continuous, but
their derivative with depth would have a jump).

76

76
|
<
& 72; 172
™~ r -
P
< 68} % 68
]
< 64} ? 164
S % } 1
60+ } 160
56 —— . ; | 56
4 60 ', 80 100 120 1 (km) 140
VELOCITY  {km/sec)
) 2 3 4 5 6 71 8 8
: f:f;:OR‘:‘NDOF B e ssste a2 sen
z REDENT S CRITICAL DISTANCE :
£ 2 fer= 76,91 (k)
Z 30
&
LY i
s REFLECTION AND REFRACTION
- FROM A 1st .ORDER DISCONTINUITY

30 3z 3
DENSITY (g/cm?)

Fig. 3.37: Synthetic seismogram for reflection and refraction from a 1st order
discontinuity (from K. Fuchs, 1968, Journ. of Physics of the Earth).

The dominant wave is the reflection from the Moho. For distances from the
source beyond the critical point r* = 74.91 km, corresponding to the critical
angle of incidence ¢*, the first onset is the head wave with the apparent velocity
of 8.2 km/sec. Its amplitude decays rapidly with increasing distance, and its
form is the time integral of the reflection for » < r*. For pre-critical distance
r, the form of the reflection is practically identical to that of the incident wave.
At the critical point, it begins to change its form. This was already discussed
in section 3.6.3 in terms of the properties of the reflection coefficient for plane
waves (this holds for P- and SH-waves, respectively). For large distances, the
impulse form is roughly opposite to that for » < r*. This is also expected,
since the reflection coefficient R, for the angle of incidence ¢ = 7/2 is equal
to —1 (for liquids, this follows from the formulae given in section 3.5.6). The
amplitude behaviour of the reflection is relatively similar to the trend of the
absolute value |R,,| of the reflection coefficient, if |R,,| is divided by the path
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length and if one considers the vertical component (see, e.g., Fig. 3.22 and
corresponding equations). The main discrepancies are near the critical point.
According to |R,,|, the reflected wave should have its maximum directly at the
critical point, whereas in reality, it is shifted to larger distances. This shift is
larger, the lower the frequency of the incident wave.

reflection amplitude
(vertical displacement)

| exact
Ve AN

frequency f

fi<
Srequency [, </

Fig. 3.38: Reflection amplitude versus offset as a function of frequency.

The consideration of this shift is important when determining the critical point
from observed reflections, e.g., in reflection seismics.

3.7.3 Complete seismograms

Fig. 3.39 shows the potential of the reflectivity method. This shows complete
SH-seismograms for a profile at the surface of a realistic Earth model. The
source is a horizontal single force at the Earth’s surface, acting perpendicular
to the profile. The dominant period is 20 sec. The most pronounced phases are
the dispersive Love waves (for surface waves, see chapter 4), whose amplitudes
are mostly clipped. The propagation paths of the largest body wave phases
(mantle wave S and SS, core reflection S¢S and diffraction at the core Sg; 5 are
also sketched.) A detailed description of the reflectivity method is given in G.
Miiller: The reflectivity method: A tutorial, Journ. eophys,., vol. 58, 153-174,
1985.
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Fig. 3.39: Complete SH-seismograms for a profile at the surface of a realistic
Earth model.

3.8 Exact or generalised ray theory - GRT

We continue the chapter on elastic body waves with the treatment of reflection
and refraction of cylindrical waves radiated from a line source and reflected
and refracted at a plane interface which is parallel to the line source. This
problem is more simple and less practical than the case considered in section
3.7 of a point source over a layered medium. On the other hand, we will learn
a totally different way of treating wave propagation which leads to relatively
simple analytical (and not only numerically solvable) results. This is the main
aim of this section. This method, originally developed by Cagniard, de Hoop
and Garvin (see, e.g., W.W. Garvin: Exact transient solution of the buried line
source problem, Proc. Roy. Soc. London, Ser. A, vol 234, pg. 528-541, 1956),
can also be applied for layered media and be modified for point sources. In
that form it is, similar to the reflectivity method, usable for the computation of
theoretical body-wave seismograms in the interpretation of observations.
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Again, we limit ourselves to treat the problem of a liguid model (see Fig. 3.40),
since we can then study the main ideas with a minimum of computation.

o _Q_‘} ./ explosion line source
{ . / \\ perpendicular to the x-z-plane

04,0 X

0, P2

Fig. 3.40: Explosive line source in a liquid medium.

We work with the displacement potentials &; = &, + &y, in half-space 1
(®1. = incident, ®;, = reflected P — wave) and @9 in half-space 2. The three
potentials satisfy the wave equations

1 82‘I>16T 1 82(I>2
V20, , = — S V20 = — —=. 3.91
fer T a2 o 2T a2 o (3.91)
The Laplace transform of these equations gives

52 s?
v2§01e,r = 5 Ple,r and VQQOZ = —5¥2, (392)

Q@ Q@

1 2

where @1, 1, and @9 are the transforms of ®1., ®1,. and P, respectively, and
s is the transform variable (see appendix A). We assume that the P-wave starts
at time t=0 at the line source. Therefore, the initial values of ®1., ®1, and P,
and their time derivatives for t=+0, are zero outside the line source. The time
derivatives have to be considered in the second derivative with respect to ¢ in
(3.91).

3.8.1 Incident cylindrical wave

First, we have to study the incident wave. Since the line source is explosive and
has, therefore, cylindrical symmetry around its axis, it holds that

82@1& 1 8(:018 32

VQ e = “anro = ans — 9o®Ple
=9 TRoR ~ @2¥

(3.93)

with R? = 2% + (2 + h)2. The solution of (3.93), which can be interpreted as a
cylindrical wave in +R direction, is
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P1e = f(s)%KO(O%s), (3.94)

where f(s) is the Laplace transform of an arbitrary time function F(#) and
Ko(a—RlS) is one of the modified Bessel functions of zeroth order.

Proof: Using the substitution z = f—f, (3.93) can be expressed as the differential
equations of the modified Bessel function

Py | dy
2 2 2 _
g gy @Ay =0.

In the case considered here, n—0. The differential equation has two independent
linear solutions, Ky(x) and Iy(z), respectively. For real z, Fig. 3.41 shows their
qualitative behaviour.

3.
lo(X)
5] 0
1-
Ko(X¥)
0 . : .
0 1 2 3 X

Fig. 3.41: Behaviour of linear solutions Ky(z) and Iy(x).

This shows that only Ko(z) is a possible solution, since Iy(z) grows infinitely
for x — oco. (Reference: M. Abramovitz and I.A. Stegun: Handbook of Mathe-
matical Functions, H. Deutsch, Frankfurt, 1985).

Taking the inverse Laplace transform of (3.94) in the time domain, and using
the correspondence

f(s) eo F(t) (F(t) =0 for t <0)

lK()(Es) {0 for t<R/ay
S (651

cosh 1 (&) for > R/
with a typical behaviour of the solution given in Fig. 3.42;
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Rlay t
Fig. 3.42: Behaviour of the solution.

the potential can be written as

t
By, — / Ft—mycosh (X D)dr (1> Rfay). (3.95)
R/Ozl R

By varying F(t), the cylindrical wave can be given different time dependen-
cies. Equation (3.95) is the analogue to the potential ®1, = £ F (t - a—Rl) of a

spherical wave from an explosive point source.

In the following, we treat the special case F(t) = §(t), for which all important
effects can be studied. If realistic excitations have to be treated, the results
for the potentials and displacements of the reflected and diffracted waves, re-
spectively, derived with time dependent F(t) = §(t), have to be convolved with
realistic F(t). For F(t) = d(t)

Oqt

®1, = cosh™*( I ),

and the corresponding radial displacement in R-direction is

0P, t R
U= L2 _ _ : >, (3.96)
/2
OR R (t2 - 5—2) (65}
1
'UR
1/ TR B
R/, 1

Fig. 3.43: Displacement in R direction.
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The corresponding point source results are

R (&3]
0P, 1 R 1 R
— — ) t— —
UR 81-1’ R2 < 011> ROél ( 041)
_[]R
VR ——----
R/, t

Fig. 3.44: Displacement in R direction.

3.8.2 Wavefront approximation for Uy

If we write (3.96) as

—t
Ur = 2\ 172 N2
R(t+2)7 (- £2)
and consider values of t near a_R17 we find the approximation
-1 1
UR% 172" 172" (397)
(2Ray)" (t_ a_Rl) /

This approximation is more accurate the closer t is to R/ay, and, therefore,
this is called wavefront approzimation. It is more accurate for large R, and it
is, therefore, also the far-field approximation of the cylindrical wave.

Within the framework of the wavefront approximation (3.97), the impulse form
of the cylindrical wave is independent from R, and its amplitude is proportional
to R~/2. Both statements become especially obvious if (3.97) is convolved
with realistic excitation functions F(t). The singularity in (3.96) and (3.97) is
integrable.
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3.8.3 Reflection and refraction of the cylindrical wave

The coordinates most appropriate for the study of reflection and refraction are
the Cartesian coordinates z and z. Equation (3.92), then, takes the form

Py %0  s?

922 " 922 a2’

Appropriate elementary solutions have the form cos(kx) exp(dimz) with k? +
m? = —s%/a?. From these elementary solutions, more complicated solutions in

integral form (similar to section 3.7.1) can be constructed

_ > +imz
p= /0 f(k)cos(kx)e dk,

with which we can try to satisfy firstly, the potential (3.94) of the incident
wave, and secondly, the boundary conditions for z = 0. Specifically, we use the
following ansatz

Ple = fo‘x’ Ay (k) cos(kx)e~ ™Mz dk (2> —h)
C1r = f()oo Bl(k) COS(kx)eimlzdk (398)
Yy = fooo Ay (k) cos(kx)e~ ™22 dk

1/2

2

s

myo = —i <k2 + T) (negative imaginary for positive radicands).
Qa7 o

For K (o%s) in (3.94) an integral representation, similar to (3.85) for the spher-

ical wave, can be found. With this ¢1. (with f(s)—1, since F(t) = d(t)) it follows
that

et hl (kz 4 f)m] dk. (3.99)
’ G

1 [ 1
Vle = _/O ﬁcos(lﬂx) exp 2

N k2+i)

Ot2
1
A comparison with @1, from (3.98) for z>-h gives

e—imlh

As(k) =

ismy
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The boundary conditions for z=0 are (compare section 3.6.5)

0P, 0? 0?®,

0
77 (Pre + 1) = ——, =5 (P1e + P1p) = p2—5-.
62(1+1) 0z p18t2(1+1) SETe
The Laplace transform gives
0 a(pg
92 (p1e + @17) = 92 p1(p1e + 1) = p2ip2.

From (3.98), it follows that

m1 (A1(k) — Bi(k)) = maAa(k)
p1 (A1(k) + Bi(k)) p2Aa(k),

and from this

By (k) = Ryp(k) A1 (k) and Ag(k) = By (k) Ay (k)

Thus,

p2my — p1ma 2p1mq
R,, (k) = ——— and B,,(k) = ————. 3.100
(k) ooy + prims o (k) DaTh1 + prima ( )

The potentials @1, and @9 are, therefore,

O1r / Ay (k)R (k) cos(kx)e™ *dk
0

w2 = / Ay (k)B,p (k) cos(kx)e™™2%dk.
0

The Laplace transforms w and u of the vertical and horizontal displacement W

and U, respectively, can, in general, be written as w = g—f and u = g—i

and specifically

Wir — foo Rpp (k) iml COS(k‘ﬁ) e—iml(h—z)dk

(O 0 sma | —ksin(kx) (3.101)
w2 foo Bpp (k) —imy COS(]CQJ) efi(mngrml h)dl€ -

Us 0 simy —ksin(kx) '
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These Laplace transforms must now be transformed back. This is impossible
with (A.9) in appendix A. One, rather, uses an approach that is based in trans-
forming (3.101) several times with function theory methods until the integrals
are of the form

w} — [ Z(t)e*tdt. (3.102)

u

The inverse { I[/I]/((tt)) } = Z(t) can then be identified directly.
An important limitation has to be mentioned first: we only consider positive
real s, i.e., we do not consider the whole convergence half-plane of the Laplace
transform, but only the positive real axis. This simplifies the computations
significantly, without limitation of its generality, since the Laplace transform is
an analytical function. It is, therefore, determined in the whole convergence
half-plane by its values on the real axis, where the integral (3.101) is real.

With cos(kz) = Re(e~%%) and sin(kx) = Re(ie~**), (3.101) can be written as

1;)1“ } — Re fooo R:;(f) T_n]i }ei(karml(hz))dk

w " Bon() m (3.103)
2 _ o0 Bpp — 12 —i(kx4+mih+maoz

wy } = Re [, —Z= i }e ( thtma2) g

The next step is a change of the integration variables
ik
S

u =

so that the integration path is now along the positive imaginary w-axis. The
transformation of the square root m, 2 gives

5\ 1/2
—1 <—52u2 + ST> = —1s (—u2 + 013)1/2

mi2 = o
1,2
2 —o\1/2
= =S (u — 01172) = —Sa1,2
with
_on1/2
a1 = (> —a72)"?. (3.104)

The transformed integration path is, therefore, in the sheet of the Riemann
plane of the square root a; 2, in which a; 2 >~ u for |u| — oo holds (and not in
the sheet with a; 3 ~ —u). Introducing (3.104) in (3.100), gives
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2p1a1

p20a1 — P1a2
R,,(u) = —— = and B,,(u) = ——.
() () =

= 3.105
p2a1 + prag ( )

With k& = —isu and dk = —isdu, it follows from (3.103)

“+i00 o )
ir } = Re/ Rpp(u){ . }es(mml(hz))du (3.106)
0

Uiy ar

“+1i00 S ) )
w2 } _ Re/ Bpp(u) { Za}l }es(uwzalhzagz)du. (3107)
ug 0 _E

These expressions already have a certain similarity with (3.102) since s only
occurs in the exponential term. The next step is, therefore, a new change in the
integration variable

in (3.106)
t =ux —iay(h — z) (3.108)

in (3.107)
t =ux —iarh —iasz. (3.109)

From both equations, u has to be determined as a function of ¢ and has to
be inserted in (3.106) and (3.107), respectively. This will be discussed later
in more detail. At the same time, the integration path has to be transformed
accordingly. For u = 0, it follows from (3.108) and (3.109), respectively, that

t0) = to = = }
B o, (3.110)
t0) = ty = Z+Z.

The transformed integration paths C; (for (3.106)) and Cy (for (3.107)), re-
spectively, start on the positive real t-axis. For u — +ioco, they approach an
asymptote in the first quadrant which passes through the centre of the coor-
dinate system and has the slope tany = x/(h — z) (for the case (3.108)) and
tany = z/(h + z) (for the case (3.109)). In (3.108), z is always negative in
(3.109) always positive. The transformed integration paths are shown in Fig.
3.45.
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Imt Im t

tan“{zﬁ tanYzhi_'_Z
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_ hz Re t _h = Re t

Fig. 3.45: Transformed integration paths.

In the case of the reflected wave (left in Fig. 3.45), C; is part of a hyperbola;
in the case of the refracted wave, C' is part of a curve of higher order which is
similar to a hyperbola. We then get

SIS
=
303
——
I

Re Rpp(U(t)){ ) }d—?e“dt (3.111)
1 ar (u(D)

ias(u(t)) du
Re/ Byp(u(t)) 4 1ttt Ee‘“dt. (3.112)
Cz T a(u(?)

§E
—
I

The last step is now to deform the paths C; and C5 towards the real axis ac-
cording to Cauchy’s integral. The path C; 2 can now be replaced by the path
Ci2+ C1, in Fig. 3.46 if no poles of the integrands in (3.111) and (3.112) are
located inside the two paths.

Imt

to Ret

Fig. 3.46: Integration paths in the complex plane.
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108 CHAPTER 3. BODY WAVES

This is satisfied because the only singularities of a; and as are the branch points
u = :I:ozf1 and u = :I:a;l7 respectively, and these branch points are integrable
singularities and not poles. Finally, the contribution of the curve 0172 goes to
zero if its radius becomes infinite. Thus,

h—=z
+/a [0] e~ at (3.113)
0
. taz(u(t))
., — du| _,
AN e e
- ar (u(D))
artas
. " (3.114)

In these expressions, only the real part of the square brackets has to be consid-
ered since e %! is real and the integration is only over real t. The addition of the
second integral with vanishing contribution was only done for formal reasons, to
allow integration over ¢ from 0 to oo according to (3.102). Equation (3.113) and
(3.114) have, therefore, the standard form of a Laplace transform, from which
the original function can be read directly. The displacements W7y, and Uy, of
the reflected wave are, therefore, zero between the time 0 and (h—2)/ay. This is
not surprising since (h — z)/a; is the travel time from the source perpendicular
down to the reflecting interface and back to level z of the source. This time
is, therefore, smaller, or at most equal, to the travel time of the first reflected
onsets at this point. For ¢t > (h — 2) /a1 it holds that

er o
Uy, } = Re

Rpp(U(t)){ B T{E?t)) }Ccli—ﬂ (3.115)

with u(t) from (3.108).

Similarly, the displacements W5 and Us of the diffracted wave for 0 < ¢t <
h/ay + z/ag are zero, and for t > h/ay + z/ag, it holds that

1’;2((5 (tt))) du
Byp(u(t)) { uEtﬁ } E] (3.116)

with u(t) from (3.109).

All that is needed to calculate these relatively simple algebraic functions, is the
solutions of (3.108) and (3.109), with respect of u as a function of real times
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 109

t > to (from (3.110)) and the knowledge of the derivative ‘é—;‘. In the case of
(3.108), this is very easy since here u can be given explicitly

s
~
|
>
]
n
—~
~
=N
~
[\v]
SN—
=
c
=
i
w
INA
~
IN
~
S
Il
2=l

u(t) = (3.117)

R= (2?4 (h—2)?) '/2 i the distance of the source point from its mirror image,
i.e., from the point with the coordinates x = 0 and z = +h; t; = R/ay is,
according to Fermat’s principle, the travel time of the actual reflection from the
interface. The curve of u(t) is given in Fig. 3.47. The derivative du/d¢ can be
computed directly from (3.117). It has a singularity at ¢t = ¢;.

Imu
tan & = hx;z
{0\
sﬂm‘)
u(t) fort>t,
S 0
u(ty)=0 u(t1)=_L Re u

Roy

Fig. 3.47: The path of u(t) in the complex plane.

In the case of the refracted wave, u(t) has to be computed numerically with a
similar curve as for the reflected wave (Fig. 3.47).

Imu
_h+z
tan & = X
u(t) for t >t,
t=t;=arrival time of the diffracted wave
(to be calculated numerically)
~ 0
u(ty)=0 u(ty) Re u

Fig. 3.47: The path of u(t) for the refracted wave in the complex plane.
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110 CHAPTER 3. BODY WAVES

The numerical computations of u(t), and its derivative, are possible without
a large effort. In the following section, we focus on the reflected wave using
(3.115) and (3.117).

3.8.4 Discussion of reflected wave types

We assume that the P-velocity in the lower half-space is larger than that of
the upper half-space containing the line source; as > «y. First, we consider
receivers P(xz,z) for which u(t;) = z/(Ra;y) < ay'. Since 2/R = sing (p—
angle of incidence), this means that sinp < «ay/as = sin p* (¢*— critical angle

of incidence), and this implies pre-critical incidence of the cylindrical wave.

7

Q’ = mirror point

of Q

N
) 7

A interface

QVZ

Fig. 3.49: Sketch for line source and its mirror point.

In this case, u(t) for t < ¢ is smaller than a;l and, thus, even smaller than afl.

Therefore, a1 (u(t)) and az(u(t)), according to (3.104), are positive imaginary,
and R,,(u(t)), according to (3.105), is real. Since du/dt is real for the times
considered, it follows with (3.115) that the real part of the square brackets for all
t <ty is zero. For t > 1, u(t) becomes complex, and the real part is non-zero.

Not surprisingly, the displacement, therefore, starts at ¢ = ;.

If ay < ag, this argument holds for arbitrary receiver locations in the upper
half-space.

If u(t;) = 2/(Ray) > oy b, the angle of incidence ¢ is larger than the angle ¢*,
and we expect a head wave as the first onset. In this case, as(u(t)) becomes
real at the time ¢o which is defined via u(t2) = a;l. The same does not hold for
aq(u(t)). Thus, Ry, (u(t)) has non-zero real and imaginary parts for ¢ > ¢, and,
therefore, (3.115) is already non-zero for t > to. Putting u = a5 ' in (3.108), it
follows that

ty = ai +(h—2)(a7%—ay2)? < ty.
2
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 111

This is the arrival time of the head wave as expected according to Fermat’s
principle for the ray path from Q to P(x,z) in Fig. 3.50.

0
P(x,z)

interface

Yz

Fig. 3.50: Path of head wave from source Q to receiver P.

Considering this case at time ¢ = t1, we expect, due to the sudden change in the
curve on which u(%) propagates, significant changes in the displacement (3.115),
i.e., that the reflection proper gives a significant signal, and this is something
which indeed can be observed.

Our derivation has shown that the head wave, and also the reflection, can be
derived from the potential ®1,, i.e., no separate description was necessary for the
head wave. If we had studied solid media, we, possibly, could have identified
a second arrival which is an additional interface or boundary wave (P to S
conversion) (compare, e.g., the work by Garvin quoted earlier). In section 3.7
(see head wave in Fig. 3.37), we encountered a similar situation in that the
head wave was included in the solution. Both methods (reflectivity method in
section 3.7 and GRT this section) give a complete solution unless simplifications

for numerical reasons are introduced.

reflection reflection

W, ' ~ W, - ~
'Ulr -Ulr 5
head wave /i
— !

t i t

1 tz tl
¢ < o* 0> 0* i

Fig. 3.51: Sketch of the displacement (in horizontal and vertical direction) for
pre-critical (left) and post-critical (right) incidence, respectively.
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112 CHAPTER 3. BODY WAVES

For t — oo, the limit of the displacement is non-zero, as for the case of the in-
cident wave (compare (3.96)). The singularities at ¢ = ¢; are always integrable.
Therefore, convolution with a realistic excitation function F(t) is always possi-
ble. On the right side of Fig. 3.51, the displacement starts before the reflection
proper arriving at ¢;. Fermat’s principle, therefore, does not give exactly the
arrival time of the first onset in the case where the reflection is not the first
arrival.

Exact Wave front
seismograms approximation

A Ao
/s
= -
— E]
Vg

22

ﬁ%ﬁ%#

%

é

r{km)

Reflection_?

@]
N
«

|
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 113

Fig. 3.52: Theoretical seismograms (vertical displacement) for a crustal model.
Parameters: a; = 6,4km/s, as = 8,2 km/s, p; = 3,0 g/cm?3, py = 3.3 g/cm?,
h = 30 km, z = —30 km. On the left, the exact seismograms (GRT) and
on the right a wavefront approximation is shown. From G. Miiller: Exact
ray theory and its application to the reflection of elastic waves from vertically
inhomogeneous media, Geophys. Journ. R.A.S. 21, S. 261-283, 1970.

For realistic F(t), this discrepancy is usually small. A full example using the
theory of this section, is given in Fig. 3.50b. For a description of the different
wave types etc., see also section 3.7.2.

In the case of a layered medium with more than one interface, the wave field can
be broken into separate ray contributions, as was done for the lamella in section
3.6.5. For each ray contribution, a formula of the type of (3.115) or (3.116) can
be given, which can contain head or boundary wave contributions. This is the
reason for the name "exact or generalised ray theory". Another common name
is the "Cagniard-de Hoop-method".

Exercise 3.12:

Give wavefront approximations for the reflected wave and head wave, i.e., ex-
pand (3.115) around the arrival times t; (of the reflection) and ¢2 (of the head
wave), respectively. Distinguish between slowly varying contributions, which
can be replaced by their values for t = ¢; and ¢t = t3, respectively, and rapidly
varying terms, which depend on t — ¢, ¢t; — ¢t and t — o, respectively.

3.9 Ray seismics in continuous inhomogeneous
media

With the reflectivity method and the GRT, we have discussed wave-seismic
methods, which if applied in continuous inhomogeneous media (in our case ver-
tically inhomogeneous media), require a segmentation in homogeneous regions
(in our case homogeneous layers). Wave-seismic methods for continuous in-
homogeneous media, without this simplified representation of real media, are
often more complicated (compare example in section 3.10). In this section, we
will now sketch the ray-seismic (or ray-optical) approximation of the wave the-
ory in inhomogeneous media. We will also show that it is the high frequency
approzimation of the equation of motion (2.20) for the inhomogeneous elastic
continuum. We restrict our discussion again to a simplified case, namely the
propagation of SH-waves in a two-dimensional inhomogeneous medium. The
source is assumed to be a line-source in the y-direction where density p, S-
velocity § and shear modulus p depend only on z and z. The only non-zero
displacement component is in the y-direction v = v(x, 2, t).
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114 CHAPTER 3. BODY WAVES

3.9.1 Fermat’s principle and the ray equation

Fermat’s principle states that the travel time of the (SH-)wave from the source
@ to an arbitrary receiver P along the seismic ray is an extremum and, there-
fore, stationary, i.e., along each infinitesimally adjacent path between P and
(dashed in Fig. 3.53) the travel time is either larger or smaller.

seismic ray

P
Fig. 3.53: Ray with extremum path and infinitesimally adjacent ray.

In most cases, the travel time along a seismic ray is a minimum, but there
are also cases, where it is a maximum (e.g., the body waves PP, SS, PKKP).
If we describe an arbitrary path from P to @ via a parameter representation
{z = z(p),z = z(p)}, the element of the arc length s can be written as

o= [ ()] oy

We consider now many such paths from @ to P. They all have the same value
p=p1 at @ and p = py at P, respectively. Therefore, p cannot be identical to
s; p could, for example, be the angle between the line connecting the coordinate
centre to the point along the way and the z- or z-axis. The seismic ray is the
path for which

1

- [ reman (8 (5] - [ o)

e d
dp " dp

is an extremum. The determination of the seismic ray has, therefore, been
reduced to a problem of calculus of variations. This leads to the Euler-Lagrange
equations

oF d oF anda_F_ia_F_
dr  dpdz’ 9z dpdz
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 115

This gives then, for example,

2 /2%£< L )_i[ 1 @’ }:
@+ 5 Be) @ e e o)

Division by (22 + 2/2)1/2, multiplication of nominator and denominator of the
square bracket with dp, and use of (3.118) gives

d (1dz 0 1
ds (m‘) = o (E) (3.119)

Similarly,

d (1d 0 (1
L e Ay (e (3.120)
ds \ B ds 0z \

Equations (3.119) and (3.120) are the differential equations of the seismic ray in

the parameter representation {x = x(s), z = z(s)} where s is now the arc length
of the ray. With

dx . z o
— =sinp, — = cos
ds 14 ds 14

(¢p— angle of the ray versus the z-direction), it follows that

d sincp) _

o (1
ds B oz \ B
e B (3.121)
ds IE] 9z \pB

dx
dz

Fig. 3.54: Ray in x-z coordinate system.

These two equations can now be converted into another form of the ray equation
(show)
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dp 1 (. 0B ap
a3 <s1n<p$ — cos cp%) . (3.122)

This differential equation for ¢(s) is well suited for numerical computations of
the ray path. The inverse of dy/ds

ds (. 9P AN
r= Q- 54 (sm b, ~ Cos cp%> (3.123)

is the radius of the curvature of the ray. The ray is curved strongly (r is smaller)
where the velocities change strongly (V3 large).

Special cases
a) = const.

From (3.122), it follows that dy/ds = 0. The ray is straight.

b) 8 = B(z) (no dependence on 1)
The first equation in (3.121) gives, after integration,

sin ¢

3 = q = const (3.124)

along the whole ray (Snell’s law) where ¢ is the ray parameter of the ray. For
sources and receivers at the level z = 0 the ray is symmetric with respect to its
apex S. The ray parameter ¢ is connected to the take-off angle ¢¢, the seismic
velocities 3(0) at the source and the turning point 3(z,), respectively, via

_singg 1
—B0) T B(zs)
z:c? A P X
¢
S
ZS _________
pa

Fig. 3.55: Ray in 1-D medium.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 117

A turning point depth z, is only possible if 8(z) < §(zs) for all z < z,. For
distance A in which the ray reappears at level z = 0, it holds (using (3.124))
that

S Zs Zs 1
Aq) = 2/Q dr = 2/0 tan pdz = 2q/0 [ﬂfz(z) - qz} 2 dz. (3.125)

The ray’s travel time is

Sd Zs d Zs 1
T(q) :2/@ ES =2 ﬂco’zw :2/0 B2(2) [872(2) — ¢?]  dz. (3.126)

Equations (3.126) and (3.127) are parameter representations of the travel time
curve of the model. An example for ray paths and travel time curves in a model
with a transition zone is given in Fig. 3.56.

retro-grade branch

" N

6 8

o

S~ pro-grade branches

tran-
sition {

Fig. 3.56: Ray paths and travel time curves in a model with a transition zone.

The slope of the travel time curve is (show)

=y 12
N (3.127)

¢) B =a+ bx + cz (linear dependence from z and 2)

In this case, it follows from
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dp  csinp —beosp
ds I6)
and by differentiation with respect to s (p and (3 are functions of s via z and 2)

d’¢  ccosp +bsinp dp csin<p—bcos<p(b no+ )= 0
= " (hsing + ccosp) = 0.
ds? g ds 2 4 4

This implies dp/ds is a constant and, therefore, the curvature radius along the
whole ray. The ray is, therefore, a circle, or a section of it. Its radius r follows
from (3.123) if [ is chosen identical to the value at the source Q and ¢ equal
to the take-off angle pg. M, the centre of the circle, can be found from ) as
shown in Fig. 3.57.

‘\
Ve
oMo~

Fig. 3.57: Ray paths in a model with a linear velocity law in x and z.

The travel time from ) to P is

P P1 1
Y A R T !
o B po CSinp —bcosp tan [(«po—(?)}

with § = arctan(b/c).

An arbitrary velocity law ((z, z), given at discrete points (x,,2z,) in a model,
can linearly be interpolated piece-wise between three neighbouring points. Then
the laws derived here can be applied. The ray then consists of several sections of
circles, and at the transition between two regions with different linear velocity
laws, the tangent to the ray is continuous. A corresponding travel time and
plotting program is, for many practical applications, already sufficient.

Exercise 3.13
a) Show that point M is on the line 5 = 0.

b) Derive the formula for T given above.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam
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3.9.2 High frequency approximation of the equation of
motion

The equation of motion for inhomogeneous, isotropic media (2.20) can for SH-
wave propagation in two-dimensional media without volume forces, be simplified

to
v 0 ov 0 v
ov _ 9 ([, L9 (v 3.128
P52~ ba <M8m> N (“az) (8:128)
For the time harmonic case we use the ansatz

v(x, z,t) = Az, 2) exp [iw (t — T'(z, 2))] . (3.129)

This is an ansatz for high frequencies since only for such frequencies can we
expect that amplitude A(z,z) and travel time function T(z,z) to be frequency
independent in inhomogeneous media. In homogeneous media far from inter-
faces, this is true for all frequencies as long as one is a few wavelengths away
from the source. Using (3.129) in (3.128), and sorting with respect to powers of

w, it follows that
or\* [or\’
2 —_ —_— J—
“’A{“ (&) (%) ”}

_ {auaT op oT (82T 52T> <61nA6T 81nA8T>}
FiwAS —— + —— — —

+

ox 0z | 0z 0z ox?2 = 022 or Ox + 0z 0z
OudA  OudA 0?A 024
D Rl e AT I QY 1
{8m3x+8z 3z+u<3x2+8z2 0 (8-130)

For sufficiently high frequencies, the three terms of this equation are of different
magnitudes. To satisfy (3.130), each term has then to be zero independently,
especially the first two terms

or\*  [(or\? 1
JMAIT  OWMAITY  opdT 9pdT
( 0r or oz 32) 0z 0r 0z 0z uVT. (3.132)

Equation (3.131) is the Eikonal equation, and it contains on the right side the
location-dependent S-velocity 3 = (u/p)'/2. After solving the Eikonal, T is
inserted in in the transport equation (3.132), and In A and A are determined.

This, in principle, solves the problem. The frequency-independent third term
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in (3.130) will usually not be zero with A from (3.132). Solution (3.129) is,
therefore, not exact, but becomes more accurate, the higher the frequency.

We still have to derive the conditions under which the first two terms of (3.130)
are indeed of different order and, therefore, the separation into (3.131) and
(3.132) is valid. The condition follows from the requirement that each single
summand in the second term has to be small with respect to each single sum-
mand in the first term, for example,

w%a—T < w? 6_T :
Ox Ox M\ oz ) -

From (3.131), it follows roughly |0T/0x| = 1/8. Thus,

‘E% <L w.

oz

With p = p3?, it follows

200,500

pE i R (3.133)

Similar relations follow from the other summands in (3.130). Usually, the re-
quired conditions are formulated as follows: the high frequency approximations
(3.131) and (3.132) are valid for frequencies which are large with respect to the
velocity gradients

o= [(2) (2] 130

Equation (3.133) shows also, that density gradients have also an influence.
Equation (3.134) can be expressed even more physically: the relative change
of the velocity over the distance of a wavelength has to be smaller then 27
(show).

Example

We solve (3.131) and (3.132) in the simplest case of a plane SH-wave propagating
in z-direction with the assumption that p, 5 and p depend only on 2 Ansatz
(3.129) then simplifies to

v(z,t) = A(z) exp [iw (t — T'(2))] - (3.135)

The solution of (3.131) is
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ar 1 = d¢
—=———,T(2)= —
R EI N
where T'(2) is the S-wave travel time, with respect to the reference level z = 0.

Equation (3.132) can be written as
2pdin A ldp  pdp

B & Bd Pz
Thus,
dnA 1 (dmpg dlp\ dln(p8) *
dz _§<dz_dz)_ dz
e - p<o>6<o>]%
@ = A0 |55

The amplitudes of the SH-wave vary, therefore, inversely proportional to the
impedance pf. The final solution of (3.135) is

ol = 40| 4070 . o (- [55)] (3.136)

From these results we conclude that, in the case considered, an impulsive, high
frequent SH-wave propagates without changing its form.

Exercise 3.14

Vary the velocity 8 and the density p not continuously from depth 0 to depth
z, but, via a step somewhere in between. Then the amplitudes can be derived
exactly via the SH-refraction coefficient (3.40). Show that (3.136) gives the
same results if the relative change in impedance is small with respect to 1.
Hint: Expansion in both cases.

3.9.3 Eikonal equation and seismic rays

From (3.129), it follows that surfaces of constant phase are given by
t —T(x,z) = const.

In the impulse case, these surfaces are the wavefronts separating perturbed and
unperturbed regions. This is why the term wavefront is used also here. Complete
differentiation with respect to ¢ gives
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oT dz  OT dz dz
o v s | 1
Oz dt + Oz dt Vv dt ’ (3.137)

where cﬂ/dt = (dx/dt,0,dz/dt) is the propagation velocity of the wavefront.
The obvious interpretation of (3.137) for isotropic media is that cﬁ/dt and the
vector V T', which is perpendicular to the wavefront, are parallel, since according
to the Eikonal equation (3.131) |VT| = 1/8, it holds that }cﬁ/dt‘ = (3. This

means that the wavefronts propagate perpendicular to themselves with the local
velocity 3.

The orthogonal trajectories of the wave are defined as seismic rays. We still have
to show that they are the rays defined via the Fermat’s principle. We demon-
strate this by showing that the differential equations of the seismic ray, (3.119)
and (3.120), also follow from the Eikonal equation. As before, we describe the
ray via its parameter representation {z = z(s), z = z(s)} with the arc length
s. Vector cﬁ/ds = (dz/ds,0,dz/ds) is a unit vector in ray direction for which,
using the statements above, we can write

Z—;” — BVT = B(OT9x,0,0T/52). (3.138)

Instead of (3.119), we, therefore, have

4 (1ay_d (or
ds \Bds) ds\0z )’

Using (3.138) and the Eikonal equation on the right side, we derive

d(lde\ _ PTds 0Tz (PTOT 0T OT
ds \ B ds  922ds  Oxdzds 02 0xr  0x0z 0z
_ Bo|(orNT, (oTN'| _ B0 (1
N Oz |\ Oz 0z 20z \ 32

8 ox P ox Oz

2
B(-=2)08 1098 0 (1
ERT (5)

That is identical to (3.119) and a similar derivation holds for (3.120). The
following is the ray equation in vector form, which is also valid in the three-

dimensional case
d (1dz 1
— |2 )=V = 1
I <ﬁds> Vﬁ (3.139)
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This shows that ray seismics is a high frequency approximation of wave seis-
mics. We have, until now, limited the discussion on kinematic aspects of wave
propagation, i.e., on the discussion of wave paths, travel times and phases.
Dynamic parameters, especially amplitudes, were not discussed except in the
simple example in section 3.9.2. The following section gives more details on this
aspect.

Before doing this, we give the form of (3.139) which is often used in numerical
calculations, especially in three dimensions. The single ordinary differential
equation of 2nd order for @ (3.139) is replaced by a system of two equations of

=
1st order for @ and the slowness vector 7 = + dx

= 5°qs (vector in ray direction with

the absolute value %)

i _ o dp g1
as  UPas T 3

Effective numerical methods for the solution of systems of ordinary differential
equations of 1st order exist, e.g., the Runge-Kutta-method.

3.9.4 Amplitudes in ray seismic approximation

Within the framework of ray seismics developed from Fermat’s principle, am-
plitudes are usually computed using the assumption that the energy radiated
into a small ray bundle, remains in that bundle. This assumption implies that
no energy exits the bundle sideways via diffraction or scattering and no energy
is reflected or scattered backwards. This is only valid for high frequencies. In
the following, we derive a formula which describes the change of the displace-
ment amplitude along a ray radiated from a line source in a two dimensional
inhomogeneous medium. The medium shall have no discontinuities.

We consider (see Fig. 3.58) a ray bundle emanating from a line source @ with
a width of dl(M) at the reference point M close to () and a width of di(P) near

the point P.
Q X
di(m) I z
P

di(P

Fig. 3.58: Ray bundle emanating from the source Q.
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124 CHAPTER 3. BODY WAVES

Equation (3.129) holds for the displacement in M and P, or in real form
v=Asinw(t-1T].

Our aim is the determination of the amplitude ration A(P)/A(M). We first de-
termine the energy density of the wave, i.e., the sum of kinetic and potential en-
ergy per unit volume. The kinetic energy density is §pv? = $pw? A? cos? [w(t — T')].
Averaged over the period 27 /w, the potential and kinematic energy density have
the same value %pw2A2 since the average of cos? x is identical to % Then the
energy density averaged over a period can be written as

AE 1
— = —pw?A?.
N
Consider a cube with the volume AV = dldyds; its cross section dl dy is per-

pendicular to the ray bundle and its length ds is exactly 1 wavelength 527/w.
The energy

1
AFE = ipszzAV = nwpBA%dl dy

contained within this cube flows per period through the cross section dl dy of
the ray bundle. Since no energy leaves the bundle, AE at P is the same as at
M. From this the amplitude ratio follows as

(3.140)

As in (3.136), impedance changes occur along the ray. The square root of
the change in the cross section is the important parameter for the amplitude
variation. In the most general three-dimensional case, dl has to be replaced by

the cross section surface of the three-dimensional ray bundle.

Equation (3.140) can be approximated by tracing sufficiently many rays through
the medium using the methods discussed previously, and then determining their
perpendicular distances (or cross-section surfaces in three dimensions). These
methods are based mainly on the solution of the ray equation (3.139), which is
also called the equation of the kinematic ray tracing. A more stringent approach
to calculate (3.140) is based on differential equations which are directly valid
for the cross section of a ray bundle; they are called equations of the dynamic
ray tracing. Their derivation cannot be treated here; for details, see the book
of Cerveny, Molotov and Pgencik (1977).

For point P on a horizontal profile, e.g., at z = 0, a closer look at (3.140) and
Fig. 3.59 helps in understanding the physical meaning.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 125

Fig. 3.59: Ray paths in an inhomogeneous medium.

The horizontal distance of P is A(pg) with the take-off angle ¢¢ of the ray from
@ to P. The distance of the reference point M from @ is a. With dl(M) and
dl(P) from Fig. 3.59, it follows from (3.140) that

=

a

AP) _ [p(M)ﬁ(M)] (3.141)

PIEE) | |cong |22
This expression shows that problems occur if P is on, or close to, the neigh-
bourhood of turning points of the travel time curve on the horizontal profile
(compare, e.g., the travel time curve in Fig. 3.56). At these points, dA/dyg
changes its sign, and that can happen either with a continuous or non-continuous
pass through a zero. In the first case, infinite amplitudes occur in P; in the sec-
ond case, the amplitudes become non-continuous. Both cases are unrealistic
and nonphysical. Equations (3.141) and (3.140), respectively, can, therefore,
only be used at some distance from the turning points (caustics) of the travel
time curves. Unfortunately, this means that the points with some of the largest
amplitudes cannot be treated properly under these assumptions; more sophisti-
cated methods (like the WKBJ method, to be discussed later, or the Gaussian
Beam method) must be employed.

Despite this disadvantage, the formulae given above (and their corresponding
equations in three dimensions) are very useful in seismological applications.
They can be easily extended to include refractions and reflections at discon-
tinuities. This requires the determination of changes in the cross section of
the ray bundle at discontinuities, and the inclusion of reflection and refraction
coefficients.

A further problem of the energy ansatz used in this section is that it only
gives the amplitudes of a seismic ray but no information on its phase changes
that occur in addition to the phase changes in the travel time term. It is not
always sufficient to add exp [iw(t — T)] to (3.140) and (3.141), respectively, e.g.,
on retrograde travel time branches in the case that the velocities are only a
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126 CHAPTER 3. BODY WAVES

function of z. The WKBJ method and the Gaussian Beam method solve this
problem by tracking an additional parameter, the KMAH index named after
Keller, Maslov, Arnold and Hormander, which counts the caustics encountered
along the ray.

In the following section, the WKBJ theory for vertical inhomogeneous media,
which avoids some of the ray theory problems discussed, is presented; it contains
more wave seismic elements.

Exercise 3.15

Use the ray parameter g instead of the take-off angle ¢¢ in the amplitude formula
(3.141) in the case of a vertically inhomogeneous medium and then use (3.127).
What is the relation between the amplitudes and the travel time curve T/(A)?

3.10 WKBJ method

Now we will consider total reflection at a vertically inhomogeneous medium
using the WKBJ method.

3.10.1 Harmonic excitation and reflection coefficient

We consider a medium whose velocity §(z) for z < 0 is 5(0), i.e., constant and
for z > 0 can be any continuous function of z, i.e., no discontinuities exist
in the medium. A plane SH-wave may propagate obliquely in the lower half-
space z < 0 with the horizontal wavenumber k& = wsin¢/3(0) (ray parameter
q =sing/B(0) (¢ — angle of incidence). Note the difference to the example in
chapter 3.9.2 with vertical propagation.

Then the ray seismics of the vertically inhomogeneous medium, section 3.9.1,
suggests inserting 0T /0x = q = constant in the Eikonal equation (3.131) (com-
pare with (3.127)). This then, gives

T(x,2)=qzr+ /02 [5_2(0 — qQ]% d¢,

and, thus, the travel time of the S-wavefront from the intersection of the origin
to the point (z,z). The rest of the discussion is as in section 3.9.2., and leads to

vo(z,28) = A(0) {%}%exp [iw (t—qa;—/ozs(g)dg)](s.142)
SO = [0 -7 (3.143)
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3.10. WKBJ METHOD 127

q is the horizontal and s is the vertical slowness of the wave. For ¢=0, (3.142)
is identical to (3.136). Equation (3.142) is the WKB.J-approximation of the
S-wave. It is a useful high frequency approximation, as long as 37 1(z) > g,
i.e., as long as the seismic ray which can be associated with the wave is not
propagating horizontally. If the velocity, e.g., with increasing depth decreases or
if it increases, but does not reach the value ¢—!, (3.142) is applicable for all 2.

For cases of interest and a medium with increasing velocities for increasing
depth, a depth z, is reached where 3(zs) = ¢~!. At this depth, where the ray
propagates horizontally, (3.142) diverges. Equations (3.129), (3.131) and (3.132)
are insufficient for the description of the wavefield near the turning point of
rays. If (3.142) is considered for z > z, with §(z) > ((z), i.e., the velocity
continues to increase, a stable result can, again, be obtained. The integral in
the exponential term from z; to z is imaginary, thus, giving an exponential
decay of the amplitudes with increasing z, i.e., below the ray’s turning point the
amplitude of the SH-wave decreases as expected. For z < zg4, the wavefield is
insufficiently described by (3.142) since (3.142) represents only the downward
propagating incident SH-wave. A similar equation can be given for the reflected
SH-wave upward propagating from the turning point

vi(x, z,t) = RA(0) [%] : exp {iw (t —qr+ /Oz s(g‘)dg)} . (3.144)

That this wave propagates upwards can be seen from the positive sign before the
integral in the exponent. R is, as can be seen by the selection z=0 in (3.142) and
(3.144), the amplitude ratio v (x,0,t)/vo(x,0,t) of the reflected to the incident
wave; in other words, the reflection coefficient of the inhomogeneous half-space
is z>0. Its determination requires a quantitative connection of the whole field
vg + v1 for z < zs with the already mentioned exponentially decaying field for
z > zs. To tie these two solutions together is, as mentioned before, not possible
with the high frequency approximation of the equation of motion used until
now.

The required connection becomes possible with another high frequency approx-
imation of (3.128), namely a wave equation with depth dependent velocity

1 (3.145)

3 (2)

2 _ 9V | 9V _ 1 8%V
VIV = Gzt 57 = me e }
» _ )

This high frequency approximation is valid under condition (3.134), as can be
shown by inserting in (3.128). For plane waves, it follows from the ansatz

V(z,z,t) = B(z)exp [iw(t — qz)]
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via (3.145) an ordinary differential equation for B(z)

B"(z) +w® [87%(z) — ¢°] B(z) =0. (3.146)

This equation has now to be solved for large w. The solutions of B”(z) +
w?f(2)B(z) = 0 in the neighbourhood of a zero of f(z) and for large w is generally
called WKBJ-solution after the authors - Wentzel, Kramers, Brillouin, Jeffreys.
For z < zg, the previously discussed superposition of (3.142) and (3.144) of the
incident and reflected wave of v results. For z > z4 the exponentially decaying
solution follows. The case that z is in the immediate neighbourhood of z;
has to be examined in more detail. We approximate the coefficient w?s?(z)
of B(z) (with s(z) from (3.143)) linearly and get, with s%(z5) = 0,3(zs) =
g~ and J(,) > 0,

B"(2) — 2w2¢*B' (25)(z — 25) B(2) = 0. (3.147)

This equation can, with the substitution,

1
y(2) = [27¢°6' (25)]® (2 — ) (3.148)
be transformed into the differential equation of the Airy functions

C"(y) —yC(y) = 0.

The solution of interest to us, C(y) = Ai(y), is discussed in appendix E (more
on Airy functions can be found in M. Abramovitz and I.A. Stegun: Handbook
of Mathematical Functions, H. Deutsch, Frankfurt, 1985). The depths z < z;
(z > z,) correspond to arguments y < 0 (y > 0) of Ai(y). From Fig. E.2,
it follows that the transition from the oscillatory solution B(z) of (3.147) with
z < zg to the exponentially damped solution for z > z, is without singularity.
This then, also holds for the displacement v, in contrast to what one would
expect from (3.142) and (3.144).

The oscillatory behaviour of B(z) for z < zs indicates that the incident wave
vo and the reflection vy, build a standing wave with nodes of the displacement
at depths which correspond to the zeros of the Airy function. The reflection
coefficient R in (3.144) is now determined in such a way, that the superposition
of (3.142) and (3.144), in the term that depends on z, is identical to the Airy
function. Due to the high frequency assumption, the asymptotic form of Ai(y)
for large negative y can be used

1 2 2
Ai(y) ~ 772 |y| T sin (§ |y|g + %) . (3.149)

Furthermore, for z < z;
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1
MOS0 exp [ (t = qo — ;" 5c)]

iw [ sdC] + Rexp [2iw [ sd(] - exp [—iw [ sd(] }.
(3.150)

Vo +v1 = A(O)
{exp

The z-dependence of vy + vy is given by the curved bracket. Tt will now
be determined in approximation. With the approximation (3.147) w?s%(¢) =
20}2(135/(25)(23 — (), it follows

w/zssdg = [2w >0 (25) %/ 2d§
= [2w lcs (zs)]

=

OOI[\.'J

(z — z)*

2 3
= :l:— 2

3 lyl
= 4Y

with y = y(z) from (3.148). The positive (negative) sign holds for positive
(negative) frequencies. Thus, for the curved brackets in (3.150)

{_ . } _ e:tiY + ZeIiY
with the abbreviation

Z = Rexp {Ziw /ZS st] . (3.151)
0

With Z = +i for w <0 (>0), it follows that

(14 0)(cos Y +sinY) =24 (1 £ 0)sin (Y + %)

1 2 3 7
2z2(1+4)sin | = |y|2 + —
tazasin (Sl + 7).

and, therefore, the required agreement with the main term in (3.149). Z = +i
in (3.151) gives then the reflection coefficient in the WKBJ-approzimation

R = iggrexp [—Ziwlfozs s(¢)dc]
s = [ -7 (3.152)
ﬂ(zs) = q_l = 55103,
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130 CHAPTER 3. BODY WAVES

Its absolute value is 1 (total reflection). Tt describes only the phase shifts,
i.e., a constant phase shift of £7/2 for w < 0 (w > 0) is added to the phase
shifts due to the travel time in the exponential term of R. Compared to the
reflection coefficients of layered media, derived earlier without approximation;
the form of (3.152) is simple. It is only valid for sufficiently high frequencies
(condition (3.134)) and for angle of incidence ¢ with total reflection. Reflection
coefficients of the type of (3.152) are useful in seismology but even more so for
the propagation of sound waves in oceans or the propagation of radio waves in
the ionosphere (compare, e.g., Budden (1961) and of Tolstoy and Clay (1966)).

The reflected SH-wave observed at the coordinate centre follows, then, by in-
serting (3.152) in (3.144)

v1(0,0,1) = A(O)iﬁ exp {iw (t —9 /0 s(C)dC)] . (3.153)

Then
r(q) =2 / S(Q)dc

is the delay time, , i.e., the time between the intersection of the incident and
the reflected wave with the coordinate centre. This time delay corresponds to
the ray segments AC, BD, or OP.

reflected wave front incident wave front

Fig. 3.60: Construction of a caustic from the envelopes of rays.

Note that the wavefronts are curved for z>0; only in the homogeneous region
z<0 are the wavefronts plane.

Fig. 3.60 shows also that the line z = z4 is the envelope of all rays. Such
envelopes are called caustics, and they are characterised by large energy con-
centrations. Within the amplitude approximation formula (3.140), and due to
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dl(P)=0 for a point P on the caustic z = z, infinite amplitudes would result
there. The additional phase shift of 7, as discussed before, can be interpreted
physically as the effect of the strong interaction of each ray with its neighbouring
rays in the vicinity of the caustic. More complicated caustics occur in vertically
inhomogeneous media, if the incident wave is from a point or line source, re-
spectively. In such cases, the phase shift per caustic encountered, is 5. More
complicated caustics are encountered in two and three dimensional media.

3.10.2 Impulsive excitation and WKBJ-seismograms

If an impulsive wave, producing a displacement vy(0,0,¢) = F(t) at the coor-
dinate centre, instead of a harmonic wave is incident, it follows from (3.153)
that the corresponding reflection is the time delayed Hilbert transform of F(t)
(compare section 3.6.3)

v (0,0,8) = Fy(t — 7(q)). (3.154)

This means that the reflection for all angles of incidence ¢ (or ray parameters
or horizontal slowness ¢) have the same form except for the time delay 7(q).
This is, therefore, different from the results for a discontinuity of first order in
chapter 3.6.3 (there the impulse form changed in the case of total reflection also
with the angle of incidence ).

When cylindrical waves are considered, the principle of superposition is used.
The cylindrical wave, assumed to originate from an isotropically radiating line
source in the coordinate centre, is represented by many plane waves with radi-
ation angles ¢ from 0 to m/2. This corresponds to positive values of ¢. The
reflections are superimposed similarly. First, (3.154) is generalised for arbitrary
x>0

v1(2,0,t) = Fg (t —7(q) —qz) = Fu(t) « 6 (t — 7(q) — qz) .

Then these plane waves are integrated over ¢ from 0 to 7/2 and, thus, the
WKBJ-seismogram at distance z from the line source is derived

v(x,0,t) = Fr(t) = /0E d(t—7(q) —qx)dp = Fr(t) « I(x,1). (3.155)

The impulse seismogram I(x,t) can now be derived numerically via

(3.156)

I(z,t) = . 0(t—t;)Ayp; . }

t; T(ql) + i, qi = 6(0) .

Usually, the ¢; are chosen equidistant (Ay; = Ay = const). The delta functions
are shifted from the times ¢; to their immediate neighbouring time points I(x,t)
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and possibly amass there, i.e., in the discretised version of I(x,t), multiples of
Ay occur there. I(x,t) is then convolved with Fiy(t). The most time-consuming
part is the computation of the delay time 7(g;); on the other hand, efficient ray-
seismic methods exist, for that. In comparison to the reflectivity method and the
GRT, the WKBJ-method is significantly faster. There are also other numerical

realisations of this method than (3.155) and (3.156).

WKBJ-seismograms have other phase relations and impulse forms than ex-
pected from (3.152) and (3.154), respectively. This is due to the summation
of many plane waves. Pro-grade travel time branches (see Fig. 3.56) show no
phase shift, i.e., the impulse form of the incident cylindrical wave is observed
there. Phase shifts and impulse form changes only occur on retro-grade travel
time branches. Furthermore, the seismogram amplitudes are finite in the vicin-
ity of the turning points of travel time curves, i.e., the WKBJ-method is valid
at caustics.

WKBJ-seismograms for a simple crust-mantle model and a line source at the
Earth’s surface are shown in Fig. 3.61. The computations were performed with
a program for SH-waves; even so, the velocity model (Fig. 3.62) is valid for P-
waves. An acoustic P-wave computation would give, in principle, the same result
for pressure. The travel time curve of the reflection Py; P from the crust-mantle
boundary (Moho) is retrograde and the travel time branch of the refracted wave
P, from the upper mantle is prograde. Times are reduced with 8 km/s.

10.00 T

WKBJ-Selsmogramma

(5]

7.00
50 100 150 200

Fig. 3.61: WKBJ-seismograms for a simple crust-mantle model and a line source
at the Earth’s surface.
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Fig. 3.62: Velocity model used in Fig. 3.61.

The impulse forms of these waves are as expected: P, has the form of the
radiated wave, whereas Py, P is roughly the Hilbert transform of it. At distances
smaller than the critical distance (ca. 100 km), the amplitudes increase strongly.
At the critical point, which is located on a caustic within the crust, the wave
field remains finite.

In seismological applications of WKBJ-seismograms, their approximate nature,
due to the high frequency approximation (3.152) for the reflection coefficient,
should be kept in mind. This approximation is insufficient in regions of the
Earth where wave velocity and density change rapidly with depth, e.g., at the
core-mantle boundary or at the boundary of the inner core of the Earth.
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Chapter 4

Surface waves

4.1 Free surface waves in layered media

4.1.1 Basic equations

In addition to the body waves that penetrate to all depths in the Earth, another
type of wave exists which is mostly limited to the neighbourhood of the surface of
the Earth called surface waves. These waves propagate along the surface of the
Earth, and their amplitudes are only significant down to the depth of a few wave
lengths. Below that depth, the displacement is negligible. Because surface waves
are constrained to propagate close to the Earth’s surface, their amplitude decay
as a function of source distance is smaller than for body waves, which propagate
in three dimensions. This is why surface waves are usually the dominating
signals in the earthquake record. Another significant property is their dispersion,
i.e., their propagation velocity is frequency dependent. Therefore, the frequency
within a wave group varies as a function of time (compare example in 4.1.4).

These are some of the main observations and explanations for surface waves.
The first scientists to study surface waves (Rayleigh, Lamb, Love, Stoneley et
al.) found the theoretical descriptions explaining the main observations. The
fundamental tenet of this approach is the description of surface waves as an
eigenvalue problem but omitting the source of the elastic waves. We consider a
layered half-space with parameters as given in Fig. 4.1 with a free surface.

135
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Fig. 4.1: Layered half-space with free surface.

We work with Cartesian coordinates z,y,z and assume independence from vy.
Then, the equations from section 3.6.2 can be used which have been derived
to describe reflection and refraction. The separation of the displacement into
P-, SV-and SH-contributions holds as before, as does the fact, that the P-SV-
contributions propagate independently from the SH-waves. Surface waves of the
P-SV-type are called Rayleigh waves. They are polarised in the z-z-plane

horizontal displacement u = 22 2%

or 9z
(4.1)

: : _ 9% , 9¥

vertical displacement wo= G+ 5

The potentials ® and V¥, in each layer, satisfy the wave equation
1 0%® 1 0?0

Vi = — — VA = ———. 4.2
a2 ot2’ B2 ot? (42)

Surface waves of the SH-type are called Love waves. They are polarised in y-
direction, and for the displacement v in each layer the following wave equation
holds

1 0%v

2 —_
V”_[Pat?'

(4.3)

The boundary conditions are given in section 3.6.2. The ansatz for ®;, ¥; and v,
in the j-th layer of the model for harmonic excitation (w > 0) is

v} = {52 el (- D) -{ 3 Jorte-r
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and
v; = Cj(z)exp {iw (t - %)} = Cj(z) exp[i (wt — kz)]. (4.5)

Consider the conditions for which a plane wave exists, which propagates in x-
direction with the phase velocity c, where c is identical in all layers. How large
is ¢? Then the functions A;(z), B;(z) and C;(z) exist, so that

An(2)
lim ¢ B,(z) p=0. (4.6)
Z—00 Cn(Z)

This problem is an eigenvalue problem, and ¢ and the wavenumber k = w/c,
respectively, are the corresponding eigenvalues. In many cases (for fixed w), a
finite number (< 1) of eigenvalues exist. The problem is comparable to that of
determining the frequencies of natural oscillations (or free oscillations) of finite
bodies (beams, plates, bodies etc.) (compare exercise 4.1).

Here we are only interested in the case where the eigenvalues are real (>0). This
has the largest practical application. The corresponding surface waves are called
normal modes. There exist also waves which can be described with complex k:
k = ki —iks (k1,2 > 0). These surface waves are called leaking modes since
their amplitude decreases exponentially with exp(—koxz). Their phase velocity

is w/kl.

The ansatz with plane waves neglects the influence of excitation. This, then,
leads to a major simplification of the problem. Such surface waves are called free
in contrast to forced surface waves which are excited by specific sources. The
analogy to the free and forced resonances of limited bodies is also helpful here in
the context of excitation. The treatment of free surface waves is an important
requirement for the study of forced surface waves (compare section 4.2). We will
soon show that the dispersive properties of both wave types are identical. Since
this property depends on the medium, they can be used to determine medium
parameters. This is why the study of the dispersion of free surface waves is of
great, practical importance.

Exercise 4.1

The radial oscillations of a liquid sphere with P-velocity « are described by
the potential @,,(r,t) ~ (e™»*/7) sin(w,r/a) (n—1,2,3...). Determine the eigen
frequencies w,, from the condition that the surface of the sphere at r=R is stress
free (p, from exercise 3.4); give the radial displacement. Where are the nodal
planes?
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4.1.2 Rayleigh waves at the surface of an homogeneous
half-space

The half-space (z>0) has the velocities a and (3 for P- and S-waves, respectively.
Inserting the ansatz

O = A(z)exp i (wt — k)] and ¥ = B(z)exp [i (wt — k)] (4.7

into the wave equation (4.2) with V2 = §%/02? + 0%/922, gives the differential
equations for A(z) and B(z), e.g.,

2

A'(z) + K? <§ - 1) A(z) = 0.

The general solution of this equation is
2 2
j ; c
A(Z) = A1671k52 + Azelk(sz with § = (—2 _ 1) .
o

Due to (4.6), ¢ has to be purely imaginary. Then, A3 = 0 has to hold. From
the properties of §, a first statement on the phase velocity of the Rayleigh wave
becomes possible: ¢ < «. Tt also holds that

A(z) = Ao k07,
and, similarly, it follows that
B(z) = Bye **
with v = (¢?/8% — 1) 12 (negative imaginary). This further limits ¢: ¢ < .
The potential ansatz (4.7) can now be written as
O = Ajexp[i (wt — kx — kdz)], U = Byexpli(wt — kx — kvyz)]. (4.8)

Inserting the boundary conditions p., = p.» = 0 for z=0 with p,. and p,, from
(3.29), it follows that

w? A 252 2
_§;A1+2(_k 0°AL — k ’}/Bl) = 0

—2k25A1 + (—kQ + kQ’yQ) By = 0.
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Division by —k? and use of \/u = (a? — 23%)/3? gives

2 o? — 232 2
{§T+2<¥—1):|A1+2731 = 0
2
2041 + (2 - @) B; = 0.
This leads to
2
(%—2),41”731 = 0 wo)
9254, + (5_22 - 2) Bi = O '

This system of equations only has non-trivial solutions A; and By, if its deter-
minant is zero. This leads to an equation for c:

C2 2

In the range of interest 0 < ¢ < 3, we have

2 2 2\ 3 2\ 3
(72 =1(-%) (%)

Squaring this gives

2 6 4 ﬂQ 2 ﬂQ

Solution ¢ = 0 is not of interest, therefore, only the terms in the bracket have
to be examined. For ¢ = 0, it is negative, and for ¢ = 3, positive. Therefore, at
least one real solution of (4.10) exists between 0 and 3. The eigenvalue problem
has, thus, a solution, i.e., along the surface of a homogeneous half-space a wave
can propagate, the amplitudes of which decay with depth. In this simple case
no dispersion occurs and c is independent of w.

In the special case A = pu (i.e., a = 8v/3), ¢ = 0,92(3. In general, the Rayleigh
wave is only slightly slower than the S-wave.

We now examine the displacement of the Rayleigh wave

u = (—z’kAle_““;Z + ik’yBle_“”Z) exp [i (wt — kz)] .
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With yBy = — (¢?/263% — 1) A; (from (4.9)), it follows

2

u= —ikA; |:€ik62 + (Z—ﬂQ

- 1) e“m] exp [i (wt — kx)] (4.11)

ikd c? ik
e "% 4 (2_52 - 1) e = a(z).

Similarly,

w = (—ik(sAle_ik‘sz — ikBle_ik'Yz) exp [i (wt — kx)].

With By = 64, (¢2/282 — 1) (from (4.9)), it follows

w = —ik5A1

—1
o—ikdz | ( 20_;2 B 1) emzl exp [i (wt — kz)] (4.12)

. 02 -1 .
e_lkéz + (2—ﬂ2 - 1) €_Zk’yz =: b(Z)

We assume that A; is positive real and consider the real parts of (4.11) and
(4.12)

u = kAja(z)sin(wt — kx)
—|6|kA1b(z) cos(wt — kx).

For z=0, it holds that a(0)>0 and b(0)<0. In the case of u and w, show the
behaviour given in Fig. 4.2 (e.g., for x — 0). The displacement vector describes
an ellipse with retro-grade motion.

direction of propagation

Fig. 4.2: Behaviour of u and w.
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Fig. 4.3: Theoretical seismograms for an explosive point source in a homoge-
neous half-space and recorders at its surface (computed with the GRT for point

sources, compare section 3.8).

For sufficiently large 2, the second term in a(z) and b(z) dominates due to
|v| < 1d] so that both functions are negative there. The displacement vector,
again, describes an ellipse but now with prograde direction. The transition from
retro-grade to pro-grade motion occurs at the depth where a(z)=0. For A = p,
this is the case at about z = 0,2A where A = 27¢/w = 27/k is the wavelength.
This depth is, therefore, a nodal plane of the horizontal displacement.
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Elliptical polarisation of the displacement vector and the existence of nodal
planes of the displacement components, are also characteristics of free Rayleigh
waves in layered media, with the additional feature of dispersion.

The Rayleigh wave is, therefore, forced. The arrows above the seismograms
indicate the theoretical arrival times r/c¢ where ¢ is the phase velocity of the
free Rayleigh wave. Fig. 4.4 shows a hodograph of a point at the surface, i.e., its
trace during the passage of a Rayleigh wave which has roughly elliptical form.

r=32 km
z=0

W
Fig. 4.4: Hodograph at a point at the surface (see Fig. 4.3).

The results of the theory of the free Rayleigh wave are, therefore, relatively well
confirmed.

Exercise 4.2

Does the homogeneous half-space have free Love waves?

4.1.3 Love waves at the surface of a layered half-space

Matrix formalism and mode concept

We now study Love waves, i.e., waves of the SH-type, for example, surface waves
in layered media. First, we discuss the general case of arbitrarily many layers
and give the numerical method, with which the dispersion relation ¢ = ¢(w) or
k = k(w) can be determined; then the case of a single layer over a half-space is
discussed in more detail.

We start from the basic equations in section 4.1.1 and use the ansatz (4.5) for
Love waves in the wave equation (4.3) for the displacement in y-direction. By
this, we derive, in analogy with (4.8), in the j-th layer
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v;j = Djexp i (wt — kx + kv;(z — z;))] + E; exp [i (wt — kx — kv, (z — 2z;))]
(4.13)

where D; and E; are now constants and

%
02
J

We postulate, that v; is positive real or negative imaginary, depending on its
radicand being positive or negative, respectively. In the half-space (j = n), ,
has to be negative imaginary due to (4.6), i.e., ¢ < (3,, and

D,, = 0. (4.14)
The boundary conditions require for z = z1, 29, . . ., z,, continuity of the tangen-
tial stress pdv/0z and for z = 29,23, ..., z, continuity of the displacement wv.

From Jv1/0z = 0 for z = z; = 0, it follows that

E, = D;. (4.15)

For z = z; (j > 2) with v; = v;_1 and p;0v;/0z = pj—10v;_1/0z, the following
equations for D; and E; with dependence on D;_; and E;_;, can be derived

D;+E; = Dj_lezk'ﬁ—ldj—l + Ej_le—lk'ﬁ—ldj—l
171 Ky d S
D;—E; = Hi—175-1 [Dj,lem'”‘ld]‘l — Ej_je 1k'y]_1d]_1] .
Hii

As in section 3.6.5, this can be expressed in matrix form

D\ Ly aap ((14m (L=my)e”2Mmadio Dj1
E; 2 L—mn; (L4 n;)e2*m-1diz Ej

or (4.16)
D, . D;_

= layer matrix m, J
(@) v ﬂ(@l)
= M
’ 1457

Successive application of (4.16) leads to
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D, \ _ mm - Dy \ M Dy \ [ MM D,
E, ) —rnonetmm 2R ) T\ B )\ Mo Moy Ey )
M is the product of the layer matrices. With (4.14) and (4.15), the equation for

¢ or k as a function of w and the layer parameters can be given as a dispersion
equation

M11 + M12 =0. (417)

This equation is ordinarily solved numerically. For this, a value of ¢ within the
interval from 0 to (3, is chosen, and then My, + M5 is computed via the multi-
plication of the layer matrices as function of w in the relevant frequency range.
Finally, their zeros are determined. Then, ¢ is varied and the corresponding
shifted zeros are determined, ete. If zeros exist, their location depends on the
S-velocity and the density as a function of depth. Each zero gives one branch
of the dispersion curve of the phase velocity c¢;(w) (see Fig. 4.5).

() | |

2nd mode 3rd mode

Ist mode

c(®)

w, =0 W, Wy ®
Fig. 4.5: Dispersion curves of the phase velocity.

Each branch has a (lower) cutoff frequency v; = w;/2m. Theoretical dispersion
curves are computed as a function of frequency, period or wavenumber, respec-
tively (in the last case the frequency is fixed). Experimentally determined curves
are mostly given as a function of period.

The wave behaviour in the half-space, corresponding to a certain branch of the
dispersion curve, is called mode. For Love waves, these are normal modes of
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the SH-type that propagate undamped. The concept of modes also holds for
Rayleigh waves and damped surface waves. Modes are classified by their order:
1st mode, 2nd mode, etc. Often the first mode is also called fundamental mode
and the numbering starts after it. Besides their dispersive properties, modes
differ by their number of node surfaces. This number is (up to +1) identical
with their order. Which modes occur in reality, depends on the frequency range
in which the source radiates, as well as its depth (compare section 4.2). For
earthquakes usually, only a few modes contribute, and often only the funda-
mental mode contributes to the surface waves. In Fig. 3.39, the Love waves
consist mainly of the fundamental modes.

Special case n—=2

In the case of a single layer over a half-space, the dispersion equation (4.17) can
be written as

o~ 2ikmdy _ 112 +1 _ vt peye
ne—1  payr — p2ye

(4.18)

with 10 = (02/ﬁi2 — 1)Y/2. 4 is negative imaginary and ¢ < fs.

If 51 > (B2, 71 is also negative imaginary. Then, the right side of (4.18) is real
and larger than 1. The left side is also real, but smaller than 1. Therefore, no
real solution ¢ of (4.18) exists in this case.

The S-velocity in the half-space, therefore, has to be larger than that of the
layer, i.e., f2 > (1. In this case, we can exclude values of ¢ between 0 and
with the same arguments as for §; > (2. This leaves values for ¢ between 3
and (5. In this case v; is positive real, and both sides in (4.18) are complex.
The absolute value of both sides is 1. Thus, the matching of the phases gives
the dispersion equation of the Love waves

—2ky1d; = —2 arctan Kol .
H171
From this, it follows with w = kc
2 2\3
—2_ 55 1
M = tan {wdl (B2 —c?) 2} ) (4.19)
(B2 —c2)?

This transcendent equation is solved by selecting ¢ with §; < ¢ < (3 and inver-
sion of the radicand, thus, giving the corresponding w (or the the corresponding
w's). For a general discussion, we introduce a new variable z
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1
z(c) = wd; (51 2_¢ 2)2
4.20
C(CC) = w2d:}d1 % ( )
1 —x2
(%)
The left side of (4.19) can then be written as
po (2 — 52_2)% K2 1 259 52 52 213
veld T ) B g (52— 5?) -0t = ()
I (51 — 072) 2 H1
Equation (4.19) can then be expressed (see also Fig. 4.6) as
f(z,w) = tanwx.
I |
I [
| [
[ i
[ I
[ |
i I
I I I
[ [ |
[ , [ [
I ; I |
| . ] | S x
0 X 'n Tox, X, 3m 21 'St i
12 E | 2
I I I
| | |
I I I
| | I
i i |
I I |
Fig. 4.6: f(z,w) and tan x.
f(z,w) is real between z=0 and its zero
1
zo =wdy (B —B57°)? (4.21)

This zero moves to the right as a function of w and creates, thus, more inter-
sections of f(z,w) with tanz. The intersection x; = z;(w) gives, substituting
in ¢(z) from (4.20), the dispersion relation of the i-th mode (i =1,2,...)

ci(w) = . (4.22)
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The i-th mode occurs only if g > (i — 1)m. With (4.21), its cutoff frequency
becomes

ul-:%: i1 - (4.23)
™ 2d1 (ﬂ;2 _ 552) 2

The i-th mode exists only for frequencies v > v;. The first mode (fundamental
mode, i—1) exists, due to v; = 0, at all frequencies.

The phase velocity of each mode at its cutoff frequency is most simply derived
from the fact that at this point the tangent is zero in (4.19)

cl-(wi) = 62. (424)

For w — oo, z; — (i—1/2)m and the tangent in (4.19) approaches co. Therefore,

wan;o ci(w) = fy. (4.25)

An upper-limiting frequency does not exist, and the velocities of the layer and
the half-space are the limiting values of the phase velocity.

A calculated example for the dispersion curves of the first three Love modes of
a crust-mantle model, consisting of a half-space with a layer above, is given in

Fig. 4.7.

L fungamental
ode

4.5

B,=3.5 km/s
B,=4.5 km/s
p,=2.8 glent
p=3.3 g/cm
d,=30 km

.y
=

(O8]
)

velocity (km/s)

3.0 '
0.01 0.1 |

frequency (Hz)

Fig. 4.7: Dispersion curves of the first three Love modes of a crust-mantle
model.
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In addition to the curves of the phase velocities ¢, the group velocities U are
shown

dw dC dc c c
U=—r=cthko=c— A% = = . 1.26

(A— wavelength, T— period). The group velocity controls, as we will see, the
propagation of an impulse from the source to a receiver, i.e., each frequency
travels with its group velocity from the source to the receiver, not with its
phase velocity. Phase and group velocities can be determined from observations
(see section 4.1.4 and 4.1.5). Thus, both can be used for interpretation.

Nodal planes and eigen functions

Finally, we examine the nodal planes of the Love modes for the case just dis-
cussed, i.e., the surfaces on which the displacement is zero. From (4.13) with
(4.14) and (4.15), it follows that

2F; cos(ky1z) exp [i (wt — kx)]
Es exp (—ikya(z — dy)) exp [i (wt — k)]

U1

U2

where v; and vy are for the layer and the half-space, respectively. These expres-
sions also hold for each individual mode, and the dispersion relation (4.22) has
to be used. The relation between E; and Es is Fy = 2F; cos(kvy1dy); E1 can be
chosen arbitrarily.

This means that at the surface z = 0, the mazimum displacement is always
observed, and that nodal planes can only occur in the layer, but not in the
half-space. Their position is determined by the zeros of the cosine. For the i-th
mode they can be derived via the equation

NE

kvlz:w(ﬁfz—c;2) z:(2n—l)g (n=1,2,...,N;), (4.27)

where V; is their number determined by z < d;.

For the lower frequency limit w = w;, from (4.23), it follows due to (4.24)

(i — 1)7rdi1 = (2n - 1)%.

This is satisfied for

om — 1
B withn=1,2,...,N; =i — 1.

F T 92
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For w = w;, therefore, i — 1 nodal planes exist. Their spacing is

The first mode (:=1) has no nodal plane, neither for w = w; = 0 nor for finite
w > 0.

The other extreme on the frequency scale of each mode is w = co. From the
discussion of the behaviour of ¢;(w) for w — oo (see (4.25)), it follows that

lim w(ﬁfg—cfz)% = lim zi(w) = (z 1) il

wWw—00 w—00 1 2 dl ’

Equation (4.27) leads to the fact that all z < d; have to be determined which
satisfy the relation

bl 3

<i—%>7rd%:(2n—1)

These are the values

2n —1
z =
21 —1

d1 Withn:].,Q,...,Ni:i.

For w = oo, therefore, i nodal planes exist with the spacing

The change relative to the situation where w = w; holds, is first, the decrease in
the spacing of the nodal planes, second a general move to shallower depth and
finally, the addition of the i-th nodal plane z = d;. This means that for w = oo
the half-space remains at rest.

Fig. 4.8 shows quantitatively the amplitude behaviour of the first three modes
as a function of depth for the crust-mantle model used for Fig. 4.7. The period
is also indicated. Such amplitude distributions are called eigen functions of the
modes. They follow from the z-dependent part of the displacement v; and vo
discussed above.
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Fig. 4.8: Quantitative amplitude behaviour of the first three modes as a function
of depth for the crust-mantle model used for Fig. 4.7.

Exercise 4.3

Derive the dispersion equation for free Rayleigh waves in a liquid medium con-
sisting of a layer over a half-space and compare this to (4.19). Sketch a figure
similar to Fig. 4.6. What is the difference, especially for the first mode?

4.1.4 Determination of the phase velocity of surface waves
from observations

In the last section, we saw how the phase velocity of a Love mode in a layered
half-space can be determined if the half-space is known. In the same way (but
with more complications), the same can be done for Rayleigh waves. We now
discuss the derivation of the phase velocity from observations. We assume that
only one mode is present. If that is not the case, filters have to be used to
separate the different modes. Since these are sometimes complicated methods,
they are not discussed here. An overview, and applications for surface waves,

can be found, e.g., in Aki and Richards, Dahlen and Tromp, and Kennett.

We work here with plane surface waves, i.e., we neglect the source term. The
method for the determination of the phase velocity thus derived, is sufficiently
accurate for practical purposes. The modal seismogram of any displacement
component at the Earth’s surface can be written for propagation of the mode
in z-direction as
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1 [t

u(e,t) = o A(w) exp {iw (t - ﬁﬂ dw. (4.28)

T J -0

This is a superposition of the previously discussed harmonic surface waves with
the aid of the Fourier integral. c(w) is the phase velocity of the mode to be
derived from the recordings of u(z,t). Since ¢ is frequency dependent, the seis-
mograms for different z are different. A(w) is the spectrum of the displacement
at (arbitrary) z—0. The amplitude spectrum is |A(w)| and the phase spectrum
O(w) = arg A(w), i.e.,

A(w) = |A(w)]e’®@),

We assume that wu(z,t) is known for = 7 and = 9 > z; and apply a
Fourier analysis to the seismograms

1 [t

u(ry2,t) = o G12(w)e™ dw, (4.29)

—0o0
where G 2(w) is the spectrum of the seismogram for = z1 3. The comparison
of (4.29) with (4.28) gives

Gl,Q(W) = |G1,2(w)|ei401,2(w) —

Aoy |22 ]~ 4@ exp i (#(0) - w22 .

If the time ¢—0 is identical for both seismograms, and, if possible, jumps of +27
have been removed from the numerically determined phases o1 2(w) (usually
between —m and +7), the phases of the top (observation Gi2(w)...) and the
bottom ( |A(w)]...) can be matched and give

v12(w) = P(w) — w%.

Subtracting ¢;(w) from ¢3(w), the unknown phase spectrum ®(w) of u(0,t)
cancels and the following result for the phase velocity is left

(o — x1)w

clw) = (4.30)

~o1w) —a(w)’

For practical applications of this method, the surface waves have to be recorded
at two stations which are on a great circle path with the source. In case three
stations are available, this requirement can be circumvented by constructing a
triangle between the stations. In both approaches, the phase velocities derived
are representative for the region between the stations.
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Fig. 4.9: Example for seismograms of Rayleigh waves from L. Knopoff, et al.,
1966. The traces have been shifted.

The interpretation based on the phase velocity from Fig. 4.9 is given in Fig.
4.10. It shows short period group velocity observations from near earthquakes
as well as phase-velocity measurements for the region of transition (Central Alps
to northern Foreland, Fig. 4.9) (from L. Knopoff, St. Miiller and W.L. Pilant:
Structure of the crust and upper mantle in the Alps from the phase velocity of
Rayleigh waves, Bull. Seism. Soc. Am. 56, 1009-1044, 1966).
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Fig. 4.10: Short period group velocity observations from L. Knopoff, et

1966.
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4.1.5 The group velocity

Seismograms with dispersion, as shown in Fig. 4.9, often have a very slow
variation of frequency with time, so that one frequency can be associated with
a certain time. If this is done for two different distances x; and 25 (on a great
circle through the source), and if the times, for which frequency w is observed

are t1(w) and ta(w), it follows that

Xro — I

R Em)

(4.31)

U(w) is the velocity with which this frequency, or a wave group with a small
frequency band Aw around the frequency w, propagates. U is, therefore, called
the group velocity. The theory of surface waves from point sources in section
4.2 gives the even simpler formula U(w) = r/t(w), which only requires one
seismogram; r is the distance from the source, and t(w) is relative to the time
when the wave started (source time). In practice, this seismogram is filtered
in a narrow band with the central frequency w. The arrival time t(w) is at
the maximum of the envelope of the filtered seismogram. The group velocity
can, therefore, in principal be determined without difficulty from observations.
Another question is, how the group velocity is connected with the phase velocity
and, thus, with the parameters of the Earth, i.e., the velocity of P- and S-waves
and density, as a function of depth.

To study this relation, we start from the description of the modal seismogram
(4.28) and express it using the wavenumber k = w/c as

1 [t

u(z,t) = — A(w) exp [i (wt — ka)] dw. (4.32)

T J -0

For sufficiently large = and, therefore, also large ¢, the phase

o(w) = wt — kx

is rapidly varying compared to A(w). This means, for example, that for changing
w @(w) has changed by 27, whereas A(w) is practically unchanged, and the w-
interval, therefore, does usually not contribute to the integral (4.32). This is
especially true if p(w) can be approximated linearly. This no longer holds for
w = wy, for which p(w) has an extremum (see Fig. 4.11), i.e., when it becomes
stationary.
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()

Fig. 4.11: Extremum of p(w).

This frequency wy depends on t and follows from

dk
o' (wo) =t — z lw=w, = 0. (4.33)
The frequency wo, which satisfies (4.33), dominates at time t in the modal seis-
mogram. Since for plane surface waves location and time origin are arbitrary,
(4.33) can be written for two distances 1 and x5 and corresponding times ¢ (wy)
and t2(wp), respectively. Subtraction gives the basic formula for the group ve-
locity

To — T dw

t2(wo) — t(wo) Ulwo) = % |v=wo- (4.34)

w and k are connected via the phase velocity ¢ = w/k. Using this, the explicit
group velocity (4.26) can be derived directly from (4.34) (see exercise 4.4).

The arguments sketched here are the central ideas of the method of stationary
phase. We will use it later to calculate integrals of the form (4.32) approxi-
mately; here, it was only used to demonstrate that it is the group velocity which
determines the sequence and possible interference in the modal seismogram.

To make this statement more obvious, we consider an arbitrary mode of the
Rayleigh waves of a liquid half-space with a layer at the top. Its dispersion curves
for phase and group velocity look like those in Fig. 4.12 (compare exercise 4.3).

cn b,

A
|
|
| Cn
|
! U o, layer
|

,,,,, R

o ! o, >0, half space

|
Umin[ =777

|
0, @ o )

Fig. 4.12: Dispersion curves for a liquid half-space with a top layer.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 155

the source, to interpret the curve of the group velocity.

Instead of (4.31), or the left of (4.34), we use U(w) = r/t(w), which refers to

From the trend in U,,, we conclude that for the mode considered, the frequencies
in the neighbourhood of the lower limiting frequency w,, arrive at an arbitrary
distance r from the source. This assumes that such frequencies are actually
excited at the source. Their group velocity is a9, and their group travel time
is r/aw. For later times, which are still smaller than r/«aq, the frequency of the
arriving oscillations slowly increases, corresponding to the steep trend in the
curve of U,. This wave train is called the fundamental wave. At later times
greater then r/ay there are two frequencies, w’ and w”, which contribute to the
seismogram. This has the effect that the higher frequency waves (water waves)
ride on the fundamental waves. The frequencies of the two waves approach each
other for increasing time and become identical at time r /Uy, min. Here, Upmin
is the minimal group velocity. The corresponding wave group is the Airy phase,
and it constitutes the end of the modal seismogram. Exact computations of
modal seismograms, discussed later, confirm these qualitative statements. The
example in Fig. 4.13 shows the behaviour of pressure of the fundamental mode
(from C.L. Pekeris: Theory of propagation of explosive sound in shallow water,
Geol. Soc. Am. Memoir No. 27, 1948).

g A GROUND WAVE
B o
& BEGINNING OF GROUND WAVE
2l 1 1 1 1 1 Il
) .05 B .15 .20 .25 .30
TIME FROM BEGINNING OF GROUND WAVE, IN SECONDS
¥ 1 T T T T GROUND Al
6 ATER WAVES
BLENDING
TOGETHER
o4 INTO THE
AIR.Y[ PHASE|

ey 1 [ 1t

IR SSRA L i

RIDER WAVE

L i L ! L
.35 40 +45 .50 .55 60 «65
TIME FROM BEGINNING OF GROUND WAVE,. IN SECONDS

Fig. 4.13: Pressure of the fundamental mode from C.L. Pekeris, 1948. a3 =
1500 m/s , ag = 1650 m/s, p1 = 1 g/ em?, po = 2 g/ em?, d; = 20 m.

The dispersion of the fundamental wave of the example in Fig. 4.13, shown
for a source distance of 9200 m , i.e., decreasing group velocity with increasing
frequency (increase of frequency with time), is called reqular dispersion. For the
water wave, the group velocity grows with the frequency (frequency increases
with increasing time); this is called inverse dispersion. The notation regular
and inverse dispersion should not be confused with the expressions normal and
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156 CHAPTER 4. SURFACE WAVES

anomal dispersion, which express, that the group velocity is larger or smaller
than the phase velocity, respectively.

Fig. 4.14 is a sketch to demonstrate the basic propagation properties of a dis-
persive wave train. It assumes that the source radiates an impulse with constant
spectrum in the frequency band w; < w < wy and that the medium produces
only regular dispersion. The larger the propagation distance, the longer the
wave train becomes. At the same time, the amplitudes decrease (not shown in

Fig. 4.14).
=0 ra
source

assumption: ¢ >u
lines of constant phase
(e.g. 2nd minimum or 3rd maximum):
curved line, frequency varies

lines of constant frequency:

phase varies

r¥ 0=, <0<, =0

Fig. 4.14: Basic propagation properties of dispersive wave trains.

Constant frequencies occur on straight lines through the origin (r = 0,¢ = 0)
with a slope of dr/dt that is identical to the group velocity. Constant phases,
e.g., a certain maximum or an intersection with zero, are situated on curved
lines, and the frequency varies along these curves. The local slope dr/dt of
these curves is the phase velocity for the dominating frequency at this time.

Exercise 4.4

Derive (4.26) for the group velocity. How does dc/dw behave for normal and
abnormal dispersion, respectively?
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 157

Exercise 4.5

a) What is the form of the most general phase velocity ¢(w) for which the group
velocity U(w) is constant? Interpret the corresponding seismogram (4.28).

b) What is the most general connection between phase velocities ¢;(w) and
c2(w) with identical group velocities Uy (w) and Us(w)? Use 1/U = dk/dw =
dw/c)/dw.

4.1.6 Description of surface waves by constructive inter-
ference of body waves

Up to this point, surface waves have been treated for the most part theoretically,
namely based on an ansatz for the solution of differential equations. Input in
these equations have been the concentration of the wave amplitude near the
surface, propagation along the surface and dispersion. We have not reached a
physical understanding how these waves can be constructed. In this section, we
will show for the simple example of Love waves in a half-space with one layer
at the top, that surface waves can basically be understood as arising from con-
structive interference of body waves which are reflected between the interfaces.

We consider SH-body waves which propagate up and down in the layer with
an angle of incidence and reflection . The reflection at the surface is loss
free; the reflection coefficient according to (3.39) equals +1. During reflection
at the lower boundary of the layer (2 = d;), energy loss through reflection
occur, as long as ¢ < ¢* = arcsin(1/32). In this case, the amplitude of the
reflected waves decrease with the number of reflections at the lower boundary.
If on the other hand, ¢ > ¢*, the reflection coefficient at the lower interface
has the absolute value of +1 (see (3.42)). Thus, no wave in the lower half-
space exists transporting energy away from the interface and the amplitude
of each single multiple reflection is preserved. The wave field in this layer is
then basically controlled by the interference of all multiple reflections. For
certain values of ¢ there will be constructive interference and for other values
there will be destructive interference, respectively. We try to determine those
¢ which show constructive interference. To achieve this, we approximate the
momentary wavefield picture of Fig. 4.15, locally, by plane parallel wavefronts
with a corresponding angle of incidence ¢ (see Fig. 4.16).

. . head
source multiple reflections waves 0
\/;A/\/\/\/M/\ )
z=d,
diffracted
waves

Fig. 4.15: Picture of momentary wave field.
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158 CHAPTER 4. SURFACE WAVES

Fig. 4.16: Approximation of Fig. 4.15 by plane, parallel wavefronts.

This approximation is better at larger distances from the source. The limitation
on plane waves means that we consider free normal modes.

The phases of neighbouring wavefronts 1, 2, 3 are ®; (arbitrary), &5 = @1 + €1
and ®3 = @1 + €1 + €9, respectively, where €1 and ey are the phase shifts of the
reflections in A and B, respectively. To ensure that wave 1 and 3 are in phase,
the phase difference ®3 — ®; has to be equal to the phase difference due to the
travel time ws/B; plus a multiple of 2. With

dy
tan ¢

s=2

sin ¢ = 2d; cos ¢,

we derive the following condition for constructive interference

d
Leosp+2nm, n=0,1,2,.... (4.35)
1

€] + € =

The phase shifts; €; and €5 are the phases of the reflection coefficients for plane
SH-waves. Since we only consider post-critical ¢ > ¢* = arcsin(f81/52), it
follows for €; from (3.42) and with w > 0

1
2

2
—p232 (g—% sin” ¢ — 1)
P11 cos o

b
€1 = —2arctan — = —2 arctan
a

For the reflection at B, it holds that e = 0, since according to (3.39), the
reflection coefficient at the free surface is always +1.

Substituting all of the above into (4.35), we get an equation for those angles of
incidence ¢, which produce a for given w, constructive interference

1

2 . bl
P22 (g—? sin® @ — 1) wdy
= —— COos ¢ + nm, n=0,1,2,... (4.36)
P11 cosp 1

arctan
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 159

In this equation, we introduce the apparent velocity

P (4.37)
sin ¢

with which the wavefronts propagate in a horizontal direction. With cosp =
Bi(Br* —c )Y and p1 287, = p1,2, we derive by reversing (4.36), an equation
for ¢

(SIS

p2 (e = 53°)
p (B2 —c7?)

This equation is identical with the dispersion equation (4.19) of Love waves.
We would have found the same equation, if we had considered waves which
propagate upwards (and not downwards) in Fig. 4.16. The superposition of both
groups of waves gives, for reason of symmetry, a wave with vertical wavefronts.
Therefore, ¢ is not only an apparent velocity, but also the phase velocity of this
resulting wave.

= tan {wdl (B2 - 0_2)%} .

Nl=

We also see that the Love waves in the half-space with a top layer are produced
by constructive interference of body waves which have a post-critical angle of
incidence. For these angles of incidence, no energy is lost from the layer into
the half-space. The energy remains in the layer which acts as a perfect wave
guide. This is generally true for normal modes of Love and Rayleigh waves in
horizontally layered media, in which case that normal modes exist. From this,
we can also conclude that the phase velocity of normal modes can, at most, be
equal to the S-velocity of the half-space under the layers

c < Bp.

If it were larger, energy would be radiated into the half-space in the form of an
S-wave. Leaking modes also occur by constructive interference of body waves.
In this case, the angles of incidence are pre-critical, and the phase velocity is
larger than 3,. Thus, radiation into the lower half-space occurs and the wave
guide is not perfect.

Finally, it should be noted that the explanation of surface waves via construc-
tive interference of body waves cannot be applied to the fundamental mode of
Rayleigh waves. The Rayleigh wave of the homogeneous half-space, for example,
exists without additional discontinuities at the surface. No simple explanation
exists for the fundamental mode of Rayleigh waves.

Exercise 4.6

Determine the dispersion curves for a liquid layer whose boundaries are (1) both
free, (2) both rigid, (3) one rigid and one free, respectively. Use the arguments
of section 4.1.6 and compare with the solution of the corresponding eigenvalue
problem. Give the group velocity and sketch the pressure-depth distributions.
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160 CHAPTER 4. SURFACE WAVES

4.2 Surface waves from point sources

4.2.1 Ideal wave guide for harmonic excitation

Expansion representation of the displacement potentials

We study the propagation of monochromatic sound waves from an explosive
point source in a liquid layer with a free surface situated above a rigid half-
space.

ki

S
v
~

o P (1,2)
z=d .-">.-'

rigid half space

Yz

Fig. 4.17: Explosive point source in a liquid layer with a free surface atop a
rigid half-space.

This is an ideal wave guide since no waves can penetrate the half-space. For
such a scenario, the key features of surface waves from point sources can be
studied without too much mathematical effort.

For the displacement potential ® in the layer, we assume the following integral
ansatz, using the analogy to (3.84) and applying (3.85) for the potential of the
spherical wave from the source. In the following, the time-dependent term e*?
is omitted

(K)e™™* + B(k)e' | dk  (4.38)

i)
Il
S—
8
S
ol
"y
N=
Q
1
N
=
+
N

Il
RS
Q|€

[\v] (V]
|
>~
(V]

~~

Jo(kr) is the Bessel function of first kind and zeroth order, k and [ are the hori-
zontal and vertical wavenumber, respectively. The square root [ is, as in sections
3.6.5 and 3.7, either positive real or negative imaginary. It can be shown that ®
is a solution of the wave equations in cylindrical coordinates. The first term in
(4.38) is the wave from the source, the second and third correspond to the waves
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4.2. SURFACE WAVES FROM POINT SOURCES 161

propagating in positive and negative z-direction, respectively. A(k) and B(k)
follow from the boundary conditions for the interfaces

0?0
z=0: stress pzzzpﬁz—prCI):Oor(I):O
z =d: normal displacement — =0.

0z
This gives
k _an
A(k)+ B(k) = —5¢
1
. k.
A(k) — e?MB(k) = —,—Ze”h.
1

The solution of this system of equation is (please check)

kcos[l(d — h)]
Alk) ~ ilcos(ld)
iy - Ll

Inserting them into (4.38) gives

0<z<h: & = 2 /0 " kdo(kr) Sin(lz)l ZZZ ([zlc(zgl Ml (as9)
h<z<d: & = 2 /O kJo(kr) Sm(lh?ggi(%;i_ N, (4.40)

Before these expressions are solved with methods from complex analysis, it
should be noted that an exchange of source and receiver does not change the
value of ®. Displacement and pressure are also the same for this case. This is
an example for reciprocity relations, which is important in the theory of elastic
waves.

The poles k,, of the integrand in (4.39) and (4.40) are determined via

2

w 9 5 ™
dln:d<§—kn) :(271—1)5, n:1,2,3

This gives
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2 2 2\ %
k,, = (w_z — M) ) (4.41)
o 4d?

The infinite number of poles are situated on the real axis between —w/a and
+w/a and on the imaginary axis, respectively. The number of poles on the real
axis depends on w. Due to these poles, the integration path in (4.39) and (4.40)
have to be specified in more detail. We choose path C; in Fig. 4.18 which

circumvents the poles in the first quadrant.

Imk

A
-k,

-k,

C
= > Lo =5 Re k

-o/a -k, -k, k, k, /o

Fig. 4.18: Integration path C7 which circumvents the poles in the first quadrant.

In the following, we discuss only (4.39) in detail. Equation (4.40) can be solved
similarly. We use the identity

1
Jolkr) = 3 [H§Y (kr) + HE (k)|

where Hél)(kr) and Hé2)(k7") are Bessel functions of the third kind (—Hankel
functions) and zeroth order (Appendix C, equations (C.2) and (C.3), respec-
tively). Then,

sin(lz) cos [I(d — h)]
L cos(ld)

®— / kB (hr) + HE (k) dk. (4.42)
C

Using relation (C.6) from appendix C,

HY () = —H{ (~2)
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the first part of the integral in (4.42) can be written as

(2) sin(lz)cos[l(d —h)] (2) sin(lz) cos [I(d — h)]
- /01 RHq (=hr) lcos(ld) dk = /02 uHg™ (ur) I cos(ld) du

where u—-k is used. The integration path C5 is point-symmetrical to the path
C1 with respect to the coordinate centre, but it goes from —oo to 0. Inserting
this in (4.42) and with consistent use of k as integration variable, gives

(2) sin(lz) cos [I(d — h)] /
P = H = I . 44
/c k) o) T = | 1(k)a (4.43)
Imk
A
Vg S— g ¥ C
VeV, > Re k
-o/o /o

Fig. 4.19: Integration path C from —oo to 400 circumventing the poles on the
real axis.

Integration path C| therefore, is, as indicated in Fig. 4.19, from —oo to +oo
and circumventing the poles on the real axis.

Despite the non-uniqueness of the square root I in (4.43), I(k) is a unique
function of k. The reason for this is that I(k) is an even function of /, thus, the
sign of the square root of | does not matter. For more complicated wave guides,
e.g., if the half-space is not rigid, I(k) is not unique and the theory becomes

more complicated (introduction of branch cuts).

Now we apply the remainder theorem on the closed integration path shown in
Fig. 4.20 which consists of path C and a half circle with infinite radius. The
only singularities included are the poles of I(k).
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> Re k

Fig. 4.20: Integration path C and half circle with infinite radius.

Then

+/ = —2mi Y ResI(k)|k=k, -
Jor b=

L indicates the clockwise integration in the lower plane of Fig. 4.20, and each
term in the sum is the residue of I(k) at the pole k = k,.

If the asymptotic representation of the Hankel function is used, it follows for
large arguments (Appendix C, equation (C.4))

H (kr) ~ (%) : eilhr=%), (4.44)

We see that their values on the semi-circle in the lower half-plane, where k£ has
a negative imaginary part, becomes zero (for R going to co). The corresponding
integral also goes to zero, and we have found a representation of the potential ®
as an infinite sum of residuals. The determination of the residue of the quotient
f1(k)/ f2(k) at the location k,, with fa(k,) = 0 is done with the formula

fi(k) _ Ji(kn)

R - ,
R e, 30

if k,, is a pole of first order. In our case, k, follows from (4.41) and is either
positive real or negative imaginary. The corresponding [ is

l_(2n—1)7r
" 2d

Furthermore, it holds here, that fo(k) = cos(ld), fa(ks,) = cos(l,,d) = 0 and

fo(kn) = d];—" sin(l,,d).

n
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Finally,
cos [l,(d — h)] = cos(lnd) cos(l,h) + sin(l,,d) sin(l,h) = sin(l,d) sin(l, h).

Thus,

Res I(k)|;—p. = %Hég)(knr) sin(l,z) sin(l,h).

We, therefore, get the following representation of the potential ® as an expan-
sion, for which e™? has now to be added again for completeness

o= —% " sin [(271— 1)2d} sin [(2n— 1)2d} H® (kyr)et.  (4.45)

n=1

This expression not only holds for 0 < z < h but also for arbitrary depth,
since according to (4.40) the same expansion can be found. From (4.45) the
displacement components ® /9r and O®/dz and the pressure p = —p., = pw?®
can be derived.

For the ideal wave guide the field can be constructed solely from the contribu-
tions from the poles, each of which represents a mode, as will be shown later.
For complicated wave guides, contributions in the form of curve integrals in the
complex k-plane have to be added to the pole contributions. These additional
contributions correspond mostly to body waves.

Modes and their properties

Each term in (4.45) represents a mode. This is only a definition, but it fits well
into the mode concept introduced in the previous sections for free surface waves.
If we consider, for example, the terms in (4.45) for large distances r, we can use
(4.44) (Jknr| > 10)

o =

—2\/2me i mh| . TZ L etk
Esm[Qn—l Zd} sin {(2n—1)2—d} (knr)%e( ).

(4.46)

The most important terms in (4.46) are those with positive k,. Their num-
ber is finite and increases with w. They correspond to waves with cylindrical
wavefronts which propagate in +r-direction with the frequency dependent phase
velocity

(2n —1)?m%a2] "2

o — 1R? (4.47)
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If the eigenvalue problem for free surface waves in the same wave guide is solved
(compare exercise 4.6), it follows for the n-th free normal mode

&, = Asin [(2n - 1)%} de(t-=%), (4.48)

with ¢, (w) from (4.47). Furthermore, the terms in (4.46) and (4.48) agree, that
describe the z-dependence agree. It, therefore, makes sense to name the single
terms in (4.45) and (4.46) the n-th forced normal mode, if k,, > 0. The difference
with respect to (4.48) is in the amplitude reduction proportional to r~/2 and in
the addition of a term that depends on the source depth h. This term is named
the excitation function of the mode. If the the source is located at a nodal plane
of the free mode (4.48), the excitation function is zero, and the mode is not
excited. Maximum excitation occurs, if the source is at a depth where the free
mode has its maximum.

From the comparison of the free and the forced normal modes, the importance of
the study of free modes becomes obvious. It describes the dispersive properties
and the amplitude-depth distributions (eigen functions) of the forced normal
modes and, therefore, their most important property. This also holds for more
complicated wave guides.

The terms in (4.46) with negative imaginary k, are not waves but represent
oscillations with amplitudes that decrease exponentially in r-direction. They
only contribute to the wave field near the source, where (4.45) has to be used
for completeness. The far-field is dominated by normal modes.

The number of nodal planes of the n-th mode is n, and their spacing is 2d/(2n—1)
(n =2,3...). The potential ®, horizontal displacement 9®/9r and pressure p
have a node for z = 0 and a maximum for z = d, respectively (see Fig. 4.21).
The opposite is true for the vertical displacement 0®/0z.

n=1 2 3 4

<
i <\ />

amplitude depth distribution for
$,0¢/0r and p (eigen functions)

Fig. 4.21: Modes and nodal planes, n — 1, 2, 3, 4.

The phase velocity (4.47) of the n-th mode can be written as
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en(w) = [1 - (ﬂ)g] (4.49)

with the lower frequency limit

(2n — )7
2d '

Wwnp =

Infinitely high phase velocities can occur. According to (4.26), the group velocity
is

(4.50)

Fig. 4.22: Group and phase velocities.

An important property of the ideal wave guide with a rigid and a free interface
is that the angular frequencies w < wy = ma/2d (or the frequencies v < a/4d
and waves length A > 4d, respectively) cannnot propagate undamped. This no
longer holds for the ideal wave guide with two rigid walls (compare exercise 4.6).
In this case, an additional fundamental mode exists, in addition to the modes
discussed before, but with different limiting frequencies. That mode can occur
at all frequencies, and its phase velocity is frequency independent and equal to
a.

4.2.2 The modal seismogram of the ideal wave guide

In this section, we will compute the corresponding modal seismogram for an
arbitrary summand in (4.45), exactly. In the next section, we will use the

method of stationary phase to do this.
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The potential (4.45) corresponds to time harmonic excitation, i.e., for the po-
tential of the explosion point source

1 R
=—F(t-= 451
D, RF(t a), (4.51)

it holds that F(t) = e™?. From this mode of excitation, we now will move to
the excitation via a delta function, F'(t) = §(¢). Multiplying (4.45), without the
factor e™*, with the spectrum of the delta function F(w) = 1, gives the Fourier
transform of the displacement potential. Finally, the result is transformed back
into the time domain. These modal seismograms can then be convolved with
realistic excitation functions F'(t), but the basic features can already be under-
stood for F'(t) = 4(t).

For this, we consider the n-th mode in the expansion (4.45). Its Fourier trans-
form for excitation via a delta function is, except for geometry factors, equal
to Hy(w) = iH? (knr) with k, = (w? — w2)/2/a. We now use the Laplace
transform (compare section A.1.7)

hals) = Ha(—is) = i [~i% (s 4 w2)?]

and the relation

. 2i
Hy? (—ix) = — Ko(x)
between the Hankel function and the modified Bessel function Ko (z) (see section
3.8). This gives then

hn(s) = —%KO [g (s +wi)%} .

The original function can then be found in tables of the Laplace transform. It
is zero for t < Z, and for ¢ > ~ it holds that

1
9 cos [wn (t2 — 2—22) 2]
Hn(t):_; (t2_ r2)% '

a2

Thus the n-th mode of the potential can be written as

0 fort < =
1
=4, . poq e (-5)°] T
%Sln [(Qn — 1)72(—2] Sin [(27’L — l)ﬁ] W for ¢ > —
(4.52)
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That is a normal mode for all n since the delta function contains arbitrarily high
frequencies, ensuring that the lower limiting frequency of each normal mode can
be exceeded.

For simplicity, we limit the discussion in the following to the potential ®,,.
All conclusions also hold for displacement and pressure. The seismogram in
Fig. 4.23 starts at time ¢t = 7/« with a singularity that is integrable. Then the
amplitudes decrease with 1/¢, for times large compared to r/c, while oscillating.
The most important feature of ®,, is its frequency modulation or dispersion. The
frequencies decrease from large values to the limiting frequency w,, of the mode
considered. The dispersion in the example shown is, therefore, inverse.

Ay =2
th o= A500 anfaee
0{:— A0 A
A: T = L™
0, cLlnec v = A0 gy
—_—
t
M= A

-_:7[/\/—\/\/—\_/

Fig. 4.23: Seismogram showing frequency modulation (dispersion).

What we have learned about the group velocity in section 4.1.5 can be confirmed
with (4.52). We first ask which frequencies w dominate at a certain time tg in
the modal seismogram. QOutside the singularity, the discussion can be limited
to the cosine function in (4.52). We plan to linearise f(t) near t = t( to be able
to approximate the function cos[f(¢)] in the neighbourhood of ¢ = ¢y by the
monochromatic oscillation cos [pg + w(to)t]. Here ¢q is a phase that is indepen-
dent of ¢, and w(tg) is the instantaneous angular frequency required. This leads
to

cos [f(D)] = cos [f(to) + ' (to)(t — to)] .

From this, it follows that w(tg) = f'(to). If applied to (4.52), it follows

, -3
w(to) = wnto <t0 — @) .
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170 CHAPTER 4. SURFACE WAVES

From this, we derive the quotient r /g, i.e., the velocity with which a wave group
of frequency w(ty) propagates from the source to the receiver, and we get (with
wo = w(to))

with Uy, (wo) from (4.50), i.e., exactly the group velocity of the n-th mode. We,
therefore, confirm the statement from section 4.1.5: that each frequency that is
radiated from the source propagates to the receiver with the group velocity.

The complete seismogram in the wave guide is produced by convolving the
modal seismogram (4.52) with a realistic excitation function F(t), the spectrum
of which has an upper limiting frequency, and sum. Only those normal modes
(4.52) contribute significantly to the seismogram which have lower limiting fre-
quencies that are smaller than the upper limiting frequency of F(t). Often the
response of hydro-phones and seismometers, together with the dissipative mech-
anisms in the wave guide, reduce the number of modes. In practise usually only
a few modes contribute to the observed surface waves.

4.2.3 Computation of modal seismograms with the method
of stationary phase

The computation of modal seismograms is only possible ezactly for ideal wave
guides (with rigid and/or free boundaries, respectively). In the following, an
approximation is discussed and demonstrated, which gives the modal seismo-
gram for the far-field form of a normal mode of the type of (4.46). This is the
method of stationary phase mentioned before.

Multiplying a normal mode in (4.46) with the spectrum F(w) of the excitation
function F'(t) in (4.51), then transforming back into the time domain, gives
the modal seismogram as a Fourier integral. To avoid integration over negative
frequencies, we use the fact that real functions f(t) cannot only be represented
as

“+o0
0= [ et

21 J_

but also as
1 o _ ot
f(t) = —Re flw)e“ dw.
m 0

This gives the modal seismogram as
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®, = Re {% sin {(2n - 1)2—2} sin [(2n - 1)%} \/% /OOO %ei(”t_k"r)dw} .
(4.53)

The approximate computation of the integral over w is based, as in section 4.1.5,
on the fact that at times ¢ to be considered, the phase

o(w) = wt — kyr (4.54)

is usually rapidly varying compared to function F(w). Such frequencies con-
tribute little to the integral in (4.53). This is different for frequencies with
stationary phase values. Such a frequency wy follows from the equation

dk,
¢ (wo) =t —r —=

=0
dw

w=wq

and depends on ¢. This means that the frequency wg, for which the group
velocity is

o

Unlwo) = Zp

t?

w=wqo

dominates the modal seismogram at time ¢ .

From this follows the principle of determining the group velocity from an ob-
served modal seismogram. For a given time t, relative to the source time, the
moment frequencies and the corresponding group velocities, using ¢ and source
distance r, are determined. The source time and epicentre of the earthquake,
therefore, have to be known. This gives a piece of the group velocity dispersion
curves. One has now to verify this piece of the curve via forward modelling.
The association of a certain frequency to a certain time, necessary here, is in
principle not unique, but the error associated with it can be estimated. With
this method, applied to surface waves of earthquakes, several important results
on the structure of the Earth were found, for example, the average crustal thick-
ness in different parts of the Earth is shown in the different branches in Fig.
4.10. A disadvantage of this method is that the result is only an average over
the whole region between source and receiver. Therefore, today several stations
are used in the interpretation of the phase velocity (compare section 4.1.4).

The computation of the modal seismogram requires then the following additional
steps: for given time t, we expand the phase (4.54) at the frequency wq, which
is determined by

Un(wo) = % (4.55)
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pw) = pwo)+ 59" (wo)(w — wo)?
(4.56)
P (wo) = paimey e (wo)

An important requirement is that ¢ (wg) # 0. Then,

/OOO %ew(w)dw ~ /W:OJF:JW i(_]: exp {z [(p(wo) + %g@"(wo)(w - wo)2] } dw

F(wp)ei#(0) /wm

O exp {%so'%wo)(w - W} .

ofAUJ

Here, we limited our discussion to the neighbourhood of the frequency wg, where
p(w) is stationary. The other frequencies do not contribute significantly. With

T = (w—wp) (% |<p”(w0)|)1/2, we get

" (wo 1/2

1 |e

2 2 +A“’( 2 ) .

" / % 1/2 eim2dx
" (wo) _M(w)

1
2 Tortee
= / ejzwzdx
le"(wo)l ) J oo

wo+Aw l
/ exp {§<p"(wo)(w — wo)z} dw =

0—Aw

Q

otiE

S
Sl
E)
(=)
—
N—
(eI

(with f:r;o cosz?dx = fjoo sinz?dr = (%)

o0

=
N————

The positive and the negative sign in the exponential term hold, if ¢ (wo) >
0 and < 0, respectively. The extension of the limits of the integration to
x = *oo is possible, since they are proportional to /7 and r is very large.
Furthermore, significant contributions to the integral come only from relatively
small values of x (ca. |z| <5). Putting all this together, the modal seismogram
for the ideal wave guide in the approximation given by the method of stationary
phase (with ¢”(wg) > 0) can be written as

—2v/2ie'% wh Tz
P, = ——— i 2n — 1)— | si 2n —1)—
Re{ NG sm{(n )2d]5m[(n )Qd}

} . (4.57)

w13

F(wp)et#wo) {—Zﬂ- } ’ et
7k (wo) |¢” (wo)]
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Next, one uses

plwo) = wot — kn(wo)r,

o = 2o ()]

~ =3
I
=
€
N
Il
Q
—
—

I
e
Sk
N————

N
[ I—
[V

and ¢ (wo) from (4.56) and deletes wy = wo(t) = wyt (> — 7“2/oz2)71/2 from
(4.57). After some calculations, and for the assumption F(wg) = 1, which cor-
responds to the excitation function F'(t) = 6(t), the following modal seismogram
can be derived (please confirm)

0 fort < =
1
(I>n _ . . cos |:wn (t2—£_22)5:|
2sin [(2n — 1)Z8] sin [(2n — 1) ZZ] W for t > L.

(4.58)

We, therefore, get the stringent results of (4.52). This is surprising, considering
the approximations used. From this we can draw the general conclusion that
the method of stationary phase is a good approximation for normal modes even
for more complicated wave guides.

For frequencies wy with ¢ (wo) = 0, i.e., with 2= (W) = 0 and with stationary
values of the group velocity (which do not occur for ideal wave guides), the
expansion in (4.56) has to be extended by one additional term. The treatment
of the calculations following is, therefore, slightly different (see, for example,
Appendix E). It leads to the behaviour of Airy phases and shows that they
are usually the dominating parts of the modal seismograms (compare also Fig.
4.13).

4.2.4 Ray representation of the field in an ideal wave guide

In the last two sections we have learned that the wavefield in an ideal wave guide
is composed of forced normal modes. Furthermore, we found in section 4.1.6,
that free normal modes are composed of multiple reflected plane body waves in
the wave guide. This raises the question, can the field of a point source in an
ideal wave guide also be represented by the superposition of multiple reflections?
In other words, in this case is there also a ray representation of the wave field?
In addition, it is interesting to see if mode and ray representations of the wave
field are then also equivalent.
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We first examine the reflection of the spherical wave

By = L (t - @> (4.59)

at the interface of the wave guide in the neighbourhood of the point source, e.g.,
the free surface.

Fig. 4.24: Reflection of a spherical wave at the interface of the wave guide in
the neighbourhood of the point source.

The potential of the reflection is

—1
b= —F (t — &) . (4.60)
Rl «

R; is the distance between P(r,z) and the image source Q1. As long as the
reflection from the lower (rigid) interface of the wave guide has not reached
the surface, the potential in the neighbourhood of the surface is &y + ®; and,
therefore, zero on the surface. ®y 4+ ®; satisfy, therefore, for such times, the
condition of no stress at the surface z = 0 (p.. = pd*(®o + ®1)/0t?).

Similarly, if we consider the reflection of the spherical wave from Qg at the
interface z = d, the potential of the wave reflected there can be written as

1 Ry
Py =—F(t—— 4.61
=g (1= 2), (1.61)

where Ro now has to be determined for a new image source with the z-coordinate
d+ (d —h) =2d — h. That &, + 5 satisfies the boundary conditions 9(®y +
®5)/0z = 0 for z = d (zero normal displacement), can be seen easily, since for
points in that interface
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Ry =

oRy
0z

oR:
0z

Ry

—h| _d—h

Ry |,_y Ry

2d—h—z|  d—h  0Ry
RQ z:d_ RQ o (92’

175

With the two previously considered reflections of the spherical wave originating
from @ at the interfaces of the wave guide, boundary conditions can only be
satisfied for certain times, e.g., only as long as the reflections ®; and ®- have
reached the opposite interface, respectively. Since they are of the same form as
®y, higher order reflections can be constructed in the same way. Each reflection
and multiple reflection seems to come from an image source, which was created
by the application of multiple mirror images of Qg at the interfaces (Fig. 4.25).
The sign of the corresponding potential is negative if the number of reflections
at the surface is odd, otherwise it is positive. Each image source corresponds to
a ray from the source to the receiver which has undergone a certain number of

reflections.

Fig. 4.25: Image sources for multiple reflections in the wave guide.
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The ray concept can, without difficulties, be generalised for solid media (includ-
ing S-waves), but this is not true for the concept of the image source. This is
why, in general, and also in the case presented here, we speak of a ray represen-
tation of the wave field. It can be expressed as

=0
1 R3 1 R4
+RJ3 < 04) Rj4 < aﬂ (4.62)
with
R% = (2jd+h+2)*+1?
Rj2'2 = (2jd—h—|—z)2—|—7“2
R = (2(j+1)d—h—z)"+r?
R, = (2 +1d+h—2)7°+r%

Only those terms in (4.62) are non-zero, for which the argument is positive, and
for which F(t) at ¢ = 0 is not zero. The number of such terms is finite and
increases with time.

For the ideal wave guide, the determination of the contribution of a ray is simple,
since it follows the same time law as the exiting spherical wave. For other wave
guides, methods like those presented in section 3.8 have to be used. The resulting
numerical effort is then significantly greater and seems only justified if not too
many rays have to be summed up, but that is necessary for large horizontal
distances from the source where the paths of many rays become very similar.
In this case, the representation of the wave field as a sum of only a few normal
modes is significantly more efficient. The ray representation is most suited for
such distances from the source where the typical normal mode properties of the
wave field have not yet developed.

Finally, we will show that (4.62) for F(t) = ¢™? and (4.39) and (4.40), respec-
tively, are two different representations of the same wave field. We limit our
discussion first to the case h < 2z < d. If F(t) = ™! is inserted into (4.62),
and the Sommerfeld integral (3.85) for a spherical wave is used for each term,
it follows (the factor e™? is again omitted)

o = /OOJO(kr)EZ(—l)j [—exp (=il |2jd + h + z|)
0 i=0

l
J:

~
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+exp (—il|2jd — h + z|)
+exp(—il|2(j +1)d—h —z|)
—exp (=il |2(j + 1)d + h — z|)] dk.

If z > h, the contributions are equal to the arguments everywhere. Then
exp(—i2ljd) can be separated

o0

j=0
+exp (=il (—h + 2))
+exp (=il (2d — h — 2))
—exp (il (2d + h — z))] dk.

The expansion in the first square bracket has a sum of 1/(1 +e~2"?). From the
second square bracket, e7? can be extracted giving

o = /0 Jo(kr)m[—exp(zl(d—h—z))

+exp (il (d+ h — 2))
+exp (=il (d—h—2))
—exp (=il (d+ h — z))] dk.

The remaining square bracket is equal to
=2isin[l(d—h —2)]+2isin[l(d+ h — z)] = 4dicos[l (d — z)]sin (Lh) .

Thus,

B o k cos[l(d — z)] sin(lh)
o = 2/0 Jolkr)5 —r dk, (4.63)

which agrees with (4.40).

If source and receiver are exchanged in (4.62), the potential of a single ray is
unchanged since it depends only on the path travelled. Therefore, exchanging
z with h in (4.63) gives the potential for 0 < z < h which leads to (4.39).
Thus, the proof of the identity of (4.62) (for F(t) = ') with (4.39) and (4.40),

respectively, is complete.

Finally, we would like to reiterate (compare section 4.2.1) that a representation
of the wave field by normal modes alone is only possible for ideal wave guides
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178 CHAPTER 4. SURFACE WAVES

which have upper and lower boundaries that are completely reflecting for all an-
gles of incidence. In other media, additional contributions (body waves, leaky
modes) occur which are not due to the poles in the complex plane like the nor-
mal modes.

Exercise 4.7

Study the polarisation of the displacement vector of the second free normal
mode of the ideal wave guide (n—2 in (4.48)) as a function of depth.

Exercise 4.8

An explosive point source is located at depth h below the free surface of a liquid
half-space. The displacement potential @ is the sum of the potentials (4.59) of
the direct wave and (4.60) for the reflection. Give an approximation for ® which
holds under the following conditions (dipole approximation) :

a) The dominant period of the excitation function F'(¢) is much larger than the
travel time h/a from the source to the surface.

b) The distance r to the receiver is much larger than h.

Introduce spherical coordinates R and ¥ relative to the point » = 0, and z = 0
(compare Fig. 4.24).

What is the result, if the surface is not free but rigid?
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Appendix A

Laplace transform and delta
function

A.1 Introduction to the Laplace transform

A.1.1 Literature

Spiegel, M.R. : Laplace Transformation, Schaum, New York, 1977

Riley, K.F., Hobson, M.P. and Bence, J.C. : Mathematical methods for
physics and engineering, A comprehensive guide, Cambridge University
Press, Cambridge, 2nd edition, 2002

A.1.2 Definition of the Laplace transform

The Laplace transform associates a function f(s) with the function F(¢), or it
transforms a function F(t) into the function f(s).

1) = [ e P L)
F(t) = original function

f(s) = image function (Laplace — transform, abbreviated L — transform)

Symbolic notation: f(s) e F(t) (e = symbol of association)

t = real variable (of time)
s = o0+ iw complex variable
179
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180 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION

A.1.3 Assumptions on F(t)

1. F(t) is usually a real function
2. F(t) =0 for t < 0 (satisfied for many physical parameters - causality)

3. F(t) should be integrable in the interval [0,7], and for ¢ > T it should
hold that

|F(t)] < e with real ~.

These are sufficient conditions for the existence of the L-transform f(s) of F(t)
for complex s with Re s > + (convergence half-plane). All limited functions
as, e.g., e~ (a > 0), sin 3t etc. have an L-transform but also non-limited
functions as t~1/2,¢" and e** (n,a > 0). Note assumption 2. Many functions
in physics also have an L-transform. The functions ¢t~! and et” do not have an
L-transform.

A.1.4 Examples

a)
0 fort<0 _ . .
F(t)y = H()= { 1 fort>0 Heaviside step function (unit step)
> —st 1 —st | 1
fls) = | e Stdt = s e 0 =3 for Re s > 0 (converg. half-plane)
1
H(t) oe -
s
b)
0 fort<O
F@) = { e fort >0
e 1 0 1
f(S) = /O 6_(5_6)dt = _—S S 6_(5_6)t o - 5 _ 67 Res>¢
1
L H(t) oe p—

For 6 = 0 transition to the L-transform of H(t)

¢)
sin at CH(t) oe 1

a s2 4+ a?’

Tables of many more correspondences can be found in the literature given.
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A.1.5 Properties of the Laplace transform

Similarity theorem a > 0

o < 1 (> _s
F(at) O—O/ e 'F(at)dt = / e <" F(at) d(at) = 5/ e"«"F(r)dr
0 0 0

a

Therefore,

Flat) oe %f( ). (A1)

s

a
Thus, only the L-transform of F(¢) has to be known.
Example: According to section A.1.4

el H(t) oo

s—1°
With the similarity theorem, it follows that

1 1 1
e H(t) oe = _

ai—-1 s—a’
a

i.e., the result of the direct computation in section A.1.4.

Displacement theorem

F(t) F(t-9)

| t | 9>0 1

Fig. A.1: Displacement theorem.

F(t—1v) oe /Ooo e Rt —9)dt = /OOO e NP (r)dr = e f(5)

F(t—1) oe e 75f(s) (A.2)

Damping theorem (« arbitrary complex)

e “F(t) oe /00 e"CTI P dt = f(s+ a)
0

e F(t) oe f(s+a) (A.3)
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Differentiation theorem
F@p*/ aﬂwmﬁ:e*%wm§+s/ e F (1) dt
0 0

The first term is zero at its upper limit due to the assumption 3 from chapter
A.1.3. Thus,

F'(t) oe sf(s)— F(+0)

F(+0) = lim  F(t) is the limit from the right side. (A4)
t—0
t>0
Generalisation:
F'(t) oe sf(s)— F(+0)
F'(t) o s°f(s) = sF(+0) — F'(+0)
: (A.5)
FO(t) oce s"f(s)—s" 1F(+0) — s" 2F'(4+0)
— ... = sF"=2(40) — F("=1(40)
Integration theorem
’ 1
G(t) = [ F(rdroe 1) (A.6)
0
From this, it follows that
G'(t) = F(t) o f(s) — G(+0) = f(s).
Convolution theorem
t
[ B@F(e - 1y os fi(s)als) (A7)
0

The integral is called convolution of F} with F5, symbolic notation Fj x Fj.
Furthermore, it holds that
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t t
/Fl(T)FQ(t—T)dT:/ Fi(t — 7)Fy(r)dr
0 0
or
Fl*FQZFQ*Fl,

i.e., the convolution is commutative.

Further elementary properties of the L-transform are that it is firstly homoge-
neous and linear, i.e., it holds that

a1 F1(t) + az Fa(t) o-e a1 fi(s) + az fa(s),

and secondly, that from F(¢t) =0 it follows that f(s) =0 and vice versa.

An important property, which follows from the definition of the L-transform, is

lim  f(s)=0. (A.8)

Re s—+o00
Only then is a function f(s) an L-transform and can be transformed back (see

next chapter).

A.1.6 Back-transform

Ims

Fig. A.2: Convergence half-plane of Laplace inverse-transform.

The integration path is parallel to the imaginary axis and has to be situated
in the convergence half-plane of f(s), otherwise, ¢ is arbitrary. To the right of
the integration path, f(s) cannot have singularities, but it can have them to
the left. The integration path can be deformed in accordance with Cauchy’s
integral law and the remainder theorem.
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A.1.7 Relation with the Fourier transform

A common representation of the Fourier transform F(w) of a function F(t) is

F(w) = / o F(t)e “'dt. (A.10)

— 00

F(w) is also called the complex spectrum of F(t); w is the angular frequency.
The inverse-transform is given by

Flt) = — / T By, (A.11)

:% .

This equation can be interpreted as the superposition of harmonic oscillations.
This is the reason why the Fourier transform is often used in physics. If the
behaviour of a system, which can be described by linear differential equations,
is known for harmonic excitation, its behaviour for impulsive excitation can be
determined via (A.11). To do this, the excitation has to be broken into its
spectral components according to (A.10). Then, the problem is solved for each
spectral component, and, finally, all spectral solutions are superimposed via
(A.11). Such an approach is used in section 3.6.3 in the study of the reflection
of impulsive waves at an interface.

It is often less physical, but often more elegant and simple, to use the L-
transform. The connection between F'(w) and f(s) is very close for functions
F(t) that are zero for t < 0 (causality)

F(w) = /000 e WHR(t)dt = f(iw),

i.e., the Fourier transform is also the L-transform on the imaginary axis of the
complex s-plane.

In an alternative representation of the Fourier transform, the factor % is not
in (A.11) but in (A.10). Then the Fourier transform F(w) is equal to f(iw)/27.

A.2 Application of the Laplace transform

A.2.1 Linear ordinary differential equations with constant
coefficients
Differential equation

LY) = Y™ 4a, VD 4a, Y2 4 faY +aY = F(t)
F(t) 0fort <0 (A.12)

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



A.2. APPLICATION OF THE LAPLACE TRANSFORM 185

Initial conditions
Y(+0) = Yo, Y'(+0) = Y{,..., YD (10) = y{"

L-transform of (A.12) with Y (¢) c-ey(s), F(t) o-e f(s) and (A.5)

(8" +an 15" . Fais+ ao) y(s) = f(s)
+ (s”_l Fa, 18" 2+ .. . +tags+ Cll) Yo

+(s" P+ an—15""+ .. +azs+a) Yy
+ ...

+(s+an1) Yy

+y Y,

The polynomials can be written as

n—
pi(s):ZakHsk, 1=0,1,2,...,n, a, =1.
k=0

Therefore,

po(s) =1 po(s) 0
The right side contains the L-transform of the known function F'(¢), some poly-
nomials, the coefficients of which are known and the known initial values of the
function Y'(¢) to be solved for. If it is possible to determine the inverse transform
on the right side of (A.13), the problem is solved. In the case presented here,
this is not difficult. Before this is done, we discuss the comparison with the
standard method to solve linear ordinary differential equations with constant

coefficients.

First, in the standard method the homogeneous differential equation is solved
generally (i.e., it contains n undetermined coefficients); then a special solution
of the inhomogeneous differential equation is determined, e.g., by guessing or
by variation of the constants. This is then the general solution of the inho-
mogeneous differential equation from which the n constants can be determined
via the initial conditions. It is not necessary to find a general solution if the
L-transform is used. Here, the solution that corresponds to the initial condi-
tions is determined directly. That is the great advantage of this method. This
advantage is even greater for the solution of partial differential equations with
boundary and initial conditions and is why the L-transform is widely used. This
is especially true in electronics. One consequence of this is that extensive tables
with inverse transforms for many L-transforms exist.

The inverse-transform of (A.13) can be split into two steps (but that is not a
necessity).
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1. f(s) #0, Yo=Yy =... = Yo(n_l) = 0. This corresponds to the solution
of the inhomogeneous differential equation with zero initial values (See
section A.2.1.1).

2. f(s) = 0, initial value # 0. This corresponds to the solution of the
homogeneous differential equation with non-zero initial conditions (See
section A.2.1.2).

The sum of solution 1 and 2 is the inverse transform of (A.13) to be determined
(See section A.2.1.3).

A.2.1.1 Inhomogeneous differential equations with zero initial values

This case is also of practical interest since in many cases in which a system is
zero up to time ¢t = 0 (i.e., Y (¢) = 0 for ¢ < 0), the initial values are zero. In

this case,
f(s
s = L8
Po(s)
Since 1/po(s) for n > 1 is always an L-transform (compare (A.8)), the inverse
exists
1
o Q(1).
2o(5) (t)

Q(t) is the Green’s function of the problem. The convolution theorem (A.7)
then gives the solution Y'()

V() = /0 Pt — 1)Q(r)dr = /0 F(r)Q(t — 7)dr. (A.14)

The determination of Q(t) is, therefore, the remaining task. To that end, we
introduce an expansion into partial fractions of 1/pg(s) under the assumption
that the zeros ay, of po(s) are all different

n

IZZ dy,

Po(s) i ST %k

where dj, is the residue of 1/po(s) at the location ay

d I S — Qi I 1 1

r = lim = lim = .
- “ay, Po(s)=po(ak) !
s—ar po(s) s—ap Osfiaik pp(ak)
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Thus,

n

1 1 1
Z .S—Ozk

pols) == phlan)

Inverse-transform, with a result from section A.1.4, gives

eakt

Q) =H(t)- ) (A.15)

n
= pplon)
If «vy is real, the corresponding summand in Q(t) is also real. If oy, is complex,
an «p with a1 = «j (the conjugate complex value to ay) exists as part of the
other zeros, since po(s) has real coefficients. Then,

eakt ea;t eakt e(akt)*

/

Phen) T hen . phlan)  pplan)

eakt eakt * eakt
7 + < 7 > = 2R€/—
po(o) po(o) po(o)

Q(1) is, therefore, always real.

Relation to the usual solution method

The determination of the zeros of pg(s) is completely identical to the determi-
nation of the zeros for the characteristic equation po(A) = 0 of the homogeneous
differential equation. The effort involved is, therefore, the same. For the usual
method, the additional effort of finding a special solution of the inhomogeneous
differential equation and the determination of n constants in the solution of the
homogeneous differential equation from the zero initial conditions is needed.

It is also interesting to see under which conditions on F(¢) the initial values of
the solution

Y(t)= /0 F(r)Q(t —T)dr

are indeed equal to zero. One can show that

k+1
Q™ (40) = lim
5—00 Do (3

(k=0,1,...,n—1),

and thus,
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QH0)=Q'(+0) = ... = Q"2 (+0) =0, Q" V(+0) =1
If this is used during the differentiation of Y'(¢), it follows that
Y(+0)=Y'(+0) = ... =YD (40) =0,

and under the condition that

lim F(r)dr =0 (A.16)

it also holds that Y (®=1)(4-0) — 0. This means that due to the fact that a phys-
ical function in general satisfies (A.16) (as long as they have a defined start),
the assumption of zero initial values is most often satisfied. Equation (A.14)
with (A.15) is then the solution of the problem. An exception can be found in
exercise A.2.

Application example

The differential equation of the mechanical resonator can be written as

.. . 1
Y + 2awoY +wiY = —K(t)
m

with
Y(t) displacement from zero
K(t) = acting force (= 0fort < 0)
m = mass
a = damping term (o =1: aperiodic limit)
wo = eigen frequency of the undamped resonator
w wo(l — ag)% eigen frequency of the damped resonator .

We choose a < 1 (resonator case).

The L-transform of the differential equation leads to
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po(s) = s*+2awes +wi = (s —a1)(s — az)
o = —wo(a—i—zl—a %):—awo—zw
oy = —awgy+iw
po(s) = 2s+2awp
polar) = —2iw= —pylaz).

Thus, the Green’s function can be written as

1 . .
Q(f) — 2_ [_efawotfzwt + efawotJrzwt] H(t)
w
e—awot wt —iwt
= 5 [ —e ™ - H(t)
1
Qi) = Ze“’“"ﬂt sinwt - H(t)

Q(+0) = 0, Q'(+0) =1
The solution of the differential equation is, therefore, (¢ > 0)

Y(t)

1t
— / K(t—7)e *“°7 sinwrdr
wm

1 t
— / K(r)e o= sinw(t — 7)dr. (A.17)
wm

If the polynomial po(s) has several zeros, an extension into partial fractions of
1/po(s) is also possible, but it looks different as if only simple zeros were present.
Thus, the corresponding Green’s function @Q(t) looks different (compare also the
usual method of solution). Equation (A.14) is also valid in this case.

Exercise A.1

Give the solution of the inhomogeneous equation
L(Y) = wiYoH (t),
where H(t) is the Heaviside step function.

Exercise A.2

Solve the differential equation of the mechanical seismograph

L(Y)=—-X (X(t) = ground displacement)
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with the aid of the method of the variation of the constants and with the L-
transform. Assume

X(t)=0fort <0, X(+0)=0, X(+0)="T.

Derive the initial conditions for Y (¢) from physical principles and show that
Y (40) =0, Y(+0) = —V}.

In both exercises, L(Y) =Y + 2awoY + w3Y, a < 1.

A.2.1.2 Homogeneous differential equations with arbitrary initial val-
ues

This case has also a practical application since it describes the decay of os-
cillations of physical systems. The important points can be learned from the
following exercise.

Exercise A.3

Solve the differential equation of the eigen oscillation of a mechanical resonator
with

with the initial conditions Y (+0) = Yy, Y (+0) = 0 using the L-transform, and
compare the solution with the solution L(Y") of exercise A.1 as done above.

A.2.1.3 Inhomogeneous differential equations with arbitrary initial
values

We superimpose the solutions of section A.2.1.1 and section A.2.1.2. This means
that Y'(¢) consists of the two contributions

Y(t) = Yi(t) + Ya(t).

Y1(t) is the solution of the homogeneous differential equation that satisfies the
initial conditions

Yi(40) = Yy, Y{(+0) =Y, ..., " D (+0) = vV,

Y5(t) is the solution of the inhomogeneous differential equation with zero initial
values
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Ya(+0) = Vi (+0) = ... = V3" V(+0) = 0.

Y (t) satisfies the differential equation and the given initial conditions, and is,
therefore, the solution of the problem.

For physical problems, the initial conditions always have to be derived from
physical principles, for example:

1. Mechanical resonator: Y + 2awoY + w3y = LK)

For t < 0,Y = Yp(t) is given. At time ¢ = 0 the force K (¢) begins to act.
Due to the continuity requirement it must, therefore, hold that

Y (40) = Y5(—0), Y(+0) = Yo(—0). (A.18)

The resonator starts at time ¢ = 0 with the initial values which connect
continuously to the previous values. The contribution of Y7 (¢) to the dis-
placement Y'(¢) has the initial value given in (A.18) and is, therefore, an
eigen resonance, which continues the oscillation Y5(¢). The forced oscilla-
tion Y3(¢), given in (A.17), with zero initial values, is then superimposed
on that oscillation.

2. Mechanical seismograph: Y + 2awoY 4 w2Y = —X
The ground may be at rest until the time ¢ = 0. Due to the requirement
of continuity, it follows that

Y(+0) =0, Y(+0) = =X (+0).
Homogeneous equation:
Y1 4 20w0Y1 + w2Y; =0, Yi(4+0) =0, Yi(+0) = —X(40)
L-transform: .
(s + 2awos + wg ) yi1(s) = —X(+0)

Similar to section A.2.1.1, the eigen resonance can be written as

Yi(t) = —me*a“’ot sinwt - H(t).
w

Inhomogeneous equation:
Vo + 20woYs + wlYs = =X, Ya(40) = Ya(40) = 0

L-transform:

(s* + 20w0s + wi) ya(s) = — (sgx(s) - X(+0))
The forced resonance, therefore, is ( ¢ > 0)
1t

Ya(t) = ol X(r)e o= ginw(t — 7)dr.

The complete solution Y'(¢) = Y3 (t) + Ya(¢) is the same as in exercise A.2.
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A.2.2 Partial differential equations

We now use an example to demonstrate the main points discussed so far. We
will examine, unlike in section 3.4, the propagation of a compressional wave
from an explosive point source. The starting point is the equation of motion of
the elastic continuum without body forces.

82—»
(p=density, A and p=Lamé’s parameters).

In our problem, for which we use spherical coordinates, the displacement @ has
only a radial component U, and the only spatial coordinate is the distance r
from the explosive point source. In this case, V x @ is zero and it holds that

V- W = 8_U+2U
or r
0°U 20U 2
.7 — - -
VV. -7 (8r2 T rzU,0,0).

With a? = (X + 2u)/p (=velocity of the compressional waves), it follows from
(A.19) that

0°U 20U 2 1 92U
ozt el e =0 (4.20)

The boundary conditions assumed are that for r = r; the displacement is pre-
scribed as

U(T‘l,t) = Ul(t). (A.Ql)
The initial conditions are
oUu
U(r,0) = E(r, 0) =0. (A.22)

Ui (t), which shall be zero for ¢ < 0, has to start smoothly, so that the initial
conditions are also satisfied for r = rq.

L-transform then gives
u(r,s) = / e StU(r, t)dt
0
u(s) = / =S, (1) dt
0
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o < _gqoUu .0 [T, 0
L{E} = /0 e ardt_ﬁr/o e Udt—aru(r,s)
0*U 0?
L {—87“2 } = 52 u(r, s).

With this and (A.20), equation (A.20) leads to an ordinary differential equation
for u(r, s)

d*u  2du 2 52
22 (242 =0. A2
dr? +7“d7" (r2+a2>u 0 (4.23)

For ordinary differential equations, the L-transform leads to an algebraic equa-
tion (polynomials). For partial differential equations in which, together with ¢,
only one additional coordinate occurs (the case studied here), the L-transform
leads to ordinary differential equations. For partial differential equations in
which, in addition to ti, more than one coordinate occurs, partial differential
equations are derived. In each case, the dependence on % is eliminated.

We change the variables in (A.23) to 2 = &2

[e3

Thus, (A.23) becomes

d*u du
2 2
x @—F%%—(x +2)u=0. (A.24)
This is a special case of the differential equations of the modified spherical Bessel
functions

dz? dx '

Compare, e.g., M. Abramovitz and I.A. Stegun: Handbook of Mathematical
Functions, H. Deutsch, Frankfurt, 1985.

In our case, n = 1, and the solution of (A.24), which has the properties (A.8)
of L-transforms, is

u(w) = (1 + é) e F(s), a= (A.25)

rs
T (&%

As will become clear in the following, the integration constant F'(s) is important.
We now specify (A.25) for r = rq, i.e., = r18/a, thus, u(z) has to become the
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known L-transform wuq(s) of the displacement Uj(t) given at the limit r = 7
(see (A.21))

s 1S

ui(s) = 2 <1 + i) e EF(s).

From this, F'(s) can be derived. Therefore, (A.25) can be written as

T1 1 + ,% r—ri

=——"T%¢ "o ¢ A.26
wo) = e (4.26)
o st S o
= . s—|—% ul(s) (&

The term in the square bracket can now be given as

uy(s) +a (1 _ i) ui(s) oo Uy (t) + o (l - i) Uy (t) * {e_%t : H(t)] .

roor s—l—% roor

In the last step, the convolution theorem (A.7) was applied. If the displacement
theorem (A.2) is used, the inverse transform of (A.26) follows as
T1

— t_r_oz o r—ry
U, <t— d ”) +a <1 - i) / Uy (9)e % (53 ﬁ)dﬁ] :
(0% T 1 0

The retardation (r — r1)/« refers here not to the explosion point source, but to
the sphere r = r1, from which the wave starts at time ¢ = 0. The retarded time
is, therefore, 7 =t — (r — r1)/c, and the arrival of the wave at each receiver
with r» > ry follows from 7 = 0. Then

Ulr,t) = 7"71

A.3 The delta function §(t)

A.3.1 Introduction of §(t)

We examine the result (A.17) for the mechanical resonator
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1 t
Y(t) = — / K (r)e™ o t=") gin w(t — 7)dr,
wm 0

for the force K (t) = Id.(t), where I is a constant with the dimension of force x
time (—dimension of an impulse) and

0 fort<O
Se(t)=4¢ 1 for0<t<e
0 fort>e

is a square function as shown in Fig. A.3.

A O )
1/g
1/,
1/g
Sl 82 83 >t

Fig. A.3: Representation of d.(t) as square functions.

The area under the curve 0.(t) is always equal to 1. Therefore, independent of

€, always the same impulse I is transfered. Then the displacement for ¢ > € can
be written as

I €
Y.(t) = / e =T sinw(t — 7)dr
wme 0
I t
= / e % ginw u du.
wme J,_.
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OOl Gin @ u

N\

e

N
te t \—/ N
Fig. A.4: Behaviour of the term under integral in Y, (¢).
The mean value theorem for integrals gives (0 < A < 1):
Y.(t) = iefa“’o(tfk) sinw(t — Ae). (A.27)
wm

The next step is the transition to € — 0. For (A.27) follows the result (t is
arbitrary)

I I
lim Y. (t) = —e *lsinwtH(t) = —Q(t),
lm Y (t) = ——e™ " sinwtH (1) = —Q(t)

where Q(t) is the Green’s function of the differential equation of the mechanical
resonator (compare section A.2.1.1). For the force, the transition e — 0 means
that the impulse is transfered to the resonator in shorter and shorter time. It
is physically plausible, that this time then is not important, if it is sufficiently
small compared to the decay time (awp) ™! and the eigenperiod 27 /w of the eigen
resonance of the resonator. Therefore, it makes sense to adopt the limiting case
e = 0 also for the force, i.e.,

lim K (t) = Ilin})(&(ﬂ = I6(t),

e—0

where §(t) is the delta function
o(t) = 111[1(1J 0e(1). (A.28)

Other names are impulse function or unit impulse. It is obvious that §(¢) can-
not be treated as a standard function. On the other hand, it would be wrong
to study the function §(¢) separated from the ordinary functions d.(¢). On the
contrary, 6(t) has to be understood as a series of {d.(¢)} with e — 0. From
the mathematical point of view, §(t) is part of the generalised functions or dis-
tributions, for which extensive theories and literature exist. For our purposes,
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the physical approach to the delta function given, will be sufficient. The def-
inition of 0(¢) as a series of ordinary functions is the basis of an exact theory
that can also be understood by non-mathematicians; see, e.g., Riley, K.F., M.P.
Hobson and S.J. Bence: Mathematical methods for physics and engineering,
A comprehensive guide, Cambridge University Press, Cambridge, 2nd edition,
2002.

A.3.2 Properties of §(t)

Due to (A.28)
o(t) =0 for t # 0.

Furthermore, it follows from the properties of d.(t), that

The delta function, therefore, is the value of F(t) at ¢t = 0; such that

/M S(t)dt = 1.

— 00

Furthermore, it holds that G(¢)d(t) = G(0)d(t). If G(0) = 0, then G(t)d(t) = 0.
For the delta function §(¢ — 7), which is displaced by 7, it holds that

o(t—71)=0fort#r

and

The definition of §(¢) is not only possible with the series {d¢(¢)}, the functions
of which are discontinuous. An alternative option is the series {6, (¢)} with
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9,(t)
t
Fig. A.5: Representation of d,,(t).
In this case,
o0(t) = lim 6,(t)
+oo
/ n(t)dt = 1

With the functions d, (t), the derivatives of the the delta function can be defined
as

sF (1) = lim 6% (¢).

n—0o0

g,(t)

Fig. A.6: Derivative of the delta function 4, (t).

It holds that §(%)(t) = 0 for t # 0. Furthermore, it follows that
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+o0 +oo
/ SM @ —n)Ft)dt = lim 6P (b — 1) F(t)dt
_ _ n
= lim (—1)’</ 6t — ) F®) (t)dt,
after k partial integrations. This gives
+ oo
/ SF(t — ) F(t)dt = (=1)FF®) (7). (A.29)

Finally, we discuss the connection between the delta function and the step func-
tion H(t) from section A.1.4. We consider the function

t 0 fort<O
He(t)z/ de(T)dT = % for0<t<e
—oo 1 fort>e
He(t)
17—~ 7
I
I
|
€ t

Fig. A.7: Function H.(t).

This means that

and in the limit € — 0

The delta function is the derivative of the step function. The same result could
have been achieved with the definition of §(¢) with the use of the functions d,(¢).

It should also be mentioned that H(t) is dimensionless, but 0(t) has the inverse
dimension of time.
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A.3.3 Application of §(t)
1. The option to describe impulses of force (and, similarly, of stress and cur-

rent) will not be discussed now since that was the topic of the introduction
of this appendix.

2. A point mass m (or similarly a point charge) can be described by the
following density

p=md(x)5(y)d(2).

This holds because p = 0 for (z,y, 2) # (0,0,0), and the whole mass can
be described via

///_J:opdxdydz:m./_;Ood(a:)da:./_J:ogs(y)dy./_;m(;(z)dz:m.

3. The charge distribution of a point-like dipole can be described by the
following line density o(x) (e.g., Coulomb per meter) on the z-axis as

o(x) =M (x), M >0 (dimension : charge * length ),

since we define o(x) by the series {M§],(x)}.

M 3,(X)

Fig. A.8: Charge distribution of a point-like dipole.

The transition n — oo gives then two infinitely large opposite point
charges, which are infinitely close to each other.

+ -
x:IO

Fig. A.9: Charge distribution of a point-like dipole for two infinitely large
opposite point charges, which are infinitely close to each other.
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The moment of such an arrangement relative to z = 0 is
+o0 +oo
/ zo(r)dr = M/ 28’ (z)dx = —M.

The sign is correct, since the vector of the moment points from the negative
to the positive charge. The dimension is also correct. The spatial charge
density of the dipole would be o(z,y,z) = M - §(x) - 6(y) - 6(2) (e.g.,
Coulomb per cubic meter).

4. The role of the delta function for the solution of inhomogeneous linear
ordinary differential equations.

We start with

LY)=Y" 4 a, YO L faY faY =6(t).  (A30)

The solution is, according to section A.2.1.1,

¢
Y() =Y. = [ s.rQt - ryar, (A31)
0
with Q(t)=Green’s function, and it satisfies the initial conditions

Yo(+0) = Y/(+0) = ... = V"D (+0) = 0.
The transition € — 0 in (A.30) and (A.31) gives

L(Y) = §(t) (A.32)

with the solution

The Green’s function of a system, which can be described by a linear ordi-
nary differential equation, is also the solution of the inhomogeneous equa-
tion, which has the delta function as the term of perturbation. Expressed
differently, the Green’s function is the response function of a perturbation
of the system by the delta function (impulse response).

The initial values of Q(t) are

Q(H+0)=Q'(+0)=... = Q" D(+0) =0, Q" V(+0) =1,

and are, therefore, different from those of the functions Y.(¢). This is
a consequence of the transition ¢ — 0. If (A.32) has, therefore, to be
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solved directly, one has to use always zero initial values and not those,
which actually hold for Q(¢). In that situation, it is useful to know the
L-transform of 0(t)

L{5(t)} = f(s) = /OOO e S(t)dt = 1.

Since 0(t) is a generalised function, it does not hold here that lim f(s) =0
for Res — oo (compare (A.8).

Now we can give the general solution of the initial value problem for a
system which is at rest up to the time ¢ = 0 and is then excited in an
arbitrary way, a new interpretation. The solution (A.14), namely

Y(t):/ot (t—7)Q dT—/F Qlt — 7)dr, (A.33)

is derived by the convolution of the solution Q(t) for the special excitation
of the system by F(t) = d(t) with an arbitrary perturbation F(t).

A.3.4 Duhamel’s law and linear systems

n (A.33), we choose F(t) = H(t) (step function). In this case,

Y(t) = Yu(t)

Yi(t) =

t
/Q(T)dT (step response)
0

Integrating by parts, it follows from (A.33)

Y(t)=F(t—71) Yu(r)l; +/0 F'(t — 7)Yy (7)dr.
Thus, due to Y (40) =0

Y(t) =FH0)Yy(t) + [ F'(t—7)Y(r)dr
(A.34)
= F(+0)Yr(t) + [y F'(1)Yu(t —7)dr

This is Duhamel’s law, which describes how solutions for arbitrary F'(¢) can be
determined from those for F'(t) = H(t).
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Generalisation

If we use Q(t) = Y5(t) in (A.33), it follows that

V() = /O Pt — 7)Ys(7)dr = /0 F(r)Ys(t — 7)dr. (A.35)

The relation between Ys(¢) and Yy (1) is

Ys(t) = Y4 ().

Equations (A.34) and (A.35) contain the statement that the response of a system
has to be known only for very special excitations like the delta and the step
functions. From this, the solution for arbitrary excitation can be given. This
is not only true for systems which follow linear ordinary differential equations,
but also for systems which can be described by partial differential equations
or systems of simultaneous differential equations as long as they are linear and
have time independent coefficients. One requirement for this to hold is that the
system is at rest in the beginning. The perturbation can, depending on the
problem, have a different form (e.g., force, temperature, displacement etc.), as
indicated in Fig. A.10.

inout o linear system outout
P . (or linear filter) P
input function output function
or or
perturbation function response function
o(t) Y5(t) =Q(t ) (impulse response)
H{(t) Yu(t) = fo T)dT (step response)
F(t) Y (t) accordlng to (A.34) or (A.35)

Fig. A.10: Linear system with input and output.

Transition into the frequency domain using the Fourier transform

The Fourier transform of F(t), Q(t) and Y (t) is F(w), Q(w) and Y (w)

F(w) e (FO) )
Q) o= / Q) e ™dt.
Y(w) e LY@
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204 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION

The close relation with the L-transform has been discussed in section A.1.7.
Therefore, it holds, as for the Fourier transform

Y(w) =F(w) Qw),

i.e., the Fourier transform Y (w) of the input function Y (¢) is the product of
the Fourier transform F(w) of the input function F(t) with Q(w) of the Green’s
function Q(¢). Q(w) is called the transfer function of the linear system or filter.
Separation into absolute value and phase gives

QW) = AWw)e'pw)
Aw) amplitude characteristics of the system

¢(w) = phase characteristics of the system

A(w) describes the amplification or decrease of the circular frequency w, re-
spectively, and ¢(w) describes the phase shift. A monochromatic oscillation as
input

F(t) = asinwt,
has the output
Y(t) = A(w)asin (wt + p(w)) .

The transfer function of the system has, therefore, a very physical meaning, and
it is thus, used widely.

Exercise A.4

A sphere of mass m drops from the height h; on the mass M of a mechanical
(vertical-)resonator, is reflected there and reaches the height he. No additional
interactions between the two masses follow. Determine the displacement of mass
M:

1. Using the homogeneous differential equation L(Y) = 0 and the corre-
sponding initial conditions.
2. Using the inhomogeneous differential equation L(Y) =7 and zero initial

values.

It holds that - .
L(Y) =Y + 20w +wdY, a<Ll.
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Exercise A.5

The ground displacement of the mechanical seismograph (differential equation
L(Y) = —X) is given by

a) X(1)= SO

Determine, in each case, the displacement Y (¢) and discuss the relation between
the three cases.

A.3.5 Practical approach for the consideration of non-zero
initial values of the perturbation function F(t) of a
linear problem

For the mechanical seismograph, the perturbation function of the differential
equation is the second derivative of the ground displacement X (¢), and we notice
that the initial values of the displacement Y'(¢) of the mass of the seismometer
depends on the initial values X (4+0) and X (+0), respectively (compare exercise
A.2 and section A.2.1.3). This connection had to be derived from physical
principles. Cases exist in which this is difficult. Therefore, we would like to
have an approach, that considers the initial values of the perturbation function.
In the following, we define, contrary to the usage up to now, the perturbation
function as the function, the single (or higher) derivatives of which occur in the
differential equation as inhomogeneities (we consider an arbitrary linear system).
Now F(t) = X(t) for the mechanical seismograph and not F(t) = —X(t). We
then solve the equation for F(t) = F,,(t), for which the initial values are zero,
up to sufficiently high orders. Then, one can assume that the initial values of
the corresponding solution Y;,(¢) are also zero. Thus, Y, (t) can be written as

Y, (t) = /O t FWO(t —1)G(r)dr. (A.36)

Therefore, we know the i-th order of the derivative of F,,(t) (i > 1) and the
function G(t).

Given a series of functions F},(t) which converge versus the perturbation function
F(t) to be determined (with non-zero initial values)

3
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lim F,(t) = F(t).

n—oo

Compare also the comments to the definition of the delta function in chapters
A.3.1 and A.3.2. Then, it follows that

lim F/(t) = F'(t)+ F(+0)4(t)
lim F)/(t) = F"(t)+ F(+0)d(t) + F'(+0)d(¢)
i—1
lim F{(t) = FO@t)+ > FO+0)5071 (1), (A.37)
j=0
5 () is here equal to 6(t).
40—
/ﬁ’—_’—
!
JE(1)
!
t
A A ()
'\
I
: F(1)
!
t

Fig. A.11: F(t) and its derivative as a function of time.

The general solution Y'(¢) for arbitrary initial values of F'(¢) is

Y(t) = lim }/n(t)

¢
— / l)(t—T dT—I—ZF / §li—i= 1)( 7)G(7)dT,
0
if (A.37) is used in(A.36). Now

t t
/ 80D (t — 7)G(r)dr - / oI ()Gt — w)du
0 u=t—T 0
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_ o Ji—i—1
i—j—1
with (A.29) (=1 |:dui_j_1 Gt - U)] u=0
_ (—1)iI1 { di:j:11 el u)] (—1)i=i-1
dt*=71 w=0

= GO ).

The general solution of the problem for arbitrary initial values of the perturba-
tion function F'(t) is then

1—1
v(t) =Y FO(+0)GU-i-D ¢ / FO(t — 7)G(r)dr. (A.38)
=0
Application

Mechanical seismograph: Y + 2awpY + w3 = —X

The assumption that the ground displacement X, (¢) starts sufficiently smooth
and allows us to put the initial values of Y;,(¢) equal to zero

Y, (40) = Y, (+0) = 0.

The differential equation is then solved under this assumption, most easily with
the L-transform (compare exercise A.2)

t
Y, (t) = 1 X, (t — 7)™ 07 sinwrdr.
w Jo

Compare with (A.36): F,(t) = X,.(¢),i =2,

1
G(t) = ——e *lsinwt- H(t).
w

The general solution is, according to (A.38),

V() = X(+0)G(t) + X(+0)G / X(t - 1)G(r)dr

X (H+0)G'(t) + X (+0)G / X (7)G(t — 7)dr.

This result (with X (40) = 0) was derived directly, except for the sign, in the
exercise mentioned above.
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Appendix B

Hilbert transform

B.1 The Hilbert transform pair

The Hilbert transform H (x) of the real function h(z) is defined by the following
integral (x and ¢ are real)

- _P/+OO s (B.1)

0o f—{E

P is the main value of the integral, i.e., the singularity £ = x of the integrand
has been excluded

P/:o..dgzl% (/;E..df—k/wio..dg).

The inverse Hilbert transform can be written as (proof follows)

_ __p/:)o f_ (B.2)

Although this is different from the Laplace and the Fourier transform, the two
corresponding functions h(x) and H(x) have the same argument.

Some analytical Hilbert transform pairs are shown in Fig. B.1.

209
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210 APPENDIX B. HILBERT TRANSFORM

h(x) H(x)
3 (x) 1

2
a -ax
a’+x2 a?+x2
} }
¢ * Vx

2a?x a(x%d® .
(a2 + x2)? (a?+x2)
| x/_\

Fig. B.1: Analytical Hilbert transform pairs.

B.2 The Hilbert transform as a filter
Equation (B.1) is a convolution integral
Pe (¥)

+£ X

—&

Fig. B.2: Form of P.(x).
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Pl

Pe(z) =

A Pele)

{ 0 for |z| < e

—L  otherwise .
™T

Therefore, it holds for the Fourier transforms

H () i ((H() |
h(w =/ h(z) e ", (B.3)
P(w) = L P{-=
and according to section A.3.4,
H(w) = h(w) - P(w). (B.4)

The Hilbert transform is, therefore, a linear filter. The Fourier transform and
its inverse can be effectively calculated with the method of the Fast Fourier
transform. It is, therefore, advantageous to perform the Hilbert transform in
the frequency domain via (B.4). To be able to do this, one needs the transfer
function P(w) of the Hilbert transform. From (B.3), it follows that

1 e 1 —iwxT D
Pw) :—;P/ Lemrdr, P(0) =0, (B.5)

We compute this integral with methods from complex analysis by deforming
the integration path to a semi-circle with infinite radius in the upper (lower)
z-half-plane for w < 0 (w > 0), respectively,

<0

A R Rex

>0

Fig. B.3: Integral path of P(w) in the complex plane.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



212 APPENDIX B. HILBERT TRANSFORM

+oo —iwz —iwz —iwz
P/ ¢ de = /e dac:l:mRese

z z =0

:/ C dr+m, (B.6)
v/ T

where the upper (lower) integration path and the + (-) sign for w <0 (w > 0)
have to be chosen, respectively. Note that the first term on the right of the
first equation has to be integrated along the real axis (excluding the pole), and
the residual in the second term is identical to 1. The integration in the second
equation is then along the upper (lower) half circle U (L), respectively.

With the new variable ¢ on the half circles, it follows that
x = Re', dx = RiePdp.

This leads to

—iwx 0
/ < de = i / exp [—iwR (cos ¢ + isin )] dp
v/L T +m

0
= z/ exp [wRsin g — iwR cos ¢| dyp
+m

— 0 for R — oo, since wsinp < 0.

Equation (B.6), therefore, reduces to

+oo efiu.w
P/ dx = +mi,

T

and the transfer function P(w) in (B.5) becomes the simple expression

B -1 forw<0
P(w) =1isignw with signw=¢ 0 forw=0 (B.7)
+1 for w > 0.

If the Hilbert transform is considered as a filter of the original function, it follows
from (B.4) with (B.7) that the frequency 0 is suppressed (P(0) = 0), but all
other frequencies remain unchanged in their amplitude (|P(w)| =1 for w # 0).
At w # 0 only phase shifts are produced. With w > 0 (w < 0) a phase shift of
+90° results, respectively. In filter theory, the Hilbert transform is an all-pass

filter with removal of the average.

The practical computation of the Hilbert transform H(x) of h(x), therefore,
requires three steps:
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1. Computation of the Fourier transform h(w) of h(x)
2. Multiplication with the transfer function P(w)

3. Back transformation of H(w).

If the Hilbert transform is applied twice, it follows in the frequency domain that
_ — —2
g(w) = h(w) - P (w) = —h(w),

and, therefore, g(z) = —h(x). The original function h(z) is, therefore, obtained,
if the sign of the second Hilbert transform is reversed. This proves (B.2) for the
inverse Hilbert transform.

This proof only holds for cases in which A(0) = 0, i.e., in cases for which the
integral over h(x) is zero. The third example in Fig. B.1is such a case. Equation
(B.2) also holds if h(0) # 0. This is shown in the second example of Fig. B.1
and can be confirmed with methods from complex analysis.

The numerical Hilbert transform, with (B.4) and (B.7) frequency w = 0, is
sometimes not treated properly. For numerical reasons, it is assumed that due
to P(0) = 0 the integral of the Hilbert transform is always zero. This is not
true, if h(0) = fj;j h(z)dx is not finite or not correctly defined. The first case
occurs, if, e.g., h(z) is a step function. The second case occurs, e.g., during
the inverse-transformation of the Hilbert transform h(z) = —axz/(a® + 2?), the
decay of which with increasing |z| is proportional to —1/z and, therefore, not
strong enough. In such cases, a constant shift of the numerical result in the
ordinate direction is often sufficient. The frequency w = 0 is the only frequency
for which the Hilbert transform computed numerically can then deviate from
the exact result.
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Appendix C

Bessel functions

In the following, only the most important equations and properties of Bessel
functions with integer order are listed. More details can be found, e.g., in M.
Abramovitz and I.A. Stegun (1985), or in Riley, K.F., M.P. Hobson and S.J.
Bence (2002).

The differential equation of the Bessel function of integer order n = 0,1,2, ... is
2y +ay + (22 —n?)y = 0. (C.1)

The two linearly independent solutions of this equation are

y = Jp(xz) = Bessel function of first kind and n — order

Bessel function of second kind and n — th order

or Neumann's function ofn — th order.

Representation as a series

Jn(x) = ii(x)nﬂk

= El(n +k)! \2
n—1 n—2k
2 x 1 n—1-Fk) /2
Yn = - 5 21 In - n - = - | —
(x) = (0 577216 + In 2) Tnlw) = ];) . (x)
_l 00 (_1)k (q)k+q)k+n) (f)n—Q—Qk
™= El(n + k)! 2

L1
(I)l = Zg
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216 APPENDIX C. BESSEL FUNCTIONS

The graphic representation for > 0 is shown in Fig. C.1.

1.0 F———r T 1T

0.5 r 1 1.0

Fig. C.1: Bessel and Neumann functions.

Neumann’s functions have a singularity at = = 0.

The Hankel functions, or Bessel functions of the third kind, are defined as

() = Jp(x)+iY,(2) Hankel function of first kind (C.2)
() = Jplx) —iY,(2) Hankel function of second kind . (C.3)

H,(Ll)(x) and H? (z) are linearly independent. The general solution of (C.1) is,
therefore, (with the arbitrary constants A,B,C,D) either

y = AJy(z) + BY,(x)
y = CHY(2)+DH? ().

Analogies to the differential equations of the trigonometric functions
(equation of oscillation)

y”—|—n2y=O

—inx

and e , respec-

inx

or their well-known solutions cosnz and sinnz, and e
tively,
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Bessel functions
Jn ()

e

217

Trigonometric functions
cosSnT
sin nx

e = cosnx + isinnz

T — cosnx — i sinn.

Asymptotic representation for z > 1

Jn(x) ~ (%)fcos (-2 1)
Vo) = (Z)fsin(e- - 5) €4
H(@) =~ (%) ew[i(r -5~ §)]
H? () (&) exp [~i(z = 5 - §)]
Recursion formulae (7, = J,,,Y,, H,(Zl) or H(z))
g () = Zn1(x)+ Znpi(z) (n=1,2,3,..)
Z’rl’b(m) = % ”(Qj) _Z”7«+1(x) (n_071727 ) (05)
Z! () = —2Z.(x)+Zpa(x) (n=1,2,3,...)

Special cases of the second and third recursion formulae in (C.5) are then used

—Jl (CC)
To(a) — éJl(x).

Up until now, we have considered the variable z as real and positive. If we also

assume |z| > 1, all formulae given

also hold for complez, z and for (C.4). If

complex z are used, the following relations are often useful

H7(7,1) (_x)
H® (~a)

with special case n =0
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Appendix D

The Sommerfeld integral

We consider a time harmonic explosion point source at the origin of a cylindrical
coordinate system. Its compressional potential

ieiw(t—g) (R2 — 2 z2)

solves the wave equation and can, therefore, be constructed from more ele-
mentary solutions of the wave equation in cylindrical coordinates (as long as
cylindrical symmetry is maintained); see also discussion in section 3.7 leading
to (3.83)

%ew(f*%) = eiwt/ g(k)kJo(kr)e 1=l dk (D.1)
0

o~

1
w_2 g2 *  (positive real or
o2 negative imaginary).
To determine g(k), we consider (D.1) at z =0

1wz _ /OOO g(k)kJo(kr)dk (D.2)

and use then the Fourier-Bessel transform

gk) = /OOOG(T)TJO(kr)dr (D.3)
Glr) = /Ooog(k)kJo(kr)dk. (D.4)
219
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g(k) is the Fourier-Bessel transform of G(r), and G(r) is the inverse Fourier-
Bessel transform of g(k). Equation (D.2) has the form of (D.4), therefore, G(r) =
e~wr/® [p_ Therefore, (D.3) can be used to compute g(k)

g(k) = / e*iwgJo(kr)dr
0

/000 cos (wg) Jo(kr)dr —i /000 sin (wg) Jo(kr)dr.

With

[orleyon = § gyt sy
R A

it follows that
2 7%
~i(%-k) " for0<k<t
= _1
(kz—w—z) P for k>
or simply g(k) = % Inserted into (D.1), this gives the Sommerfeld integral

1 L E <k .
—e wu = [ = Jo(kr)e " ldk. D.5
et = [ Sie (.5)
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Appendix E

The computation of modal
selsmograms

E.1 Numerical calculations

The treatment of point sources in wave guides with arbitrary (horizontal) layer-
ing leads to the following general far-field form for the field values (displacement,
pressure, potential etc.) of a normal mode

N(t) = r~3Re /000 M (w) exp [i (wt — kr)] dw. (E.1)

W(w) consists, in principal, of factors that describe the source spectrum, the
excitation function of the mode (depending on source depth, source orientation
and, in general, also on w) and their eigen function (amplitude-depth distribu-
tion). Wavenumber k(w) = w/c(w) contains the dispersion information of the
mode. Equation (4.53) is a simple special case of (E.1) with M(w) ~ k~%/?(w) .

Integrals of the form (E.1) can be solved efficiently with the help of the Fast
Fourier transform. In the case of the ideal wave guide, for which the modal
seismograms computed analytically are given in Fig. 4.3, the following numerical
result is derived for the potential (after a low-pass filter, which has decayed to
zero at the Nyquist frequency).

221
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%

Fig. E.1: Modal seismogram for the ideal wave guide (compare to Fig. 4.23).

They agree very well with the analytical seismograms in Fig. 4.33.

If one is only interested in the study of dispersion on horizontal profiles, most
times it is sufficient to consider in M (w) only the source spectrum. This simpli-
fies the studies, since then only the theory of free surface waves is needed (for
the determination of k(w)).

E.2 Method of stationary phase

The application of the method of stationary phase in integrals of the type (E.1)
has been described in section 4.2.3. Here, it is shortly outlined again, since the
results are needed as the basis for the treatment of the Airy phases in section
E.3. It should be noted that today the results of this and the next section are
not of great importance in the numerical computation of modal seismograms,
since the Fast Fourier transform mentioned in section E.1 is more suited for
that purpose. Here, analytical rules for the amplitude decay of surface waves
with increasing distance can be derived; this is an important addition to purely
numerical methods.

The phase p(w) = wt — k(w)r in (E.1) has the following derivatives with respect
to w (U = group velocity)

r

(}g/ = t—Tk/ =7r— E (E2)
99// — k" = U2y’ (E.3)
<,0W = —rk" =y (U—QU// _ 2U—3U/) ) (E4)
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Stationary phase values follow from ¢'(wp) = 0 and are, therefore, determined
by

Then

U'(wo) # O, (E.6)

¢(w) can be approximated near wg by

o) = g0 + 58 ( — wo)’ (5.7

(po = ¢(wo), ¢§ = ¢§(wo)). The modal seismogram can then be written in the
stationary phase approrimation as

N(t) = 71 2Re /WOJrAw M (w) exp [z <<po + %%’(w - wo)2>} dw (E.8)

wo—Aw
_1 —-— . 2 % Foo 22 7
~ 7 2Re{ M(wy)e° ” / e'r SN0 dy
|(p0| —0o0
| N| 1/2
with z = | £ (w — wp). With (E.3), we finally derive (Uy = U(wo), U =

U/(UJO), k'() = k(wo) = wo/C(UJQ))

1

N(t) = % <%> i Re {W(wo) exp {Z (wot — kor + gsz’gn Ué)] } . (E.9)

Equation (E.9) holds under the requirement (E.6). Then wg,t and r are con-
nected via (E.5) and‘ this produces the frequency modulation of the normal
mode. Its amplitude is also time dependent; this is mostly due to M (wo(t)) but
also partially due to Uy and U}, (amplitude modulation).

If we consider the amplitudes of the normal mode as a function of distance r, we
see that they decay with r~! as long as (E.9) holds. This statement concerns the
amplitudes in the time domain; spectral amplitudes decay with »—'/2 according
to (E.1).
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E.3 Airy phases

For realistic wave guides, one or several frequencies exist for which the group
velocity is stationary. In the following, we assume that wq is such a frequency.
It also holds that U’(wy) = 0, (E.6) is, therefore, violated and (E.9) no longer
holds. A sufficient approximation of the phase is, in this case,

1
o(w) = o + i (w — wo) + 6@6”(1,0 —wp)? (E.10)

instead of (E.7). From (E.2) and (E.4), it follows that

Yo=1t— UL o' =rUg Uy (E.11)
0

The phase is no longer stationary at wy but has a turning point there. The
third term in (E.10) has now to be considered since ¢f, changes from negative
values t < r/Up to positive values for ¢t > r/Uj and, thus, the second term in
(E.10) is not necessarily dominant. In analogy to (E.8), the following approxi-
mation of the modal seismogram for times near r /Uy can be derived (Airy phase

approzimation)
L w0+Aw_
N(t) = riiRe/ M (w)
wo—Aw
. ’ 1 " 3
exp | | o + ¢h(w —wo) + 6% (w—wo) dw
1 oo x3
o~ T5R6{H-b-/ exp |:Z <<p6-b-x+§signgpg'>} dx}
1 o 33‘3
= 27“_5R6{H}-b-/ cos [sz’gngpg’-gpg-b-x—i- ?] dx
0

"

E _— .
with z = (%) (w—wp), H= M(wp)e"¥® and b = <—

§: )
N———
Wl

The integral can be expressed by the Airy function

o0 3
Ai(z) = %/0 cos <zx + %) dzx,

which is shown in Fig. E.2.
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A2)

+05

SN

Fig. E.2: Airy function.

With (E.11), the end result for the Airy phase can be written as

2

5
6

N(t) = <£O|> ’ Re { M (wo) exp [i(wot — kor] }

Ug’

sign Ul [ 2U2 5 f_ T
rs \|Ug| Uo

r

-Ai

. (E.12)

This is a monochromatic oscillation with frequency wg (following from U’ (wg) =
0), the amplitude of which is modulated by the Airy function.

If signU{ > 0, i.e., if we are at a group velocity minimum, the modal seis-
mogram looks qualitatively like that in Fig. E.3 (the argument z of the Airy
function increases with ).
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Fig. E.3: Modal seismogram.

N(®)

The seismogram ends with strong amplitudes in the neighbourhood of the the-
oretical arrival times of the Airy phase. Fig. 4.13 gives quantitative results for
a liquid wave guide; in the range of the Airy phases, the seismogram has been

computed with the theory if this chapter.

If sign U < 0 (i.e., we are near a group velocity mazimum), z decreases for in-
creasing ¢, and the Airy function is sampled from right to left. The seismogram,

therefore, starts with large amplitudes.

The amplitudes of the Airy phases decrease with r—°/6 as a function of distance
r, i.e., they decrease slower then given in (E.9). This is the reason why the Airy

phase dominates for increasing distances.
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Lamé’s parameter, 28, 192

leaky mode, 178

longitudinal waves, 36, 40, 76
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Rayleigh waves, 136, 138, 142, 145,
150, 154, 159

reciprocity, 161

reduced displacement potential, 46

reflection coefficient, 66, 67, 69, 70,
73, 74, 80, 86, 88, 89, 94,
95, 126, 128, 157

Reflectivity method, 92, 95, 97, 132

refraction coefficient, 66, 71, 84

retarded time, 48, 194

rotation tensor, 13

seismic ray, 114, 121, 122, 125

SH-wave, 65, 72, 84, 96, 97, 113,
119, 121, 126, 130, 136, 157

shear modulus, 113

shear potential, 34, 46, 54

shear wave, 36

single couple, 56, 58, 61

slowness, 123, 127, 131

Snell’s law, 66, 67, 77, 87, 116

Sommerfeld integral, 94, 176, 219,
220

stress, 21

stress tensor, 21, 23, 26, 28, 30

stress vector, 26, 32, 33, 44

stress-strain relation, 26, 27, 30, 44,
45

SV-wave, 65, 84

tangential stress, 23, 32, 45, 67, 143
total reflection, 69, 71, 74, 126, 130
transport equation, 119
transversal waves, 36

water wave, 155

wave equation, 35, 37, 40, 43, 46,
50, 53, 62, 64, 67, 85, 93,
99, 127, 136, 138, 142, 219

wave guide, 159, 160, 165, 167, 170,
172,173,176, 221, 224, 226

wavefront approximation, 102

wavenumber, 40, 62, 85, 86, 94, 126,
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WKBJ method, 126

WKBJ-approximation, 127, 129
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