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PrefaeWhen Gerhard Müller hose to leave us on 9 July 2002 beause of his illness, welost a teaher and olleague. Part of his legay is several leture notes whih hehad worked on for more then 20 years. These notes have beome the bakboneof teahing seismis and seismology at basially all German universities. Whenasked some years before his death if he had onsidered to translate "TheorieElastisher Wellen" into English and publish it as a book, his answer was "Iplan to do it when I am retired". We hope that our e�ort would have found hisapproval.We would like to thank R. and I. Coman (Universität Hamburg) for preparing a�rst, German draft in LATEX of this sript, A. Siebert (GFZ Potsdam) for herhelp in preparing the �gures and our students for pointing out errors and askingquestions. We would like to thank A. Priestley for proof-reading the sript andturning Deutshlish into English and K. Priestley for his many omments.We thank the GFZ Potsdam and the Dublin Institute for Advaned Studies fortheir support during a sabbatial of MW in Dublin, where most of this bookwas prepared. We would also like to thank the GFZ for ontinuing support inthe preparation of this book.
M. Weber G. Rümpker D. GajewskiPotsdam, Frankfurt, HamburgJanuary 2007This �le an be downloaded from http://gfz-potsdam.de/mhw/tew/

tew_2007.ps(64MB) + tew_2007.pdf(3.5MB)3
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4Prefae of the German Leture NotesThis sript is the revised and extended version of a manusript whih was usedfor several years in a 1- to 2-semester leture on the theory of elasti wavesat the universities of Karlsruhe and Frankfurt. The aim of this manusript isto give students with some bakground in mathematis and theoretial physisthe basi knowledge of the theory of elasti waves, whih is neessary for thestudy of speial literature in monographs and sienti� journals. Sine this isan introdutory text, theory and methods are explained with simple modelsto keep the omputational omplexity and the formulae as simple as possible.This is why often liquid media instead of solid media are onsidered, and onlyhorizontally polarised waves (SH-waves) are disussed, when shear waves inlayered, solid media are onsidered. A third example is that the normal modetheory for point soures is derived for an ideal wave guide with free or rigidboundaries. These simpli�ations oasionally hide the diret onnetion toseismology. In my opinion, there is no other approah if one aims at presentingtheory and methods in detail and introduing at least some aspet from thewide �eld of seismology. After working through this sript students should, Ihope, be better prepared to read the advaned text books of Pilant (1979), Akiand Rihards (1980, 2000), Ben-Menahem and Sing (1981), Dahlen and Tromp(1998), Kennett (2002) and Chapman (2004), whih treat models as realistiallyas possible.This manusript has its emphasis in the wave seismi treatment of elasti bodyand surfae waves in layered media. The understanding of the dynami prop-erties of these two wave types, i.e., their amplitudes, frequenies and impulseforms, are a basi prerequisite-requisite for the study of the struture of theEarth, may it be in the rust, the mantle or the ore, and for the study ofproesses in the earthquake soure. Ray seismis in inhomogeneous media andtheir relation with wave seismis are disussed in more detail than in earlierversions of the sript, but seismologially interesting topis like eigen-modes ofthe Earth and extended soures of elasti waves are still not treated, sine theywould exeed the sope of an introdutory leture.At several plaes of the manusript, exerises are inluded, the solution of theseis an important part in understanding the material. One of the appendies triesto over in ompat form the basis of the Laplae and Fourier transform andof the delta funtion, so that these topis an be used in the main part of thesript.I would like to thank Ingrid Hörnhen for the often tedious writing and orret-ing of this manusript. Gerhard Müller
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Chapter 1LiteratureThe following list ontains only books, that treat the propagation of elastiwaves and a few text books on ontinuum mehanis. Artiles in journals arementioned if neessary. Their number is kept to a minimum.Ahenbah, J.D.: Wave propagation in elasti solid, North-Holland Publ. Comp.,Amsterdam, 1973Aki, K. and P.G. Rihards: Quantitative seismology - theory and methods (2volumes), Freeman and Co., San Franiso, 1980 and 2002Ben-Menahem, A. and S.J. Singh: Seismi waves and soures, Springer, Heidel-berg, 1981Bleistein, N.: Mathematial methods for wave phenomena, Aademi Press,New York, 1984Brekhovskikh, L.M.: Waves in layered media, Aademi Press, New York, 1960Brekhovskikh, L., and Gonharov, V.: Mehanis of ontinua and wave dynam-is, Springer-Verlag, Berlin, 1985Budden, K.G.: The wave-guide mode theory of wave propagation, Logos Press,London, 1961Bullen, K.E., and Bolt, B.A.: An introdution to the theory of seismology,Cambridge University Press, Cambridge, 1985Cagniard, L.: Re�etion and refration of progressive waves, MGraw-Hill BookComp., New York, 1962� ervéný, V., I.A. Molotov and I. P²eník: Ray method in seismology, UniverzitaKarlova, Prague, 1977Chapman, Ch.: Fundamentals of seismi wave propagation, Cambridge Univer-sity Press, 2004 9
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Chapter 2Foundations of elastiitytheoryCommentsIn this hapter symboli and index notation is used, i.e., a vetor (symbolinotation −→f ) is also written as fi (omponents f1, f2, . . . , fn), the loation vetor(symboli −→x ) as xi (omponents x1, x2, x3 ), and a matrix (symboli a) as aij(i = line index = 1, 2, . . . ,m, j = row index= 1, 2, . . . , n). The produt of matrix
aij with the vetor fj is the vetor

gi =

n
∑

j=1

aijfj (i = 1, 2, . . . ,m).A short notation for this is (summation onvention = SC )
gi = aijfj.In the following text, if a produt on the right ours in whih there is a repeatedindex, this index takes all values from 1, 2, ..., n (usually n = 3) and all produtsare summed.If the symboli notation is simpler, e.g., for the ross produt of two vetors orfor divergene or rotation, the symboli notation is used.

11
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12 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY2.1 Analysis of strain2.1.1 Components of the displaement vetorConsider a body that is deformed by an external fore. Before deformation, thepoint P has the loation vetor xi and the in�nitesimal lose point Q has theloation vetor xi + yi. The omponents of yi are assumed to be independentvariables; this is why dxi was not used. After deformation, P has been displaedby the displaement vetor ui to P', and Q has been displaed to Q' by thevetor (expansion up to linear terms)
zi = ui + dui = ui +

∂ui

∂xj
yj (SC).

Fig. 2.1: Neighbourhood of P and Q before and after deformation.Vetor zi desribes (for variable Q in the neighbourhood of P) the hanges nearP due to the deformation. In general, these hanges onsist of: a translation,a rotation of the whole region around an axis through P and the atual de-formation, whih hanges the length of lines (rotation and deformation will bedisussed later in more detail)
zi = ui + dui = ui + ǫijyj + ξijyjtranslation deformation rotation

ǫij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

, ξij :=
1

2

(

∂ui

∂xj
− ∂uj

∂xj

) (2.1)
ǫij = ǫji (2.2)
ξij = −ξji (⇒ ξ11 = ξ22 = ξ33 = 0) . (2.3)

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



2.1. ANALYSIS OF STRAIN 13The matries ǫij and ξij are tensors of 2nd degree. ǫij is symmetri due to (2.2)and ξij is anti-symmetri due to (2.3). ǫij is alled deformation tensor and ξijis alled rotation tensor.2.1.2 Tensors of 2nd degreeA tensor of 2nd degree, tij , transforms a vetor into another vetor (e.g., ǫijtransforms vetor yi into the deformation part of dui; another example of this isthe inertial tensor transforms the vetor of the angular veloity into the rotationimpulse vetor (rotation of a rigid body)). If the oordinate system is rotated,the tensor omponents have to be transformed as follows to yield the originalvetor
t,kl = aikajltij (SC twie) (2.4)

amn = cos γmn (see sketh).
t,kl = Tensor omponent in the rotated oordinate system (dashed line in sketh).

Fig. 2.2: Coordinate system of tensors of 2nd degree.For a ertain orientation of the rotated system, the non-diagonal elements
t′
12
, t′

13
, t′

21, ... vanish. These oordinate axis are alled main axes of the tensor,and the tensor is in diagonal form. In the diagonal form, many physial relationsbeome simpler. Certain ombinations of tensor omponents are independentof the oordinate system of the tensor. These are the three invariants (T1, T2,
T3 are the diagonal elements of the tensor in diagonal form). More on tensorsan be found in, e.g., Riley, Hobson and Bene.
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14 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
I1 =

∣

∣

∣

∣

∣

∣

t11 t12 t13
t21 t22 t23
t31 t32 t33

∣

∣

∣

∣

∣

∣

= T1T2T3 (determinant)
I2 = t11 + t22 + t33 = T1 + T2 + T3 (trae)
I3 = t11t22 + t22t33 + t33t11−

t12t21 − t23t32 − t31t13 = T1T2 + T2T3 + T3T1.2.1.3 Rotation omponent of displaementThe rotation omponent of displaement follows from




0 ξ12 ξ13
−ξ12 0 ξ23
−ξ13 −ξ23 0









y1
y2
y3



 =





ξ12y2 + ξ13y3
−ξ12y1 + ξ23y3
−ξ13y1 − ξ23y2



 =
−→
ξ ×−→ywith −→

ξ = (−ξ23, ξ13,−ξ12) =
1

2
∇×−→u .Vetor −→ξ × −→y desribes an in�nitesimal rotation of the region of P aroundan axis through P with the diretion of −→ξ . The rotation angle has the abso-lute value ∣∣

∣

−→
ξ
∣

∣

∣
and is independent of −→y (show). A prerequisite is that −→ξ isin�nitesimal. A su�ient ondition for this is that

∣

∣

∣

∣

∂ui

∂xj

∣

∣

∣

∣

≪ 1 for all i and j. (2.5)2.1.4 Deformation omponent of displaementAfter separating out the rotation term, only the deformation term is of interestsine it desribes the fores whih at in a body. The deformation is desribedompletely by the six omponents ǫij whih are, in general, di�erent. Thesedimensionless omponents will now be interpreted physially.The starting point is dui = ǫijyj, i.e., we assume no rotation.a) During this transformation, a line remains a line, a plane remains a plane, asphere beomes an ellipsoid and parallel lines remain parallel.b) Deformation omponents ǫ11, ǫ22, ǫ33Coordinate origin at P and speial seletion of Q : y1 6= 0, y2 = y3 = 0.
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2.1. ANALYSIS OF STRAIN 15
du1

du2

y
1 1P

Q’

Q

2

Fig. 2.3: Sketh for deformation omponents.
du1 = ǫ11y1

du2 = ǫ21y1

du3 = ǫ31y1 = 0 (assumption : ǫ 31 = 0).

ǫ11 = du1

y1
is the relative hange in length in diretion 1 (not the relative hangein length of PQ, see also d). Strething ours if ǫ11 > 0 and shortening if

ǫ11 < 0. Similarly, ǫ22 and ǫ33 are the relative length hanges in diretion 2 and3.) Shear omponents ǫ12, ǫ13, ǫ23

Fig. 2.4: Sketh for shear omponents.
Q1 → Q′

1 : du2 = ǫ21y1 = ǫ12y1

Q2 → Q′
2 : du1 = ǫ12y2
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16 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
tanα ≃ α ≃ du2

y1
= ǫ12

tanβ ≃ β ≃ du1

y2
= ǫ12.This means, ǫ12 is the angle around whih the 1- or 2-axis is rotated. Theright angle at P is redued by 2ǫ12. If the parallelogram is not in the 1-2 planeafter deformation (sine ǫ13, ǫ23 or ǫ33 is non-zero), these statements hold forthe vertial projetion in this plane.Similar results hold for ǫ13 and ǫ23.d) Length hanges of distane PQ

Fig. 2.5: Sketh for length hanges of distane PQ.
PQ = l0 =

{

3
∑

i=1

y2
i

}1/2

P ′Q′ = l =

{

3
∑

i=1

(yi + ǫijyj)
2

}1/2

=

=

{

3
∑

i=1

y2
i + 2ǫijyiyj +

3
∑

i=1

(ǫijyj)
2

}1/2

.The 1st, 2nd and 3rd term require SC one, twie and three times, respetively.The 3rd term ontains only squares of ǫij and an, within the framework ofin�nitesimal strain theory treated here, be negleted relative to the 2nd term(the prerequisite for this is (2-5))
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



2.1. ANALYSIS OF STRAIN 17
l = l0

(

1 +
2

l20
ǫijyiyj

)
1
2

= l0 +
1

l0
ǫijyiyj.Relative length hanges

l − l0
l0

= ǫij
yiyj

l20
= ǫijninj (SC twie; quadrati form in nk)

ni =
yi

l0
= unit vetor in diretion of yi.Approahes for �nite strain theory exist (see, e.g., Bullen and Bolt). Suh atheory has to be developed from the very start. Then, for example, the simpleseparation of the rotation term in the displaement vetor, whih is possiblefor in�nitesimal deformations, is no longer possible. The deformation tensor ǫijalso beomes more ompliated.e) Volume hanges (ubi dilatation)We onsider a �nite (not in�nitesimal) volume V ontaining point P surfaewith S. After deformation, for whih we assume without loss of generality thatP remains in its position, volume V is hanged by ∆V .

Fig. 2.6: Sketh for volume hanges.
∆V =

∫

S

undf.Transformation of this surfae integral with Gauss' law gives
∆V =

∫

V

∇ · −→u dV,
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18 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYand the relative volume hange an be written as
∆V

V
=

1

V

∫

V

∇ · −→u dV. (2.6)Into the limit V → 0 (shrinking to point P), this beomes
lim
V →0

∆V

V
= Θ.This limit is alled ubi dilatation.From (2.6) with (2.1), it follows that

Θ = ∇·−→u :=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= ǫ11+ǫ22+ǫ33 (trae of the deformation tensor).For Θ > 0 the volume inreases, for Θ < 0 the volume dereases.2.1.5 Components of the deformation tensor in ylindrial and spher-ial oordinates

ϕ r

z

P

Fig. 2.7: Cylindrial oordinates r, ϕ, z.
−→u = (ur, uϕ, uz)

ǫrr =
∂ur

∂r

ǫϕϕ =
1

r

∂uϕ

∂ϕ
+
ur

r

ǫzz =
∂uz

∂z

2ǫrϕ =
1

r

∂ur

∂ϕ
+
∂uϕ

∂r
− uϕ

r
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2.1. ANALYSIS OF STRAIN 19
2ǫrz =

∂ur

∂z
+
∂uz

∂r

2ǫϕz =
∂uϕ

∂z
+

1

r

∂uz

∂ϕ
.The omponents refer to the loal Cartesian oordinate system in P.

λ

r

P

υ

Fig. 2.8: Spherial oordinates r, ϑ, λ.
−→u = (ur, uϑ, uλ)

ǫrr =
∂ur

∂r

ǫϑϑ =
1

r

∂uϑ

∂ϑ
+
ur

r

ǫλλ =
1

r sinϑ

∂uλ

∂λ
+
ur

r
+

cotϑ

r
uϑ

2ǫrϑ =
1

r

∂ur

∂ϑ
+
∂uϑ

∂r
− uϑ

r

2ǫrλ =
1

r sinϑ

∂ur

∂λ
+
∂uλ

∂r
− uλ

r

2ǫϑλ =
1

r sinϑ

∂uϑ

∂λ
+

1

r

∂uλ

∂ϑ
− cotϑ

r
uλ.Exerise 2.1How does a retangular ube with edges parallel to the main axis system of thedeformation tensor deform (length of edges a, b, )? Con�rm the equation

Θ = ǫ11 + ǫ22 + ǫ33 .
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20 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYExerise 2.2Split the deformation tensor into one part that is pure shear (no volume hange)and another part that is pure volume hange (no shear).Exerise 2.3:Derive the omponents of the deformation tensor in ylindrial oordinates.Hint:
P(r,   ,z)ϕ Q(r+dr,   +d   ,z+dz)ϕ ϕ

ui

y
i

u+dui i

y’=y +du
i i i Q’

P’

Fig. 2.9: Displaement vetors to be used.With respet to the loal Cartesian oordinate system in P, it holds that
y1 = dr
y2 = rdϕ
y3 = dz

u1 = ur

u2 = uϕ

u3 = uz.Determine �rst the ylindrial oordinates of P' and Q' under the ondition ofin�nitesimal displaement and deformation. Then give the omponents of thevetor y′
i

= yi + dui in the loal Cartesian oordinate system of P', similar tothe de�nition of yi, in the system of P. This requires linearisation. This thenallows the derivation of vetor dui in the form
dui = vijyjand the determination of tensor vij . The deformation tensor is the symmetripart of vij

ǫij =
1

2
(vij + vji).
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2.2. ANALYSIS OF STRESS 212.2 Analysis of stress2.2.1 StressIn a deformed body, a volume element is subjet to body fores (proportionalto volume, e.g., gravity, entrifugal fore, inertial fore) and to surfae fores,whih originate from neighbouring volume elements (proportional to surfae).The later is the topi here. We onsider a body K1 with the surfae S withina deformed body K2 (see Fig. 2.10). If K2 is removed, K1 will, in general,assume a new equilibrium on�guration. This indiates that K2 has exertedfores through S on K1. To bring K1 bak to its original form, Ersatz fores−→
P ∆f (∆f=surfae element) have to be applied on S.The same fores were exerted by K2. −→P with the dimension fore/surfae isalled tration. Its diretion and size depend on:1. The loation of the surfae element ∆f2. Its normal diretion −→n (de�ned as the diretion pointing out of K1).

Fig. 2.10: Body K1 within a deformed body K2.The omponent of −→P parallel to −→n is alled normal tration (= pull or pressuretration).The omponent of −→P perpendiular to −→n is alled tangential tration, sheartration or thrust tration.If −→P is known everywhere in the body and for all diretions −→n , the stress withinthe body is known. For this, six funtions must be known.2.2.2 Stress tensor pijWe onsider a body in an in�nitesimal tetrahedron ABCD and assume, thatthe tration of the three sides ABD, ABC, and ACD are known.
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22 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY

Fig. 2.11: In�nitesimal tetrahedron ABCD.From this, we will ompute the tration tensor −→P of BCD. Beause the tetrahe-dron is small, all trations are onstant over their orresponding surfaes. Thenormal diretions and surfaes areABD : negative 2-diretion, ∆f2ABC : negative 3-diretion, ∆f3ACD : negative 1-diretion, ∆f1BCD: −→n = (n1, n2, n3), ∆f

∆fj = ∆fnj . (2.7)We assume that the fores and tration vetors on ABD, ABC and ACD areknown for the positive 2-, 3- and 1-diretion, respetivelyABD: −→P2∆f2,
−→
P2 = (p21, p22, p23)ABC: −→P3∆f3,
−→
P3 = (p31, p32, p33)ACD: −→P1∆f1,
−→
P1 = (p11, p12, p13).This means that nine funtions pij are known. After negleting the body fores(whih derease faster then the surfae fores for a shrinking tetrahedron), thefore balane at the tetrahedron an be written as

−−→Pj∆fj +
−→
P ∆f = 0.With (2.7), it follows (SC)

−→
P =

−→
Pjnj . (2.8)
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2.3. EQUILIBRIUM CONDITIONS 23Therefore, it is su�ient to know the tration vetors of three perpendiularsurfae elements to determine the tration vetor for an arbitrarily orientedsurfae element. In index notation, (2.8) an be written as (note: Pj is aomponent of −→P ,−→Pj is a vetor)
P1 = p11n1 + p21n2 + p31n3.In general, it holds that Pj = pijni. (SC)The nine funtions pij form the stress tensor. It is valid for a ertain right-angleoordinate system. The omponents pi1, pi2, pi3 give the tration vetor for asurfae element, the normal of whih is in the diretion of the positive i-axis.

pii (e.i., p11, p22, or p33) is the normal stress, the two other omponents are thetangential stresses, respetively. As will be shown in the next setion (see alsoexerise 2.6), the stress tensor is symmetri, i.e.,
pij = pji.Therefore, Pj = pjini or in the usual notation
Pi = pijnj . (2.9)In general, the stress tensor has six independent omponents.Exerise 2.4a) Give the stress tensor for hydrostati pressure p.b) Give the stress tensor for the interior of an in�nite plate whih is �xed atone side (bottom), whereas at the other side (top) the shear tration τ atseverywhere in the same diretion.Exerise 2.5Show that if −→P is the tration for diretion −→n , and −→P ′ for the diretion −→n′ , itholds that −→P −→n′ =

−→
P ′−→n .2.3 Equilibrium onditionsThe equilibrium onditions for a �nite volume V in a deformable body requirethat the resulting fore and the resulting angular moment vanish
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24 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
∫

V

−→
F dV +

∫

S

−→
P df = 0 (resulting fore) (2.10)

∫

V

(−→x ×−→F )dV +

∫

S

(−→x ×−→P )df = 0 (resulting moment) (2.11)
P

n

F
x

S
V

dV
df

OFig. 2.12: Finite volume V in a deformable body.where −→F = body fores inluding inertial fore (dimension: fore/ volume =fore density) and
−→
P = tration vetor on S (normal −→n towards the outside).Equation (2.10) gives the equation of motion of the elasti ontinuum. For eahomponent (only Cartesian omponents an be used)

∫

V

FidV +

∫

S

Pidf =

∫

V

FidV +

∫

S

pijnjdf = 0.

pijnj an be understood as the normal omponent Pin of the tration −→Pi =
(pi1, pi2, pi3) relative to the ith-diretion. Appliation of Gauss' theorem gives

∫

S

Pindf =

∫

V

∇ · −→PidV,therefore,
∫

V

(Fi +∇ · −→Pi)dV = 0.This holds for every arbitrary volume V. Therefore, the integrand has to vanish
Fi +

∂pi1

∂x1
+
∂pi2

∂x2
+
∂pi3

∂x3
= 0
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2.3. EQUILIBRIUM CONDITIONS 25or
Fi +

∂pij

∂xj
= 0 (SC)with the omponents of F : Fi = −ρd2ui

dt2 + fi (ρ = density).The �rst term is the inertial fore; fi ontains all other body fores. Within theframework of the theory of in�nitesimal deformation, the impliit di�erentiation
d
dt an be replaed by the loal di�erentiation, i.e., partial di�erentiation ∂

∂t

dA

dt
=
∂A

∂t
+
∂A

∂xi

∂xi

∂t
≈ ∂A

∂t
(A = in�nitesimal parameter, e.g. ui).Then, this gives the equation of motion (SC)

ρ
∂2ui

∂t2
=
∂pij

∂xj
+ fi. (2.12)At rest, normally pij 6= 0 and the remaining stress is alled the initial stress.It exists, when objets omposed of materials with di�erent thermal expansionsoe�ients are ooled, or by the self-ompression of objets in their own gravity�eld (in this ase the initial stress is the hydrostati pressure). Assume that fora body at rest pij = p

(0)
ij and fi = f

(0)
i . Then (2.12) holds and

∂p
(0)
ij

∂xj
+ f

(0)
i = 0. (2.13)The pre-stressed body will be deformed by time-dependent body fores (e.g., anearthquake in the Earth's rust). In the ase of a su�iently small additionalstress (and only then), the following separation is valid

pij = p
(0)
ij + p

(1)
ij fi = f

(0)
i + f

(1)
i .With (2.13), it follows from (2.12), that

ρ
∂2ui

∂t2
=
∂p

(1)
ij

∂xj
+ f

(1)
i .This means that the displaement ui from the pre-stressed state depends onlyon the additional stress and the additional body fores. In the following, pijand fi in (2.12) will always be understood in that sense, i.e., at rest pij = 0 and
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26 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
fi = 0. This assumption is su�ient for the study of elasti body and surfaewaves in the Earth. In the ase of normal modes and tides, where large depthranges and even the whole Earth moves, pij in (2.12) is the omplete stresstensor, inluding the hydrostati ontribution. In this ase, fi represents allexternal fores, inluding the gravitational fore of the Earth itself. The reasonfor this is that, in this ase, beause of the large size of the hydrostati pressureduring deformation, the hange of this pressure annot be negleted. A simpleexample is seen in the the radial modes of a sphere whih have larger periods ifhydrostati pressure and gravitational fore are inluded.Exerise 2.6Derive the equation of motion without assuming the symmetry of the stresstensor pij ; then derive this symmetry from the moment equation (2.11). Hint:In the �rst part, use the stress vetor in the form Pi = pjinj instead of (2.9). Inthe seond part, write (2.11) by omponents and use the result of the �rst part.2.4 Stress-strain relations2.4.1 Generalised Hooke's LawIf a body in an unperturbed on�guration shows a deformation assoiated witha length hange, this body is under stress. This means that in eah point of thebody a relation between the omponents of the stress tensor and the deformationtensor exists

pij = fij(ǫ11, ǫ12, . . . , ǫ33; a1, a2, . . . , an). (2.14)As indiated, other independent parameters ak, suh as time and temperature,an our. Generally, pij at time t an depend on the previous history at times
τ with −∞ < τ < t. If, for example, a beam has su�ered extreme bendingin the past, its behaviour will be di�erent. The general study of (2.14) and aorresponding lassi�ation of materials as elasti, plasti and viso-elasti, et.is the topi of rheology. For seismology, generally the most simple form of (2.14)is su�ient, namely that pij at a point depends only on the present values of
ǫkl at that point. In this ase, from ǫkl = 0 , it follows pij = 0, i.e., deformationeases instantly if the stress eases. This means

pij = fij(ǫ11, ǫ12, . . . , ǫ33) (2.15)
fij(0, 0, . . . , 0) = 0.If these onditions hold, this state is alled ideal elastiity. Under in�nitesimaldeformation, pij is a linear funtion of all ǫkl (expansion of (2.15) at ǫkl = 0 )
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2.4. STRESS-STRAIN RELATIONS 27
pij = cijklǫkl (SC twie) (2.16)
cijkl = elastiity onstants.Linear elastiity theory studies elasti proesses in bodies under the followingassumptions:1. The deformations are in�nitesimal.2. The stress-strain relations are linear.The important assumption is 1.The well-known Hooke's Law, for the strething of a wire or the shearing of aube, is a speial ase of (2.16). Equation (2.16) is, therefore, alled generalisedHooke's law. Its range of appliability has to be determined by experimentsor observation. The relation in the following sketh holds, for example, for thestrething of a wire. Between A and B the relation between fore per squareunit of the ross setion p11 and the relative hange in length ǫ11 is linear andorresponds to (2.16) (E = Young's modulus).

Fig. 2.13: Sketh for the strething of a wire.Between B and C the relation is no longer linear but still orresponds to idealelasti behaviour, i.e., if p11 is redued to zero, no deformation ǫ11 remains.Beyond C irreversible deformation ours (plasti behaviour, �ow of material).Finally the wire ruptures.
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28 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYThe tensor of 4th degree cijkl has 81 (9 x 9 =) omponents. Due to the symmetryof the deformation and stress tensors, only 36 (6 x 6 =) omponents are inde-pendent from eah other. Sine the elasti deformation energy (= elasti energyper unit volume) is onserved, this number redues further to 21 omponents(see, e.g., pg. 268-269 in Sommerfeld). This is the maximum number of elas-tiity onstants an anisotropi body an have. For speial forms of anisotropy,and espeially for isotropy, this number redues further. For isotropi bodieswhih do not have preferred diretions, only two elasti onstants remain. Thestress-strain relations (2.16) an then be written as
pij = λθδij + 2µǫij (2.17)where λ and µ are Lamés elastiity onstant and elastiity parameter, respe-tively (both of whih an be spatially dependent),

θ = ǫ11 + ǫ22 + ǫ33 is the ubi dilatation, and
δij =

{

1 for i = j
0 otherwise } : is the Kroneker symbol or unit tensor2.4.2 Derivation of (2.17)We hoose the main axis system of the stress tensor as the oordinate system,whih under isotropy is idential to that of the deformation tensor. We, fur-thermore, have the main stress and deformation omponents P1, P2, P3 and themain deformations E1, E2, E3, respetively, whih have a linear relation. In theisotropi ase, this beomes

P1 = aE1 + b(E2 + E3)

P2 = aE2 + b(E1 + E3)

P3 = aE3 + b(E1 + E2).The oe�ient of E2 and E3 in the equation for P1 have to be the same, sinefor an isotropi body the main axes 2 and 3 ontribute equally to the main stress
P1. The same holds for the other two equations. From this, it follows that

Pi = (a− b)Ei + b(E1 + E2 + E3) (2.18)
= 2µEi + λ(E1 + E2 + E3),where the onstants a and b have been replaed by the Lamé parameters λ and

µ, respetively. This shows that (2.17) for the main axis oordinate system hasno shear omponent of the deformation tensor and no shear stress.
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2.4. STRESS-STRAIN RELATIONS 29Using (2.4) for the transformation of tensor omponents, the stress and defor-mations omponents in any oordinate system an be given as
p11 = a2

11P1 + a2
21P2 + a2

31P3 ǫ11 = a2
11E1 + a2

21E2 + a2
31E3

p22 = a2
12P1 + a2

22P2 + a2
32P3

...
p12 = a11a12P1 + a21a22P2 + a31a32P3 ǫ12 = a11a12E1 + a21a22E2

+a31a32E3

p23 = a12a13P1 + a22a23P2 + a32a33P3

...... ... (2.19)For the diretional osines it holds that
aikail = δkl (SC).Using (2.18) in the left equation of (2.19) and using the equations on the rightgives

p11 = 2µǫ11 + λ(E1 + E2 + E3)

p22 = 2µǫ22 + λ(E1 + E2 + E3)

p12 = 2µǫ12

p23 = 2µǫ23...The relations for shear stress already have the �nal form; those for the normalstress an be brought to the �nal form with the tensor invariants E1+E2+E3 =
ǫ11 + ǫ22 + ǫ33. This onludes the proof of (2.17).Expressing ǫkl in terms of the derivative of the displaement vetor, (2.17) anbe written in Cartesian oordinates as

pii = λ(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
) + 2µ

∂ui

∂xi
(no SC!)

pij = µ(
∂ui

∂xj
+
∂uj

∂xi
) (i 6= j).Equation (2.17) also holds in urved, orthogonal oordinates, like ylinder andspherial oordinates, respetively, if the deformation tensor is given in theseoordinates (ompare setion 2.1.5). pij refers then to the oordinate surfaes
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30 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYof the orresponding system. Finally, it should be noted that pij is usuallyunderstood as a stress added to a pre-stressed on�guration.The assumption that roks and material of the deep Earth are isotropi is of-ten valid. The rystals whih make up the rok building minerals are, on theother hand, mostly anisotropi, but if they are randomly oriented, the materialappears marosopially isotropi.2.4.3. AdditionsThermo-elasti stress-strain relationsThese are examples of relations in whih stress not only depends on deforma-tion, but also on other parameters, e.g., temperature (α = volume expansionoe�ient, T − T0 = temperature hange)
pij = λΘδij + 2µǫij − (λ+

2

3
µ)α(T − T0)δij .Relation between λ and µ and other elastiity parameters

E = Young's modulus
σ = Poisson's ratio
k = Bulk modulus
τ = Rigidity

E =
µ(3λ+ 2µ)

λ+ µ
σ = λ

2(λ+µ) k = λ+
2

3
µ

τ = µ λ = σE
(1+σ)(1−2σ) µ =

E

2(1 + σ)
.In ideal �uids τ = µ = 0, there is no resistane to shearing. Then k = λ and σ =

0.5. Within the framework of elastiity theory, �uids and gases behave identi-ally, but the bulk modulus of �uids is signi�antly larger than that of gases.Their Poisson's ratio σ lies between -1 and 0.5; negative σ values are rare (om-pare Exerise 2.8). For roks, σ is usually lose to 0.25; σ = 0.25 means λ = µ.Exerise 2.7Derive the formula for k. k is de�ned as the ratio − p
Θ in an experiment in whiha body is under pressure p from all sides and has the relative volume hange

Θ < 0. Desribe the deformation and the stress tensor and then the stress-strainrelation.
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2.5. EQUATION OF MOTION, BOUNDARY AND INITIAL ... 31Exerise 2.8Derive the formula for E and σ. E is de�ned as the ratio p11

ǫ11
and σ is theratio − ǫ22

ǫ11
in an experiment, in whih a wire or rod is under extension fore p11in the 1-diretion (ǫ11 = extension, − ǫ22 = perpendiular ontration, ǫ33 =

?, p22 =?, p33 =?). Proeed as in exerise 2.7. What is the meaning of σ < 0?2.5 Equation of motion, boundary and initial on-ditions2.5.1 Equation of motionUsing (2.17) in the equation of motion (2.12), whih depends on pij , this equa-tion only depends on the omponents of the displaement vetor
ρ
∂2ui

∂t2
= ∂

∂xj
(λΘδij + 2µǫij) + fi

= ∂
∂xi

(λΘ) + ∂
∂xj

[

µ
(

∂ui

∂xj
+

∂uj

∂xi

)]

+ fi . (2.20)If λ and µ are independent of loation (homogeneous medium) it follows that
ρ
∂2ui

∂t2
= λ

∂Θ

∂xi
+ µ

[

∂2ui

∂x2
1

+
∂2ui

∂x2
2

+
∂2ui

∂x2
3

+
∂

∂xi

(

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)]

+ fi

ρ
∂2ui

∂t2
= (λ+ µ)

∂Θ

∂xi
+ µ∇2ui + fi. (2.21)This is the equation of motion for homogeneous media in Cartesian oordinates.In symboli notation (Θ = ∇ · −→u )

ρ
∂2ui

∂t2
= (λ+ µ)∇∇ · −→u + µ∇2−→u +

−→
f . (2.22)This is only valid for Cartesian oordinates. ∇2−→u is the vetor (∇2u1,∇2u2,∇2u3).In Cartesian oordinates

∇2−→u = ∇∇ · −→u −∇× ∇×−→u . (2.23)(Verify that in urved orthogonal oordinates (2.23) de�nes the vetor ∇2−→u ,and it is not idential with the vetor, whih results from the appliation of ∇2on the omponents.) Inserting (2.23) in (2.22) gives
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32 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
ρ
∂2−→u
∂t2

= (λ+ 2µ)∇∇ · −→u − µ∇× ∇×−→u +
−→
f . (2.24)This form of the equation of motion is independent of the oordinate system.It is the starting point for the following setion: aording to setion 2.3, −→fontains only the body fores whih at in addition to those of the fores at rest.2.5.2 Boundary onditionsOn a surfae in whih at least one material parameter ρ, λ or µ is disontinuous,the stress vetor, relative to the normal diretion of this surfae, is ontinuous.To show this, onsider a small �at irular ylinder of thikness 2d whih enlosesthe boundary between the two media. The sum of all fores ating on theylinder (body fores in the interior and surfae fores on its surfae) has to bezero.

P1

P2-P2

n

n
-n

Medium 1

Medium 2

2d

Fig. 2.14: Cirular ylinder of thikness 2d enlosing the boundary between twomedia.In the limit d → 0, only the surfae fores on the top and bottom surfae ∆f ,have to be onsidered
−→
P1∆f + (−−→P2)∆f = 0.From this, it follows that −→P1 =
−→
P2. This means that at boundaries normal andtangential stress are ontinuous.For the displaement, it holds that at a solid-solid boundary, all omponentsare ontinuous (no sliding possible). At a solid-liquid or liquid-liquid boundaryonly the normal displaement is ontinuous.Example: A body onsists of two half-spaes, separated by a plane at z = 0.The displaements are ux, uy, uz, and the stresses are pxx, pyy, pzz, pxy, pxz, pyz.The boundary onditions z = 0 for the di�erent ombinations of half-spaes are
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2.5. EQUATION OF MOTION, BOUNDARY AND INITIAL ... 33solid− solid : ux, uy, uz, pxz, pyz, pzz ontinuoussolid− �uid : uz, pzz ontinuous, pxz = pyz = 0�uid− �uid : uz, pzz ontinuoussolid− rigid : ux = uy = uz = 0�uid− rigid : uz = 0solid− vauum�uid− vauum :
:

pxz = pyz = pzz = 0
pzz = 0

} free surfae .If at a surfae with the normal vetor ni, the stress is not zero (stress vetor
Pi), the stress vetor in the body has to aquire this boundary value

p
(r)
ij nj = Pi. (2.25)

p
(r)
ij are the boundary values of the omponents of the stress tensor at the sur-fae, and they an be alulated from (2.25).Example: P (t) on a plane surfae. For the ase of pressure

n
....x=0

x

P(t)

Fig. 2.15: Pressure on a plane surfae.
−→n = (−1, 0, 0) = (n1, n2, n3)
−→
P = (P (t), 0, 0) = (P1, P2, P3) .Equation (2.25) yields −p(r)

i1 = Pi or
p11 = pxx = −P (t)
p12 = pxy = 0
p13 = pxz = 0







for x = 0.Similarly, displaements an be presribed on the surfaes of a body.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



34 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY2.5.3 Initial onditionsThe initial onditions presribe the spatial distribution of ertain parameters,in our ase the displaement ui(x1, x2, x3, t) and the partile veloity ∂ui/∂t for
t = 0

ui(x1, x2, x3, 0) = f1(x1, x2, x3),
∂ui

∂t
(x1, x2, x3, 0) = f2(x1, x2, x3).The general wave propagation solution is an initial and a boundary problem,i.e., in addition to the equation of motion, the boundary and initial onditionshave to be satis�ed. Normally in seismologial appliations f1 = f2 = 0, andno speial initial onditions have to be satis�ed. The main problems are thento onsider the boundary onditions.2.6 Displaement potentials and wave types2.6.1 Displaement potentialsA vetor −→u an, in general, be desribed as

−→u = ∇Φ +∇×−→Ψ (2.26)where Φ is a salar potential and −→Ψ a vetor potential. In our ase, where −→u isa displaement �eld, both are alled displaement potentials. (Do not onfusethem with the elasti potential, i.e., the elasti deformation energy.)
Φ is alled ompression potential and −→Ψ shear potential. If the vetor −→u isgiven, Φ and −→Ψ an be omputed (ompare exerise 2.9)

Φ =
1

4π

∫ −→u · −→r
r3

dV

−→
Ψ =

1

4π

∫ −→u ×−→r
r3

dV. (2.27)Vetor −→r (with absolute value r) points from the volume element dV to thepoint where Φ and −→Ψ are omputed. The integration overs the whole volume.For −→Ψ , there is the additional requirement that
∇ · −→Ψ = 0. (2.28)

−→
Ψ has to be determined in Cartesian oordinates.
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2.6. DISPLACEMENT POTENTIALS AND WAVE TYPES 35
∇ Φ in (2.26) is alled ompressional part of −→u . It is free of rotation andurl. Aording to setion 2.1.4, the volume elements su�er no rigid rotation,but only a deformation, whih, in general, onsists of a volume hange and ashear omponent (in the sense of exerise 2.2; setion 2.1). In the main axissystem of the deformation tensor, only volume hanges our (ompression ordilatation). The ontribution ∇ × −→Ψ in (2.26) is alled shear omponent. Itis free of divergene and soure ontributions; the volume elements su�er novolume hange, but shear deformation and rigid rotation.Similarly to (2.26), the body fore −→f in (2.24) an be split into

−→
f = ∇ϕ+∇× −→ψ . (2.29)Do not onfuse the vetor potentials −→Ψ and −→ψ .Using (2.26) and (2.29) in (2.24) gives

ρ

[

∇∂
2Φ

∂t2
+∇× ∂2−→Ψ

∂t2

]

= (λ+2µ)∇∇2Φ−µ∇× ∇× ∇× −→Ψ +∇ϕ+∇× −→ψ .(2.30)We try now to equate all the gradient terms and also, separately, the rotationterms of this equation. If the resulting di�erential equations an be solved,(2.30) and, therefore, (2.24) are satis�ed. This leads to
∇
[

ρ
∂2Φ

∂t2
− (λ+ 2µ)∇2Φ− ϕ

]

= 0

∇×
[

ρ
∂2−→Ψ
∂t2

+ µ∇× ∇× −→Ψ −−→ψ
]

= 0.Sine the ontent of the square brakets has to vanish
∇2Φ− 1

α2

∂2Φ

∂t2
= − ϕ

λ+ 2µ
α2 =

λ+ 2µ

ρ

−∇× ∇× −→Ψ − 1

β2

∂2−→Ψ
∂t2

= −
−→
ψ

µ
β2 =

µ

ρ
. (2.31)The potentials ϕ and −→ψ have to be determined from −→f using (2.27). If nobody fores at, ϕ = 0 and −→ψ = 0. The equation for Φ is an inhomogeneouswave equation. In Cartesian oordinates the omponents of −→Ψ give also inho-mogeneous wave equations due to (2.23) and (2.28). In other oordinates, theequations for the omponents of −→Ψ look di�erent (ompare exerise 2.10).
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36 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORYBoth simpli�ations used are, as experiene has shown, justi�ed. The probleman, therefore, be solved either via (2.24) or (2.31). In more ompliated ases,(2.31) is easier to solve. In this ase, the boundary onditions for displaementand stress have to be expressed as those for Φ and −→Ψ .2.6.2 Wave typesThe general disussion of the di�erential equations (2.31) shows that they havesolutions whih orrespond to waves (for details, see setion 3.1). Perturbationsin the ompressional part of the displaement vetor propagate as ompressionalwaves with the veloity α = ((λ+ 2µ)/ρ)
1/2 through the medium. Perturba-tions in the shear part propagate as shear waves with the veloity β = (µ/ρ)1/2.Thus, we have found the two basi wave types, whih an propagate in a solidmedium. For roks, it usually holds that λ = µ. In this ase, it follows that

α/β = 31/2. In liquid or gases, only ompressional waves (sound waves) anpropagate sine µ = 0.Often ompressional waves are alled longitudinal waves and shear waves arealled transverse waves. The displaement vetor in a longitudinal wave is par-allel to the propagation diretion and perpendiular to it in a transverse wave.A ompressional wave is, in general, primarily longitudinally polarised, and ashear wave is primarily transversely polarised. The identi�ation is, therefore,not fully valid. There exist speial ases in whih a ompressional wave istransversal and a shear wave is longitudinal (see setion 3.5.1 and exerise 3.5in hapter 3).The seismologial names for ompressional and shear waves are P-waves andS-waves, respetively. This indiates that the P-wave is the �rst wave arrivingat a station from an earthquake (P from primary), whereas the S-wave arriveslater (S from seondary).In a homogeneous medium, ompressional waves and shear waves are deoupled,i.e., they propagate independently from eah other. This no longer holds for in-homogeneous media in whih λ, µ and/or ρ, and, therefore, α and β, vary frompoint to point. But in this ase, usually two wave types propagate throughthe medium, and the travel times of their �rst onsets are determined by theveloity distribution of α and β, respetively. The faster of the two waves is nolonger a pure ompressional wave but ontains a shear omponent. The slowerwave is, orrespondingly, not a pure shear wave but ontains a ompressionalontribution. This beomes plausible if one approximates an inhomogeneousmedium by piee-wise homogeneous media. Satisfying the boundary onditionsat the interfaes between the homogeneous media usually requires, on both sides,the existene of ompressional and shear waves. Details on this will be givenin setion 3.6.2. Compressional and shear waves whih are deoupled in ho-mogeneous setions of the medium, reate re�eted and refrated waves of theother type, respetively, at interfaes. This hange in wave type ours ontin-uously in ontinuous media and is stronger the stronger the hanges in α, β,
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2.6. DISPLACEMENT POTENTIALS AND WAVE TYPES 37and/or ρ per wave length are. The theory for ontinuous inhomogeneous mediais muh more ompliated then the theory for piee-wise homogeneous media.Media in whih α, β and ρ depend only on one oordinate, e.g., depth, an,for many seismologial appliations, be approximated by layers of homogeneousmedia. For suh on�gurations, e�etive methods for the use of omputers exist.Exerise 2.9Show (2.27) by omparing (2.26) with the equation
∇2−→a = ∇ ∇ · −→a −∇× ∇×−→aand onsider, that the Possion equation ∇2−→a = −→u has (in Cartesian oordi-nates) the solution

−→a = − 1

4π

∫

−→u 1

r
dV.Exerise 2.10Write (2.26) in ylindrial oordinates (r, ϕ, z) under the ondition that themedium is ylindrially symmetri, and the ϕ-omponent of −→u is zero (Ψr =

Ψz = 0). What is the form of (2.31) for vanishing body fores?Exerise 2.11Show that in a liquid with onstant density ρ, but variable ompressional module
k and pressure p, satis�es the wave equation∇2p = 1

α2
∂2p
∂t2 with spatially varyingsound veloity α = (k/ρ)1/2.Hint: Derive from the equation of motion (2.12) without body fores, the equa-tion ρ∂2−→u /∂t2 = −∇ p and apply then the divergene operation i.e. (p =

−k ∇ · −→u ).
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38 CHAPTER 2. FOUNDATIONS OF ELASTICITY THEORY
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Chapter 3Body waves
3.1 Plane body wavesThe most simple types of waves an be derived, if for an unbounded medium(full-spae), solutions of the equation of motion are determined whih dependonly on one spatial oordinate. For example, we look for a solution of (2.21)or (2.24) in the form of −→u = (ux(x, t), 0, 0), i.e., −→u points in x -diretion anddepends only on x and the time t. Alternatively, we look for a solution in theform of −→u = (0, uy(x, t), 0), i.e., −→u points in y-diretion and depends also onlyon x and t. In the �rst ase, it follows from (2.21) for fi = 0

∂2ux

∂x2
=

1

α2

∂2ux

∂t2
, α2 =

λ+ 2µ

ρ
,and in the seond ase,

∂2uy

∂x2
=

1

β2

∂2uy

∂t2
, β2 =

µ

ρ
.These are one dimensional wave equations. In the following, we onsider thegeneral form

∂2u

∂x2
=

1

c2
∂2u

∂t2
. (3.1)The most general solution of this equation is

u(x, t) = F (x− ct) +G(x + ct), (3.2)39
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40 CHAPTER 3. BODY WAVESwhere F(x) and G(x) are any twie di�erentiable funtions (hek that (3.2)solves (3.1)). Another form is
u(x, t) = F

(

t− x

c

)

+G
(

t+
x

c

)

. (3.3)The �rst and the seond term in (3.2) and (3.3) have to be interpreted as wavespropagating in the positive and negative x -diretion, respetively. For example,the �rst term in (3.3) for x = x1 an be written as
u(x1, t) = F

(

t− x1

c

)

= F1(t).For another distane x2 > x1

u(x2, t) = F
(

t− x2

c

)

= F

(

t− x2 − x1

c
− x1

c

)

= F1

(

t− x2 − x1

c

)

.This means that for time t at distane x2 the same e�ets our as at distane
x1 at the earlier time t − (x2 − x1)/c. This orresponds to a wave whih hastravelled from x1 to x2 in the time (x2 − x1)/c. The propagation veloity is,therefore, . The wavefronts of this wave, i.e., the surfaes between perturbedand unperturbed regions, are the planes x = onst. Therefore, these are planewaves. If G(x) in (3.2) or G(t) in (3.3) are not zero, two plane waves propagatein opposite diretions.In the ase of u = ux, we have a longitudinal wave (polarisation in the diretionof propagation); in ase of u = uy, we have a transverse wave (polarisationperpendiular to the diretion of propagation).Harmoni waves an be represented as

u(x, t) = Aexp
[

iω(t− x

c
)
]

= Aexp [i(ωt− kx)]with A= Amplitude (real or omplex), ω= angular frequeny ν = ω/2π= fre-queny, T = 1/ν= period, k = ω/c= wavenumber and Λ = 2π/k= wave length.Between c,Λ and ν the well-known relation c = Λν holds. The use of the om-plex exponential funtion in the desription of plane harmoni waves is moreonvenient than the use of the real sine and osine funtions. In the following,only the exponential funtion will be used.3.2 The initial value problem for plane wavesWe look for the solution of the one-dimensional wave equation (3.1) whih sat-is�es the initial onditions
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3.2. THE INITIAL VALUE PROBLEM FOR PLANE WAVES 41
u(x, 0) = f(x) for displaement and
∂u

∂t
(x, 0) = g(x) for partile veloity.This is an initial value problem of a linear ordinary di�erential equation, e.g.,the problem to determine the movement of a pendulum, if initial displaementand initial veloity are given. We start from (3.2). For t=0, it also holds that

F (x) +G(x) = f(x) (3.4)
−cF ′(x) + cG′(x) = g(x). (3.5)Integrating (3.5) with respet to x, gives
F (x)−G(x) = −1

c

∫ x

−∞

g(ξ)dξ. (3.6)From the addition of (3.4) and (3.6), it follows that
F (x) =

1

2

{

f(x)− 1

c

∫ x

−∞

g(ξ)dξ

}

,and from the subtration of these two equations that
G(x) =

1

2

{

f(x) +
1

c

∫ x

−∞

g(ξ)dξ

}

.From this, it follows that
u(x, t) =

1

2
{f(x− ct) + f(x+ ct)}+

1

2c

∫ x+ct

x−ct

g(ξ)dξ.This solution satis�es the wave equation and the initial onditions (hek). Wewill disuss two speial ases.3.2.1 Case 1
g(x) = 0, i.e., the initial veloity is zero. Then

u(x, t) =
1

2
{f(x− ct) + f(x+ ct)} .
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42 CHAPTER 3. BODY WAVESTwo snap shots (Fig. 3.1) for t=0 and for t>0, illustrate this result.
u(x,0)

ct ct

u(x,t)

x

x

f(x)

f(x+ct) f(x-ct)

t=0

t>0

Fig. 3.1: Snap shots of two plane waves.Two plane waves propagate from the point of exitation in both diretions withthe veloity . A pratial example is a strethed rope with the form f(x) fort=0.3.2.2 Case 2
f(x) = 0, i.e., the initial displaement is zero. Furthermore, we assume g(x) =
V0δ(x). δ(x) is Dira's delta funtion (see appendix A.3). g(x) orresponds toan �impulse� at x = 0. V0 has the dimension of veloity times length. Then

u(x, t) =
V0

2c

∫ x+ct

x−ct

δ(ξ)dξ.The sketh (Fig. 3.2) shows the value of the integrand and the integrationinterval for a �xed point in time t > 0 and for a loation x > 0.
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3.3. SIMPLE BOUNDARY VALUE PROBLEMS FOR PLANE WAVES 43

Fig. 3.2: Value of the integrand and the integration interval of u(x,t).Only when the integration interval inludes the point ξ = 0, does the integralbeome non-zero. Then it always has the value of 1
u(x, t) =











V0

2cH(t− x
c ) for x>0

V0

2cH(t+ x
c ) for x<0

H(t) is the Heaviside step funtion, H(t) = 0 for t < 0, H(t) = 1 for t ≥ 0.The displaement jumps at t = |x| /c from zero to the value V0/2c.3.3 Simple boundary value problems for planewavesThe simplest boundary value problem is to determine the displaement withina half-spae for a time dependent pressure P (t) at the surfae x = 0 of thishalf-spae. Sine the displaement −→u only has an x-omponent, ux and sine xis the only expliit spatial oordinate, the one-dimensional wave equation (3.1)for a plane ompressional wave is appliable
∂2ux

∂x2
=

1

α2

∂2ux

∂t2
.The solution for the ase onsidered here is

ux(x, t) = F
(

t− x

α

)

,
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44 CHAPTER 3. BODY WAVESsine a wave an only propagate in +x -diretion. Funtion F (t) has to bedetermined from the boundary ondition that the stress vetor adapts withoutjump to the imposed stress vetor at the free surfae x = 0 (ompare (2.25) andin setion 2.5.2)
pxx = −P (t) and pxy = pxz = 0 for x = 0.The stress-strain relation (2.17) gives �rst, that pxy and pxz are zero everywherein the medium, and seond that

pxx = (λ + 2µ)
∂ux

∂x
= −λ+ 2µ

α
F ′
(

t− x

α

)

= −ραF ′
(

t− x

α

)

.For x = 0, it follows that
−ραF ′(t) = −P (t)and after integration

F (t) =
1

ρα

∫ t

−∞

P (τ)dτ =
1

ρα

∫ t

o

P (τ)dτ.For this, we assumed that P (t) = 0 for t < 0. Then, the displaement an bewritten as
u(x, t) =

1

ρα

∫ t−x/α

0

P (τ)dτ.The displaement is proportional to the time integral of the pressure on thesurfae of the half-spae. If a short impulse P (t) = P0δ(t) ats, it follows that,
ux(x, t) =

P0

ρα
H
(

t− x

α

)

.

P0 has the dimension pressure times time (see also appendix A, setion A.3.1).At the time t = x/α, all points in the half-spae are displaed instantly by
P 0/ρα in +x-diretion and remain �xed in this position. For P 0 = 1 bar se =
9.81 Nse/m2 ≈ 106 dyn se/m2, ρ = 3 g/m3 and α = 6 km/se the displae-ment is approximately 0.5 m.This boundary value problem is simple enough so that it ould be solved diretlywith the equation of motion (2.21) or (2.24). One ould have also worked with
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3.4. SPHERICAL WAVES FROM EXPLOSION POINT SOURCES 45displaement potentials Φ and −→Ψ and their di�erential equations (2.31) (show).Exerise 3.1The tangential stress T (t) ats on the surfae of a half-spae. What is thedisplaement in the half-spae? Appliation: The tangential stress on the rup-ture surfae of earthquakes is 50 bar = 50 · 106 dyn/m2 (stress drop). What isthe partile veloity (on the rupture surfae) for (ρ = 3 g/m3, β = 3.5 km/se)?Exerise 3.2An elasti layer of thikness H overlies a rigid half-spae. Pressure P (t) ats onthe top of the elasti layer. What is the movement in the layer? Examine thease P (t) = P 0δ(t).Exerise 3.3Solve the stati problem of exerise 3.2 (onstant pressure P1 on the surfae).3.4 Spherial waves from explosion point souresIn the previous setions, we onsidered in�nitely extended waves. They arean idealisation, beause they annot be produed in reality sine they requirein�nitely extended soures. The most simple wave type from soures with �-nite extension are spherial waves, i.e., waves whih originate at a point (pointsoure) and propagate in the full-spae. Their wavefronts are spheres.In the most simple ase, the displaement vetor is radially oriented and alsoradially symmetri relative to the point soure, i.e., the radial displaement ona sphere around the point soure is the same everywhere. If a spherial explo-sion in a homogeneous medium far from interfaes is triggered, the resultingdisplaement has these two properties. Therefore, we all these explosions pointsoures. The results derived with the linear elastiity theory an only be appliedto spherial waves from explosions in the distane range in whih the prerequi-sites of the theory (in�nitesimal deformation, linear stress-strain relation) aresatis�ed. In the plasti zone, the shattered zone and the non-linear zone (this isa rough lassi�ation with inreasing distane from the entre of the explosion)these requirements are not met. For a nulear explosion of 1 Megaton TNTequivalent (approximately mb = 6.5 to 7.0), the shattered zone is roughly 1 to2 km wide.We plan to solve the following boundary problem: given the radial displaementat distane r = r1 from the point soure U(r1, t) = U1(t), we want to �nd U(r, t)for r > r1.We start from the equation of motion (2.24) with −→f = 0. This is how theproblem is solved in appendix A (appendix A.2.2) using the Laplae transform.
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46 CHAPTER 3. BODY WAVESHere, more simply, the displaement potential from setion 2.6 will be used. Inthis ase, the shear potential is zero, sine a radially symmetri radial vetoran be derived solely from the ompressional potential
Φ(r, t) =

∫ r

U(r′, t)dr′.In spherial oordinates (r, ϑ, λ), it holds that
∇Φ =

(

∂Φ
∂r ,

1
r

∂Φ
∂ϑ ,

1
r sin ϑ

∂Φ
∂λ

)

= (U(r, t), 0, 0).For Φ, the wave equation with ϕ = 0 an by written aording to (2.31) as
∇2Φ =

∂2Φ

∂r2
+

2

r

∂Φ

∂r
=

1

r

∂2(rΦ)

∂r2
=

1

α2

∂2Φ

∂t2

∂2(rΦ)

∂r2
=

1

α2

∂2(rΦ)

∂t2
. (3.7)In the ase of radial symmetry, the wave equation an be redued to the formof a one-dimensional wave equation for Cartesian oordinates for the funtion

rΦ,
∂2u

∂x2
=

1

α2

∂2u

∂t2
,.The most general solution for (3.7) is ,therefore,

Φ(r, t) =
1

r

{

F (t− r

α
) +G(t+

r

α
)
}

.This desribes the superposition of two ompressional waves, one propagatingoutward from the point soure and the other propagating inwards towards thepoint soure. In realisti problems, the seond term is always zero and
Φ(r, t) =

1

r
F
(

t− r

α

)

. (3.8)Funtion F (t) is often alled the exitation funtion or redued displaementpotential. The wavefronts are the spheres r =onst. The potential as afuntion of time has the same form everywhere, and the amplitudes dereasewith distane as 1/r. The radial displaement of the spherial wave onsists oftwo ontributions with di�erent dependene on r
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3.4. SPHERICAL WAVES FROM EXPLOSION POINT SOURCES 47
U(r, t) =

∂Φ

∂r
= − 1

r2
F
(

t− r

α

)

− 1

rα
F ′
(

t− r

α

)

. (3.9)These two terms, therefore, hange their form with inreasing distane. Gen-erally, this holds for the displaement of waves from a point soure. The �rstterm in (3.9) is alled near-�eld term sine it dominates for su�iently small r.The seond term is the far-�eld term and desribes with su�ient auray thedisplaement for distanes from the point soure whih are larger then severalwave lengths (show this for F (t) = eiωt). That means there the displaementredues proportional to 1/r.From the boundary ondition r = r1, it follows that
− 1

r1α
F ′
(

t− r1
α

)

− 1

r21
F
(

t− r1
α

)

= U1(t).We hoose the origin time so that U1(t) only begins to be non-zero for t = r1/α.It, therefore, appears as if the wave starts at time t = 0 at the point soure(r = 0). If U1

(

t− r1

α

)

= U1(t), it holds that U1(t) is already non-zero for t > 0.With τ = t− r1

α , it follows that
1

r1α
F ′(τ) +

1

r21
F (τ) = −U1(τ). (3.10)The solution of (3.10) an be found with the Laplae transform (see setionA.2.1.1 of appendix A).Sine the riterion (A.16) of appendix A is satis�ed for all physially realis-ti displaements U1(τ), the initial value F (+0) of F (τ) is zero. Therefore,transformation of (3.10)with F (τ)←→ f(s) and U1(τ)←→ u1(s) gives

1

r1

(

s

α
+

1

r1

)

f(s) = −u1(s)

f(s) = −r1α
1

s+ α
r1

u1(s) . (3.11)With (s+ α
r1

)−1

←→ e−
α
r1

τ (see appendix A, setion A.1.4), and using on-volution (see appendix A, equation A.7), the inverse transformation of (3.11)reads as
F (τ) = −r1α

∫ τ

0

U1(ϑ)e
− α

r1
(τ−ϑ)

dϑ.From this, it follows
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48 CHAPTER 3. BODY WAVES
F ′(τ) = −r1αU1(τ) + α2

∫ τ

0

U1(ϑ)e−
α
r1

(τ−ϑ)dϑ.The radial displaement for r > r1 then an be written using (3.9) as
U(r, t) =

r1
r

{

U1(τ) + α

(

1

r
− 1

r1

)∫ τ

0

U1(ϑ)e
− α

r1
(τ−ϑ)

dϑ

} (3.12)with the retarded time τ = t− r
α . This solves the boundary problem.Appliations1. U1(t) = U0δ

(

t− r1

α

)

, i.e., U1(t) = U0δ(t).The dimension of U0 is time times length. Equation (3.12) is valid also inthis ase (see appendix A)
U(r, t) =

r1
r
U0

{

δ(τ) + α

(

1

r
− 1

r1

)

e−
α
r1

τH(τ)

}

.

(t=r/α )

τ
τ=0 

Fig. 3.3: U(r,t) as a funtion of time.2. U1(t) = U0H
(

t− r1

α

)

, i.e. U1(t) = U0H(t).The dimension of U0 is length. From (3.12), it follows
U(r, t) =

r1
r
U0

{

H(τ) + α

(

1

r
− 1

r1

)

e−
α
r1

τ
[r1
α
e

α
r1

ϑ
]ϑ=τ

ϑ=0
H(τ)

}

=
r1
r
U0H(τ)

{

1 +
(r1
r
− 1
)(

1− e−
α
r1

τ
)}

=
r1
r
U0H(τ)

{r1
r

+
(

1− r1
r

)

e
− α

r1
τ
}

.
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 49
r1

2

r 2 U0

U0
r1
r

ττ=0Fig. 3.4: U(r,t) as a funtion of time.Exerise 3.4Pressure P (t)
(

P (t) = 0 for t < r1

α

) ats in a spherial avity with radius r1.What is the di�erential equation for the exitation funtion F (t) (analogue to3.10)? In the ase of radial symmetry, the radial stress prr is onneted to theradial displaement U as (show)
prr = (λ + 2µ)

∂U

∂r
+ 2λ

U

r
.Whih frequenies are preferably radiated (eigenvibrations of the avity)? Thisan be derived / seen from the di�erential equation without solving it (ompareto the di�erential equation of the mehanial osillator, see appendix A.2.1.1).Solve the di�erential equation of P (t) = P 0δ(t− r1/α).3.5 Spherial waves from single fore and dipolepoint soures3.5.1 Single fore point soureA single fore in the entre of a Cartesian oordinate system ating in z-diretionwith a fore-time law K(t) has the fore density (ompare appendix A.3.3)

−→
f = (0, 0, δ(x) δ(y) δ(z)K(t)) .
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50 CHAPTER 3. BODY WAVES

y

z

x

K(t)

Fig. 3.5: Cartesian oordinate system with fore-time law K(t).The separation −→f = ∇ϕ+∇×−→ψ is possible with the help of (2.27)
ϕ(x, y, z, t) =

1

4π

∫∫∫ +∞

−∞

1

r′3
(z − ζ)δ(ξ)δ(η)δ(ζ)K(t)dξdηdζ

=
K(t)z

4πr3
, r2 = x2 + y2 + z2 (3.13)

−→
ψ (x, y, z, t) =

1

4π

∫∫∫ +∞

−∞

1

r3
{−(y − η), x − ξ, 0} δ(ξ)δ(η)δ(ζ)K(t)dξdηdζ

=
K(t)

4πr3
(−y, x, 0). (3.14)If (3.13) and (3.14) are used in the di�erential equation (2.31) of the displae-ment potentials, it follows that for the shear potential −→Ψ = (Ψx,Ψy,Ψz) Ψz =

0 and that for Ψx and Ψy, due to (2.23) and (2.28), the following wave equationshold; the same is true for the ompression potential Φ

∇2Φ− 1

α2

∂2ϕ

∂t2
= − K(t)z

4πρα2r3

∇2Ψx −
1

β2

∂2Ψx

∂t2
=

K(t)y

4πρβ2r3

∇2Ψy −
1

β2

∂2Ψy

∂t2
= − K(t)x

4πρβ2r3
.The solution of the inhomogeneous wave equation
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 51
∇2a− 1

c2
∂2a

∂t2
= f(x, y, z, t)an for vanishing initial onditions, be written as

a(x, y, z, t) = − 1

4π

∫∫∫ +∞

−∞

1

r′
f

(

ξ, η, ζ, t− r′

c

)

dξdηdζ (3.15)with
r′2 = (x− ξ)2 + (y − η)2 + (z − ζ)2.Equation (3.15) is Kirhho�'s Equation for an in�nite medium. It is the ana-logue to the well-known Poisson's di�erential equation whih is also a volumeintegral over the perturbation funtion (ompare exerise 2.9). Equation (3.15)an also be omputed in non-Cartesian oordinates, something we now use.Appliation of the wave equation for ΦWe introdue the spherial oordinates (r′, ϑ, λ) relative to point P . λ is de�ned,see sketh, via an additional Cartesian oordinate system (x, y, z).

Fig. 3.6: Additional Cartesian oordinate system (x, y, z).The x-axis of of this oordinate system is idential to the line OP. The z-axis isin the plane de�ned by the zandζ-axis and the line OP. Then the z, ζ-axis hasthen in the x− y − z-system the diretion of the unit vetor
−→n = (cos γ, 0, sinγ) =

{

z

r
, 0,

(

1− z2

r2

)
1
2

}

.
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52 CHAPTER 3. BODY WAVESVetor −→r′′ from O to Q an be written in the same system as
−→
r′′ = (r − r′ cosϑ, r′ sinϑ sinλ, r′ sinϑ cosλ).These two vetors are needed later. Equation (3.15) an for Φ then be writtenas

Φ(x, y, z, t) =
1

16π2ρα2

∫ ∞

0

∫ π

0

∫ 2π

0

ζ

r′′3
·
K
(

t− r′

α

)

r′
· r′2 sinϑ dλdϑ dr′.We still must express ζ and r′′ in terms of r′, ϑ and λ

ξ =
−→
r′′ · −→n =

z

r
(r − r′ cosϑ) +

(

1− z2

r2

)
1
2

r′ sinϑ cosλ

r′′2 = r2 + r′2 − 2rr′ cosϑ (rule of osine).This gives
Φ(x, y, z, t) =

1

16π2ρα2

∫ ∞

0

∫ π

0

∫ 2π

0

z
(

1− r′

r cosϑ
)

+ r′
(

1− z2

r2

)
1
2

sinϑ cosλ

r3
(

1 + r′2

r2 − 2 r′

r cosϑ
)

3
2

·K
(

t− r′

α

)

· r′ sinϑ dλdϑ dr′.The part of the integrand with cosλ does not ontribute to the integration over
λ. The other part has only to be multiplied by 2π. With a = r/r′ and
∫ π

0

(1− a cosϑ) sinϑ

(1 + a2 − 2a cosϑ)
3
2

dϑ =

∫ (1+a)2

(1−a)2

1 + 1
2 (u− 1− a2)

2au
3
2

du

=
1

4a

∫ (1+a)2

(1−a)2

(

1

u
1
2

+
1− a2

u
3
2

)

du

=
1

4a

{

2u
1
2 + 2(a2 − 1)u−

1
2

}(1+a)2

(1−a)2

=
1

2a
{1 + a− |1− a|}

+
1

2a

{

(a+ 1)(a− 1) ·
(

1

1 + a
− 1

1− a

)}

=

{

2 for 0 < a < 1
0 for a > 1

u = 1 + a2 − 2a cosϑ
du = 2a sinϑdϑ
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 53it follows that
Φ(x, y, z, t) =

z

4πρα2r3

∫ r

0

r′K

(

t− r′

α

)

dr′

=
z

4πρr3

∫ r
α

0

K(t− τ)τdτ.The wave equations for Ψx and Ψy are solved in a similar fashion. Therefore,it is possible to write the potentials of the single fore point soure as
Φ(x, y, z, t) = z

4πρr3

∫ r
α

0
K(t− τ)τdτ

Ψx(x, y, z, t) = − y
4πρr3

∫

r
β

0 K(t− τ)τdτ

Ψy(x, y, z, t) = x
4πρr3

∫

r
β

0 K(t− τ)τdτ

Ψz(x, y, z, t) = 0

with

r2 = x2 + y2 + z2.















































































(3.16)
Before we derive the displaements, we hange to spherial oordinates (r, ϑ, λ)relative to the single fore point soure

λ

r

P

υ

x
y

z

K(t)

Fig. 3.7: Spherial oordinates (r, ϑ, λ).
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54 CHAPTER 3. BODY WAVES
x = r sinϑ cosλ

y = r sinϑ sinλ

z = r cosϑ.In spherial oordinates, the shear potential has no r- and ϑ-omponent (show),and for the λ-omponent it holds that
Ψλ = −Ψxsinλ+ Ψycosλ.

Ψy

Ψx

x

y

λFig. 3.8: x-y-plane of Fig. 3.7.This gives
Φ(r, ϑ, t) = cos ϑ

4πρr2

∫ r
α

0 K(t− τ)τdτ

Ψλ(r, ϑ, t) = sin ϑ
4πρr2

∫

r
β

0 K(t− τ)τdτ.











(3.17)This equation does not depend on λ. The displaement vetor
−→u = ∇Φ +∇×−→Ψ an be written in spherial oordinates (show) as

ur = ∂Φ
∂r + 1

r sin ϑ
∂

∂ϑ (sin ϑΨλ)

uϑ = 1
r

∂Φ
∂ϑ − 1

r
∂
∂r (rΨλ)

uλ = 0.























(3.18)
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 55This shows that the P -wave following from Φ is not purely longitudinal, but itontains a transverse omponent (in uϑ). Similarly, the S -wave following from
Ψλ is not purely transverse sine ur ontains a shear omponent. The �rst termin uϑ and the seond in ur are near �eld terms (ompare exerise 3.5). Herewe ompute only the far-�eld terms of ur and uϑ (only di�erentiation of theintegrals in(3.17))

ur ≃ cos ϑ
4πρα2rK

(

t− r
α

)

(longitudinal P − wave)
uϑ ≃ − sin ϑ

4πρβ2rK
(

t− r
β

)

(transversal S − wave).  (3.19)The far-�eld displaements have, therefore, the form of the foreK(t) dereasingwith 1/r. The single fore point soure has diretionally dependent radiation,and the far-�eld radiation harateristis are shown in Fig. 3.9.

Fig. 3.9: Far �eld radiation harateristis of single fore point soure.The radiation harateristis (P- and S-waves) are eah two irles. Those forthe S -waves have a radius whih is α2/β2 larger then those of the P-waves. Ifthe radiation angle ϑ is varied for �xed r, the displaements ur are proportionalto the distane OP 1, and the displaements uϑ are proportional to the distane
OP 2. The sign of the displaement ur hanges in transition from the �rst P -radiation irle to the seond. The full 3-D radiation harateristis followsfrom that shown in Fig. 3.9 by rotation around the diretion of the fore.Within the framework of the far-�eld equations (3.19), no S-wave is radiated inthe diretion of the fore, and perpendiular to it, no P -wave is radiated (butompare exerise 3.5).The pratial use of the single fore point soure, ating perpendiular on thefree surfae, is that it is a good model for the e�et of a drop weight, exitationby vibro-seis and often also for explosions detonated lose to the surfae. Aomplete solution requires the onsideration of the e�ets of the free surfae,but that is signi�antly more ompliated. Furthermore, the di�erenes to the
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56 CHAPTER 3. BODY WAVESfull-spae models for all P -waves and for S-waves, for radiation angles smallerthen 30 to 40 degrees, are small, respetively.Exerise 3.5Compute the omplete displaement (3.18) using (3.17) and examine in parti-ular, the diretions ϑ = 0 and ϑ = 900. Whih polarisation does the displae-ment vetor have, and at whih times are arrivals to be expeted? Compute for
K(t) = K0H(t) the stati displaement (t > r/β).3.5.2 Dipole point souresA fore dipole an be onstruted from two opposing single fores whih areating on two neighbouring points. Fig. 3.10 shows, on the left, a dipole withmoment for whih the line onneting the fores is perpendiular to the diretionof the fore. The onneting line for a "dipole without moment" points in thediretion of the fore.

Fig. 3.10: Single ouple and double ouple onstruted from single fores.Two dipoles with moment for whih the sum over the moments is zero (rightin Fig. 3.10), are a good model for many earthquake soures, i.e., in the asewhere the spatial radiation of earthquake waves of su�iently large wave lengthis similar to that of a double ouple model. The atual proesses ating in theearthquake soure are naturally not four single fores. Usually, the rok breaksalong a surfae if the shear strength is exeeded by the aumulation of shearstress (shear rupture). Another possibility is that the shear stress exeeds thestati frition on a pre-existing rupture surfae. Soure models from single foresand dipoles are only equivalent point soures.In the following, we derive the far-�eld displaement of the single ouple modeland give the results for the double ouple model. We start from the singleouple (with x0 6= 0) in Fig. 3.11 and ompute �rst from (3.19) the P -wave
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 57displaement of fore K(t) with Cartesian omponents cosϑ = z/r, r2 = (x −
x0)

2 + y2 + z2

ux

uy

uz







= z
4πρα2r2K

(

t− r
α

)

·







(x− x0)/r
y/r
z/r.

x0

-K(t)

K(t)
υ

λ

P(x,y,z)

r

y

z

xεFig. 3.11: Single ouple model.The displaements u′x, u′y, u′z of fore −K(t) with the two neighbouring points ofation shifted by ǫ, an be determined using the Taylor expansion of ux, uy, uzat the soure oordinate x0 and trunating after the linear term. This leads, forexample, to
u′x = −

(

ux +
∂ux

∂x0
ǫ

)

.The single ouple displaement then follows by superposition
u′′x = ux + u′x = −∂ux

∂x0
ǫ.To obtain the far-�eld displaement requires only the di�erentiation of the fore

K(t − r/α) with respet to r, and additional di�erentiation ∂r/∂x0 = −(x −
x0)/r. The other terms with x0 ontribute only to the near �eld, the amplitudeof whih dereases faster then 1/r. This leads to

u′′x = − z

4πρα2r2
K ′
(

t− r

α

) −1

α

−(x− x0)

r
ǫ
x− x0

r
.
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58 CHAPTER 3. BODY WAVESThe y- and z-displaement are treated similarly. Therefore,
u′′x
u′′y
u′′z







= − z(x−x0)
4πρα3r3K

′
(

t− r
α

)

ǫ·







(x− x0)/r
y/r
z/r.

(3.20)As expeted, the P -displaement of the single ouple is also longitudinal.The fore dipole is de�ned stritly by the limit ǫ → 0, ombined with a simul-taneous inrease of K(t), so that
lim
ǫ→0

K(t) ǫ = M(t)remains �nite (but non-zero). M(t) is alled moment funtion of the dipolewith the dimensions of a rotational moment.From (3.20) with z/r = cosϑ and (x − x0)/r = sinϑ cosλ, it follows that the
P -wave displaement of the single ouple in r-diretion is

ur = −cosϑ sinϑ cosλ

4πρα3r
M ′
(

t− r

α

)

.In onluding, we now assume that x0 = 0. For the S-wave, it follows similarly
uϑ =

sinϑ sinϑ cosλ

4πρβ3r
M ′

(

t− r

β

)

.As for the single fore, the azimuthal omponent is zero. The following showsthe results for the single ouple and the radiation in the x− z-plane (y = 0)

y

z

x

r

λ
υ

P

Fig. 3.12: Single ouple in the x-z-plane.
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3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 59
ur = − sin 2ϑ cos λ

8πρα3r M ′
(

t− r
α

)

uϑ = sin2 ϑ cos λ
4πρβ3r M ′

(

t− r
β

)

uλ = 0.



























(3.21)
-+

- +

z

x

S

P

Fig. 3.13: Far �eld displaement of a single ouple.The ratio of the maximum S-radiation (for ϑ = 900) to the maximum P -radiation (for ϑ = 450) is about 10, if α ≈ β
√

3. The radiation harateristisin planes other then y = 0 follow from the one shown by multipliation with
cosλ. Plane x = 0 is a nodal plane for P - as well as for S-radiation; the plane
z = 0 is one only for P .The far-�eld displaements for a double ouple in the x−z-plane are (see exerise3.6)

y

z

x

r

λ
υ

P

Fig. 3.14: Double ouple in the x-z-plane.
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60 CHAPTER 3. BODY WAVES
ur = − sin 2ϑ cos λ

4πρα3r M ′
(

t− r
α

)

uϑ = − cos 2ϑ cos λ
4πρβ3r M ′

(

t− r
β

)

uλ = cos ϑ sin λ
4πρβ3r M ′

(

t− r
β

)

.































(3.22)The moment funtion in (3.22) is that of one of the two dipoles of the doubleouple. The radiation harateristis in the x− z-plane are shown in Fig. 3.15.
P

S-+

- +

z

x

Fig. 3.15: Far �eld displaement of a double ouple.The P -radiation of the double ouple has the same form as that of a singleouple but is twie as large; the ratio of the maximum radiation of S to P isnow about 5 (for λ ≈ β
√

3). P -nodal planes are the planes with x = 0 and
z = 0. The S-wave has no nodal planes, but only nodal diretions (whih?).An (in�nitesimal) shear rupture, either in the plane z = 0 with relative dis-plaement in x-diretion or in the plane x = 0 with relative displaement in
z-diretion, radiates waves as a double ouple, i.e., (3.22) holds. A shear rup-ture or earthquake, therefore, radiates no P -waves in the diretion of its ruptureand perpendiular to it. If, by using the distributions of the signs of �rst motionof the P wave, the two nodal planes have been determined, the two possible rup-ture surfaes are found. The determination of the P -nodal plane of earthquakes

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



3.5. SPHERICAL WAVES FROM SINGLE FORCE AND DIPOLE ... 61(fault plane solution), is an important aid in the study of soure proesses aswell as the study of large-sale tetonis of a soure region. Often the deisionbetween the two options for the rupture surfae an be made based on geologialarguments.The moment funtion of an earthquake with a smooth rupture, is, to a goodapproximation, a step funtion with non-vanishing rise time T and �nal value
M0, the moment of the earthquake (see Fig. 3.16). The far-�eld displaementsare then, aording to (3.22), one-sided impulses.

0M

M’

t

t

T

T0

0

M

Fig. 3.16: Moment funtion and far-�eld displaement of a smooth rupture.Propagation e�ets in layered media, e.g., the Earth's rust, an hange theimpulse form. In reality, the displaements look very often di�erent, relative tothe one shown here, due to ompliated rupture proesses.Exerise 3.6Derive the double ouple displaement ur in (3.22) from the orresponding singleouple displaement in (3.21). Use equation (3.20) in Cartesian oordinates.
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62 CHAPTER 3. BODY WAVES3.6 Re�etion and refration of plane waves atplane interfaes3.6.1 Plane waves with arbitrary propagation diretionIn setions 3.1 to 3.3 plane waves travelling in the diretion of a oordinate axiswere used. In the following, we need plane waves with an arbitrary diretion ofpropagation. They an be desribed by the following potentials
Φ = A exp

[

iω

(

t−
−→x−→k
α

)] (3.23)
−→
Ψ = B exp

[

iω

(

t−
−→x−→k
β

)]

−→n . (3.24)Their variation with time is also harmoni. This assumption is su�ient formost onlusions. A and B are onstant, −→k and −→n are onstant unit vetors,
−→x is the loation vetor, ω is the angular frequeny and i the imaginary unit.
Φ and the omponents of −→Ψ satisfy the wave equation (please on�rm)

∇2Φ =
1

α2

∂2Φ

∂t2
, ∇2Ψj =

1

β2

∂2Ψj

∂t2
(Cartesian oordinates).Sine, aording to (3.23) and (3.24), the movement at all times and loationsis non-zero, the wavefronts an no longer be de�ned as surfaes separatingundisturbed-disturbed from disturbed regions. We, therefore, onsider wavefronts as surfaes of onstant phase ω(t − −→x−→k /c) with c = α or c = β. Thesesurfaes are de�ned by

d

dt

(

t−
−→x−→k
c

)

= 0.They are perpendiular to vetor −→k , whih also gives the diretion of propaga-tion. The wavefronts move parallel with respet to themselves with the phaseveloity . Vetor −→k multiplied by the wavenumber ω/α or ω/β, is alled thewavenumber vetor.The polarisation diretion of the ompressional part
∇Φ = − iω

α
A exp

[

iω

(

t−
−→x−→k
α

)]

−→
k (3.25)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 63is longitudinal (parallel to −→k ) and that of the shear omponent
∇× −→Ψ = − iω

β
B exp

[

iω

(

t−
−→x−→k
β

)]

−→
k ×−→n (3.26)

(rot(f · −→n ) = f · ∇ × −→n − −→n × ∇ f) is transversal (perpendiular to −→k ).From (3.26), it follows, that for −→Ψ , without loss of generality, the additionalondition of orthogonality of −→k and −→n an be introdued. (Separation of −→n inomponents parallel and perpendiular to −→k ).3.6.2 Basi equationsWe onsider a ombination of two half-spaes whih are separated by a planeat z = 0. The ombination is arbitrary (solid-solid, solid-vauum, liquid-liquid,...). We use Cartesian oordinates as shown in Fig. 3.17.
Fig. 3.17: Two half-spaes in Cartesian oordinates.The y-axis points out of the plane. The displaement vetor is

−→u = (u, v, w),and its omponents are independent of y, i.e., we treat a plane problem in whihon all planes parallel to the x − z-plane, the same onditions hold. The mostsimple way to study elasti waves, under these onditions, is to derive u and wbut not v, from potentials. Writing
−→u = ∇Φ +∇× −→Ψby omponents,
u =

∂Φ

∂x
− ∂Ψ2

∂z

v =
∂Ψ1

∂z
− ∂Ψ3

∂x

w =
∂Φ

∂z
+
∂Ψ2

∂x
,
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64 CHAPTER 3. BODY WAVESit is obvious that for v two potentials Ψ1 and Ψ3 are required, and these do notour in u and w. For v, it is better to use diretly the equation of motion (2.21)without body fores, whih under these onditions beomes a wave equation
∇2v =

1

β2

∂2v

∂t2
.The basi equations, therefore, are, if Ψ instead of Ψ2 is used

∇2Φ =
1

α2

∂2Φ

∂t2

∇2Ψ =
1

β2

∂2Ψ

∂t2

∇2v =
1

β2

∂2v

∂t2
(3.27)

∇2 =
∂2

∂x2
+

∂2

∂z2

u = ∂Φ
∂x − ∂Ψ

∂z

w = ∂Φ
∂z + ∂Ψ

∂x .







(3.28)The boundary onditions on the surfae z = 0 between the half-spaes requiresontinuity of the stress omponents
pzz = λ∇ · −→u + 2µ

∂w

∂z
= λ∇2Φ + 2µ

∂w

∂z

pzx = µ

(

∂w

∂x
+
∂u

∂z

)

pzy = µ
∂v

∂z
,or

pzz = λ
α2

∂2Φ
∂t2 + 2µ

(

∂2Φ
∂z2 + ∂2Ψ

∂x∂z

)

pzx = µ
(

2 ∂2Φ
∂x∂z + ∂2Ψ

∂x2 − ∂2Ψ
∂z2

)

pzy = µ∂v
∂z .































(3.29)Whih of the displaement omponents is ontinuous depends on the speialombination of the half-spaes.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 65Sine no onnetion of v with Φ and Ψ exists via the boundary onditions and,therefore, with u and w, it follows, that the S-waves, the displaement of whihis only horizontal (in y-diretion: SH-waves), propagate independently from the
P -waves, following from Φ, and the S-waves, following from Ψ, that also havea vertial omponent (in z-diretion: SV-waves). If a SH-wave impinges on aninterfae, only re�eted and refrated SH-waves our, but no P- or SV-waves.If, on the other hand, a P − (SV−)wave interats with an interfae, re�etedand refrated SV −(P−)waves our, but no SH -waves our. These statementshold, in general, only for the ase of an interfae between two solid half-spaes.In liquids, neither SH- nor SV-waves propagate; in a vauum a rigid half-spae,or no waves propagate at all. Correspondingly, the situation is even more simpleif suh half-spaes are involved.The deoupling of P-SV- and SH-waves holds for plane problems not only inthe simple ase of an interfae z=onst between two homogeneous half-spaes,but also in the more ompliated ase of an inhomogeneous medium, as longas density, wave veloity, and module are only funtions of x and z. One on-sequene of this deoupling is that in the following, re�etion and refrationof P - and SV-waves an be treated independently from that of the SH-waves.Furthermore, it is possible to disset an S-wave of arbitrary polarisation in itsSV- and SH-omponent and to study their respetive re�etion and refrationindependently from eah other.In eah ase, we assume for the inident plane wave a potential Φ or −→Ψ inthe form of (3.23) or (3.24), respetively, (in the seond ase −→Ψ has only the
y-omponent Ψ). In ase of a SH-wave, we assume that v an be desribed byan equation in the form of (3.23) with β instead of α. The angle of inidene ϕis part of the diretion vetor −→k

Fig. 3.18: Inident plane wave and angle of inidene ϕ.
−→
k = (sinϕ, 0, cosϕ). (3.30)
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66 CHAPTER 3. BODY WAVESFor the re�eted and refrated wave an ansatz is made with di�erent amplitudesA and B, respetively, and di�erent diretion vetors −→k . The relation betweenthe new diretion vetors and (3.30) is via Snell's law. The relation betweenthe displaement amplitudes of the re�eted and the refrated wave with theinident wave, is alled re�etion oe�ient and refration oe�ient, respe-tively, and it depends on the angle of inidene and the material properties inthe half-spaes. Rpp, Rps, Bpp, Bps, Rss, Rsp, Bss, Bsp will be the oe�ientsfor P-SV-waves, rss and bss those for the SH-waves. The �rst index indiatesthe type of inident wave, the seond the re�eted and refrated wave type,respetively.We disuss, in the following, only relatively simple ases, for whih illustratethe main e�ets to be studied.3.6.3 Re�etion and refration of SH-wavesRe�etion and refration oe�ientsThe displaement v0 of the inident SH-wave in y-diretion is
v0 = C0 exp

[

iω

(

t− sinϕ

β1
x− cosϕ

β1
z

)]

. (3.31)
ϕ1

ϕ2

µ ,ρ ,β  22 2

µ ,ρ ,β  1 1 1

z

ϕ

v0 v1

v2

xz=0

Fig. 3.19: Inident, re�eted and di�rated SH-waves at a plane interfae.The ansatz for the re�eted and refrated SH-wave as plane waves with re�etionangle ϕ1 and the refration angle ϕ2, respetively, and the same frequeny asthe inident wave isre�etion : v1 = C1 exp

[

iω

(

t− sinϕ1

β1
x+

cosϕ1

β1
z

)] (3.32)refration : v2 = C2 exp

[

iω

(

t− sinϕ2

β2
x− cosϕ2

β2
z

)]

. (3.33)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 67The unknowns are the angles ϕ1 and ϕ2, the re�etion oe�ient rss = C1/C0and the refration oe�ient bss = C2/C0.The boundary onditions require at z = 0 the ontinuity of displaement (that isa reasonable requirement) and ontinuity for the normal and tangential stresses.This leads to
v0 + v1 = v2

µ1
∂
∂z (v0 + v1) = µ2

∂v2

∂z

} for z = 0. (3.34)The stress omponents pzz and pzx are zero everywhere, sine no P- and/or SV-wave our. Insert (3.31), (3.32) and (3.33) into (3.34). From the �rst boundaryondition this leads to
C0 exp

[

iω

(

t− sinϕ

β1
x

)]

+C1 exp

[

iω

(

t− sinϕ1

β1
x

)]

= C2 exp

[

iω

(

t− sinϕ2

β2
x

)]

.(3.35)We plan to �nd solutions v1 and v2 of the problem, for whih the amplitudes
C1 and C2 are independent of loation, sine only then an we be sure that v1and v2 are solutions of the orresponding wave equation. C1 and C2 beomeonly independent of loation if in (3.35)

sinϕ

β1
=

sinϕ1

β1
=

sinϕ2

β2
, (3.36)sine only then the exponential term an be anelled. Equation (3.36) is thewell-known Snell's Law whih states that the re�etion angle ϕ1 is equal to theangle of inidene ϕ and that for the refration angle ϕ2 is

sinϕ2

sinϕ
=
β2

β1
.With (3.35), this leads to

C2 − C1 = C0. (3.37)The seond boundary ondition in (3.34) gives
µ1iω

(

−cosϕ

β1
C0 +

cosϕ1

β1
C1

)

= −µ2iω
cosϕ2

β2
C2.With ϕ1 = ϕ and µ1,2/β1,2 = ρ1,2β1,2, it follows that
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68 CHAPTER 3. BODY WAVES
ρ1β1 cosϕ(C1 − C0) = −ρ2β2 cosϕ2C2or

ρ2β2 cosϕ2

ρ1β1 cosϕ
C2 + C1 = C0. (3.38)From (3.37) and (3.38) follow the re�etion and refration oe�ients

rss =
C1

C0
=

ρ1β1 cosϕ− ρ2β2 cosϕ2

ρ1β1 cosϕ+ ρ2β2 cosϕ2
(3.39)

bss =
C2

C0
=

2ρ1β1 cosϕ

ρ1β1 cosϕ+ ρ2β2 cosϕ2
. (3.40)With (3.36), this leads to

cosϕ2 = (1− sin2 ϕ2)
1
2 =

(

1− β2
2

β2
1

sin2 ϕ

)
1
2

. (3.41)For perpendiular inidene (ϕ = 0)
rss =

ρ1β1 − ρ2β2

ρ1β1 + ρ2β2
and bss =

2ρ1β1

ρ1β1 + ρ2β2
.In this ase, rss and bss depend only on the impedanes ρ1β1 and ρ2β2 of thetwo half-spaes. For grazing inidene (ϕ = π/2), rss = −1 and bss = 0. Theabsolute value of the amplitude of the re�eted wave is never larger then that ofthe inident wave; that of the refrated wave an be larger if ρ2β2 < ρ1β1 (e.g.,for ϕ = 0).If rss is negative, this means that in one point of the interfae the displaementvetor of the re�eted wave points in −y-diretion, if the displaement vetorof the inident wave points in +y-diretion. For impulsive exitation (see alsolater), this means that the diretion of �rst motion of the inident and there�eted wave are opposite.The following �gure shows |rss| as a funtion of ϕ for di�erent veloity ratios

β1/β2 > 1 and ρ1 = ρ2.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 69

Fig. 3.20: |rss| as a funtion of ϕ for di�erent veloity ratios.Total re�etionIf β2 < β1, as in Fig. 3.20, cosϕ2 is real for all angles of inident ϕ, the sameis true for rss and bss. Total re�etion,, i.e., |rss| = 1, is then only possible forgrazing inidene.If β2 > β1, cosϕ2 is only real as long as
ϕ =< ϕ∗ = arcsin

β1

β2
.

ϕ∗ is the ritial angle (or limiting angle of total re�etion). Aording to (3.41),
ϕ = ϕ∗ is onneted to the ase with grazing propagation of the wave in theseond half-spae (ϕ2 = π/2).If ϕ > ϕ∗, cosϕ2 beomes imaginary, or, to be more exat, negative imaginaryfor positive ω and positive imaginary for negative ω, sine only then v2 for
z → +∞ remains limited. rss and bss beome omplex. v1 and v2 still solvethe wave equations and satisfy the boundary onditions, even when posing theansatz (3.32) and (3.33) have not expliitly been hosen in omplex form. There�etion oe�ient an then be written as

rss = a−ib
a+ib = exp

(

−2i arctan b
a

)

a = ρ1β1 cosϕ

b = −ρ2β2

(

β2
2

β2
1

sin2 ϕ− 1
)

1
2 ω

|ω|



























. (3.42)
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



70 CHAPTER 3. BODY WAVESIt has the absolute value 1 and a phase that depends on the angle of inidene.Its sign hanges with the sign of the frequeny. Values of |rss| are shown in Fig.3.21 for a few ombinations.

Fig. 3.21: |rss| as a funtion of ϕ for di�erent veloity ratios.The refrated wave propagates for ϕ > ϕ∗ parallel to the interfae with the ve-loity β1/ sinϕ. Its amplitude is not only ontrolled by bss, but is also ontrolledby the exponential term whih depends on z. The amplitude of the refratedwave deays, therefore, exponentially with inreasing distane from the interfae(inhomogeneous or boundary layer wave). It follows that (please hek)
v2 = bssC0 exp

[

−|ω|
β2

(

β2
2

β2
1

sin2 ϕ− 1

)
1
2

z

]

exp

[

iω

(

t− sinϕ

β1
x

)]

.Other asesThe treatment of the re�etion of plane P -waves at an interfae between twoliquids gives similar results to the one disussed above (see also exerise 3.9).If the interfae between two solid half-spaes is onsidered, the omputationale�ort is signi�antly larger, sine now re�eted and refrated SV -waves have tobe inluded. We, therefore, skip the details. The absolute value of the re�etionoe�ient Rpp is shown in Fig. 3.22.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 71
|Rpp |

β2

α1= −ϕ∗∗sinα 1 β2 α2< <

0
0

ϕ∗ ϕ∗∗ π/2 ϕ

|Rpp |

α1
α2
−sin ϕ∗ =α 1 α22β  < <

ϕ∗ π/2 ϕ
0

0Fig. 3.22: Absolute value of the re�etion oe�ient Rpp.For ϕ = 0, Rpp = ρ2α2−ρ1α1

ρ2α2+ρ1α1
(ompare also exerise 3.9).

|Rpp| for ϕ∗ < ϕ < π/2 is smaller then 1 for two reasons. First, the re�etedSV -wave also arries energy; seond, for the ase on the left of Fig. 3.22, aSV -wave propagates in the lower half-spae for all ϕ, and, similarly, for thease on the right of Fig. 3.22, for ϕ < ϕ∗∗. ϕ < ϕ∗∗ is the seond ritial anglewhih exists only for α1 < β2 < α2

ϕ∗∗ = arcsin
α1

β2
> ϕ∗ = arcsin

α1

α2
.

For angles ϕ larger then ϕ∗∗, the seond energy loss is no longer possible, andtotal re�etion ours. The re�eted energy is then, to a smaller part, alsotransported in the SV -wave.Some numerial results for re�etion and refration oe�ients for a P-SV-aseare given in Fig. 3.23 (model of the rust-mantle boundary (Moho) with α1 =
6.5km/sec, β1 = 3.6km/sec, ρ1 = 2.8g/cm3, α2 = 8.2km/sec, β2 = 4.5km/sec, ρ2 =
3.3g/cm3).
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72 CHAPTER 3. BODY WAVES

Fig. 3.23: Absolute value of re�etion and refration oe�ients Rpp, Rps, Bppand Rss.Transition to impulsive exitationThe transition from the harmoni ase, treated up to now, to the impulse ase,an be done with the Fourier transform (ompare appendix A.1.7). Instead of(3.31), the SH-wave
v0 = F

(

t− sinϕ

β1
x− cosϕ

β1
z

)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 73may impinge on the interfae, and we disset F (t) with the aid of the Fourierintegral in partial vibration
F (t) =

1

2π

∫ +∞

−∞

F (ω)eiωtdω

F (ω) =

∫ +∞

−∞

F (t)e−iωtdt Fourier transform of F (t).We then study, as before, re�etion and refration of the partial waves
dv0 =

1

2π
F (ω) exp

[

iω

(

t− sinϕ

β1
x− cosϕ

β1
z

)]

dωand then sum the re�eted partial waves to derive the re�eted SH -wave
v1 =

1

2π

∫ +∞

−∞

rssF (ω) exp

[

iω

(

t− sinϕ

β1
x+

cosϕ

β1
z

)]

dω. (3.43)As long as the re�etion oe�ient rss is frequeny independent (whih is thease for β2 < β1 or for ϕ < ϕ∗ with β2 > β1), it an be moved before theintegral, thus, yielding
v1 = rssF

(

t− sinϕ

β1
x+

cosϕ

β1
z

)

.The re�eted impulse has, in this ase, the same form as the inident impulse.The amplitude ratio of the two impulses is equal to the re�etion oe�ient.Then rss, aording to (3.42), beomes dependent from ω for ϕ > ϕ∗ with
β2 > β1. One then has to proeed di�erently. We disset rss into real andimaginary parts

rss = R(ϕ) + iI(ϕ)
ω

|ω|

R(ϕ) =
a2 − b2
a2 + b2

I(ϕ) = − 2ab

a2 + b2
(b for ω > 0).Aording to (3.43), it holds that

v1 = R(ϕ)F (τ) + I(ϕ)
1

2π

∫ +∞

−∞

iω

|ω|F (ω)eiωτdω (3.44)
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74 CHAPTER 3. BODY WAVESwith
τ = t− sinϕ

β1
x+

cosϕ

β1
z.The funtion, with whih I(ϕ) in (3.44) is multiplied, an be written, here viaits Fourier transform, as (iω/ |ω|) ·F (ω). This is a simple �lter of funtion F (τ)(ompare general omments on �lters in appendix A.3.4). Eah frequeny ω in

F (τ) keeps its amplitude, but its phase is hanged. The phase hange is +900for ω > 0 and −900 for ω < 0. This orresponds to a Hilbert transform and isshown in appendix B. The funtion with whih I(ϕ) in (3.44) is multiplied is,therefore, the Hilbert transform FH(τ) of F (τ)

FH(τ) =
1

π
P

∫ +∞

−∞

F (t)

t− τ dt =
1

π

∫ +∞

−∞

ln |t|F ′(τ − t)dt. (3.45)
P indiates the main value (without the singularity at t = τ), and the seondform of FH(τ) follows from the �rst by partial integration. Thus,

v1 = R(ϕ)F (τ) + I(ϕ)FH(τ). (3.46)Due to the seond term in (3.46), the form of the re�eted wave is di�erentfrom that of the inident wave. Fig. 3.24 shows the results of the re�etion ofSH-waves and angle of inidene ϕ from 0 to 900.For pre-ritial angles of inidene ϕ < ϕ∗ = 480, the re�etion has the form ofthe inident wave with positive and negative signs. Beyond the ritial angle,in the range of total re�etion, impulse deformations our until at ϕ = 900 theinident wave form appears again, but with opposite sign (orresponding to are�etion oe�ient rss = −1). The phase shift of rss at ϕ = 550 is about ±900,with the onsequene that R(ϕ) ≈ 0. The re�etion impulse for this angle ofinidene is, therefore, lose to the Hilbert transform FH(τ) of F (τ) (the exatHilbert transform is an impulse that is symmetri with respet to its minimum).
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 75

Fig. 3.24: Re�etion of SH-waves for di�erent angle of inidene ϕ.
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76 CHAPTER 3. BODY WAVESExerise 3.7:Whih sign does the re�etion oe�ient rss have in Fig. 3.20 and Fig. 3.21, inthe regions where it is real?Exerise 3.8:Determine the angle of inidene for whih rss is zero (Brewster angle), andgive the onditions under whih this atually happens (ompare ϕ ≈ 400 in Fig.3.24).Exerise 3.9Compute the re�etion and refration oe�ients for a plane surfae betweentwo liquids and for a plane harmoni longitudinal wave under angle of inidene
ϕ impinges. Give, qualitatively, the trend of the oe�ients for ρ1 = ρ2 with
α1 > α2 and α1 < α2. Hint: Use an ansatz for the displaement potential inthe form of (3.31) to (3.33) and express the boundary onditions via potentialsas disussed in setion 3.6.2.3.6.4 Re�etion of P-waves at a free surfaeRe�etion oe�ientsThe study of the re�etion of P-waves from a free surfae is of pratial im-portane for seismology. P -waves from earthquakes and explosions propagatethrough the Earth and impinge at the seismi station from below. Horizon-tal and vertial displaement are modi�ed by the free surfae. Furthermore,re�eted P - and S -waves are re�eted downwards and reorded at larger dis-tanes, sometimes with large amplitudes. It is, therefore, useful and neessaryto know the re�etion oe�ient of the Earth's surfae. For the moment, weneglet the layered nature of the rust in our model, thus, only giving a �rstapproximation to reality.Based on the omments given at the end of setion 3.6.2, we selet the followingansatz for the potentialsinident P − wave

Φ0 = A0 exp

[

iω

(

t− sinϕ

α
x− cosϕ

α
z

)] (3.47)re�eted P − wave
Φ1 = A1 exp

[

iω

(

t− sinϕ1

α
x+

cosϕ1

α
z

)] (3.48)re�eted SV − wave
Ψ1 = B1 exp

[

iω

(

t− sinϕ′
1

β
x+

cosϕ′
1

β
z

)]

. (3.49)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 77

Fig. 3.25: Inident P-wave and re�eted P- and S-wave .The boundary onditions at z = 0 require vanishing normal and tangential stress
pzz = pzx = 0. No boundary onditions for the displaement exist. With (3.29)and Φ = Φ0 + Φ1 (Ψ = Ψ1 = y − omponent of −→Ψ), it follows that

1

α2

∂2

∂t2
(Φ0 + Φ1) +

2µ

λ

[

∂2

∂z2
(Φ0 + Φ1) +

∂2Ψ1

∂x∂z

]

= 0 z = 0 (3.50)
2
∂2

∂x∂z
(Φ0 + Φ1) +

∂2Ψ1

∂x2
− ∂2Ψ1

∂z2
= 0 z = 0. (3.51)As in the last setion, Snell's law follows from the boundary onditions

sinϕ

α
=

sinϕ1

α
=

sinϕ′
1

β
. (3.52)From this, it follows that ϕ1 = ϕ and ϕ′

1 = arcsin
(

β
α · sinϕ

)

< ϕ.With (3.47), (3.48), (3.49) and
µ

λ
=

µ

λ+ 2µ− 2µ
=

ρβ2

ρα2 − 2ρβ2
=

β2

α2 − 2β2(3.50) leads to
1

α2
(A0 +A1) (iω)2

+
2β2

α2 − 2β2

[

(A0 +A1)

(

iω

α
cosϕ

)2

+B1

(

− iω
β

sinϕ′
1

)(

iω

β
cosϕ′

1

)

]

= 0.Then
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78 CHAPTER 3. BODY WAVES
A0 +A1 +

2α2β2

α2 − 2β2

[

(A0 +A1)
cos2 ϕ

α2
−B1

sinϕ′
1 cosϕ′

1

β2

]

= 0.with
1 +

2β2

α2 − 2β2
cos2 ϕ =

2β2

α2 − 2β2

(

α2

2β2
− 1 + cos2 ϕ

)

=
2β2

α2 − 2β2

(

α2

2β2
− sin2 ϕ

)

=
β2

α2 − 2β2

(

α2

β2
− 2 sin2 ϕ

)

=
γ − 2 sin2 γ

γ − 2and (γ = α2

β2 > 2
), it follows that
γ − 2 sin2 ϕ

γ − 2
(A0 +A1)−

2γ sinϕ′
1 cosϕ′

1

γ − 2
B1 = 0.From this

(γ − 2 sin2 ϕ)
A1

A0
− 2 sinϕ(γ − sin2 ϕ)

1
2
B1

A0
= 2 sin2 ϕ− γ. (3.53)Equation (3.51) then gives

2A0

(

− iω
α

sinϕ

)(

− iω
α

cosϕ

)

+ 2A1

(

− iω
α

sinϕ

)(

iω

α
cosϕ

)

+B1

(

− iω
β

sinϕ′
1

)2

−B1

(

iω

β
cosϕ′

1

)2

= 0or
2 sinϕ cosϕ

α2
(A0 −A1) +

sin2 ϕ′
1 − cos2 ϕ′

1

β2
B1 = 0.Equation (3.52) then gives

2 sinϕ cosϕ
A1

A0
+
(

γ − 2 sin2 ϕ
) B1

A0
= 2 sinϕ cosϕ. (3.54)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 79From (3.53) and (3.54), it follows that the amplitude ratios are
A1

A0
=

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 −

(

γ − 2 sin2 ϕ
)2

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2

(3.55)
B1

A0
=

4 sinϕ cosϕ
(

γ − 2 sin2 ϕ
)

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2
. (3.56)To derive displaement amplitudes (that is how the oe�ients Rpp and Rps insetion 3.6.2 were de�ned) from the ratios of potential amplitudes given here,we use (3.25) and (3.26). The displaement amplitude of the inident P -wave is

− iω
α A0; that of the re�eted P -wave is− iω

α A1. This then gives the PP -re�etionoe�ient (see also (3.55))
Rpp =

A1

A0
. (3.57)Equation (3.26) gives the displaement amplitude of the re�eted SV -wave as

− iω
β B1. Thus, the PS -re�etion oe�ient is (see also (3.56))

Rps =
α

β

B1

A0
. (3.58)

Rpp and Rps are real and frequeny independent for all angles of inident ϕ. Rpsis always positive. For ϕ = 0 and ϕ = π
2 , Rpp = −1 and Rps = 0, respetively,and only a P -wave is re�eted.

Fig. 3.26: Re�etion and refration oe�ients of P-waves for di�erent anglesof inidene ϕ.
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80 CHAPTER 3. BODY WAVESThe meaning of the negative signs in the re�etion oe�ients beomes lear, ifthe displaement vetor of the inident and re�eted waves are represented via(3.25) and (3.26)
−→u 0 = ∇Φ0 = − iω

α
A0 exp

[

iω

(

t− sinϕ

α
x− cosϕ

α
z

)]

−→
k 0

−→u 1 = ∇Φ1 = − iω
α
A0Rpp exp

[

iω

(

t− sinϕ

α
x+

cosϕ

α
z

)]

−→
k 1

−→u ′
1 = ∇× −→Ψ = − iω

α
A0Rps exp

[

iω

(

t− sinϕ′
1

β
x+

cosϕ′
1

β
z

)]

−→
k

′

1 ×−→n .

Fig. 3.27: Polarity of re�eted P- and SV-waves.
Rpp < 0, therefore, means that if the displaement of the re�eted P -wave in apoint on the interfae (z = 0) points in the diretion of −−→k 1, the inident wavepoints in the diretion of −→k 0. For Rps < 0, the displaement of the re�eted SV -wave would, for suh an inident wave, be pointing in the diretion of −−→k ′

1×−→n .These onnetions beome more obvious if we go from the harmoni ase tothe impulsive ase (ompare setion 3.6.3, transition to impulse exitation).For the problem studied, the re�etion oe�ients are frequeny independent.Therefore, the re�eted waves have always the same form as the inident wave
−→u 0 = F

(

t− sinϕ

α
x− cosϕ

α
z

)

−→
k 0 (3.59)

−→u 1 = RppF

(

t− sinϕ

α
x+

cosϕ

α
z

)

−→
k 1 (3.60)
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 81
−→u ′

1 = RpsF

(

t− sinϕ′
1

β
x+

cosϕ′
1

β
z

)

−→
k

′

1 ×−→n (3.61)
ϕ′

1 = arcsin

(

β

α
sinϕ

)

.In the aseRpp < 0, if the �rst motion of the inident P -wave is direted towardsthe interfae z = 0, this also holds for the re�eted SV -wave and the re�etedP -wave; otherwise, the �rst motion of the re�eted P -wave points away fromthe interfae. Fig. 3.28 shows the ase for Rpp < 0.

Fig. 3.28: De�nition of the �rst motion of re�eted P- and SV-waves.Displaements at the surfaeFinally, we ompute the resulting displaement at the free surfae (z=0) inwhih the three waves (3.59), (3.60) and (3.61) superimpose.Horizontal displaement (positive in x -diretion):
u = [(1 +Rpp) sinϕ+Rps cosϕ′

1]F

(

t− sinϕ

α
x

)

u = fu(ϕ)F

(

t− sinϕ

α
x

)

fu(ϕ) =
4γ sinϕ cosϕ

(

γ − sin2 ϕ
)

1
2

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2

(3.62)and Vertial displaement (positive in z -diretion):
w = [(1−Rpp) cosϕ+Rps sinϕ′

1]F

(

t− sinϕ

α
x

)
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82 CHAPTER 3. BODY WAVES
w = fw(ϕ)F

(

t− sinϕ

α
x

)

fw(ϕ) =
2γ cosϕ

(

γ − 2 sin2 ϕ
)

4 sin2 ϕ cosϕ
(

γ − sin2 ϕ
)

1
2 +

(

γ − 2 sin2 ϕ
)2
. (3.63)

The ampli�ation fators (or transfer funtions of the surfae) fu(ϕ) and fw(ϕ),respetively, are given in Fig. 3.29 for the ase γ = 3.

Fig. 3.29: Transfer funtions of the free surfae.Therefore, a linearly polarised wave with the apparent veloity α/ sinϕ propa-gates at the surfae. The polarisation angle ǫ, (see Fig. 3.30), is not identialto the angle of inidene ϕ. ǫ is also alled the apparent angle of inidene.
ǫ = arctan

( u

w

)

= arctan





2 sinϕ
(

γ − sin2 ϕ
)

1
2

γ − 2 sin2 ϕ



 .
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 83

Fig. 3.30: Polarisation angle ǫ and angle of inidene ϕ.
2
π

2
πO

ε=ϕ

ε(ϕ)

ε

ϕFig. 3.31: Qualitative relationship between ǫ and ϕ .
ǫ
(π

2

)

= arctan

(

2 (γ − 1)
1
2

γ − 2

)

ǫ′(0) =
2

γ
1
2

.Inident SV -waveIf a SV -wave, instead of the P -wave onsidered up until now, impinges on thefree surfae, no P -wave is re�eted for angles of inidene ϕ > ϕ∗ = arcsin β
α ,but only an SV -wave (|Rss| = 1) is re�eted. This follows from onsiderationssimilar to that for an inident P -wave. For ϕ < ϕ∗, the displaement at thefree surfae is linearly polarised, but for ϕ > ϕ∗, it is polarised elliptially.
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84 CHAPTER 3. BODY WAVESThis property is observed: SV -waves from earthquakes for distanes smallerthen about 400 are elliptially polarised, but are linearly polarised for largerdistanes.
Fig. 3.32: Polarisation of SV -waves from earthquakes .
3.6.5 Re�etion and refration oe�ients for layered me-diaMatrix formalismIn the last two setions, we studied the re�etion and refration of plane waves atone interfae. The re�etion and refration oe�ients depend, then, mainly onthe properties of the half-spaes and the angle of inidene. Only if the ritialangle is exeeded, a weak frequeny dependene ours: the sign of the phase(the oe�ients beome omplex) is ontrolled by the sign of the frequeny ofthe inident wave (ompare setion 3.6.3). The frequeny dependene beomesmuh more pronouned when the re�etion and refration of plane waves ina (sub-parallel) layered media is onsidered (two or more interfaes). Then,generally, interferene phenomena our and for speial frequenies (or wavelengths) onstrutive or destrutive interferenes our.Here, we will study the re�etion and refration of P -waves from a paket ofliquid layers between two liquid half-spaes. The orresponding problem for SH -waves in solid media an be solved similarly. There is a lose similarity betweenP -waves in layered liquid media and SH -waves in layered solid media. Thetreatment of P-SV-waves in solid media (possibly with interspersed liquid layers)is, in priniple, the same, but the derivation is signi�antly more ompliated.In all these approahes, a matrix formalism is used, whih is espeially e�etivefor implementing on omputers.We hoose the annotation of the liquid-layered medium as given in Fig. 3.33.
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 85

Fig. 3.33: Liquid-layered medium with n layers.The displaement potential Φj in the j -th layer (j = 1, 2, . . . , n) satis�es thewave equation
∂2Φj

∂x2
+
∂2Φj

∂z2
=

1

α2
j

∂2Φj

∂t2
.Solutions of this equation, whih an be interpreted as harmoni plane waves,have the form

exp [i (ωt± kjx± ljz)]with k2
j + l2j = ω/α2

j , where kj is the horizontal, lj the vertial wavenumber,respetively. We assume positive frequenies ω and non-negative horizontalwavenumbers kj . Then, we an disregard the sign �+� of kjx, sine it orre-sponds to waves whih propagate in -x-diretion. This is not possible for ourseletion of the inident wave, (see Fig. 3.33). The two signs of ljz have tobe kept, sine in all layers (exept the n-th) waves propagate in +z - and in-z -diretion. We then ome to the potential ansatz
Φj = Aj exp [i (ωt− kjx− lj(z − zj))] (3.64)

+Bj exp
[

i
(

ωt− k′jx+ l′j(z − zj)
)]

z1 = z2 = 0, k2
j + l2j = k′2j + l′2j =

ω2

α2
j

(3.65)
Bn = 0. (3.66)
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86 CHAPTER 3. BODY WAVESIn (3.64), we have assumed, for the moment, that the wavenumbers of the wavespropagating in +z- and -z-diretion are di�erent. Furthermore, we have replaedz by z − zj . This does not hange the meaning of the terms but simpli�es theomputations.The part A1 exp [i (ωt− k1x− l1z)] of Φ1 will be interpreted as inident P -wave(ompare, e.g., (3.47)). This means that k1 and l1 are onneted with the angleof inidene ϕ as
k1 = ω

α1
sinϕ

l1 = ω
α1

cosϕ.







(3.67)The part B1 exp [i (ωt− k′1x+ l′1z)] of Φ1 is the wave re�eted from the lay-ered half-spae z > 0. We want to ompute the re�etion oe�ient Rpp andthe refration oe�ient Bpp (again de�ned as the ratio of the displaementamplitudes)
Rpp = B1

A1

Bpp = α1

αn
· An

A1
.







(3.68)The boundary onditions for the interfaes z = z2, z3, . . . , zn require ontinuityof the vertial displaement ∂Φ/∂z and of the normal stress pzz = λ∇2Φ =
ρ∂2Φ/∂t2. For z = zj , this gives

∂Φj

∂z =
∂Φj−1

∂z and ρj
∂2Φj

∂t2 = ρj−1
∂2Φj−1

∂t2 .From the �rst relation, it follows that (the phase term eiωt is negleted in thefollowing sine it anels out),
−ljAj exp [−ikjx] + l′jBj exp

[

−ik′jx
]

= −lj−1Aj−1 exp [i (−kj−1x− lj−1dj−1)]

+ l′j−1Bj−1 exp
[

i
(

−k′j−1x+ l′j−1dj−1

)]

.The seond relation gives
ρjAj exp [−ikjx] + ρjBj exp

[

−ik′jx
]

= ρj−1Aj−1 exp [i (−kj−1x− lj−1dj−1)]

+ ρj−1Bj−1 exp
[

i
(

−k′j−1x+ l′j−1dj−1

)]

.Both equations hold for j = 2, 3, . . . , n, and dj−1 = zj−zj−1 (d1 = 0). As before,we require that the exponential terms depending on x must anel, leading to
kj = k′j = kj−1 = k′j−1. This, then, gives (with (3.67))
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 87
k′n = kn = k′n−1 = kn−1 = . . . = k′1 = k1 =

ω

α1
sinϕ.This is an alternative form of Snell's law. With (3.65), this leads to

l′j = lj =

(

ω2

α2
j

− k2
1

)
1
2

=
ω

αj

(

1−
α2

j

α2
1

sin2 ϕ

)
1
2

. (3.69)If sinϕ > α1/αj, lj is imaginary (and even negative imaginary), only then for
j = n is the amplitude of the potentials limited for z → ∞. This leads to thefollowing system of equations, whih onnets Aj and Bj with Aj−1 and Bj−1,respetively

Aj −Bj =
lj−1

lj

[

Aj−1e
−ilj−1dj−1 −Bj−1e

ilj−1dj−1
]

Aj +Bj =
ρj−1

ρj

[

Aj−1e
−ilj−1dj−1 +Bj−1e

ilj−1dj−1
]

.In matrix form, this an be written as (please hek)
(

Aj

Bj

)

=
e−ilj−1dj−1

2ljρj

(

lj−1ρj + ljρj−1 (−lj−1ρj + ljρj−1)e
2ilj−1dj−1

−lj−1ρj + ljρj−1 (lj−1ρj + ljρj−1)e
2ilj−1dj−1

)

·
(

Aj−1

Bj−1

) (3.70)
= mj ·

(

Aj−1

Bj−1

)where mj is the layer matrix.Repeated appliation of (3.70) gives
(

An

Bn

)

= mn ·mn−1 · . . . ·m3 ·m2

(

A1

B1

)

= M

(

A1

B1

)

=

(

M11M12

M21M22

)(

A1

B1

)

.On omputers, the produtM of the layer matriesmn tom2 an be determinedquikly and e�iently. First, the angular frequeny ω and the angle of inidene
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88 CHAPTER 3. BODY WAVES
ϕ are given; then, the lj 's are determined with (3.69), and the matries aremultiplied. This gives the elements of M . From

An = M11A1 +M12B1 and Bn = M21A1 +M22B1with (3.66), it follows that
B1

A1
= −M21

M22
and An

A1
= M11 −

M12M21

M22
.The re�etion oe�ient Rpp and the refration oe�ient Bpp of the layeredmedium, therefore, an be written aording to (3.68) as

Rpp = −M21

M22
and Bpp =

α1

αn

(

M11 −
M12M21

M22

)

. (3.71)Two homogeneous half-spaesIn this very simple ase, it follows (with d1 = 0) that
M = m2 =

1

2l2ρ2

(

l1ρ2 + l2ρ1 −l1ρ2 + l2ρ1

−l1ρ2 + l2ρ1 l1ρ2 + l2ρ1

)and, therefore, aording to (3.71)
Rpp =

−l2ρ1 + l1ρ2

l2ρ1 + l1ρ2

Bpp =
α1

α2

(l1ρ2 + l2ρ1)
2 − (l2ρ1 − l1ρ2)

2

2l2ρ2(l2ρ1 + l1ρ2)
=
α1

α2

2l1ρ1

l2ρ1 + l1ρ2
.With l1 = ω

α1
cosϕ and l2 = ω

α2

(

1− α2
2

α2
1

sin2 ϕ
)

1
2

= ω
α2

cosϕ2 (ϕ2=angle ofrefration), it follows that
Rpp =

ρ2α2 cosϕ− ρ1α1 cosϕ2

ρ2α2 cosϕ+ ρ1α1 cosϕ2

Bpp =
2ρ1α1 cosϕ

ρ2α2 cosϕ+ ρ1α1 cosϕ2(ompare with exerise 3.9). For ϕ = 0 (→ ϕ2 = 0), it follows that
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 89
Rpp =

ρ2α2 − ρ1α1

ρ2α2 + ρ1α1
and Bpp =

2ρ1α1

ρ2α2 + ρ1α1
. (3.72)These are equations that also hold for an interfae between two solid half-spaes.Lamella in full-spaeWe limit our study here to vertial re�etions from a lamella.

0=2z  
α ,ρ11

α2,ρ2

α3=α1 ,ρ3=ρ1

d2=d

x

zFig. 3.34: Lamella of thikness d.In this ase, n = 3, l1 = l3 = ω/α1 and l2 = ω/α2. Then with (3.70) and d1 = 0,
d2 = d

m2 =
α2

2ρ2

( ρ2

α1
+ ρ1

α2
− ρ2

α1
+ ρ1

α2

− ρ2

α1
+ ρ1

α2

ρ2

α1
+ ρ1

α2

)

=
α2

2α1

(

1 + γ −1 + γ
−1 + γ 1 + γ

)

m3 =
α1e

−iω d
α2

2α2

(

1 + γ′ (−1 + γ′)e2iω d
α2

−1 + γ′ (1 + γ′)e
2iω d

α2

)with γ = ρ1α1

ρ2α2
and γ′ = ρ2α2

ρ1α1
= 1

γ . This leads to
M = m3m2 =

e−iω d
α2

4γ

(

(1 + γ)2 − (1− γ)2e2iω d
α2 γ2 − 1 + (1− γ2)e2iω d

α2

1− γ2 + (γ2 − 1)e
2iω d

α2 −(1− γ)2 + (1 + γ)2e
2iω d

α2

)

.We now ompute the re�etion oe�ient Rpp (aording to (3.71))
Rpp = −M21

M22
=

(1− γ2)(1 − e2iω d
α2 )

(1− γ)2 − (1 + γ)2e
2iω d

α2

= R0
1− e−2iω d

α2

1−R2
0e

−2iω d
α2

(3.73)with
R0 =

1− γ
1 + γ

=
ρ2α2 − ρ1α1

ρ2α2 + ρ1α1
.
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90 CHAPTER 3. BODY WAVES
R0, aording to (3.72), is the re�etion oe�ient of the interfae z = 0. Forrelatively small re�etion oe�ients R0, whih are typial for disontinuities inthe Earth (|R0| < 0.2), one an write as a good approximation

Rpp = R0

(

1− e−2iω d
α2

)

. (3.74)Disussion of Rpp

Rpp, in the form of (3.73) or (3.74), is zero for angular frequenies ω, for whih
2ω d

α2
is an even multiple of π. With the frequeny ν and the wave length Λ inthe lamella (α2 = νΛ), the ondition for destrutive interferene is

d

Λ
=

1

2
, 1,

3

2
, 2, . . . (3.75)The lamella has to have a thikness of a multiple of the half wave-length sothat in re�etion destrutive interferene ours with Rpp = 0. In this aserefrations show onstrutive interferene.Aording to (3.74), Rpp is maximum (|Rpp| = 2 |R0|) if 2ω d

α2
is an unevenmultiple of π. Then

d

Λ
=

1

4
,
3

4
,
5

4
,
7

4
, . . . (3.76)In this ase, the waves interfere onstrutively for re�etion and destrutivelyfor refration.The periodiity of Rpp, visible in (3.75) and (3.76), holds generally so

Rpp

(

ω + n
α2π

d

)

= Rpp(ω), n = 1, 2, 3, . . .To onlude, we disuss how the re�etion from a lamella looks for an impul-sive exitation. We assume that the vertially inident P -wave has the vertialdisplaement w0 = F
(

t− z
α1

) and that F (ω) is the spetrum of F (t). Thevertial displaement w1 of the re�eted wave is then (ompare setion 3.6.3)
w1 =

1

2π

∫ +∞

−∞

Rpp(ω)F (ω)e
iω
(

t+ z
α1

)

dω (3.77)with Rpp(ω) from (3.73). In pratise, integral (3.77) is omputed numerially,sine fast numerial methods for Fourier analysis exist and omputation ofthe spetrum from the time funtion ( F (ω) from F (t)) and Fourier synthesis,i.e., omputation of the time funtion from its spetrum (w1 from its spetrum
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3.6. REFLECTION AND REFRACTION OF PLANE WAVES ... 91
Rpp(ω)F (ω)eiωz/α1). Suh numerial methods are known as Fast Fourier trans-form (FFT).Insight into the proesses ourring during re�etion, the topi of this hapter,an be ahieved as follows: we expand (3.73) (whih due to R2

0 < 1 alwaysonverges)and get
Rpp(ω) = R0

(

1− e−iω 2d
α2

)

∞
∑

n=0

(

R2
0e

−iω 2d
α2

)n

= R0 −R0

(

1−R2
0

)

e
−iω 2d

α2 −R3
0

(

1−R2
0

)

e
−iω 4d

α2 (3.78)
−R5

0

(

1−R2
0

)

e
−iω 6d

α2 − . . .Substitution of this into (3.77) and taking the inverse transform of eah elementgives
w1 = R0F

(

t+
z

α1

)

−R0

(

1−R2
0

)

F

(

t+
z

α1
− 2d

α2

) (3.79)
− R3

0

(

1−R2
0

)

F

(

t+
z

α1
− 4d

α2

)

−R5
0

(

1−R2
0

)

F

(

t+
z

α1
− 6d

α2

)

− . . .The �rst term is the re�etion from the interfae z = 0. Its amplitude, asexpeted, is the re�etion oe�ient R0 of this interfae. The seond termdesribes a wave whih is delayed by twie the travel time through the lamella,thus, orresponding to the re�etion from the interfae z = d. Its amplitude hasthe expeted size; the re�etion oe�ient of this interfae is −R0. The produtof the re�etion oe�ients of the interfae z = 0 for waves travelling in +z−and −z−diretion, 2ρ1α1/(ρ2α2 +ρ1α1) and 2ρ2α2/(ρ1α1 +ρ2α2), is 1−R2
0. Inthe same way, the third and fourth term of (3.79) an be interpreted as multiplere�etions within the lamella (with three and �ve re�etions, respetively). Theterms in (3.79) orrespond to the rays shown in Fig. 3.35.

=z  d

0=z  Fig. 3.35: Re�eted and multiple re�eted rays in a lamella.Equation (3.79) is a deomposition of the re�eted wave �eld in (in�nite many)ray ontributions. It is fully equivalent to (3.77).
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92 CHAPTER 3. BODY WAVESThe approximation (3.74) for Rpp(ω) orresponds to the trunation of the ex-pansion in (3.78) after the term for n = 0 and, therefore, the limitation on thetwo primary re�etions from the interfaes z = 0 and z = d, respetively (andnegleting R2
0 relative to 1).Exerise 3.10Show that for the refration oe�ient in (3.71), it holds that

Bpp =
α1

αn

detM

M22
with detM =

l1ρ1

lnρn
.Apply this formula in the lamella, in ases in whih (3.75) and (3.76) hold.Exerise 3.11The P -veloity of the lamella is larger then that of the surrounding medium:

α2 > α1. Does then total re�etion our? Disuss this qualitatively.3.7 Re�etivity method: Re�etion of spherialwaves from layered media3.7.1 TheoryThe results of setion 3.6.5 an, with relative ease, be extended to the exitationby spherial waves. For simpli�ation of representation, we again assume thatwe deal, at the moment, only with P -waves in liquids.

Fig. 3.36: Explosive point soure over liquid, layered medium.
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3.7. REFLECTIVITY METHOD: REFLECTION OF ... 93The spherial waves are exited by an explosion point soure loated at highth above the layered medium. The displaement potential of this soure forharmoni exitation is (ompare setion 3.4)
Φ1e =

1

R
e

iω
(

t− R
α1

) (3.80)with R2 = r2 + (z + h)2. Beause of the symmetry under rotation around thez -axis, ylindrial oordinates r and z are used. The wave equation for thepotential Φj in the j -th layer is
∂2Φj

∂r2
+

1

r

∂Φj

∂r
+
∂2Φj

∂z2
=

1

α2
j

∂2Φj

∂t2
. (3.81)Elementary solutions of this equation are (please hek)

J0(kr) exp [i (ωt± lj (z − zj))] with k2 + l2j =
ω2

α2
j

, lj =

(

ω2

α2
j

− k2

)
1
2 (3.82)(ompare setion 3.6.5 for notation). J0(kr)is the Bessel funtion of �rst kindand zeroth order (ompare appendix C).Equation (3.82) is an analogue to the solutions e−ikjx ·ei(ωt±lj(z−zj)) of the waveequation ∂2Φj/∂x

2+∂2Φj/∂z
2 = (1/α2

j)∂
2Φj/∂t

2 disussed in the last hapter.In (3.82), the index j of the horizontal wavenumber k has been dropped, sinek is a parameter over whih one an integrate (furthermore, it was shown insetion 3.6.5 that all kj 's are idential).With (3.82), the funtions
∫ ∞

0

f(k)J0(kr)e
i(ωt±lj (z−zj))dk (3.83)are also solutions of (3.81) if the integral onverges. Thus, we ome to thepotential ansatz

Φj =

∫ ∞

0

J0(kr)
{

Aj(k)e
i(ωt−lj(z−zj)) +Bj(k)e

i(ωt+lj(z−zj))
}

dk. (3.84)Note the lose relation of (3.84) to (3.64). Whether this ansatz atually has asolution, depends �rstly, if Φ1e from (3.80) an be represented in the integralform (3.83) and seondly, if Φj in (3.84) satis�es the boundary onditions for
z = z2, z3, . . . zn.
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94 CHAPTER 3. BODY WAVESThe �rst requirement is satis�ed sine the following integral representation isvalid (Sommerfeld integral, ompare appendix D)
1

R
e

iω
(

t− R
α1

)

=

∫ ∞

0

J0(kr)
k

il1
ei(ωt−l1|z+h|dk. (3.85)We, therefore, an interpret the �rst part

∫ ∞

0

J0(kr)A1e
i(ωt−l1z)dk (3.86)of Φ1 (with z1 = 0) as the inident wave (see also setion 3.6.5) Φ1e (the seondpart is the re�eted wave Φ1r). We have to ompare (3.85) and (3.86) forloations in whih the spherial wave passes on inidene at the interfae z = 0,i.e., for −h < z ≤ 0. In this ase, |z + h| = z + h and the omparison gives

A1(k) = (k/il1)e
−il1h.The boundary onditions for the interfaes an be taken from setion 3.6.5. Thepotentials (3.84) are di�erentiated under the integral. The identity followingfrom the boundary onditions is only satis�ed for all r, if the integrands areidential. This leads to the same system of equations for Aj(k) and Bj(k) asin setion 3.6.5, i.e., (3.70). In ontrast to the previous setion, the vertialwavenumbers lj have to be onsidered now as funtions of k (and not of theangle of inidene ϕ). k and ϕ are onneted via

k =
ω

α1
sinϕ. (3.87)Following setion 3.6.5, the re�etion oe�ient Rpp = B1/A1 = −M21/M22 hasbeen omputed as a funtion of the angular frequeny ω and angle of inidene

ϕ;; then the dependene on k an be introdued via (3.87): Rpp = Rpp(ω, k).The seond part of Φ1, the re�eted wave, an then be written as
Φ1r =

∫ ∞

0

J0(kr)A1(k)Rpp(ω, k)e
i(ωt+l1z)dk

=

∫ ∞

0

k

il1
J0(kr)Rpp(ω, k)e

i(ωt+l1(z−h))dk.The orresponding vertial displaement is
w1r(r, z, ω, t) =

∂Φ1r

∂z
= eiωt

∫ ∞

0

kJ0(kr)Rpp(ω, k)eil1(z−h)dk (3.88)and the horizontal displaement (with J ′
0(x) = −J1(x))
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3.7. REFLECTIVITY METHOD: REFLECTION OF ... 95
u1r(r, z, ω, t) =

∂Φ1r

∂r
= eiωt

∫ ∞

0

−k2

il1
J1(kr)Rpp(ω, k)eil1(z−h)dk. (3.89)The integrals in (3.88) and (3.89) are best omputed numerially, espeially,in the ase of many layers. For solid media, (3.88) and (3.89) also hold, butthe re�etion oe�ient Rpp(ω, k) is more ompliated than for liquid mediaand w1r and u1r desribe only the ompressional part of the re�etion from thelayered half-spae z ≥ 0. For the shear part, similar results hold, whih onlynow ontain the re�etion oe�ients Rps(ω, k).The transition to impulse exitation

Φ1e =
1

R
F

(

t− R

α1

)instead of (3.80) is relatively simple (see setion 3.6.3). If F (ω) is the spetrumof F (t), it holds that
Φ1e =

1

2πR

∫ +∞

−∞

F (ω)e
iω
(

t− R
α1

)

dω.The orresponding displaements of the re�eted wave are
W1r(r, z, t)
U1r(r, z, t)

}

= 1
2π

∫ +∞

−∞ F (ω)

{

w1r(r, z, ω, t)
u1r(r, z, ω, t)

}

dω (3.90)with w1r from (3.88) and u1r from (3.89). The integrals in (3.88) and (3.89),multiplied by F (ω), are, therefore, the Fourier transforms of the displaement.The numerial omputation of (3.88), (3.89) and (3.90) is alled the Re�etivitymethod ; it is a pratial approah for the omputation of theoretial seismogramsof body waves. With it, the amplitudes of body waves from explosions andearthquakes an be studied, thus, progressing beyond the more lassial traveltime interpretation.3.7.2 Re�etion and head wavesAn example for theoretial seismograms is given in Fig. 3.37 (from K. Fuhs:The re�etion of spherial waves from transition zones with arbitrary depth-depended elasti moduli and density. Journ. of Physis of the Earth, vol. 16,Speial Issue, S. 27-41, 1968). It is the result for a simple model of the rust,assumed to be homogeneous. The point soure and the reeivers are at theEarth's surfae; the in�uene of whih has been negleted here. The transition
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



96 CHAPTER 3. BODY WAVESof the rust to the upper mantle (Mohorovi£i¢-zone, short Moho) is a �rstorder disontinuity, i.e., the wave veloities and the density hange abruptly(for a disontinuity of 2nd order these parameters would still be ontinuous, buttheir derivative with depth would have a jump).

Fig. 3.37: Syntheti seismogram for re�etion and refration from a 1st orderdisontinuity (from K. Fuhs, 1968, Journ. of Physis of the Earth).The dominant wave is the re�etion from the Moho. For distanes from thesoure beyond the ritial point r∗ = 74.91 km, orresponding to the ritialangle of inidene ϕ∗, the �rst onset is the head wave with the apparent veloityof 8.2 km/se. Its amplitude deays rapidly with inreasing distane, and itsform is the time integral of the re�etion for r < r∗. For pre-ritial distane
r, the form of the re�etion is pratially idential to that of the inident wave.At the ritial point, it begins to hange its form. This was already disussedin setion 3.6.3 in terms of the properties of the re�etion oe�ient for planewaves (this holds for P- and SH-waves, respetively). For large distanes, theimpulse form is roughly opposite to that for r < r∗. This is also expeted,sine the re�etion oe�ient Rpp for the angle of inidene ϕ = π/2 is equalto −1 (for liquids, this follows from the formulae given in setion 3.5.6). Theamplitude behaviour of the re�etion is relatively similar to the trend of theabsolute value |Rpp| of the re�etion oe�ient, if |Rpp| is divided by the path
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3.7. REFLECTIVITY METHOD: REFLECTION OF ... 97length and if one onsiders the vertial omponent (see, e.g., Fig. 3.22 andorresponding equations). The main disrepanies are near the ritial point.Aording to |Rpp|, the re�eted wave should have its maximum diretly at theritial point, whereas in reality, it is shifted to larger distanes. This shift islarger, the lower the frequeny of the inident wave.

Fig. 3.38: Re�etion amplitude versus o�set as a funtion of frequeny.The onsideration of this shift is important when determining the ritial pointfrom observed re�etions, e.g., in re�etion seismis.
3.7.3 Complete seismogramsFig. 3.39 shows the potential of the re�etivity method. This shows ompleteSH -seismograms for a pro�le at the surfae of a realisti Earth model. Thesoure is a horizontal single fore at the Earth's surfae, ating perpendiularto the pro�le. The dominant period is 20 se. The most pronouned phases arethe dispersive Love waves (for surfae waves, see hapter 4), whose amplitudesare mostly lipped. The propagation paths of the largest body wave phases(mantle wave S and SS, ore re�etion SS and di�ration at the ore Sdiff arealso skethed.) A detailed desription of the re�etivity method is given in G.Müller: The re�etivity method: A tutorial, Journ. eophys,., vol. 58, 153-174,1985.
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98 CHAPTER 3. BODY WAVES

Fig. 3.39: Complete SH -seismograms for a pro�le at the surfae of a realistiEarth model.3.8 Exat or generalised ray theory - GRTWe ontinue the hapter on elasti body waves with the treatment of re�etionand refration of ylindrial waves radiated from a line soure and re�etedand refrated at a plane interfae whih is parallel to the line soure. Thisproblem is more simple and less pratial than the ase onsidered in setion3.7 of a point soure over a layered medium. On the other hand, we will learna totally di�erent way of treating wave propagation whih leads to relativelysimple analytial (and not only numerially solvable) results. This is the mainaim of this setion. This method, originally developed by Cagniard, de Hoopand Garvin (see, e.g., W.W. Garvin: Exat transient solution of the buried linesoure problem, Pro. Roy. So. London, Ser. A, vol 234, pg. 528-541, 1956),an also be applied for layered media and be modi�ed for point soures. Inthat form it is, similar to the re�etivity method, usable for the omputation oftheoretial body-wave seismograms in the interpretation of observations.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 99Again, we limit ourselves to treat the problem of a liquid model (see Fig. 3.40),sine we an then study the main ideas with a minimum of omputation.
Fig. 3.40: Explosive line soure in a liquid medium.We work with the displaement potentials Φ1 = Φ1e + Φ1r in half-spae 1
(Φ1e = inident,Φ1r = re�eted P − wave) and Φ2 in half-spae 2. The threepotentials satisfy the wave equations

∇2Φ1e,r =
1

α2
1

∂2Φ1e,r

∂t2
, ∇2Φ2 =

1

α2
2

∂2Φ2

∂t2
. (3.91)The Laplae transform of these equations gives

∇2ϕ1e,r =
s2

α2
1

ϕ1e,r and ∇2ϕ2 =
s2

α2
2

ϕ2, (3.92)where ϕ1e, ϕ1r and ϕ2 are the transforms of Φ1e,Φ1r and Φ2, respetively, and
s is the transform variable (see appendix A). We assume that the P -wave startsat time t=0 at the line soure. Therefore, the initial values of Φ1e,Φ1r and Φ2,and their time derivatives for t=+0, are zero outside the line soure. The timederivatives have to be onsidered in the seond derivative with respet to t in(3.91).3.8.1 Inident ylindrial waveFirst, we have to study the inident wave. Sine the line soure is explosive andhas, therefore, ylindrial symmetry around its axis, it holds that

∇2ϕ1e =
∂2ϕ1e

∂R2
+

1

R

∂ϕ1e

∂R
=
s2

α2
1

ϕ1e (3.93)with R2 = x2 + (z + h)2. The solution of (3.93), whih an be interpreted as aylindrial wave in +R diretion, is
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100 CHAPTER 3. BODY WAVES
ϕ1e = f(s)

1

s
K0(

R

α1
s), (3.94)where f(s) is the Laplae transform of an arbitrary time funtion F(t) and

K0(
R
α1
s) is one of the modi�ed Bessel funtions of zeroth order.Proof: Using the substitution x = Rs

α1
, (3.93) an be expressed as the di�erentialequations of the modi�ed Bessel funtion

x2 d
2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0.In the ase onsidered here, n=0. The di�erential equation has two independentlinear solutions, K0(x) and I0(x), respetively. For real x, Fig. 3.41 shows theirqualitative behaviour.

I0 (x)

K0 (x)

1 2 30

1

2

3

0
xFig. 3.41: Behaviour of linear solutions K0(x) and I0(x).This shows that only K0(x) is a possible solution, sine I0(x) grows in�nitelyfor x→∞. (Referene: M. Abramovitz and I.A. Stegun: Handbook of Mathe-matial Funtions, H. Deutsh, Frankfurt, 1985).Taking the inverse Laplae transform of (3.94) in the time domain, and usingthe orrespondene

f(s) •−◦ F (t) (F (t) ≡ 0 for t < 0)

1

s
K0

(

R

α1
s

)

•−◦
{

0 for t < R/α1

cosh−1(α1t
R ) for t > R/α1with a typial behaviour of the solution given in Fig. 3.42;
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 101
R/α1 tFig. 3.42: Behaviour of the solution.the potential an be written as

Φ1e =

∫ t

R/α1

F (t− τ) cosh−1(
α1τ

R
)dτ (t ≥ R/α1). (3.95)By varying F(t), the ylindrial wave an be given di�erent time dependen-ies. Equation (3.95) is the analogue to the potential Φ1e = 1

RF
(

t− R
α1

) of aspherial wave from an explosive point soure.In the following, we treat the speial ase F (t) = δ(t), for whih all importante�ets an be studied. If realisti exitations have to be treated, the resultsfor the potentials and displaements of the re�eted and di�rated waves, re-spetively, derived with time dependent F (t) = δ(t), have to be onvolved withrealisti F(t). For F (t) = δ(t)

Φ1e = cosh−1(
α1t

R
),and the orresponding radial displaement in R-diretion is

UR =
∂Φ1e

∂R
= − t

R
(

t2 − R2

α2
1

)1/2
(t >

R

α1
). (3.96)

Fig. 3.43: Displaement in R diretion.
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102 CHAPTER 3. BODY WAVESThe orresponding point soure results are
Φ1e =

1

R
H

(

t− R

α1

)

UR =
∂Φ1e

∂R
= − 1

R2
H

(

t− R

α1

)

− 1

Rα1
δ

(

t− R

α1

)

.

Fig. 3.44: Displaement in R diretion.3.8.2 Wavefront approximation for URIf we write (3.96) as
UR =

−t

R
(

t+ R
α1

)1/2 (

t− R
α1

)1/2
,and onsider values of t near R

α1
, we �nd the approximation

UR ≈
−1

(2Rα1)
1/2
· 1
(

t− R
α1

)1/2
. (3.97)This approximation is more aurate the loser t is to R/α1, and, therefore,this is alled wavefront approximation. It is more aurate for large R, and itis, therefore, also the far-�eld approximation of the ylindrial wave.Within the framework of the wavefront approximation (3.97), the impulse formof the ylindrial wave is independent from R, and its amplitude is proportionalto R−1/2. Both statements beome espeially obvious if (3.97) is onvolvedwith realisti exitation funtions F (t). The singularity in (3.96) and (3.97) isintegrable.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 1033.8.3 Re�etion and refration of the ylindrial waveThe oordinates most appropriate for the study of re�etion and refration arethe Cartesian oordinates x and z. Equation (3.92), then, takes the form
∂2ϕ

∂x2
+
∂2ϕ

∂z2
=
s2

α2
ϕ.Appropriate elementary solutions have the form cos(kx) exp(±imz) with k2 +

m2 = −s2/α2. From these elementary solutions, more ompliated solutions inintegral form (similar to setion 3.7.1) an be onstruted
ϕ =

∫ ∞

0

f(k) cos(kx)e±imzdk,with whih we an try to satisfy �rstly, the potential (3.94) of the inidentwave, and seondly, the boundary onditions for z = 0. Spei�ally, we use thefollowing ansatz
ϕ1e =

∫∞

0 A1(k) cos(kx)e−im1zdk (z > −h)

ϕ1r =
∫∞

0 B1(k) cos(kx)eim1zdk

ϕ2 =
∫∞

0 A2(k) cos(kx)e−im2zdk























(3.98)
m1,2 = −i

(

k2 +
s2

α2
1,2

)1/2

(negative imaginary for positive radiands).ForK0

(

R
α1
s
) in (3.94) an integral representation, similar to (3.85) for the spher-ial wave, an be found. With this ϕ1e (with f(s)=1, sine F (t) = δ(t)) it followsthat

ϕ1e =
1

s

∫ ∞

0

1
(

k2 + s2

α2
1

)1/2
cos(kx) exp

[

− |z + h|
(

k2 +
s2

α2
1

)1/2
]

dk. (3.99)A omparison with ϕ1e from (3.98) for z>-h gives
A1(k) =

e−im1h

ism1
.
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104 CHAPTER 3. BODY WAVESThe boundary onditions for z=0 are (ompare setion 3.6.5)
∂

∂z
(Φ1e + Φ1r) =

∂Φ2

∂z
, ρ1

∂2

∂t2
(Φ1e + Φ1r) = ρ2

∂2Φ2

∂t2
.The Laplae transform gives

∂

∂z
(ϕ1e + ϕ1r) =

∂ϕ2

∂z
, ρ1 (ϕ1e + ϕ1r) = ρ2ϕ2.From (3.98), it follows that

m1 (A1(k)−B1(k)) = m2A2(k)

ρ1 (A1(k) +B1(k)) = ρ2A2(k),and from this
B1(k) = Rpp(k)A1(k) and A2(k) = Bpp(k)A1(k).Thus,

Rpp(k) =
ρ2m1 − ρ1m2

ρ2m1 + ρ1m2
and Bpp(k) =

2ρ1m1

ρ2m1 + ρ1m2
. (3.100)The potentials ϕ1r and ϕ2 are, therefore,

ϕ1r =

∫ ∞

0

A1(k)Rpp(k) cos(kx)eim1zdk

ϕ2 =

∫ ∞

0

A1(k)Bpp(k) cos(kx)e−im2zdk.The Laplae transforms w and u of the vertial and horizontal displaement Wand U, respetively, an, in general, be written as w = ∂ϕ
∂z and u = ∂ϕ

∂xand spei�ally
w1r

u1r

}

=
∫∞

0
Rpp(k)
sim1

{

im1 cos(kx)
−k sin(kx)

}

e−im1(h−z)dk

w2

u2

}

=
∫∞

0
Bpp(k)
sim1

{

−im2 cos(kx)
−k sin(kx)

}

e−i(m2z+m1h)dk.















(3.101)
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 105These Laplae transforms must now be transformed bak. This is impossiblewith (A.9) in appendix A. One, rather, uses an approah that is based in trans-forming (3.101) several times with funtion theory methods until the integralsare of the form
w
u

}

=
∫∞

0 Z(t)e−stdt. (3.102)The inverse { W (t)
U(t)

}

= Z(t) an then be identi�ed diretly.An important limitation has to be mentioned �rst: we only onsider positivereal s, i.e., we do not onsider the whole onvergene half-plane of the Laplaetransform, but only the positive real axis. This simpli�es the omputationssigni�antly, without limitation of its generality, sine the Laplae transform isan analytial funtion. It is, therefore, determined in the whole onvergenehalf-plane by its values on the real axis, where the integral (3.101) is real.With cos(kx) = Re(e−ikx) and sin(kx) = Re(ie−ikx), (3.101) an be written as
w1r

u1r

}

= Re
∫∞

0
Rpp(k)

sm1

{

m1

−k

}

e−i(kx+m1(h−z))dk

w2

u2

}

= Re
∫∞

0
Bpp(k)

sm1

{

−m2

−k

}

e−i(kx+m1h+m2z)dk















. (3.103)The next step is a hange of the integration variables
u =

ik

sso that the integration path is now along the positive imaginary u-axis. Thetransformation of the square root m1,2 gives
m1,2 = −i

(

−s2u2 +
s2

α2
1,2

)1/2

= −is
(

−u2 + α−2
1,2

)1/2

= −s
(

u2 − α−2
1,2

)1/2
= −sa1,2with

a1,2 =
(

u2 − α−2
1,2

)1/2
. (3.104)The transformed integration path is, therefore, in the sheet of the Riemannplane of the square root a1,2, in whih a1,2 ≃ u for |u| → ∞ holds (and not inthe sheet with a1,2 ≃ −u). Introduing (3.104) in (3.100), gives
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106 CHAPTER 3. BODY WAVES
Rpp(u) =

ρ2a1 − ρ1a2

ρ2a1 + ρ1a2
and Bpp(u) =

2ρ1a1

ρ2a1 + ρ1a2
. (3.105)With k = −isu and dk = −isdu, it follows from (3.103)

w1r

u1r

}

= Re

∫ +i∞

0

Rpp(u)

{

−i
− u

a1

}

e−s(ux−ia1(h−z))du (3.106)
w2

u2

}

= Re

∫ +i∞

0

Bpp(u)

{

ia2

a1

− u
a1

}

e−s(ux−ia1h−ia2z)du. (3.107)These expressions already have a ertain similarity with (3.102) sine s onlyours in the exponential term. The next step is, therefore, a new hange in theintegration variablein (3.106)
t = ux− ia1(h− z) (3.108)in (3.107)
t = ux− ia1h− ia2z. (3.109)From both equations, u has to be determined as a funtion of t and has tobe inserted in (3.106) and (3.107), respetively. This will be disussed laterin more detail. At the same time, the integration path has to be transformedaordingly. For u = 0, it follows from (3.108) and (3.109), respetively, that

t(0) = t0 = h−z
α1

t(0) = t0 = h
α1

+ z
α2
.

} (3.110)The transformed integration paths C1 (for (3.106)) and C2 (for (3.107)), re-spetively, start on the positive real t-axis. For u → +i∞, they approah anasymptote in the �rst quadrant whih passes through the entre of the oor-dinate system and has the slope tan γ = x/(h − z) (for the ase (3.108)) and
tan γ = x/(h + z) (for the ase (3.109)). In (3.108), z is always negative in(3.109) always positive. The transformed integration paths are shown in Fig.3.45.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 107

Fig. 3.45: Transformed integration paths.In the ase of the re�eted wave (left in Fig. 3.45), C1 is part of a hyperbola;in the ase of the refrated wave, C1 is part of a urve of higher order whih issimilar to a hyperbola. We then get
w1r

u1r

}

= Re

∫

C1

Rpp(u(t))

{

−i
− u(t)

a1(u(t))

}

du

dt
e−stdt (3.111)

w2

u2

}

= Re

∫

C2

Bpp(u(t))

{

ia2(u(t))
a1(u(t))

− u(t)
a1(u(t))

}

du

dt
e−stdt. (3.112)The last step is now to deform the paths C1 and C2 towards the real axis a-ording to Cauhy's integral. The path C1,2 an now be replaed by the path

C1,2 + C′
1,2 in Fig. 3.46 if no poles of the integrands in (3.111) and (3.112) areloated inside the two paths.

t0

C1,2

C’1,2

C1,2

Re t

tIm

Fig. 3.46: Integration paths in the omplex plane.
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108 CHAPTER 3. BODY WAVESThis is satis�ed beause the only singularities of a1 and a2 are the branh points
u = ±α−1

1 and u = ±α−1
2 , respetively, and these branh points are integrablesingularities and not poles. Finally, the ontribution of the urve C′

1,2 goes tozero if its radius beomes in�nite. Thus,
w1r

u1r

}

=

∫ ∞

h−z
α1

Re

[

Rpp(u(t))

{

−i
− u(t)

a1(u(t))

}

du

dt

]

e−stdt

+

∫
h−z
α1

0

[0] e−stdt (3.113)
w2

u2

}

=

∫ ∞

h
α1

+ z
α2

Re

[

Bpp(u(t))

{

ia2(u(t))
a1(u(t))

− u(t)
a1(u(t))

}

du

dt

]

e−stdt

+

∫ h
α1

+ z
α2

0

[0] e−stdt. (3.114)In these expressions, only the real part of the square brakets has to be onsid-ered sine e−st is real and the integration is only over real t. The addition of theseond integral with vanishing ontribution was only done for formal reasons, toallow integration over t from 0 to∞ aording to (3.102). Equation (3.113) and(3.114) have, therefore, the standard form of a Laplae transform, from whihthe original funtion an be read diretly. The displaements W1r and U1r ofthe re�eted wave are, therefore, zero between the time 0 and (h−z)/α1. This isnot surprising sine (h− z)/α1 is the travel time from the soure perpendiulardown to the re�eting interfae and bak to level z of the soure. This timeis, therefore, smaller, or at most equal, to the travel time of the �rst re�etedonsets at this point. For t > (h− z)/α1 it holds that
W1r

U1r

}

= Re

[

Rpp(u(t))

{

−i
− u(t)

a1(u(t))

}

du

dt

] (3.115)with u(t) from (3.108).Similarly, the displaements W2 and U2 of the di�rated wave for 0 ≤ t <
h/α1 + z/α2 are zero, and for t > h/α1 + z/α2, it holds that

W2

U2

}

= Re

[

Bpp(u(t))

{

ia2(u(t))
a1(u(t))

− u(t)
a1(u(t))

}

du

dt

] (3.116)with u(t) from (3.109).All that is needed to alulate these relatively simple algebrai funtions, is thesolutions of (3.108) and (3.109), with respet of u as a funtion of real times
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 109
t > t0 (from (3.110)) and the knowledge of the derivative du

dt . In the ase of(3.108), this is very easy sine here u an be given expliitly
u(t) =







x

R
2 t− h−z

R
2

(

t21 − t2
)

1
2 for h−z

α1
≤ t ≤ t1 = R

α1

x

R
2 t+ ih−z

R
2

(

t2 − t21
)

1
2 for t > t1.

(3.117)
R =

(

x2 + (h− z)2
)1/2 is the distane of the soure point from its mirror image,i.e., from the point with the oordinates x = 0 and z = +h; t1 = R/α1 is,aording to Fermat's priniple, the travel time of the atual re�etion from theinterfae. The urve of u(t) is given in Fig. 3.47. The derivative du/dt an beomputed diretly from (3.117). It has a singularity at t = t1.

Fig. 3.47: The path of u(t) in the omplex plane.In the ase of the refrated wave, u(t) has to be omputed numerially with asimilar urve as for the re�eted wave (Fig. 3.47).

Fig. 3.47: The path of u(t) for the refrated wave in the omplex plane.
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110 CHAPTER 3. BODY WAVESThe numerial omputations of u(t), and its derivative, are possible withouta large e�ort. In the following setion, we fous on the re�eted wave using(3.115) and (3.117).3.8.4 Disussion of re�eted wave typesWe assume that the P -veloity in the lower half-spae is larger than that ofthe upper half-spae ontaining the line soure; α2 > α1. First, we onsiderreeivers P (x, z) for whih u(t1) = x/(Rα1) < α−1
2 . Sine x/R = sinϕ (ϕ=angle of inidene), this means that sinϕ < α1/α2 = sinϕ∗ (ϕ∗= ritial angleof inidene), and this implies pre-ritial inidene of the ylindrial wave.

Fig. 3.49: Sketh for line soure and its mirror point.In this ase, u(t) for t < t1 is smaller than α−1
2 and, thus, even smaller than α−1

1 .Therefore, a1(u(t)) and a2(u(t)), aording to (3.104), are positive imaginary,and Rpp(u(t)), aording to (3.105), is real. Sine du/dt is real for the timesonsidered, it follows with (3.115) that the real part of the square brakets for all
t < t1 is zero. For t > t1, u(t) beomes omplex, and the real part is non-zero.Not surprisingly, the displaement, therefore, starts at t = t1.If α1 < α2, this argument holds for arbitrary reeiver loations in the upperhalf-spae.If u(t1) = x/(Rα1) > α−1

2 , the angle of inidene ϕ is larger than the angle ϕ∗,and we expet a head wave as the �rst onset. In this ase, a2(u(t)) beomesreal at the time t2 whih is de�ned via u(t2) = α−1
2 . The same does not hold for

a1(u(t)). Thus, Rpp(u(t)) has non-zero real and imaginary parts for t > t2, and,therefore, (3.115) is already non-zero for t > t2. Putting u = α−1
2 in (3.108), itfollows that

t2 =
x

α2
+ (h− z)(α−2

1 − α−2
2 )

1
2 < t1.
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3.8. EXACT OR GENERALISED RAY THEORY - GRT 111This is the arrival time of the head wave as expeted aording to Fermat'spriniple for the ray path from Q to P(x,z) in Fig. 3.50.
Fig. 3.50: Path of head wave from soure Q to reeiver P.Considering this ase at time t = t1, we expet, due to the sudden hange in theurve on whih u(t) propagates, signi�ant hanges in the displaement (3.115),i.e., that the re�etion proper gives a signi�ant signal, and this is somethingwhih indeed an be observed.Our derivation has shown that the head wave, and also the re�etion, an bederived from the potential Φ1r, i.e., no separate desription was neessary for thehead wave. If we had studied solid media, we, possibly, ould have identi�eda seond arrival whih is an additional interfae or boundary wave (P to Sonversion) (ompare, e.g., the work by Garvin quoted earlier). In setion 3.7(see head wave in Fig. 3.37), we enountered a similar situation in that thehead wave was inluded in the solution. Both methods (re�etivity method insetion 3.7 and GRT this setion) give a omplete solution unless simpli�ationsfor numerial reasons are introdued.

Fig. 3.51: Sketh of the displaement (in horizontal and vertial diretion) forpre-ritial (left) and post-ritial (right) inidene, respetively.
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112 CHAPTER 3. BODY WAVESFor t → ∞, the limit of the displaement is non-zero, as for the ase of the in-ident wave (ompare (3.96)). The singularities at t = t1 are always integrable.Therefore, onvolution with a realisti exitation funtion F(t) is always possi-ble. On the right side of Fig. 3.51, the displaement starts before the re�etionproper arriving at t1. Fermat's priniple, therefore, does not give exatly thearrival time of the �rst onset in the ase where the re�etion is not the �rstarrival.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 113Fig. 3.52: Theoretial seismograms (vertial displaement) for a rustal model.Parameters: α1 = 6, 4km/s, α2 = 8, 2 km/s, ρ1 = 3, 0 g/m3, ρ2 = 3.3 g/m3,h = 30 km, z = −30 km. On the left, the exat seismograms (GRT) andon the right a wavefront approximation is shown. From G. Müller: Exatray theory and its appliation to the re�etion of elasti waves from vertiallyinhomogeneous media, Geophys. Journ. R.A.S. 21, S. 261-283, 1970.For realisti F(t), this disrepany is usually small. A full example using thetheory of this setion, is given in Fig. 3.50b. For a desription of the di�erentwave types et., see also setion 3.7.2.In the ase of a layered medium with more than one interfae, the wave �eld anbe broken into separate ray ontributions, as was done for the lamella in setion3.6.5. For eah ray ontribution, a formula of the type of (3.115) or (3.116) anbe given, whih an ontain head or boundary wave ontributions. This is thereason for the name "exat or generalised ray theory". Another ommon nameis the "Cagniard-de Hoop-method".Exerise 3.12:Give wavefront approximations for the re�eted wave and head wave, i.e., ex-pand (3.115) around the arrival times t1 (of the re�etion) and t2 (of the headwave), respetively. Distinguish between slowly varying ontributions, whihan be replaed by their values for t = t1 and t = t2, respetively, and rapidlyvarying terms, whih depend on t− t1, t1 − t and t− t2, respetively.3.9 Ray seismis in ontinuous inhomogeneousmediaWith the re�etivity method and the GRT, we have disussed wave-seismimethods, whih if applied in ontinuous inhomogeneous media (in our ase ver-tially inhomogeneous media), require a segmentation in homogeneous regions(in our ase homogeneous layers). Wave-seismi methods for ontinuous in-homogeneous media, without this simpli�ed representation of real media, areoften more ompliated (ompare example in setion 3.10). In this setion, wewill now sketh the ray-seismi (or ray-optial) approximation of the wave the-ory in inhomogeneous media. We will also show that it is the high frequenyapproximation of the equation of motion (2.20) for the inhomogeneous elastiontinuum. We restrit our disussion again to a simpli�ed ase, namely thepropagation of SH -waves in a two-dimensional inhomogeneous medium. Thesoure is assumed to be a line-soure in the y-diretion where density ρ, S -veloity β and shear modulus µ depend only on x and z. The only non-zerodisplaement omponent is in the y-diretion v = v(x, z, t).
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114 CHAPTER 3. BODY WAVES3.9.1 Fermat's priniple and the ray equationFermat's priniple states that the travel time of the (SH -)wave from the soureQ to an arbitrary reeiver P along the seismi ray is an extremum and, there-fore, stationary, i.e., along eah in�nitesimally adjaent path between P and Q(dashed in Fig. 3.53) the travel time is either larger or smaller.
Fig. 3.53: Ray with extremum path and in�nitesimally adjaent ray.In most ases, the travel time along a seismi ray is a minimum, but thereare also ases, where it is a maximum (e.g., the body waves PP, SS, PKKP).If we desribe an arbitrary path from P to Q via a parameter representation
{x = x(p), z = z(p)}, the element of the ar length s an be written as

ds =

[

(

dx

dp

)2

+

(

dz

dp

)2
]

1
2

dp. (3.118)We onsider now many suh paths from Q to P. They all have the same value
p = p1 at Q and p = p2 at P, respetively. Therefore, p annot be idential tos ; p ould, for example, be the angle between the line onneting the oordinateentre to the point along the way and the x- or z-axis. The seismi ray is thepath for whih
T =

∫ p2

p1

β−1 (x(p), z(p))

[

(

dx

dp

)2

+

(

dz

dp

)2
]

1
2

dp =

∫ p2

p1

F

(

x, z,
dx

dp
,
dz

dp

)

dp

dx

dp
= x′,

dz

dp
= z′is an extremum. The determination of the seismi ray has, therefore, beenredued to a problem of alulus of variations. This leads to the Euler-Lagrangeequations

∂F

∂x
− d

dp

∂F

∂x′
= 0 and ∂F

∂z
− d

dp

∂F

∂z′
= 0.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 115This gives then, for example,
(

x′2 + z′2
)

1
2
∂

∂x

(

1

β(x, z)

)

− d

dp

[

1

β(x, z)

x′

(x′2 + z′2)
1
2

]

= 0.Division by (x′2 + z′2)1/2, multipliation of nominator and denominator of thesquare braket with dp, and use of (3.118) gives
d

ds

(

1

β

dx

ds

)

=
∂

∂x

(

1

β

)

. (3.119)Similarly,
d

ds

(

1

β

dz

ds

)

=
∂

∂z

(

1

β

)

. (3.120)Equations (3.119) and (3.120) are the di�erential equations of the seismi ray inthe parameter representation {x = x(s), z = z(s)} where s is now the ar lengthof the ray. With
dx

ds
= sinϕ,

dz

ds
= cosϕ(ϕ= angle of the ray versus the z -diretion), it follows that

d
ds

(

sin ϕ
β

)

= ∂
∂x

(

1
β

)

d
ds

(

cos ϕ
β

)

= ∂
∂z

(

1
β

)







. (3.121)
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dx
dzϕ

ds

z

x

Fig. 3.54: Ray in x-z oordinate system.These two equations an now be onverted into another form of the ray equation(show)
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116 CHAPTER 3. BODY WAVES
∂ϕ

ds
=

1

β

(

sinϕ
∂β

∂z
− cosϕ

∂β

∂x

)

. (3.122)This di�erential equation for ϕ(s) is well suited for numerial omputations ofthe ray path. The inverse of dϕ/ds
r =

ds

dϕ
= β

(

sinϕ
∂β

∂z
− cosϕ

∂β

∂x

)−1 (3.123)is the radius of the urvature of the ray. The ray is urved strongly (r is smaller)where the veloities hange strongly (∇β large).Speial asesa) β= onst.From (3.122), it follows that dϕ/ds = 0. The ray is straight.b) β = β(z) (no dependene on x )The �rst equation in (3.121) gives, after integration,
sinϕ

β
= q = const (3.124)along the whole ray (Snell's law) where q is the ray parameter of the ray. Forsoures and reeivers at the level z = 0 the ray is symmetri with respet to itsapex S. The ray parameter q is onneted to the take-o� angle ϕ0, the seismiveloities β(0) at the soure and the turning point β(zs), respetively, via

q =
sinϕ0

β(0)
=

1

β(zs)
.

�� ��
��
��
��

��

����

��������������������

z

xQ P

ϕ
S

zs

∆z=0

Fig. 3.55: Ray in 1-D medium.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 117A turning point depth zs is only possible if β(z) < β(zs) for all z < zs. Fordistane ∆ in whih the ray reappears at level z = 0, it holds (using (3.124))that
∆(q) = 2

∫ S

Q

dx = 2

∫ zs

0

tanϕdz = 2q

∫ zs

0

[

β−2(z)− q2
]

1
2 dz. (3.125)The ray's travel time is

T (q) = 2

∫ S

Q

ds

β
= 2

∫ zs

0

dz

β cosϕ
= 2

∫ zs

0

β−2(z)
[

β−2(z)− q2
]− 1

2 dz. (3.126)Equations (3.126) and (3.127) are parameter representations of the travel timeurve of the model. An example for ray paths and travel time urves in a modelwith a transition zone is given in Fig. 3.56.

Fig. 3.56: Ray paths and travel time urves in a model with a transition zone.The slope of the travel time urve is (show)
dT

d∆
= q. (3.127)) β = a+ bx+ cz (linear dependene from x and z )In this ase, it follows from
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118 CHAPTER 3. BODY WAVES
dϕ

ds
=
c sinϕ− b cosϕ

βand by di�erentiation with respet to s (ϕ and β are funtions of s via x and z )
d2ϕ

ds2
=
c cosϕ+ b sinϕ

β

dϕ

ds
− c sinϕ− b cosϕ

β2
(b sinϕ+ c cosϕ) = 0.This implies dϕ/ds is a onstant and, therefore, the urvature radius along thewhole ray. The ray is, therefore, a irle, or a setion of it. Its radius r followsfrom (3.123) if β is hosen idential to the value at the soure Q and ϕ equalto the take-o� angle ϕ0. M, the entre of the irle, an be found from Q asshown in Fig. 3.57.

Fig. 3.57: Ray paths in a model with a linear veloity law in x and z.The travel time from Q to P is
T =

∫ P

Q

ds

β
=

∫ ϕ1

ϕ0

dϕ

c sinϕ− b cosϕ
=
(

c2 + b2
)− 1

2 ln







tan
[

(ϕ1−δ)
2

]

tan
[

(ϕ0−δ)
2

]





with δ = arctan(b/c).An arbitrary veloity law β(x, z), given at disrete points (xn, zn) in a model,an linearly be interpolated piee-wise between three neighbouring points. Thenthe laws derived here an be applied. The ray then onsists of several setions ofirles, and at the transition between two regions with di�erent linear veloitylaws, the tangent to the ray is ontinuous. A orresponding travel time andplotting program is, for many pratial appliations, already su�ient.Exerise 3.13a) Show that point M is on the line β = 0.b) Derive the formula for T given above.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 1193.9.2 High frequeny approximation of the equation ofmotionThe equation of motion for inhomogeneous, isotropi media (2.20) an for SH -wave propagation in two-dimensional media without volume fores, be simpli�edto
ρ
∂2v

∂t2
=

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂z

(

µ
∂v

∂z

)

. (3.128)For the time harmoni ase we use the ansatz
v(x, z, t) = A(x, z) exp [iω (t− T (x, z))] . (3.129)This is an ansatz for high frequenies sine only for suh frequenies an weexpet that amplitude A(x,z) and travel time funtion T(x,z) to be frequenyindependent in inhomogeneous media. In homogeneous media far from inter-faes, this is true for all frequenies as long as one is a few wavelengths awayfrom the soure. Using (3.129) in (3.128), and sorting with respet to powers of

ω, it follows that
ω2A

{

µ

[

(

∂T

∂x

)2

+

(

∂T

∂z

)2
]

− ρ
}

+iωA

{

∂µ

∂x

∂T

∂x
+
∂µ

∂z

∂T

∂z
+ µ

(

∂2T

∂x2
+
∂2T

∂z2

)

+ 2µ

(

∂ lnA

∂x

∂T

∂x
+
∂ lnA

∂z

∂T

∂z

)}

−
{

∂µ

∂x

∂A

∂x
+
∂µ

∂z

∂A

∂z
+ µ

(

∂2A

∂x2
+
∂2A

∂z2

)}

= 0. (3.130)For su�iently high frequenies, the three terms of this equation are of di�erentmagnitudes. To satisfy (3.130), eah term has then to be zero independently,espeially the �rst two terms
(

∂T

∂x

)2

+

(

∂T

∂z

)2

=
1

β2
(3.131)

2µ

(

∂ lnA

∂x

∂T

∂x
+
∂ lnA

∂z

∂T

∂z

)

= −∂µ
∂x

∂T

∂x
− ∂µ

∂z

∂T

∂z
− µ∇2T. (3.132)Equation (3.131) is the Eikonal equation, and it ontains on the right side theloation-dependent S -veloity β = (µ/ρ)1/2. After solving the Eikonal, T isinserted in in the transport equation (3.132), and lnA and A are determined.This, in priniple, solves the problem. The frequeny-independent third term
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120 CHAPTER 3. BODY WAVESin (3.130) will usually not be zero with A from (3.132). Solution (3.129) is,therefore, not exat, but beomes more aurate, the higher the frequeny.We still have to derive the onditions under whih the �rst two terms of (3.130)are indeed of di�erent order and, therefore, the separation into (3.131) and(3.132) is valid. The ondition follows from the requirement that eah singlesummand in the seond term has to be small with respet to eah single sum-mand in the �rst term, for example,
∣

∣

∣

∣

ω
∂µ

∂x

∂T

∂x

∣

∣

∣

∣

≪ ω2µ

(

∂T

∂x

)2

.From (3.131), it follows roughly |∂T/∂x| = 1/β. Thus,
∣

∣

∣

∣

β

µ

∂µ

∂x

∣

∣

∣

∣

≪ ω.With µ = ρβ2, it follows
∣

∣

∣

∣

β

ρ

∂ρ

∂x
+ 2

∂β

∂x

∣

∣

∣

∣

≪ ω. (3.133)Similar relations follow from the other summands in (3.130). Usually, the re-quired onditions are formulated as follows: the high frequeny approximations(3.131) and (3.132) are valid for frequenies whih are large with respet to theveloity gradients
ω ≫ |∇β| =

[

(

∂β

∂x

)2

+

(

∂β

∂z

)2
]

1
2

. (3.134)Equation (3.133) shows also, that density gradients have also an in�uene.Equation (3.134) an be expressed even more physially: the relative hangeof the veloity over the distane of a wavelength has to be smaller then 2π(show).ExampleWe solve (3.131) and (3.132) in the simplest ase of a plane SH -wave propagatingin z-diretion with the assumption that ρ, β and µ depend only on z. Ansatz(3.129) then simpli�es to
v(z, t) = A(z) exp [iω (t− T (z))] . (3.135)The solution of (3.131) is
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 121
dT

dz
=

1

β(z)
, T (z) =

∫ z

0

dζ

β(ζ)where T (z) is the S-wave travel time, with respet to the referene level z = 0.Equation (3.132) an be written as
2µ

β

d lnA

dz
= − 1

β

dµ

dz
+

µ

β2

dβ

dz
.Thus,

d lnA

dz
=

1

2

(

d ln β

dz
− d lnµ

dz

)

=
d ln (ρβ)

− 1
2

dz

A(z) = A(0)

[

ρ(0)β(0)

ρ(z)β(z)

]
1
2

.The amplitudes of the SH -wave vary, therefore, inversely proportional to theimpedane ρβ. The �nal solution of (3.135) is
v(z, t) = A(0)

[

ρ(0)β(0)

ρ(z)β(z)

]
1
2

exp

[

iω

(

t−
∫ z

0

dζ

β(ζ)

)]

. (3.136)From these results we onlude that, in the ase onsidered, an impulsive, highfrequent SH -wave propagates without hanging its form.Exerise 3.14Vary the veloity β and the density ρ not ontinuously from depth 0 to depthz, but via a step somewhere in between. Then the amplitudes an be derivedexatly via the SH -refration oe�ient (3.40). Show that (3.136) gives thesame results if the relative hange in impedane is small with respet to 1.Hint: Expansion in both ases.3.9.3 Eikonal equation and seismi raysFrom (3.129), it follows that surfaes of onstant phase are given by
t− T (x, z) = const.In the impulse ase, these surfaes are the wavefronts separating perturbed andunperturbed regions. This is why the term wavefront is used also here. Completedi�erentiation with respet to t gives
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122 CHAPTER 3. BODY WAVES
∂T

∂x

dx

dt
+
∂T

∂z

dz

dt
= ∇T ·

−→
dx

dt
= 1, (3.137)where −→dx/dt = (dx/dt, 0, dz/dt) is the propagation veloity of the wavefront.The obvious interpretation of (3.137) for isotropi media is that −→dx/dt and thevetor∇T , whih is perpendiular to the wavefront, are parallel, sine aordingto the Eikonal equation (3.131) |∇T | = 1/β, it holds that ∣∣∣−→dx/dt∣∣∣ = β. Thismeans that the wavefronts propagate perpendiular to themselves with the loalveloity β.The orthogonal trajetories of the wave are de�ned as seismi rays. We still haveto show that they are the rays de�ned via the Fermat's priniple. We demon-strate this by showing that the di�erential equations of the seismi ray, (3.119)and (3.120), also follow from the Eikonal equation. As before, we desribe theray via its parameter representation {x = x(s), z = z(s)} with the ar lengths. Vetor −→dx/ds = (dx/ds, 0, dz/ds) is a unit vetor in ray diretion for whih,using the statements above, we an write

−→
dx

ds
= β∇T = β(∂T/∂x, 0, ∂T/∂z). (3.138)Instead of (3.119), we, therefore, have
d

ds

(

1

β

dx

ds

)

=
d

ds

(

∂T

∂x

)

.Using (3.138) and the Eikonal equation on the right side, we derive
d

ds

(

1

β

dx

ds

)

=
∂2T

∂x2

dx

ds
+

∂2T

∂x∂z

dz

ds
= β

(

∂2T

∂x2

∂T

∂x
+

∂2T

∂x∂z

∂T

∂z

)

=
β

2

∂

∂x

[

(

∂T

∂x

)2

+

(

∂T

∂z

)2
]

=
β

2

∂

∂x

(

1

β2

)

=
β

2

(−2)

β3

∂β

∂x
= − 1

β2

∂β

∂x
=

∂

∂x

(

1

β

)

.That is idential to (3.119) and a similar derivation holds for (3.120). Thefollowing is the ray equation in vetor form, whih is also valid in the three-dimensional ase
d

ds

(

1

β

−→
dx

ds

)

= ∇ 1

β
. (3.139)
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 123This shows that ray seismis is a high frequeny approximation of wave seis-mis. We have, until now, limited the disussion on kinemati aspets of wavepropagation, i.e., on the disussion of wave paths, travel times and phases.Dynami parameters, espeially amplitudes, were not disussed exept in thesimple example in setion 3.9.2. The following setion gives more details on thisaspet.Before doing this, we give the form of (3.139) whih is often used in numerialalulations, espeially in three dimensions. The single ordinary di�erentialequation of 2nd order for −→x (3.139) is replaed by a system of two equations of1st order for −→x and the slowness vetor −→p = 1
β

−→
dx
ds (vetor in ray diretion withthe absolute value 1

β )
−→
dx

ds
= β−→p ,

−→
dp

ds
= ∇ 1

β
.E�etive numerial methods for the solution of systems of ordinary di�erentialequations of 1st order exist, e.g., the Runge-Kutta-method.3.9.4 Amplitudes in ray seismi approximationWithin the framework of ray seismis developed from Fermat's priniple, am-plitudes are usually omputed using the assumption that the energy radiatedinto a small ray bundle, remains in that bundle. This assumption implies thatno energy exits the bundle sideways via di�ration or sattering and no energyis re�eted or sattered bakwards. This is only valid for high frequenies. Inthe following, we derive a formula whih desribes the hange of the displae-ment amplitude along a ray radiated from a line soure in a two dimensionalinhomogeneous medium. The medium shall have no disontinuities.We onsider (see Fig. 3.58) a ray bundle emanating from a line soure Q witha width of dl(M) at the referene point M lose to Q and a width of dl(P ) nearthe point P.
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Fig. 3.58: Ray bundle emanating from the soure Q.
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124 CHAPTER 3. BODY WAVESEquation (3.129) holds for the displaement in M and P, or in real form
v = A sin [ω(t− T ] .Our aim is the determination of the amplitude ration A(P )/A(M). We �rst de-termine the energy density of the wave, i.e., the sum of kineti and potential en-ergy per unit volume. The kineti energy density is 1

2ρv̇
2 = 1

2ρω
2A2 cos2 [ω(t− T )].Averaged over the period 2π/ω, the potential and kinemati energy density havethe same value 1

4ρω
2A2 sine the average of cos2 x is idential to 1

2 . Then theenergy density averaged over a period an be written as
∆E

∆V
=

1

2
ρω2A2.Consider a ube with the volume ∆V = dl dy ds; its ross setion dl dy is per-pendiular to the ray bundle and its length ds is exatly 1 wavelength β2π/ω.The energy

∆E =
1

2
ρω2A2∆V = πωρβA2dl dyontained within this ube �ows per period through the ross setion dl dy ofthe ray bundle. Sine no energy leaves the bundle, ∆E at P is the same as atM. From this the amplitude ratio follows as

A(P )

A(M)
=

[

ρ(M)β(M)dl(M)

ρ(P )β(P )dl(P )

]
1
2

. (3.140)As in (3.136), impedane hanges our along the ray. The square root ofthe hange in the ross setion is the important parameter for the amplitudevariation. In the most general three-dimensional ase, dl has to be replaed bythe ross setion surfae of the three-dimensional ray bundle.Equation (3.140) an be approximated by traing su�iently many rays throughthe medium using the methods disussed previously, and then determining theirperpendiular distanes (or ross-setion surfaes in three dimensions). Thesemethods are based mainly on the solution of the ray equation (3.139), whih isalso alled the equation of the kinemati ray traing. A more stringent approahto alulate (3.140) is based on di�erential equations whih are diretly validfor the ross setion of a ray bundle; they are alled equations of the dynamiray traing. Their derivation annot be treated here; for details, see the bookof �ervený, Molotov and P²eník (1977).For point P on a horizontal pro�le, e.g., at z = 0, a loser look at (3.140) andFig. 3.59 helps in understanding the physial meaning.
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3.9. RAY SEISMICS IN CONTINUOUS INHOMOGENEOUS MEDIA 125
ϕ0

∆ d
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Fig. 3.59: Ray paths in an inhomogeneous medium.The horizontal distane of P is ∆(ϕ0) with the take-o� angle ϕ0 of the ray fromQ to P. The distane of the referene point M from Q is a. With dl(M) and
dl(P ) from Fig. 3.59, it follows from (3.140) that

A(P )

A(M)
=

[

ρ(M)β(M)

ρ(P )β(P )

]
1
2

·





a

cosϕ
∣

∣

∣

d∆
dϕ0

∣

∣

∣





1
2

. (3.141)This expression shows that problems our if P is on, or lose to, the neigh-bourhood of turning points of the travel time urve on the horizontal pro�le(ompare, e.g., the travel time urve in Fig. 3.56). At these points, d∆/dϕ0hanges its sign, and that an happen either with a ontinuous or non-ontinuouspass through a zero. In the �rst ase, in�nite amplitudes our in P ; in the se-ond ase, the amplitudes beome non-ontinuous. Both ases are unrealistiand nonphysial. Equations (3.141) and (3.140), respetively, an, therefore,only be used at some distane from the turning points (austis) of the traveltime urves. Unfortunately, this means that the points with some of the largestamplitudes annot be treated properly under these assumptions; more sophisti-ated methods (like the WKBJ method, to be disussed later, or the GaussianBeam method) must be employed.Despite this disadvantage, the formulae given above (and their orrespondingequations in three dimensions) are very useful in seismologial appliations.They an be easily extended to inlude refrations and re�etions at dison-tinuities. This requires the determination of hanges in the ross setion ofthe ray bundle at disontinuities, and the inlusion of re�etion and refrationoe�ients.A further problem of the energy ansatz used in this setion is that it onlygives the amplitudes of a seismi ray but no information on its phase hangesthat our in addition to the phase hanges in the travel time term. It is notalways su�ient to add exp [iω(t− T )] to (3.140) and (3.141), respetively, e.g.,on retrograde travel time branhes in the ase that the veloities are only a
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126 CHAPTER 3. BODY WAVESfuntion of z. The WKBJ method and the Gaussian Beam method solve thisproblem by traking an additional parameter, the KMAH index named afterKeller, Maslov, Arnold and Hormander, whih ounts the austis enounteredalong the ray.In the following setion, the WKBJ theory for vertial inhomogeneous media,whih avoids some of the ray theory problems disussed, is presented; it ontainsmore wave seismi elements.Exerise 3.15Use the ray parameter q instead of the take-o� angle ϕ0 in the amplitude formula(3.141) in the ase of a vertially inhomogeneous medium and then use (3.127).What is the relation between the amplitudes and the travel time urve T (∆)?3.10 WKBJ methodNow we will onsider total re�etion at a vertially inhomogeneous mediumusing the WKBJ method.3.10.1 Harmoni exitation and re�etion oe�ientWe onsider a medium whose veloity β(z) for z ≤ 0 is β(0), i.e., onstant andfor z > 0 an be any ontinuous funtion of z, i.e., no disontinuities existin the medium. A plane SH -wave may propagate obliquely in the lower half-spae z < 0 with the horizontal wavenumber k = ω sinϕ/β(0) (ray parameter
q = sinϕ/β(0) (ϕ = angle of inidene). Note the di�erene to the example inhapter 3.9.2 with vertial propagation.Then the ray seismis of the vertially inhomogeneous medium, setion 3.9.1,suggests inserting ∂T/∂x = q = constant in the Eikonal equation (3.131) (om-pare with (3.127)). This then, gives

T (x, z) = qx+

∫ z

0

[

β−2(ζ)− q2
]

1
2 dζ,and, thus, the travel time of the S-wavefront from the intersetion of the originto the point (x,z ). The rest of the disussion is as in setion 3.9.2., and leads to

v0(x, z, t) = A(0)

[

µ(0)s(0)

µ(z)s(z)

]
1
2

exp

[

iω

(

t− qx−
∫ z

0

s(ζ)dζ

)](3.142)
s(ζ) =

[

β−2(ζ)− q2
]

1
2 . (3.143)
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3.10. WKBJ METHOD 127q is the horizontal and s is the vertial slowness of the wave. For q=0, (3.142)is idential to (3.136). Equation (3.142) is the WKBJ -approximation of theS -wave. It is a useful high frequeny approximation, as long as β−1(z) > q,i.e., as long as the seismi ray whih an be assoiated with the wave is notpropagating horizontally. If the veloity, e.g., with inreasing depth dereases orif it inreases, but does not reah the value q−1, (3.142) is appliable for all z.For ases of interest and a medium with inreasing veloities for inreasingdepth, a depth zs is reahed where β(zs) = q−1. At this depth, where the raypropagates horizontally, (3.142) diverges. Equations (3.129), (3.131) and (3.132)are insu�ient for the desription of the wave�eld near the turning point ofrays. If (3.142) is onsidered for z > zs with β(z) > β(zs), i.e., the veloityontinues to inrease, a stable result an, again, be obtained. The integral inthe exponential term from zs to z is imaginary, thus, giving an exponentialdeay of the amplitudes with inreasing z, i.e., below the ray's turning point theamplitude of the SH -wave dereases as expeted. For z < zs, the wave�eld isinsu�iently desribed by (3.142) sine (3.142) represents only the downwardpropagating inident SH -wave. A similar equation an be given for the re�etedSH -wave upward propagating from the turning point
v1(x, z, t) = RA(0)

[

µ(0)s(0)

µ(z)s(z)

]
1
2

exp

[

iω

(

t− qx+

∫ z

0

s(ζ)dζ

)]

. (3.144)That this wave propagates upwards an be seen from the positive sign before theintegral in the exponent. R is, as an be seen by the seletion z=0 in (3.142) and(3.144), the amplitude ratio v1(x, 0, t)/v0(x, 0, t) of the re�eted to the inidentwave; in other words, the re�etion oe�ient of the inhomogeneous half-spaeis z>0. Its determination requires a quantitative onnetion of the whole �eld
v0 + v1 for z < zs with the already mentioned exponentially deaying �eld for
z > zs. To tie these two solutions together is, as mentioned before, not possiblewith the high frequeny approximation of the equation of motion used untilnow.The required onnetion beomes possible with another high frequeny approx-imation of (3.128), namely a wave equation with depth dependent veloity

∇2V = ∂2V
∂x2 + ∂2V

∂z2 = 1
β2(z)

∂2V
∂t2

v = 1

µ
1
2 (z)

V

}

. (3.145)This high frequeny approximation is valid under ondition (3.134), as an beshown by inserting in (3.128). For plane waves, it follows from the ansatz
V (x, z, t) = B(z) exp [iω(t− qx)]
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128 CHAPTER 3. BODY WAVESvia (3.145) an ordinary di�erential equation for B(z)
B′′(z) + ω2

[

β−2(z)− q2
]

B(z) = 0. (3.146)This equation has now to be solved for large ω. The solutions of B′′(z) +
ω2f(z)B(z) = 0 in the neighbourhood of a zero of f(z) and for large ω is generallyalledWKBJ -solution after the authors - Wentzel, Kramers, Brillouin, Je�reys.For z < zs, the previously disussed superposition of (3.142) and (3.144) of theinident and re�eted wave of v results. For z > zs the exponentially deayingsolution follows. The ase that z is in the immediate neighbourhood of zshas to be examined in more detail. We approximate the oe�ient ω2s2(z)of B(z) (with s(z) from (3.143)) linearly and get, with s2(zs) = 0, β(zs) =
q−1 and β′(zs) > 0,

B′′(z)− 2ω2q3β′(zs)(z − zs)B(z) = 0. (3.147)This equation an, with the substitution,
y(z) =

[

2ω2q2β′(zs)
]

1
3 (z − zs) (3.148)be transformed into the di�erential equation of the Airy funtions

C′′(y)− yC(y) = 0.The solution of interest to us, C(y) = Ai(y), is disussed in appendix E (moreon Airy funtions an be found in M. Abramovitz and I.A. Stegun: Handbookof Mathematial Funtions, H. Deutsh, Frankfurt, 1985). The depths z < zs(z > zs) orrespond to arguments y < 0 (y > 0) of Ai(y). From Fig. E.2,it follows that the transition from the osillatory solution B(z) of (3.147) with
z < zs to the exponentially damped solution for z > zs is without singularity.This then, also holds for the displaement v, in ontrast to what one wouldexpet from (3.142) and (3.144).The osillatory behaviour of B(z) for z < zs indiates that the inident wave
v0 and the re�etion v1, build a standing wave with nodes of the displaementat depths whih orrespond to the zeros of the Airy funtion. The re�etionoe�ient R in (3.144) is now determined in suh a way, that the superpositionof (3.142) and (3.144), in the term that depends on z, is idential to the Airyfuntion. Due to the high frequeny assumption, the asymptoti form of Ai(y)for large negative y an be used

Ai(y) ≃ π− 1
2 |y|−

1
4 sin

(

2

3
|y|

3
2 +

π

4

)

. (3.149)Furthermore, for z < zs
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3.10. WKBJ METHOD 129
v0 + v1 = A(0)

[

µ(0)s(0)
µ(z)s(z)

]
1
2

exp
[

iω
(

t− qx−
∫ zs

0
s dζ

)]

·
{

exp
[

iω
∫ zs

z s dζ
]

+R exp
[

2iω
∫ zs

0 s dζ
]

· exp
[

−iω
∫ zs

z s dζ
]}

.(3.150)The z -dependene of v0 + v1 is given by the urved braket. It will nowbe determined in approximation. With the approximation (3.147) ω2s2(ζ) =
2ω2q3β′(zs)(zs − ζ), it follows

ω

∫ zs

z

s dζ = ±
[

2ω2q3β′(zs)
]

1
2

∫ zs

z

(zs − ζ)
1
2 dζ

= ±
[

2ω2q3β′(zs)
]

1
2

2

3
(z − zs)

3
2

= ±2

3
|y|

3
2

= ±Ywith y = y(z) from (3.148). The positive (negative) sign holds for positive(negative) frequenies. Thus, for the urved brakets in (3.150)
{· · ·} = e±iY + Ze∓iYwith the abbreviation

Z = R exp

[

2iω

∫ zs

0

s dζ

]

. (3.151)With Z = ±i for ω <0 (>0), it follows that
{· · ·} = (1± i)(cosY + sinY ) = 2

1
2 (1± i) sin

(

Y +
π

4

)

= 2
1
2 (1± i) sin

(

2

3
|y|

3
2 +

π

4

)

,and, therefore, the required agreement with the main term in (3.149). Z = ±iin (3.151) gives then the re�etion oe�ient in the WKBJ-approximation
R = i ω

|ω| exp
[

−2iω
∫ zs

0
s(ζ)dζ

]

s(ζ) =
[

β−2(ζ) − q2
]

1
2

β(zs) = q−1 = β(0)
sin ϕ .











(3.152)
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130 CHAPTER 3. BODY WAVESIts absolute value is 1 (total re�etion). It desribes only the phase shifts,i.e., a onstant phase shift of ±π/2 for ω < 0 (ω > 0) is added to the phaseshifts due to the travel time in the exponential term of R. Compared to there�etion oe�ients of layered media, derived earlier without approximation;the form of (3.152) is simple. It is only valid for su�iently high frequenies(ondition (3.134)) and for angle of inidene ϕ with total re�etion. Re�etionoe�ients of the type of (3.152) are useful in seismology but even more so forthe propagation of sound waves in oeans or the propagation of radio waves inthe ionosphere (ompare, e.g., Budden (1961) and of Tolstoy and Clay (1966)).The re�eted SH-wave observed at the oordinate entre follows, then, by in-serting (3.152) in (3.144)
v1(0, 0, t) = A(0)i

ω

|ω| exp

[

iω

(

t− 2

∫ zs

0

s(ζ)dζ

)]

. (3.153)Then
τ(q) = 2

∫ zs

0

s(ζ)dζis the delay time, , i.e., the time between the intersetion of the inident andthe re�eted wave with the oordinate entre. This time delay orresponds tothe ray segments AC, BD, or OP.

Fig. 3.60: Constrution of a austi from the envelopes of rays.Note that the wavefronts are urved for z>0; only in the homogeneous regionz<0 are the wavefronts plane.Fig. 3.60 shows also that the line z = zs is the envelope of all rays. Suhenvelopes are alled austis, and they are haraterised by large energy on-entrations. Within the amplitude approximation formula (3.140), and due to
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3.10. WKBJ METHOD 131dl(P)=0 for a point P on the austi z = zs, in�nite amplitudes would resultthere. The additional phase shift of ±π
2 , as disussed before, an be interpretedphysially as the e�et of the strong interation of eah ray with its neighbouringrays in the viinity of the austi. More ompliated austis our in vertiallyinhomogeneous media, if the inident wave is from a point or line soure, re-spetively. In suh ases, the phase shift per austi enountered, is ±π

2 . Moreompliated austis are enountered in two and three dimensional media.3.10.2 Impulsive exitation and WKBJ-seismogramsIf an impulsive wave, produing a displaement v0(0, 0, t) = F (t) at the oor-dinate entre, instead of a harmoni wave is inident, it follows from (3.153)that the orresponding re�etion is the time delayed Hilbert transform of F(t)(ompare setion 3.6.3)
v1(0, 0, t) = FH(t− τ(q)). (3.154)This means that the re�etion for all angles of inidene ϕ (or ray parametersor horizontal slowness q) have the same form exept for the time delay τ(q).This is, therefore, di�erent from the results for a disontinuity of �rst order inhapter 3.6.3 (there the impulse form hanged in the ase of total re�etion alsowith the angle of inidene ϕ).When ylindrial waves are onsidered, the priniple of superposition is used.The ylindrial wave, assumed to originate from an isotropially radiating linesoure in the oordinate entre, is represented by many plane waves with radi-ation angles ϕ from 0 to π/2. This orresponds to positive values of q. There�etions are superimposed similarly. First, (3.154) is generalised for arbitrary

x > 0

v1(x, 0, t) = FH (t− τ(q)− qx) = FH(t) ∗ δ (t− τ(q) − qx) .Then these plane waves are integrated over ϕ from 0 to π/2 and, thus, theWKBJ-seismogram at distane x from the line soure is derived
v(x, 0, t) = FH(t) ∗

∫ π
2

0

δ (t− τ(q) − qx) dϕ = FH(t) ∗ I(x, t). (3.155)The impulse seismogram I(x, t) an now be derived numerially via
I(x, t) =

∑

i δ(t− ti)∆ϕi

ti = τ(qi) + qix , qi = sin ϕi

β(0) .

} (3.156)Usually, the ϕi are hosen equidistant (∆ϕi = ∆ϕ = const). The delta funtionsare shifted from the times ti to their immediate neighbouring time points I(x, t)
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132 CHAPTER 3. BODY WAVESand possibly amass there, i.e., in the disretised version of I(x, t), multiples of
∆ϕ our there. I(x, t) is then onvolved with FH(t). The most time-onsumingpart is the omputation of the delay time τ(qi); on the other hand, e�ient ray-seismi methods exist for that. In omparison to the re�etivity method and theGRT, the WKBJ-method is signi�antly faster. There are also other numerialrealisations of this method than (3.155) and (3.156).WKBJ-seismograms have other phase relations and impulse forms than ex-peted from (3.152) and (3.154), respetively. This is due to the summationof many plane waves. Pro-grade travel time branhes (see Fig. 3.56) show nophase shift, i.e., the impulse form of the inident ylindrial wave is observedthere. Phase shifts and impulse form hanges only our on retro-grade traveltime branhes. Furthermore, the seismogram amplitudes are �nite in the viin-ity of the turning points of travel time urves, i.e., the WKBJ-method is validat austis.WKBJ-seismograms for a simple rust-mantle model and a line soure at theEarth's surfae are shown in Fig. 3.61. The omputations were performed witha program for SH -waves; even so, the veloity model (Fig. 3.62) is valid for P-waves. An aousti P-wave omputation would give, in priniple, the same resultfor pressure. The travel time urve of the re�etion PMP from the rust-mantleboundary (Moho) is retrograde and the travel time branh of the refrated wave
Pn from the upper mantle is prograde. Times are redued with 8 km/s.

Fig. 3.61: WKBJ-seismograms for a simple rust-mantle model and a line soureat the Earth's surfae.
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3.10. WKBJ METHOD 133

Fig. 3.62: Veloity model used in Fig. 3.61.The impulse forms of these waves are as expeted: Pn has the form of theradiated wave, whereas PMP is roughly the Hilbert transform of it. At distanessmaller than the ritial distane (a. 100 km), the amplitudes inrease strongly.At the ritial point, whih is loated on a austi within the rust, the wave�eld remains �nite.In seismologial appliations of WKBJ-seismograms, their approximate nature,due to the high frequeny approximation (3.152) for the re�etion oe�ient,should be kept in mind. This approximation is insu�ient in regions of theEarth where wave veloity and density hange rapidly with depth, e.g., at theore-mantle boundary or at the boundary of the inner ore of the Earth.
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134 CHAPTER 3. BODY WAVES
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Chapter 4
Surfae waves
4.1 Free surfae waves in layered media4.1.1 Basi equationsIn addition to the body waves that penetrate to all depths in the Earth, anothertype of wave exists whih is mostly limited to the neighbourhood of the surfae ofthe Earth alled surfae waves. These waves propagate along the surfae of theEarth, and their amplitudes are only signi�ant down to the depth of a few wavelengths. Below that depth, the displaement is negligible. Beause surfae wavesare onstrained to propagate lose to the Earth's surfae, their amplitude deayas a funtion of soure distane is smaller than for body waves, whih propagatein three dimensions. This is why surfae waves are usually the dominatingsignals in the earthquake reord. Another signi�ant property is their dispersion,i.e., their propagation veloity is frequeny dependent. Therefore, the frequenywithin a wave group varies as a funtion of time (ompare example in 4.1.4).These are some of the main observations and explanations for surfae waves.The �rst sientists to study surfae waves (Rayleigh, Lamb, Love, Stoneley etal.) found the theoretial desriptions explaining the main observations. Thefundamental tenet of this approah is the desription of surfae waves as aneigenvalue problem but omitting the soure of the elasti waves. We onsider alayered half-spae with parameters as given in Fig. 4.1 with a free surfae.135
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136 CHAPTER 4. SURFACE WAVES

Fig. 4.1: Layered half-spae with free surfae.We work with Cartesian oordinates x,y,z and assume independene from y.Then, the equations from setion 3.6.2 an be used whih have been derivedto desribe re�etion and refration. The separation of the displaement intoP-, SV- and SH -ontributions holds as before, as does the fat, that the P-SV-ontributions propagate independently from the SH-waves. Surfae waves of theP-SV-type are alled Rayleigh waves. They are polarised in the x-z-planehorizontal displaement u = ∂Φ
∂x − ∂Ψ

∂zvertial displaement w = ∂Φ
∂z + ∂Ψ

∂x .
(4.1)The potentials Φ and Ψ, in eah layer, satisfy the wave equation

∇2Φ =
1

α2

∂2Φ

∂t2
, ∇2Ψ =

1

β2

∂2Ψ

∂t2
. (4.2)Surfae waves of the SH -type are alled Love waves. They are polarised in y-diretion, and for the displaement v in eah layer the following wave equationholds

∇2v =
1

β2

∂2v

∂t2
. (4.3)The boundary onditions are given in setion 3.6.2. The ansatz forΦj ,Ψj and vjin the j-th layer of the model for harmoni exitation (ω > 0) is

Φj

Ψj

}

=

{

Aj(z)
Bj(z)

}

exp
[

iω
(

t− x

c

)]

=

{

Aj(z)
Bj(z)

}

exp [i (ωt− kx)](4.4)
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 137and
vj = Cj(z) exp

[

iω
(

t− x

c

)]

= Cj(z) exp [i (ωt− kx)] . (4.5)Consider the onditions for whih a plane wave exists, whih propagates in x-diretion with the phase veloity , where  is idential in all layers. How largeis ? Then the funtions Aj(z), Bj(z) and Cj(z) exist, so that
lim

z→∞







An(z)
Bn(z)
Cn(z)







= 0. (4.6)This problem is an eigenvalue problem, and  and the wavenumber k = ω/c,respetively, are the orresponding eigenvalues. In many ases (for �xed ω), a�nite number (≤ 1) of eigenvalues exist. The problem is omparable to that ofdetermining the frequenies of natural osillations (or free osillations) of �nitebodies (beams, plates, bodies et.) (ompare exerise 4.1).Here we are only interested in the ase where the eigenvalues are real (>0). Thishas the largest pratial appliation. The orresponding surfae waves are allednormal modes. There exist also waves whih an be desribed with omplex k :
k = k1 − ik2 (k1,2 > 0). These surfae waves are alled leaking modes sinetheir amplitude dereases exponentially with exp(−k2x). Their phase veloityis ω/k1.The ansatz with plane waves neglets the in�uene of exitation. This, then,leads to a major simpli�ation of the problem. Suh surfae waves are alled freein ontrast to fored surfae waves whih are exited by spei� soures. Theanalogy to the free and fored resonanes of limited bodies is also helpful here inthe ontext of exitation. The treatment of free surfae waves is an importantrequirement for the study of fored surfae waves (ompare setion 4.2). We willsoon show that the dispersive properties of both wave types are idential. Sinethis property depends on the medium, they an be used to determine mediumparameters. This is why the study of the dispersion of free surfae waves is ofgreat pratial importane.Exerise 4.1The radial osillations of a liquid sphere with P -veloity α are desribed bythe potential Φn(r, t) ∼ (eiωnt/r) sin(ωnr/α) (n=1,2,3...). Determine the eigenfrequenies ωn from the ondition that the surfae of the sphere at r=R is stressfree (prr from exerise 3.4); give the radial displaement. Where are the nodalplanes?

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



138 CHAPTER 4. SURFACE WAVES4.1.2 Rayleigh waves at the surfae of an homogeneoushalf-spaeThe half-spae (z>0) has the veloities α and β for P - and S -waves, respetively.Inserting the ansatz
Φ = A(z) exp [i (ωt− kx)] and Ψ = B(z) exp [i (ωt− kx)] (4.7)into the wave equation (4.2) with ∇2 = ∂2/∂x2 + ∂2/∂z2, gives the di�erentialequations for A(z) and B(z), e.g.,

A′′(z) + k2

(

c2

α2
− 1

)

A(z) = 0.The general solution of this equation is
A(z) = A1e

−ikδz +A2e
ikδz with δ =

(

c2

α2
− 1

)
1
2

.Due to (4.6), δ has to be purely imaginary. Then, A2 = 0 has to hold. Fromthe properties of δ, a �rst statement on the phase veloity of the Rayleigh wavebeomes possible: c < α. It also holds that
A(z) = A1e

−ikδz ,and, similarly, it follows that
B(z) = B1e

−ikγzwith γ =
(

c2/β2 − 1
)1/2 (negative imaginary). This further limits : c < β.The potential ansatz (4.7) an now be written as

Φ = A1 exp [i (ωt− kx− kδz)] , Ψ = B1 exp [i (ωt− kx− kγz)] . (4.8)Inserting the boundary onditions pzz = pzx = 0 for z=0 with pzz and pzx from(3.29), it follows that
−ω

2

α2

λ

µ
A1 + 2

(

−k2δ2A1 − k2γB1

)

= 0

−2k2δA1 +
(

−k2 + k2γ2
)

B1 = 0.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 139Division by −k2 and use of λ/µ = (α2 − 2β2)/β2 gives
[

c2

α2

α2 − 2β2

β2
+ 2

(

c2

α2
− 1

)]

A1 + 2γB1 = 0

2δA1 +

(

2− c2

β2

)

B1 = 0.This leads to
(

c2

β2 − 2
)

A1 + 2γB1 = 0

−2δA1 +
(

c2

β2 − 2
)

B1 = 0.







(4.9)This system of equations only has non-trivial solutions A1 and B1, if its deter-minant is zero. This leads to an equation for :
(

c2

β2
− 2

)2

+ 4δγ = 0.In the range of interest 0 < c < β, we have
(

c2

β2
− 2

)2

= 4

(

1− c2

β2

)
1
2
(

1− c2

α2

)
1
2

.Squaring this gives
c2

β2

[

c6

β6
− 8

c4

β4
+

(

24− 16
β2

α2

)

c2

β2
− 16

(

1− β2

α2

)]

= 0. (4.10)Solution c = 0 is not of interest, therefore, only the terms in the braket haveto be examined. For c = 0, it is negative, and for c = β, positive. Therefore, atleast one real solution of (4.10) exists between 0 and β. The eigenvalue problemhas, thus, a solution, i.e., along the surfae of a homogeneous half-spae a wavean propagate, the amplitudes of whih deay with depth. In this simple aseno dispersion ours and  is independent of ω.In the speial ase λ = µ (i.e., α = β
√

3), c = 0, 92β. In general, the Rayleighwave is only slightly slower than the S -wave.We now examine the displaement of the Rayleigh wave
u =

(

−ikA1e
−ikδz + ikγB1e

−ikγz
)

exp [i (ωt− kx)] .
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140 CHAPTER 4. SURFACE WAVESWith γB1 = −
(

c2/2β2 − 1
)

A1 (from (4.9)), it follows
u = −ikA1

[

e−ikδz +

(

c2

2β2
− 1

)

e−ikγz

]

exp [i (ωt− kx)] (4.11)
e−ikδz +

(

c2

2β2
− 1

)

e−ikγz =: a(z).Similarly,
w =

(

−ikδA1e
−ikδz − ikB1e

−ikγz
)

exp [i (ωt− kx)] .With B1 = δA1

(

c2/2β2 − 1
)−1 (from (4.9)), it follows

w = −ikδA1

[

e−ikδz +

(

c2

2β2
− 1

)−1

e−ikγz

]

exp [i (ωt− kx)] (4.12)
e−ikδz +

(

c2

2β2
− 1

)−1

e−ikγz =: b(z).We assume that A1 is positive real and onsider the real parts of (4.11) and(4.12)
u = kA1a(z) sin(ωt− kx)
w = −|δ|kA1b(z) cos(ωt− kx).For z=0, it holds that a(0)>0 and b(0)<0. In the ase of u and w, show thebehaviour given in Fig. 4.2 (e.g., for x = 0). The displaement vetor desribesan ellipse with retro-grade motion.

Fig. 4.2: Behaviour of u and w.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 141

Fig. 4.3: Theoretial seismograms for an explosive point soure in a homoge-neous half-spae and reorders at its surfae (omputed with the GRT for pointsoures, ompare setion 3.8).For su�iently large z, the seond term in a(z) and b(z) dominates due to
|γ| < |δ| so that both funtions are negative there. The displaement vetor,again, desribes an ellipse but now with prograde diretion. The transition fromretro-grade to pro-grade motion ours at the depth where a(z)=0. For λ = µ,this is the ase at about z = 0, 2Λ where Λ = 2πc/ω = 2π/k is the wavelength.This depth is, therefore, a nodal plane of the horizontal displaement.
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142 CHAPTER 4. SURFACE WAVESElliptial polarisation of the displaement vetor and the existene of nodalplanes of the displaement omponents, are also harateristis of free Rayleighwaves in layered media, with the additional feature of dispersion.The Rayleigh wave is, therefore, fored. The arrows above the seismogramsindiate the theoretial arrival times r/ where  is the phase veloity of thefree Rayleigh wave. Fig. 4.4 shows a hodograph of a point at the surfae, i.e., itstrae during the passage of a Rayleigh wave whih has roughly elliptial form.

w

u

r=32 km
z=0

Fig. 4.4: Hodograph at a point at the surfae (see Fig. 4.3).The results of the theory of the free Rayleigh wave are, therefore, relatively wellon�rmed.Exerise 4.2Does the homogeneous half-spae have free Love waves?4.1.3 Love waves at the surfae of a layered half-spaeMatrix formalism and mode oneptWe now study Love waves, i.e., waves of the SH-type, for example, surfae wavesin layered media. First, we disuss the general ase of arbitrarily many layersand give the numerial method, with whih the dispersion relation c = c(ω) or
k = k(ω) an be determined; then the ase of a single layer over a half-spae isdisussed in more detail.We start from the basi equations in setion 4.1.1 and use the ansatz (4.5) forLove waves in the wave equation (4.3) for the displaement in y-diretion. Bythis, we derive, in analogy with (4.8), in the j-th layer
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 143
vj = Dj exp [i (ωt− kx+ kγj(z − zj))] +Ej exp [i (ωt− kx− kγj(z − zj))] ,(4.13)where Dj and Ej are now onstants and

γj =

(

c2

β2
j

− 1

)
1
2

.We postulate, that γj is positive real or negative imaginary, depending on itsradiand being positive or negative, respetively. In the half-spae (j = n), γnhas to be negative imaginary due to (4.6), i.e., c < βn, and
Dn = 0. (4.14)The boundary onditions require for z = z1, z2, . . . , zn ontinuity of the tangen-tial stress µ∂v/∂z and for z = z2, z3, . . . , zn ontinuity of the displaement v.From ∂v1/∂z = 0 for z = z1 = 0, it follows that
E1 = D1. (4.15)For z = zj (j ≥ 2) with vj = vj−1 and µj∂vj/∂z = µj−1∂vj−1/∂z, the followingequations for Dj and Ej with dependene on Dj−1 and Ej−1, an be derived

Dj + Ej = Dj−1e
ikγj−1dj−1 + Ej−1e

−ikγj−1dj−1

Dj − Ej =
µj−1γj−1

µjγj

[

Dj−1e
ikγj−1dj−1 − Ej−1e

−ikγj−1dj−1
]

.As in setion 3.6.5, this an be expressed in matrix form
(

Dj

Ej

)

=
1

2
eikγj−1dj−1

(

1 + ηj (1− ηj)e
−2ikγj−1dj−1

1− ηj (1 + ηj)e
−2ikγj−1dj−1

)(

Dj−1

Ej−1

)or (4.16)
(

Dj

Ej

)

= layer matrix mj

(

Dj−1

Ej−1

)

ηj =
µj−1γj−1

µjγj
.Suessive appliation of (4.16) leads to

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



144 CHAPTER 4. SURFACE WAVES
(

Dn

En

)

= mn·mn−1 . . .m3·m2

(

D1

E1

)

= M

(

D1

E1

)

=

(

M11M12

M21M22

)(

D1

E1

)

.

M is the produt of the layer matries. With (4.14) and (4.15), the equation for or k as a funtion of ω and the layer parameters an be given as a dispersionequation
M11 +M12 = 0. (4.17)This equation is ordinarily solved numerially. For this, a value of  within theinterval from 0 to βn is hosen, and then M11 +M12 is omputed via the multi-pliation of the layer matries as funtion of ω in the relevant frequeny range.Finally, their zeros are determined. Then,  is varied and the orrespondingshifted zeros are determined, et. If zeros exist, their loation depends on theS -veloity and the density as a funtion of depth. Eah zero gives one branhof the dispersion urve of the phase veloity ci(ω) (see Fig. 4.5).

Fig. 4.5: Dispersion urves of the phase veloity.Eah branh has a (lower) uto� frequeny νi = ωi/2π. Theoretial dispersionurves are omputed as a funtion of frequeny, period or wavenumber, respe-tively (in the last ase the frequeny is �xed). Experimentally determined urvesare mostly given as a funtion of period.The wave behaviour in the half-spae, orresponding to a ertain branh of thedispersion urve, is alled mode. For Love waves, these are normal modes of
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 145the SH -type that propagate undamped. The onept of modes also holds forRayleigh waves and damped surfae waves. Modes are lassi�ed by their order:1st mode, 2nd mode, et. Often the �rst mode is also alled fundamental modeand the numbering starts after it. Besides their dispersive properties, modesdi�er by their number of node surfaes. This number is (up to ±1) identialwith their order. Whih modes our in reality, depends on the frequeny rangein whih the soure radiates, as well as its depth (ompare setion 4.2). Forearthquakes usually, only a few modes ontribute, and often only the funda-mental mode ontributes to the surfae waves. In Fig. 3.39, the Love wavesonsist mainly of the fundamental modes.Speial ase n=2In the ase of a single layer over a half-spae, the dispersion equation (4.17) anbe written as
e−2ikγ1d1 =

η2 + 1

η2 − 1
=
µ1γ1 + µ2γ2

µ1γ1 − µ2γ2
(4.18)with γ1,2 = (c2/β2

1,2 − 1)1/2. γ2 is negative imaginary and c < β2.If β1 > β2, γ1 is also negative imaginary. Then, the right side of (4.18) is realand larger than 1. The left side is also real, but smaller than 1. Therefore, noreal solution  of (4.18) exists in this ase.The S -veloity in the half-spae, therefore, has to be larger than that of thelayer, i.e., β2 > β1. In this ase, we an exlude values of  between 0 and β1with the same arguments as for β1 > β2. This leaves values for  between β1and β2. In this ase γ1 is positive real, and both sides in (4.18) are omplex.The absolute value of both sides is 1. Thus, the mathing of the phases givesthe dispersion equation of the Love waves
−2kγ1d1 = −2 arctan

µ2|γ2|
µ1γ1

.From this, it follows with ω = kc

µ2

(

c−2 − β−2
2

)
1
2

µ1

(

β−2
1 − c−2

)
1
2

= tan
[

ωd1

(

β−2
1 − c−2

)
1
2

]

. (4.19)This transendent equation is solved by seleting  with β1 < c < β2 and inver-sion of the radiand, thus, giving the orresponding ω (or the the orresponding
ω′s). For a general disussion, we introdue a new variable x
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146 CHAPTER 4. SURFACE WAVES
x(c) = ωd1

(

β−2
1 − c−2

)
1
2

c(x) = ωd1
(

ω2d2
1

β2
1

−x2

) 1
2
.



















(4.20)The left side of (4.19) an then be written as
µ2

(

c−2 − β−2
2

)
1
2

µ1

(

β−2
1 − c−2

)
1
2

=
µ2

µ1x

[

ω2d2
1

(

β−2
1 − β−2

2

)

− x2
]

1
2 = f(x, ω).Equation (4.19) an then be expressed (see also Fig. 4.6) as

f(x, ω) = tanx.

Fig. 4.6: f(x, ω) and tan x.
f(x, ω) is real between x=0 and its zero

x0 = ωd1

(

β−2
1 − β−2

2

)
1
2 . (4.21)This zero moves to the right as a funtion of ω and reates, thus, more inter-setions of f(x, ω) with tanx. The intersetion xi = xi(ω) gives, substitutingin (x) from (4.20), the dispersion relation of the i-th mode (i = 1, 2, . . .)

ci(ω) =
ωd1

(

ω2d2
1

β2
1
− x2

i (ω)
)

1
2

. (4.22)
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 147The i-th mode ours only if x0 > (i − 1)π. With (4.21), its uto� frequenybeomes
νi =

ωi

2π
=

i− 1

2d1

(

β−2
1 − β−2

2

)
1
2

. (4.23)The i-th mode exists only for frequenies ν > νi. The �rst mode (fundamentalmode, i=1) exists, due to ν1 = 0, at all frequenies.The phase veloity of eah mode at its uto� frequeny is most simply derivedfrom the fat that at this point the tangent is zero in (4.19)
ci(ωi) = β2. (4.24)For ω →∞, xi → (i−1/2)π and the tangent in (4.19) approahes∞. Therefore,

lim
ω→∞

ci(ω) = β1. (4.25)An upper-limiting frequeny does not exist, and the veloities of the layer andthe half-spae are the limiting values of the phase veloity.A alulated example for the dispersion urves of the �rst three Love modes ofa rust-mantle model, onsisting of a half-spae with a layer above, is given inFig. 4.7.

Fig. 4.7: Dispersion urves of the �rst three Love modes of a rust-mantlemodel.
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



148 CHAPTER 4. SURFACE WAVESIn addition to the urves of the phase veloities , the group veloities U areshown
U =

dω

dk
= c+ k

dc

dk
= c− Λ

dc

dΛ
=

c

1− ω
c

dc
dω

=
c

1 + T
c

dc
dT

. (4.26)(Λ= wavelength, T= period). The group veloity ontrols, as we will see, thepropagation of an impulse from the soure to a reeiver, i.e., eah frequenytravels with its group veloity from the soure to the reeiver, not with itsphase veloity. Phase and group veloities an be determined from observations(see setion 4.1.4 and 4.1.5). Thus, both an be used for interpretation.Nodal planes and eigen funtionsFinally, we examine the nodal planes of the Love modes for the ase just dis-ussed, i.e., the surfaes on whih the displaement is zero. From (4.13) with(4.14) and (4.15), it follows that
v1 = 2E1 cos(kγ1z) exp [i (ωt− kx)]
v2 = E2 exp (−ikγ2(z − d1)) exp [i (ωt− kx)]where v1 and v2 are for the layer and the half-spae, respetively. These expres-sions also hold for eah individual mode, and the dispersion relation (4.22) hasto be used. The relation between E1 and E2 is E2 = 2E1 cos(kγ1d1); E1 an behosen arbitrarily.This means that at the surfae z = 0, the maximum displaement is alwaysobserved, and that nodal planes an only our in the layer, but not in thehalf-spae. Their position is determined by the zeros of the osine. For the i-thmode they an be derived via the equation

kγ1z = ω
(

β−2
1 − c−2

i

)
1
2 z = (2n− 1)

π

2
(n = 1, 2, . . . , Ni), (4.27)where Ni is their number determined by z ≤ d1.For the lower frequeny limit ω = ωi, from (4.23), it follows due to (4.24)

(i− 1)π
z

d1
= (2n− 1)

π

2
.This is satis�ed for

z =
2n− 1

2i− 2
d1 with n = 1, 2, . . . , Ni = i− 1.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 149For ω = ωi, therefore, i− 1 nodal planes exist. Their spaing is
∆z =

d1

i− 1
(i = 3, 4, . . .).The �rst mode (i=1) has no nodal plane, neither for ω = ω1 = 0 nor for �nite

ω > 0.The other extreme on the frequeny sale of eah mode is ω = ∞. From thedisussion of the behaviour of ci(ω) for ω →∞ (see (4.25)), it follows that
lim

ω→∞
ω
(

β−2
1 − c−2

i

)
1
2 = lim

ω→∞

xi(ω)

d1
=

(

i− 1

2

)

π

d1
.Equation (4.27) leads to the fat that all z ≤ d1 have to be determined whihsatisfy the relation

(

i− 1

2

)

π
z

d1
= (2n− 1)

π

2
.These are the values

z =
2n− 1

2i− 1
d1 with n = 1, 2, . . . , Ni = i.For ω =∞, therefore, i nodal planes exist with the spaing

∆z =
d1

i− 1
2

(i = 2, 3, . . .).The hange relative to the situation where ω = ωi holds, is �rst, the derease inthe spaing of the nodal planes, seond a general move to shallower depth and�nally, the addition of the i-th nodal plane z = d1. This means that for ω =∞the half-spae remains at rest.Fig. 4.8 shows quantitatively the amplitude behaviour of the �rst three modesas a funtion of depth for the rust-mantle model used for Fig. 4.7. The periodis also indiated. Suh amplitude distributions are alled eigen funtions of themodes. They follow from the z-dependent part of the displaement v1 and v2disussed above.
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150 CHAPTER 4. SURFACE WAVES

Fig. 4.8: Quantitative amplitude behaviour of the �rst three modes as a funtionof depth for the rust-mantle model used for Fig. 4.7.Exerise 4.3Derive the dispersion equation for free Rayleigh waves in a liquid medium on-sisting of a layer over a half-spae and ompare this to (4.19). Sketh a �guresimilar to Fig. 4.6. What is the di�erene, espeially for the �rst mode?4.1.4 Determination of the phase veloity of surfae wavesfrom observationsIn the last setion, we saw how the phase veloity of a Love mode in a layeredhalf-spae an be determined if the half-spae is known. In the same way (butwith more ompliations), the same an be done for Rayleigh waves. We nowdisuss the derivation of the phase veloity from observations. We assume thatonly one mode is present. If that is not the ase, �lters have to be used toseparate the di�erent modes. Sine these are sometimes ompliated methods,they are not disussed here. An overview, and appliations for surfae waves,an be found, e.g., in Aki and Rihards, Dahlen and Tromp, and Kennett.We work here with plane surfae waves, i.e., we neglet the soure term. Themethod for the determination of the phase veloity thus derived, is su�ientlyaurate for pratial purposes. The modal seismogram of any displaementomponent at the Earth's surfae an be written for propagation of the modein x -diretion as
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 151
u(x, t) =

1

2π

∫ +∞

−∞

A(ω) exp

[

iω

(

t− x

c(ω)

)]

dω. (4.28)This is a superposition of the previously disussed harmoni surfae waves withthe aid of the Fourier integral. c(ω) is the phase veloity of the mode to bederived from the reordings of u(x, t). Sine  is frequeny dependent, the seis-mograms for di�erent x are di�erent. A(ω) is the spetrum of the displaementat (arbitrary) x=0. The amplitude spetrum is |A(ω)| and the phase spetrum
Φ(ω) = argA(ω), i.e.,

A(ω) = |A(ω)|eiΦ(ω).We assume that u(x, t) is known for x = x1 and x = x2 > x1 and apply aFourier analysis to the seismograms
u(x1,2, t) =

1

2π

∫ +∞

−∞

G1,2(ω)eiωtdω, (4.29)where G1,2(ω) is the spetrum of the seismogram for x = x1,2. The omparisonof (4.29) with (4.28) gives
G1,2(ω) = |G1,2(ω)|eiϕ1,2(ω) =

A(ω) exp

[

−iω x1,2

c(ω)

]

= |A(ω)| exp

[

i

(

Φ(ω)− ω x1,2

c(ω)

)]

.If the time t=0 is idential for both seismograms, and, if possible, jumps of ±2πhave been removed from the numerially determined phases ϕ1,2(ω) (usuallybetween −π and +π), the phases of the top (observation G1,2(ω)...) and thebottom ( |A(ω)|...) an be mathed and give
ϕ1,2(ω) = Φ(ω)− ω x1,2

c(ω)
.Subtrating ϕ1(ω) from ϕ2(ω), the unknown phase spetrum Φ(ω) of u(0, t)anels and the following result for the phase veloity is left

c(ω) =
(x2 − x1)ω

ϕ1(ω)− ϕ2(ω)
. (4.30)For pratial appliations of this method, the surfae waves have to be reordedat two stations whih are on a great irle path with the soure. In ase threestations are available, this requirement an be irumvented by onstruting atriangle between the stations. In both approahes, the phase veloities derivedare representative for the region between the stations.
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152 CHAPTER 4. SURFACE WAVES

Fig. 4.9: Example for seismograms of Rayleigh waves from L. Knopo�, et al.,1966. The traes have been shifted.The interpretation based on the phase veloity from Fig. 4.9 is given in Fig.4.10. It shows short period group veloity observations from near earthquakesas well as phase-veloity measurements for the region of transition (Central Alpsto northern Foreland, Fig. 4.9) (from L. Knopo�, St. Müller and W.L. Pilant:Struture of the rust and upper mantle in the Alps from the phase veloity ofRayleigh waves, Bull. Seism. So. Am. 56, 1009-1044, 1966).

Fig. 4.10: Short period group veloity observations from L. Knopo�, et al.,1966.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 1534.1.5 The group veloitySeismograms with dispersion, as shown in Fig. 4.9, often have a very slowvariation of frequeny with time, so that one frequeny an be assoiated witha ertain time. If this is done for two di�erent distanes x1 and x2 (on a greatirle through the soure), and if the times, for whih frequeny ω is observedare t1(ω) and t2(ω), it follows that
U(ω) =

x2 − x1

t2(ω)− t1(ω)
. (4.31)

U(ω) is the veloity with whih this frequeny, or a wave group with a smallfrequeny band ∆ω around the frequeny ω, propagates. U is, therefore, alledthe group veloity. The theory of surfae waves from point soures in setion4.2 gives the even simpler formula U(ω) = r/t(ω), whih only requires oneseismogram; r is the distane from the soure, and t(ω) is relative to the timewhen the wave started (soure time). In pratie, this seismogram is �lteredin a narrow band with the entral frequeny ω. The arrival time t(ω) is atthe maximum of the envelope of the �ltered seismogram. The group veloityan, therefore, in prinipal be determined without di�ulty from observations.Another question is, how the group veloity is onneted with the phase veloityand, thus, with the parameters of the Earth, i.e., the veloity of P - and S -wavesand density, as a funtion of depth.To study this relation, we start from the desription of the modal seismogram(4.28) and express it using the wavenumber k = ω/c as
u(x, t) =

1

2π

∫ +∞

−∞

A(ω) exp [i (ωt− kx)] dω. (4.32)For su�iently large x and, therefore, also large t, the phase
ϕ(ω) = ωt− kxis rapidly varying ompared to A(ω). This means, for example, that for hanging

ω ϕ(ω) has hanged by 2π, whereas A(ω) is pratially unhanged, and the ω-interval, therefore, does usually not ontribute to the integral (4.32). This isespeially true if ϕ(ω) an be approximated linearly. This no longer holds for
ω = ω0, for whih ϕ(ω) has an extremum (see Fig. 4.11), i.e., when it beomesstationary.
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154 CHAPTER 4. SURFACE WAVES
Fig. 4.11: Extremum of ϕ(ω).This frequeny ω0 depends on t and follows from

ϕ′(ω0) = t− x dk
dω
|ω=ω0 = 0. (4.33)The frequeny ω0, whih satis�es (4.33), dominates at time t in the modal seis-mogram. Sine for plane surfae waves loation and time origin are arbitrary,(4.33) an be written for two distanes x1 and x2 and orresponding times t1(ω0)and t2(ω0), respetively. Subtration gives the basi formula for the group ve-loity

x2 − x1

t2(ω0)− t1(ω0)
= U(ω0) =

dω

dk
|ω=ω0 . (4.34)

ω and k are onneted via the phase veloity c = ω/k. Using this, the expliitgroup veloity (4.26) an be derived diretly from (4.34) (see exerise 4.4).The arguments skethed here are the entral ideas of the method of stationaryphase. We will use it later to alulate integrals of the form (4.32) approxi-mately; here, it was only used to demonstrate that it is the group veloity whihdetermines the sequene and possible interferene in the modal seismogram.To make this statement more obvious, we onsider an arbitrary mode of theRayleigh waves of a liquid half-spae with a layer at the top. Its dispersion urvesfor phase and group veloity look like those in Fig. 4.12 (ompare exerise 4.3).
Fig. 4.12: Dispersion urves for a liquid half-spae with a top layer.
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 155Instead of (4.31), or the left of (4.34), we use U(ω) = r/t(ω), whih refers tothe soure, to interpret the urve of the group veloity.From the trend in Un, we onlude that for the mode onsidered, the frequeniesin the neighbourhood of the lower limiting frequeny ωn arrive at an arbitrarydistane r from the soure. This assumes that suh frequenies are atuallyexited at the soure. Their group veloity is α2, and their group travel timeis r/α2. For later times, whih are still smaller than r/α1, the frequeny of thearriving osillations slowly inreases, orresponding to the steep trend in theurve of Un. This wave train is alled the fundamental wave. At later timesgreater then r/α1 there are two frequenies, ω′ and ω′′, whih ontribute to theseismogram. This has the e�et that the higher frequeny waves (water waves)ride on the fundamental waves. The frequenies of the two waves approah eahother for inreasing time and beome idential at time r/Unmin. Here, Unminis the minimal group veloity. The orresponding wave group is the Airy phase,and it onstitutes the end of the modal seismogram. Exat omputations ofmodal seismograms, disussed later, on�rm these qualitative statements. Theexample in Fig. 4.13 shows the behaviour of pressure of the fundamental mode(from C.L. Pekeris: Theory of propagation of explosive sound in shallow water,Geol. So. Am. Memoir No. 27, 1948).

Fig. 4.13: Pressure of the fundamental mode from C.L. Pekeris, 1948. α1 =1500 m/s , α2 = 1650 m/s, ρ1 = 1 g/ cm3, ρ2 = 2 g/ cm3, d1 = 20 m.The dispersion of the fundamental wave of the example in Fig. 4.13, shownfor a soure distane of 9200 m , i.e., dereasing group veloity with inreasingfrequeny (inrease of frequeny with time), is alled regular dispersion. For thewater wave, the group veloity grows with the frequeny (frequeny inreaseswith inreasing time); this is alled inverse dispersion. The notation regularand inverse dispersion should not be onfused with the expressions normal and
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156 CHAPTER 4. SURFACE WAVESanomal dispersion, whih express, that the group veloity is larger or smallerthan the phase veloity, respetively.Fig. 4.14 is a sketh to demonstrate the basi propagation properties of a dis-persive wave train. It assumes that the soure radiates an impulse with onstantspetrum in the frequeny band ω1 ≤ ω ≤ ω2 and that the medium produesonly regular dispersion. The larger the propagation distane, the longer thewave train beomes. At the same time, the amplitudes derease (not shown inFig. 4.14).

Fig. 4.14: Basi propagation properties of dispersive wave trains.Constant frequenies our on straight lines through the origin (r = 0, t = 0)with a slope of dr/dt that is idential to the group veloity. Constant phases,e.g., a ertain maximum or an intersetion with zero, are situated on urvedlines, and the frequeny varies along these urves. The loal slope dr/dt ofthese urves is the phase veloity for the dominating frequeny at this time.Exerise 4.4Derive (4.26) for the group veloity. How does dc/dω behave for normal andabnormal dispersion, respetively?
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 157Exerise 4.5a) What is the form of the most general phase veloity c(ω) for whih the groupveloity U(ω) is onstant? Interpret the orresponding seismogram (4.28).b) What is the most general onnetion between phase veloities c1(ω) and
c2(ω) with idential group veloities U1(ω) and U2(ω)? Use 1/U = dk/dω =
d(ω/c)/dω.4.1.6 Desription of surfae waves by onstrutive inter-ferene of body wavesUp to this point, surfae waves have been treated for the most part theoretially,namely based on an ansatz for the solution of di�erential equations. Input inthese equations have been the onentration of the wave amplitude near thesurfae, propagation along the surfae and dispersion. We have not reahed aphysial understanding how these waves an be onstruted. In this setion, wewill show for the simple example of Love waves in a half-spae with one layerat the top, that surfae waves an basially be understood as arising from on-strutive interferene of body waves whih are re�eted between the interfaes.We onsider SH -body waves whih propagate up and down in the layer withan angle of inidene and re�etion ϕ. The re�etion at the surfae is lossfree; the re�etion oe�ient aording to (3.39) equals +1. During re�etionat the lower boundary of the layer (z = d1), energy loss through re�etionour, as long as ϕ < ϕ∗ = arcsin(β1/β2). In this ase, the amplitude of there�eted waves derease with the number of re�etions at the lower boundary.If on the other hand, ϕ > ϕ∗, the re�etion oe�ient at the lower interfaehas the absolute value of +1 (see (3.42)). Thus, no wave in the lower half-spae exists transporting energy away from the interfae and the amplitudeof eah single multiple re�etion is preserved. The wave �eld in this layer isthen basially ontrolled by the interferene of all multiple re�etions. Forertain values of ϕ there will be onstrutive interferene and for other valuesthere will be destrutive interferene, respetively. We try to determine those
ϕ whih show onstrutive interferene. To ahieve this, we approximate themomentary wave�eld piture of Fig. 4.15, loally, by plane parallel wavefrontswith a orresponding angle of inidene ϕ (see Fig. 4.16).
Fig. 4.15: Piture of momentary wave �eld.
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158 CHAPTER 4. SURFACE WAVES
Fig. 4.16: Approximation of Fig. 4.15 by plane, parallel wavefronts.This approximation is better at larger distanes from the soure. The limitationon plane waves means that we onsider free normal modes.The phases of neighbouring wavefronts 1, 2, 3 are Φ1 (arbitrary), Φ2 = Φ1 + ǫ1and Φ3 = Φ1 + ǫ1 + ǫ2, respetively, where ǫ1 and ǫ2 are the phase shifts of there�etions in A and B, respetively. To ensure that wave 1 and 3 are in phase,the phase di�erene Φ3 −Φ1 has to be equal to the phase di�erene due to thetravel time ωs/β1 plus a multiple of 2π. With

s = 2
d1

tanϕ
sinϕ = 2d1 cosϕ,we derive the following ondition for onstrutive interferene

ǫ1 + ǫ2 =
2ωd1

β1
cosϕ+ 2nπ, n = 0, 1, 2, . . . . (4.35)The phase shifts; ǫ1 and ǫ2 are the phases of the re�etion oe�ients for planeSH -waves. Sine we only onsider post-ritial ϕ > ϕ∗ = arcsin(β1/β2), itfollows for ǫ1 from (3.42) and with ω > 0

ǫ1 = −2 arctan
b

a
= −2 arctan







−ρ2β2

(

β2
2

β2
1

sin2 ϕ− 1
)

1
2

ρ1β1 cosϕ






.For the re�etion at B, it holds that ǫ2 = 0, sine aording to (3.39), there�etion oe�ient at the free surfae is always +1.Substituting all of the above into (4.35), we get an equation for those angles ofinidene ϕ, whih produe a for given ω, onstrutive interferene

arctan







ρ2β2

(

β2
2

β2
1

sin2 ϕ− 1
)

1
2

ρ1β1 cosϕ






=
ωd1

β1
cosϕ+ nπ, n = 0, 1, 2, . . . (4.36)
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4.1. FREE SURFACE WAVES IN LAYERED MEDIA 159In this equation, we introdue the apparent veloity
c =

β1

sinϕ
(4.37)with whih the wavefronts propagate in a horizontal diretion. With cosϕ =

β1(β
−2
1 − c−2)1/2 and ρ1,2β

2
1,2 = µ1,2, we derive by reversing (4.36), an equationfor 

µ2

(

c−2 − β−2
2

)
1
2

µ1

(

β−2
1 − c−2

)
1
2

= tan
[

ωd1

(

β−2
1 − c−2

)
1
2

]

.This equation is idential with the dispersion equation (4.19) of Love waves.We would have found the same equation, if we had onsidered waves whihpropagate upwards (and not downwards) in Fig. 4.16. The superposition of bothgroups of waves gives, for reason of symmetry, a wave with vertial wavefronts.Therefore,  is not only an apparent veloity, but also the phase veloity of thisresulting wave.We also see that the Love waves in the half-spae with a top layer are produedby onstrutive interferene of body waves whih have a post-ritial angle ofinidene. For these angles of inidene, no energy is lost from the layer intothe half-spae. The energy remains in the layer whih ats as a perfet waveguide. This is generally true for normal modes of Love and Rayleigh waves inhorizontally layered media, in whih ase that normal modes exist. From this,we an also onlude that the phase veloity of normal modes an, at most, beequal to the S -veloity of the half-spae under the layers
c ≤ βn.If it were larger, energy would be radiated into the half-spae in the form of anS -wave. Leaking modes also our by onstrutive interferene of body waves.In this ase, the angles of inidene are pre-ritial, and the phase veloity islarger than βn. Thus, radiation into the lower half-spae ours and the waveguide is not perfet.Finally, it should be noted that the explanation of surfae waves via onstru-tive interferene of body waves annot be applied to the fundamental mode ofRayleigh waves. The Rayleigh wave of the homogeneous half-spae, for example,exists without additional disontinuities at the surfae. No simple explanationexists for the fundamental mode of Rayleigh waves.Exerise 4.6Determine the dispersion urves for a liquid layer whose boundaries are (1) bothfree, (2) both rigid, (3) one rigid and one free, respetively. Use the argumentsof setion 4.1.6 and ompare with the solution of the orresponding eigenvalueproblem. Give the group veloity and sketh the pressure-depth distributions.
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160 CHAPTER 4. SURFACE WAVES4.2 Surfae waves from point soures4.2.1 Ideal wave guide for harmoni exitationExpansion representation of the displaement potentialsWe study the propagation of monohromati sound waves from an explosivepoint soure in a liquid layer with a free surfae situated above a rigid half-spae.

Fig. 4.17: Explosive point soure in a liquid layer with a free surfae atop arigid half-spae.This is an ideal wave guide sine no waves an penetrate the half-spae. Forsuh a senario, the key features of surfae waves from point soures an bestudied without too muh mathematial e�ort.For the displaement potential Φ in the layer, we assume the following integralansatz, using the analogy to (3.84) and applying (3.85) for the potential of thespherial wave from the soure. In the following, the time-dependent term eiωtis omitted
Φ =

∫ ∞

0

J0(kr)

[

k

il
e−il|z−h| +A(k)e−ilz +B(k)eilz

]

dk (4.38)
l =

(

ω2

α2
− k2

)
1
2

.

J0(kr) is the Bessel funtion of �rst kind and zeroth order, k and l are the hori-zontal and vertial wavenumber, respetively. The square root l is, as in setions3.6.5 and 3.7, either positive real or negative imaginary. It an be shown that Φis a solution of the wave equations in ylindrial oordinates. The �rst term in(4.38) is the wave from the soure, the seond and third orrespond to the waves
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4.2. SURFACE WAVES FROM POINT SOURCES 161propagating in positive and negative z -diretion, respetively. A(k) and B(k)follow from the boundary onditions for the interfaes
z = 0 : stress pzz = ρ

∂2Φ

∂t2
= −ρω2Φ = 0 or Φ = 0

z = d : normal displaement ∂Φ

∂z
= 0.This gives

A(k) +B(k) = − k
il
e−ilh

A(k)− e2ildB(k) = − k
il
eilh.The solution of this system of equation is (please hek)

A(k) = −k cos [l(d− h)]
il cos(ld)

B(k) =
k sin(lh)

l cos(ld)
e−ild.Inserting them into (4.38) gives

0 ≤ z ≤ h : Φ = 2

∫ ∞

0

kJ0(kr)
sin(lz) cos [l(d− h)]

l cos(ld)
dk (4.39)

h ≤ z ≤ d : Φ = 2

∫ ∞

0

kJ0(kr)
sin(lh) cos [l(d− z)]

l cos(ld)
dk. (4.40)Before these expressions are solved with methods from omplex analysis, itshould be noted that an exhange of soure and reeiver does not hange thevalue of Φ. Displaement and pressure are also the same for this ase. This isan example for reiproity relations, whih is important in the theory of elastiwaves.The poles kn of the integrand in (4.39) and (4.40) are determined via

dln = d

(

ω2

α2
− k2

n

)
1
2

= (2n− 1)
π

2
, n = 1, 2, 3 . . .This gives
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162 CHAPTER 4. SURFACE WAVES
kn =

(

ω2

α2
− (2n− 1)2π2

4d2

)
1
2

. (4.41)The in�nite number of poles are situated on the real axis between −ω/α and
+ω/α and on the imaginary axis, respetively. The number of poles on the realaxis depends on ω. Due to these poles, the integration path in (4.39) and (4.40)have to be spei�ed in more detail. We hoose path C1 in Fig. 4.18 whihirumvents the poles in the �rst quadrant.

Fig. 4.18: Integration path C1 whih irumvents the poles in the �rst quadrant.In the following, we disuss only (4.39) in detail. Equation (4.40) an be solvedsimilarly. We use the identity
J0(kr) =

1

2

[

H
(1)
0 (kr) +H

(2)
0 (kr)

]

,where H(1)
0 (kr) and H(2)

0 (kr) are Bessel funtions of the third kind (=Hankelfuntions) and zeroth order (Appendix C, equations (C.2) and (C.3), respe-tively). Then,
Φ =

∫

C1

k
[

H
(1)
0 (kr) +H

(2)
0 (kr)

] sin(lz) cos [l(d− h)]
l cos(ld)

dk. (4.42)Using relation (C.6) from appendix C,
H

(1)
0 (x) = −H(2)

0 (−x)
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4.2. SURFACE WAVES FROM POINT SOURCES 163the �rst part of the integral in (4.42) an be written as
−
∫

C1

kH
(2)
0 (−kr)sin(lz) cos [l(d− h)]

l cos(ld)
dk =

∫

C2

uH
(2)
0 (ur)

sin(lz) cos [l(d− h)]
l cos(ld)

duwhere u=-k is used. The integration path C2 is point-symmetrial to the path
C1 with respet to the oordinate entre, but it goes from −∞ to 0. Insertingthis in (4.42) and with onsistent use of k as integration variable, gives

Φ =

∫

C

kH
(2)
0 (kr)

sin(lz) cos [l(d− h)]
l cos(ld)

dk =

∫

C

I(k)dk. (4.43)

Fig. 4.19: Integration path C from −∞ to +∞ irumventing the poles on thereal axis.Integration path C, therefore, is, as indiated in Fig. 4.19, from −∞ to +∞and irumventing the poles on the real axis.Despite the non-uniqueness of the square root l in (4.43), I(k) is a uniquefuntion of k. The reason for this is that I(k) is an even funtion of l, thus, thesign of the square root of l does not matter. For more ompliated wave guides,e.g., if the half-spae is not rigid, I(k) is not unique and the theory beomesmore ompliated (introdution of branh uts).Now we apply the remainder theorem on the losed integration path shown inFig. 4.20 whih onsists of path C and a half irle with in�nite radius. Theonly singularities inluded are the poles of I(k).
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164 CHAPTER 4. SURFACE WAVES

Fig. 4.20: Integration path C and half irle with in�nite radius.Then
∫

C

+

∫

L

= −2πi

∞
∑

n=1

ResI(k)|k=kn .

L indiates the lokwise integration in the lower plane of Fig. 4.20, and eahterm in the sum is the residue of I(k) at the pole k = kn.If the asymptoti representation of the Hankel funtion is used, it follows forlarge arguments (Appendix C, equation (C.4))
H

(2)
0 (kr) ≃

(

2

πkr

)
1
2

e−i(kr−π
4 ). (4.44)We see that their values on the semi-irle in the lower half-plane, where k hasa negative imaginary part, beomes zero (for R going to∞). The orrespondingintegral also goes to zero, and we have found a representation of the potential Φas an in�nite sum of residuals. The determination of the residue of the quotient

f1(k)/f2(k) at the loation kn with f2(kn) = 0 is done with the formula
Res

f1(k)

f2(k)

∣

∣

∣

∣

k=kn

=
f1(kn)

f ′
2(kn)

,if kn is a pole of �rst order. In our ase, kn follows from (4.41) and is eitherpositive real or negative imaginary. The orresponding l is
ln =

(2n− 1)π

2d
.Furthermore, it holds here, that f2(k) = cos(ld), f2(kn) = cos(lnd) = 0 and

f ′
2(kn) = d

kn

ln
sin(lnd).
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4.2. SURFACE WAVES FROM POINT SOURCES 165Finally,
cos [ln(d− h)] = cos(lnd) cos(lnh) + sin(lnd) sin(lnh) = sin(lnd) sin(lnh).Thus,

Res I(k)|k=kn
=

1

d
H

(2)
0 (knr) sin(lnz) sin(lnh).We, therefore, get the following representation of the potential Φ as an expan-sion, for whih eiωt has now to be added again for ompleteness

Φ = −2πi

d

∞
∑

n=1

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

]

H
(2)
0 (knr)e

iωt. (4.45)This expression not only holds for 0 ≤ z ≤ h but also for arbitrary depth,sine aording to (4.40) the same expansion an be found. From (4.45) thedisplaement omponents ∂Φ/∂r and ∂Φ/∂z and the pressure p = −pzz = ρω2Φan be derived.For the ideal wave guide the �eld an be onstruted solely from the ontribu-tions from the poles, eah of whih represents a mode, as will be shown later.For ompliated wave guides, ontributions in the form of urve integrals in theomplex k -plane have to be added to the pole ontributions. These additionalontributions orrespond mostly to body waves.Modes and their propertiesEah term in (4.45) represents a mode. This is only a de�nition, but it �ts wellinto the mode onept introdued in the previous setions for free surfae waves.If we onsider, for example, the terms in (4.45) for large distanes r, we an use(4.44) (|knr| > 10)

Φ =
−2
√

2πiei π
4

d

∞
∑

n=1

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

] 1

(knr)
1
2

ei(ωt−knr).(4.46)The most important terms in (4.46) are those with positive kn. Their num-ber is �nite and inreases with ω. They orrespond to waves with ylindrialwavefronts whih propagate in +r-diretion with the frequeny dependent phaseveloity
cn(ω) =

ω

kn
= α

[

1− (2n− 1)2π2α2

4d2ω2

]− 1
2

. (4.47)
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166 CHAPTER 4. SURFACE WAVESIf the eigenvalue problem for free surfae waves in the same wave guide is solved(ompare exerise 4.6), it follows for the n-th free normal mode
Φn = A sin

[

(2n− 1)
πz

2d

]

e
iω
(

t− x
cn(ω)

)

, (4.48)with cn(ω) from (4.47). Furthermore, the terms in (4.46) and (4.48) agree, thatdesribe the z-dependene agree. It, therefore, makes sense to name the singleterms in (4.45) and (4.46) the n-th fored normal mode, if kn > 0. The di�erenewith respet to (4.48) is in the amplitude redution proportional to r−1/2 and inthe addition of a term that depends on the soure depth h. This term is namedthe exitation funtion of the mode. If the the soure is loated at a nodal planeof the free mode (4.48), the exitation funtion is zero, and the mode is notexited. Maximum exitation ours, if the soure is at a depth where the freemode has its maximum.From the omparison of the free and the fored normal modes, the importane ofthe study of free modes beomes obvious. It desribes the dispersive propertiesand the amplitude-depth distributions (eigen funtions) of the fored normalmodes and, therefore, their most important property. This also holds for moreompliated wave guides.The terms in (4.46) with negative imaginary kn are not waves but representosillations with amplitudes that derease exponentially in r -diretion. Theyonly ontribute to the wave �eld near the soure, where (4.45) has to be usedfor ompleteness. The far-�eld is dominated by normal modes.The number of nodal planes of the n-th mode is n, and their spaing is 2d/(2n−1)
(n = 2, 3 . . .). The potential Φ, horizontal displaement ∂Φ/∂r and pressure phave a node for z = 0 and a maximum for z = d, respetively (see Fig. 4.21).The opposite is true for the vertial displaement ∂Φ/∂z.

Fig. 4.21: Modes and nodal planes, n = 1, 2, 3, 4.The phase veloity (4.47) of the n-th mode an be written as
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4.2. SURFACE WAVES FROM POINT SOURCES 167
cn(ω) = α

[

1−
(ωn

ω

)2
]− 1

2 (4.49)with the lower frequeny limit
ωn =

(2n− 1)πα

2d
.In�nitely high phase veloities an our. Aording to (4.26), the group veloityis

Un(ω) = α

[

1−
(ωn

ω

)2
]

1
2

. (4.50)

Fig. 4.22: Group and phase veloities.An important property of the ideal wave guide with a rigid and a free interfaeis that the angular frequenies ω < ω1 = πα/2d (or the frequenies ν < α/4dand waves length Λ > 4d, respetively) annnot propagate undamped. This nolonger holds for the ideal wave guide with two rigid walls (ompare exerise 4.6).In this ase, an additional fundamental mode exists, in addition to the modesdisussed before, but with di�erent limiting frequenies. That mode an ourat all frequenies, and its phase veloity is frequeny independent and equal to
α.4.2.2 The modal seismogram of the ideal wave guideIn this setion, we will ompute the orresponding modal seismogram for anarbitrary summand in (4.45), exatly. In the next setion, we will use themethod of stationary phase to do this.
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168 CHAPTER 4. SURFACE WAVESThe potential (4.45) orresponds to time harmoni exitation, i.e., for the po-tential of the explosion point soure
Φ0 =

1

R
F

(

t− R

α

)

, (4.51)it holds that F (t) = eiωt. From this mode of exitation, we now will move tothe exitation via a delta funtion, F (t) = δ(t). Multiplying (4.45), without thefator eiωt, with the spetrum of the delta funtion F (ω) = 1, gives the Fouriertransform of the displaement potential. Finally, the result is transformed bakinto the time domain. These modal seismograms an then be onvolved withrealisti exitation funtions F (t), but the basi features an already be under-stood for F (t) = δ(t).For this, we onsider the n-th mode in the expansion (4.45). Its Fourier trans-form for exitation via a delta funtion is, exept for geometry fators, equalto Hn(ω) = iH
(2)
0 (knr) with kn = (ω2 − ω2

n)1/2/α. We now use the Laplaetransform (ompare setion A.1.7)
hn(s) = Hn(−is) = iH

(2)
0

[

−i r
α

(

s2 + ω2
n

)
1
2

]and the relation
H

(2)
0 (−ix) =

2i

π
K0(x)between the Hankel funtion and the modi�ed Bessel funtionK0(x) (see setion3.8). This gives then

hn(s) = − 2

π
K0

[ r

α

(

s2 + ω2
n

)
1
2

]

.The original funtion an then be found in tables of the Laplae transform. Itis zero for t < r
α , and for t > r

α it holds that
Hn(t) = − 2

π
·
cos

[

ωn

(

t2 − r2

α2

)
1
2

]

(

t2 − r2

α2

)
1
2

.Thus the n-th mode of the potential an be written as
Φn =











0 for t < r
α

4
d sin

[

(2n− 1)πh
2d

]

sin
[

(2n− 1)πz
2d

]

cos

[

ωn

(

t2− r2

α2

) 1
2

]

(

t2− r2

α2

) 1
2

for t > r
α .(4.52)
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4.2. SURFACE WAVES FROM POINT SOURCES 169That is a normal mode for all n sine the delta funtion ontains arbitrarily highfrequenies, ensuring that the lower limiting frequeny of eah normal mode anbe exeeded.For simpliity, we limit the disussion in the following to the potential Φn.All onlusions also hold for displaement and pressure. The seismogram inFig. 4.23 starts at time t = r/α with a singularity that is integrable. Then theamplitudes derease with 1/t, for times large ompared to r/α, while osillating.The most important feature of Φn is its frequeny modulation or dispersion. Thefrequenies derease from large values to the limiting frequeny ωn of the modeonsidered. The dispersion in the example shown is, therefore, inverse.

Fig. 4.23: Seismogram showing frequeny modulation (dispersion).What we have learned about the group veloity in setion 4.1.5 an be on�rmedwith (4.52). We �rst ask whih frequenies ω dominate at a ertain time t0 inthe modal seismogram. Outside the singularity, the disussion an be limitedto the osine funtion in (4.52). We plan to linearise f(t) near t = t0 to be ableto approximate the funtion cos [f(t)] in the neighbourhood of t = t0 by themonohromati osillation cos [ϕ0 + ω(t0)t]. Here ϕ0 is a phase that is indepen-dent of t, and ω(t0) is the instantaneous angular frequeny required. This leadsto
cos [f(t)] ≈ cos [f(t0) + f ′(t0)(t− t0)] .From this, it follows that ω(t0) = f ′(t0). If applied to (4.52), it follows

ω(t0) = ωnt0

(

t20 −
r2

α2

)− 1
2

.
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170 CHAPTER 4. SURFACE WAVESFrom this, we derive the quotient r/t0, i.e., the veloity with whih a wave groupof frequeny ω(t0) propagates from the soure to the reeiver, and we get (with
ω0 = ω(t0))

r

t0
= α

[

1−
(

ωn

ω0

)2
]

1
2

= Un(ω0)with Un(ω0) from (4.50), i.e., exatly the group veloity of the n-th mode. We,therefore, on�rm the statement from setion 4.1.5: that eah frequeny that isradiated from the soure propagates to the reeiver with the group veloity.The omplete seismogram in the wave guide is produed by onvolving themodal seismogram (4.52) with a realisti exitation funtion F (t), the spetrumof whih has an upper limiting frequeny, and sum. Only those normal modes(4.52) ontribute signi�antly to the seismogram whih have lower limiting fre-quenies that are smaller than the upper limiting frequeny of F (t). Often theresponse of hydro-phones and seismometers, together with the dissipative meh-anisms in the wave guide, redue the number of modes. In pratise usually onlya few modes ontribute to the observed surfae waves.4.2.3 Computation of modal seismograms with the methodof stationary phaseThe omputation of modal seismograms is only possible exatly for ideal waveguides (with rigid and/or free boundaries, respetively). In the following, anapproximation is disussed and demonstrated, whih gives the modal seismo-gram for the far-�eld form of a normal mode of the type of (4.46). This is themethod of stationary phase mentioned before.Multiplying a normal mode in (4.46) with the spetrum F (ω) of the exitationfuntion F (t) in (4.51), then transforming bak into the time domain, givesthe modal seismogram as a Fourier integral. To avoid integration over negativefrequenies, we use the fat that real funtions f(t) annot only be representedas
f(t) =

1

2π

∫ +∞

−∞

f(ω)eiωtdωbut also as
f(t) =

1

π
Re

∫ ∞

0

f(ω)eiωtdω.This gives the modal seismogram as
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4.2. SURFACE WAVES FROM POINT SOURCES 171
Φn = Re

{

−2
√

2iei π
4

√
πd

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

] 1√
r

∫ ∞

0

F (ω)√
kn

ei(ωt−knr)dω

}

.(4.53)The approximate omputation of the integral over ω is based, as in setion 4.1.5,on the fat that at times t to be onsidered, the phase
ϕ(ω) = ωt− knr (4.54)is usually rapidly varying ompared to funtion F (ω). Suh frequenies on-tribute little to the integral in (4.53). This is di�erent for frequenies withstationary phase values. Suh a frequeny ω0 follows from the equation

ϕ′(ω0) = t− r dkn

dω

∣

∣

∣

∣

ω=ω0

= 0and depends on t. This means that the frequeny ω0, for whih the groupveloity is
Un(ω0) =

dω

dkn

∣

∣

∣

∣

ω=ω0

=
r

t
,dominates the modal seismogram at time t .From this follows the priniple of determining the group veloity from an ob-served modal seismogram. For a given time t, relative to the soure time, themoment frequenies and the orresponding group veloities, using t and souredistane r, are determined. The soure time and epientre of the earthquake,therefore, have to be known. This gives a piee of the group veloity dispersionurves. One has now to verify this piee of the urve via forward modelling.The assoiation of a ertain frequeny to a ertain time, neessary here, is inpriniple not unique, but the error assoiated with it an be estimated. Withthis method, applied to surfae waves of earthquakes, several important resultson the struture of the Earth were found, for example, the average rustal thik-ness in di�erent parts of the Earth is shown in the di�erent branhes in Fig.4.10. A disadvantage of this method is that the result is only an average overthe whole region between soure and reeiver. Therefore, today several stationsare used in the interpretation of the phase veloity (ompare setion 4.1.4).The omputation of the modal seismogram requires then the following additionalsteps: for given time t, we expand the phase (4.54) at the frequeny ω0, whihis determined by

Un(ω0) =
r

t
(4.55)
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172 CHAPTER 4. SURFACE WAVES
ϕ(ω) = ϕ(ω0) + 1

2ϕ
′′(ω0)(ω − ω0)

2

ϕ′′(ω0) = r
U2

n(ω0)
dUn

dω (ω0)







. (4.56)An important requirement is that ϕ′′(ω0) 6= 0. Then,
∫ ∞

0

F (ω)√
kn

eiϕ(ω)dω ≈
∫ ω0+∆ω

ω0−∆ω

F (ω)√
kn

exp

{

i

[

ϕ(ω0) +
1

2
ϕ′′(ω0)(ω − ω0)

2

]}

dω

≈ F (ω0)e
iϕ(ω0)

√

kn(ω0)

∫ ω0+∆ω

ω0−∆ω

exp

{

i

2
ϕ′′(ω0)(ω − ω0)

2

}

dω.Here, we limited our disussion to the neighbourhood of the frequeny ω0, where
ϕ(ω) is stationary. The other frequenies do not ontribute signi�antly. With
x = (ω − ω0)

(

1
2 |ϕ′′(ω0)|

)1/2, we get
∫ ω0+∆ω

ω0−∆ω

exp

{

i

2
ϕ′′(ω0)(ω − ω0)

2

}

dω =

(

2

|ϕ′′(ω0)|

)
1
2
∫ +∆ω

(

|ϕ′′(ω0|
2

)1/2

−∆ω

(

|ϕ′′(ω0)|
2

)1/2 e
±ix2

dx

≈
(

2

|ϕ′′(ω0)|

)
1
2
∫ +∞

−∞

e±ix2

dx

=

(

2π

|ϕ′′(ω0)|

)
1
2

e±i π
4

(with ∫ +∞

−∞ cosx2dx =
∫ +∞

−∞ sinx2dx =
(

π
2

)
1
2

)

.The positive and the negative sign in the exponential term hold, if ϕ′′(ω0) >
0 and < 0, respetively. The extension of the limits of the integration to
x = ±∞ is possible, sine they are proportional to √r and r is very large.Furthermore, signi�ant ontributions to the integral ome only from relativelysmall values of x (a. |x| ≤ 5). Putting all this together, the modal seismogramfor the ideal wave guide in the approximation given by the method of stationaryphase (with ϕ′′(ω0) > 0) an be written as

Φn = Re

{

−2
√

2iei π
4

√
πd

sin

[

(2n− 1)
πh

2d

]

sin
[

(2n− 1)
πz

2d

]

· F (ω0)e
iϕ(ω0)

[

2π

rkn(ω0) |ϕ′′(ω0)|

]
1
2

ei π
4

}

. (4.57)
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4.2. SURFACE WAVES FROM POINT SOURCES 173Next, one uses
ϕ(ω0) = ω0t− kn(ω0)r,

kn(ω0) =
ω0

α

[

1−
(

ωn

ω0

)2
]

1
2

,

r

t
= Un(ω0) = α

[

1−
(

ωn

ω0

)2
]

1
2and ϕ′′(ω0) from (4.56) and deletes ω0 = ω0(t) = ωnt

(

t2 − r2/α2
)−1/2 from(4.57). After some alulations, and for the assumption F (ω0) = 1, whih or-responds to the exitation funtion F (t) = δ(t), the following modal seismograman be derived (please on�rm)

Φn =











0 for t < r
α

4
d sin

[

(2n− 1)πh
2d

]

sin
[

(2n− 1)πz
2d

]

cos

[

ωn

(

t2− r2

α2

) 1
2

]

(

t2− r2

α2

) 1
2

for t > r
α .(4.58)We, therefore, get the stringent results of (4.52). This is surprising, onsideringthe approximations used. From this we an draw the general onlusion thatthe method of stationary phase is a good approximation for normal modes evenfor more ompliated wave guides.For frequenies ω0 with ϕ′′(ω0) = 0, i.e., with dUn

dω (ω0) = 0 and with stationaryvalues of the group veloity (whih do not our for ideal wave guides), theexpansion in (4.56) has to be extended by one additional term. The treatmentof the alulations following is, therefore, slightly di�erent (see, for example,Appendix E). It leads to the behaviour of Airy phases and shows that theyare usually the dominating parts of the modal seismograms (ompare also Fig.4.13).4.2.4 Ray representation of the �eld in an ideal wave guideIn the last two setions we have learned that the wave�eld in an ideal wave guideis omposed of fored normal modes. Furthermore, we found in setion 4.1.6,that free normal modes are omposed of multiple re�eted plane body waves inthe wave guide. This raises the question, an the �eld of a point soure in anideal wave guide also be represented by the superposition of multiple re�etions?In other words, in this ase is there also a ray representation of the wave �eld?In addition, it is interesting to see if mode and ray representations of the wave�eld are then also equivalent.
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174 CHAPTER 4. SURFACE WAVESWe �rst examine the re�etion of the spherial wave
Φ0 =

1

R0
F

(

t− R0

α

) (4.59)at the interfae of the wave guide in the neighbourhood of the point soure, e.g.,the free surfae.
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Fig. 4.24: Re�etion of a spherial wave at the interfae of the wave guide inthe neighbourhood of the point soure.The potential of the re�etion is
Φ1 =

−1

R1
F

(

t− R1

α

)

. (4.60)
R1 is the distane between P (r, z) and the image soure Q1. As long as there�etion from the lower (rigid) interfae of the wave guide has not reahedthe surfae, the potential in the neighbourhood of the surfae is Φ0 + Φ1 and,therefore, zero on the surfae. Φ0 + Φ1 satisfy, therefore, for suh times, theondition of no stress at the surfae z = 0 (pzz = ρ∂2(Φ0 + Φ1)/∂t

2).Similarly, if we onsider the re�etion of the spherial wave from Q0 at theinterfae z = d, the potential of the wave re�eted there an be written as
Φ2 =

1

R2
F

(

t− R2

α

)

, (4.61)whereR2 now has to be determined for a new image soure with the z -oordinate
d + (d − h) = 2d − h. That Φ0 + Φ2 satis�es the boundary onditions ∂(Φ0 +
Φ2)/∂z = 0 for z = d (zero normal displaement), an be seen easily, sine forpoints in that interfae
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4.2. SURFACE WAVES FROM POINT SOURCES 175
R0 = R2

∂R0

∂z
=

z − h
R0

∣

∣

∣

∣

z=d

=
d− h
R0

∂R2

∂z
= −2d− h− z

R2

∣

∣

∣

∣

z=d

= −d− h
R2

= −∂R0

∂z
.With the two previously onsidered re�etions of the spherial wave originatingfrom Q0 at the interfaes of the wave guide, boundary onditions an only besatis�ed for ertain times, e.g., only as long as the re�etions Φ1 and Φ2 havereahed the opposite interfae, respetively. Sine they are of the same form as

Φ0, higher order re�etions an be onstruted in the same way. Eah re�etionand multiple re�etion seems to ome from an image soure, whih was reatedby the appliation of multiple mirror images of Q0 at the interfaes (Fig. 4.25).The sign of the orresponding potential is negative if the number of re�etionsat the surfae is odd, otherwise it is positive. Eah image soure orresponds toa ray from the soure to the reeiver whih has undergone a ertain number ofre�etions.

Fig. 4.25: Image soures for multiple re�etions in the wave guide.
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176 CHAPTER 4. SURFACE WAVESThe ray onept an, without di�ulties, be generalised for solid media (inlud-ing S-waves), but this is not true for the onept of the image soure. This iswhy, in general, and also in the ase presented here, we speak of a ray represen-tation of the wave �eld. It an be expressed as
Φ =

∞
∑

j=0

(−1)j

[

− 1

Rj1
F

(

t− Rj1

α

)

+
1

Rj2
F

(

t− Rj2

α

)

+
1

Rj3
F

(

t− Rj3

α

)

− 1

Rj4
F

(

t− Rj4

α

)] (4.62)with
R2

j1 = (2jd+ h+ z)
2

+ r2

R2
j2 = (2jd− h+ z)2 + r2

R2
j3 = (2(j + 1)d− h− z)2 + r2

R2
j4 = (2(j + 1)d+ h− z)2 + r2.Only those terms in (4.62) are non-zero, for whih the argument is positive, andfor whih F (t) at t = 0 is not zero. The number of suh terms is �nite andinreases with time.For the ideal wave guide, the determination of the ontribution of a ray is simple,sine it follows the same time law as the exiting spherial wave. For other waveguides, methods like those presented in setion 3.8 have to be used. The resultingnumerial e�ort is then signi�antly greater and seems only justi�ed if not toomany rays have to be summed up, but that is neessary for large horizontaldistanes from the soure where the paths of many rays beome very similar.In this ase, the representation of the wave �eld as a sum of only a few normalmodes is signi�antly more e�ient. The ray representation is most suited forsuh distanes from the soure where the typial normal mode properties of thewave �eld have not yet developed.Finally, we will show that (4.62) for F (t) = eiωt and (4.39) and (4.40), respe-tively, are two di�erent representations of the same wave �eld. We limit ourdisussion �rst to the ase h ≤ z ≤ d. If F (t) = eiωt is inserted into (4.62),and the Sommerfeld integral (3.85) for a spherial wave is used for eah term,it follows (the fator eiωt is again omitted)

Φ =

∫ ∞

0

J0(kr)
k

il

∞
∑

j=0

(−1)j [− exp (−il |2jd+ h+ z|)
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4.2. SURFACE WAVES FROM POINT SOURCES 177
+ exp (−il |2jd− h+ z|)
+ exp (−il |2(j + 1)d− h− z|)
− exp (−il |2(j + 1)d+ h− z|)] dk.If z ≥ h, the ontributions are equal to the arguments everywhere. Then

exp(−i2ljd) an be separated
Φ =

∫ ∞

0

J0(kr)
k

il





∞
∑

j=0

(

−e−2ild
)j



 [− exp (−il (h+ z))

+ exp (−il (−h+ z))

+ exp (−il (2d− h− z))
− exp (il (2d+ h− z))] dk.The expansion in the �rst square braket has a sum of 1/(1+ e−2ild). From theseond square braket, e−ild an be extrated giving

Φ =

∫ ∞

0

J0(kr)
k

2il cos(ld)
[− exp (il (d− h− z))

+ exp (il (d+ h− z))
+ exp (−il (d− h− z))
− exp (−il (d+ h− z))] dk.The remaining square braket is equal to

−2i sin [l (d− h− z)] + 2i sin [l (d+ h− z)] = 4i cos [l (d− z)] sin (lh) .Thus,
Φ = 2

∫ ∞

0

J0(kr)
k

l

cos [l(d− z)] sin(lh)

cos(ld)
dk, (4.63)whih agrees with (4.40).If soure and reeiver are exhanged in (4.62), the potential of a single ray isunhanged sine it depends only on the path travelled. Therefore, exhangingz with h in (4.63) gives the potential for 0 ≤ z ≤ h whih leads to (4.39).Thus, the proof of the identity of (4.62) (for F (t) = eiωt) with (4.39) and (4.40),respetively, is omplete.Finally, we would like to reiterate (ompare setion 4.2.1) that a representationof the wave �eld by normal modes alone is only possible for ideal wave guides
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178 CHAPTER 4. SURFACE WAVESwhih have upper and lower boundaries that are ompletely re�eting for all an-gles of inidene. In other media, additional ontributions (body waves, leakymodes) our whih are not due to the poles in the omplex plane like the nor-mal modes.Exerise 4.7Study the polarisation of the displaement vetor of the seond free normalmode of the ideal wave guide (n=2 in (4.48)) as a funtion of depth.Exerise 4.8An explosive point soure is loated at depth h below the free surfae of a liquidhalf-spae. The displaement potential Φ is the sum of the potentials (4.59) ofthe diret wave and (4.60) for the re�etion. Give an approximation for Φ whihholds under the following onditions (dipole approximation) :a) The dominant period of the exitation funtion F (t) is muh larger than thetravel time h/α from the soure to the surfae.b) The distane r to the reeiver is muh larger than h.Introdue spherial oordinates R and ϑ relative to the point r = 0, and z = 0(ompare Fig. 4.24).What is the result, if the surfae is not free but rigid?
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Appendix ALaplae transform and deltafuntion
A.1 Introdution to the Laplae transformA.1.1 LiteratureSpiegel, M.R. : Laplae Transformation, Shaum, New York, 1977Riley, K.F., Hobson, M.P. and Bene, J.C. : Mathematial methods forphysis and engineering, A omprehensive guide, Cambridge UniversityPress, Cambridge, 2nd edition, 2002A.1.2 De�nition of the Laplae transformThe Laplae transform assoiates a funtion f(s) with the funtion F (t), or ittransforms a funtion F (t) into the funtion f(s).
f(s) =

∫ ∞

0

e−stF (t)dt = L {F (t)}

F (t) = original funtion
f(s) = image funtion (Laplae− transform, abbreviated L− transform)Symboli notation: f(s) •−◦ F (t) (•−◦ = symbol of assoiation)

t = real variable (of time)
s = σ + iω omplex variable179
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180 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.1.3 Assumptions on F(t)1. F(t) is usually a real funtion2. F (t) ≡ 0 for t < 0 (satis�ed for many physial parameters - ausality)3. F (t) should be integrable in the interval [0, T ], and for t > T it shouldhold that
|F (t)| < eγt with real γ.These are su�ient onditions for the existene of the L-transform f(s) of F (t)for omplex s with Re s > γ (onvergene half-plane). All limited funtionsas, e.g., e−αt (α > 0), sinβt et. have an L-transform but also non-limitedfuntions as t−1/2, tn and eαt (n, α > 0). Note assumption 2. Many funtionsin physis also have an L-transform. The funtions t−1 and et2 do not have anL-transform.A.1.4 Examplesa)

F (t) = H(t) =

{

0 for t < 0
1 for t ≥ 0

Heaviside step funtion (unit step)
f(s) =

∫ ∞

0

e−stdt = −1

s
e−st

∣

∣

∞

0
=

1

s
for Re s > 0 (onverg. half-plane)

H(t) ◦−• 1

sb)
F (t) =

{

0 for t < 0
eδt for t ≥ 0

f(s) =

∫ ∞

0

e−(s−δ)dt = − 1

s− δ e
−(s−δ)t

∣

∣

∣

∞

0
=

1

s− δ , Re s > δ

eδt ·H(t) ◦−• 1

s− δFor δ = 0 transition to the L-transform of H(t))
sin at

a
·H(t) ◦−• 1

s2 + a2
.Tables of many more orrespondenes an be found in the literature given.
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A.1. INTRODUCTION TO THE LAPLACE TRANSFORM 181A.1.5 Properties of the Laplae transformSimilarity theorem a > 0

F (at) ◦−•
∫ ∞

0

e−stF (at)dt =

∫ ∞

0

e−
s
a atF (at)

d(at)

a
=

1

a

∫ ∞

0

e−
s
a τF (τ)dτTherefore,

F (at) ◦−• 1

a
f
( s

a

)

. (A.1)Thus, only the L-transform of F (t) has to be known.Example: Aording to setion A.1.4
et ·H(t) ◦−• 1

s− 1
.With the similarity theorem, it follows that

eat ·H(t) ◦−• 1

a

1
s
a − 1

=
1

s− a ,i.e., the result of the diret omputation in setion A.1.4.Displaement theorem
Fig. A.1: Displaement theorem.

F (t− ϑ) ◦−•
∫ ∞

0

e−stF (t− ϑ)dt =

∫ ∞

0

e−s(τ+ϑ)F (τ)dτ = e−ϑsf(s)

F (t− ϑ) ◦−• e−ϑsf(s) (A.2)Damping theorem (α arbitrary omplex)
e−αtF (t) ◦−•

∫ ∞

0

e−(s+α)tF (t)dt = f(s+ α)

e−αtF (t) ◦−• f(s+ α) (A.3)
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182 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONDi�erentiation theorem
F ′(t) ◦−•

∫ ∞

0

e−stF ′(t)dt = e−stF (t)|∞0 + s

∫ ∞

0

e−stF (t)dtThe �rst term is zero at its upper limit due to the assumption 3 from hapterA.1.3. Thus,
F ′(t) ◦−• sf(s)− F (+0)

F (+0) = lim
t→ 0
t > 0

F(t) is the limit from the right side. (A.4)Generalisation:
F ′(t) ◦−• sf(s)− F (+0)
F ′′(t) ◦−• s2f(s)− sF (+0)− F ′(+0)...
F (n)(t) ◦−• snf(s)− sn−1F (+0)− sn−2F ′(+0)

− . . .− sF (n−2)(+0)− F (n−1)(+0)



























(A.5)
Integration theorem

G(t) =

∫ t

0

F (τ)dτ ◦−• 1

s
f(s) (A.6)From this, it follows that

G′(t) = F (t) ◦−• f(s)−G(+0) = f(s).Convolution theorem
∫ t

0

F1(τ)F2(t− τ)dτ ◦−• f1(s)f2(s) (A.7)The integral is alled onvolution of F1 with F2, symboli notation F1 ∗ F2.Furthermore, it holds that
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A.1. INTRODUCTION TO THE LAPLACE TRANSFORM 183
∫ t

0

F1(τ)F2(t− τ)dτ =

∫ t

0

F1(t− τ)F2(τ)dτor
F1 ∗ F2 = F2 ∗ F1,i.e., the onvolution is ommutative.Further elementary properties of the L-transform are that it is �rstly homoge-neous and linear, i.e., it holds that

a1F1(t) + a2F2(t) ◦−• a1f1(s) + a2f2(s),and seondly, that from F (t) ≡ 0 it follows that f(s) ≡ 0 and vie versa.An important property, whih follows from the de�nition of the L-transform, is
lim

Re s→+∞
f(s) = 0. (A.8)Only then is a funtion f(s) an L-transform and an be transformed bak (seenext hapter).A.1.6 Bak-transform

F (t) = L
−1 {f(s)} =

1

2πi

∫ c+i∞

c−i∞

etsf(s)ds (A.9)
Fig. A.2: Convergene half-plane of Laplae inverse-transform.The integration path is parallel to the imaginary axis and has to be situatedin the onvergene half-plane of f(s), otherwise,  is arbitrary. To the right ofthe integration path, f(s) annot have singularities, but it an have them tothe left. The integration path an be deformed in aordane with Cauhy'sintegral law and the remainder theorem.
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184 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.1.7 Relation with the Fourier transformA ommon representation of the Fourier transform F (ω) of a funtion F (t) is
F (ω) =

∫ +∞

−∞

F (t)e−iωtdt. (A.10)
F (ω) is also alled the omplex spetrum of F (t); ω is the angular frequeny.The inverse-transform is given by

F (t) =
1

2π

∫ +∞

−∞

F (ω)eiωtdω. (A.11)This equation an be interpreted as the superposition of harmoni osillations.This is the reason why the Fourier transform is often used in physis. If thebehaviour of a system, whih an be desribed by linear di�erential equations,is known for harmoni exitation, its behaviour for impulsive exitation an bedetermined via (A.11). To do this, the exitation has to be broken into itsspetral omponents aording to (A.10). Then, the problem is solved for eahspetral omponent, and, �nally, all spetral solutions are superimposed via(A.11). Suh an approah is used in setion 3.6.3 in the study of the re�etionof impulsive waves at an interfae.It is often less physial, but often more elegant and simple, to use the L-transform. The onnetion between F (ω) and f(s) is very lose for funtions
F (t) that are zero for t < 0 (ausality)

F (ω) =

∫ ∞

0

e−iωtF (t)dt = f(iω),i.e., the Fourier transform is also the L-transform on the imaginary axis of theomplex s-plane.In an alternative representation of the Fourier transform, the fator 1
2π is notin (A.11) but in (A.10). Then the Fourier transform F (ω) is equal to f(iω)/2π.A.2 Appliation of the Laplae transformA.2.1 Linear ordinary di�erential equations with onstantoe�ientsDi�erential equation

L(Y ) = Y (n) + an−1Y
(n−1) + an−2Y

(n−2) + . . .+ a1Y
′ + a0Y = F (t)

F (t) ≡ 0 for t < 0 (A.12)
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 185Initial onditions
Y (+0) = Y0, Y

′(+0) = Y ′
0 , . . . , Y

(n−1)(+0) = Y
(n−1)
0L-transform of (A.12) with Y (t) ◦−• y(s), F (t) ◦−• f(s) and (A.5)

(

sn + an−1s
n−1 + . . .+ a1s+ a0

)

y(s) = f(s)

+
(

sn−1 + an−1s
n−2 + . . .+ a2s+ a1

)

Y0

+
(

sn−2 + an−1s
n−3 + . . .+ a3s+ a2

)

Y ′
0

+ . . .

+ (s+ an−1)Y
(n−2)
0

+Y
(n−1)
0 .The polynomials an be written as

pi(s) =

n−i
∑

k=0

ak+is
k, i = 0, 1, 2, . . . , n, an = 1.Therefore,

y(s) =
f(s)

p0(s)
+

n
∑

l=1

pl(s)

p0(s)
Y

(l−1)
0 . (A.13)The right side ontains the L-transform of the known funtion F (t), some poly-nomials, the oe�ients of whih are known and the known initial values of thefuntion Y (t) to be solved for. If it is possible to determine the inverse transformon the right side of (A.13), the problem is solved. In the ase presented here,this is not di�ult. Before this is done, we disuss the omparison with thestandard method to solve linear ordinary di�erential equations with onstantoe�ients.First, in the standard method the homogeneous di�erential equation is solvedgenerally (i.e., it ontains n undetermined oe�ients); then a speial solutionof the inhomogeneous di�erential equation is determined, e.g., by guessing orby variation of the onstants. This is then the general solution of the inho-mogeneous di�erential equation from whih the n onstants an be determinedvia the initial onditions. It is not neessary to �nd a general solution if theL-transform is used. Here, the solution that orresponds to the initial ondi-tions is determined diretly. That is the great advantage of this method. Thisadvantage is even greater for the solution of partial di�erential equations withboundary and initial onditions and is why the L-transform is widely used. Thisis espeially true in eletronis. One onsequene of this is that extensive tableswith inverse transforms for many L-transforms exist.The inverse-transform of (A.13) an be split into two steps (but that is not aneessity).
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186 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION1. f(s) 6= 0, Y0 = Y ′
0 = . . . = Y

(n−1)
0 = 0. This orresponds to the solutionof the inhomogeneous di�erential equation with zero initial values (Seesetion A.2.1.1).2. f(s) = 0, initial value 6= 0. This orresponds to the solution of thehomogeneous di�erential equation with non-zero initial onditions (Seesetion A.2.1.2).The sum of solution 1 and 2 is the inverse transform of (A.13) to be determined(See setion A.2.1.3).A.2.1.1 Inhomogeneous di�erential equations with zero initial valuesThis ase is also of pratial interest sine in many ases in whih a system iszero up to time t = 0 (i.e., Y (t) ≡ 0 for t < 0), the initial values are zero. Inthis ase,

y(s) =
f(s)

p0(s)
.Sine 1/p0(s) for n ≥ 1 is always an L-transform (ompare (A.8)), the inverseexists

1

p0(s)
•−◦Q(t).

Q(t) is the Green's funtion of the problem. The onvolution theorem (A.7)then gives the solution Y (t)

Y (t) =

∫ t

0

F (t− τ)Q(τ)dτ =

∫ t

0

F (τ)Q(t − τ)dτ. (A.14)The determination of Q(t) is, therefore, the remaining task. To that end, weintrodue an expansion into partial frations of 1/p0(s) under the assumptionthat the zeros αk of p0(s) are all di�erent
1

p0(s)
=

n
∑

k=1

dk

s− αkwhere dk is the residue of 1/p0(s) at the loation αk

dk = lim
s→αk

s− αk

p0(s)
= lim

s→αk

1
p0(s)−p0(αk)

s−αk

=
1

p′0(αk)
.
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 187Thus,
1

p0(s)
=

n
∑

k=1

1

p′0(αk)
· 1

s− αk.Inverse-transform, with a result from setion A.1.4, gives
Q(t) = H(t) ·

n
∑

k=1

eαkt

p′0(αk)
. (A.15)If αk is real, the orresponding summand in Q(t) is also real. If αk is omplex,an α1 with α1 = α∗

k (the onjugate omplex value to αk) exists as part of theother zeros, sine p0(s) has real oe�ients. Then,
eαkt

p′0(αk)
+

eα∗

kt

p′0(α
∗
k)

=
eαkt

p′0(αk)
+

e(αkt)∗

p′0(αk)∗

=
eαkt

p′0(αk)
+

(

eαkt

p′0(αk)

)∗

= 2Re
eαkt

p′0(αk)
.

Q(t) is, therefore, always real.Relation to the usual solution methodThe determination of the zeros of p0(s) is ompletely idential to the determi-nation of the zeros for the harateristi equation p0(λ) = 0 of the homogeneousdi�erential equation. The e�ort involved is, therefore, the same. For the usualmethod, the additional e�ort of �nding a speial solution of the inhomogeneousdi�erential equation and the determination of n onstants in the solution of thehomogeneous di�erential equation from the zero initial onditions is needed.It is also interesting to see under whih onditions on F (t) the initial values ofthe solution
Y (t) =

∫ t

0

F (τ)Q(t − τ)dτare indeed equal to zero. One an show that
Q(k)(+0) = lim

s→∞

sk+1

p0(s)
(k = 0, 1, . . . , n− 1),and thus,
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188 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION
Q(+0) = Q′(+0) = . . . = Q(n−2)(+0) = 0, Q(n−1)(+0) = 1.If this is used during the di�erentiation of Y (t), it follows that

Y (+0) = Y ′(+0) = . . . = Y (n−2)(+0) = 0,and under the ondition that
lim
t→ 0
t > 0

∫ t

0

F (τ)dτ = 0 (A.16)it also holds that Y (n−1)(+0) = 0. This means that due to the fat that a phys-ial funtion in general satis�es (A.16) (as long as they have a de�ned start),the assumption of zero initial values is most often satis�ed. Equation (A.14)with (A.15) is then the solution of the problem. An exeption an be found inexerise A.2.Appliation exampleThe di�erential equation of the mehanial resonator an be written as
Ÿ + 2αω0Ẏ + ω2

0Y =
1

m
K(t)with

Y (t) = displaement from zero
K(t) = ating fore ( = 0 for t < 0 )
m = mass
α = damping term (α = 1 : aperiodi limit)
ω0 = eigen frequeny of the undamped resonator
ω = ω0(1 − α2)

1
2 eigen frequeny of the damped resonator .We hoose α < 1 (resonator ase).The L-transform of the di�erential equation leads to

y(s) =
k(s)

mp0(s)
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 189
p0(s) = s2 + 2αω0s+ ω2

0 = (s− α1)(s− α2)

α1 = −ω0

(

α+ i(1− α2)
1
2

)

= −αω0 − iω
α2 = −αω0 + iω

p′0(s) = 2s+ 2αω0

p′0(α1) = −2iω = −p′0(α2).Thus, the Green's funtion an be written as
Q(t) =

1

2iω

[

−e−αω0t−iωt + e−αω0t+iωt
]

·H(t)

=
e−αω0t

2iω

[

eiωt − e−iωt
]

·H(t)

Q(t) =
1

ω
e−αω0t sinωt ·H(t)

Q(+0) = 0, Q′(+0) = 1.The solution of the di�erential equation is, therefore, (t ≥ 0)

Y (t) =
1

ωm

∫ t

0

K(t− τ)e−αω0τ sinωτdτ

=
1

ωm

∫ t

0

K(τ)e−αω0(t−τ) sinω(t− τ)dτ. (A.17)If the polynomial p0(s) has several zeros, an extension into partial frations of
1/p0(s) is also possible, but it looks di�erent as if only simple zeros were present.Thus, the orresponding Green's funtion Q(t) looks di�erent (ompare also theusual method of solution). Equation (A.14) is also valid in this ase.Exerise A.1Give the solution of the inhomogeneous equation

L(Y ) = ω2
0Y0H(t),where H(t) is the Heaviside step funtion.Exerise A.2Solve the di�erential equation of the mehanial seismograph

L(Y ) = −Ẍ (X(t) = ground displaement)
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190 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONwith the aid of the method of the variation of the onstants and with the L-transform. Assume
X(t) ≡ 0 for t < 0, X(+0) = 0, Ẋ(+0) = V0.Derive the initial onditions for Y (t) from physial priniples and show that

Y (+0) = 0, Ẏ (+0) = −V0.In both exerises, L(Y ) = Ÿ + 2αω0Ẏ + ω2
0Y, α < 1.A.2.1.2 Homogeneous di�erential equations with arbitrary initial val-uesThis ase has also a pratial appliation sine it desribes the deay of os-illations of physial systems. The important points an be learned from thefollowing exerise.Exerise A.3Solve the di�erential equation of the eigen osillation of a mehanial resonatorwith

L(Y ) = 0,with the initial onditions Y (+0) = Y0, Ẏ (+0) = 0 using the L-transform, andompare the solution with the solution L(Y ) of exerise A.1 as done above.A.2.1.3 Inhomogeneous di�erential equations with arbitrary initialvaluesWe superimpose the solutions of setion A.2.1.1 and setion A.2.1.2. This meansthat Y (t) onsists of the two ontributions
Y (t) = Y1(t) + Y2(t).

Y1(t) is the solution of the homogeneous di�erential equation that satis�es theinitial onditions
Y1(+0) = Y0, Y

′
1(+0) = Y ′

0 , . . . , Y
(n−1)
1 (+0) = Y

(n−1)
0 .

Y2(t) is the solution of the inhomogeneous di�erential equation with zero initialvalues
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 191
Y2(+0) = Y ′

2(+0) = . . . = Y
(n−1)
2 (+0) = 0.

Y (t) satis�es the di�erential equation and the given initial onditions, and is,therefore, the solution of the problem.For physial problems, the initial onditions always have to be derived fromphysial priniples, for example:1. Mehanial resonator: Ÿ + 2αω0Ẏ + ω2
0Y = 1

mK(t)For t < 0, Y = Y0(t) is given. At time t = 0 the fore K(t) begins to at.Due to the ontinuity requirement it must, therefore, hold that
Y (+0) = Y0(−0), Ẏ (+0) = Ẏ0(−0). (A.18)The resonator starts at time t = 0 with the initial values whih onnetontinuously to the previous values. The ontribution of Y1(t) to the dis-plaement Y (t) has the initial value given in (A.18) and is, therefore, aneigen resonane, whih ontinues the osillation Y0(t). The fored osilla-tion Y2(t), given in (A.17), with zero initial values, is then superimposedon that osillation.2. Mehanial seismograph: Ÿ + 2αω0Ẏ + ω2

0Y = −ẌThe ground may be at rest until the time t = 0. Due to the requirementof ontinuity, it follows that
Y (+0) = 0, Ẏ (+0) = −Ẋ(+0).Homogeneous equation:

Ÿ1 + 2αω0Ẏ1 + ω2
0Y1 = 0, Y1(+0) = 0, Ẏ1(+0) = −Ẋ(+0)L-transform:

(

s2 + 2αω0s+ ω2
0

)

y1(s) = −Ẋ(+0)Similar to setion A.2.1.1, the eigen resonane an be written as
Y1(t) = − Ẋ(+0)

ω
e−αω0t sinωt ·H(t).Inhomogeneous equation:

Ÿ2 + 2αω0Ẏ2 + ω2
0Y2 = −Ẍ, Y2(+0) = Ẏ2(+0) = 0L-transform:

(

s2 + 2αω0s+ ω2
0

)

y2(s) = −
(

s2x(s)− Ẋ(+0)
)The fored resonane, therefore, is ( t ≥ 0)

Y2(t) = − 1

ω0

∫ t

0

Ẍ(τ)e−αω0(t−τ) sinω(t− τ)dτ.The omplete solution Y (t) = Y1(t) +Y2(t) is the same as in exerise A.2.
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192 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.2.2 Partial di�erential equationsWe now use an example to demonstrate the main points disussed so far. Wewill examine, unlike in setion 3.4, the propagation of a ompressional wavefrom an explosive point soure. The starting point is the equation of motion ofthe elasti ontinuum without body fores.
ρ
∂2−→u
∂t2

= (λ+ 2µ)∇∇ · −→u − µ∇× ∇× −→u (A.19)(ρ=density, λ and µ=Lamé's parameters).In our problem, for whih we use spherial oordinates, the displaement −→u hasonly a radial omponent U, and the only spatial oordinate is the distane rfrom the explosive point soure. In this ase, ∇×−→u is zero and it holds that
∇ · −→u =

∂U

∂r
+

2

r
U

∇∇ · −→u =

(

∂2U

∂r2
+

2

r

∂U

∂r
− 2

r2
U, 0, 0

)

.With α2 = (λ + 2µ)/ρ (=veloity of the ompressional waves), it follows from(A.19) that
∂2U

∂r2
+

2

r

∂U

∂r
− 2

r2
U − 1

α2

∂2U

∂t2
= 0. (A.20)The boundary onditions assumed are that for r = r1 the displaement is pre-sribed as

U(r1, t) = U1(t). (A.21)The initial onditions are
U(r, 0) =

∂U

∂t
(r, 0) = 0. (A.22)

U1(t), whih shall be zero for t < 0, has to start smoothly, so that the initialonditions are also satis�ed for r = r1.L-transform then gives
u(r, s) =

∫ ∞

0

e−stU(r, t)dt

u1(s) =

∫ ∞

0

e−stU1(t)dt
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A.2. APPLICATION OF THE LAPLACE TRANSFORM 193
L

{

∂U

∂r

}

=

∫ ∞

0

e−st ∂U

∂r
dt =

∂

∂r

∫ ∞

0

e−stUdt =
∂

∂r
u(r, s)

L

{

∂2U

∂r2

}

=
∂2

∂r2
u(r, s).With this and (A.20), equation (A.20) leads to an ordinary di�erential equationfor u(r, s)

d2u

dr2
+

2

r

du

dr
−
(

2

r2
+
s2

α2

)

u = 0. (A.23)For ordinary di�erential equations, the L-transform leads to an algebrai equa-tion (polynomials). For partial di�erential equations in whih, together with t,only one additional oordinate ours (the ase studied here), the L-transformleads to ordinary di�erential equations. For partial di�erential equations inwhih, in addition to t i, more than one oordinate ours, partial di�erentialequations are derived. In eah ase, the dependene on t is eliminated.We hange the variables in (A.23) to x = rs
α

du

dr
=
du

dx
· s
α
,

d2u

dr2
=
d2u

dx2
· s

2

α2
.Thus, (A.23) beomes

x2 d
2u

dx2
+ 2x

du

dx
−
(

x2 + 2
)

u = 0. (A.24)This is a speial ase of the di�erential equations of the modi�ed spherial Besselfuntions
x2 d

2y

dx2
+ 2x

dy

dx
−
(

x2 + n(n+ 1)
)

y = 0.Compare, e.g., M. Abramovitz and I.A. Stegun: Handbook of MathematialFuntions, H. Deutsh, Frankfurt, 1985.In our ase, n = 1, and the solution of (A.24), whih has the properties (A.8)of L-transforms, is
u(x) =

1

x

(

1 +
1

x

)

e−x · F (s), x =
rs

α
. (A.25)As will beome lear in the following, the integration onstant F (s) is important.We now speify (A.25) for r = r1, i.e., x = r1s/α, thus, u(x) has to beome the
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194 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONknown L-transform u1(s) of the displaement U1(t) given at the limit r = r1(see (A.21))
u1(s) =

α

r1s

(

1 +
α

r1s

)

e−
r1s

α F (s).From this, F (s) an be derived. Therefore, (A.25) an be written as
u (r, s) =

r1
r

1 + α
rs

1 + α
r1s

e−
r−r1

α su1(s) (A.26)
=
r1
r
·
[

s+ α
r1

+ α
r − α

r1

s+ α
r1

u1(s)

]

· e−
r−r1

α s.The term in the square braket an now be given as
u1(s) + α

(

1

r
− 1

r1

)

u1(s)

s+ α
r1

•−◦ U1(t) + α

(

1

r
− 1

r1

)

U1(t) ∗
[

e
− α

r1
t ·H(t)

]

.In the last step, the onvolution theorem (A.7) was applied. If the displaementtheorem (A.2) is used, the inverse transform of (A.26) follows as
U(r, t) =

r1
r

[

U1

(

t− r − r1
α

)

+ α

(

1

r
− 1

r1

)∫ t−
r−r1

α

0

U1(ϑ)e−
α
r1

(t−
r−r1

α −ϑ)dϑ

]

.The retardation (r− r1)/α refers here not to the explosion point soure, but tothe sphere r = r1, from whih the wave starts at time t = 0. The retarded timeis, therefore, τ = t − (r − r1)/α, and the arrival of the wave at eah reeiverwith r > r1 follows from τ = 0. Then
U(r, t) =

r1
r

[

U1(τ) + α

(

1

r
− 1

r1

)∫ τ

0

U1(ϑ)e
− α

r1
(τ−ϑ)

dϑ

]

.

A.3 The delta funtion δ(t)A.3.1 Introdution of δ(t)We examine the result (A.17) for the mehanial resonator
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A.3. THE DELTA FUNCTION δ(T ) 195
Y (t) =

1

ωm

∫ t

0

K(τ)e−αω0(t−τ) sinω(t− τ)dτ,for the fore K(t) = Iδǫ(t), where I is a onstant with the dimension of fore ×time (=dimension of an impulse) and
δǫ(t) =







0 for t < 0
1
ǫ for 0 < t < ǫ
0 for t > ǫis a square funtion as shown in Fig. A.3.

1/ε3

ε1

1/ε

1/ε

δ  (  )

t

tε

2

1

ε2 ε3Fig. A.3: Representation of δǫ(t) as square funtions.The area under the urve δǫ(t) is always equal to 1. Therefore, independent of
ǫ, always the same impulse I is transfered. Then the displaement for t > ǫ anbe written as

Yǫ(t) =
I

ωmǫ

∫ ǫ

0

e−αω0(t−τ) sinω(t− τ)dτ

=
I

ωmǫ

∫ t

t−ǫ

e−αω0u sinω u du.
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196 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION

Fig. A.4: Behaviour of the term under integral in Yǫ(t).The mean value theorem for integrals gives (0 < λ < 1):
Yǫ(t) =

I

ωm
e−αω0(t−λǫ) sinω(t− λǫ). (A.27)The next step is the transition to ǫ → 0. For (A.27) follows the result (t isarbitrary)

lim
ǫ→0

Yǫ(t) =
I

ωm
e−αω0t sinωtH(t) =

I

m
Q(t),where Q(t) is the Green's funtion of the di�erential equation of the mehanialresonator (ompare setion A.2.1.1). For the fore, the transition ǫ→ 0 meansthat the impulse is transfered to the resonator in shorter and shorter time. Itis physially plausible, that this time then is not important, if it is su�ientlysmall ompared to the deay time (αω0)

−1 and the eigenperiod 2π/ω of the eigenresonane of the resonator. Therefore, it makes sense to adopt the limiting ase
ǫ = 0 also for the fore, i.e.,

lim
ǫ→0

K(t) = I lim
ǫ→0

δǫ(t) = Iδ(t),where δ(t) is the delta funtion
δ(t) = lim

ǫ→0
δǫ(t). (A.28)Other names are impulse funtion or unit impulse. It is obvious that δ(t) an-not be treated as a standard funtion. On the other hand, it would be wrongto study the funtion δ(t) separated from the ordinary funtions δǫ(t). On theontrary, δ(t) has to be understood as a series of {δǫ(t)} with ǫ → 0. Fromthe mathematial point of view, δ(t) is part of the generalised funtions or dis-tributions, for whih extensive theories and literature exist. For our purposes,
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A.3. THE DELTA FUNCTION δ(T ) 197the physial approah to the delta funtion given, will be su�ient. The def-inition of δ(t) as a series of ordinary funtions is the basis of an exat theorythat an also be understood by non-mathematiians; see, e.g., Riley, K.F., M.P.Hobson and S.J. Bene: Mathematial methods for physis and engineering,A omprehensive guide, Cambridge University Press, Cambridge, 2nd edition,2002.A.3.2 Properties of δ(t)Due to (A.28)
δ(t) = 0 for t 6= 0.Furthermore, it follows from the properties of δǫ(t), that

∫ +∞

−∞

δ(t)F (t)dt = F (0).The delta funtion, therefore, is the value of F (t) at t = 0; suh that
∫ +∞

−∞

δ(t)dt = 1.Furthermore, it holds that G(t)δ(t) = G(0)δ(t). If G(0) = 0, then G(t)δ(t) ≡ 0.For the delta funtion δ(t− τ), whih is displaed by τ , it holds that
δ(t− τ) = 0 for t 6= τand

∫ +∞

−∞

δ(t− τ)F (t)dt = F (τ).The de�nition of δ(t) is not only possible with the series {δǫ(t)}, the funtionsof whih are disontinuous. An alternative option is the series {δn(t)} with
δn(t) =

(n

π

)
1
2

e−nt2 .
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198 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION
t

δ (  )tn

Fig. A.5: Representation of δn(t).In this ase,
δ(t) = lim

n→∞
δn(t)

∫ +∞

−∞

δn(t)dt = 1.With the funtions δn(t), the derivatives of the the delta funtion an be de�nedas
δ(k)(t) = lim

n→∞
δ(k)
n (t).

δ (  )tn

t

’

Fig. A.6: Derivative of the delta funtion δn(t).It holds that δ(k)(t) = 0 for t 6= 0. Furthermore, it follows that
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A.3. THE DELTA FUNCTION δ(T ) 199
∫ +∞

−∞

δ(k)(t− τ)F (t)dt = lim
n→∞

∫ +∞

−∞

δ(k)
n (t− τ)F (t)dt

= lim
n→∞

(−1)k

∫ +∞

−∞

δn(t− τ)F (k)(t)dt,after k partial integrations. This gives
∫ +∞

−∞

δ(k)(t− τ)F (t)dt = (−1)kF (k)(τ). (A.29)Finally, we disuss the onnetion between the delta funtion and the step fun-tion H(t) from setion A.1.4. We onsider the funtion
Hǫ(t) =

∫ t

−∞

δǫ(τ)dτ =







0 for t < 0
t
ǫ for 0 ≤ t ≤ ǫ
1 for t > ǫ

t

H  (t)

ε

ε
1

Fig. A.7: Funtion Hǫ(t).This means that
δǫ(t) = H ′

ǫ(t),and in the limit ǫ→ 0

δ(t) = H ′(t).The delta funtion is the derivative of the step funtion. The same result ouldhave been ahieved with the de�nition of δ(t) with the use of the funtions δn(t).It should also be mentioned that H(t) is dimensionless, but δ(t) has the inversedimension of time.
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200 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONA.3.3 Appliation of δ(t)1. The option to desribe impulses of fore (and, similarly, of stress and ur-rent) will not be disussed now sine that was the topi of the introdutionof this appendix.2. A point mass m (or similarly a point harge) an be desribed by thefollowing density
ρ = mδ(x)δ(y)δ(z).This holds beause ρ = 0 for (x, y, z) 6= (0, 0, 0), and the whole mass anbe desribed via

∫ ∫ ∫ +∞

−∞

ρ dx dy dz = m ·
∫ +∞

−∞

δ(x)dx ·
∫ +∞

−∞

δ(y)dy ·
∫ +∞

−∞

δ(z)dz = m.3. The harge distribution of a point-like dipole an be desribed by thefollowing line density σ(x) (e.g., Coulomb per meter) on the x -axis as
σ(x) = Mδ′(x), M > 0 (dimension : harge * length ),sine we de�ne σ(x) by the series {Mδ′n(x)}.

+

-

x

M     (x)δ’n

Fig. A.8: Charge distribution of a point-like dipole.The transition n → ∞ gives then two in�nitely large opposite pointharges, whih are in�nitely lose to eah other.
+ -

x=0
xFig. A.9: Charge distribution of a point-like dipole for two in�nitely largeopposite point harges, whih are in�nitely lose to eah other.
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A.3. THE DELTA FUNCTION δ(T ) 201The moment of suh an arrangement relative to x = 0 is
∫ +∞

−∞

xσ(x)dx = M

∫ +∞

−∞

xδ′(x)dx = −M.The sign is orret, sine the vetor of the moment points from the negativeto the positive harge. The dimension is also orret. The spatial hargedensity of the dipole would be σ(x, y, z) = M · δ′(x) · δ(y) · δ(z) (e.g.,Coulomb per ubi meter).4. The role of the delta funtion for the solution of inhomogeneous linearordinary di�erential equations.We start with
L(Y ) = Y (n) + an−1Y

(n−1) + . . .+ a1Y
′ + a0Y = δǫ(t). (A.30)The solution is, aording to setion A.2.1.1,

Y (t) = Yǫ(t) =

∫ t

0

δǫ(τ)Q(t − τ)dτ, (A.31)with Q(t)=Green's funtion, and it satis�es the initial onditions
Yǫ(+0) = Y ′

ǫ (+0) = . . . = Y (n−1)
ǫ (+0) = 0.The transition ǫ→ 0 in (A.30) and (A.31) gives

L(Y ) = δ(t) (A.32)with the solution
Y (t) = Q(t).The Green's funtion of a system, whih an be desribed by a linear ordi-nary di�erential equation, is also the solution of the inhomogeneous equa-tion, whih has the delta funtion as the term of perturbation. Expresseddi�erently, the Green's funtion is the response funtion of a perturbationof the system by the delta funtion (impulse response).The initial values of Q(t) are

Q(+0) = Q′(+0) = . . . = Q(n−2)(+0) = 0, Q(n−1)(+0) = 1,and are, therefore, di�erent from those of the funtions Yǫ(t). This isa onsequene of the transition ǫ → 0. If (A.32) has, therefore, to be
Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



202 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONsolved diretly, one has to use always zero initial values and not those,whih atually hold for Q(t). In that situation, it is useful to know theL-transform of δ(t)
L {δ(t)} = f(s) =

∫ ∞

0

e−stδ(t)dt = 1.Sine δ(t) is a generalised funtion, it does not hold here that lim f(s) = 0for Re s→∞ (ompare (A.8).Now we an give the general solution of the initial value problem for asystem whih is at rest up to the time t = 0 and is then exited in anarbitrary way, a new interpretation. The solution (A.14), namely
Y (t) =

∫ t

0

F (t− τ)Q(τ)dτ =

∫ t

0

F (τ)Q(t− τ)dτ, (A.33)is derived by the onvolution of the solution Q(t) for the speial exitationof the system by F (t) = δ(t) with an arbitrary perturbation F (t).A.3.4 Duhamel's law and linear systemsIn (A.33), we hoose F (t) = H(t) (step funtion). In this ase,
Y (t) = YH(t) =

∫ t

0

Q(τ)dτ (step response)
Y ′

H(t) = Q(t).Integrating by parts, it follows from (A.33)
Y (t) = F (t− τ) YH(τ)|t0 +

∫ t

0

F ′(t− τ)YH (τ)dτ.Thus, due to YH(+0) = 0

Y (t) = F (+0)YH(t) +
∫ t

0
F ′(t− τ)YH(τ)dτ

= F (+0)YH(t) +
∫ t

0 F
′(τ)YH(t− τ)dτ

(A.34)This is Duhamel's law, whih desribes how solutions for arbitrary F (t) an bedetermined from those for F (t) = H(t).
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A.3. THE DELTA FUNCTION δ(T ) 203GeneralisationIf we use Q(t) = Yδ(t) in (A.33), it follows that
Y (t) =

∫ t

0

F (t− τ)Yδ(τ)dτ =

∫ t

0

F (τ)Yδ(t− τ)dτ. (A.35)The relation between Yδ(t) and YH(t) is
Yδ(t) = Y ′

H(t).Equations (A.34) and (A.35) ontain the statement that the response of a systemhas to be known only for very speial exitations like the delta and the stepfuntions. From this, the solution for arbitrary exitation an be given. Thisis not only true for systems whih follow linear ordinary di�erential equations,but also for systems whih an be desribed by partial di�erential equationsor systems of simultaneous di�erential equations as long as they are linear andhave time independent oe�ients. One requirement for this to hold is that thesystem is at rest in the beginning. The perturbation an, depending on theproblem, have a di�erent form (e.g., fore, temperature, displaement et.), asindiated in Fig. A.10.
input funtionorperturbation funtion

δ(t)
H(t)
F (t)

output funtionorresponse funtion
Yδ(t) = Q(t) (impulse response)
YH(t) =

∫ t

0
Q(τ)dτ (step response)

Y (t) aording to (A.34) or (A.35)Fig. A.10: Linear system with input and output.Transition into the frequeny domain using the Fourier transformThe Fourier transform of F (t), Q(t) and Y (t) is F (ω), Q(ω) and Y (ω)

F (ω)
Q(ω)
Y (ω)







=

∫ +∞

−∞







F (t)
Q(t)
Y (t)







e−iωtdt.

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



204 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTIONThe lose relation with the L-transform has been disussed in setion A.1.7.Therefore, it holds, as for the Fourier transform
Y (ω) = F (ω) ·Q(ω),i.e., the Fourier transform Y (ω) of the input funtion Y (t) is the produt ofthe Fourier transform F (ω) of the input funtion F (t) with Q(ω) of the Green'sfuntion Q(t). Q(ω) is alled the transfer funtion of the linear system or �lter.Separation into absolute value and phase gives

Q(ω) = A(ω)eiϕ(ω)

A(ω) = amplitude harateristis of the system
ϕ(ω) = phase harateristis of the system

A(ω) desribes the ampli�ation or derease of the irular frequeny ω, re-spetively, and ϕ(ω) desribes the phase shift. A monohromati osillation asinput
F (t) = a sinωt,has the output

Y (t) = A(ω)a sin (ωt+ ϕ(ω)) .The transfer funtion of the system has, therefore, a very physial meaning, andit is thus, used widely.Exerise A.4A sphere of mass m drops from the height h1 on the mass M of a mehanial(vertial-)resonator, is re�eted there and reahes the height h2. No additionalinterations between the two masses follow. Determine the displaement of massM:1. Using the homogeneous di�erential equation L(Y ) = 0 and the orre-sponding initial onditions.2. Using the inhomogeneous di�erential equation L(Y ) =? and zero initialvalues.It holds that
L(Y ) = Ÿ + 2αω0Ẏ + ω2

0Y, α < 1.
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A.3. THE DELTA FUNCTION δ(T ) 205Exerise A.5The ground displaement of the mehanial seismograph (di�erential equation
L(Y ) = −Ẍ) is given by

a) X(t) = t2H(t)
2 ,

b) X(t) = tH(t),

c) X(t) = H(t).Determine, in eah ase, the displaement Y (t) and disuss the relation betweenthe three ases.A.3.5 Pratial approah for the onsideration of non-zeroinitial values of the perturbation funtion F(t) of alinear problemFor the mehanial seismograph, the perturbation funtion of the di�erentialequation is the seond derivative of the ground displaementX(t), and we notiethat the initial values of the displaement Y (t) of the mass of the seismometerdepends on the initial values X(+0) and Ẋ(+0), respetively (ompare exeriseA.2 and setion A.2.1.3). This onnetion had to be derived from physialpriniples. Cases exist in whih this is di�ult. Therefore, we would like tohave an approah, that onsiders the initial values of the perturbation funtion.In the following, we de�ne, ontrary to the usage up to now, the perturbationfuntion as the funtion, the single (or higher) derivatives of whih our in thedi�erential equation as inhomogeneities (we onsider an arbitrary linear system).Now F (t) = X(t) for the mehanial seismograph and not F (t) = −Ẍ(t). Wethen solve the equation for F (t) = Fn(t), for whih the initial values are zero,up to su�iently high orders. Then, one an assume that the initial values ofthe orresponding solution Yn(t) are also zero. Thus, Yn(t) an be written as
Yn(t) =

∫ t

0

F (i)
n (t− τ)G(τ)dτ. (A.36)Therefore, we know the i-th order of the derivative of Fn(t) (i ≥ 1) and thefuntion G(t).Given a series of funtions Fn(t) whih onverge versus the perturbation funtion

F (t) to be determined (with non-zero initial values),
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206 APPENDIX A. LAPLACE TRANSFORM AND DELTA FUNCTION
lim

n→∞
Fn(t) = F (t).Compare also the omments to the de�nition of the delta funtion in haptersA.3.1 and A.3.2. Then, it follows that

lim
n→∞

F ′
n(t) = F ′(t) + F (+0)δ(t)

lim
n→∞

F ′′
n (t) = F ′′(t) + F (+0)δ′(t) + F ′(+0)δ(t)...

lim
n→∞

F (i)
n (t) = F (i)(t) +

i−1
∑

j=0

F (j)(+0)δ(i−j−1)(t). (A.37)
δ(0)(t) is here equal to δ(t).

Fig. A.11: F(t) and its derivative as a funtion of time.The general solution Y (t) for arbitrary initial values of F (t) is
Y (t) = lim

n→∞
Yn(t)

=

∫ t

0

F (i)(t− τ)G(τ)dτ +

i−1
∑

j=0

F (j)(+0)

∫ t

0

δ(i−j−1)(t− τ)G(τ)dτ,if (A.37) is used in(A.36). Now
∫ t

0

δ(i−j−1)(t− τ)G(τ)dτ
=

u = t− τ

∫ t

0

δ(i−j−1)(u)G(t− u)du
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A.3. THE DELTA FUNCTION δ(T ) 207
=with (A.29)

(−1)i−j−1

[

di−j−1

dui−j−1
G(t− u)

]

u=0

= (−1)i−j−1

[

di−j−1

dti−j−1
G(t− u)

]

u=0

(−1)i−j−1

= G(i−j−1)(t).The general solution of the problem for arbitrary initial values of the perturba-tion funtion F (t) is then
Y (t) =

i−1
∑

j=0

F (j)(+0)G(i−j−1)(t) +

∫ t

0

F (i)(t− τ)G(τ)dτ. (A.38)AppliationMehanial seismograph: Ÿ + 2αω0Ẏ + ω2
0Y = −ẌThe assumption that the ground displaement Xn(t) starts su�iently smoothand allows us to put the initial values of Yn(t) equal to zero

Yn(+0) = Ẏn(+0) = 0.The di�erential equation is then solved under this assumption, most easily withthe L-transform (ompare exerise A.2)
Yn(t) = − 1

ω

∫ t

0

Ẍn(t− τ)e−αω0τ sinωτdτ.Compare with (A.36): Fn(t) = Xn(t), i = 2,

G(t) = − 1

ω
e−αω0t sinωt ·H(t).The general solution is, aording to (A.38),

Y (t) = X(+0)G′(t) + Ẋ(+0)G(t) +

∫ t

0

Ẍ(t− τ)G(τ)dτ

= X(+0)G′(t) + Ẋ(+0)G(t) +

∫ t

0

Ẍ(τ)G(t − τ)dτ.This result (with X(+0) = 0) was derived diretly, exept for the sign, in theexerise mentioned above.
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Appendix BHilbert transform
B.1 The Hilbert transform pairThe Hilbert transform H(x) of the real funtion h(x) is de�ned by the followingintegral (x and ξ are real)

H(x) =
1

π
P

∫ +∞

−∞

h(ξ)

ξ − xdξ. (B.1)P is the main value of the integral, i.e., the singularity ξ = x of the integrandhas been exluded
P

∫ +∞

−∞

..dξ = lim
ǫ→0

(∫ x−ǫ

−∞

..dξ +

∫ +∞

x+ǫ

..dξ

)

.The inverse Hilbert transform an be written as (proof follows)
h(x) = − 1

π
P

∫ +∞

−∞

H(ξ)

ξ − xdξ. (B.2)Although this is di�erent from the Laplae and the Fourier transform, the twoorresponding funtions h(x) and H(x) have the same argument.Some analytial Hilbert transform pairs are shown in Fig. B.1.209
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210 APPENDIX B. HILBERT TRANSFORM

Fig. B.1: Analytial Hilbert transform pairs.B.2 The Hilbert transform as a �lterEquation (B.1) is a onvolution integral
+ε

ε

x

P  (x)

−εFig. B.2: Form of Pǫ(x).
H(x) =

∫ +∞

−∞

h(ξ) · P
{ − 1

π

x− ξ

}

dξ = h(x) ∗ P
{

− 1

πx

}
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B.2. THE HILBERT TRANSFORM AS A FILTER 211
P

{

− 1

πx

}

= lim
ǫ→0

Pǫ(x)

Pǫ(x) =

{

0 for |x| < ǫ
− 1

πx otherwise .Therefore, it holds for the Fourier transforms
H(ω)

h(ω)
P (ω)







=

∫ +∞

−∞







H(x)
h(x)
P
{

− 1
πx

}







· e−iωxdx, (B.3)and aording to setion A.3.4,
H(ω) = h(ω) · P (ω). (B.4)The Hilbert transform is, therefore, a linear �lter. The Fourier transform andits inverse an be e�etively alulated with the method of the Fast Fouriertransform. It is, therefore, advantageous to perform the Hilbert transform inthe frequeny domain via (B.4). To be able to do this, one needs the transferfuntion P (ω) of the Hilbert transform. From (B.3), it follows that

P (ω) = − 1

π
P

∫ +∞

−∞

1

x
e−iωxdx, P (0) = 0. (B.5)We ompute this integral with methods from omplex analysis by deformingthe integration path to a semi-irle with in�nite radius in the upper (lower)x -half-plane for ω < 0 (ω > 0), respetively,

Fig. B.3: Integral path of P (ω) in the omplex plane.
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212 APPENDIX B. HILBERT TRANSFORM
P

∫ +∞

−∞

e−iωx

x
dx =

∫

e−iωx

x
dx± πiRes e

−iωx

x

∣

∣

∣

∣

x=0

=

∫

U/L

e−iωx

x
dx± πi, (B.6)where the upper (lower) integration path and the + (-) sign for ω < 0 (ω > 0)have to be hosen, respetively. Note that the �rst term on the right of the�rst equation has to be integrated along the real axis (exluding the pole), andthe residual in the seond term is idential to 1. The integration in the seondequation is then along the upper (lower) half irle U (L), respetively.With the new variable ϕ on the half irles, it follows that

x = Reiϕ, dx = Rieiϕdϕ.This leads to
∫

U/L

e−iωx

x
dx = i

∫ 0

±π

exp [−iωR (cosϕ+ i sinϕ)] dϕ

= i

∫ 0

±π

exp [ωR sinϕ− iωR cosϕ] dϕ

→ 0 for R→∞, sine ω sinϕ < 0.Equation (B.6), therefore, redues to
P

∫ +∞

−∞

e−iωx

x
dx = ±πi,and the transfer funtion P (ω) in (B.5) beomes the simple expression

P (ω) = i sign ω with signω =







−1 for ω < 0
0 for ω = 0
+1 for ω > 0.

(B.7)If the Hilbert transform is onsidered as a �lter of the original funtion, it followsfrom (B.4) with (B.7) that the frequeny 0 is suppressed (P (0) = 0), but allother frequenies remain unhanged in their amplitude (∣∣P (ω)
∣

∣ = 1 for ω 6= 0).At ω 6= 0 only phase shifts are produed. With ω > 0 (ω < 0) a phase shift of
±900 results, respetively. In �lter theory, the Hilbert transform is an all-pass�lter with removal of the average.The pratial omputation of the Hilbert transform H(x) of h(x), therefore,requires three steps:
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B.2. THE HILBERT TRANSFORM AS A FILTER 2131. Computation of the Fourier transform h(ω) of h(x)2. Multipliation with the transfer funtion P (ω)3. Bak transformation of H(ω).If the Hilbert transform is applied twie, it follows in the frequeny domain that
g(ω) = h(ω) · P 2

(ω) = −h(ω),and, therefore, g(x) = −h(x). The original funtion h(x) is, therefore, obtained,if the sign of the seond Hilbert transform is reversed. This proves (B.2) for theinverse Hilbert transform.This proof only holds for ases in whih h(0) = 0, i.e., in ases for whih theintegral over h(x) is zero. The third example in Fig. B.1 is suh a ase. Equation(B.2) also holds if h(0) 6= 0. This is shown in the seond example of Fig. B.1and an be on�rmed with methods from omplex analysis.The numerial Hilbert transform, with (B.4) and (B.7) frequeny ω = 0, issometimes not treated properly. For numerial reasons, it is assumed that dueto P (0) = 0 the integral of the Hilbert transform is always zero. This is nottrue, if h(0) =
∫ +∞

−∞ h(x)dx is not �nite or not orretly de�ned. The �rst aseours, if, e.g., h(x) is a step funtion. The seond ase ours, e.g., duringthe inverse-transformation of the Hilbert transform h(x) = −ax/(a2 + x2), thedeay of whih with inreasing |x| is proportional to −1/x and, therefore, notstrong enough. In suh ases, a onstant shift of the numerial result in theordinate diretion is often su�ient. The frequeny ω = 0 is the only frequenyfor whih the Hilbert transform omputed numerially an then deviate fromthe exat result.
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Appendix CBessel funtionsIn the following, only the most important equations and properties of Besselfuntions with integer order are listed. More details an be found, e.g., in M.Abramovitz and I.A. Stegun (1985), or in Riley, K.F., M.P. Hobson and S.J.Bene (2002).The di�erential equation of the Bessel funtion of integer order n = 0, 1, 2, . . . is
x2y′′ + xy′ +

(

x2 − n2
)

y = 0. (C.1)The two linearly independent solutions of this equation are
y = Jn(x) = Bessel funtion of �rst kind and n− order
y = Yn(x) =

Bessel funtion of seond kind andn− th orderor Neumann′s function ofn− th order.Representation as a series
Jn(x) =

∞
∑

k=0

(−1)k

k!(n+ k)!

(x

2

)n+2k

Yn(x) =
2

π

(

0, 577216 + ln
x

2

)

Jn(x)− 1

π

n−1
∑

k=0

(n− 1− k)!
k!

(

2

x

)n−2k

− 1

π

∞
∑

k=0

(−1)k (Φk + Φk+n)

k!(n+ k)!

(x

2

)n+2k

Φl =

l
∑

s=1

1

s 215
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216 APPENDIX C. BESSEL FUNCTIONSThe graphi representation for x ≥ 0 is shown in Fig. C.1.

Fig. C.1: Bessel and Neumann funtions.Neumann's funtions have a singularity at x = 0.The Hankel funtions, or Bessel funtions of the third kind, are de�ned as
H(1)

n (x) = Jn(x) + iYn(x) Hankel funtion of �rst kind (C.2)
H(2)

n (x) = Jn(x) − iYn(x) Hankel funtion of seond kind . (C.3)
H

(1)
n (x) and H(2)

n (x) are linearly independent. The general solution of (C.1) is,therefore, (with the arbitrary onstants A,B,C,D) either
y = AJn(x) +BYn(x)or
y = CH(1)

n (x) +DH(2)
n (x).Analogies to the di�erential equations of the trigonometri funtions(equation of osillation)

y′′ + n2y = 0or their well-known solutions cosnx and sinnx, and einx and e−inx, respe-tively,
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217Bessel funtions Trigonometri funtions
Jn(x) cosnx
Yn(x) sinnx

H
(1)
n (x) einx = cosnx+ i sinnx

H
(2)
n (x) e−inx = cosnx− i sinnx.Asymptoti representation for x≫ 1

Jn(x) ≃
(

2
πx

)
1
2 cos

(

x− nπ
2 − π

4

)

Yn(x) ≃
(

2
πx

)
1
2 sin

(

x− nπ
2 − π

4

)

H
(1)
n (x) ≃

(

2
πx

)
1
2 exp

[

i
(

x− nπ
2 − π

4

)]

H
(2)
n (x) ≃

(

2
πx

)
1
2 exp

[

−i
(

x− nπ
2 − π

4

)]























(C.4)Reursion formulae (Zn = Jn, Yn, H
(1)
n or H(2)

n )

2n
x Zn(x) = Zn−1(x) + Zn+1(x) (n = 1, 2, 3, . . .)

Z ′
n(x) = n

xZn(x)− Zn+1(x) (n = 0, 1, 2, . . .)

Z ′
n(x) = −n

xZn(x) + Zn−1(x) (n = 1, 2, 3, . . .)























(C.5)Speial ases of the seond and third reursion formulae in (C.5) are then used
J ′

0(x) = −J1(x)

J ′
1(x) = J0(x)−

1

x
J1(x).Up until now, we have onsidered the variable x as real and positive. If we alsoassume |x| ≫ 1, all formulae given also hold for omplex, x and for (C.4). Ifomplex x are used, the following relations are often useful

H(1)
n (−x) = −e−nπiH(2)

n (x)

H(2)
n (−x) = −enπiH(1)

n (x)with speial ase n = 0

H
(1)
0 (−x) = −H2

0 (x)

H
(2)
0 (−x) = −H(1)

0 (x).
(C.6)
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Appendix DThe Sommerfeld integralWe onsider a time harmoni explosion point soure at the origin of a ylindrialoordinate system. Its ompressional potential
1

R
eiω(t−R

α ) (

R2 = r2 + z2
)solves the wave equation and an, therefore, be onstruted from more ele-mentary solutions of the wave equation in ylindrial oordinates (as long asylindrial symmetry is maintained); see also disussion in setion 3.7 leadingto (3.83)

1

R
eiω(t−R

α ) = eiωt

∫ ∞

0

g(k)kJ0(kr)e
−il|z|dk (D.1)

l =

(

ω2

α2
− k2

)
1
2 (positive real ornegative imaginary).To determine g(k), we onsider (D.1) at z = 0

1

r
e−iω r

α =

∫ ∞

0

g(k)kJ0(kr)dk (D.2)and use then the Fourier-Bessel transform
g(k) =

∫ ∞

0

G(r)rJ0(kr)dr (D.3)
G(r) =

∫ ∞

0

g(k)kJ0(kr)dk. (D.4)219
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220 APPENDIX D. THE SOMMERFELD INTEGRALg(k) is the Fourier-Bessel transform of G(r), and G(r) is the inverse Fourier-Bessel transform of g(k). Equation (D.2) has the form of (D.4), therefore, G(r) =
e−iωr/α/r. Therefore, (D.3) an be used to ompute g(k)

g(k) =

∫ ∞

0

e−iω r
α J0(kr)dr

=

∫ ∞

0

cos
(

ω
r

α

)

J0(kr)dr − i
∫ ∞

0

sin
(

ω
r

α

)

J0(kr)dr.With
∫ ∞

0

cos
(

ω
r

α

)

J0(kr)dr =







0 for 0 < k < ω
α

(

k2 − ω2

α2

)− 1
2 for k > ω

α

∫ ∞

0

sin
(

ω
r

α

)

J0(kr)dr =







(

ω2

α2 − k2
)− 1

2 for 0 < k < ω
α

0 for k > ω
α ,it follows that

g(k) =











−i
(

ω2

α2 − k2
)− 1

2 for 0 < k < ω
α

(

k2 − ω2

α2

)− 1
2 for k > ω

α ,or simply g(k) = 1
il . Inserted into (D.1), this gives the Sommerfeld integral

1

R
e−iω R

α =

∫ ∞

0

k

il
J0(kr)e

−il|z|dk. (D.5)
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Appendix E
The omputation of modalseismograms
E.1 Numerial alulationsThe treatment of point soures in wave guides with arbitrary (horizontal) layer-ing leads to the following general far-�eld form for the �eld values (displaement,pressure, potential et.) of a normal mode

N(t) = r−
1
2Re

∫ ∞

0

M(ω) exp [i (ωt− kr)]dω. (E.1)
M(ω) onsists, in prinipal, of fators that desribe the soure spetrum, theexitation funtion of the mode (depending on soure depth, soure orientationand, in general, also on ω) and their eigen funtion (amplitude-depth distribu-tion). Wavenumber k(ω) = ω/c(ω) ontains the dispersion information of themode. Equation (4.53) is a simple speial ase of (E.1) withM(ω) ∼ k−1/2(ω) .Integrals of the form (E.1) an be solved e�iently with the help of the FastFourier transform. In the ase of the ideal wave guide, for whih the modalseismograms omputed analytially are given in Fig. 4.3, the following numerialresult is derived for the potential (after a low-pass �lter, whih has deayed tozero at the Nyquist frequeny). 221

Scientific Technical Report STR 07/03

DOI: 10.2312/GFZ.b103-07037 GeoForschungsZentrum Potsdam



222 APPENDIX E. THE COMPUTATION OF MODAL SEISMOGRAMS

Fig. E.1: Modal seismogram for the ideal wave guide (ompare to Fig. 4.23).They agree very well with the analytial seismograms in Fig. 4.33.If one is only interested in the study of dispersion on horizontal pro�les, mosttimes it is su�ient to onsider in M(ω) only the soure spetrum. This simpli-�es the studies, sine then only the theory of free surfae waves is needed (forthe determination of k(ω)).E.2 Method of stationary phaseThe appliation of the method of stationary phase in integrals of the type (E.1)has been desribed in setion 4.2.3. Here, it is shortly outlined again, sine theresults are needed as the basis for the treatment of the Airy phases in setionE.3. It should be noted that today the results of this and the next setion arenot of great importane in the numerial omputation of modal seismograms,sine the Fast Fourier transform mentioned in setion E.1 is more suited forthat purpose. Here, analytial rules for the amplitude deay of surfae waveswith inreasing distane an be derived; this is an important addition to purelynumerial methods.The phase ϕ(ω) = ωt−k(ω)r in (E.1) has the following derivatives with respetto ω (U = group veloity)
ϕ′ = t− rk′ = r − r

U
(E.2)

ϕ′′ = −rk′′ = rU−2U ′ (E.3)
ϕ′′′ = −rk′′′ = r

(

U−2U ′′ − 2U−3U ′
)

. (E.4)
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E.2. METHOD OF STATIONARY PHASE 223Stationary phase values follow from ϕ′(ω0) = 0 and are, therefore, determinedby
U(ω0) =

r

t
. (E.5)Then

U ′(ω0) 6= 0, (E.6)
ϕ(ω) an be approximated near ω0 by

ϕ(ω) = ϕ0 +
1

2
ϕ′′

0 (ω − ω0)
2 (E.7)

(ϕ0 = ϕ(ω0), ϕ
′′
0 = ϕ′′

0 (ω0)). The modal seismogram an then be written in thestationary phase approximation as
N(t) = r−

1
2Re

∫ ω0+∆ω

ω0−∆ω

M(ω) exp

[

i

(

ϕ0 +
1

2
ϕ′′

0 (ω − ω0)
2

)]

dω (E.8)
≃ r−

1
2Re

{

M(ω0)e
iϕ0

(

2

|ϕ′′
0 |

)
1
2
∫ +∞

−∞

eix2signϕ′′

0 dx

}

with x =

(

|ϕ′′

0 |
2

)1/2

(ω − ω0). With (E.3), we �nally derive (U0 = U(ω0), U
′
0 =

U ′(ω0), k0 = k(ω0) = ω0/c(ω0))

N(t) =
U0

r

(

2π

|U ′
0|

)
1
2

Re
{

M(ω0) exp
[

i
(

ω0t− k0r +
π

4
signU ′

0

)]}

. (E.9)Equation (E.9) holds under the requirement (E.6). Then ω0, t and r are on-neted via (E.5) and` this produes the frequeny modulation of the normalmode. Its amplitude is also time dependent; this is mostly due toM (ω0(t)) butalso partially due to U0 and U ′
0 (amplitude modulation).If we onsider the amplitudes of the normal mode as a funtion of distane r, wesee that they deay with r−1 as long as (E.9) holds. This statement onerns theamplitudes in the time domain; spetral amplitudes deay with r−1/2 aordingto (E.1).
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224 APPENDIX E. THE COMPUTATION OF MODAL SEISMOGRAMSE.3 Airy phasesFor realisti wave guides, one or several frequenies exist for whih the groupveloity is stationary. In the following, we assume that ω0 is suh a frequeny.It also holds that U ′(ω0) = 0, (E.6) is, therefore, violated and (E.9) no longerholds. A su�ient approximation of the phase is, in this ase,
ϕ(ω) = ϕ0 + ϕ′

0(ω − ω0) +
1

6
ϕ′′′

0 (ω − ω0)
3 (E.10)instead of (E.7). From (E.2) and (E.4), it follows that

ϕ′
0 = t− r

U0
, ϕ′′′

0 = rU−2
0 U ′′

0 . (E.11)The phase is no longer stationary at ω0 but has a turning point there. Thethird term in (E.10) has now to be onsidered sine ϕ′
0 hanges from negativevalues t < r/U0 to positive values for t > r/U0 and, thus, the seond term in(E.10) is not neessarily dominant. In analogy to (E.8), the following approxi-mation of the modal seismogram for times near r/U0 an be derived (Airy phaseapproximation)

N(t) = r−
1
2Re

∫ ω0+∆ω

ω0−∆ω

M(ω)

· exp

[

i

(

ϕ0 + ϕ′
0(ω − ω0) +

1

6
ϕ′′′

0 (ω − ω0)
3

)]

dω

≃ r−
1
2Re

{

H · b ·
∫ +∞

−∞

exp

[

i

(

ϕ′
0 · b · x+

x3

3
signϕ′′′

0

)]

dx

}

= 2r−
1
2Re {H} · b ·

∫ ∞

0

cos

[

signϕ′′′
0 · ϕ′

0 · b · x+
x3

3

]

dxwith x =

(

|ϕ′′′

0 |
2

)
1
3

(ω − ω0), H = M(ω0)e
iϕ0 and b =

(

2

|ϕ′′′

0 |

)
1
3 .The integral an be expressed by the Airy funtion

Ai(z) =
1

π

∫ ∞

0

cos

(

zx+
x3

3

)

dx,whih is shown in Fig. E.2.
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E.3. AIRY PHASES 225
-2 0 2 4

-8
-6

-4

-0.5

0.5

z

Ai(z)

Fig. E.2: Airy funtion.With (E.11), the end result for the Airy phase an be written as
N(t) =

2

r
5
6

(

2U0

|U ′′
0 |

)
1
3

Re
{

M(ω0) exp [i(ω0t− k0r]
}

·Ai
[

signU ′′
0

r
1
3

(

2U2
0

|U ′′
0 |

)
1
3
(

t− r

U0

)

]

. (E.12)
This is a monohromati osillation with frequeny ω0 (following from U ′(ω0) =
0), the amplitude of whih is modulated by the Airy funtion.If signU ′′

0 > 0, i.e., if we are at a group veloity minimum, the modal seis-mogram looks qualitatively like that in Fig. E.3 (the argument z of the Airyfuntion inreases with t).
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226 APPENDIX E. THE COMPUTATION OF MODAL SEISMOGRAMS
t

N(t)

t=r/u
0Fig. E.3: Modal seismogram.The seismogram ends with strong amplitudes in the neighbourhood of the the-oretial arrival times of the Airy phase. Fig. 4.13 gives quantitative results fora liquid wave guide; in the range of the Airy phases, the seismogram has beenomputed with the theory if this hapter.If signU ′′

0 < 0 (i.e., we are near a group veloity maximum), z dereases for in-reasing t, and the Airy funtion is sampled from right to left. The seismogram,therefore, starts with large amplitudes.The amplitudes of the Airy phases derease with r−5/6 as a funtion of distaner, i.e., they derease slower then given in (E.9). This is the reason why the Airyphase dominates for inreasing distanes.
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