KTB REPORT 90-2

Tiefbohrung KTB Oberpfalz VB

Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor

Bericht 8 Teufenbereich von 3500-4000,1 m (E.T.)

Herausgegeben von der Projektleitung Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland im Niedersächsischen Landesamt für Bodenforschung

R. Emmermann, H.-G. Dietrich, J. Lauterjung, Th. Wöhrl

Redaktion: Prof. Dr. R. Emmermann, Dr. H.-G. Dietrich, Dr. J. Lauterjung und Dipl.-Geophys. Th. Wöhrl

Druck: Wittmann & Wäsch, 3007 Gehrden

Titelbild: Kernstück 836 E 1 k nach einem indirekten Zugversuch (Brasilian-Test) mit der felsmechanischen Universalprüfmaschine im KTB-Feldlabor.

Die diesem Bericht zugrundeliegenden Vorhaben wurden mit Mitteln des Bundesministeriums für Forschung und Technologie (Forschungskennzeichen: RG 8604-0) gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

С

Niedersächsisches Landesamt für Bodenforschung - Hannover 1990 -

Nachdrucke, Vervielfältigungen und Übersetzungen, Verwendung in Funk und Fernsehen, Wiedergabe auf photomechanischem oder ähnlichem Wege und Speicherung in DV-Anlagen sind - auch auszugsweise - genehmigungspflichtig.

Alle Rechte bleiben vorbehalten.

Anschrift des Herausgebers: Projektleitung KTB im Niedersächsischen Landesamt für Bodenforschung, Postfach 51 01 53, D-3000 Hannover 51. Telefon: (05 11) 643-2675.

VORWORT

Das Feldlabor ist konzipiert als eine Gemeinschaftseinrichtung aller am KTB beteiligten Wissenschaftler und Wissenschaftlergruppen. Es soll sicherstellen, daß kontinuierliche Untersuchungen an Kernmaterial, Spülproben, Bohrspülung und Gesteinsfluiden durchgeführt und dabei alle Größen und Eigenschaften gemessen und dokumentiert werden, die

- für kurzfristige Entscheidungen über die Art des Bohrens, die Durchführung von Messungen und Tests im Bohrloch sowie die Probennahme erforderlich sind,
- zeitlichen Veränderungen unterliegen,
- in regelmäßigen Intervallen und als Funktion der Tiefe erfaßt werden müssen,
- für Korrelation mit anderen Untersuchungsergebnissen benötigt werden und
- die Grundlage für alle nachgeschalteten Forschungsprojekte darstellen.

Die Ergebnisse dieser Untersuchungen werden in regelmäßigen Abständen in den KTB-Reports dargestellt. Bisher sind folgende sieben Berichte mit Ergebnissen aus dem Feldlabor veröffentlicht:

KTB-Report	88-1	Teufenbereich	0	-	480	m	VB	1
KTB-Report	88-2	Teufenbereich	480	-	992	m	VB	1
KTB-Report	88-6	Teufenbereich	992	-	1530	m	VB	1
KTB-Report	88-9	Teufenbereich	1530	-	1998	m	VB	1
KTB-Report	89-2	Teufenbereich	1709	-	2500	m	VB	1a
KTB-Report	89-4	Teufenbereich	2500	-	3009.7	m	VB	1a
KTB-Report	89-5	Teufenbereich	3009.7	-	3500	m	VB	1a

Das Feldlabor untersteht organisatorisch dem Direktorat "Geowissenschaften" der KTB-Projektleitung. Mit der Leitung vor Ort ist Dr. H.-G. Dietrich beauftragt; sein Stellvertreter ist Dipl.-Geophys. T. Wöhrl. Das wissenschaftliche und Rahmen des DFG-Projektes Personal wird technische im "Personelle Ausstattung KTB-Feldlabor" finanziert und ist über Privat-Arbeitsverträge bei Prof. Dr. R. Emmermann an der Universität Gießen angestellt. Antragsteller dieses DFG-Projektes sind Prof. Dr. R. Emmermann, Institut für Geowissenschaften und Lithosphärenforschung der Universiät Gießen; Prof. Dr. H. Berckhemer, Institut für Meteorologie und Geophysik der Universität Frankfurt, Prof. Dr. G. Friedrich, Institut für Mineralogie und Lagerstättenlehre der RWTH Aachen; Prof. Dr. K. von Gehlen, Institut für Geochemie, Petrologie und Lagerstättenkunde der Universität Frankfurt; Prof. Dr. Ing. O. Natau, Institut für Boden- und Felsmechanik der Universität Karlsruhe; Prof. Dr. H. Soffel, Institut für Allgemeine und Angewandte Geophysik der Universität München; Prof. Dr. B. Stöckhert, Institut für Geologie der Ruhr-Uni-versität Bochum; Prof. Dr. K. Weber, Institut für Geologie und Dynamik der Lithosphäre der Universität Göttingen und Prof. Dr. K. H. Wedepohl, Geochemisches Institut der Universität Göttingen.

Tiefbohrung KTB OBERPFALZ VB Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor Bericht 8

Teufenbereich von 3500 - 4000.1 m

INHALTSVERZEICHNIS

VORWORT

A.	Einleitung	i.	A	1
A.1	Allgemeines	L	A	1
A.2	Bohrtechnik	i.	A	6
A.3	Probenahme	1	A	6
A.4	Sonstiges	1	A	10
A.5	Literaturverzeichnis	1	A	10

в.	Geologie		
	Zusammenfassung/Abstract	в	3
B.1	Übersicht	в	6
B.2 B.2.1 B.2.2 B.2.3	Sillimanit-Biotit-Gneise (3500 - 3572 m) Petrographie Gefüge Chemische Zusammensetzung	B B B B	6 6 8 10
в.3	Allanit-führende Biotit-Plagioklas-Gneise (3572 - 3573.5 m)	в	14
B.4 B.4.1 B.4.1.1	Metabasit-Abfolge (3573.5 - 4000 m) Amphibolite und Metagabbros Petrographie und Metamorphose der	B B	16 16
	Metabasite	в	16
B.4.1.2 B.4.1.3	Beschreibung besonderer Einzelheiten der Metabasite Geothermobarometrie des Hochdruck-	В	28
	Granulitfazies-Stadiums	В	32
B.4.1.4	Deformationsgefüge der Metabasite	в	33
B.4.1.5	Chemische Zusammensetzung	В	35
в.4.2	Quarz-Feldspat-Mobilisate in den Meta- basiten	в	45

B 47 B.4.3 Meta-Ultramafitite B.4.4 Granat- und Hornblende-führende, Plagioklas-reiche Gneise B 54 B.4.5 B 54 Augengneise B.4.6 B 60 Meta-Aplite B.4.7 Pegmatoide B 64 B.4.8 Quarz-Gänge B 64 B.5 Erzmineralisation B 67 B.5.1 Sulfidische Erzminerale B 71 B.5.2 B 80 Oxidische Erzminerale B.6 Kataklase B 91 B.7 B 96 Großstruktur B.8 Bohrung VB1b B 97 B.9 Danksagung B 101 B.10 Literaturverzeichnis B 102 B.11 Anhang B 105 C. Geochemie C 2 Zusammenfassung 3 Abstract C C.1 Einleitung C 4 C.2 Probenahme und Probenaufbereitung С 5 C.3 С 5 RFA/RDA-Analytik C.3.1 С 5 Allgemeines C.3.2 Ergebnisse an Bohrmehlproben С 6 C.3.3 C 18 Bestimmung der Gesteinsdichte mit RDA C.4 Spülunganalytik C 21 C.4.1 C 21 Allgemeines C.4.2 Ergebnisse und Diskussion C 21 C 22 C.4.3 Fluid Sampler C 26 C.5 Gasanalytik C.5.1 C 26 Allgemeines C 26 C.5.2 Ergebnisse C 26 C.5.2.1 Kontinuierliche Gasanlytik C 35 C.5.2.2 Esterzusatz - Methanquelle ! C 36 C.5.2.3 Bohrlochzirkulationen C 39 C.5.3 Fluid Sampler

C.6	Vergleich der Ergebnisse von VB1a und VB1b	С	41		
C.7	Schriftenverzeichnis				
C.8	Danksagung	С	46		
C.9	Anhang Tiefenlogs aller Ergebnisse (1 : 1000) Zusammenstellung sämtlicher Spülungsein- leitungen	С	47		
D.	Geophysik				
D.1	Dichte	D	2		
D.2	Ultraschallseismik	D	5		
D.3	Natürliche Radioaktivtät	D	14		
D.4	Wärmeleitfähigkeit	D	23		
D.5	Natürliche Remanente Magnetisierung (NRM)	D	28		
D.6	Magnetische Suszeptibilität	D	34		
D.7	Elektrische Leitfähigkeit	D	38		
D.8	Entspannungsdeformation und akustische Emission	D	44		
D.9	Permeabilität	D	57		
D.10	Porosität	D	60		
D.11	Literatur	D	62		
D.12	Danksagung	D	64		
Ε.	Gefüge und Deformation				
E.1	Fragestellung	Ε	2		
E.2	Methodik	E	2		
E.3	Ergebnisse und Interpretation	Ε	5		
E.4	Schriftenverzeichnis	Е	12		

E.5 Anhang: Datenliste der aufgenommenen Scher- E 13 kriterien von 480 m - 2004 m

F.1	Einleitung	F	2
F.2 F.2.1	Ergebnisse der Untersuchungen Kinematik, Raumlage und Ausbildung der spröden Verschiebungszonen	F F	3 3
F.2.1.1	Aufschiebungen	F	3
F.2.1.2	Abschiebungen	F	8
F.2.2	Mineralisation auf den Verschiebungs-	F	٥
F.2.3	Extensionsrisse	F	18
F.2.4	Altersabfolge der bruchhaften Gefüge	F	21
F.3	Schlußfolgerung	F	23
F.4	Schriftenverzeichnis	F	25
F.5	Danksagung	F	26

- Kernorientierung in der KTB-VB aktueller G. Stand
- Sedimentrohr-Proben in der KTB-Vorbohrung н. VB1b

I. Kontaminationsfreie Bohrspülungsentgasung

1.1	Einleitung	I	2
1.2	Ergebnisse	I	3
I.3	Bewertung	I	5
I.4	Schriftenverzeichnis	I	10
I.5	Danksagung	I	10

A. Einleitung

A. Einleitung

A.1 Allgemeines

In diesem achten Report werden die Ergebnisse der Untersuchungen im KTB-Feldlabor für den Teufenbereich von 3500.0 m bis zur Endteufe bei 4000.1 m der Vorbohrung KTB OBERPFALZ VB dargestellt, der vom 10. November 1988 bis zum 4. April 1989 erbohrt worden ist (Abb. A.1.1 und A.1.2).

Die zum achten Bericht des Feldlabors gehörende Zusammenstellung geologisch relevanter Daten findet sich in den Blättern 17, 18 und 19 am Ende des Reports.

Ergänzt werden die Darstellungen und Resultate des Feldlabors durch folgende zusätzliche Berichte:

- Kontinuierliche makroskopische Aufnahme der duktilen Verformung und kinematischer Markierungen an KTB Kernen von A. Zadow, H. Heinisch, J. H. Behrmann, S. Lich und A. Volp (vgl. Kap. E)
- Bruchtektonik im Teufenbereich von 2500 bis 3893 m von G. Zulauf (vgl. Kap. F)
- Kernorientierung in der KTB-VB aktueller Stand von J. Kohl, D.Schmitz und C. Röhr (vgl. Kap. G)
- Sedimentrohrproben in der KTB-Vorbohrung VB1b von J. Sigmund und H.-G. Dietrich (vgl. Kap. H)
- Kontaminationsfreie Bohrspühlungsentgasung von H.-J. Heinschild (vgl. Kap. I)

Am Ende des Reports findet sich eine Übersichtsdarstellung des gesamten geologischen Profils von 0 - 4000.1 m mit den wesentlichen Angaben zur Foliation, den durch Bohrkernmaterial belegten Teufenabschnitten und einem Vertikalschnitt der Bohrung mit den verschiedenen Bohrlochabschnitten VB 1, VB 1a und VB 1b.

Die im Rahmen von Flüssigkeitseinschlußuntersuchungen aus dem Teufenbereich zwischen 3500 m und 4000.1 m genommenen Proben wurden von K. D. Homann bereits im fünften Bericht des Feldlabors vorgestellt (KTB-Report 89-2, Abschnitt G.)

Die Arbeitsfähigkeit des KTB-Feldlabors wurde zwischenzeitlich durch den fortgeschrittenen Aufbau des geplanten Rechenzentrums auf der KTB-Bohrlokation (vgl. KTB-Report 89-2, Abschnitt I.) wesentlich verbessert. Die Abbildungen A.1.3 (oben und unten) sollen einen Überblick über einen Teil der Hardware-Konfiguration und spezielle Peripherie-Geräte geben. Ein Großteil der Prozeßrechner (z. B. A.1.4) ist bereits über Ethernet-Netzwerk mit dem Zentralrechner verbunden, so daß sie mit entsprechender Ausrüstung an der Netzwerkkommunikation teilnehmen können.

Abb. A.1.1: Bohrfortschrittskurve der Bohrung KTB OBERPFALZ VB von 3500.0 m bis 4000.1 m (vierter Abschnitt der Ablenkbohrung VB 1a und gesamter Abschnitt der Ablenkbohrung VB 1b

- A 2 -

Abb. A.1.2: Bohrfortschrittskurve der Vorbohrung KTB OBERPFALZ VB von 0 - 4000.1 m (Endteufe)

- A 3 -

Abb. A.1.3: Überblick über einen Teil des Rechenzentrums (z. B. VAX 6210) und der speziellen Peripherie-Geräte (z. B. Versatec Farbplotter)

Abb. A.1.4: Auswertung von bohrlochgeophysikalischen Messungen an einem Prozeßrechner durch verschiedene Arbeitsgruppen der KTB-Projektleitung und des KTB-Schwerpunktprogrammes (oben: Breakout-Orientierungen mit Hilfe des akustischen Borehole-Televiewers; unten: Bohrkernnachorientierung mit Hilfe von FMST-Messungen)

A.2 Bohrtechnik

Der Teufenbereich von 3500 m - 4000.1 m (ET) wurde ab dem 10.11.88 zunächst vollständig im Seilkernbohrverfahren mit 6" Diamant-Bohrkronen abgeteuft. Am 06.02.89 wurde während der Kernarbeiten in einer Teufe von 3893.0 m ein sogenannter Durchspüler im Seilkernbohrgestänge festgestellt und deshalb mit dem Ausbau des Bohrstranges begonnen.

Nachdem bereits über 300 m des Gestänges ausgebaut worden waren, kam es zu einem Zapfenbruch an einer Seilkernbohrstange. Nach dem Aufprall des Bohrstranges auf der Bohrlochsohle wurde der Kopf des sogenannten "Fisches" in einer Teufe von 307.42 m festgestellt. Obwohl der Restzapfen gefangen und der Seilkernbohrstrang wieder gesund verbunden werden konnte, war es nicht möglich, eine Zirkulation herzustellen und den Strang freizuziehen. Nachdem der Bohrstrang bei einer soge-nannten "Back off-Operation" zur gezielten Lösung einer Ge-stängeverbindung im Bereich eines Durchspülers abgerissen war (Kopf Fisch bei 2680.26 m), wurde entschieden, den im Bohrloch verbliebenen Bohrstrang so tief wie möglich abzutrennen und zutage zu fördern und anschließend die Bohrung zum zweiten mal abzulenken. Nach Schneiden des Seilkernbohrstranges mit einem Hydra-Jet Gerät in einer Teufe von 3794.6 m wurde eine erneute Ablenkung des Bohrlochs vorgenommen. Die Ablenkung erfolgte durch den orientierten Einbau eines Ablenkkeiles. Für die weiteren Bohrarbeiten wurde ein 3 1/2" Bohrstrang mit Bohrlochsohlenmotoren und 6" Diamant- und Warzenmeißel zum Vollbohren eingesetzt, da der Seilkernbohrstrang in Folge festgestellter Korrossionsschäden der Seilkernbohrstangen nicht mehr eingesetzt werden konnte.

Die neue Bohrung trägt seit dem Ablenkpunkt bei 3766.9 m bis zur Endteufe bei 4000.1 m, die am 04.04.89 erreicht wurde, die Bezeichnung VB 1b. Das Bohr- und Verrohrungsschema mit einer Übersicht über die verschiedenen Abschnitte der Bohrung mit den eingesetzten Bohrverfahren zeigt die Abbildung A.2.1. Eine zusammenfassende Darstellung über alle Ablenkungsarbeiten und Richtbohrphasen sowie den Verlauf des Bohrloches in einem Vertikalschnitt (W-E-Projektion) und die teufenmäßige Verteilung der Auskesselungszonen im 6 1/2" Bohrloch zeigt Abbildung A.2.2.

A.3 Probenahme

Über die oben genannte Seilkernstrecke, d. h. den untersten Abschnitt der Bohrung VB 1a, wurden insgesamt 100 Kernmärsche (KM 856 teilweise, KM 857 – 956) abgebohrt. Der Kerngewinn war wieder, wie bei den vorangegangenen Seilkernbohrarbeiten, sehr gut und betrug knapp 100 %.

Im Berichtsabschnitt wurden insgesamt zwei orientierte Kerne entnommen (Tab. A.3.1). Bei diesem Verfahren werden unmittelbar beim Bohren durch einen mit Messern versehenen Innenkernrohrschuh in den Kern drei Kerben geritzt. Durch Meßeinrichtungen kann die räumliche Lage der Messer und damit der Ritzungen auf dem Bohrkern ermittelt werden, so daß sich der Bohrkern direkt orientieren läßt (Schmitz, et al. 1989). Eine direkte Orientierung ist darauf aufbauend auch für jene Bohr-

Abb. A.2.2: Vertikal- und Horizontalprojektion der Vorbohrung KTB OBERPFALZ VB mit Markierung aller Richtbohr- und Ablenkungsarbeiten und den Auskesselungsbereichen im 6"-Bohrloch (zusammengestellt und ergänzt von Kohl nach Bearbeitungen von Kück, Referat Bohrlochmessungen, KTB-GP-BM) - A 8 -

kerne möglich, die nach oben und unten an den orientierten Bohrkern unmittelbar angepaßt werden können (vgl. Abschnitt G.).

Tab. A.3.1: Übersicht der Auswertung orientierter Bohrkernmärsche (KM) in der Bohrung KTB OBERPFALZ VB

Datum	KM	Kernintervall (ohne anpaßbare	mittlere E Foli	infallswerte der ation
		Kernstrecken)	Azimut	Einfallswinkel
11.11.88	860	3516.7 - 3517.3 m	ca. 100°	ca. 20°
28.12.88	910	3711.0 - 3715.8 m	ca. 150°	ca. 50°

Zusätzlich zur Gewinnung von Bohrkernmaterial wurden während der Seilbohrkernphase im Teufenabstand von 1.0 m Bohrkleinproben (Cuttings) am Schüttelsieb und Bohrmehlproben an der Zentrifuge genommen. Entsprechendes gilt für die Beprobung der Bohrspülung am Auslauf. Während des Einsatzes der Vollbohrwerkzeuge von 3766.9 m - 4000.1 m wurde die Probenahme erhöht, indem der Teufenabstand von 1.0 m auf 0.5 m reduziert wurde.

Größere (oft mehrere Zentimeter große) Gesteinsbruchstücke konnten bei insgesamt zwölf Einsätzen eines Sedimentrohres beim Bohren mit Vollbohrwerkzeugen gewonnen werden. Auf dieser Weise standen, wie die Auswertung zeigt (vgl. Abschnitt H.) fast 6.5 kg Gesteinsmaterial aus dem Teufenbereich zwischen 3824.2 und 3997.9 m zusätzlich zur Bearbeitung zur Verfügung.

Nach Fertigstellung der Vorbohrung wurden im Rahmen des anschließenden Meßprogramms am 12./13.04.89 und 20./21.06.89 über 30 Seitenkerne aus dem hier bearbeiteten Bereich von 3500 - 4000.1 m mit einem speziellen Sidewall Core Driller Tool (MSCT) der Firma Schlumberger genommen. Die makroskopische und lithologisch-strukturelle Beschreibung dieser Seitenkernproben findet sich bereits im KTB-Report 89-4.

Neben den übertage gewonnenen Bohrspülungsproben wurden während des Abteufens des untersten Bohrlochabschnittes der VB 1a von 3500 m - 3893 m sieben Flüssigkeits- und Gasproben in situ aus verschiedenen Teufen gewonnen (s. Abschnitt C. Geochemie). Weitere Proben aus diesem Teufenbereich und dem Bohrlochabschnitt VB 1b wurden nach Erreichen der Endteufe im Rahmen des anschließenden Langzeittest- und Meßprogramms gewonnen, wobei auch ein Mehrfachprobennehmer erfolgreich eingesetzt werden konnte. Das Test- und Meßprogramm wurde im April 1990 abgeschlossen wurde. Unterlagen für die Bestellung von KTB-Probenmaterial können beim

NLfB Betrieb KTB OBERPFALZ Wissenschaftliche Einrichtungen Postfach 67 8486 Windischeschenbach Telefon 09681 / 40014 (Sekretariat, Frau Ritter) Telefax 09681 / 40038

angefordert werden.

A.5 Literaturverzeichnis

- Emmermann, R.; Dietrich, H.-G.; Heinisch, M. und Wöhrl, Th. (Hsg.): Tiefbohrung KTB Oberpfalz VB. Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Bericht 5, Teufenbereich 1709 - 2500 m, KTB-Report 89-2.
- Emmermann, R.; Dietrich, H.-G.; Heinisch, M. und Wöhrl, Th. (Hsg.): Tiefbohrung KTB Oberpfalz VB. Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Bericht 6, Teufenbereich 2500 - 3009.7 m, KTB-Report 89-4
- Emmmermann, R., Dietrich, H.-G.; Heinisch, M. und Wöhrl, Th. (Hsg.): Tiefbohrung KTB Oberpfalz VB. Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Bericht 7, Teufenbereich 3009.7 - 3500 m, KTB-Report 89-5
- Schmitz, D.; Hirschmann, G.; Kessels, W.; Kohl, J.; Röhr, C. und Dietrich, H.-G.: Core orientation in the KTB pilot well - Scientific Drilling, 1, 150 - 155, 1989.

B. Geologie

KTB Oberpfalz VB – Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich: 3500 – 4000.1 m

> J. Sigmund W. Hacker S. Keyssner J. Kohl H. Müller C. Röhr A. Stroh M. Tapfer

KTB-Report 90)-2 B1 -	B142	96 Abb.	Hannover 1	990
				the second se	

Tiefbohrung KTB-Oberpfalz VB 1a und 1b, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 3500 bis 4000.1 m:

B. GEOLOGIE

J. Sigmund, W. Hacker, S. Keyssner, J. Kohl, H. Müller, C. Röhr, A. Stroh und M. Tapfer *)

Seite

B 3

Inhaltsverzeichnis

Zusammenfassung/Abstract

B.1	Übersicht	E	6
B.2	Sillimanit-Biotit-Gneise (3500 - 3572 m)	E	6
B.2.1	Petrographie	E	6
B.2.2	Gefüge	E	8 8
B.2.3	Chemische Zusammensetzung	В	10
B.3	Allanit-führende Biotit-Plagioklas-Gneise (3572 – 3573.5 m)	В	14
B.4	Metabasit-Abfolge (3573.5 - 4000 m)	В	16
B.4.1	Amphibolite und Metagabbros	В	16
B.4.1.1	Petrographie und Metamorphose der Metabasite	В	16
B.4.1.2	Beschreibung besonderer Einzelheiten der Metabasite	В	28
B.4.1.3	Geothermobarometrie des Hochdruck- Granulitfazies-Stadiums	В	32

B.4.1.4	Deformationsgefüge der Metabasite	В	33
B.4.1.5	Chemische Zusammensetzung	В	35
B.4.2	Quarz-Feldspat-Mobilisate in den Metabasiten	В	45
B.4.3	Meta-Ultramafitite	В	47
B.4.4	Granat- und Hornblende-führende, Plagio- klas-reiche Gneise	В	54
B.4.5	Augengneise	В	54
B.4.6	Meta-Aplite	В	60
B.4.7	Pegmatoide	В	64
B.4.8	Quarz-Gänge	В	64
B.5	Erzmineralisation	В	67
B.5.1	Sulfidische Erzminerale	В	71
B.5.2	Oxidische Erzminerale	В	80
B.6	Kataklase	В	91
B.7	Großstruktur	В	96
B.8	Bohrung VB1b	В	97
B.9	Danksagung	3 1	01
B.10	Literaturverzeichnis H	3 1	02
B.11	Anhang	3 1	05

Zusammenfassung

Dieser Bericht umfaßt die bisherigen Ergebnisse der petrographisch-geochemischen und strukturellen Bearbeitung des letzten Abschnittes der KTB-Vorbohrung von 3500 bis 4000.1 m.

Von 3500 bis 3572 m dominieren mittelkörnig-flaserige Sillimanit-Biotit-Gneise. Sie führen Granat, reliktischen Kyanit und Muskovit.

Die Allanit-führenden Biotit-Plagioklas-Gneise zwischen 3572 und 3573.5 m bilden den Übergang zur liegenden Metabasit-Abfolge.

Die Metabasit-Abfolge reicht von 3573.5 m bis zur Endteufe und besteht hauptsächlich aus Amphiboliten und einigen Metagabbros. Darin eingeschaltet sind Meta-Ultramafitite, Granat-Biotit-Hornblende-Augengneise sowie Granat- und Hornblende-Plagioklas-reiche Gneise. Die Metabasit-Abfolge führende, vielen leukokraten Mobilisaten, wird von Meta-Apliten und Pegmatoiden durchzogen. Ein duktiles Streckungsgefüge ist erstmals gehäuft entwickelt.

Die Metamorphose-Entwicklung der Metabasite begann mit einem Hochdruck-Granulitfazies-Stadium. Metabasite, bei frühem denen dieses Stadium noch deutlich zu erkennen ist, bestehen groβen Klinopyroxen-Körnern mit parallel orientierten, aus lamellenförmigen Amphibol-, Rutil-, Quarz- und Plagioklas-Einschlüssen. Diese Klinopyroxene werden randlich von würmchenförmigen Klinopyroxen-Plagioklas-Quarz-Symplektiten umgeben. Der weitere Mineralbestand ist Granat, Ti-reiche braune Hornblende, granoblastischer Plagioklas, Rutil, Ilmenit, Quarz und Biotit. Granat schlieβt Rutil, Quarz, Kyanit, Plagioklas und Klinopyroxen (bis 30 Mol-% Zoisit, Jadeit) ein.

Klinopyroxen-Plagioklas-Quarz- sowie Hornblende-Plagioklas-Quarz-Symplektite zeigen als eingefrorene Zwischenstadien die Anpassung an die dominierenden amphibolitfaziellen Bedingungen an. Untergeordnet ist ein spätes Grünschieferfazies-Stadium erhalten.

Unter den Erzmineralen ist der größte Teil der Ni-Co-Fe-S-Mischphasen und Ni-Sulfide (Millerit) an die Metabasite gebunden. Auch die Ti-Oxide Ilmenit, Rutil treten bevorzugt in den Metabasiten auf. Magnetit hingegen wird nur vereinzelt beobachtet. Graphit ist in den Paragneisen weit verbreitet, in Amphiboliten und Meta-Ultramafititen selten. Unterhalb 3800 m treten sekundär Magnetit, Hämatit, Goethit und Ilvait auf. Sie sind an Zonen starker Epidotisierung gebunden.

Eine offene Kluft bei 3817 m und eine poröse, mit Epidot imprägnierte Zone bei 3861 m sind Ursachen für den Zufluß salinarer Formationswässer. Zwischen 3798 und 3873 m tritt lokal eine starke Klüftung mit Epidot-Mineralisation auf. Das Einfallen der Foliation pendelt in den Gneisen zwischen NE und SE. In den Metabasiten ist nur sporadisch eine Foliation entwickelt. Kataklastische Scherflächen sind nur noch mm bis cm-mächtig. Mit dem Einsetzen der Metabasit-Abfolge tritt häufig core-disking auf.

Abstract

This report presents preliminary results of the petrographical, geochemical and structural investigations of the depth interval from 3500 to 4000.1 m of the scientific well 'KTB Oberpfalz VB'.

Medium-grained, flaser-like sillimanite-biotite-gneisses predominate from 3500 to 3572 m. They contain garnet, relictic kyanite and muskovite.

From 3572 to 3573.5 m medium-grained, allanite-bearing, granoblastic biotite-plagioclase gneisses form the transition to the subjacent metabasite sequence.

The metabasite sequence extends from 3573.5 m to the final depth and mainly consists of amphibolites and some metagabbros. Meta-ultramafic rocks, garnet-biotite-hornblende augengneisses as well as garnet- and hornblende-bearing plagioclase-rich gneisses occur as intercalations. Quartzplagioclase mobilisates, meta-aplites and pegmatoides are widespread in this sequence. For the first time a stretching linear is prominent.

The metamorphic development of the metabasites started with a high-pressure granulite facies stage. Metabasites with good preservation of this stage consist of large clinopyroxenes with parallel aligned, lamellar amphibole, rutile, quartz, plagioclase inclusions. These clinopyroxenes are and rimmed by vermicular clinopyroxene-plagioclase-quartz symplectites. Further minerals are garnet, Ti-rich brown hornblende, granoblastic plagioclase, rutile, ilmenite, quartz, and biotite. Garnet includes rutile, quartz, zoisite, kyanite, plagioclase, and clinopyroxene (up to 30 mol-% of jadeite).

Clinopyroxene-plagioclase-quartz and hornblende-plagioclasequartz symplectites are frozen in intermediate stages of the adaption to the dominating amphibolite facies conditions. A late low grade metamorphic stage (greenschist facies and lower) is subordinate.

Most of the Ni-Co-Fe-S phases and Ni-sulfides (Millerite) as well as ilmenite and rutile are confined to the metabasic sequence. Magnetite is subordinate. Graphite is widespread in the paragneisses and rare in amphibolites and ultramafic rocks. Below 3800 m secondary magnetite, hematite, goethite and ilvaite are bound to epidote-rich zones. An open fissure at 3817 m and a porous, epidote-rich zone at 3861 m are the reason for an influx of saline formation water. Between 3798 and 3873 m epidote-rich faults occur.

The dip direction of the foliation in the paragneisses alternates between NE and SE. In the metabasic sequence a foliation is rarely developed. Cataclasites are only mm to cm thick. Core disking is prominent within the metabasites.

B.1 Übersicht

Abb. B.1.1 zeigt das Übersichtsprofil der Berichtsstrecke. Es gliedert sich in den gekernten Abschnitt VB1a (3500 - 3893 m) und die nicht gekernte Ablenkbohrung VB1b (3766.9 -4000.1 m).

Petrographisch gliedert sich der Profilbereich von 3500 - 4000.1 m in zwei Haupt-Abschnitte:

- (1) 3500 bis 3572 m: Sillimanit-Biotit-Gneise mit grauwackeähnlichem Chemismus und amphibolitfazieller Metamorphose,
- (2) 3573.5 4000.1 m: Metabasite mit basaltischem Chemismus, mit frühem Hochdruck-granulitfaziellem Metamorphosestadium und amphibolitfazieller Überprägung. Untergeordnet sind Meta-Ultramafitite, (Granat)-Biotit-Hornblende-Gneise bis Augengneise und Meta-Aplite eingeschaltet.

Im Übergangsbereich (3572 - 3573.5 m) tritt ein 1.5 m mächtiger Allanit-führender Biotit-Plagioklas-Gneis auf.

B.2 Sillimanit-Biotit-Gneise (3500 - 3572 m)

B.2.1 Petrographie

Im Teufenbereich 3500 bis 3572 m treten Granat-führende Sillimanit-Biotit-Gneise auf. Sie entsprechen weitgehend denen aus höheren Teufenbereichen. Es handelt sich ganz überwiegend um mittelkörnig-flaserige Typen, untergeordnet um mittelkörnig-lagige. Feinkörnig-strafflagige Gneise sind auf die Kernmärsche 862 - 866 (3523 - 3538 m) beschränkt. Mit Annäherung die liegende Metabasit-Abfolge sind die Gneise zunehmend an undeutlich foliiert. Ab 3544 m (866F1t) treten wirrstrahlige Fibrolith-Knoten statt der darüber vorkommenden foliationsparallelen Sillimanit-Aggregate auf. Weiterhin sind <u>Hellglim-</u> mer-Aggregate charakteristisch, die als Pseudomorphosen nach Sillimanit und Kyanit gedeutet werden können. Granat ist oft nur akzessorisch vertreten, erscheint aber in einigen Gneiin Biotit-reichen Lagen in größerer Menge (bis 1 Vol.-% sen des Gesamtgesteins). Die Granate führen gelegentlich Biotitoder Rutil-Einschlüsse. Kyanit tritt wie in höheren Teufenbevorwiegend als kleine reliktische Einschlüsse reichen in Plagioklas, selten in gröβeren Körnern mit Muskovit-Saum auf B.2.1). Im Dünnschliff 688A4a (2820.2)m) konnte (Abb. Kyanit und einschließendem Muskovit ein zwischen schmaler identifiziert Saum aus Margarit mit der Mikrosonde werden 1989: B35). Gelbbraune (vql. Abb. B.3.8 in KOHL et al. Turmalin-Blasten wurden in wenigen Schliffen in der Gneismatrix gefunden.

Abb. B.1.1: Geologisches Profil VB1a und VB1b

. B 1 8

Abb. B.2.1: Kyanit(KYA) in Muskovit(MUS), Sillimanit-Biotit-Gneis, DS 874C11, 3570.97 m, //N.

Besondere Beobachtungen:

Nadelige Sillimanit-Schwärme werden oft von einem Quarz-Einkristall eingeschlossen. Der Rand eines solchen Quarzkorns folgt den Konturen des Sillimanit-Schwarms. Das Quarz-Sillimanit-Aggregat wird seinerseits von einem Plagioklas-Korn eingeschlossen.

Im Grenzbereich zu den liegenden Allanit-führenden Biotit-Plagioklas-Gneisen erscheinen Hellglimmer-Aggregate mit Sillimanit-Einschlüssen (Abb. B.2.2).

Im Kernmarsch 859 tritt in mittelkörnig-flaserigem Gneis eine 5 mal 3 cm große Kalksilikat-Linse aus Apatit, Granat, Quarz Zoisit, Hellglimmer und Calcit auf (Abb. B.2.3). Sie ähnelt der in KM 752 beschriebenen Linse (MÜLLER et al. 1989: B16f).

B.2.2 Gefüge

In der dominierenden, mittelkörnig-flaserigen Gefügevarietät werden augenförmige Quarz-Feldspat-Verwachsungen oder gedrungene bis isometrische Plagioklase (DS 859B2f, 3513.3 m) von einem offenen Glimmerteilgefüge umflasert. In Bereichen mit kleingefältelter Foliation sind Muskovit, Biotit und Quarz rekristallisiert, ohne daß eine achsenebenen-parallele Schieferung ausgebildet ist (DS 857C1h, 3005.12 m).

Abb. B.2.2: Muskovit-Aggregat(MUS) mit Sillimanit-Einschlüssen(SIL) und Prehnit-Gang(PRH) in Sillimanit-Biotit-Gneis, DS 874E11, 3572.08 m, //N.

Abb. B.2.3: Kalksilikat-Linse in Gneis, KST 859D2r, 3514.7 m.

Granat-Sillimanit-Biotit-

Das **mittelkörnig-lagige** Gefüge ist durch einen ungleichkörnigen, granoblastischen Quarz-Plagioklas-Kornverband gekennzeichnet. Biotit-Sillimanit-Verwachsungen, Biotite und Muskovite sind mit ihrer Basis s-parallel eingeregelt und bilden ein mehr oder weniger geschlossenes Teilgefüge.

Die makroskopisch feinkörnig-strafflagige Gefügevarietät zwischen 3523.0 und 3538.8 m hat folgende mikroskopische Charakteristik: In 's' gelängte Quarze und Plagioklase bilden einen granoblastischen Kornverband, der von anastomosierenden Sillimanit-Biotit-Lagen oder Biotit-Schuppen umflasert wird. In s-parallelen Quarz-Plagioklas-Lagen hat Plagioklas ebene Korngrenzflächen, Quarz zeigt hingegen gebogene Phasengrenzflächen gegen Plagioklas.

Besondere Gefüge-Beobachtungen:

Bei 3548 m tritt im feinkörnig-strafflagigen Gneis eine cmmächtige, leukokrate Lage auf. Muskovite und alterierte Biotite bilden ein offenes Glimmer-Teilgefüge und sind straff eingeregelt (Abb. B.2.4). Im Gegensatz dazu bilden Quarz und Plagioklas ein granoblastisches Gefüge.

Im feinkörnigen Granat-Sillimanit-Muskovit-Biotit-Gneis zwischen 3537.3 m und 3538.7 m ist eine Scherbandfoliation ausgebildet. Die s-Flächen sind fein gefältelt. In lineationsparallelen Schnitten sind die maximal 3 mm langen Sillimanit-Linsen gelängt und spitzwinklig zur Foliation angeordnet. Die Foliation (s-Fläche) fällt mit etwa 25° ein, die Scherflächen (c-Flächen) fallen um 20 - 25° steiler ein. Die in der Foliation orientierten Biotite, Muskovite und Sillimanit-Linsen werden in die c-Flächen eingeregelt (Abb. B.2.5). Das Quarz-Teilgefüge ist insbesondere an diesen c-Flächen feinkörnig rekristallisiert. Die c-Flächen sind als diskontinuierliche Flächenschar ausgebildet und werden als "extensional crenulation cleavage" ("ecc", PLATT & VISSERS 1980) interpretiert. Die geometrische Beziehung von Foliation zur c-Flächenschar deutet abschiebenden Bewegungssinn (downdip) der Hangendscholle in Bezug zur jetzigen Lage der Foliation an. Die Foliation ist durch jüngere Deformationen verstellt, sodaß keine absoluten Aussagen über den Bewegungssinn bei Anlage der Scherflächen möglich sind.

B.2.3 Chemische Zusammensetzung

Die Sillimanit-Biotit-Gneise entsprechen chemisch denen der höheren Teufenbereiche. Sie belegen z.B. im Na₂O-K₂O-Diagramm nach WIMMENAUER (1984, Abb. B.2.6, Analysen in Tab. B.2.1) den gleichen Streubereich von Grauwacken über tonige Grauwacken bis zu Tonsteinen wie die Sillimanit-Biotit-Gneise aus dem darüber liegenden Teufenabschnitt 3000 - 3500 m. Ins

Abb. B.2.4: Straff eingeregelte alterierte Biotite in Sillimanit-Biotit-Gneis, DS 867G9n, 3548.63 m, //N.

Abb. B.2.5: ecc-Gefüge in Sillimanit-Biotit-Gneis, Foliation (F), Cleavage (C), DS 865F2ag, 3538.07 m, //N.

K_STK TEUFE	857C1h 3505.12	85982f 3513.28	859F2ah 3516.41	861F2ad 3520.85	863E2ac 3530.79	863G2ap 3533.00	86582n 3535.04	865F2ag 3537.99
SI02 TI02 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	64.4 0.75 14.8 5.54 0.06 2.19 1.36 3.1 2.00 35 153 59 92 21 30 59 <5	66.1 0.73 16.2 5.34 0.08 2.14 1.39 3.4 2.09 0.06 194 30 149 51 81 23 27 54 <5 7	63.7 0.77 16.3 5.53 0.08 1.93 1.09 3.6 2.03 0.12 198 34 142 42 87 19 28 63 <5 6	51.6 1.05 20.5 9.31 0.14 3.79 1.00 2.3 4.07 0.07 216 42 153 102 156 71 52 87 6 10	56.9 0.96 18.9 7.48 0.13 2.77 1.13 2.2 3.48 0.09 210 37 155 79 119 63 36 71 7 8	55.3 0.98 20.1 7.97 0.15 3.51 1.05 1.7 3.51 0.09 231 41 136 79 126 19 41 79 5 8	60.0 0.89 17.0 6.67 0.17 2.67 1.42 2.3 2.64 0.12 208 35 161 57 104 31 37 73 5 <5	58.4 0.91 17.7 7.79 0.22 3.45 1.24 2.8 2.87 0.13 209 40 156 73 124 25 46 74 7
QRZ CHL	43 6	43 7	38 14	23 7	31 15	35 10	35 15	39 11
KFS	-	-	-	-		- र	-	-
GNT				-	-	-	-	5
PLG	38	39	34	38	24	28	29	32
K_STK TEUFE	873A1a 3563.70	873D1k 3565.93	874A1a 3569.10	874C1e 3570.80				
K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CAO NA20 K205 ZR Y SR RB ZN CU NI CR U TH	873A1a 3563.70 68.5 0.71 15.4 5.17 0.08 1.99 1.32 2.9 2.45 0.12 196 32 148 62 81 24 29 60 <5 6	873D1k 3565.93 59.6 1.00 18.5 7.49 0.14 2.95 1.30 2.7 3.40 0.09 229 39 156 87 105 <15 37 75 10 37	874A1a 3569.10 60.7 0.84 17.1 6.67 0.08 2.69 1.28 2.5 2.98 0.13 197 33 163 78 99 55 38 99 55 38 98 <5 7	B74C1e 3570.B0 60.7 0.90 1B.3 6.72 0.08 3.15 1.30 2.4 3.23 0.15 1.97 33 160 B2 103 <15 40 97 7 20				
K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CAO NA20 K205 ZR Y SR RB ZN CU NI CR U TH QRZ LHL	873A1a 3563.70 68.5 0.71 15.4 5.17 0.08 1.99 1.32 2.9 2.45 0.12 196 32 148 62 81 24 29 60 <5 6 46 7	873D1k 3565.93 59.6 1.00 18.5 7.49 0.14 2.95 1.30 2.7 3.40 0.09 229 39 156 87 105 <15 37 75 10 37 38 11	874A1a 3569.10 60.7 0.84 17.1 6.67 0.08 2.69 1.28 2.5 2.98 0.13 197 33 163 78 99 55 38 98 <5 7	B74C1e 3570.80 60.7 0.90 18.3 6.72 0.08 3.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.97 33 160 82 103 <15 40 97 7 20 41 6				
K_STK TEUFE SIO2 TIO2 AL203 FE203 MGO CAO NA20 P205 ZR SR RB ZN CU NI CR U TH QRZ CHLS BIO	873A1a 3563.70 68.5 0.71 15.4 5.17 0.08 1.99 1.32 2.9 2.45 0.12 196 32 148 62 81 24 29 60 <5 6 46 7 -	873D1k 3565.93 59.6 1.00 18.5 7.49 0.14 2.95 1.30 2.7 3.40 0.09 229 39 156 87 105 <15 37 75 10 37 38 11	874A1a 3569.10 60.7 0.84 17.1 6.67 0.08 2.69 1.28 2.5 2.98 0.13 163 78 99 55 38 98 <5 7 34 12	B74C1e 3570.80 60.7 0.90 18.3 6.72 0.08 3.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.30 2.4 3.15 1.30 2.4 3.15 1.30 2.4 3.15 1.30 2.4 3.15 1.30 2.4 3.15 1.30 2.4 3.15 1.40 1.40 1.40 1.40 1.40 1.40 1.5 1.40 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5				
K_STK TEUFE SIO2 TID2 AL203 FE203 MGO CAO NA20 P205 ZR SR BZN UNI CR UNI CR UNI CKFSO TC KFSO CAD	873A1a 3563.70 68.5 0.71 15.4 5.17 0.08 1.99 1.32 2.9 2.45 0.12 196 32 148 62 81 24 29 60 <5 6	873D1k 3565.93 59.6 1.00 18.5 7.49 0.14 2.95 1.30 2.7 3.40 0.09 229 39 156 87 105 <15 37 75 10 37 38 11	874A1a 3569.10 60.7 0.84 17.1 6.67 0.08 2.69 1.28 2.5 2.98 0.13 197 33 163 78 99 55 38 99 55 38 99 55 38 99 55 38 99 55 38 99 55 38	B74C1e 3570.80 40.7 0.90 18.3 4.72 0.08 3.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.97 33 160 82 103 <15 40 97 7 20 41 4				
K_STK TEUFE SIO2 TID2 AL203 FENO CAD NGO CAD NC N C N C N C N C N C N C N C N C N C	873A1a 3563.70 68.5 0.71 15.4 5.17 0.08 1.99 1.32 2.9 2.45 0.12 196 32 148 62 81 24 29 60 <5 6 46 7 - 34	873D1k 3565.93 59.6 1.00 18.5 7.49 0.14 2.95 1.30 2.7 3.40 0.09 229 39 156 87 105 <15 37 75 10 37 38 111 - - 33 19	874A1a 3569.10 60.7 0.84 17.1 6.67 0.08 2.69 1.28 2.5 2.98 0.13 197 33 163 78 99 55 38 98 <5 7 7 34 12 - 12 - 33 10	B74C1e 3570.B0 60.7 0.90 1B.3 6.72 0.08 3.15 1.30 2.4 3.23 0.15 1.30 2.4 3.23 0.15 1.97 33 160 B2 103 <15 40 97 7 20 41 6 - 35 10				

Tab. B.2.1: RFA- und RDA-Analysen von z.T Granat-führenden Sillimanit-Biotit-Gneisen.

Abb. B.2.6: Eduktdiagramm nach WIMMENAUER (1984); außer den normalen Sillimanit-Biotit-Gneisen sind auch (z.T. Hornblende-freie) Gneiseinschaltungen in den Metabasiten eingetragen. SF = Sillimanit-freier Gneis an der Grenze ZUM Allanit-führenden Gneis (3571.9 m), ALA = Allanit-führender Biotit-Plagioklas-Gneis (3572.2-4 m, vgl. Kap. B.3), AUG Augengneise (3775.6-9 m, vgl. Kap. B.4.5), P = Plagioklasreiche, anorthositartige Gneislage (3703.9 m, vgl. Kap. B.4.4).

Tonstein-Feld fallen vorwiegend Muskovit-reiche und ehemals Sillimanit-reiche Gneise, deren Sillimanit mehr oder weniger vollständig serizitisiert ist.

Sillimanit-freie Gneisprobe (874E11, 3571.93 m, Eine Tab. aus dem Grenzbereich zwischen Sillimanit-Biotit-B.2.2) Gneisen und Allanit-führenden Biotit-Plagioklas-Gneisen liegt zwar im Edukt-Diagramm nahe bei den Sillimanit-Biotitweist aber bereits höheré Gehalte an CaO Gneisen, und Cr sowie niedrigere Gehalte an P2O3, Y und Zn auf und leitet damit zu den Allanit-führenden Gneisen über.

Orthit	-Gneise		
K_STK	874E11	874E1n	874E10
TEUFE	3571.93	3572.24	3572.42
SI02	58.4	49.0	50.1
TI02	0.92	1.13	1.20
AL203	16.1	21.1	21.4
FE203	6.64	6.97	7.21
MND	0.06	0.05	0.06
MGD	3.44	3.76	4.23
CAD	2.99	4.56	4.60
NA20	3.5	4.7	4.6
K20	2.44	3.00	3.01
P205	0.03	0.08	0.12
ZR	214	251	255
Y	23	18	17
SR	245	465	482
RB	65	106	103
ZN	75	74	78
CU	29	<15	<15
NI	38	43	45
CR	103	129	128
U	<5	5	12
тн	9	12	6
QRZ	33	_	-
CHL	16	11	7
BIO	9	22	13
GNT	-	-	-
PLG	42	67	80

Tab. B.2.2: RFA- und RDA-Analysen von Sillimanit-freien, z.T Allanit-führenden Biotit-Plagioklas-Gneisen.

B.3 Allanit-führende Biotit-Plagioklas-Gneise (3572 - 3573.5 m)

Der unmittelbare Grenzbereich zur liegenden Metabasit-Abfolge ist durch ein nahezu quarzfreies, mittelkörniges Gestein mit rundlichen Plagioklasen gekennzeichnet, das auch schon in höheren Teufenabschnitten (MÜLLER et al. 1989: B2Of) im Kontaktbereich zu Amphiboliten auftrat (Abb. B.3.1).

In den Gesteinen treten drei verschiedene Plagioklas-Generationen auf. Die älteste ist stark saussuritisiert und bildet den Kern größerer Körner. Um diese herum befindet sich die zweite, serizitisierte Plagioklas-Generation. Klarer, zonierter Plagioklas der dritten Generation umgibt die beiden älteren Plagioklase. Allanit ist mit maximal 0.5 Vol % auffallend häufig. Er ist oft idiomorph ausgebildet und führt Biotit-Einschlüsse (Abb. B.3.2). Biotit wird oft von Prehnit verdrängt.

Der um 3490 m beobachtete, vermutlich sekundär neugebildete Biotit in Chlorit (MÜLLER et al. 1989: B10) tritt auch in dieser Einheit lokal auf.

Abb. B.3.1: Grenze Biotit-Plagioklas-Gneis (BPG) und Amphibolit (AMP), mit 65° einfallend, KST 874 Glw-x, 3573.5 m.

Abb. B.3.2: Allanit(A) mit pleochroitischem Hof in Biotit, Biotit-Plagioklas-Gneis, DS 874F1sK, 3573.31 m, //N.

Im Chemismus unterscheiden sich diese Gneise deutlich von den Sillimanit-führenden (Abb. B.2.6, Tab. B.2.2). Sie sind wesentlich ärmer an SiO₂, Y, Rb, Zn, Cu, (MnO) und reicher an TiO₂, Al₂O₃, MgO, CaO, Na₂O, Sr, Cr, (Zr), d.h. mit Annäherung an den Metabasit-Körper werden die Gneise "basischer". Dies könnte einer metasomatisch geprägten Kontaktaureole um den Metabasit entsprechen, die entweder bei der Intrusion der Metabasite oder bei der gemeinsamen regionalmetamorphen Überprägung von Gneisen und Metabasiten gebildet wurde.

B.4 Metabasit-Abfolge (3573.5 - 4000 m)

Die Metabasite werden als <u>'Metagabbro'</u> bezeichnet, falls noch magmatische Gefügerelikte in Form von Plagioklas-Leisten zu erkennen sind (Abb. B.4.1). Fehlen solche Plagioklas-Leisten, werden die Metabasite als 'Amphibolit' bezeichnet.

Mit den Metabasiten sind untergeordnet

(1) Meta-Ultramafitite,

(2) Granat-Biotit-Hornblende-Augengneise,

(3) Granat- und Hornblende-führende, Plagioklas-reiche Gneise,(4) Pegmatoide, Mobilisate sowie Meta-Aplite

vergesellschaftet. Die Metabasit-Abfolge von 3575 - 4000 m ähnelt den Metabasiten von 1160 - 1610 m. Auf Unterschiede wird weiter unten noch eingegangen.

B.4.1 Amphibolite und Metagabbros

Die Metabasite bestehen im wesentlichen aus Hornblende, Plagioklas, Klinopyroxen, Granat, Quarz, Biotit, Ilmenit, Titanit und Rutil. Sie variieren in ihrer Korngröße zwischen sehr feinkörnig (um 100 µm) und mittelkörnig (um 1 mm). Grobkörnige Metabasite (um 1 cm) sind selten und geringmächtig (einige cm). Die Metabasite sind massig, selten foliiert und werden meist von leukokraten Quarz-Plagioklas-Mobilisaten durchzogen (vgl. Kap. B.4.2).

B.4.1.1 Petrographie und Metamorphose der Metabasite

In den Metabasiten sind drei Metamorphose-Stadien zu erkennen (RÖHR et al. 1990):

(1) ein frühes Hochdruck-Granulitfazies-Stadium,

(2) ein dominierendes Amphibolitfazies-Stadium und

(3) ein spätes Grünschieferfazies-Stadium (im weiteren Sinn).

Die gleiche Metamorphose-Abfolge wurde schon in der oberen Metabasit-Abfolge (1160 - 1610 m) beobachtet (KEYSSNER et al. 1988). In der unteren Metabasit-Abfolge (3573.5 - 4000 m) ist allerdings das frühe Hochdruck-Granulitfazies-Stadium viel deutlicher erhalten als in der oberen Metabasit-Abfolge.

Hochdruck-Granulitfazies-Stadium

Metabasite, bei denen dieses frühe Stadium noch deutlich erhalten ist, bestehen aus großen Klinopyroxen-Körnern mit parallel orientierten, lamellenförmigen Amphibol-, Rutil-, Quarz- und Plagioklas-Einschlüssen. Diese Klinopyroxene werden randlich von würmchenförmigen Klinopyroxen-Plagioklas-Quarz-Symplektiten verdrängt. Der weitere Mineralbestand ist Granat, Ti-reiche braune Hornblende, granoblastischer Plagioklas, Rutil, Ilmenit, Quarz und Biotit. Diese Gesteine sind in der Regel mittelkörnig, selten aber auch feinkörnig. Einige führen Plagioklas-Leisten und werden deshalb als Hochdruck-granulitfazielle Metagabbros angesprochen (Abb. B.4.1 u. B.4.2). Die Plagioklas-Leisten bestehen jetzt aus Plagioklas (An10-An30), Zoisit, phengitischem Hellglimmer (Si = 6.5) und etwas Titanit.

Der <u>Granat</u> (charakteristische Zusammensetzung: Alm45, Pyr30, Gross25) ist nur schwach zoniert (Abb. B.4.3). Als Einschlüsse wurden beobachtet: Rutil, Quarz, Zoisit, Kyanit, Plagioklas (An33 bis An92) und Klinopyroxen (8 Mol-% Jadeit, im Kernstück 264H4nT, 1269.6 m bis 30 Mol-% Jadeit = Omphacit; Abb. B.4.4, B.4.5 u. B.4.6). Der Jadeit-Gehalt der <u>Klinopyroxen</u>-Körner mit den lamellenförmigen Einschlüssen liegt um 10 Mol-%, der An-Gehalt der eingeschlossenen Plagioklas-Lamellen bei 23 Mol-% (Abb. B.4.7 u. B.4.8). Der Jadeit-Gehalt des Klinopyroxens der würmchenförmigen Symplektite schwankt zwischen 1 und 14 %, der An-Gehalt der zugehörigen Plagioklas-Phase zwischen 17 und 25 %. Die granoblastischen Plagioklas-Körner sind stark zoniert (An21 im Zentrum, An84 am Rand) und führen ebenfalls Al₂SiO₅-Einschlüsse (Abb. B.4.9).

Amphibolitfazies-Stadium

Die Hochdruck-granulitischen Amphibolite bzw. Metagabbros wurden später amphibolitfaziellen Bedingungen angepaβt. Da die verschiedenen Stadien dieses Prozesses eingefroren nebeneinander erhalten sind, kann die Anpassung rekonstruiert werden.

Die Anpassung an amphibolitfazielle Bedingungen bewirkte:

 Den Zerfall von Klinopyroxen in Klinopyroxen-Plagioklas-Quarz-Symplektit. Daraus bildet sich ein Hornblende-Plagioklas-Quarz-Symplektit, bei dem die würmchenartige Verwachsung immer mehr in eine poikiloblastische übergeht (Abb. B.4.2 u. B.4.10). Am Ende dieses Prozesses existieren Hornblende- und Plagioklas-Körner in einem granoblastischen Gefüge.

Abb. B.4.1: Metagabbro mit reliktischen Plagioklas(PLG)-Leisten und Klinopyroxen(CPX), KST 885D3v, 3620.7 m.

Abb. B.4.2: Übersicht über reliktische, magmatische Gefüge und bei der Metamorphose neu eingestellte Gefüge eines Meta-Gabbros. Die Lage eines Detailbildes ist markiert. PS 885C3n, 3620.16 m, //N.

Abb. B.4.3: Die unterschiedliche Zusammensetzung der beiden Granat-Profile korrespondiert mit verschiedenen Granat-Corona-Typen: (1) idiomorpher Granat mit Kyanit und Plagioklas-Einschlüssen), (2) Granat an der Innenseite Quarz-einschlußreich und mit Hornblende-Zapfen. In der Tab.4.1 (Fortsetzung) sind einzelne Granat-Mikrosonden-Analysen aufgeführt. PS 885C3n, 3620.16 m.

- B 19 -

Abb. B.4.4: Einschlüsse in Corona-Granat. Die Punkte der Mikrosonden-Analysen sind markiert. Meta-Gabbro. PS 885C3n, 3620.16 m, //N.

Abb. B.4.5: Ausschnitt aus einer Granat-Corona. Dieser spezielle Typ ist an seiner Innenseite reich an Quarz-Einschlüssen. Die Punkte der Mikrosonden-Analysen und die Lage eines Detailbildes sind markiert. Meta-Gabbro, PS 885C3n, 3620.16 m, //N.

Abb. B.4.6: Detail aus Abb. B.4.5. Einschluβreicher Corona-Granat. Die Punkte der Mikrosonden-Analysen sind markiert. Meta-Gabbro, PS 885C3n, 3620.16 m, //N.

Abb. B.4.7: Das Bild zeigt exemplarisch die Lagebeziehung zwischen großem Klinopyroxen mit lamellenförmigen Quarz- und Plagioklas-Einschlüssen (Kern), Klinopyroxen-Quarz-Plagioklas-Symplektit (Saum um den Kern) und braune Hornblende (äußerer Saum), Meta-Gabbro. DS 885C3n, 3620.16 m, //N.

Abb. B.4.8: Detailbild aus Abb. B.4.2. Das Bild zeigt den Kontakt zwischen großem Klinopyroxen mit lamellenförmigen Quarz- und Plagioklas-Einschlüssen und dem Klinopyroxen-Plagioklas-Quarz-Symplektit. Zwischen Granat Klinopyroxen ist und (ungeachtet des beschriebenen Kontaktes) eine Corona aus Horn-Plagioklas blende und entwickelt. Die Punkte der Mikrosonden-Analysen sind markiert. Meta-PS 885C3n, Gabbro, 3620.16 m, //N.

Abb. B.4.9: Klinozoisit- und Al₂SiO₅-Mineral-Einschlüsse in zoniertem Plagioklas. Die Punkte der Mikrosonden-Analysen sind markiert. Hochdruck-granulitischer Meta-Gabbro. PS 885C3n, 3620.16 m, //N.

- B 23 -

Abb. B.4.10: Das Bild zeigt das Resultat der amphibolitfaziellen Überprägung der hochdruck-granulitfaziellen Metabasite: Granat wird zu Plagioklas+Hornblende, der Klinopyroxen-Symplektit zu "poikiloblastischem Hornblende-Symplektit" umgewandelt. Amphibolit. DS 919A1aII, 3758.90 m, //N.

- 2) Die Bildung von Coronen aus Plagioklas ± Hornblende um Granat (Abb. B.4.8) bis hin zum völligen pseudomorphen Ersatz des Granats durch Plagioklas + Hornblende ± Biotit (Abb. B.4.10).
- 3) Die weitverbreitete Neubildung von olivgrüner, Tiärmerer Hornblende (TiO₂-Gehalte um 0.6 Gew.-% im Vergleich zu 1.5 - 2.2 % in den braunen Hornblenden, Tab. B.4.1).
- Die Bildung von Titanit-Coronen um Ilmenit und Rutil, bis hin zum völligen Verschwinden von Rutil (Abb. B.4.11).

Mit der Teufe ist ein Gradient im Ausma β der amphibolitfaziellen Anpassung festzustellen (RÖHR et al. 1990):

- (1) An der Oberfläche der Zone Erbendorf Vohenstrauβ wurden bislang kolme Klinopyroxen-Symplektite und Granat-Coronen gefunden. Hornblende-Plagioklas-Symplektite kommen gelegentlich vor. Nach SCHÜSSLER (1987) sind Coronen aus Plagioklas ± Hornblende ± Biotit verbreitet. Die amphibolitfazielle Paragenese Plagioklas + Hornblende dominiert.
- (2) In der oberen Metabasit-Abfolge (1160 1610 m) sind Hochdruckrelikte (Symplektite und Granat-Coronen) noch recht selten.

Klinopyroxen

-1

großer Klinopyroxen mit lamellenförmigen Quarz- und Plagio-klas- Einschlüssen. großer Klinopyroxen mit lamellenförmigen Quarz- und Plagio-klas-Einschlüssen, vit 1 Klinopyroxen-Plagioklas-Quarz-Symplektit, in großer Klinopyr-xen 1, 2 Klinopyroxen-Plagioklas-Quarz-Symplektit, in großer klinopyr-xen 1, 1 großer Klinopyroxen-Plagioklas-Quarz-Symplektit, neben 14 großer Klinopyroxen-Plagioklas (Ant7)-Quarz-Symplektit, neben 14 Klinopyroxen-Plagioklas (Ant7)-Quarz-Symplektit Klinopyroxen-Plagioklas (Ant7)-Quarz-Symplektit 15 34

brauner Amphibol brauner Amphibol, wie 7 grüner Amphibol errüner Amphibol heauner Amphibol, innerhalb einer Granat-Corona brauner Amphibol, Saum um Klinopyroxen

35 23

Amphibol

35

31

23

22

46.47 00

46.31 ~

Si02

1.93	9.53	0.00	C0.01	0.15	0.11	14 63	10.79	101	10.1	0.04	20.00	E 717	1.283	0.000	0.000	8 000		172 0	010 0	0 536	000 0	3.152	0.751	0.010	0.000	5 000	222.4	0.000	0.000	0.000	1.671	0.329	2 000		000 0	0 105	061.0	071.0	0.515
2.12	9.65	0.00	P2.11	00 0	0.12	14.12	11.06	1 0.4	50 - T	00.00	17:10	6 706	1.294	0.000	0.000	8.000		0 353	110 0	102.0	0.000	3.047	0.956	0.007	0.000	5.000	•	0.000	0.000	0.000	1.716	0.284	2 000	2	000 0	000-0	301.0	071.0	0.120
Ti02	A1203	Cr 203	MnO	NIO	ZnO	MaO	CaO	U S S S S S S S S S S S S S S S S S S S	OCA	074	SHIMPS	S.	AL	Fe3+	11	Sum2		Al	E	Felt	Cr	Ma	Fe2+	Mn	Ca	SumY	2012/11/11/11/11/11/11	Mg	Fe2+	MD	Ca	Na	SILINX		e J	eN.	5 2		THING
																	78		22	122					23	25		20											
L	52.57	0.21	4.97	00.00	5.96	0.05	0.03	0.00	12.95	20.58	1.56	0.01	98.89		000.0	1.946	0.006	0.217	0.000	0.000	0.185	0.002	0.001	0.715	0.817	0.112	0.001	4.000		0.00	11.28	0.00	0.59	4.65	76.65	6.84	0.00	0.21	
ų.	52.82	0.20	4.74	0.00	5.53	0.02	0.00	0.05	12.75	20.23	1.91	00.00	98.24		0.000	1.964	0.006	0.208	0.000	0.000	0.172	0.001	0.000	0.707	0.806	0.138	0.000	4.000		0.00	13.80	0.00	0.56	2.95	77.27	5.42	0.00	0.20	1000
ú	51.05	0.30	5.31	0.41	5.95	0.06	0.03	0.00	12.90	21.01	1.33	0.00	98.36		0.000	1.904	0.008	0.234	0.012	0.025	0.161	0.002	0.001	0.717	0.340	960.0	0.000	4.000		1.21	5.91	2.50	0.84	7.88	75.30	6.36	0.00	0.18	10000
34	51.65	0.21	4.93	0.30	7.44	0.07	0.00	0.00	12.79	19.83	1.54	0.01	77.86		0.000	1.923	0.006	0.216	0.009	0.029	0.203	0.002	0.000	0.710	0.791	0.111	0.001	4.000		0.88	7.38	2.91	0.59	6.54	11.97	9.73	0.00	0.22	
26	50.28	0.32	4.67	0.02	6.76	0.12	0.00	0.00	13.56	21.24	1.03	0.01	98.05		0.000	1.883	0.009	0.207	0.001	0.084	0.128	0.004	0.000	0.757	0.852	0.075	0.001	4.000		0.00	0.00	7.53	0.90	9.05	74.43	7.24	0.00	0.15	
10	52.96	0.05	0.33	0.00	7.25	0.15	0.06	0.00	14.19	23.63	0.18	0.00	98.79		0.000	1.990	0.001	0.015	0.000	0.015	0.213	0.005	0.002	0.795	0.952	0.013	0.000	4.000		0.00	0.00	1.31	0.14	0.48	94.40	3.45	0.00	0.21	
n	19.13	0.22	2.78	0.05	7.15	0.14	0.00	0.02	13.52	21.25	0.98	0.01	98.02		0.000	1,953	0.006	0.123	0.002	0.029	0.196	0.005	0.000	0.758	0.857	0.072	0.001	4.000		\$1.0	4.16	2.89	0.62	3.45	81.57	7.14	0.00	0.21	
¢1	52.81	0.12	3.55	0.00	7.73	0.11	0.00	0.00	12.74	19.90	1.59	0.00	98.54		0.000	1.974	0.003	0.156	0.000	0.005	0.237	0.004	0.000	0.710	161.0	0.115	0.000	4.000		0.00	11.02	0.50	0.34	1.97	77.37	8.79	0.00	0.25	
1	51.88	0.39	4.82	0.04	7.38	0.08	0.06	0.00	12.49	20.28	1.44	0.01	98.84		0.000	1.934	0.011	0.212	0.001	0.002	0.228	0.003	0.002	0.694	0.810	0.104	0.000	4.000		0.12	10.14	0.16	1.09	4.44	75.54	8.51	0.00	0.25	The Party of the
Analyse	S102	Tio2	A1203	Cr203	Feo	MnO	NIO	2n0	MgO	CaO	Na20	K20	Summe	10.000	ALLY	SI	Ti	Alvi	Cr	Fe3+	Fe2+	Mn	ИЛ	Mg	Ca	Na	ж	Sum		KOSHOC	Jadeit	Acmit	TiTsch	CaTsch	DiHdJo	EnFsRh	Wollast	Fe2/FM	

B.4.1: Mikrosonden-Analysen von Klinopyroxenen, Amphihochdruck-Granaten und akzessorischen Mineralen des granulitischen Metagabbros 885C3n (3620.16 m) bolen, Tab.

0.446 0.171 0.545 0.027

2.922 0.886 0.004 0.000 5.000

0.436 0.192 0.498 0.001 3.051 0.807 0.015 0.015 5.000

0.469 0.070 0.991 0.991 2.976 0.482 0.014 5.000

0.525 0.053 0.844 0.000 3.045 3.045 0.523 0.523 0.011 0.000 5.000

5.0

0.000 0.000 0.000 1.787 0.213 2.000

0.000 0.000 0.000 1.780 0.220 2.000

0.000 0.000 0.000 1.682 0.318 2.000

0.000 0.000 0.000 1.688 0.312 2.000

0.000 0.386 0.172 0.558

0.000 0.337 0.118 0.456

0.000 0.274 0.129 0.403

0.000 0.262 0.149 0.410

6.296 1.704 0.000 8.000

6.446 1.554 0.000 8.000

6.317 1.683 0.000 8.000

6.428 1.572 0.000 8.000

1.55 1.55 0.23 0.23 0.03 0.03 0.03 0.05 0.05 0.05 2.11 39 2.11 39 6.85

43.76 1.73 11.46 0.01 10.59 0.12 0.12 0.12 0.01 11.28 1.95 1.95 95.43

43.03 0.63 12.43 0.00 11.99 0.11 0.11 0.02 0.02 0.02 0.02 0.03 2.08 2.08 2.08

44.11 0.48 12.20 0.00 11.21 0.09 0.03 0.03 0.03 14.02 14.02 10.81 2.03 95.80

Granat

15 Granat um Al2SiO5-Mineral und Plagioklas(An92)-Einschluß. 16 Granat-Rand des Korn* 15 27 Corona-Granat, Rund, dem schwalen Flagioklas/Amphibol Summ zugewandt 28 Granat-Rand gegenüber Amphibol 29 Granat-Rand gegenüber äußerem Hatrix-Plagioklas 37 Granat 5 Granat mit Anorthit-, Zoisit- und Al2SiO5-Mineral-Einschlüssen 3 Granat-Zentrum 4 Granat-Rand A.B.C.D Endpunkte der Granat-Profile, A-B und CD 15 16 27 28 29 37 5 3 4 A Si02 38.69 38.51 38.32 38.78 38.49 38.18 39.41 39.26 39.27 39.34 39.16 38.92 39.00 0.03 0.02 0.02 0.03 0.04 0.14 0.06 0.03 0.04 0.03 0.05 0.05 0.03 Ti02 A1203 22.32 22.16 21.96 22.29 22.24 22.11 22.10 22.21 22.19 22.19 21.94 21.96 21.72 Cr203 0.00 0.04 0.00 0.03 0.00 0.03 0.02 0.00 FeO 20.37 21.85 23.27 21.56 21.81 24.24 22.04 20.02 21.21 22.52 21.82 21.95 26.08 MnO 0.40 0.48 0.91 0.46 0.47 0.69 0.57 0.48 0.52 0.49 0.79 0.55 1.16 Nio 0.00 0.01 0.10 0.02 0.00 0.03 0.05 0.02 ZnO 0.00 0.04 0.08 0.00 0.00 0.08 -0.02 0.05 MgO 8.11 7.44 7.61 8.73 8.06 7.68 7.13 8.36 7.81 8.05 6.76 7.93 7.06 CaO 9.54 8.63 6.88 8.33 8.77 7.88 10.22 8.95 8.95 8.53 10.13 8.91 Na20 0.01 0.01 0.00 0.02 0.00 0.04 0.00 0.02 0.02 0.02 0.03 0.02 0.03 K20 0.01 0.00 0.00 0.01 0.03 0.02 -0.01 0.01 Summe 99.48 99.19 99.14 100.25 99.90 101.12 101.52 99.44 100.07 101.15 100.68 100.27 101.64 Si 2.956 2.970 2.969 2.940 2.939 2.903 2.976 3.001 2.997 2.972 2.987 2.966 2.973 2.010 2.015 2.006 1.992 2.001 1.982 1.966 2.001 1.996 1.976 1.973 1.972 1.951 A1 Fe3+

0.077 0.041 0.054 0.125 0.117 0.201 0.082 0.000 0.010 0.079 0.053 0.097 0.103 Fe2+ 1.224 1.368 1.454 1.242 1.276 1.341 1.310 1.280 1.344 1.344 1.340 1.302 1.560 0.026 0.031 0.060 0.030 0.030 0.045 0.036 0.031 0.034 0.031 0.051 0.035 0.075 Mn Ma 0.923 0.855 0.879 0.987 0.917 0.870 0.803 0.953 0.888 0.907 0.769 0.901 0.802 Ca 0.781 0.713 0.571 0.677 0.718 0.642 0.827 0.733 0.731 0.691 0.828 0.727 0.536 Andradit 3.7 2.0 2.6 6.2 5.7 9.6 18.4 11.7 4.1 0.0 0.5 4.0 2.6 4.9 5.2 Grossular 22.5 21.8 16.5 16.6 25.0 19.4 12.7 23.5 24.4 23.9 19.1 Pyrop 31.3 28.8 29.6 33.6 31.2 30.0 27.0 31.8 29.6 30.5 25.7 30.4 27.0 Spessart. 0.9 1.1 2.0 1.0 1.0 1.5 1.2 1.0 1.1 1.1 1.7 1.2 2.5 Almandin 41.4 46.1 49.0 42.3 43.4 46.2 44.0 42.7 44.8 45.2 44.8 43.9 52.5

Tab. B.4.1: Fortsetzung.

Biotit, Ilmenit, Al2SiO5-Mineral, Klinozoisit, Anorthit

32 Biotit

B

c

D

6.56

9 Ilmenit 13 Al2SiO5-Mineral

20 Al2SiO5-Mineral

19 Klinozoisit

3 Zoisit-Einschluß in Granat

4 Plagioklas(An93) Einschluß in Granat

	32	9	13	20	19	3	4
Si02	36.84	0.02	37.82	37.00	38.04	19 61	44 56
TiO2	2.60	52.87	0.01	0.02	0.10	0.04	0.00
A1203	15.27	0.01	62.31	62.47	27.51	31 78	14 71
Cr203	0.06	0.00	0.02	0.01	0.00	22.10	14.11
FeO	14.16	44.14	1.02	0.47	6.61	2 58	0.94
MnO	0.10	1.35	0.04	0.04	0.04	0.06	0.01
NiO	0.00	0.00	0.01	0.02	0.01		0.03
ZnO	0.07	0.00	0.05	0.05	0.19	22	
MgO	14.77	0.50	0.07	0.00	0.02	0.04	0.12
CaO	0.00	0.00	0.14	0.06	21 11	23 65	19 06
Na20	0.07	0.00	0.00	0.00	0.00	0.00	0.73
(20	9.67	0.02	0.00	0.01	0.01	0.00	0.75
Summe	93.60	98.91	101.49	100.15	95.86	97.79	99.25

Abb. B.4.11: Pseudomorphose aus innerem Titanit-Brookit-Aggregat und äußerem, unregelmäßigem Ilmenitsaum. Ganz außen der in der ganzen Bohrung weitverbreitete schmale Titanit-Saum. Amphibolit. DS 948D9b, 3865.35 m, //N.

(3) In der unteren Metabasit-Abfolge (3573.5 - 4000.1 m) sind sie weit verbreitet und gut erhalten. Die amphibolitfazielle Anpassung war hier am geringsten.

Grünschieferfazies-Stadium

In Zusammenhang mit einer Deformation unter niedrigen Temperaturen wurden die Metabasite lokal grünschiefer- bis zeolithfaziell überprägt.

Dabei kam es zur Bildung von (Klino)-Zoisit in Plagioklas (Abb. B.4.12 u. B.4.13), zur Albitisierung von Plagioklas, zur Bildung von Epidot, Prehnit und Kalifeldspat auf Biotit-Spaltflächen, zur Chloritisierung von Granat bis hin zu Pseudomorphosen nach Granat aus Epidot ± Chlorit ± Ilmenit (Abb. B.4.14). Die olivgrünen Hornblenden erhielten einen Saum aus hellgrüner Hornblende bis Aktinolith (RÖHR et al. 1990).

Abb. B.4.12: Die Plagioklas-Leisten (magmatisches Gefüge-Relikt) sind rekristallisiert und saussuritisiert (= getrübt durch Klinozoisit). Nur die Korngrenzen der Rekristallisate sind nicht getrübt. Foliierter Meta-Gabbro, DS 910E1vII, 3715.07m, //N.

Abb. B.4.13: Idiomorpher, poiklitischer Titanit und Epidot-Mineralisation in Mobilisat-Schliere eines Amphibolits. DS 914A1dK, 3733.21 m, //N.

Abb. B.4.14: Pseudomorphose nach Granat aus Epidot. Leukokrater Epidot-Amphibolit. DS 913B1e, 3728.22 m, //N.

B.4.1.2 Beschreibung besonderer Einzelheiten der Metabasite

In diesem Abschnitt werden besondere Einzelbeobachtungen der Metabasite mitgeteilt.

In Granat-reichen Amphiboliten ("Granatite") werden bei Kernmarsch 950 (3868.11 m) hellgrüne, Fe-reiche Klinopyroxene (Fe/(Fe+Mg) = 0.5) mit dunkel-olivgrünem Amphibol-Jaum beobachtet (Abb. B.4.15). Die Klinopyroxene schließen parallel orientierte Amphibol-Lamellen ein. Es kommen keine Klinopyroxen- bzw. Hornblende-Plagioklas-Symplektite wie in benachbarten Hochdruck-granulitischen Amphiboliten vor. Im gleichen Granat-reichen Amphibolit ist häufig ein schmaler Plagioklas-Saum an der Grenze von Quarz zu Granat entwickelt (Abb. B.4.16). Die Quarze zeigen mitunter Subkornbildung.

Plagioklas-Coronen sind auβer um Granat auch um Ilmenit mit Titanit-Saum in den Amphiboliten verbreitet (Abb. B.4.17).

In Nachbarschaft zu Hornblende-Biotit-Augengneisen (3775 m) ist im Hornblende-Biotit-Granat-Gneis eine Klinopyroxen-Corona um Quarz-Linsen entwickelt (Abb. B.4.18).

Im Granat-Amphibolit bei Kernmarsch 925 (3796.14 m) treten Verwachsungen von orientiertem Biotit mit Plagioklas auf (Abb. B.4.19). Es könnte sich dabei um Biotit-Plagioklas-Pseudomorphosen nach Hellglimmer mit phengitischer Zusammensetzung als Produkt einer allochemen Reaktion handeln.

Abb. B.4.15: In diesem relativ quarzreichen Klinopyroxen-Granat-Amphibolit kommen keine Klinopyroxen-Symplektite vor. Der hellgrüne Klinopyroxen ist relativ Fe-reich und zeigt orientierte Amphibol-Einschlüsse durch retrograde Gleichgewichtsreaktion. DS 950B3b, 3868.11 m, //N.

Abb. B.4.16: An der Grenze Granat-Quarz ist ein Plagioklas-Saum entwickelt. Relativ quarzreicher Klinopyroxen-Granat-Amphibolit. DS 950B3b, 3868.11 m, //N.

- B 30 -

Abb. B.4.17: Plagioklas-Coronen sind in den Amphiboliten nicht nur um Granat sondern auch um Ilmenit (mit Titanit-Saum) verbreitet. Ilmenitreicher Granat-Amphibolit. DS 914D1k, 3735.14 m, //N.

Abb. B.4.18: In diesem Hornblende-Biotit-Granat-Gneis sind um Quarz-Linsen Klinopyroxen-Coronen (± Hornblende ± Biotit ± Granat) entwickelt. DS 921F1x, 3774.40 m, //N.

Abb. B.4.19: Aggregat (Bildmitte) aus Biotit und Plagioklas (eventuell eine Pseudomorphose nach phengitischem Hellglimmer) in Granat-Amphibolit. DS 925E1kK, 3796.14 m, //N.

Granat-Coronen in hochdruck-granulitischen Meta-Gabbros können in zwei Typen unterteilt werden (Abb. B.4.3):

- Die Granate des Typs 1 führen u.a. Kyanit- und Plagioklas-Einschlüsse und sind zur Auβenseite der Corona hin idiomorph entwickelt.
- (2) Die Granate des Typs 2 führen an ihrer Innenseite reichlich Quarz- und gelegentlich Klinopyroxen-Einschlüsse. Die Hornblende an der Innenseite der Granat-Corona ist zapfenförmig entwickelt (Abb. B.4.5). Die Granate sind nicht idiomorph.

Die beiden Typen unterscheiden sich auch in ihrer Zonierung: Bei Granat-Coronen des Typs 1 nehmen die FeO- und MnO-Gehalte nach außen geringfügig ab. Die CaO- und MgO-Gehalte verhalten sich unterschiedlich, bei Abnahme des CaO-Gehaltes nimmt der MgO-Gehalt in gleichem Maße zu (Abb. B.4.3 links). Granat-Coronen mit Einschluß-reicher Innenseite (Typ 2) weisen eine Abnahme des FeO- und MnO-Gehaltes bei gleichzeitiger Zunahme des MgO- und CaO-Gehaltes nach außen hin auf (Abb. B.4.3 rechts).

Abb. B.4.11 zeigt ein Brookit-Titanit-Ilmenit-Aggregat. In der KTB-VB wurden sie erstmalig in diesem Teufenabschnitt beobachtet (z.B. DS 948D9b, 3865.35 m). Die gleichen Brookit-Aggregate wurden auch an der Oberfläche in einem Amphibolit des Bohrplatzes beobachtet. Mikrosonden-Analysen der Minerale sind in Tab. B.8.1 aufgelistet. Die Genese dieser Aggregate ist noch unklar. B.4.1.3 Geothermobarometrie des Hochdruck-Granulitfazies-Stadiums (vgl. RÖHR et al. 1990)

Die Mikrosonden-Analysen konnten mit freundlicher Unterstützung durch P. O'Brien und D. Krauße am Bayer. Geoinstitut, Bayreuth, durchgeführt werden.

Das Granat-Klinopyroxen-Thermometer wurde an drei Mineral-Paaren angewendet:

- (1) Meta-Gabbro 264H4nT (1269.6 m, Abb. in KEYSSNER et al. 1988: Abb. B.2.26): großer Klinopyroxen mit vielen Rutil-Einschlüssen, Fe/(Fe+Mg)=0.15. Um dieses Korn befindet sich - durch einen schmalen, retrograden Plagioklas- und Amphibol-Saum getrennt - eine Granat-Corona (X(Fe)=0.39, X(Mn)=0.01, X(Mg)=0.37, X(Ca)=0.23). Für einen angenommenen Druck von 10 kbar ergeben sich nach ELLIS & GREEN (1979) 800°C. Der Jadeit-Gehalt des Klinopyroxens von 14 % stört das Thermometer.
- (2) In dem Klinopyroxen- und Granat-reichen Hornblende-Gneis 619E1gK (2547.1 m) tritt ein Granat-Einschluß in Klinopyroxen auf (Abb. in KOHL et al. 1989: Abb. B.2.9 und Farbtitelbild KTB Report 89-4). Granat X(Fe)=0.55, X(Mn)=0.03, X(Mg)=0.12, X(Ca)=0.29, Klinopyroxen: Fe/(Fe+Mg)=0.33. Für 10 kbar ergibt sich nach ELLIS & GREEN 720°C. Der Jadeit-Gehalt im Klinopyroxen beträgt hier nur vernachlässigbare 1 %.
- (3) Im Meta-Gabbro 885C3n (3620.7 m) tritt ein Klinopyroxen-Einschluß in einer Granat-Corona auf (Abb. B.4.6). Granat: X(Fe)=0.49, X(Mn)=0.02, X(Mg)=0.30, X(Ca)=0.19, Klinopyroxen: Fe/(Fe+Mg)=0.22, X(Jd)=0.08 (CPX 26, Tab. B.4.1). Für 10 kbar ergibt sich nach ELLIS & GREEN 740°C. Aus dieser Klinopyroxen-Analyse errechnet sich ein deutlicher Fe³⁺-Gehalt. Berücksichtigt man diesen als Akmit-Komponente, ergibt sich eine um rund 100°C niedrigere Temperatur.

Eine Druckabschätzung ist mit dem Jadeit-Gehalt im Klinopyroxen und der Paragenese mit Quarz möglich. Der höchste bisher gemessene Jadeit-Gehalt aus einem Klinopyroxen-Plagioklas-Quaŕz-Symplektit beträgt 14 Mol-%. Mit dem Klinopyroxen-Aktivitäts-Modell von HOLLAND (1980:132) und einer Temperatur von 700°C läßt sich damit ein Mindestdruck von 11 kbar bestimmen. Das Vorliegen von Klinopyroxen-Plagioklas-Quarz-Symplektit läßt einen ehemals Jadeit-reicheren Klinopyroxen vermuten, der jetzt durch den Symplektit ersetzt ist. Der Mindestdruck erhöht sich dann entsprechend. Im Kernstück 264H4nT (1269.6 m) wurde ein Omphacit-Einschluß (Jd30) in Granat nachgewiesen. Die ehemalige Paragenese mit Quarz vorrausgesetzt, errechnet sich daraus ein Mindestdruck von 14 kbar.

Die Kyanit-Einschlüsse in einigen Granat-Coronen (Probe 3620.7 m, Abb. B.4.4) ermöglichen die Anwendung des 885C3n, Granat- Plagioklas- Al₂SiO₅ - Quarz- Thermobarometers (GPAQ), falls sie im Gleichgewicht mit Quarz und Plagioklas standen. Die An-Gehalte im Plagioklas dieser Paragenese sind nicht be-Im Gestein wurden sehr variable An-Gehalte mit kannt. den Extremwerten An25 und An93 bestimmt. Die Zusammensetzung des Granats, der die Kyanit-Einschlüsse führt, ist: X(Fe)=0.43, X(Mn)=0.01, X(Mg)=0.31, X(Ca)=0.26. Es wurden die GPAQ-Formulierungen von NEWTON & HASELTON (1981) und GANGULY & SAXENA (1984)Beide ergaben sehr ähnliche Werte. Für angewendet. ergibt sich für An25 14 kbar, für An92 11 700°C kbar. Bei 750°C ergeben für An25 16 kbar und für An92 12 kbar. Die ermittelten Drücke fallen alle in das Kyanit-Stabilitätsfeld.

Die Signifikanz der ermittelten Granat-Klinopyroxen-Temperaturen ist noch unsicher, da Störungen durch die spätere amphibolitfazielle Überprägung kaum abgeschätzt werden können. Die ermittelten Drücke im Bereich von 11-16 kbar sind mit dem Übergangsbereich Hochdruck-Granulitfazies/Eklogitfazies kompatibel.

Die p-T-Bedingungen der amphibolitfaziellen Prägung wurden an den vergesellschafteten Granat-Sillimanit/Kyanit-Biotit-Gneisen zu 660 – 710°C bei 6-8 kbar (REINHARDT & KLEEMANN 1989) bestimmt. Der Übergang von der Hochdruck-Granulitfazies/Eklogitfazies zur Amphibolitfazies ist somit im wesentlichen eine isotherme Druckentlastung.

B.4.1.4 Deformations-Gefüge der Metabasite

Im Liegenden der beschriebenen Hochdruck-granulitischen Meta-Gabbros (KM 885C) sind die gleichen Meta-Gabbros in lokal begrenzten, geringmächtigen Scherzonen (z.B. KM 885G) unter Hochtemperatur-mylonitischen Bedingungen deformiert worden. mittelkörsonst massigen Meta-Gabbros haben hier ein Die niges Flasergefüge. Die Anisometrie der Plagioklasflasern bildet ein Streckungsgefüge ab, das überwiegend subhorizontal liegt, vereinzelt auch bis 50° einfällt. Die ehemals magmatischen Plagioklas-Leisten sind teilweise vollständig saussuritisiert und meistens feinkörnig rekristallisiert (Abb. B.4.12). Sie zeigen ein Pflastergefüge mit ebenen Korngrenzen und Tripelpunkt-Konfiguration. Nicht rekristallisierte, gröberkörnige Plagioklas-Altkörner sind selten erhalten. Die Hornblenden sind möglicherweise durch Subkornrotation (mündl. Mitt. G. Schalkwijk) feinkörnig rekristallisiert (Abb. B.4.20). Die Rekristallisate zeigen eine ± einheitliche kristallographische Orientierung. Häufig sind größere Hornblende-Altkörner erhalten, die Schwärme feiner Rutile eingeschlossen haben (Abb. B.4.21, ehemals Ti-reicher, magmatischer Klinopyroxen oder Hornblende).

Abb. B.4.20: Hornblende(HBL) - und Plagioklas(PLG)-Rekristallisate in deformiertem Metagabbro, DS 882H4bf, 3607.03 m, +N.

Abb. B.4.21: Rutil-Einschlüsse in großer Hornblende, links rekristallisierte Hornblenden(HBL); Metagabbro, DS 882H4bf, 3607.03 m, //N.

Die feinkörnig-dichten Amphibolite zeigen mikroskopisch ein Pflastergefüge aus grüner Hornblende und Plagioklas mit überwiegend ebenen Phasengrenzflächen. Plagioklas-reiche Lagen und vereinzelte Zeilenquarze definieren die Foliation. Die Zeilenquarze sind nicht rekristallisiert und weisen undulöse Auslöschung auf. Ein horizontal liegendes Streckungslinear wird durch stark unterschiedliche Längen und Breiten der Zeilenquarze und Plagioklas-Lagen erzeugt.

Im Dünnschliff 898C3gIII (3654.5 m) kommen 450 µm große Granate und 150 µm große Klinopyroxen-Plagioklas-Symplektite neben 150 µm großen granoblastischen Plagioklas- und Hornblende-Körnern vor. Dies legt nahe, daß dieses Gestein schon unter hochdruck-granulitischen Bedingungen feinkörnig war.

Das Streckungslinear in den Augengneisen und Metabasiten liegt nach vereinzelten Beobachtungen (u.a. Kernstück KST 941FloK, 3847 m) parallel zur Faltenachse enger Falten.

B.4.1.5 Chemische Zusammensetzung

Die RFA- und RDA-Analysen der "granulitischen" Metabasite, d.h. der Amphibolite und Meta-Gabbros mit mikroskopisch erkennbaren Hochdruck-Gefügerelikten, sowie die der normalen Amphibolite, Granat-Amphibolite und Meta-Gabbros sind in Tab. B.4.2 aufgeführt. Die Analysen spezieller Typen (sehr Granat-reiche Amphibolite ("Granatite"), ein Epidot-Amphibolit und Biotit-Hornblende-Gneise) sind in Tab. B.4.3 zusammengefaßt.

Das (K2O+Na2O)-SiO2-Diagramm (Abb. B.4.22) zeigt, daß es sich um basaltische Gesteine mit Tendenz zu andesitischem (dioritischem) Chemismus handelt. Einige "Granatite" und Meta-Gabbros zeigen Übergänge zu ultrabasischer Zusammensetzung. Generell sind die Gesteine, in denen das gabbroide Gefüge noch erkennbar ist, SiO2-ärmer als die Amphibolite. Für die Meta-Gabbros im Teufenbereich 1160 - 1610 m war dagegen ein tendenziell höheres MgO/FeO-Verhältnis festgestellt worden (vgl. KEYSSNER et al. 1988: B45ff.). Die "granulitischen" Metabasite unterscheiden sich chemisch nicht von den Metabasiten ohne Hochdruckrelikte. Demzufolge ist die amphibolitfazielle Überprägung im wesentlichen isochem verlaufen. Das bedeutet, daß der abweichende Chemismus der "Granatite" vermutlich primär magmatische Unterschiede widerspiegelt. Die "Granatite" unterscheiden sich von den anderen Metabasiten vor allem durch höhere Gehalte an Fe2O3 total, P2O5, Zr (Abb. B.4.23 bis B.4.25), Y, Zn, U, (TiO2) während MgO, K2O, Rb, Cr und Ni niedriger liegen als bei den normalen Amphiboliten. im Alkali-Gehalt, wohl aber in den Gehalten an Nicht P2 05 und Zr tendieren die "Granatite" zu alkalibasaltischer Zusammensetzung. Bei diesen z.T. mehrere Meter mächtigen, Granatreichen Lagen, die fast immer diffuse Grenzen zu normalem Amphibolit zeigen, könnte es sich um Schmelznester oder frühe

Granulitische Metabasite

K_STK TEUFE	874H1z 3574.47	87581oR 3576.31	87783q 3585.83	88084e 3598.97	88481f 3613,35	885C3o 3620.18	89181d 3645.58	891F1ai 3649.32
SI02 TI02	47.9 2.30	46.6 1.93	48.5 1.60	47.8 2.17	46.6	46.9 1.36	49.0 1.00	48.9 1.03
AL203	14.6	13.6	15.8	13.5	15.4	15.4	14.5	14.5
FE203	13.00	12.03	10.70	13.24	10.80	10.40	9.82	9.83
MND	0.19	0.18	0.15	0.20	0.15	0.14	0.15	0.15
MGU	5.77	7.19	7.40	10.04	10.16	/./8	10.14	10.28
LAU NA20	7.80	1 9	7.10	3.2	2.9	3.4	3.1	3.2
K20	0.71	1.22	0.92	0.81	0.48	0.49	0.44	0.41
P205	0.32	0.25	0.21	0.41	0.18	0.22	0.11	0.10
ZR	150	136	137	231	109	120	74	68
Y	34	33	30	45	22	24	23	22
SR	178	208	291	150	297	299	212	205
RB	17	29	20	19	13	11	11	12
ZN	104	99	87	116	81	80	78	79
LU	< 13	48	<13	42	108	47	48	33
	203	232	192	228	121	114	281	288
UI II	200	<5	<5	<5	<5	<5	(5	(5
тн	57	<5	44	<5	<5	<5	<5	<5
QRZ	4	6	3	÷	-	-	-	1
CHL	-	5	-	-	3	-	-	-
AMP	32	66	22	36	33	48	37	35
GNT	19	-	11	19	20	16	20	20
PLG	38	22	34	29	41	35	39	34
CPX	7	-	-	15	_	-	4	8
K_STK	912D4n	912F4p	920G21K	921C1n	921D10	922E11K	928E1oK	936B1cK
K_STK TEUFE	912D4n 3724.36	912F4p 3725.25	920G21K 3769.81	921E1n 3772.23	921D1c 3772.92	922E11K 3779.47	928E1cK 3808.95	936B1cK 3826.60
K_STK TEUFE SID2	912D4n 3724.36 49.8	912F4p 3725.25	920G21K 3769.81	921C1n 3772.23 49.2	921D1c 3772.92	922E11K 3779.47 47.3	928E1cK 3808.95 48.4	936B1cK 3826.60 45.9
K_STK TEUFE SIO2 TIO2	912D4n 3724.36 49.8 1.42	912F4p 3725.25 50.7 1.97	920G21K 3769.81 51.7 1.81	921C1n 3772.23 49.2 1.44	921D10 3772.92 50.5 1.52	922E11K 3779.47 47.3 1.18	928E1cK 3808.95 48.4 1.73	936B1cK 3826.60 45.9 1.90
K_STK TEUFE SIO2 TIO2 AL2O3	912D4n 3724.36 49.8 1.42 14.6	912F4p 3725.25 50.7 1.97 15.2	920G21K 3769.81 51.7 1.81 14.1	921C1n 3772.23 49.2 1.44 15.2	921D10 3772.92 50.5 1.52 15.5	922E11K 3779.47 47.3 1.18 15.1	928E1cK 3808.95 48.4 1.73 14.9	936B1cK 3826.60 45.9 1.90 13.7
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3	912D4n 3724.36 49.8 1.42 14.6 10.00	912F4p 3725.25 50.7 1.97 15.2 10.95	920G21K 3769.81 51.7 1.81 14.1 11.27	921C1n 3772.23 49.2 1.44 15.2 10.28	921D10 3772.92 50.5 1.52 15.5 10.04	922E11K 3779.47 47.3 1.18 15.1 10.38	928E1cK 3808.95 48.4 1.73 14.9 10.83	936B1cK 3826.60 45.9 1.90 13.7 11.70
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MND	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16	920621K 3769.81 51.7 1.81 14.1 11.27 0.17	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15	921D10 3772.92 50.5 1.52 15.5 10.04 0.15	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16	928E1oK 3808.95 48.4 1.73 14.9 10.83 0.18	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MNO MGO	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99	928E1cK 3808.95 48.4 1.73 14.9 10.83 0.18 6.71	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MND MGD CAO	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53	928E1cK 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30
K_STK TEUFE SIO2 TIO2 AL203 FE203 MN0 MG0 CA0 NA20 K20	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98
K_STK TEUFE SIO2 TIO2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.72 0.13	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38
K_STK TEUFE SIO2 TIO2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181	920G21K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195
K_STK TEUFE SIO2 TIO2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46	920G21K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42
K_STK TEUFE SIO2 TIO2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MNO MGO CAO NA2O K2O P2O5 ZR Y SR RB	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MNO MGO CAO NA2O K2O P2O5 ZR Y SR RB ZN	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 9	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MNO MGO CA0 NA20 K20 P2O5 ZR Y SR RB ZN CU	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 65	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 91 42 20	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MNO MGO CAO NA2O K20 P2O5 ZR Y SR RB ZN CU NI CR	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 45 206	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 91 42 20 65	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51 110 249	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101 1 5 549
K_STK TEUFE SIO2 TIO2 AL2O3 FE2O3 MNO MGO CAO NA2O K2O P2O5 ZR Y SR RB ZN CU NI CH	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 4.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 45 206 <5	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 91 42 20 65 55	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51 110 249 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257 <5	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101 1 5 5 149 45
K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 45 206 <5	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 8.74 8.74 8.74 0.55 0.23 147 38 180 9 91 42 20 65 <5	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51 110 249 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 92 23 21 257 <5 <5	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101 1 55 149 <5 38
K_STK TEUFE SI02 TI02 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82 207 18 82 204 <5 <5	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 9 1 42 20 65 <5 <5	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51 110 249 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257 <5 <5	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101 1 5 55 149 <5 38
K_STK TEUFE SI02 TI02 AL203 FE203 MN0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82 207 18 82 204 <5 <5	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 9 1 42 20 65 <5 <5	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51 110 249 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257 <5 <5	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101 1 1 5 55 149 <5 38
K_STK TEUFE SI02 TI02 AL203 FE203 MN0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH ORZ CHL AMF	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 6.26 9.27 3.2 0.96 0.21 125 32 207 18 82 207 18 82 205 <5 <5	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 91 42 20 65 <5 <5 <5	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 30 190 19 84 51 110 249 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257 <5 <5	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 20 101 1 1 5 55 149 <5 38
K_STK TEUFE SI02 TI02 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH CRZ CHL AMF BI0	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 4.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 45 206 <5 <5 6 38 3	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 91 42 20 65 <5 <5 <5	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 300 190 19 84 51 110 249 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 21 257 <5 <5 <5	93681cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 101 1 1 55 149 <5 38
K_STK TEUFE SI02 TI02 AL203 F2203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH ORZ CHL AMF BI0 GNT	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 4.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 45 206 <5 <5 6 - 38 37	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5 6 - 30 2 11	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 3.5 0.55 0.23 147 38 180 9 142 20 65 <5 <5 <5	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 300 190 19 84 51 110 249 <5 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 257 <5 <5 <5 4 6 4 5 5 5 5 5 5 5 5 5	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 101 1 55 149 <53 38 - 49 49 49 49 49 49 49 49 49 49
K_STK TEUFE SI02 TI02 AL203 F203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH ORZ CHL AMF BI0 GNT PLG	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 4.26 9.27 3.2 0.96 0.21 125 32 207 18 82 28 45 206 <5 4 38 37 46	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5 6 - 30 2 11 50	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 8.74 8.74 8.74 8.74 8.74 8.74 8.7	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5 <5 <5	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5 6 - 17 3 99 39	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 300 190 19 84 51 110 249 <5 <5 <5	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257 <5 <5 4 4 6 45 	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 101 1 55 149 <5 38 - - 49 47
K_STK TEUFE SIO2 TIO2 AL203 F203 MNO MGO CA0 NA20 K20 P205 ZR Y SR RD ZN CU NI CR U TH ORZ CHIF BIO GNT PLG EPD	912D4n 3724.36 49.8 1.42 14.6 10.00 0.14 4.26 9.27 3.2 0.96 0.21 125 322 207 18 82 28 45 206 <5 4 38 37 46	912F4p 3725.25 50.7 1.97 15.2 10.95 0.16 4.76 8.64 3.5 0.88 0.35 181 46 178 12 98 36 28 81 <5 <5 6 - 30 2 11 50 - - - - - - - - - - - - -	920621K 3769.81 51.7 1.81 14.1 11.27 0.17 4.94 8.74 8.74 8.74 8.74 8.74 8.74 8.74 8.7	921C1n 3772.23 49.2 1.44 15.2 10.28 0.15 7.05 8.63 3.3 1.16 0.22 146 33 224 28 88 29 51 205 <5 <5 <5 <5 <5 - 4 57 5 - 35	921D10 3772.92 50.5 1.52 15.5 10.04 0.15 6.77 8.45 3.5 1.09 0.26 160 38 216 25 92 33 50 204 <5 <5 6 - 17 3 99 -	922E11K 3779.47 47.3 1.18 15.1 10.38 0.16 8.99 9.53 2.7 0.72 0.13 104 300 190 19 84 51 110 249 <5 <5 <5 - 4 34 - 23 39	928E10K 3808.95 48.4 1.73 14.9 10.83 0.18 6.71 8.58 3.0 0.95 0.26 156 39 221 23 92 23 21 257 <5 <5 <5 4 4 6 45 	936B1cK 3826.60 45.9 1.90 13.7 11.70 0.17 6.28 9.30 3.2 0.98 0.38 195 42 220 101 1 55 149 <5 38 - - 49 49 47 -

Tab. B.4.2: RFA- und RDA-Analysen von granulitischen Metabasiten, Granat-Amphiboliten, Amphiboliten und Meta-Gabbros.

K_STK TEUFE	936C1dK 3827.10	939C1cK 3832.22	939E1gK 3833.83	949A15 3866.81	953B2f 3873.47	953F2pK 3876.81		
SI 02 TI 02 AL 203 FE 203 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CU NI CH	47.4 1.82 14.2 10.84 0.16 6.02 8.87 3.8 1.19 0.38 172 40 185 22 89 42 54 150 <5	46.3 1.75 14.3 10.97 0.16 7.11 9.89 3.2 0.85 0.35 163 36 201 14 91 48 65 202 <5	46.9 1.20 14.4 10.08 0.15 8.40 10.00 2.9 0.54 0.15 99 28 172 15 80 46 95 169 <5	49.5 1.16 14.8 9.73 0.14 7.03 8.64 3.9 1.09 0.10 98 219 212 25 85 42 75 116 <5	46.5 1.32 14.8 11.04 0.17 8.13 10.02 3.1 0.82 0.13 101 29 203 13 84 45 88 160 <5	49.5 1.09 15.1 9.24 0.14 7.51 9.67 3.4 0.89 0.11 98 30 171 22 73 47 77 156 <5		
QRZ	-	<u> </u>	1	-	(1 <u></u> 1)	2		
CHL AMF	- 31	38	- 43	3 49	- 55	- 27		
BIO	6	2	-	-	-	2		22
GNT	9	9	14	-	-	10		
EPD	+0	40 -	-	40	10	-		
CPX	15	5	6	-	-	8		
Granat-A	mohibolite							
Granat-A K_STK	mphibolite 877E3×	877E3z	881A3c	882E4ak	888A3c	888E3n	889A1b	899A1a
Granat-A K_STK TEUFE	mphibolite 877E3× 3588.54	877E3z 3588.89	881A3c 3600.46	882E4ak 3604.66	888A3c 3627.78	888E3n 3630.96	889A1b 3633.54	899A1a 3657.90
Granat-A K_STK TEUFE SIO2	mphibolite 877E3× 3588.54 51.0	877E3z 3588.89 47.4	881A3c 3600.46 49.1	882E4ak 3604.66 45.9	888A3c 3627.78 47.3	888E3n 3630.96 49.8	889A1b 3633.54 48.8	B99Ala 3657.90 47.3
Granat-A K_STK TEUFE SID2 TIO2	mphibolite 877E3× 3588.54 51.0 2.20	877E3z 3588.89 47.4 2.40	881A3c 3600.46 49.1 1.37	882E4ak 3604.66 45.9 1.06	888A3c 3627.78 47.3 1.89	888E3n 3630.96 49.8 1.44	889A1b 3633.54 48.8 1.44	899A1a 3657.90 47.3 1.11
Granat-A K_STK TEUFE SIO2 TIO2 AL203	mphibolite 877E3× 3588.54 51.0 2.20 15.7	877E3z 3588.89 47.4 2.40 16.2	881A3c 3600.46 49.1 1.37 14.1	882E4ak 3604.66 45.9 1.06 15.6	888A3c 3627.78 47.3 1.89 15.0	888E3n 3630.96 49.8 1.44 15.5	887A1b 3633.54 48.8 1.44 15.3	899A1a 3657.90 47.3 1.11 14.6
Granat-A K_STK TEUFE SIO2 TIO2 AL203 FE203 MND	mphibolite 877E3x 3588.54 51.0 2.20 15.7 11.60 0.19	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15	882E4ak 3604.66 45.9 1.06 15.6 9.43 0.14	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MGO	mphibolite 877E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79	882E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MGO CAD	mphibolite 877E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51	882E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MG0 CA0 NA20	mphibolite B77E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1	882E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90 2.7	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MG0 CA0 NA20 K20 P205	mphibolite 877E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.71	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14
Granat-A K_STK TEUFE SID2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR	mphibolite 877E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12 86	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178	BBBE3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 B.25 4.1 0.77 0.20 134	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87
Granat-A K_STK TEUFE SID2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12 86 20	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MNO MGD CAO NA20 K20 P205 ZR Y SR	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12 86 20 291	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MNO MGD CAO NA20 K20 P205 ZR Y SR RB ZNI	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12 86 20 291 26	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 97
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MNO MGO CAO NA20 K20 P205 ZR Y SR RB ZN CU	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 (15	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.16 107 28 238 18 76 44	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 238 18 76 44 81	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 9 78 44 96
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MGD CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 125 (15 (15 32 82 82	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75 158	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.78 0.16 107 28 238 18 76 44 81 231	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MGD CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U U	mphibolite 877E3× 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 125 (15 32 82 (58)	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75 158 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 81 231 <55	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 <5
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MNO MGO CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	mphibolite B77E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 82 <5 48	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5 60	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 30 6 306 <5 5	882E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12 86 20 291 26 69 43 75 158 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 81 231 <5	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 223 9 78 44 294 <5 <5
Granat-A K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CAO NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH QRZ	mphibolite B77E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 82 <5 48 20	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5 60	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5 5	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 7.90 2.7 1.05 0.12 86 20 291 26 69 43 75 158 <5 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.78 0.78 0.16 107 28 238 18 76 44 81 231 <5 <5	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 <5 <5
Granat-A K_STK TEUFE SID2 TID2 AL203 FE203 MND MGD CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH GRZ CHL	mphibolite B77E3x 35BB.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 B2 <5 4B 20 B2	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5 60	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5 5	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 8.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75 158 <5 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 81 231 <5 <5	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 <5 <5
Granat-A K_STK TEUFE SID2 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH GRZ CHL AMF BIO	mphibolite B77E3x 3588.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 82 <5 48 20 1.6 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.20 1.5 2.70 3.0 2.57 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.59 1.2 1.5 3.0 2.5 4.8 2.5 4.8 2.0 2.5 4.8 2.5 4.8 2.5 4.8 2.5 4.8 2.5 4.8 2.5 4.8 2.5 4.8 2.5 4.5 4.8 2.5 4.8 2.5 4.8 2.5 4.8 2.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 241 19 138 <15 36 90 <5 60	BB1A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5 5 5	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 B.54 9.90 2.7 1.05 0.12 B6 20 291 20 291 26 69 43 75 15B <5 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5 2 2 2 58	888E3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 8.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5 3 4 53	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 81 231 <5 <5	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 <5 <5
Granat-A K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CAO NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH QRZ CHL AMF BIO GNT	mphibolite B77E3x 35BB.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 B2 <5 4B 20 - 12	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5 60 12 11 24 4 7	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5 5 6 - 54 - 6	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 B.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75 15B <5 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5 2 2 2 58 -	BBBE3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 B.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5 3 4 53 - 6	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 81 231 <5 <5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 <5 <5
Granat-A K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CAO NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH GRZ CHL AMF BIO GNT PLG	mphibolite B77E3x 35BB.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 B2 <5 4B 20 8 20 - 12 40	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5 60 12 11 24 4 7 42	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5 5 6 - 54 - 6	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 B.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75 15B <5 <5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5 2 2 2 58 - 38	BBBE3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 B.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5 3 4 53 - 6 33	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 81 231 <5 <5 <5 4 4 4 4 4 4 231	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 45 <5 <5 -2 47 -2 35
Granat-A K_STK TEUFE SIO2 TIO2 AL203 FE203 MNO MGO CAO NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH GRZ CHL AMF BIO GNT PLG EPD	mphibolite B77E3x 35BB.54 51.0 2.20 15.7 11.60 0.19 4.37 5.70 3.0 0.66 0.29 135 30 259 12 115 <15 32 B2 <5 48 20 8 20 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 12 40 - 15 - - 15 - - - - - - - - - - - - -	877E3z 3588.89 47.4 2.40 16.2 13.60 0.21 4.89 5.60 3.4 0.96 0.41 129 29 241 19 138 <15 36 90 <5 60 12 11 24 4 7 42	881A3c 3600.46 49.1 1.37 14.1 9.94 0.15 6.79 9.51 3.1 0.97 0.21 147 29 263 17 89 39 36 306 <5 5 6 - 54 - 6 34	BB2E4ak 3604.66 45.9 1.06 15.6 9.43 0.14 B.54 9.43 0.14 B.54 9.90 2.7 1.05 0.12 86 20 291 26 69 43 75 15B <5 <5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	888A3c 3627.78 47.3 1.89 15.0 11.70 0.16 5.98 8.88 3.7 0.72 0.41 178 34 273 8 118 30 64 138 <5 <5 2 2 2 58 - 38	BBBE3n 3630.96 49.8 1.44 15.5 10.10 0.14 6.99 B.25 4.1 0.77 0.20 134 27 252 15 87 34 69 200 <5 <5 <5 3 4 53 - 6 33 -	889A1b 3633.54 48.8 1.44 15.3 10.46 0.16 8.47 9.32 3.0 0.78 0.16 107 28 238 18 76 44 41 231 <5 <5 <5 4 4 4 4 4 4 231 231 5 5 5	899A1a 3657.90 47.3 1.11 14.6 9.86 0.15 9.00 10.25 2.8 0.39 0.14 87 24 223 9 78 44 96 294 45 <5 <5 -2 47 -2 25 12

- B 37 -

Tab. B.4.2: Fortsetzung.

BID GNT PLG EPD TIT

K_STK TEUFE	899E1m 3661.05	900A1a 3663.10	902C2g 3672.62	907D1hK 3696.36	921A1b 3770.53	928C1k 3806.86	944E6×T 3858.30	
SI02 TI02 AL203 FE203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	53.8 0.89 19.8 6.38 0.10 3.68 7.61 5.3 0.63 0.25 295 19 555 11 56 31 91 <5 <5	48.5 1.37 15.3 10.10 0.15 6.80 7.21 3.4 0.60 0.30 143 30 259 11 94 4 61 185 <5	51.0 1.40 15.9 9.90 0.15 7.08 9.30 3.3 0.59 0.21 132 29 288 9 80 31 50 177 <5 <5	51.6 1.32 15.7 9.64 0.14 5.34 7.38 4.4 0.97 0.16 173 35 229 15 85 32 34 110 <5	49.0 1.43 14.9 9.78 0.15 7.04 8.78 3.0 1.10 0.23 152 33 224 25 85 30 52 179 <5	48.0 1.58 13.4 10.86 0.18 7.39 8.30 0.93 0.23 157 38 156 23 89 23 17 333 <5 <5	55.7 1.30 14.4 B.21 0.12 4.34 6.80 3.2 1.42 0.25 200 40 184 32 78 <15 26 113 <5 24	
QRZ CHL AMF BIO GNT PLG HGL	3 17 6 74	- 67 - 33	6 3 47 - 6 37 -	3 47 - 3 42 -	- 33 19 44 -	5 8 45 - 13 29 -	18 	
Amphiboli	te							
K_STK TEUFE	3581.90	88264ay 3606.30	89081e 3639.56	898E3mK 3655.44	903A1fT 3676.46	905D40 3684.95	907C1gKII 3695.78	908F1oK 3703.82
K_STK TEUFE SI02 T102 AL203 FE203 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH	57682ac 3581.90 51.1 1.41 14.9 9.82 0.16 5.77 6.85 2.8 1.31 0.32 138 27 248 33 102 35 31 185 <5 5	68264ay 3606.30 65.7 0.32 16.3 2.35 0.02 2.29 3.58 4.7 0.94 0.00 21 5 311 24 23 <15 16 23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	89081e 3639.56 48.2 0.96 14.7 9.95 0.15 8.83 9.30 3.1 0.63 0.08 71 23 259 16 76 47 92 292 <2 <5	898E3mK 3655.44 53.3 0.85 15.3 8.35 0.13 6.45 8.11 4.6 0.39 0.12 110 33 197 8 76 30 58 191 <5 <5	903A147 3676.46 54.3 1.16 15.9 B.17 0.11 4.74 7.42 4.8 0.55 0.14 100 18 427 6 97 23 32 73 32 5 5 5 5 5	905D40 3684.95 48.4 1.31 14.5 9.74 0.15 6.38 9.55 3.3 0.51 0.16 99 25 298 9 79 25 298 9 79 25 298 9 79 25 298 9 55 25 298 55 25 25 25 25 25 25 25 25 25 25 25 25	907C1gKII 3695.78 51.5 0.92 18.3 6.09 0.08 2.19 5.70 5.3 0.77 0.31 283 28 288 10 77 <15 <15 34 <5 <5	908F10K 3703.82 47.8 1.88 14.4 11.35 0.16 6.95 10.24 3.1 0.47 0.33 140 30 112 8 87 42 50 180 <5 <5
K_STK TEUFE SI02 T102 AL203 FE203 MN0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CR U TH DRZ CHMF BI0 TH DRZ CHMF BI0 TH FE10 CAMF CAU NI CH CAU SR FE10 CAU SR CU SR CH SR CH SR CH SR CH SR CH SR CH SR CH SR SR SR SR SR SR SR SR SR SR SR SR SR	B76B2ac 35B1.90 51.1 1.41 14.9 9.82 0.16 5.77 6.85 2.8 1.31 0.32 138 27 248 33 102 35 31 185 <5 <5 15 4 21 13 9 38 - -	BB2G4ay 3606.30 65.7 0.32 16.3 2.35 0.02 2.29 3.58 4.7 0.94 0.00 21 5 311 24 23 <15 16 23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	B90B1e 3639.56 48.2 0.96 14.7 9.95 0.15 8.83 9.30 3.1 0.63 0.08 71 23 259 16 76 47 92 292 <2 <5 - 4 57 - 30 4 57 - 30 4 57 - 30 4 57 - 30 4 57 - 30 4 57 - 30 4 57 - 30 - 57 - 30 - 57 - - 57 - -	B9BE3mK 3655.44 53.3 0.85 15.3 8.35 0.13 4.45 8.11 4.6 0.39 0.12 110 33 197 0.12 110 33 197 6 76 30 58 191 <5 <5 -4 4 44 -51 -	903A147 3676.46 54.3 1.16 15.9 8.17 0.11 4.74 7.42 4.8 0.55 0.14 100 18 427 23 32 73 32 73 32 73 32 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	905D40 3684.95 48.4 1.31 14.5 9.74 0.15 6.38 9.74 0.15 6.38 9.75 3.3 0.51 0.16 99 25 298 9 79 25 298 9 79 27 23 116 <5 5 5 5 3.3 116 <5 5 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	907C1gKII 3695.78 51.5 0.92 18.3 6.09 0.08 2.19 5.70 5.3 0.77 0.31 283 288 288 288 288 10 77 <15 <15 34 <5 <5 3 79 1 3 79 -	908F10K 3703.82 47.8 1.88 14.4 11.35 0.16 6.95 10.24 3.1 0.47 0.33 140 300 112 8 87 42 50 180 <5 <5 2 42 50 180 <5 <7 2 42 50 180 -7 26 -9 19 -7 26 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9

Tab. B.4.2: Fortsetzung.

-	В	39	-
	_	~~	

K_STK TEUFE	90861q 3704.98	911B1h 3716.60	911D1w 3717.75	912B4bK 3722.05	916G1q 3746.92	919A1a 3758.90	91961n 3764.18	920A1c 3764.76
SI 02 TI 02 AL 203 FE 203 MNO CA0 NA20 CA0 NA20 F205 ZR Y SR RB ZN CU NI CR U TH	64.9 0.49 17.0 4.34 0.07 2.00 4.82 6.1 0.48 0.17 167 18 421 9 45 5 <15 <5	48.6 1.11 15.6 9.10 0.14 8.52 8.56 3.2 1.30 0.13 91 24 286 30 71 30 90 237 <5 <5	48.3 0.63 12.0 11.34 0.15 13.33 5.76 2.5 0.89 - 121 19 109 129 121 111 <15 164 280 <5	45.5 1.13 13.9 11.16 0.16 11.55 7.55 2.8 0.90 0.09 80 21 114 30 80 22 104 187 <5 <5	46.4 1.73 15.2 11.03 0.16 7.37 9.90 2.8 0.70 0.26 134 32 221 13 110 41 80 194 <5 <5	47.9 1.91 15.4 11.18 0.16 5.63 8.73 3.3 0.80 0.36 177 35 245 14 92 38 54 136 <5	47.6 1.60 15.2 10.94 0.17 6.96 7.06 3.1 1.19 0.27 156 32 262 33 96 29 30 208 <5	49.6 1.56 15.1 10.24 0.17 6.13 8.33 3.4 1.29 0.25 155 38 265 39 90 21 24 195 <5 <5
QRZ CHL AMF BID GNT PLG EPD PRH TIT CPX	17 	4 59 - 37 - -	8 16 52 - - 24 - - -	13 60 	- 52 - 40 - -	5 3 49 43 - 43 - -	- 57 - 35 - - - - -	
K_STK TEUFE	922B1d 3776.73	922C1q 3777.63	926A1b 3798.74	926D11 3801.91	743C1s 3850.84			
SI 02 TI 02 AL 203 FE 203 MN0 MG0 CA0 NA20 K20 P205 ZR Y SR RB ZN CU NI CF U TH	47.5 1.44 15.0 11.03 0.18 7.45 9.01 2.8 1.12 0.15 138 37 199 28 90 26 67 223 <5 <5	46.6 1.36 15.2 10.97 0.17 8.34 9.59 2.6 0.67 0.14 119 33 192 17 90 39 89 228 <5 <5	45.0 1.82 14.1 12.46 0.23 7.93 8.45 2.9 0.88 0.35 177 39 263 32 116 35 71 173 <5 <5	49.8 1.67 14.3 10.57 0.17 5.41 7.80 3.6 1.43 0.30 136 45 257 29 96 16 43 125 <5 <5	48.1 1.56 14.9 11.24 0.18 7.32 9.08 3.1 1.12 0.26 166 35 254 30 95 30 62 238 <5 <5			
QRZ CHL AMF KFS GNT PLD PRH TIT	- 4 - - 36 -	- 61 - 35 -		2 52 6 - 34 -	- 7 51 - 42 -			

Tab. B.4.2: Fortsetzung.

K_STK TEUFE BB2H4bf 3607.03 BB3A1bK 3607.15 BB5G3ak 3623.21 900B7a 3663.63 912D4gK 3723.80 926A1b 3798.74 SID2 45.8 45.9 47.1 47.5 46.4 45.0 TID2 1.26 1.17 1.38 1.55 1.49 1.82 AL203 16.2 16.2 16.0 14.9 14.6 14.1 FE2D3 9.59 10.22 10.00 10.69 11.04 12.46 MND 0.14 0.15 0.14 0.16 0.23 MGD 7.86 8.95 7.85 6.73 8.05 7.93 CAO 9.61 9.61 9.77 9.27 9.56 8.45 NA2D 3.0 2.8 2.8 3.3 2.7 2.9 K2D 0.58 0.51 0.83 0.61 0.77 0.88 P205 0.17 0.13 0.17 0.36 0.23 0.35 ZR 109 9 124	neta-bab	bro					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K_STK	882H4bf	883A16K	885G3ak	900B7a	912D4gK	926A15
SI02 45.8 45.9 47.1 47.5 46.4 45.0 TID2 1.26 1.17 1.38 1.58 1.49 1.82 AL203 16.2 16.2 16.0 14.9 14.6 14.1 FE2D3 9.59 10.22 10.00 10.69 11.04 12.46 MND 0.14 0.15 0.14 0.16 0.23 7.93 GGD 7.86 8.95 7.85 6.73 8.05 7.93 CAO 9.61 9.77 9.27 9.56 8.45 NA2D 3.0 2.8 2.8 3.3 2.7 2.9 K2D 0.58 0.51 0.83 0.61 0.77 0.88 P205 0.17 0.13 0.17 0.36 0.23 0.35 ZR 109 97 124 133 125 177 Y 23 21 29 33 31 39	TEUFE	3607.03	3607.15	3623.21	3663.63	3723.80	3798.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SID2	45.8	45.9	47.1	47.5	46.4	45.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T102	1.26	1.17	1.38	1.58	1.49	1.82
FE2D3 9.59 10.22 10.00 10.69 11.04 12.46 MND 0.14 0.15 0.14 0.16 0.23 MGD 7.86 8.95 7.85 6.73 8.05 7.93 CAD 9.61 9.61 9.77 9.27 9.56 8.45 NA2D 3.0 2.8 2.8 3.3 2.7 2.9 K2D 0.58 0.51 0.83 0.61 0.77 0.88 P2D5 0.17 0.13 0.17 0.36 0.23 0.35 ZR 109 99 124 133 125 177 Y 23 21 29 33 31 39 SR 313 319 317 249 247 263 RB 10 16 5 17 322 ZN 71 74 78 98 87 1166 CU 50 58 29 36 62 35 NI 70 84 50	AL203	16.2	16.2	16.0	14.9	14.6	14.1
MND 0.14 0.15 0.14 0.16 0.16 0.23 MGD 7.86 8.95 7.85 6.73 8.05 7.93 CAD 9.61 9.77 9.27 9.56 8.45 NA2D 3.0 2.8 2.8 3.3 2.7 2.9 K2D 0.58 0.51 0.83 0.61 0.77 0.88 P2D5 0.17 0.13 0.17 0.36 0.23 0.35 ZR 109 99 124 133 125 177 Y 23 21 29 33 31 39 SR 313 319 317 249 247 263 RB 10 10 16 5 17 32 NI 70 84 50 55 93 71 QRZ - - - 2 2 - U <55 <5 <th< td=""><td>FE203</td><td>9.59</td><td>10.22</td><td>10.00</td><td>10.69</td><td>11.04</td><td>12.46</td></th<>	FE203	9.59	10.22	10.00	10.69	11.04	12.46
MGD 7.86 8.95 7.85 6.73 8.05 7.93 CAO 9.61 9.61 9.77 9.27 9.56 8.45 NA2D 3.0 2.8 2.8 3.3 2.7 2.9 K2D 0.58 0.51 0.83 0.61 0.77 0.88 P2D5 0.17 0.13 0.17 0.36 0.23 0.35 ZR 109 99 124 133 125 177 Y 23 21 29 33 31 39 SR 313 319 317 249 247 263 RB 10 10 16 5 17 32 ZN 71 74 78 98 87 116 CU 50 58 29 36 62 35 NI 70 84 50 55 93 71 CR 100 103	MNO	0.14	0.15	0.14	0.16	0.16	0.23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MGD	7.86	8,95	7.85	6.73	8.05	7.93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CAD	9.61	9.61	9.77	9.27	9.56	8.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NA2D	3.0	2.8	2.8	3.3	2.7	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K20	0.58	0.51	0.83	0.61	0.77	0.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P205	0.17	0.13	0.17	0.36	0.23	0.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ZR	109	99	124	133	125	177
SR 313 319 317 249 247 263 RB 10 10 16 5 17 32 ZN 71 74 78 98 87 116 CU 50 58 29 36 62 35 NI 70 84 50 55 93 71 CR 100 103 123 185 200 173 U <5	Y	23	21	29	33	31	39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR	313	319	317	249	247	263
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RB	10	10	16	5)	17	32
CU 50 58 29 36 62 35 NI 70 84 50 55 93 71 CR 100 103 123 185 200 173 U <5	ZN	71	74	78	98	87	116
NI 70 84 50 55 93 71 CR 100 103 123 185 200 173 U <5	CU	50	58	29	36	62	35
CR 100 103 123 185 200 173 U <5	NI	70	84	50	55	93	71
U <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	CR	100	103	123	185	200	173
TH <5 <5 <5 <5 <5 <5 QRZ - - - 2 2 - CHL - 3 - 6 3 11 AMF 56 59 55 46 57 60 BIO - - 4 - - - GNT - - - - - PLG 44 38 41 46 38 29	U	<5	<5	< 5	<5	<5	<5
QRZ - - - 2 2 - CHL - 3 - 6 3 11 AMF 56 59 55 46 57 60 BIO - - 4 - - - - GNT - - 4 - - - - - PLG 44 38 41 46 38 29	тн	<5	<5	<5	<5	<5	<5
CHL - 3 - 6 3 11 AMF 56 59 55 46 57 60 BID - - 4 - - - GNT - - - - - - PLG 44 38 41 46 38 29	DR7	2	_	-	2	2	-
AME 56 59 55 46 57 60 BID - - 4 - <td< td=""><td>CHI</td><td>-</td><td>र</td><td>-</td><td>2</td><td>ž</td><td>11</td></td<>	CHI	-	र	-	2	ž	11
BID 4 GNT	AME	56	59	55	46	57	60
GNT – – – – – – – – – – – – – – – – – – –	BIO	-	-	4	-	_	-
PLG 44 38 41 46 38 29	GNT	-	-	-	-	-	-
	PLG	44	38	41	46	38	29

Tab. B.4.2: Fortsetzung.

.

- B 41 -

C.		-		•	÷.,	+ :	-
91	- G		•	ι.	•		_

K_STK	891E1v	901G2s	914F1t	915B16K	916B1f	936A1aK	938A1a	949A1e
TEUFE	3647.98	3669.21	3737.02	3739.47	3743.42	3825.40	3829.60	3867.22
SI02	38.7	45.6	44.3	51.5	48.4	43.7	43.6	52.5
TID2	3.21	2.95	3.74	2.21	2.82	3.93	3.84	1.62
AL203	13.0	14.4	13.5	13.9	16.4	13.3	13.6	14.8
FE203	17.80	17.87	18.09	15.23	12.96	17.21	17.37	14.43
MND	0.34	0.30	0.28	0.23	0.18	0.24	0.27	0.21
MGO	5.21	3.85	4.20	2.60	2.94	4.18	4.01	1.65
CAD	11.77	9.11	9.32	7.49	8.37	9.50	9.65	5.70
NA20	1.9	2.3	3.3	4.5	4.4	2.6	3.0	5.3
K20	0.70	0.32	0.42	0.27	0.38	0.35	0.25	0.34
P205	2.60	2.31	1.11	1.73	0.87	0.84	0.95	1.13
ZR	421	437	289	370	332	226	236	366
Y	90	59	57	56	46	64	57	58
SR	153	159	185	316	245	141	116	267
RB	7	3	4	<3	4	4	5	<3
ZN	154	109	149	165	120	140	115	119
CU	60	107	35	27	29	46	54	105
NI	24	<15	<15	<15	< 15	<15	<15	<15
CR	18	<15	<15	<15	17	16	16	<15
U	5	5	<5	<5	<5	<5	6	<5
тн	<5	<5	<5	<5	<5	<5	<5	<5
QRZ	2	12	_	11	-	6	-	14
CHL	6	6	_	-	-	-	-	8
AME	53	33	58	31	18	46	37	23
BIO	-	-		-	-	5	-	-
GNT	17	32	13	20	33	11	27	11
PLG	18	17	21	37	45	32	26	44
TIT	4	-	-	-	-	-	-	-
CPX	_	-		-	-	-	1 1	_

K_STK	950B3b	954F1n	955D1g
TEUFE	3868.04	3882.36	3886.19
5102	51.4	51.1	54.9
TIO2	2.05	1.66	1.42
AL203	13.4	15.9	16.0
FE203	16.61	13.94	11.34
MND	0.26	0.22	0.18
MGO	2.10	1.89	1.50
CAD	7.18	6.82	5.91
NA2D	4.2	5.1	6.3
K20	0.23	0.93	0.93
P205	1.64	1.07	0.81
ZR	341	436	354
Y	65	56	57
SR	259	345	292
RB	<3	8	10
ZN	135	147	136
CU	31	117	18
NI	<15	<15	<15
CR	<15	<15	<15
U	<5	<5	<5
тн	<5	<5	<5
QRZ	13	7	6
CHL	2	3	-
AMF	27	46	28
BIO		-	3
GNT	29	7	6
PLG	29	37	57

Tab. B.4.3: RFA- und RDA-Analysen von Granatiten, Hornblende-Gneisen und Epidot-Amphibolit.

	84020				
K_SIK B	00020	946A1a	954C1d	K_STK	914A1dK
TEUFE 3	626.42	3858.50	3879.33	TEUFE	3733.21
5102	48.6	53.0	60.7	SID2	44.9
TIO2	1.95	1.48	0.77	TIO2	3.56
AL203	15.1	15.4	15.3	AL203	13.2
FE203	11.65	9.12	5.70	FE203	15.84
MND	0.18	0.13	0.07	MND	0.21
MGO	5.67	4.23	1.28	MGO	5.27
CAD	8.61	7.44	3.46	CAD	9.27
NA20	3.3	3.6	6.4	NA2D	3.3
K20	1.00	1.24	0.89	K20	0.42
P205	0.32	0.29	0.21	P205	0.48
ZR	195	205	287	ZR	205
Y	44	44	36	Y	42
SR	218	201	240	SR	305
RB	4	22	12	RB	6
ZN	103	84	78	ZN	157
CU	43	28	<15	EU	18
NI	33	26	<15	NI	17
CR	125	107	17	CR	33
U	<5	<5	<5	U	<5
тн	<5	<5	<5	тн	<5
QRZ	5	11	17	QRZ	-
CHL	4	4	3	CHL	B
AMF	53	31	14	AMF	47
BIO	-	2	-	BIO	-
GNT	-	5	-	GNT	5
PLG	38	47	67	PLG	29
PRH	-	-	-	EPD	8
				PRH	-
				TIT	3

Tab. B.4.3: Fortsetzung.

Abb. B.4.22: Metabasite im TAS-Diagramm (Le Maître 1984); AUG = Augengneise (3775.6-9 m, vgl. Kap. B.4.5), P = plagioklasreiche, leukokrate Gneislage (3703.9 m, vgl. Kap. B.4.4).

Abb. B.4.24: P2O5-TiO2-Diagramm nach RIDLEY et al. (1974).

Abb. B.4.25: P2O5-Zr-Diagramm nach WINCHESTER & FLOYD (1976).

Gänge im Gabbro gehandelt haben. Ähnlich hohen Fe-Gehalt wie die "Granatite" hat auch der Epidot-Amphibolit. Die Hornblende-Gneise haben z.T. einen etwas weniger basischen Chemismus.

B.4.2 Quarz-Feldspat-Mobilisate in den Metabasiten

bis mittelkörnige Mobilisate sind fein-(< 5 mm) Quarz-Ihre Ausbildung ist sehr Feldspat-Anreicherungen. variabel: sie bilden teils konkordante, teils diskordante Lagen, teils unregelmäßig begrenzte Schlieren. Einige Mobilisate sind andere foliiert. Zu diesen Mobilisaten gehören massig, auch die Meta-Aplite und Pegmatoide, die in Kapitel B.4.6 und B.4.7 beschrieben sind.

Bei Kernmarsch 953 (3877.3 m) treten quarzarme Mobilisate mit bis zu 2 cm großen, idiomorphen Hornblenden auf (Abb. B.4.26). Die Zwillingslamellen der bis zu 5 mm großen Plagioklase (bis 5 mm) sind verbogen. Die Korngrenzen sind meist suturiert oder zeigen feinkörnige Rekristallisate. Die idiomorphen Hornblenden haben z.T. idiomorphe Plagioklase eingeschlossen, die ihrerseits kleine Biotit-Einschlüsse aufweisen (Abb. B.4.27). Die Plaqioklas-Einschlüsse sind verzwillingt, eine Rekristallisation an Korngrenzen ist nicht zu beobachten.

Abb. B.4.26: Quarz-Feldspat-Mobilisate mit großen Hornblenden (HBL) in Amphibolit, KST 953F2rK, 3877.3 m.

Abb. B.4.27: Hornblende(HBL) mit Plagioklas(PLG)-Einschlüssen (▲ = Biotit) in Quarz-Plagioklas-Mobilisat, DS 953F2rK, 3877.28 m, //N.

Die Variabilität der leukokraten Mobilisate geht wahrscheinlich auf eine unterschiedliche Genese zurück. Neben primär magmatischer Genese zur Zeit der Gabbro-Intrusion muß mit einer Mobilisat-Genese zur Zeit des Hochdruck-Granulitfazies-/Eklogitfazies-Stadiums, des Amphibolitfazies-Stadiums und der späten, niedriggradigen Überprägung gerechnet werden.

B.4.3 Meta-Ultramafitite

Heterogener, teilweise Serpentin-reicher Chlorit-Amphibol-Fels

Von 3716.7 - 3720.2 m tritt der einzige, größere Meta-Ultramafitit-Körper unterhalb 3500 m auf. Ein zwischengeschalteter grobkörniger Meta-Gabbro (3717.5 - 3717.8 m) teilt den Körper in zwei Teile. Drei Dünnschliff-Beispiele machen die makroskopisch kaum zu erkennende Heterogenität deutlich:

- (1) Dünnschliff 911B1j (3716.92 m): das Gestein besteht im wesentlichen aus einer wirrstrahligen Matrix (um 500 μm) aus hellgrüner Hornblende mit einem farblosen Klino-Amphibol-Saum und Chlorit. Um 5 mm große, rekristallisierte Hornblende-Großkristalle mit fleckiger Durchstäubung mit Opakmineralen werden als magmatische Gefüge-Relikte gedeutet.
- (2)Dünnschliff 911F1ahK (3719.51 m): Das Gestein wird durch 5-10 mm große, poikilitische Klinopyroxen-Porphyroklasten charakterisiert, die randlich von hellbrauner bis hellgrüner, pargasitischer Hornblende verdrängt werden (Abb. B.4.28). Der Klinopyroxen und chloritisierter Biotit sind sehr reich an feinstkörnigen Ilmenit-Einschlüssen. Die poikilitischen Einschlüsse in den Porphyroklasten sind Pseudomorphosen nach Olivin und bestehen aus einem Talk-Amphibol-Kern, Serpentin und einem grünen Schicht-Silikat. Den Großteil des Gesteins nehmen feinstkörnige, symplektitähnliche Chlorit-Hornblende-Aggregate ein, die teilweise so um Kerne aus Amphibol oder Serpentin angeordnet sind, daß sie an Pseudomorphosen erinnern (Abb. B.4.29 u. B.4.30). Um 50 um große braune Spinell-Körner werden von einer inneren Corona aus Cr-reichen Magnetit und einer äußeren Corona aus Magnetit umgeben (Abb. B.4.31 u. B.4.32). Mineral-Analysen aus diesem Gesteine sind in Tab. B.4.4 wiedergegeben.
- (3) Dünnschliff 911E1ad (3718.76 m): Farblose Klinoamphibole (um 800 µm lang) sind in diesem Typ in die Foliation eingeregelt. Daneben sind eine Reihe von Strukturen zu beobachten, die auf Pseudomorphosen schließen lassen:

Serpentin 5

250 µm

Abb. B.4.28: Übersicht über einen typischen poikilitischen Klinopyroxen-Porphyroklasten mit Serpentin-Pseudomorphosen nach Olivin. Die Punkte der Mikrosonden-Analysen sind markiert. Serpentinreicher Meta-Ultramafitit, PS 911FlahK, 3719.5 m, //N.

hellgrüne

Hornblende

6

Abb. B.4.29: Übersicht über das Gefüge des serpentinreichen Meta-Ultramafitits mit Pseudomorphosen-ähnlichen Texturen. Serpentinrei. Meta-Ultramafitit, PS 911F1ahK, 3719.5 m, //N.

Abb. B.4.31: Die braunen Spinelle in dem serpentinreichen Ultramafitit werden von einem inneren chromreichen Magnetit und einem äußeren, chromfreien Magnetit umgeben. Serpentinreicher Meta-Ultramafitit, PS 911F1ahK, 3719.5 m.

Abb. B.4.30: Die feinkörnige, symplektit-ähnliche Chlorit-Amphibol-Matrix im Detail. Serpentinreicher Meta-Ultramafitit, PS 911FlahK, 3719.5 m, //N.

Abb. B.4.32: Mikrosonden-Profil über einen braunen Spinell-Einschluß in Ilmenit. Der braune Spinell wird durch einen schmalen Saum aus chromreichem Spinell vom Ilmenit getrennt. Die Cr-Zonierung ist hier deutlich von solchen Spinellen verschieden, die nicht in Ilmenit eingeschlossen sind Abb. B.4.31). Serpentinreicher Meta-Ultramafitit, PS 911FlahK, 3719.5 m.
Amphibole							Magnetil	t, Chromit	, Spine	11, Ilm	enit					Schichts	likate				
GANT - Sel	hr hellgrü x-Großkris h-Einschlü hr hellgrü	ner Amphi tall. De sse ner Amphi	bol, verdrängt v r Amphibol führt bol der Matrix, t	on Rand her de selber auch r größeres Korn	n poikil undliche	itischen Serpen-	9HGN 11HGN	= Magnet) = Magnet)	t neben t, netz	Graphi fõrmig	2					3grün = 1	irŭne Pl nit Serpe m poiki	hyllosi entin d	likat, ie rundl v-Großby	das zus ichen E	ammen inschl.
13Anf - sel	hr hellgr rwachsen.	üner Amph Dieser "S	ibol der Matrix, ymplektit" ist H	symplektitähn auptbestandtei	lich mit 1 der Mat	Chlorit rix.	14SPI 15MGN	= Zentrun = chromre	icher P	aunen 5 agnetit	pinells -Saum u	mit Ma m braun	gnetitsa en Spine	um 11-Eins	chluß,	4grün = 12CHL =	rie 3 hlorit,	der	zusammer	mit 1	3 Amf.
Alle drei	Amphibole	sind parg	asitische Hornbl	enden.			16MGN	= Magneti	t-Saum	l um brau	nen Spi	nell-Ei	nschluß.	am Auß	enrand		lie symp.	lektitä Hauptbe	hnliche standtei	Verwac 1 der M	hsung atrix.
1 CDX = [r]	ischer. kla	arer Cpx.	reliktischer Tei	I sines nothi	litiechen	Groß-	17MGN	= zwische	in 15MGN	und 16	MGN					5Serb =	erpenti	chlor)	licher 5	inschlu	æ
2 Cpx = Cpr	istalls (E K desselbe hschlüssen	n Großkri	e aus Serpentin- stalls aber sehr	Aggregaten) reich an winz	igen, op	aken	20SPI 21SPI 19ILM	= Zentrun = Rand de = großer	des br s braun Ilmenit	aunen S en Spin , mit b	pinell- ell-Ein raunem	Einschl schluss Spinell	usses in es in gr -Einschl	uß, Mn-	Ilmenit menit reich	8Talk =	px-Großl	Pseudom kristal der Ma	orphose) 1 trix	in poi	kilit.
Analyse	6Amf	TAmf	1 3 Amf	Analyse	1 Cpx	2 Cpx															
5102 2102	43.57	45.17	43.20	Si02	52.76	52.11										Analveo	Jaria	Annin	Injet	Kenn	07-11
A1203	15.90	13.55	16.29	Ti02	0.21	0.64	Analyse	9MGN	IMGN 14	SPI 15M	GN 16MG	N 17MGN	20SPI 2	11SPI 19	ILM	no I vanu	-	10 164	TUNPT	diaco	VIPIO
Cr 203	0.09	0.07	0.05	Cr 203	1.62	3.37	0070								1	S102	44.70	35.36	30.99	44.27	59.44
MnO	0.10	0.14	0.21	Feo	3.73	4.39	Ti02	60.0	0.04 0	.01 0.	0.0 60	7 0.18	0.01	0.02 0	.00	A1203	8.42	12.38	18.18	0.59	1.85
NiO	0.04	0.06	0.02	Mno	0.12	0.16	A1203	0.02	0.02 43	.30 0.	78 0.0	3 0.23	41.73 4	2.66 0	.01	Cr 203	0.31	0.54	0.00	0.01	0.00
MgO	16.41	17.32	16.94	OTH	15.95	15, 89	Cr 203	0.02	0.00 20	.75 15.	85 1.4	8 11.08	20.71 1	8.87 0	.09	FeO	14.01	19.28	7.87	1.07	4.12
Ca0	10.70	11.01	21.6	CaO	21.12	19.23	MnO	93.24	0 00 0	. 23 75.	0. 19 1.0	2 80.10	23.67 2	5.00 40	.42	NiO	10.0	01.0	0.14	17.0	0.03
K20	0.15	0.10	0.09	Na20	0.46	0.69	Nio	0.07	0.18 0	.10 0.	0.0 0.0	9 0.14	0.12	0.12 0	00.	MgO	23.47	20.22	29.26	36.06	29.33
Summe	96.45	96.31	96.74	Summe	10.01	00.00	ZnO	00.00	0.00	.35 0.	87 0.0	2 0.43	0.42	0.84 0	.00	CaO	0.28	0.54	0.09	0.02	0.01
55	6.260	6 492	6.204		10.00	66 . 1 6	CaO	0.04	0.09 0	00 00	16 0.0	1 0 01	10.13	9.12 0	. 28	K20	0.02	0.02	0.02	0.01	0.02
Al	1.741	1.509	1.796	Aliv	0.000	0.000	Na20	0.02	0.00	.01 0.	03 0.0	2 0.02	0.01	0.01 0	00	Summe	91.52	88.79	86.68	88.36	94.98
Fe3+	ł	i	E.	25	1.998	1.954	K20	0.00	0.00 0	.00 00.	01 0.0	0 0.09	00.00	0.01 0	.01						
Ţ,				A1 75	0.072	0110	Summe	93.52	93.21 99	.70 94.	36 92.8	3 92.86	97.23 9	1.42 99	. 79						
Zmns	8.000	8.000	8.000	Cr	0.012	0.024	Ti	0.001 (.001 0.	0.0 000	11 0.00	2 0.005	0.009 0	.017 1.	032						
AI	0.953	0.788	0.962	Fe3+	0.000	0.000	Al	0.001	0.001 1.	477 0.0	35 0.00	1 0.011	1.460 1	495 -							
F	0.041	0.037	0.010	Mn	0.004	0.005	Cr	0.001	.000 0.	475 0.4	80 0.04	5 0.341	0.486 0	- 444 -							
Fe3+		0000	0 000	Ni	0.000	0.001	1 43	100.1	. 986 0.	04/ 1.4	94.1.44	6 1.635	0.035 0	0.026 0.	000						
M	3.514	3.710	3.626	Mg	0.900	0.888	anc	166.1	1 566.	6'T 666	8/ 1.99	6 1.993	1.990 1	982 1.	032						
Fe2+	0.482	0.458	0.397	Ca	0.857	6.77.9	Fe2	1.002	1.003 0.	564 0.9	44 1.00	0 0.974	0.552 0	.595 0.	856						
Mn	£. 5	5	λ.	EN X	0.005	0.050	6 W	0.001	0.003 0.	429 0.0	00.0 0.00	3 0.005	0.448 0	.404 0.	110						
SumY	5.000	5.000	5.000	Sum	4.000	4.000	Zn	100.0	0 000.0	007 0.0	25 0.00	210.012	000.0	- 018 -	201						
				V course			Sum	1.003	1.007 1.	001 1.0	13 1.00	4 1.007	1.010 1	.018 0.	968						
Mg				Jadei t	1.184	619.2															
Fe2+ Mn	0.222	0.314	0.470	TiTsch	0.606	1.837															
G	1.647	1.566	1.496	CaTsch	1.915	4.426															
Na	0.119	0.103	0.009	Enterh	9 634	72.366															
SumX	2,000	2.000	2.000	Wollast	0.000	0.000															
Ca			1	Fe2/FM	0.116	0.134															
Na K StimA	0.787 0.027 0.814	0.7125	0.017	Tal	b. B.	4.4:	Mikros	onden	-Ana	lysen	Non	Kli	IVGON	oxen	Ampł	ni bol e	u				
				un 91	d ar lFlah	ndere	n Miner 719.5 m	alen.	des	serpe	entin	reic	hen	Meta	-Ultra	amafi	ŝ				

Tab. B.4.4: Mikrosonden-Analysen von Klinopyroxen, Amphibolen und anderen Mineralen des serpentinreichen Meta-Ultramafits 911FlahK (3719.5 m).

- B 51 -

- (b) Chlorit-Klinoamphibol-Aggregate mit Erzstaub
- (c) Chlorit-Talk-Aggragate
- (d) groβe Aggregate aus Opakmineralen (u.a.Ilmenit) + Klinoamphibol + Serpentin + Talk
- (e) Serpentin-Aggregate
- (f) Opakmineral-Aggregate

Die beiden vorliegenden chemischen Analysen der Kernstücke 911B1j und 911E1ad sind im Gegensatz zum Modalbestand sehr ähnlich (Tab. B.4.5, vgl. VON GEHLEN et al. 1990).

<u>Geringmächtige Meta-Ultramafitit-Lagen und -Linsen</u>

Hornblendite

Kurz unterhalb des oben beschriebenen großen Meta-Ultramafitit-Körpers treten noch um 5 cm große Linsen als Einschluß in Amphibolit auf: der Einschluß in Kernstück 912B4bK (3722.05 m) ist ein Hornblendit, der chloritisierten Biotit und sehr wenig Plagioklas führt. Der Chlorit-Hornblendit-Einschluß im Kernstück 912D4gK (3723.80 m) ist reich an Opakmineralen. Der Kontakt zum einschließenden Meta-Gabbro ist reich an Pseudomorphosen nach Granat. Die unmittelbare Regrenzung des Einschlusses gegenüber dem Meta-Gabbro bildet eine schmale Plagioklas-Quarz-Lage, die reliktisch Einschlußreichen Granat (mit Rutil-Einschlüssen) führt. In ihrer che-Zusammensetzung (Tab. B.4.5) ähneln diese beiden mischen Proben den Meta-Gabbros und sind mit SiO2-Gehalten knapp über 45 % auch nicht ultrabasisch.

Klinopyroxenite

In Granat-reichen Amphiboliten ("Granatit") treten bei Kernmarsch 939 (3830.90 m) zwei max. 2 cm mächtige, feinkörnige Schlieren mit dunklem Saum auf (Abb. B.4.33). Die feinkörnigen Schlieren haben ein Interngefüge aus Lagen von teilweise in Hornblende umgewandelten Klinopyroxenen (Salit, Jd3) und deutlicher deformierten Hornblende-Quarz-Lagen. Weiterhin sind Opakminerale und Apatit häufig. Die Hornblenden in den Schlieren sind blaß-grün. Der dunkle Saum zum Amphibolit besteht aus den gleichen oliv-grünen Hornblenden wie im einschließenden Amphibolit.

Im Kernstück 917B1d (3748.4 m) treten maximal 3 cm groβe, hellgrüne, lappig-buchtige Meta-Ultramafitit-Schlieren mit dunkelgrünem Saum auf. Sie werden von einem Biotit-reichen Granat- Klinopyroxen- Hornblende- Plagioklas- Gestein eingeschlossen. Der hellgrüne Kernbereich besteht aus diablastisch verwachsenen Klinopyroxen-Amphibol-Körnern, etwas Quarz und wenigen Körnchen Rutil und Ilmenit, jeweils mit Titanit-Saum. Der makroskopisch dunkelgrüne Saum der Schlieren besteht aus Hornblende.

K_STK	911B1j	911E1ad
TEUFE	3716.78	3718.60
SI02	43.0	43.9
TIDZ	0.66	0.70
AL203	7.6	6.5
FE203	12.34	12.56
MND	0.21	0.15
MGO	26.01	27.48
CAD	5.20	5.09
NA2D	0.2	0.5
K20	0.10	0.10
P205	0.04	0.05
ZR	53	55
Y	15	16
SR	28	68
RB	7	11
ZN	94	75
CU	16	25
NI	637	639
CR	1523	1473
U	<5	<5
тн	<5	<5
QRZ	-	_
CHL	30	29
AME	70	54
PLG	-	-
SRP	-	12
TALK	-	6

Tab. B.4.5: RFA- und RDA-Analysen Meta-Ultramafititen.

Abb. B.4.33: Meta-Ultramafitit-Linse(UMA) in Granat-Amphibolit, KST 939A1a, 3831.0 m.

Ultramafitite

In der oberen Metabasit-Abfolge (1160 - 1610 m) kommen ähnliche hellgrüne Klinopyroxenit-Schlieren mit dunkelgrünem Saum vor (KEYSSNER et al. 1988: B30 ff)

B.4.4 Granat- und Hornblende-führende, Plagioklas-reiche Gneise

In den feinkörnig-dichten Amphiboliten treten zwischen 3652 -3654 m zentimetermächtige Einschaltungen eines feinkörnigdichten, leukokraten Plagioklas-Gesteins auf, das sehr straff eingeregelte Granat- und Hornblende-Lagen enthält.

Es handelt sich bei diesen Gesteinen vermutlich um ehemalige leukokrate Lagen oder Quarz-Plagioklas-reiche Gänge, die mit ihrem Rahmengestein deformiert und metamorph wurden.

Der straffe Lagenbau fehlt in Schnitten senkrecht zum Linear; die mafischen Lagen zeigen hier eine flaserige Einregelung. Die Anordnung der Minerale bildet annähernd ein stengeliges ab. Mikroskopisch bestehen die leukokraten Lagen Gefüge aus vollständig rekristallisiertem, feinkörnigem Plagioklas. Die dunklen Lagen bestehen aus feinkörnigem Granat, der in Bahnen perlschnurartig angeordnet ist, oder aus feinkörnigen Hornblende-Lagen, die von einem Saum feinkörniger Granate um-Die Hornblende-Lagen schlossen werden. führen vereinzelt Klinopyroxen (Abb. B.4.34). WEBER et al. (1989) rekonstruierten aus den dunklen Lagen das finite strain-Ellipsoid der HTmylonitischen Verformung und gaben Achsenverhältnisse (X:Y:Z) von 50:3:1 an, also ausgeprägt prolate Verformung (Streckung).

Chemisch unterscheiden sich diese Gneise durch hohe SiO₂/Al₂O₃ – und sehr niedrige K₂O/Na₂O-Verhältnisse von allen anderen Gneisen (Abb. B.2.6, Tab. B.4.6).

Ähnliche leukokrate Plagioklas-Gesteine sind bei Kernmarsch 907 (3695 m) und 908 (3704 m, Abb. B.4.35) im Amphibolit eingeschaltet. Sie erscheinen nicht so stark deformiert und haben wechselnde Gehalte an Hornblende und Granat.

B.4.5 Augengneise

In der Metabasit-Strecke treten bei 3773 - 3776 m, 3792 m und 3840 - 3846 m Hornblende- und Biotit-führende Gneise mit häufigen, bis 1 cm großen Feldspat-Augen auf. Diese Augengneise werden als geringmächtige, SiO₂-reiche, späte, aber noch prä-metamorphe Intrusionen in die Metabasit-Einheit gedeutet. Die Granat-, Hornblende- und Biotit-Gehalte sind stark wechselnd. Im Hangenden und Liegenden sind Übergänge zu fein- bis mittelkörnigen Amphiboliten bzw. Granat-Amphiboliten und eine Abnahme der Größe und Anzahl der Feldspat-

Augen-0	Sneise		Plg-Gneise	MTA-Apli	te
K_STK	921G1ae	922A15	908F1oKI	878H16d	880A1b
TEUFE	3775.63	3775.92	3703.92	3595.97	3598.18
SID2	60.4	66.2	73.2	75.2	78.8
TID2	1.01	0.60	0.14	0.11	<0.05
AL203	16.9	16.3	15.7	13.5	12.9
FE203	7.06	4.07	0.91	1.11	0.38
MND	0.11	0.06	0.02	0.02	0.04
MGO	2.10	1.31	0.56	0.67	<0.10
CAD	4.07	4.14	4.01	1.64	1.26
NA20	4.4	4.7	6.3	5.4	5.2
K20	1.50	0.81	0.54	0.81	1.55
P205	0.27	0.16	-	-	-
ZR	428	272	32	28	46
Y	43	28	7	31	38
SR	171	176	153	168	87
RB	28	14	9	9	11
ZN	98	42	<20	20	<15
CU	18	43	<15	<15	<15
NI	15	<15	<15	<15	<15
CR	40	27	<15	<15	<15
U	<5	<5	<5	<5	<5
тн	12	10	<5	9	5
QRZ	29	27	26	39	42
CHL	4	3	1 <u>-</u> 1	2	-
BID	6	6	-	-	4
GNT	-	-	_	-	—
PLG	61	63	61	59	54
			AMF 3	-	-
			PRH 10		

Tab. B.4.6: RFA- und RDA-Analysen von Hornblende-führendem Biotit-Augengneisen, Plagioklas-reichem Gneis, und Meta-Apliten.

Abb. B.4.34: Klinopyroxen(CPX) mit Hornblende(HBL)- und Granat (GNT)-Saum, Plagioklasreicher Gneis, DS 898C3g+L, 3654.47 m, //N.

Abb. B.4.35: Gefaltete plagioklasreiche Gneis-Lagen in Amphibolit, KST 908F10K, 3703.86 m.

beobachten. Eine straffe Foliation ist Augen zu nur in feinkörnigen Hornblende- und Biotit-reichen Bereichen ausgebildet. Die meist dunkelgrünen Hornblenden sind maximal 800µm groß, feinkörnige Rekristallisate erreichen 200µm. Die braufeinkörnigen Biotite (bis 200µm) bilden ein offenes nen, Teilgefüge. Mitunter treten sie als Querglimmer auf. Ouarze und Plagioklase der Grundmasse sind durchweg feinkörnig rekristallisiert. Die ehemals rundlichen Feldspat-Augen sind extrem in der Foliations-Ebene gestreckt und haben ein feinkörnig rekristallisiertes Interngefüge. Häufig sind die Rekristallisate im Kern der Augen stärker saussuritisiert als am Rand und zeigen daher eine ursprüngliche, vermutlich magmatische Zonierung (An-reicher Kern) an.

Kernmarsch 921G und 922A (3775 - 3776 m) sind die Gneise Tm Biotit-reich und hornblendearm und haben eine deutlicher erhaltene Augentextur. Die Augen sind größer (bis 1cm) und nicht so stark gestreckt wie in den hangenden und liegenden Bereichen im Übergang zum Amphibolit. Das Streckungsgefüge ist in senkrecht und parallel zur Streckung orientierten Schnittlagen deutlich sichtbar (Abb. B.4.36). Die Kerne der Plagioklas-Augen sind saussuritisiert und teilweise rekristallisiert (Abb. B.4.37). Sie sind meist undeutlich verzwillingt und haben häufig Einschlüsse von Calcit, Muskovit, kleinen Serizitschüppchen und Quarz. Die An-Gehalte liegen nach Mikrosondenmessung bei 17 bis 33% (Tab. B.4.7). Häufiger in den Plagioklas-Augen Domänen zu beobachten, die auf sind ehemalige Schachbrettalbite nach Kalifeldspat hinweisen. An den Rändern der Plagioklas-Augen treten feine Myrmekit-Säume

Abb. B.4.36: Augengneis, Schnitt senkrecht (links) und parallel (rechts) der Lineation.

Abb. B.4.37: Saussuritisiertes, teilweise rekristallisiertes Plagioklas-Auge von Biotit umflasert, in feinkörnig-rekristallisierter Quarz-Plagioklas-Matrix, DS 921G1ae, 3775.76 m, //N (links), +N (rechts).

7 Granat-Zentrum (Alm. 56, Spess. 2, Pyrop 15, Gross. 27) 1 alterierter Biotit in der feinkörnigen Gneis-Matrix 2 chloritisierter Biotit in der feinkörnigen Gneis-Matrix 6 groβ., xenomorph. Hellglimmer-Einschl. in Plag. (Si=6.31) 3 Calcit-Einschluß in Plagioklas

Analyse	7	1	2	6	3
SiO2	38.30	32.15	27.32	46.06	0.01
TiO2	0.08	2.04	0.31	0.25	0.01
A1203	21.24	17.63	17.72	32.78	0.01
Cr203	0.00	0.00	0.01	0.03	0.00
FeO	25.32	24.27	30.19	2.21	1.83
MnO	0.92	0.27	0.28	0.01	0.95
NiO	0.00	0.01	0.04	0.00	0.00
ZnO	0.05	0.00	0.11	0.00	0.00
MgO	3.69	9.00	10.26	0.97	0.46
CaO	9.50	0.12	0.13	0.00	61.80
Na2O	0.01	0.05	0.00	0.34	0.00
K20	0.01	5.07	0.31	10.22	0.02
Summe	99.12	90.60	86.67	92.86	65.08

An-Gehalte von verschiedenen Plagioklasen des Augengneises 921Glae nach Mikrosonden-Analysen:

- (1) Mitte des Auges = An17 und An33
- (2) rekristallisierter Saum
- des Auges = An17(3) Myrmekit = An33
- (4) feinkörnige Gneismatrix = An31

Tab. B.4.7: Mikrosonden-Analysen von verschiedenen Mineralen des Granat-Biotit-Augengneises 921G1ae (3775.76 m).

aus Quarz und Plagioklas auf, die ebenfalls das Produkt der Umwandlung ehemaliger Albite sind (Abb. B.4.38). Auβerhalb der Myrmekit-Säume ist der Plagioklas feinkörnig rekristallisiert. Die Neukörner sind häufig verzwillingt.

Klasten und Streckungshöfe zeigen meist symmetrische Gestalt; einzelne, andeutungsweise asymmetrische Klasten gehören dem sigma-Typ an und geben keinen einheitlichen Schersinn wieder. Zeilenquarze wie in Abb. B.4.39 sind in Schnitten parallel zur Streckung deutlich sichtbar. Die "aspect ratios" (Verhältnis von längster zu kürzester Achse) ergeben Werte von 10 und mehr. Feinkörnige Rekristallisation ist in den Zeilenquarzen nicht zu beobachten; eine diskontinuierliche Kornvergröberung (Temperung) könnte die primäre Rekristallisation überprägt haben. Die häufig senkrecht zur Längserstreckung der Zeilenquarze auftretenden Korngrenzflächen sind stark suturiert.

Am Liegendkontakt der Augengneise bei 3776 m zu feinkörnigem Amphibolit (DS 922A1cI) sind die Plagioklas-Augen wie im Hangenden wieder stärker gestreckt. Das Interngefüge ist meist vollständig rekristallisiert. Im Inneren der Augen sind reliktisch größere, nicht saussuritisierte Plagioklase mit zahllosen kleinen Quarz-Einschlüssen (bis 20 μ m) und Myrmekit-Saum vorhanden.

Abb. B.4.38: Plagioklas-Auge mit Myrmekit-Saum, DS 922A1b //L, 3776.32 m, +N.

Abb. B.4.39: Zeilenquarze mit suturierten Korngrenzen, DS 922A1b //L, 3776.32 m, +N.

Im Kernmarsch 940 (3841 m) und 941 (3844 m) treten Augengneise im Wechsel mit feinkörnigen Amphiboliten auf (Abb. B.4.40). Diese unterscheiden sich von den hangenden Augengneisen (3773 - 3776 m) zum einen durch eine Hornblendereichere Matrix, zum anderen ist in den durchweg rekristallisierten Feldspat-Augen das Auftreten von Mikroklin und Meso-Antiperthiten neben Plagioklas charakteristisch. Das bis gleichzeitige Auftreten von Meso- bis Antiperthiten und Mikroklin indiziert das Vorhandensein von zwei voneinander unabhängigen Alkali-Feldspat-Phasen. Die Meso- bis Anti-Hochtemperatur-Bildung perthite sind das Produkt einer (Entmischung unterhalb einer druckkorrigierten Solvus-Temperatur) bei granulitischen Bedingungen. Die triklinisierten Kali-Feldspäte (Mikroklin) sind bei niedrigeren Temperaturen (Amphibolit-faziell?) gewachsen und verdrängen dabei randlich die Meso- bis Antiperthite. Altkorn-Relikte sind in den Augen nicht mehr vorhanden (Abb. B.4.41). Myrmekite sind sehr selten und klein.

Die Augengneise bei 3840 - 3846 m sind mit Wellenlängen im dm-Bereich offen verfaltet. Die Auswertung des Formation-Micro-Scanner-Tools (FMST, durch HIRSCHMANN) deutet auf eine weitspannige offene Falte im Bereich der beiden Augengneise bei 3775 und 3840 m hin. Es handelt sich bei beiden Vorkommen wahrscheinlich um eine durchgehende, verfaltete Augengneis-Lage. Im hangenden Vorkommen (3775 m) lassen ehemalige Schachbrett-Albite auf eine metasomatische Umwandlung von primären, magmatischen Kalifeldspäten unter Bildung von Myrmekiten und poikilitischen Plagioklasen mit Quarz-Einschlüssen schließen. Das liegende Vorkommen (3840 m) zeigt eine andersartige metasomatische Umwandlung. Man findet in den rekristallisierten Augen Meso- bis Antiperthite, die von triklinisierten Kalifeldspäten (Mikroklin) randlich bis vollständig verdrängt werden.

Die chemischen Analysen von zwei Proben, die aus dem Bereich des hangenden Augengneises stammen, sind in Tab. B.4.6 aufgeführt. Trotz der beobachteten Mikroklin-Gehalte ist der K₂O-Gehalt gering, während Na₂O deutlich über 4 Gew.-% liegt.

B.4.6 Meta-Aplite

Leukokrate, mittelkörnige Meta-Aplite mit körneligem bis lagigem Gefüge treten als ca. 30 cm mächtige Einschaltungen in mittelkörnig-flaserigem Amphibolit zwischen 3711.8 – 3712.4 m und 3713.1 – 3713.4 m auf. Sie erreichen zwischen 3714.8 – 3716.1 m eine Mächtigkeit von 1.3 m (Abb. B.4.42). Der Mineralbestand umfaßt hauptsächlich Quarz und Plagioklas; Glimmerminerale treten weitgehend zurück.

Abb. B.4.45: Pegmatoid mit Quarz(QRZ) und großen Feldspäten (FDS), KST 928D1mK, 3807.45 m.

Abb. B.4.46: Poröses, mit Epidot mineralisiertes Quarz-Feldspat-Pegmatoid, KST 947C1d, 3861.26 m.

Abb. B.4.42: Deformierter Meta-Aplit, Liegendkontakt zu feinkörnigem Amphibolit, KST 911B1f, 3716.19 m.

Im Gegensatz zu den oben beschriebenen Augengneisen sind die Meta-Aplite diskordant. Ihr primär-magmatisches Gefüge ist nur lokal duktil deformiert: papierdünne, dunkle Lagen, die Plagioklas-Klasten umfließen, bestehen aus zerriebenem und vollständig chloritisiertem Biotit. Zwischen den bis zu 5 mm großen Plagioklasen liegen xenomorphe Quarz-Aggregate mit feinkörnig-granoblastischem Kornverband. Eine häufig 211 beobachtende Sau Aritisierung der Plagioklas-Kerne zeichnet Zonarbau der Plagioklase nach (Abb. B.4.43), der vereinen mutlich magmatischen Ursprungs ist. Neben häufigen, feinen Serizitschüppchen werden in den Plagioklasen vereinzelt Titanit, Allanit, Apatit und Muskovit als Einschlüsse heobachtet.

In der liegenden Einheit (3714.8 - 3716.1 m) geht das makroskopisch richtungslos-körnige Gefüge kontinuierlich in ein flaserig-lagiges Gefüge über. Die Plagioklas-Klasten zeigen zunehmend augenförmige Gestalt und werden von Quarzlagen umflasert.

Der Lagenbau der Meta-Aplite läßt sich mikroskopisch auf eine duktile Deformation unter erhöhten Temperaturen zurückführen. Die Plagioklas-Klasten sind randlich feinkörnig rekristallisiert ("core and rim structure", Abb. B.4.44). Die rekristallisierten Plagioklas-Körner (bis 100 µm) sind meist serizitisiert sowie mitunter verzwillingt. Rekristallisierter Quarz ist in feinkörnigen Zeilen angeordnet und umflasert die Plagioklas-Klasten. Die Quarz-Rekristallisate sind grobkörniger als die Plagioklas-Rekristallisate (Abb. B.4.43). In Bereichen schwächerer Verformung dominiert Subkornbildung

Abb. B.4.43: Zonierter Plagioklas in feinkörnig-rekristallisierter Quarz(QRZ)- und Plagioklas(PLG)-Matrix, deformierter Meta-Aplit, DS 910E1vII, 3715.16 m, +N.

Abb. B.4.44: Boudinierte(BOU) Plagioklase in feinkörnigrekristallisierter Quarz-Plagioklas-Matrix, deformierter Meta-Aplit, DS 910E1vII, 3715.16 m, +N.

gegenüber Rekristallisation. Die Plagioklas-Klasten sind vereinzelt leicht asymmetrisch geformt und gehörem dem sigma-Typ (PASSCHIER & SIMPSON 1986) an. Zusammen mit Quarzflasern deuten sie ein s-c-mylonitisches Gefüge (LISTER & SNOKE 1984) mit abschiebendem Bewegungssinn an (DS 910E1vII).

Der Grad der duktilen Deformation ist in den Meta-Apliten zwischen 3711 und 3716 m unterschiedlich. Die ausgeprägte Rekristallisation von Plagioklas und Quarz ist auf das tiefste Vorkommen beschränkt. Sonst überwiegt semiduktile bis kataklastische Deformation.

Die zwei geringmächtigen Meta-Aplite bei 3595 und 3598 m unterscheiden sich durch ihr primär-magmatisch feinkörniges Gefüge und Mikroklin- (3598 m) bzw. Antiperthit- (3595 m) Führung von den liegenden Vorkommen. Ihre chemische Zusammensetzung ist in Tab. B.4.6 aufgeführt.

B.4.7 Pegmatoide

Pegmatoide sind grobkörnige (> 5mm) teils gangförmige, teils schlierige, kaum deformierte Quarz-Feldspat-Gesteine.

Im Kernmarsch 928 (Abb. B.4.45) ist ein 40 cm mächtiger, diskordanter Pegmatoid-Gang mit buchtig-schlierigen Kontakten zum Nebengestein erbohrt worden. Die bis zu 2 cm großen Plagioklase sind verzwillingt und haben zahlreiche feine Serizit-Schüppchen eingeschlossen. Undulöses Auslöschen sowie vereinzelte Knickbänder sind typisch. Quarz zeigt suturierte Korngrenzen. Rekristallisation ist nicht zu beobachten.

Bei Kernmarsch 947 (Abb. B.4.46) treten ähnliche, aber stark poröse Pegmatoide auf. Die Feldspäte und insbesondere die Quarze sind vermutlich durch hydrothermale Lösungen an-, bzw. weggelöst worden. Die hydrothermale Überprägung führte zu einer Epidot-Mineralisation. In diesem porösen Bereich kam es zu einem Fluid-Zufluß aus dem Gebirge (siehe Kap. C. Geochemie).

B.4.8 Quarz-Gänge

Im Kernmarsch 923 (3784.5 m) treten vertikale, bis zu 1.5 cm mächtige Quarz-Gänge auf (Abb. B.4.47). Die Gänge sind diskordant zu lagigen Quarz-Feldspat-Mobilisaten und versetzen diese. Jüngere, mit Epidot mineralisierte Scherflächen versetzen die Quarz-Gänge. Das Interngefüge der Gänge indiziert eine duktile Deformation. Die c-Achsen der Quarze sind vorzugsweise parallel zur Erstreckung des Ganges orientiert. Weiterhin zeigen die Quarze eine Formvorzugsregelung mit der langen Achse ebenfalls parallel zum Gang (Abb. B.4.48). Jüngere Deformation führte zur Bildung von Subkörnern, suturierten Korngrenzen auf Grund strain-induzierter Korngrenzwanderung und undulösem Auslöschen.

Abb. B.4.40: Amphibolit (AMP) in Wechsellagerung mit Hornblende-Biotit-Augengneisen. KST 940F1q, 3840 m.

Abb. B.4.41: Mikroklin(MKL) - und Mesoperthit(MEP)-reiches Auge in Biotit-Hornblende-Augengneis, Granat(GNT), DS 941C1dK, 3845.69 m, //N (links), +N (rechts).

Abb. B.4.47: Steile Quarz-Gänge (QRZ) parallel zu Quarz-Feldspat-Mobilisaten(MOB) in Amphibolit, KST 923D1oK, 3784.55 m.

Abb. B.4.48: Deformierter Quarz-Gang. Quarze haben Formvorzugsregelung und kristallographische Orientierung (c-Achsen, ->) parallel zum Gang (GNG), an Scherfläche (VSH) versetzt, GS 923D10K, 3784.55 m, +N.

B.5 Erzmineralisation

Der sulfidische und oxidische Erzmineral-Anteil der durchteuften Gesteine liegt zumeist in Form kleiner, disseminierter Einzelkörner oder in verwachsenen Aggregaten vor. Kleine sulfidische Minerale werden in der Nachbarschaft leukokrater Mobilisate (Quarz, Feldspat) und entlang kleiner, verheilter Klüfte oder entlang Scherbahnen beobachtet. Eine erhöhte Sulfidführung ist häufig an alterierte Gesteinsabschnitte (mit Chlorit, Epidot) gebunden. Makroskopisch sind zumeist nur die Hauptphasen Pyrit, Pyrrhotin, Chalkopyrit sowie Ilmenit zu identifzieren.

Die magnetischen Anomalien bei 3590, 3720, 3800 und 3884 m werden sowohl durch Magnetit als auch durch Pyrrhotin verursacht (siehe Kap. D: NRM und Suszeptibilität).

Nur wenige Erzminerale zeigen lithologie-bezogene Abhängigkeiten. Viele treten als "Durchläufer" sowohl in den Gneisen als auch in den Metabasiten auf. In den Metabasiten dominieren die oxidischen Erzminerale.

Der Opakmineralbestand setzt sich aus den <u>sulfidischen Mine-</u> <u>ralen</u>

Pyrit	(PYR)	Pyrrhotin	(FES)	Markasit	(FEK)
Chalkopyrit	(CPY)	Sphalerit	(ZNS)	Galenit	(PBS)
Molybdänit	(MOS)	Millerit	(MIL)	Pentlandit	(PNT)
Ag-Pentland.	(APN)	Kobaltit	(COG)	Siegenit	(SIE)
Polydymit	(PDY)	Arsenopyrit	(ASS)		

und den <u>oxidischen</u> Mineralen

Ilmenit	(ILM)	Rutil	(RUT)	Anatas	(ATS)
Leukoxen	(LEX)	Magnetit	(MGN)	Hämatit	(HAM)
Goethit	(GOE)				

zusammen. Ilvait (ILV), ein Ca-Fe-Silikat mit der Zusammensetzung CaFe²⁴₂Fe³⁺ (OH/O/Si₂O₇), wurde verschiedentlich unterhalb 3800 m beobachtet. Graphit (CCC) ist in den Gneisen weit verbreitet und nur untergeordnet in den basischen Einheiten vorhanden.

Mikrosondenanalysen in Aachen (Institut für Mineralogie und Lagerstättenlehre der RWTH) und in Bayreuth (Bayer. Geoinstitut) halfen bei der Identifizierung einiger Erzminerale und gaben Aufschluß über den Mineralchemismus der untersuchten Opakminerale.

In der Tabelle B.5.1 ist die Verteilung der Erzminerale semiquantitativ aufgezeigt. Aus Darstellungsgründen werden die stets nur sehr untergeordnet auftretenden Erzminerale in der Tab. B.5.1b zusammengefaβt. Die Abkürzungen entsprechen der in KTB Report 87-1 aufgeführten und ergänzten Kürzelliste.

Tab. B.5.1a: Semiquantitative Erzmineralverteilung

[1										[-			
21.05.90			DUB		004	DHE	anu	010	0.0.4	MAG		01100	100	1.0.9	MON		77.17	000
Lithologie	Schliff-Nr.	Teufe	PYR	LEK	LR2	PNT	CPY	ZNS	PBS	HUS	ILA	KUT	ATS	PRY	HGH	DAB	TPA	LLL
			1.500								1.							
SIL BIO GNS, PKO, LIG	858E2q	3509.67	++	(+)	20010		* .			-	+		+	+				+
ALT klein verfält., chlor. GNS	859B2f	3513.33			(+)		(+)	(+)		(+)	+			+				+
GNS, FBI LIG, FKO	862D3rK	3524.84	+		+	(+)	(+)	(+)		(+)	+	(+)	(+)	(+)				(+)
SIL BIO GWS, PKO, MOB REI	865D2t	3536.71	++		(+)		(+)	(+)		(+)	0		(+)					++
GNS, LIG, KRG, LEU, VGR	865F2ac	3537.83	(+)				(+)	(+)	(+)	(+)	8		(+)					++
MUS REI GNS MKO z.T. MOB	867E9g	3546.78	(+)		(+)	(+)	(+)	(+)		(+)	(+)	(+)	(+)	(+)				(+)
GNS VGR	867G9o	3548.79	+	(+)	(+)		(+)	(+)			(+)	(+)	(+)	(+)				+
CNS DSK LEU NOB BND	871E1a	3557.29	(+)	(+)	++	(+)	(+)	(+)	(+)		+	(+)						(+)
WIG PHD CNS HOP LTC	873G1v	3567.96			+	(+)	(+)	(+)			+							(+)
CHC 90 cm yor 1HD	874F1n	1572 71	(+)		(+)	(+)	(+)	(+)	(+)		(+)	(+)						
CNG as 20 as you Obergand an IND	97AP1cF	2672 21	1+1		(+1	3.1	(+)	(+)	X-54		+	(+)						
GNS Ca. SU CM VOI ODergang zu Anr	074619	2672 62	111		(+)	1+1	1+1	1+1	(+)			(+)						
SBA, SUL IN SBG	074018	3575.03	(*)		111	(+)	111	111	111			1.1	(+)					3
GNT AMP	6/JA4d	3575.40	100		.T	1.3	1.1	1+1			11		1.1	1.1				
GNT AMP	875B10r	35/6.31	(+)		(+)	(+)	(+)	(+)			1	*). G	(+)	(+)				
SER GNT REI AMP	875C21T	3577.51			+	(+)					++	+	(+)					1
GNT AMP, MKO	876A2f	3580.91	?		+	(+)	(+)	(+)		(+)	++	*	(+)		?			*
GNT AMP FKO	876B2ac	3581.95	(+)		(+)	(+)	(+)	(+)			+	+						+
GNT AMP MKO	876C2ae	3582.29	(+)		+		(+)	(+)			+	(+)						
GNT AMP MKO	876B2ar	3584.60			+	(+)	(+)				++	+	(+)					
GNT AMP mit ORZ PDS BND	877A3a	3585.04	(+)		+	(+)	(+)				+	+	(+)					1
GNT AND MKO	877A31T	3585.42	(+)		+	(+)	(+)				++	+						
WAT HILL HAVE	877B3a	3586.57																
CHT IND MEO. HOR CHI	877030	3587 78	(+)		++		+	(+)			+	+						
CHE AND MEN IPT PAL	877839	1588 82	1.17		4.1		(+)	(+)			+	(+)						
CAN AND	07703-	3599 05	141		1+1	[+]	(+)	1+1		(+)	44	(+)						(+)
GNT ANP	07782-4	3500.75	111	1.1	171	141	111	(1)		(1)	1	111	141	(+)				1.1
GHT AHP; FES LSE, HOB, CHL	0701111	3505.19	(+)	(+)	1.1		**	(1)			111	(*)	(1)	141				
MTA APL, Kandbereich mit Blo Shi	DQ188180	3595.97	101		(+)			(+)				1.1	1.1	(+)				
NTA APL, PKO	880Ala	3598.10	(?)		(+)		1.1				1+1	(+)	(+)					
GNT AMP GKO	881A3C	3600.46	(+)		+	(+)	(+)				1	+						
AMP POL, KLU MIN, CHL, MOB	881B4e	3600.87	(+)		+	-					+		9.5					
AMP SPF FOL	882E4aK	3604.71	+		+	(+)	(+)				+	+	(+)	{+}				
GNT AMP	882F4aT	3605.80									1							
MTA GAB, GKO	882H4bc	3606.96	+		+	(+)	(+)	(+)			+	(+)						
MTA GAB, GKO	882H4bf	3607.03	+		++	(+)	(+)	(+)			+	(+)						
SBG, MKO/PKO, QRZ-PYR-LSE	883F1p	3611.50	++	(+)	++		(+)	(+)			+	(+)						
MTA GAB TLW SWA FOL, Corona-Textur	884B1e	3613.40	+	(+)	+	(+)	(+)				++	(+)						
NTA GAB LEU MKO	885C3n	3620.21	+		+	(+)	(+)				++	+		+				
GHT REI AMP PKO bis MKO, MOB REI	888A3c	3628.00			+		(+)				++	+						
GWT AMP PKO bis MKO. MOB REL. SBA	888B3iK	3628.96	+		+		+	(+)			+	(+)						
PRO-WEO CHT AND	888F3nK	3631.93	(+)				(+)	(+)			+	(+)						
CNT IND VCP CHI Gangchen netzförnig	88981d	3634.63	+	+	(+)		+	(+)	(+)		+	+			(+)			
CRC PLC WYA	8896108	3638 54	1+1	101	(+)		(+)	1.1			+	+						
IND PRO LIC Flachlingande CRI	890110	3639 21	(+1		+		(+)	+			++	+						
CUM IND DEC	890B1e	1610 57	(+)	(+)	1+1	(+)	1+1	(+)	(+)		+	+						
BTO CHO CHI :- CHM IND	901315 T	3644 67		6.1	(4)	1.1	141	1.1			+	+						
BIU GNS SHL IN GNT AMP	071814 1	10.44.04	(+)		1+1		(+)	(4)				141						
UNI ANY FAU DIC	071810	3645 50	111		1	111	111	(4)				+						
GNT AMP, SER FRU	891B10	3040.00	[+]		÷.	(+)	(+)	1.1	1.1		1.							
GNT AMP, PKO DIS MKO	891E12	3648.40	+		+		1	(+)	(+)		Ť	<u>.</u>						
GNT AMP, FKO bis MKO	898A2a	3652.84	(+)		+		(+)				+	*						
GNT AMP, PKO bis MKO, KLU, LEU MOB	899C1h	3659.59	(+)		+		(+)	2.12			++	+						
GNT AMP, FKO bis MKO, FLS, ALT	900A1a	3663.10	(+)		+	(+)	(+)	(+)			+	+						
GNT AMP, PKO bis MKO, SER GNT REI	900B7a	3664.94	+		+	{+}	+				++	+						
GNT REI AMP, MOB	902F1n	3674.38	(+)		+	(+)	+	+			+	+						
GNT AMP, MKO, PLS, MOB	903A1fT	3676.50	(+)		+	(+)	+	(+)			+	(+)						
AMP, PKO DIC	907D1hK I	3696.61			+		(+)				+	+						
AMP. FKO	907D1hK III	3696.84	+		+	(+)	+	+	(?)		+	+						
GNT AMP, MKO PLS, SBA, LEU GNG, SUL	907G1u	3699.44	+		(+)		+	(+)	- eranî		+	+						
AMP, MKO LIG FLS, steilst, KAT SBA	908B1dK	3700.88	(+)		(+)		(+)				+	+	+	+				
LEU MTA APL in MKO UDT PLS AND	910A1bE	3711.87	(+)				(+)	(+)	(+)									
WFO LERI FPC MP1 1PL in 1MP	911A1h	3715 20	1+1						1.57									
NOL DU ANU GIA ALU IU AGE	911811	1716 82	1	(+)	(+)		(+)				++	+	+		(+)			
nin ona, suis nach oberg, aus ant	JIIDI J	5110.08	1	1.1	1.1		19											

Tab. B.5.1a: Fortsetzung

				-		-												
21.05.90				_											Man			
Lithologie	Schliff-Nr.	Teufe	PYR	FEK	FBS	PNT	CPY	ZNS	PBS	MOS	ILM	RUT	ATS	PRY	MGN	HAH	ILV	CCC
MTA UMA	911D1z	3718.10	+		(+)		(+)				+		2		+			
MTA UMA, FKO-MKO CHL HBL REI, chne MOB	911B1ad	3718.65	+		(+)		(+)				+	(+)	+	(+)	++			
MTA UMA, 3 m mächtig,	911FlahK	3719.51	+				(+)				+	+	(+)		++			÷
MKO AMP, MOB REI, SWA FOL	912A4aKI	3721.75	+		(+)	(+)	(+)	(+)	?	(+)	++	+	(+)	(+)				
MKO AMP ohne HOB	912A4aKII	3721.88	(+)	(+)	(+)	(+)	(+)					+						
MKO AMP mit MOB SHL SWA FOL	912B4bK	3722.32	(+)	(+)	(+)	(+)	(+)			- 1	(+)	(+)		(+)				
AMP, MKO PLS	912B4cK	3722.50	(+)				(+)					+			(?)			
MKO AMP mit wenig MOB SHL	912D4gK	3723.91	(+)	(+)	(+)	(+)	(+)				+	+						
BIO GNT HBL GNS. MKO bis FLS	912F4p	3725.30	+		÷	(+)	+	(+)			+	+						
MKO AMP, mehrere MKO MTA APL benachbart	913B1c	3727.67	+				+				++		+					
MKO AMP, mehrere MKO MTA APL benachbart	913B1e	3727.68	+				+				++	+						
MKO VGR ANP	913G1af	3732.23	+				+				++	+						
AND GLOBE HRI.	914A1a T	3732.90	+				(+)				++	+	+	+				
LRI MOR in MEO AMP wit MEO MTA API.	91441a IT	3732.90					3.21				+	+	(+)	(+)				
NKO LEU CHE DEL IND	914G1u	3737.79	+		(+)		(+)	(+)		- 1	+	(+)						
WEO LEU CHE RET AND SEA	915A1aK	3738.96	+		+		+	(+)			+	+	(+)	(+)				
MYO IPH MOR PRI CHP PRI AND	916B1f	3743.14			+		+				++	+		1.5				
HEO CHI POL CHT IND	916610	3746.99	+		+	(+)	+				+	(+)						
HEA REL CIR	918410	3752.98	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	+	+	(+)	(+)				
NEO CHE AND DEN ELU	918F1F	3757 44	1.1	13	1.1		1.1	1.01	1.01	1.1	+	+	+	+				
HEO CHE IND	010010	3761 07	+		+		+				+	+			+			
	919G1n	3764 48	+		020		+				+	+	(+)	(+)				
an Augongroid (Orthon) in MT1 C18	922R1n	3780 96	÷		(+)		+	(+)		- 1	+	+	+	1.1				
S CH AUGENGNEIS (OICHO-) IN HIA OND	02511h	3703 41			1.1			(.)			4		+		+			
CHE IND REA WELL ONL, LOD, ROD KOL	02611b	3798 75	(+)				(+)	(+)	(+)		++	+	(+)		(+)	(+)		
CNR SHD CIII and FIII	926C1gTT	1800 19	(+)		(+)		(+)	(+)	6.1	(+)	++	++			(+)	(+)		
AND MTH CNI TIM UCD POD FLU	926C1g1	3800 55	++		1.1		+	1.1			+	+	Ŧ		(+)	(2)		
AMP, 111 CAA UM 10A, VOK, DED KDO	02881f	3806 18					1			- 1	+	4	+		6.4	(.,		
AMP STA GAD, DPD GAG MIL CAD ADO	920B11	3808.10	**				1				+	+	+	+	+	+	+	
CHE DID DEL CHE DED ADT	UC 3813	3813 00			1		÷			-	+	1	÷.	4	(+)			
CAN FUR HEL CHE FOR POR PET	VC3814	3814 00	4		1+1		(+)			- 1	+	+	+	2	(+)			- 1
GNT FUK HDL GND, DFD KDI	UC2015	3015.00	1		1+1		(+)				1	1	1		1.1			
GNT ARY BIL UKG FUS HUD	CVSED	3015.00	(2)		1		1+1	(+)		- 1	1	3						4
TRA PHD	021021	2017 20	(+)		1+1		(1)	1+1	2		1	(+)			(+)		(+)	
UNT ARP	731D6j	3818 71	111		1+1		(+)	(+)		1+1	++	+			(.)		1.1	
TAU - HAU UNI KDI AHT	036B1FF	3826 58			(+)		(+)	r_{i}		1.1	+	1	(+)		(+)	(2)	(2)	
PRO - DIC GRI ANT, DED KDI CHCI. KDO	036B1cF	3826 87	(+)		+	(+)	1+1	(+)		- 1	++	1+1	1.1		6.1	(.,	1.1	
CHE AND SIL ONE ADD NON	UC3828 T	3828 00	1.1		1+1	1.1	(+)	1.1		(+)	+	+	(+)		(+)			
CAM THE USA DE AUF	UC3828 IT	3828 00			1.1		(+)			2.1	+	1	(.)		1.7			
UNI AMY, UKA FDS NUD	03780aT	3820 34					(+)	(2)		- 1		1	(+)					
TAU - MAU GHI KDI AMT, DDU MUD	02780aTT	1027.34	141		1		141	151			11	1	(+)					
FKU - MKU SDK GNI KDI AMP	93789911	2020 00	111		0		(+)				11	1	1.1		[+]			
	103030	2022 00	(+)		1+1		(4)	(+)		- 1	11	1			1.1			(+)
DEN MEN CHE DET MEL CIE	0308155	1815 10	(+)		+	(+)	1+1	14			+	+						
TRU - MRU UNI KEL MIN UND CHO	QAOR1a	3837 96	111		4	1+1	(+)				1+1	+						
DIO GRA LAG IL UNI DIO LOD GRA	041Clck	3844 43	1		1+1	1.1	(+)				3.22				(+)			
HAU DIU GNS MIL FDS DS1, WDG MIL FRO ANF	CYES	3847 50	1		1.1		1			- 1	+	+			(.)	+		
DIO UDD AND WIT HERO FEICUITEU	UC3850	3850 00	5				1											
DAU DIG MDA CAM IND IIC NUS	QAACSE	1856 36	+		(+)		4				+	+			+			
FAU KLS IBA GAI AHF, DAG HUD	044261	3050.50	(+)		1+1		141					+			(+)	(2)		
FUL HIA GAD HIC HH GIOPEL FUS DSI	047816	1860 08	+		1.1		(+)					<i>.</i>						
APP DEA ME BOD CHC wit CHL	040110	1867 12	++				+				++	+			+	(+)		
TAU GRI KEI AHY, DYD GRU BIL SUD	CYEOR	3001.32	11		1+1		(+)				1	1			+	1.1		
AMP, THE GAT FUK, BED COD KGI, DED KUU	051125	2071 65	44		1.1		111				1	1+1			÷	+		
TAU GRI ARY, ICIDE DED FIL HIR ADO	05212f#	1872 14	4.1		(+)		1+1			1+1	+	+		+	(+)	(+)		. 1
SUL UNG DEV KDI UNI AHF, Name SDA	053105	1872 70	1.1		1.1		1.1			1.1		1		5	1.1	1.1		
ADU, FAU, AFFLIU	053122	3872 71	++		1						+	(+)	+	+	+			
NEO CHE IND SIL HOR CUI	9530218	3875 28	+				(+)				+	+			(+)			
THO URI ANT HIL NUD SHU	953P2=F	3877 21	1+1		(+)	(+)	1+1	(+1			(+)	(+)			1.1			
HAL LER CHA BIO DEL CHG - MAU CHA IMD	954014	3879 50	+	(+)	++	1.1	(+)	(+)			+	(+)				?		
MAO CAM FMD WIF GILL MOP	054P1p	3882 62	(+)	1.1	44		141	(+)			1	(+)						
NAO UNI ANY MIL DUD, NUD	955112	3883 60	+	(+)	++		+	(+)			+	1.1						
UNO LUS UNI AUL	JJJAIG	5003.00	,	14				19										

Tab. B.5.1a: Fortsetzung

21.05.90 Lithologie	Schliff-Nr.	Teufe	PYR	PBK	PBS	PNT	CPY	ZNS	PBS	HOS	ILM	RUT	λTS	LEX	MGN	HYR	ILV	ccc
MKO PLS GNT AMP	955B11K	3887.94			÷		(+)	(+)			+	(+)			+			
BIO HBL GNS, GNT FUR, selten EPD	VC3889	3889.00	+		+		(+)				++	(+)	(+)					
AMP mit HBL GNS	SK61	3913.30	+		+	(+)	+	(+)			+	+			+			
GNT AMP, Z.T. EPD FUR	SK63	3932.00	(+)		+	(+)	(+)				+	ŧ						
AMP mit wechs. GNT FUR, EPD FUR	VC3940	3940.00	+		(+)	(+)	(+)	(+)			+	+						(+)
GNT ANP	SK65	3972.00	(+)		(+)	(+)	(+)	(?)			+	+						
FOL MTA GAB bis AMP ohne GNT	SK 66	3974.50	(+)		(+)		(+)				(+)	(+)						
	VC3980	3980.00	+		(+)		(+)		(+)		+					(+)		(+)
AMP	VC3988	3988.00	+		+		(+)				+	+						2.8
	VC3990	3990.00	(+)		(+)		(+)				(+)	(+)			(+)			(+)
	VC3995	3995.00	(+)		(+)	(+)	(+)			- 1	(+)	(+)						(+)
AMP	VC3997	3997.00	+		(+)		(+)				ŧ	+						+
AMP und selten HBL GWS, BPD FUR	SK71	3997.00	(+)		+	(+)	(+)				+	+						
AMP	VC3998	3998.00	(+)		(+)	(+)	(+)			(+)	(+)	(+)						(+)
	VC3999	3999.00	(+)		(+)	(+)	(+)	?			(+)	(+)			(+)			(+)
AMP und selten HBL GNS, BPD FUR	SK72	3999.80	++				(+)	(+)			+	+	ŧ	+				
	VC 4000	4000.00	(+)	٠	(+)	(+)	(+)		?		(+)	(+)						(+)

Tab. B.5.1b: Semiquantitative Verteilung der nur selten und untergeordnet auftretenden Erzminerale

		1			T		1	
21.05.90								
Lithologie	Schliff-Wr.	Teufe	Mineral	Menge	Mineral	Menge	Mineral	Menge
						-		
					1			
GNS, 80 cm vor AMP	874F1p	3572.73	UMI	(+)				
PKO GNT AMP, Nähe CAL CHL KLU SBA	928E1nK	3808.74	GOB	(+)	1			
MKO BIO GNS mit PDS BST, WLG mit PKO AMP	941C1cK	3844.43	MIL	(+)				
WSL LEU GNT BIO HBL GNS - MKO GNT AMP	954C1d	3879.50	GOB	(+)				
GNS, LIG, KRG, LBU, VGR	865F2ac	3537.83	APN	(+)				
GNS DSK LEU HOB BND	871B1g	3557.29	UWI	(+)	UMI	(+)		
MUS FUR GNS, UDT LIG	873G1v	3567.96	COG	(+)				
GNT AMP: PES LSE, MOB, CHL	877F3ad	3589.74	COG	(+)				
MKO MTA GAB	918A1c	3752.98	SIE	(+)	MIL	(+)	NIS	(+)
GNT AMP, SUL auf KLU	926C1qII	3800.39	UMI	(+)	GOE	(+)		
AMP mit wechs. GNT FUR, EPD FUR	VC3940	3940.00	MIL	(+)	UMI	(+)		
and the second second second second second	VC3990	3990.00	MIL	(+)	VIO	(+)	PDY	(+)
	VC3995	3995.00	MIL	(+)				
GNS, PBI LIG, PKO	862D3rK	3524.84	COG	(+)				
HTA UNA	911D1z	3718.10	MIL	(+)				
NKO AMP, NOB REI, SWA POL	912A4aKI	3721.75	MIL	(+)	SIE	(+)		
NKO AMP ohne MOB	912A4aKII	3721.88	MIL	(+)	UMI	(+)		
MKO AMP mit wenig MOB SHL	912D4gK	3723.91	MII	(+)	UMI	(+)		
MKO AMP mit MOB SHL SWA POL	912B4bK	3722.32	UNI	(+)	UMI	(+)		
INO HBL in QRZ MOB in MTA AMP	953F2rK	3877.31	UNI	(+)				
FOL MTA GAB bis AMP ohne GWT	SK 66	3974.50	HIL	?	SIB	(+)		
GNT AMP, PKO, MKO	926A1b	3798.75	MIL	(+)				
MTA UNA, kurz nach Öberg. aus AMP	911B1j	3716.82	MIL	(+)				
MUS REI GNS MKO z.T. MOB	867B9g	3546.78	APN	(+)				
GNT AMP, VGR, CHL Gängchen, netzförnig	889B1d	3634.63	MIL	(+) .	COG	(+) .	SIE	(+)

Pyrit und Pyrrhotin sind wie bisher abwechselnd die dominierenden sulfidischen Phasen. Pyrit findet sich in bis zu 1 mm idiomorphen Einzelkörnern häufig mit zahlreichen großen, silikatischen Einschlüssen in der Grundmasse der Gneise und Metabasite verteilt. An Scherbahnen gebundener Pyrit ist seltener idiomorph und teilweise zerschert. Pyrit bildet weiterhin kleine, xeno- bis hypidiomorphe Körner in der Gesteinsgrundmasse. Optisch homogene, idiomorphe Pyritkristalle sind in enger Vergesellschaftung mit Pyrrhotin zu finden (als Anlagerung und als Einschlüsse in Pyrrhotin, lokal mit einem Chalkopyrit-Saum zwischen Pyrit und Pyrrhotin). Chalkopyrit und Pyrrhotin bilden zweiphasige, cogenetische Einschlüsse in Pyrit, was auf eine Bildungstemperatur von 334 +/-17 °C (YUND & KULLERUD 1966) bzw. 328 +/-5 °C hindeutet (SUGAKI et al. 1975). Sie wurden auch bereits in den Berichten aus höheren Bohrabschnitten beschrieben. Als jüngere Verdrängungen des Pyrits bzw. als Rißfüllungen oder Anlagerungen werden Markasit, Chalkopyrit, Sphalerit, Galenit, Millerit und weitere Ni-Co-Fe-Phasen sowie Magnetit, Hämatit, Goethit und Ilvait beobachtet. In einem Metagabbro bei 3752.98 m (918A1c) finden sich Chalkopyrit und Pentlandit als Einschlüsse in Pyrit vergesellschaftet.

Erste mineralchemische Auswertungen von Mikrosondenanalysen ergeben, daβ Pyrit aus dem Metagabbro mit maximal 0.4 Gew.-% Ni keinen auffällig erhöhten Ni-Gehalt aufweist. Dagegen enthält Pyrit aus der Meta-Ultramafitit-Einheit bis 2.32 Gew.-% Ni. In einer Cuttingsprobe aus 3990 m (VC3990) tritt Pyrit mit Millerit (NiS), Violarit ((Ni,Fe)₃S₄) und Chalkopyrit in Paragenese auf (Abb. B.5.1). In diesem Fall baut Pyrit bis 6.67 Gew.-% Ni und 0.64 Gew.-% Co ein (Ni-Pyrit mit erhöhten Co-Gehalten).

In dem Gneisabschnitt oberhalb 3575 m treten leistenförmige Graphiteinlagerungen in Pyrit auf.

Mehrere Generationen von Pyrit werden durch Wachstumszonierung belegt. So wächst zelliger, jüngerer Pyrit auf optisch homogenem, älteren im Bereich von Gängchen und Scherbahnen auf (915A1aK, 3738.96 m; 936B1bK, 3826.58 m).

In einem feinkörnigen, dichten Granat-Amphibolit bei 3826.58 m (936B1bK) weisen zwei verschiedene Pyritgenerationen Chalkopyrit-, Pyrrhotin- und Magnetit-Einschlüsse auf. Beide Generationen werden von jüngerem, saumartigem Magnetit verdrängt.

Stellenweise zeigt Pyrit eine schwache bis deutliche Anisotropie.

Eine Verdrängung von Pyrit und Pyrrhotin durch Fe-Oxide (Magnetit, Hämatit und auch Goethit) bzw. die Ein- und Anla-

Abb. B.5.1: Kleines komplexes Aggregat aus Ni-Pyrit (hellgrau), in Violarit (grau) eingelagert, neben Millerit (wei β) und (grauem) Chalkopyrit (von links nach rechts) in einer Cuttingsprobe aus Amphibolit. (Anschliff VC3990, 3990 m, // N, Öl)

gerung von Fe-Oxiden und Ilvait in/an Pyrit und Pyrrhotin tritt unterhalb von 3800 m (Klüfte) verschiedentlich auf (928E1nK, 3808.74 m; VC3850, 3850 m). In einer Meta-Ultramafitit-Linse bei 3720 m wird Pyrit mit Chalkopyrit-Einschlüssen von Magnetit umsäumt. Zwischen 3867 und 3873 m nimmt die Pyritführung im Zusammenhang mit einer intensiven Epidotisierung der Amphibolite stark zu.

Pyrit, Pyrrhotin und auch Chalkopyrit werden als Reaktionsprodukte bei der Alteration von Ilmenit beobachtet (Abb. B.5.2). Pyrrhotin ist in den Metabasiten unterhalb 3573.5 m im Vergleich zu den überlagernden Paragneisen etwas häufiger anzutreffen. Er bildet xenomorphe bis hypidiomorphe Einzelkörner in leukokraten und mafischen gesteinsbildenden Mineralen.

Sowohl in den Paragneisen als auch in den Metabasiten treten in Pyrrhotin flammenförmige Pentlandit-Entmischungen auf. Randliche Verdrängungen durch Chalkopyrit und Sphalerit sind häufig. Auch Einschlüsse dieser beiden Minerale in Pyrrhotin (und umgekehrt) werden beobachtet. Chalkopyrit-Verdrängungen des Pyrrhotins erfolgen z.T. entlang Subkorngrenzen. Lokal wird Pyrrhotin durch lanzett- oder lagenförmigen Markasit verdrängt. Pyrrhotin ist auch mit jüngerem, saumartig aufgewachsenem Calcit vergesellschaftet (888B3iK, 3628.73 m). Im Paragneis bei 3557.79 m (871E1q) und in einem mobilisat-reichen Granat-Amphibolit (3883.60 m, 955A1a) stellt er eine jüngere Phase in Zwickeln und Rissen in gesteinsbildenden Mineralen dar. In der zuletzt genannten Probe wird der Granat-Amphibolit von zahlreichen mit Pyrit, Pyrrhotin und untergeordnet Chalkopyrit mineralisierten Klüften durchsetzt. Eine Dehnungstektonik äußert sich im mikroskopischen Befund in boudinierten (?) Minerallagen mit Verdrängungen durch Pyrrhotin (Abb. B.5.3). Jüngerer Pyrrhotin entsteht weiterhin (bei Schwefelangebot) aus der Alteration von Ilmenit zu Rutil, Anatas, Leukoxen und Titanit.

Eine deformationsbedingte Verzwilligung des Pyrrhotin zeigt beispielhaft mobilisat-führender Granat-Amphibolit bei 3674.38 m (902F1n).

Eine Probe aus dem Abschnitt mit wechsellagerndem Biotit-Hornblende-Gneis und Granat-Amphibolit bei 3879.50 m (954C1d) wurde mit "Ferrofluid", einem sehr feine Eisenpartikel führendem Kolloid belegt. Es lassen sich durch die variable Aufnahme des Ferrofluids auf der Pyrrhotin-Oberfläche ferrimagnetische und antiferromagnetische Bereiche differenzieren. Da nur der monokline Pyrrhotin ein magnetisches Moment zeigt, kann er durch die Belegung mit Ferrofluid leicht vom hexagonalen Pyrrhotin unterschieden werden (Abb. B.5.4/5). Mikrosonden-Analysen sollen eventuelle Verschiebungen im Fe:S-Verhältnis und damit in der Kristallstruktur der differenzierbaren Domänen aufzeigen.

In einem Ilmenitkorn aus 3721.75 m Teufe (912A4aK I, mobilisatreicher Amphibolit) könnte eventuell eine ältere Pyrrhotin-Pentlandit-Mineralisation konserviert sein. Der hexagonale Kornform zeigende Einschluß (Abb. B.5.6) ist ferrimagnetisch, wie die Belegung mit Ferrofluid gezeigt hat; seine Kristallstruktur ist somit monoklin. Die Entmischung von Pentlandit aus Pyrrhotin kann nach UYTENBOGAARDT & BURKE (1971) zur Umwandlung von hexagonalem zu monoklinem Pyrrhotin führen.

Pyrrhotin-Einschlüsse (auch mit Chalkopyrit verwachsen) in Granat können als Relikte einer älteren, eventuell primären Sulfidgeneration angesehen werden. Sie treten u.a. bei 3580.91 m (876A2f) und bei 3743.14 m (916B1f; Abb. B.5.7) auf.

<u>Chalkopyrit</u> und <u>Sphalerit</u> sind als jüngere Bildungen häufig miteinander verknüpft. Die Vergesellschaftung mit Pyrrhotin und Pyrit in Form von Einschlüssen und Verdrängungen sowie die Verdrängung von gesteinsbildenden Mineralen, durch Chalkopyrit wurde bereits erwähnt. In einem Pyritkorn in Metagabbro (3752.98 m, 918A1c) treten als Einschlüsse neben Chalkopyrit und Sphalerit weiterhin Galenit und Fe-haltiger

Abb. B.5.2: Ilmenit (hellgrau) mit jüngeren tropfenförmigen Pyrrhotin-Einlagerungen (wei β) und dunkelgrauem, dünnem Titanit Saum, mit randlicher Pyrrhotin-Anlagerung (wei β) in granat-reichem Amphibolit. (AS 933B1hK, 3818.71 m, // N, Luft)

Abb. B.5.3: Pyrrhotin (hellgrau) durchsetzt dunkelgraue, boudinierte(?), silikatische Minerale in Granat-Amphibolit. (AS 955A1a, 3883.60 m, // N, Luft)

Abb. B.5.4: Große xenomorphe, inhomogene Pyrrhotin-Aggregate werden von sekundären Fe-Oxiden auf Rissen durchsetzt; in Granat-Amphibolit-Hornblendegneis (AS 954Cld, 3879.50 m, // N, Luft)

Abb. B.5.5: Ausschnitt aus Abb. B.5.4 mit Ferrofluid belegt, es lassen sich deutlich ferrimagnetische (hell- bis dunkelgrau, schlierige) und antiferromagnetische (helle, schlierenfreie) Bereiche unterscheiden. (AS 954C1d, 3879.50 m, // N, Luft)

Abb. B.5.6: Sechseckiger Pyrrhotin-Einschluß mit kleiner Pentlandit-Entmischung in Ilmenit, der randlich z.T. symplektitartig von Titanit verdrängt wird; in mittelkörnigem Amphibolit.

(AS 912A4aKI, 3721.75 m, // N, Öl)

Abb. B.5.7: Rundliche, konservierte(?) Pyrrhotin-Einschlüsse in granat-reichem Amphibolit. (AS 916B1f, 3743.14 m, // N, Luft) Siegenit (Ni,Co)₃S₄ auf. Im gleichen Anschliff zeigt sich eine Verwachsung von Chalkopyrit mit Millerit (NiS). Chalkopyrit und Millerit finden sich bei 941C1cK (3844.43 m) in Pyrit, der von Magnetit umsäumt wird (Abb. B.5.8). Eine ausgeprägte Verdrängung des Chalkopyrits durch skelettartigen Markasit findet sich bei 3634.63 m (889B1d) in einem von chloritisierten Scherbahnen und Gängchen durchsetzten Granat-Amphibolit.

In der Nähe einer foliationsparallelen Scherbahn bei 3573.83 m weist ein Sphalerit-Mobilisat Chalkopyrit-Einschlüsse auf. Diese Einschlüsse könnten eventuell eine Chalkopyritähnliche, Zn-haltige Mischphase ("intermediate solid solution") darstellen (Abb. B.5.9), wie sie von FRIEDRICH et al. (1989) und KONTNY et al. (1990) aus einer linsenförmigen Erzmineralisation bei 396 m beschrieben wurde.

Markasit bildet eine junge Verdrängungsphase, die Pyrrhotin (z.B. VC3850, 3850 m), Pyrit (z.B. 955A1a, 3883.60 m; 884B1e, 3613.40 m) und Chalkopyrit (z.B. 889B1d, 3634.63 m) ersetzen kann. In dem Metagabbro bei 3752.98 m (918A1c), der Ni-Co-Fe-Thiosulfide führt, weist Markasit (wie Pyrit) mit 0.9 Gew.-% erhöhte Ni-Gehalte auf.

<u>Pentlandit</u> bildet in den Metabasiten und auch in den Paragneisen flammenförmige Entmischungen in Pyrrhotin aus. Hypidiomorpher Pentlandit findet sich angrenzend an Chalkopyrit als Einschluß in Pyrrhotin im Gneis bei 3524,85 m (862D3rK, Abb. B.5.10). In dem mobilisatreichen, Turmalinführenden Gneis bei 3546.78 m (867E9g) findet sich in einem glimmerreichen Abschnitt eine komplexe Mineralisation aus kobalt-reichem Pentlandit, Pyrrhotin, Chalkopyrit, Sphalerit und Silberpentlandit (Ag-Pentlandit) (Abb. B.5.11).

In dem Metagabbro bei 3752.98 m (918A1c) wurde erstmal in der Vorbohrung Pentlandit in Paragenese mit Pyrit (ohne Pyrrhotin) und Chalkopyrit angetroffen. Chalkopyrit und Pentlandit bilden einen cogenetischen, zweiphasigen Einschluβ in Pyrit (Abb. B.5.12).

<u>Galenit</u> tritt nur untergeordnet auf; er stellt eine jüngere Phase dar und ist häufig mit Chalkopyrit und Sphalerit verknüpft. Galenit bildet selten kleine xenomorphe Einzelkörner in der Grundmasse. Bei 3537.83 m (865F2ac) tritt er in stark alteriertem, leukokratem Sillimanit-Biotit-Gneis mit einer Fe-Ni-Cu-Ag-S-Mischphase in Chalkopyrit auf.

<u>Molybdänit</u> konnte als sehr untergeordnetes Mineral in zahlreichen Präparaten aus Paragneis- und Metabasit-Einheiten bestimmt werden. Er ist stets stengelig, mehr oder weniger gebogen ausgebildet und im Paragneis und in dem hangenden Teil der Metabasit-Serie stets mit Graphit vergesellschaftet. Leistenförmiger Molybdänit findet sich verschiedentlich in Graphitleisten eingeregelt (Abb. B.5.13).

Abb. B.5.8: Millerit(NIS)-Chalkopyrit(CPY)-Einschlüsse in Pyrit (PYR), der randlich von Magnetit (MGN) verdrängt wird; in Biotit-Gneis, der in Wechsellagerung mit feinkörnigem Amphibolit vorliegt.

(AS 941C1cK, 3844.43 m, // N, Öl)

Abb. B.5.9: Rundliche kleine bis sehr kleine, hellgraue Chalkopyrit-Einschlüsse ("ISS"?) in mittelgrauem Sphalerit-Aggregat, in stark alteriertem Sillimanit-Biotit-Gneis entlang einer foliationsdiskordanten Scherbahn. (AS 865F2ac, 3573.83 m, // N, Luft)

Abb. B.5.10: Verwachsung von Pyrrhotin (grau) und Chalkopyrit (hellgrau), an der Korngrenze ist Pentlandit (weiβ) einmal als Flämmchen und einmal als größeres, hypidiomorphes Aggregat eingelagert; in einem feinkörnigen strafflagigen Sillimanit-Biotit-Gneis.

(AS 862D3rK, 3524.84 m, // N, Öl)

Abb. B.5.11: Komplexes Sulfidaggregat aus Chalkopyrit (CPY), Pyrrhotin (FES) und Sphalerit (ZNS), in das Co-reicher Pentlandit (PNT) und Silberpentlandit (APN) eingelagert sind; in muskovitreichem, mittelkörnigem Gneis. (AS 867E9G, 3546.78 m, // N, Öl) <u>Millerit</u> wurde in diesem Berichtsabschnitt bisher in den Metabasit-Serien unterhalb 3575 m nachgewiesen. Das Nickelsulfid ist in Form von Anlagerungen und Einschlüssen mit Pyrit und/oder Chalkopyrit verknüpft (Abb. B.5.8). In der Cuttingsprobe VC3990 aus 3990 m Teufe sind Millerit (NiS), <u>Violarit</u> (FeNi₂S₄), Chalkopyrit und Ni-Pyrit (6.67 Gew.-% Ni, siehe unter Pyrit) einfach verwachsen (Abb. B.5.1).

In hypidiomorpher Kornform ist Millerit sowohl mit Pyrit (Abb.B.5.14) als auch mit <u>Siegenit</u> (Ni,Co)₃S₄ im <u>Metagabbro</u> bei 3752.98 (918A1c) paragenetisch verknüpft.

Ein hypidiomorphes <u>Kobaltit</u>-Korn in einem leukokraten Mobilisat in Granat-Amphibolit (877F3ad, 3589.74 m) enthält Einschlüsse aus Chalkopyrit und Pyrrhotin (Abb. B.5.15). Im Paragneis tritt das Mineral ebenfalls als hypidiomorphes Einzelkorn in der Nähe von Pyrrhotin mit Pentlandit, Chalkopyrit und Fe-reichem Siegenit auf (862D3rK, 3524.84).

<u>Arsenopyrit</u> wird in einem Mobilisat in den allanit-führenden Gneisen, im Übergang zu den unterlagernden Metabasiten bei 3572.73 (874F1p) vermutet. Er bildet eine einzelne hypidiomorphe Anlagerung an Pyrrhotin. Weitere, nur sehr untergeordnet bestimmte sulfidische Minerale sind <u>Siegenit</u> (918A1c, 3752.98 m) und <u>Polydymit</u> (VC3990, 3990 m).

Die aufgeführten Ni-Co-Fe-(Thio-)Sulfide sind in vielen Anschliffen in der Metabasit-Einheit vorhanden. Sie treten als sehr kleine Anlagerungen und Verdrängungen in Pyrit, häufig in Paragenese mit Chalkopyrit und seltener mit Galenit auf (zum Beispiel 918A1c, 3752.98 m); sie konnten anhand von Mikrosondenanalysen in einigen Proben zweifelsfrei identifiziert werden.

B.5.2 Oxidische Erzminerale

<u>Ilmenit</u> bildet neben <u>Rutil</u> das dominierende Erzmineral in den metabasischen Gesteinen. Während er in den Gneisen als sekundäre Bildung meist kleine (<30 μ m), leistenförmige Aggregate entlang von Spaltflächen von Glimmern ausbildet, finden sich in den Metabasiten primär gebildete, große, buchtige Individuen und Verwachsungen (meist >250 μ m). Umwandlungen und Verdrängungen des Ilmenit durch Anatas, Rutil und Leukoxen treten in den Gneisen wie auch in den Metabasiten auf. In den allanit-führenden Übergangsgneisen im Grenzbereich zu den Metabasiten bildet Ilmenit größere (> 250 μ m), stengelige und rundliche Kornformen mit randlichen Titanitaufwachsungen aus (874F1sK, 3573.31 m).

Eine alterationsbedingte, enge Vergesellschaftung des Ilmenits mit Rutil, Titanit und auch mit Sulfiden ist weit verbreitet. Den buchtigen bis tafeligen Ilmenitaggregaten in den metabasischen Gesteinen wächst fast stets ein unter-

Abb. B.5.12: Größeres Pyrit-Aggregat (weiß) mit cogentischen Pentlandit- (weißgrau) und Chalkopyrit-Einschlüssen (hellgrau) in mittelkörnigem Metagabbro. (AS 918A1c, 3752.98 m, // N, Öl)

Abb. B.5.13: Stengeliges Graphit-Aggregat (grau) mit ebenfalls stengeligem Molybdänit-Einschluβ (hellgrau), in lagigem, körneligem, stark alteriertem Sillimanit-Biotit-Gneis. (AS 865F2ac, 3537.88 m, // N, Öl)

Abb. B.5.14: Pyrit (PYR) mit Anlagerung aus hypidiomorphem Millerit (MIL) und Einlagerung von Chalkopyrit (CPY) und Pentlandit (PNT) in mittelkörnigem Metagabbro. (AS 918A1c, 3752.98 m, // N, Öl)

Abb. B.5.15: Hypidiomorpher Kobaltglanz (weiβ) enthält Einschlüsse aus Chalkopyrit (hellgrau) und Pyrrhotin (mittelgrau); tritt in einem Mobilisat in Granat-Amphibolit auf. (AS 877F3ad, 3589.74 m, // N, Öl) schiedlich starker Titanitsaum auf. Im Metagabbro bei 3620.16 m (885C3n) werden feine, symplektitartige Titanit-Leukoxen-Ilmenit-Säume an Ilmenit beobachtet (Abb. B.5 .16). Bei Ilmenit-Rutil-Kornverwachsungen findet sich dieser Saum ausschließlich an Ilmenit, wohingegen Rutil lediglich einen dünnen Titanitsaum aufweist.

Wenn jüngere Sulfidminerale (Pyrit, Pyrrhotin) zu Ilmenit benachbart auftreten (Abb. B.5.2), finden sie sich auch in einem Ilmenit-(Rutil)-Leukoxen-Titanit-Sulfid-Alterationssaum (888A3c, 3628.00; 9331B1hK 3818.71 m). Im sehr granatreichen Amphibolit bei 3577.21 m (875C21T), nahe dem Kontakt zu den Paragneisen, wird an Ilmenit-Rutil-Verwachsungen angelagerter Pyrrhotin von einem Titanitsaum umgeben. Weiter entfernten Pyrrhotin-Körnern fehlt dieser Saum.

Häufig tritt Ilmenit zusammen mit Titanit auch als Verdränger von größeren Rutilkörnern auf. Zusammengehörende Relikte ehemaliger größerer Rutile können manchmal durch ihre übereinstimmenden Zwillingslamellen identifiziert werden (875C12T, 3577.51; Abb. B.5.17). Eine stärkere Lamellierung des Ilmenits in einem Metagabbro bei 3613.40 m (884B1e) hängt mit seiner starken kataklastischen Überprägung zusammen (Abb. B.5.18/19).

Jüngere Gangmineralisationen mit Prehnit durchsetzen auch größere Ilmenitindividuen (914A1a I, 3732.90 m) in stark geklüftetem Amphibolit. In der Nachbarschaft zu einer halboffenen Kluft mit starker Sekundärmineralisation aus Epidot und Calcit nimmt die Alteration großer reliktischer Ilmenite noch zu (Granat-Amphibolit, 926C1g II, 3800.39 m). Hier tritt eine enge myrmekitartige Vergesellschaftung von Ilmenit und Fe- und Ti-reichen Phasen auf, die von Titanitsäumen umgeben werden (Abb B.5.20).

Ilmenit bildet bei 3639.23 m (890A1c) im Bereich einer flachliegenden kataklastischen Scherbahn ein 1 x 2 cm großes, linsenförmiges Aggregat. Alterationen zu Rutil sowie Titanitsäume sind stets vorhanden. Jüngere Sulfidphasen (Pyrrhotin, Sphalerit, Pyrit) sitzen Titanit auf, der gangförmig den Ilmenit durchschlägt.

Rutil ist in verschiedenen Variationen ausgebildet. Als ältere Phase, die häufig von Ilmenit und Titanit verdrängt wird, bildet er größere Körner mit flächigen, meist gelblich-braunen Innenreflexen und deutlich ausgeprägten Zwillingslamellen. Die jüngere Verdrängung aus Rutil, Leukoxen und Anatas (?), die Ilmenit ersetzt, ist sehr feinkörnig und zeigt weißliche "punkthaufenförmige" Innenreflexe.

Mögliche Hinweise auf eine Rekristallisation unter Gleichgewichtsbedingungen zeigen die 120°-Winkel-Gefüge (Abb. B.5.21) im Rutil bei 3721.88 m (912A4aK II).

Abb. B.5.16: Ilmenit (zentral) mit randlicher symplektitartiger Verdrängung durch Titanit und Leukoxen; oben links und unten rechts Rutil-Anlagerung mit einfacher randlicher Verdrängung durch Titanit in Metagabbro. (AS 885C3n, 3620.16 m, // N, Luft)

Abb. B.5.17: Reliktischer Rutil mit durchgehenden Zwillingslamellen wird von mittelgrauem Ilmenit (pleochroitisch, homogen) und dunkelgrauem Titanit verdrängt; auf Reaktionssäumen bildet sich Pyrrhotin (weiß) in granat-reichem Amphibolit. (AS 875C21T, 3577.50 m, // N, Öl)

Abb. B.5.18: Stark kataklastisch überprägter, lamellierter Ilmenit in Metagabbro. (AS 884B1e, 3613.40 m, // N, Luft)

Abb. B.5.19: Wie Abb. B.5.18; bei gekreuzten Nicols wird die engständige, deformationsbedingte Zwillingslamellierung deutlich.

(AS 884B1e, 3613.40 m, + N, Luft)

Abb. B.5.20: Ilmenit (homogen, randlich) enthält myrmekitartige Verwachsungen aus Fe- und Ti-reichen Phasen (verschiedene Grautöne), randliche Verdrängung durch Titanit in Granat-Amphibolit.

(AS 926C1gII, 3800.39 m, // N, Öl)

Abb. B.5.21: Rutil mit dünnem Titanit-Saum, zeigt Korngrenzen mit 120°-Winkeln; im Amphibolit. (AS 912A4aKII, 3721.88 m, // N, Öl)
Größere, wahrscheinlich ältere Rutile, für die eine Zwillingslamellierung charakteristisch ist, werden lokal von nadeligem Ilmenit durchsetzt. Diese Nadeln sind meistens einheitlich orientiert; sie wachsen vom Kornrand aus in die Rutile hinein, können aber auch separat im Rutilkorn auftreten. Diese Nadeln werden stellenweise (z. B. in sehr granatreichem Amphibolit bei 3577.51 m, 875C21T) durch eine deformationsbedingte Zwillingsbildung versetzt (Abb. B.5.22).

Ilmenit und Rutil werden auch als Einschlüsse in Granat beobachtet und stellen so eventuell eine konservierte, frühe Erzmineralbildung dar. Überwiegend <10 µm große rundliche, regellos verteilte Rutileinschlüsse weist Granat im Granat-Amphibolit bei 3605.80 m (882F4aT) auf. Ebenfalls in Granat-Amphibolit, bei 3664.94 (900B7a), sind Rutil- und untergeordnet Ilmeniteinschlüsse schnurartig in Granat orientiert (Abb. B.5.23). Im Sillimanit-Biotit-Gneis bei 3524.84 m (862D2rK) verdrängt Ilmenit in Granat eingeschlossene Rutilstengelchen.

<u>Magnetit</u> wurde in dieser Berichtsstrecke mit dem Übergang in die Meta-Ultramafitite bei 3716.82 m (911B1j) identifiziert. Das Mineral ist in einigen Anschliffen dieser Einheit dominant. Unterhalb 3800 m findet sich Magnetit in vielen untersuchten Anschliffen aus den metabasischen Einheiten.

In der ca. 3 m mächtigen, heterogenen Meta-Ultramafitit-Einschaltung von 3717 bis 3720 m bildet Magnetit kleinere und größere, meist unregelmäßig verteilte, lokal angereicherte, xenomorphe Einzelkörner in der Gesteinsgrundmasse (Abb. B.5.24/25). Es finden sich Assoziationen mit Ilmenit. Bei 3718.65 m (911E1ad) treten Magnetit-Einschlüsse in Pyrit und auch Pyrit-Pyrrhotin-Einschlüsse in Magnetit auf.

Bei 3719.51 m (911FlahK) bildet Magnetit zonierte Säume um Spinelle (siehe Abb. B.4.34 in diesem Kapitel und Abb. D.5.5 im Kap. D). Weiterhin umgibt er girlandenförmig gesteinsbildende Minerale. Magnetit bildet schmale, äußere, saumartige Aufwachsungen um Ilmenit und um Sulfide (durch einen silikatischen Saum getrennt. Derartige Magnetitsäume und ihre Bildungsbedingungen beschreibt DILL (1985, 1988) aus Serpentiniten bei Erbendorf und im Randbereich der Münchberger Masse.

Einen Magnetiteinschluß mit hexagonalen Umrissen weist idiomorpher Pyrit in 3872.34 m Teufe (952A3fT) auf. Lokal verdrängt Magnetit den Pyrit.

Unterhalb von 3800 m, im Bereich der Fluidzuflußzonen und in Bereichen starker sekundärer Mineralisationen unter oxidierenden Bedingungen tritt sekundär gebildeter Magnetit zusammen mit den Fe-Oxiden Hämatit, Goethit und mit dem Ca-Fe-Silikat Ilvait als Ein- und Anlagerungen in/an Pyrit auf (Abb. B.5.26/27).

Abb. B.5.22: Großes Rutilkorn (zentral) mit Zwillingslamellen und dunkelgrauen, einheitlich orientierten Ilmenitnadeln; sowohl die Lamellen als auch die Ilmenitnadeln sind deformationsbedingt versetzt; in Granat-Amphibolit: (AS 875C21T, 3577.51 m, + N, Öl)

Abb. B.5.23: Schnurartig orientierte Rutil-Ilmenit-Einschlüsse in Granat in einem Granat-reichen Amphibolit. (AS 900B7a, 3664.95 m, + N, Luft)

Abb. B.5.24: Magnetit (hellgrau, homogen) mit sphärolitischem Graphit (diffus-grau) verwachsen; in Meta-Ultramafitit. (AS 911F1ahK, 3719.51 m, // N, Öl)

Abb. B.5.25: Magnetit (mittelgrau) innig mit Graphit (diffusgrau) verwachsen und kleine rundliche Pyrit-Körner (weiβ); in Meta-Ultramafitit. (AS 911F1ahK, 3719.51 m, // N, Öl) -CPY PYR HAM MGN FES-

Abb. B.5.26: Inhomogenes, einschlußreiches Pyrit-Aggregat (PYR), das Einschlüsse aus Chalkopyrit (CPY) und Pyrrhotin (FES) enthält und von Hohlräumen, Rändern und Rissen aus durch Magnetit (MGN), Hämatit (HAM) und Goethit (GOE) sowie durch Ilvait (ILV) verdrängt wird; in Granat-Amphibolit nahe bei offener Kluft.

(AS 928E1nK, 3808.74 m, // N, Öl)

Abb. B.5.27: Wie Abb. B.5.26 aber mit gekreuzten Nicols, deutlich wird der tafelige, flächige Ilvait (ILV), sowie der an Innenreflexen reiche, hier weiß wirkende Goethit (GOE) sichtbar.

(AS 928E1nK, 3808.74 m, + N, Öl)

<u>Hämatit</u> und <u>Goethit</u> bilden sekundäre Phasen, die stets mit Pyrit verknüpft sind und diesen randlich und von Hohlräumen aus verdrängen.

Tafeliger <u>Ilvait</u> (CaFe² Fe³⁺ (OH/O/Si₂O₇)) ist mit den sekundären Fe-Oxiden assoziiert (Abb. B.26/27). Seine optischen Eigenschaften ähneln denen von Covellin (CuS); Ilvait besitzt jedoch ein geringeres Reflexionsvermögen. Er tritt wie Hämatit und Goethit in oder an Pyrit auf. Das Mineral gilt als metasomatisches Alterationsprodukt Ca-Fe-haltiger Minerale.

<u>Graphit</u> findet sich in den Paragneisen verbreitet. Er ist fast stets stengel- oder leistenförmig foliationsparallel ausgerichtet. In den Metabasiten kommt Graphit, der erratisch in der Grundmasse verteilt ist, wesentlich seltener vor. Er ist vorwiegend an den hangenden Bereich bis 3580 m unmittelbar unterhalb der Gneise gebunden; er tritt jedoch ganz vereinzelt auch noch tiefer auf, allerdings stets in der Gesteinsmatrix, nicht auf Scherflächen.

Feinkörniger, xenomorpher, z.T. beispielhaft sphärolithischer Graphit ist auch ein untergeordneter Bestandteil im Meta-Ultramafitit bei 3719.51 m (911F1ahK); er ist rundlich bis stengelig, lokal sphärolitisch ausgebildet und ist mit Magnetit einfach verwachsen (Abb. B.5.24/25). Ebenfalls sphärolithischer Graphit bildet bei 3580.91 m (876A2f) sowohl einen Einschluß in Granat (Abb. B.5.28) als auch eine Anlagerung randlich an Granat (Abb. B.5.29).

Erwähnenswert ist eine Verknüpfung von Molybdänit mit Graphit in den Paragneisen (siehe Abb. B.5.13).

B.6 Kataklase

Ausführlich wird die Kataklase im Kap. E dieses Bandes durch ZULAUF beschrieben. Aus diesem Grund erfolgt hier nur eine Darstellung von ergänzenden Einzelbeobachtungen.

Wie im bisherigen Profil der KTB-VB sind kataklastische Deformationen weit verbreitet, wenn auch geringmächtiger. Kataklasehorizonte erreichen im allgemeinen nur Mächtigkeiten im mm- bis cm-Bereich. Größere Mächtigkeiten sind an wenige Horizonte in Amphiboliten gebunden.

Steil einfallende, aufschiebende Knickzonen werden in mittelkörnig-flaserigem Gneis zwischen 3512 und 3515 m beobachtet. Diese Strukturen stellen den Übergang zwischen duktilen und bruchhaften Verformungsgefügen dar.

Neben der Mineralisation mit Chlorit, Graphit, Laumontit und

Abb. B.5.29: Radialstrahliger Graphit an Granat in Granat-Amphibolit. (AS 876A2f, 3580.91 m, // N, Öl)

20µm

Abb. B.5.28: Sphärolitischer Graphit-Einschluß in Granat in Granat-Amphibolit. (AS 876A2f, 3580.91 m, // N, Öl)

Prehnit sind die kataklastischen Zonen häufig mit Pyrit und Pyrrhotin vererzt (3872.4 bis 3872.8 m). Ein ausschließlich mit Laumontit mineralisiertes, mit ca. 80° einfallendes Kluftsystem ist bei 3634.6, von 3640 - 3644 sowie von 3756 -3770 m entwickelt (Abb. B.6.1). Eine altersmäßige Einstufung der Kataklase und der dazugehörigen Mineralisation erfolgt im Kap. E dieses Reports.

In der Teufe von 3817.1 m ist eine 70° einfallende, bis zu 5 mm geöffnete Kluft erbohrt worden. Sie ist mit einem Quarz-Kristallrasen mineralisiert, auf dem vereinzelt bis zu 3 mm große, klare, rhomboedrische Calcit-Kristalle gewachsen sind (Abb. B.6.2). Diese Kluft kann als Zuflußzone im Bohrloch identifiziert werden (vgl. Kapitel C: Geochemie).

Bei 3798.2 m hat eine steile, halboffene Kluft einen Kristallrasen aus Epidot- und Calcit-Kristallen. Die Epidot-Mineralisation an steilen Klüften setzt sich bis etwa 3810 m fort und tritt noch einmal verstärkt zwischen 3850 und 3873 m auf.

Saiger fallende Trennbrüche ("subaxiale Bruchbildung"), die keine Mineralisation und Bewegungen auf den Trennflächen erkennen lassen, sind nicht das Produkt tektonischer Deformation, sondern wie die "core disking"- Strukturen bohrtechnisch bedingt (Abb. B.6.3, vgl. Kap. D Geophysik).

Bei 3639 m tritt ein 10 cm mächtiges, brekziiertes Band im feinkörnigen Amphibolit auf. Die Bruchstücke sind im Vergleich zum Nebengestein gebleicht und durch Calcit- und Prehnitmineralisation verfestigt (Abb. B.6.4). In einer Teufe von 3679.8 m ist der Amphibolit auf etwa 10 cm Mächtigkeit brekziiert und wieder verfestigt. Ein steiler Hangend- und ein flacher Liegendkontakt begrenzen diesen Horizont. Der liegende Bereich ist auf ca. 60 cm Breite von unregelmäßig verlaufenden, Chlorit-reichen und mm-mächtigen Kataklasebahnen durchzogen.

Ein etwa 40 cm mächtiger Kataklasithorizont mit hellen Klasten in einer feinkörnig-dichten Matrix durchschlägt den Amphibolit bei 3713.8 m. Auch die benachbarten metaaplitischen Einschaltungen sind stark von unregelmäßig verlaufenden Kataklasebahnen durchzogen.

Bei 3515.2 m wird entlang mm-mächtiger, flachliegender Scherbahnen ein feinkörnig-strafflagiger gegen einen mittelkörnig-flaserigen Sillimanit-Biotit-Gneis versetzt, ohne daβ sich Aussagen über den Bewegungssinn machen lassen.

Bei 3669.2 m wird im flaserigen Meta-Gabbro ein Hornblende-Granat-führendes, Plagioklas-reiches Gneisband entlang einer etwa 80° einfallenden Abschiebung zerschert. Der Versatz beträgt 4 cm (Abb. B.6.5). Die Trennfläche ist auf 15 cm Länge etwa 0.5 cm geöffnet und mit Chlorit mineralisiert.

Abb. B.6.1: Steile, mit Laumontit mineralisierte Klüfte, KST 890G1v, 3643.65m.

Abb. B.6.2: Mit 70° einfallende offene Kluft, mit Quarz-Kristallrasen und größeren Calcit-Kristallen, KST 931E2hj, 3817.05 m.

Abb. B.6.3: Core disking (CD) und subachsiale Brüche (AX) in feinkörnigem Amphibolit und Plagioklas-reichem Gneis (rechts), KST 899C1gT, 3659.19 m.

Abb. B.6.4: Kataklasit im Amphibolit, mit Calcit und Prehnit (wei β) mineralisiert, KST 890B1f, 3639.56 m.

Abb. B.6.5: 15 cm lange, etwa 0.5 cm geöffnete und mit Chlorit mineralisierte Kluft, abschiebender Bewegungssinn mit ca. 4cm Versatz, KST 901G2s, 3669.20 m.

B.7 Großstruktur

Ab 3500 m bis zum Übergang in die Metabasit-Abfolge bei 3573.5 m ändert sich die Einfallsrichtung der Foliation von SE auf NE. Das Einfallen erhöht sich mit Annäherung an die Metabasite von 30 auf 60°. Die Grenze Gneis/Amphibolit fällt ebenfalls mit ca. 65° ein (Abb. B.3.1).

In der Metabasit-Abfolge ist die Richtung des Einfallens der meist undeutlichen Foliation bis zur Endteufe anhand der Formation-Microscanner-Aufnahmen kaum feststellbar. Das Einfallen kann nach Kernbefund differieren, liegt jedoch überwiegend bei Werten zwischen 40 und 50°. Die markante Hangendgrenze zwischen Amphibolit und Biotit-Hornblende-Augengneis bei 3840 m fällt mit ca. 70° ein.

Im Kap. G dieses Bandes wird der Azimut der Referenzlinie der beiden orientiert gebohrten Kernmärsche 860 (3599 m) und 910 (3712 m) wiedergegeben.

B.8 Bohrung VB1b

Allgemeines

Nach Zapfenbruch bei Teufe VB1a von 3893 m und anschließenden Fangarbeiten wurde die Bohrung bei 3766.9 m (Oberkante des Ablenkkeiles) als VB1b fortgesetzt (vgl. KTB Report 90-1: 17ff). Die Endteufe wurde bei 4000.1 m erreicht. Zur geologischen Bearbeitung standen Dünn- bzw. Anschliffe von der Grobfraktion (> 1 bis max. 3 mm) der Cuttings zur Verfügung, die Teufenabständen von 2 m bzw. 1 m angefertigt wurden. in Zusätzlich konnte bei 11 Meißelmärschen von 3832.1 - 3997.5 m ein Sedimentrohr nahezu durchgehend eingesetzt werden, in dem größere, von der Bohrlochsohle abgelöste Gesteinsbruchstücke unmittelbar oberhalb des Meißels aufgefangen werden SIGMUND et al. 1990; SIGMUND, J. & DIETRICH, (siehe H.-G., Kap. H in diesem Report). Daher standen Proben bis zu einer Gröβe von 4 cm zur Verfügung, von denen ebenfalls Dünn-schliffe hergestellt wurden. Nachfall kann aber auf Grund der Konstruktion des Sedimentrohres nicht ausgeschlossen werden. Des weiteren konnten 26 Seitenkerne unterhalb des Ablenkkeiles Bereich der VB1b gewonnen werden (RÖHR 1989). i m Aut Grund der geringen Größe und der nachfolgenden geophysikali-Messungen an den Seitenkernen wurden dünne, nicht schen gefügeorientierte Scheibchen für polierte Dünnschliffe abgesägt.

Korrelation VB1a - VB1b

Nach der vorläufigen Auswertung der Bohrlochmessungen in der VB1a und VB1b konnte im Überlappungsbereich (3766.9 - 3893.0 m) eine horizontale Abweichung der beiden Bohrlöcher von teilweise weniger als einem Meter festgestellt werden. Daher sollte auch bei steiler Lagerung der Foliation, Klüfte und Mineralisationen eine eindeutige, teufenabhängige Korrelation zwischen Bohrkern- (VB1a) und Cuttingsproben (VB1b) möglich sein.

Zum Vergleich der beiden Bohrlöcher können die hornblendeführenden Biotit-Augengneise zwischen 3840 und 3846 m (Kernteufe VB1a) herangezogen werden, die aufgrund ihrer typischen Meso- und Antiperthite eindeutig auch in den Cuttingsdünnschliffen erkennbar sind (Abb. B.8.1). Mikrosonden-Analysen aus dem Seitenkern 3847.5 m ergaben für die Plagioklas-Phase Meso-Antiperthits An25, für die Mikroklin-Phase Or95. des Nachfall aus höheren Bohrlochbereichen kann ausgeschlossen werden. Diese Meso- und Antiperthite treten in den Cuttings erstmals bei 3844 m, also ca. 4 m tiefer als im Bohrkern, auf. Möglicherweise sind eine nicht ganz korrekte Bestimmung der Aufstiegszeit (lag-time) der Cuttings oder ein größerer Abstand (ca. 2 m) der beiden Bohrlöcher für die Teufendifferenz verantwortlich, da die Hangendgrenze der Augengneise mit 60 - 70° einfällt.

Abb. B.8.1: Meso-Perthit(MEP) Augengneis, DS CUT 3846 m, +N.

in Hornblende-Biotit(BIO)-

Lithologie

zum Ende des Überlappungsbereiches bei 3893.0 m ist Bis die Lithologie in den Bohrlöchern gleich und durch den Kerngewinn der VB1a gut dokumentiert. Darunter setzt sich die Wechselfolge aus Amphiboliten, Granat-Amphiboliten (Abb. B.8.2) und Hornblendegneisen (Abb. B.8.3) bis zur Endteufe fort. Meta-Gabbros sind selten, ein Ophitgefüge ist nicht deutlich ausgebildet. Reliktische HP-granulitische Meta-Gabbros, wie sie in Kap. B.4.1.1 beschrieben werden, treten nicht auf. In den Amphiboliten sind die Relikte der hochdruck-granulitfaziellen Metamorphose wie Klinopyroxen-Plagioklas- und Hornblende-Plagioklas-Symplektite sowie Granat-Coronen weit verbreitet (Abb. B.8.4). Eine teufenrichtige Zuordnung der verschiedenen Metabasitgesteine ist aufgrund der Wechselfolge schwierig. Der aus der gekernten Strecke bekannte, engräumige Wechsel zwischen stark und gering amphibolitfaziell überprägten HPgranulitischen Metabasiten setzt sich vermutlich bis zur Endteufe fort.

Die grünschieferfazielle Überprägung der Metabasite wurde bis zur Endteufe beobachtet. Epidot ist zwischen 3930 und 3970 m weit verbreitet und häufig mit Quarz- und Feldspat-reichen Gängchen und Klüften vergesellschaftet. Weiterhin tritt Chlorit auf.

Ab 3989 m sind feinkörnige, Chlorit-reiche Gneise vorherrschend, die z.T. deutlich foliiert sind. Ehemalige Biotite mit Sagenit-Gitter und Amphibole sind vollständig in Chlorit umgewandelt und bilden ein nahezu geschlossenes Teilgefüge.

Abb. B.8.2: Granat-Amphibolit (mitte) in Cuttings-Probe, DS CUT 3990 m, //N.

Abb. B.8.3: Granat(GNT)-Biotit(BIO)-Hornblende(HBL)-Gneis, DS CUT 3908 m, //N.

Abb. B.8.4: Granat(GNT)-Corona um Hornblende-Plagioklas-Symplektit(SYM), Hornblende(HBL), DS CUT 3954 m, //N.

Feinkörnige Titanit- und Epidoteinschlüsse ("Krümel") sind charakteristisch. Die Plagioklase sind verzwillingt und häufig serizitisiert und saussuritisiert. Calcit ist lokal in der feinkörnigen Quarz-Feldspat-Matrix vorhanden. An Opakmineralen treten Ilmenit mit Titanitsäumen und seltener Pyrit auf. Diese Gneise wechseln mit geringmächtigen Amphibolitlagen.

Von 3998 m bis zur Endteufe steigt in den Cuttings der Gehalt von Hornblende-Gneisen bis Amphiboliten wieder an, die Chlorit-reichen Gneise nehmen deutlich ab.

Bei 3996 und 3999 m sind in zwei Seitenkernen Quarz-Albit-Gänge mit magmatischem Gefüge erbohrt worden, die epidot-, chlorit- und pyritreich sind. In Tab. B.8.1 sind Mikrosonden-Analysen der Minerale aus diesem Gestein aufgelistet.

Schwern	mineral-M	(onzent:	rat der	Cutting	g-Probe 3887 m	Seitenko leukokra	ern-Probe ates Epic	sk70, iot-Chlo	3996.0 m prit-Quarz	-
13 Ilm	enit aus	einem :	Ilmenit-	Titani	t-Brookit-Aggregat	Albit-Ge	estein mi	it magma	tischem G	efüg
14 Brow	akit aug	ainem	lmonit.	Titanii	-Brockit-Magroact	9 grüne	r Chlori	it		
15 Tit	anit aus	einem 1	limenit.	Titanil	-Brookit-Aggregat	10 Albit	(Ab99.5	5)		
16 Enid	dot (= Fe	-Endal	ind)	1 a c du a i	DIOUNICANGIEGAL	11 Epide	t (Fe/(I	(e+A1)=(.22)	
17 Enid	int (= Fe	-Endals	(bai							
ti mbte	101 1- 11	. nueyas	ieu/			Analyse	9	10	11	
(In die	eser Seri	e schle	echte Ge	samtsur	amen, aber gute					
Stoch	ometrie)			and the second second second second	5102	24.87	69.30	38.10	
						T102	0.06	0.03	0.06	
	13	14	15	16	17	A1203	19.26	18.96	24.29	
					-	Cr203	0.05	0.00	0.00	
SiO2	0.03	0.07	29.88	36.91	37.22	FeO	28.44	0.03	9.64	
TiO2	49.56	91.59	37.67	0.03	0.04	MnO	0.53	0.00	0.04	
A1203	0.00	0.01	0.21	20.59	20.97	NiO	0.00	0.06	0.01	
Cr203	0.00	0.00	0.00	0.00	0.05	ZnO	0.03	0.00	0.00	
FeO	35.90	1.99	0.82	14.11	15.02	MgO	11.68	0.00	0.03	
MnO	8.92	0.02	0.00	0.05	0.00	CaO	0.05	0.05	23.17	
NiO	0.03	0.00	0.01	0.00	0.07	Na20	0.00	11.40	0.00	
ZnO	0.15	0.01	0.03	0.00	0.02	K20	0.01	0.05	0.00	
MgO	0.03	0.00	0.00	0.00	0.00	Summe	84.98	99.87	95.34	
CaO	0.07	0.57	25.18	21.14	21.02		la menerativa			
Na20	0.02	0.00	0.02	0.00	0.01	Fe2+	5.324			
K20	0.00	0.00	0.00	0.01	0.00	Fe3+	-		0.644	
Summe	94.70	94.24	93.82	92.83	94.45	Нg	3.898		-	
						Ti	0.011		0.003	
						AlVI	2.649		2.292	
						Summe	11.881		2.940	
						Mn	-		0.003	
						Ca	-		1.987	
						Si	5.567		3.049	
						Aliv	2.433		0.000	

Tab. B.8.1: Mikrosonden-Analysen von verschiedenen Mineralen von Seitenkern- und Cuttings-Proben aus dem nicht gekernten Bereich der Bohrung VB1b.

B.9 Danksagung

Wir danken Prof. F. Seifert, daß wir einen Teil der Mikrosonden-Messungen am Bayer. Geoinstitut, Bayreuth, durchführen konnten. D. Krauße (Bayreuth) danken wir für seine operative Betreuung an der Mikrosonde und P. O'Brien (Bayreuth) für hilfreiche Diskussionen über das Hochdruck-Metamorphose-Stadium und daß er uns Programme zur Berechnung von Pyroxen, Amphibol und Granat zur Verfügung stellte.

Herrn Prof. Stöckhert, Bochum, Herrn Prof. Weber, Göttingen, Herrn Prof. von Gehlen, Frankfurt, Herrn Prof. Emmermann, Gießen, Frau Dr. J. Vogtmann-Becker, Aachen und Herrn Dr. P. Herzig, Aachen danken wir für die kritische Durchsicht des Manuskriptes. Bei der Ausarbeitung des erzpetrographischen Kapitels waren die intensiven Diskussionen mit S. van Delden sowie seine Unterstützung bei der mikroskopischen Aufnahme sehr hilfreich.

Die Präparationsarbeiten im Feldlabor wurden von S. Lang, O. Leitner, P. Prätori, X. Spieß und E. Wiendl durchgeführt.

B.10 Schriftenverzeichnis

- DILL, H. (1985): Die Vererzung am Westrand der Böhmischen Masse - Metallogenese in einer ensialischen Orogenzone.-Geol. Jb. D73, 3-461, Hannover
- DILL, H. (1988): Lagerstätten-Typisierung und metallogenetische Entwicklung im Umfeld der Grenzregion Saxothuringikum-Moldanubikum (Nordbayern) – ein Überblick.- Geol. Bavarica, 92, 133-150, München
- ELLIS, D.J. & GREEN, D.H. (1979): An experimental study of the effect of Ca upon garnet - clinopyroxene Fe-Mg exchange equilibria.- Contrib. Mineral. Petrol., 71: 13-22.
- FRIEDRICH, G., KOTNIK, M., VOGTMANN-BECKER, J., HERZIG, P., KONTNY, A. & KEYSSNER, S. (1989): Erzpetrologie und Mineralchemie im Kontinentalen Tiefbohrprogramm - Vorbohrung "VB-Oberpfalz".- 2. Zwischenbericht, DFG Fr 240/45-3, Institut für Mineralogie und Lagerstättenlehre, RWTH Aachen, 70 S., unveröff.
- GANGULY, J. & SAXENA, S.K. (1984): Mixing properties of aluminosilicate garnets: contraints from natural and experimental data, and application to geothermo-barometry.- Amer. Mineral., 69: 88-97.
- GEHLEN, K. von, MATTHES, S. OKRUSCH, M., RICHTER, P., RÖHR, C. & SCHÜSSLER, U. (1990): Metamorphe Kumulat-Gesteine in der KTB Vorbohrung.-In: EMMERMANN, R. & GIESE, P. (Hrsg.): Beiträge zum 3. KTB-Kolloquium, Gießen, 28.2. bis 2.3.1990. - KTB Report, 90-4 (im Druck).
- HOLLAND, T.J.B. (1980): The reaction albite = jadeite + quartz determined experimentally in the range 600-1200°C.- Amer. Mineral., 65: 129-134.
- LISTER, G.S. & SNOKE, A.W. (1984): S-C Mylonites. J. Struct. Geol.; 6(6): 617-638.
- KEYSSNER, S., MASSALSKY, T., MÜLLER, H., RÖHR, C., GRAUP, C. & HACKER, W. (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 992 bis 1530 m: B. Geologie - In: Emmermann, R., DIETRICH, H.-G., HEINISCH, M. & WÖHRL, Th. (Hrsg.): KTB Report, 88-6: B1-B88, Hannover.

- KOHL, J., HACKER, W., KEYSSNER, S., MÜLLER, H., RÖHR, C., SIGMUND, J., STROH, A. & TAPFER, M. (1989): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 2500 bis 3009.7 m: B. Geologie - In: Emmermann, R., Dietrisch, H.-G., Heinisch, M. & Wöhrl, Th. (Hrsg.): KTB Report, 89-4: B1-B106, Hannover.
- KONTNY, A., FRIEDRICH, G., HERZIG, P., KEYSSNER, S. & VOGTMANN-BECKER, J. (1990): Erzmineralparagenesen und Mineralisationstypen in der KTB Vorbohrung.-In: EMMER-MANN, R. & GIESE, P. (Hrsg.): Beiträge zum 3. KTB-Kolloquium, Gießen, 28.2. bis 2.3.1990. - KTB Report, 90-4 (im Druck).
- MÜLLER, H., HACKER, W., KEYSSNER, S., RÖHR, C., SIGMUND, J., KOHL, J., STROH, A. & TAPFER, M. (1989): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 3009.7 - 3500 m: B. Geologie - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M. & WÖHRL, Th. (Hrsg.): KTB -Report, 89-5: B1-B94, Hannover.
- NEWTON, R.C. & HASELTON, H.T. (1981): Thermodynamics of the Garnet-Plagioclase-Al₂SiO₅-Quartz Geobarometer.- In: NEWTON,R.C., NAVROTSKY, A. & WOOD, B.J.: Thermodynamics of Minerals and Melts, Springer-Verlag: 131-147.
- PASSCHIER, C.W. & SIMPSON, C. (1986): Porphyroclast systems as kinematic indicators. - J. Struct. Geol., 8(8): 831-843.
- PLATT, J.P. & VISSERS, R.L.M. (1980): Extensional structures in anisotropic rocks. - J. Struct. Geol., 5(6): 619-622.
- REINHARDT, J. & KLEEMANN, U. (1989): Phasenpetrologische Analyse und Geothermobarometrie der Metapelite in der Zone von Erbendorf-Vohenstrauβ (ZEV), Oberpfalz.- Ber. Dtsch. Mineral. Ges. 1: 152.
- RIDLEY, W.I., RHODES, J.M., REID, A.M., JAKES, P., SHIH, C. & BASS, M.N. (1974): Basalts from leg 6 of the deep sea drilling project. J. Petrol., 15: 140-159.
- RÖHR, C. (1989): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor. - G. Makroskopische Beschreibung der Seitenkerne aus dem Teufenbereich 0 - 4000 m. - In: Emmermann, R., Dietrich, H.-G., Heinisch, M. & Wöhrl, Th. (Hrsg.): KTB Report, 89-4: G1-G10, Hannover.

- RÖHR, C., PATZAK, M. & OKRUSCH, M. (1990): Metamorphose-Entwicklung der Metabasite der KTB Vorbohrung. - In: EMMER-MANN, R. & GIESE, P. (Hrsg.): Beiträge zum 3. KTB-Kolloquium, Gießen, 28.2. bis 2.3.1990. - KTB Report, 90-4 (im Druck).
- ROHRMÜLLER, J. (1988): Die Geologie im Umfeld der KTB-Bohrlokation Windischeschenbach, Oberpfalz. - Geologisch-Petrographisch-Tektonische Untersuchungen im Gebiet zwischen Windischeschenbach, Burggrub und Bach. - Dipl.-Arb., Geol. Inst. LMU München, 241 S. (unveröff.).
- SCHÜSSLER, U. (1987): Petrographie, Geochemie und Metamorphosealter von Metabasiten im KTB-Zielgebiet Oberpfalz.-Diss. Würzburg.
- SIGMUND, J., HACKER, W., KEYSSNER, S., KOHL, J., MÜLLER, H. & RÖHR, C. (1990): Cuttingsanalyse in der KTB Vorbohrung. - In: EMMERMANN, R. & GIESE, P. (Hrsg.): Beiträge zum 3. KTB-Kolloquium, Gießen, 28.2. bis 2.3.1990. - KTB Report, 90-4 (im Druck).
- SUGAKI, A., SHIMA, H., KITAKAZE, A. & HARADA, H. (1975): Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350 °C and 300 °C.- Econ. Geol. 70, 806-823, El Paso
- UYTENBOGAARDT, W. & BURKE, E.A.J. (1971): Tables for microscopic identification of ore minerals. - 2.4. rev. edition, 430 S., Dover Publ., New York
- WEBER, K.; HACKER, W. & KOHL, J. (1989): Beobachtungen zum Deformationspfad der Gesteine aus der KTB-Vorbohrung. – In: EMMERMANN, R. & GIESE, P. (Hrsg.): Beiträge zum 2. KTB-Kolloquium, Gießen, 15. bis 17.3.1989. – KTB Report 89-3: 419.
- WIMMENAUER, W. (1984): Das prävariskische Kristallin im Schwarzwald. - Fortschr. Miner. 62, Bh. 2, 69-86.
- WINCHESTER, J.A. FLOYD, P.A (1976): Geochemical magma type dicrimination: Application to altered and metamorphosed basic igneous rocks.- Earth Planet. Sci. Lett., 28: 459-469.
- YUND, R.A. & KULLERUD, G. (1966): Thermal stability of assemblages in the Cu-Fe-S-system.- J. of Petrol. 7, 454-488.

B.11 Anhang

Der Anhang umfaßt das detaillierte geologische Profil in graphischer Darstellung (Abb. B.11) und in schriftlicher Form (Tab. B.11).

Erläuterungen zum geologischen Profil (Abb. B.11)

Spalte	Erläuterung
CUTTINGS	<pre>Die erbohrten Cuttings werden vor Ort naß ge- siebt, getrocknet und die Fraktionen volume- trisch ermittelt. Dargestellt sind die pro- zentualen Anteile der Fraktionen. Der Graph zeigt: links: grobe Fraktion = > 1 mm mitte: feine Fraktion = 0.063 - 1 mm rechts: feinste Fraktion = < 0.063 mm Diese Spalte wird nur in kernlosen Strecken ausgefüllt. Weiterhin sind technische Angaben enthalten, die die Cuttings beeinflussen: E/A = Ein-/Ausbau des Gestänges, RM = Rollen- meißel, DIA = Diamant-Meißel, Richtbohren = der Meißel wird über einen Untertage-Motor angetrieben und aktiv in eine bestimmte Rich- tung abgelenkt.</pre>
GAMMA-RAY	In der Kurve GAMMA-RAY ist die natürliche Gamma-Strahlung der durchbohrten Gesteine in API-Einheiten angegeben. Sie ist ein Ma β für den Gehalt an Kalium, Uran und Thorium im Gestein, den einzigen natürlich vorkommenden radioaktiven Elementen.
	Zum Vergleich mit den Bohrlochmessungen sind die im Fedlabor mit Hilfe der Gamma-Spektrome- trie bestimmten Einzelwerte dargestellt (ge- strichelte Linie).
KALIBER	Die Kurve KALIBER zeigt den Bohrlochdurchmes- ser an. Der Auβendurchmesser der Bohrkronen beträgt 152 mm (6"). GAMMA-RAY und KALIBER sind Bohrlochmessungen.
LITHOLOGIE	Gesteinsname und seine graphische Darstellung. Abkürzungen siehe unten.
FOLIATION	Das Einfallen der Foliation in Grad ist als Zahl und zur Veranschaulichung als Graph ange- geben.
ALTERATION	Nach der Cutting- und Dünnschliffanalyse wurde ein gualitativer Alterationsgrad nach folgen-

dem Schema festgelegt:

- 1 = frisches Gestein
- 2 = schwach alteriertes Gestein
- 3 = deutlich alteriertes Gestein
- 4 = völlig alteriertes Gestein

Die Grenze unterschiedlich alterierter Gesteine ist durch einen waagerechten Strich markiert. Über und unter ihr ist der entsprechende Alterationsgrad angegeben.

- STÖRUNGEN Störungen sind durch eine gerade Linie dargestellt.
- KERNMARSCH Ein Kernmarsch ist ein maximal 6 m langer Bohrkern, der in einem Arbeitsgang abgebohrt und dann geborgen wird. Kommt weniger Kernmaterial zu Tage als abgebohrt wurde, wird der fehlende Teil als VERLUST bezeichnet. Die über Tage angekommene Kernstrecke heiβt GEWINN. Der Kerngewinn wird schematisch nach oben an den Beginn des Kernmarsches geschoben.
- KLÜFTIGKEITS-ZIFFER Für die Korrelation mit dem Bohrfortschritt, Auskesselungsbereichen oder sonstigen Bohrparametern wurden am Kern die Anzahl der Klüfte pro Meter (=Klüftigkeitsziffer) bestimmt. Gezählt wurden ebene Trennflächen, an denen der Kern bereits zerbrochen war oder an denen er in Kürze zerbrechen würde (latente Klüfte). Zur besseren Übersicht ist die Klüftigkeitsziffer in Abb. B.2.10 in komprimierter Form dargestellt.
- PROBEN Hier sind die Beprobungspunkte des Feldlabors aufgelistet. Im Einzelnen bedeutet:

Zentrifuge RDA/RFA: An den markierten Stellen liegen Röntgen-Fluoreszenz-Analysen von Haupt-Spurenelementen vor. Der modale Mineralund bestand wurde durch guantitative Röntgen-Diffraktometer-Analysen ermittelt. Das Analyist eine Bohrmehlprobe. Sie wird senmaterial durch Zentrifugieren der Bohrspülung gewonnen. Anschliffe: An diesen Stellen liegen polierte Anschliffe für die Erzmikroskopie vor. Teilwurden Kernstücke, teilweise Cuttings weise (Bohrklein) zur Schliffherstellung benutzt. Kernstücke RDA/RFA: Wie Zentrifuge RDA/RFA nur wurden hier Kernstücke analysiert. Dünnschliffe: An diesen Stellen liegen Gesteinsdünnschliffe für die Durchlicht-Polarisations-Mikrokoskopie vor. Sie wurden von Kernstücken hergestellt.

Abkürzungen:

GNT,	HBL	=	Granat, Hornblende
QRZ,	PLG	=	Quarz, Plagioklas
KYA,	AMF	=	Kyanit, Amphibol
SIL,	BIO	=	Sillimanit, Biotit
MUS,	HGL	=	Muskovit, Hellglimmer
	ALT	=	alteriert
	GNS	=	Gneis
	AMP	=	Amphibolit
	MOB	=	Mobilisat
	FLS	=	flaserig
	KKL	=	kataklastisch, Kataklasit
	E/A	=	Ein-/Ausbau des Gestänges
	RM	=	Rollenmeißel
	DIA	=	Diameißel

- MKO = mittelkörnig
- FKO = feinkörnig

LIG = lagig

- MYL = Mylonit
- SFF = straff
- LAM = Lamprophyr

Folgende Seiten:

Abb. B.11:

Profildarstellung der geologischen Ergebnisse im Vergleich mit ausgewählten bohrtechnischen Daten und Bohrlochmessungen im Maβstab 1:200.

Mit zunehmender Teufe erhöht sich die Differenz zwischen Logteufe (gamma ray, Kaliber) und Kernteufe (Gestängeteufe). In diesem Profilabschnitt können die Logteufen durchaus 4 m größer sein als die Kernteufen.

Signaturen:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	1	-
$\sim$		~	~
$\sim$	1	$\sim$	
	_	^	/

Granat-führender (Sillimanit-Muskovit)-Gneis feinkörnig (1 mm) mittelkörnig (1 - 3 mm), flaserig

> Biotit-Gneis

> > Gneis

mittelkörnig, lagig

mittelkörniger, granoblastischer

(Granat-führender) Biotit-Hornblende-

\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

۸	۸
۸	۸
1.1	^
~	/

Meta-Gabbro, fein- bis mittelkörnig massig

fein- bis mittelkörnig (<3 mm)

fein- mittelkörnig, foliiert

foliiert

Meta-Ultramafitit

Biotit-Augengneis

Amphibolit

Loukokrato Quarz-Foldnat-Ge



Leukokrate Quarz-Feldpat-Gesteine Meta-Aplite

Pegmatoide



Kataklasit offene Kluft



CUTTINGS	GAMMA RAY	Ê	5		u e			Klüftig-		PI	20	BEN
Kornfraktionen grob, fein, feinst 25 50 75 °/•	0 75 API 150 KALIBER	Teufe (n	Kernmars Verl. Gew.	Lithologie	Einfallwink der Foliatio	Alteration	Störungen	Keitsziffer (Klütte pro Meter) 0 10 20 30 40	Zentrifuge RDA / RFA	Kernstucke RDA / RFA	Anschliffe	Dünnschliffe mit Bezeichnung
		3500	K 856	~ ~ ~	40	2		f f	0	0.0		e 856E1p
		•	K 857	SIL-MU mittelkö 2 2 2 2 2 2	25	1 3						= 85781f = 857C1h
		-3510	K 858	S-BIO-G ornig, flas 2 2 2 2	15	2					0	<ul> <li>858821</li> <li>85882r</li> </ul>
			K 859	ins serig 2 2 2 2 2 2 2	30	2		3				<ul> <li>858H2y</li> <li>859821</li> </ul>
		-	860 к 861	SIL-MUS-B GNS, MKO, F bis LIG } } } } }	15	3	_	$\rightarrow$		8 8		<ul> <li>859D2r</li> <li>859F2ah</li> <li>861A2d</li> <li>861C21</li> </ul>
		3520	к 862	GNT-SIL-MUS- BIO-GNS MKO,LIG	30	2 1 2		5	e	0 8		• 86152ab • 86152ad
		-		GRANAT-SILLI BIOTI feinkern 2 2 2 2 2	30	1 2 7			•		8	862C3b 1862D3q1 862D3q1 862C3a1
		3530	K 863	MANIT-MUSKOVIT T-GNEIS, g. strafflagig 2 2 2 2 2 2 2 2	15 20 15 20	2						862G3abli • 86382r

- B 109 -



- B 110 -

CUTTINGS GAN	MMA RAY	Ê	5.5		a c		Klüftig-	P	RO	BEN
Kornfraktionen grob, fein, feinst KAL 25 50 75 % 15	LIBER	Teufe (r	Kernmars Verl. Gew	Lithologie	Einfallwink der Foliatio	Alteration	Keitsziffer (Klüfte pro Meter)	Zentrituge RDA / RFA Kernstucke	RDA / RFA Anschliffe	Dünnschliffe mit Bezeichnung
		-3560	K 077	SILLIMANIT- teilweise GRAN 2 2 2 2 2		3	5	5		
			K 8/3	-MUSKOVIT-BIC IAT-führend, feink 2 2 2 2 2		2		• • •	•	<ul> <li>873818</li> <li>873815</li> <li>873D1k</li> </ul>
1 1 1 1 1 1		3570	K 874	$\frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2}$	50	2			•	<ul> <li>874A1a</li> <li>874C1a</li> <li>874C1a</li> </ul>
		- 	K 875			2	$\left  \right\rangle$			874E1 874E10 874E10 874F1sKII 874G1x 874G1x 874H1z
		-3580		AT-AMPHIBC		1			0 0	● 875810r
			K 876	DLIT, mittelkö h, mit META-A	/ 75				•	<ul> <li>876A2f</li> <li>876B2x</li> <li>876B2co</li> <li>876C2ce</li> </ul>
		-	K 877	rnig, HP (Ho PLIT-Gänget ~ ~ ~ ~	50	2			•	879538 877A3IT 877B3q 877C3sK
	}	3590	K 878						•	877E3x 877E3z

- B 111 -



B 112-

1

CUTTINGS	GAMMA RAY	Ê	5		on tel		Klüftig-	F	RO	BEN
Kornfraktionen grob, fein, feinst 25 50 75 % 1 1 1	KALIBER IS 25 35 45 55cm	Teufe (I	Kernmars Verl. Gew	Lithologie	Einfallwink der Foliatio	Alteration	Keitsziffer	Zentrituge RDA / RFA Kernstücke	RDA / RFA Anschliffe	Dünnschliffe mit Bezeichnung
		-3620	K 886	Δ META-GABBRO Δ META-GABBRO Δ META-GABBRO Δ META-GABBRO Δ META-GABBRO Δ MKO-FLS SFF Λ Λ Λ Λ	20 30 55	1 3 2		- 0 0 0		<ul> <li>885831</li> <li>885C3n</li> <li>885F3abill</li> <li>885G3aK</li> </ul>
		-3630	887 <u>–</u> K 888	RANAT-AMPI is feinkörnig ^ ^ ^ ^ ^ ^ ^ ^		1		• •	•	= 886D2p = 888A3c = 888831
			K 889	HIPOLIT, mitte , mobilisatrei < < × < < × < < × < < ×		3		•		<ul> <li>888G3r</li> <li>889A1b</li> <li>889B1d</li> </ul>
		-3640	к 890	Ch ERO-LIG AMP, FKO-LIG AMP, FK	20 50	3 2 w 2		•		= 898813K = 89081e = 890011
			K 891	-GAB- -GAB- -GAB- -GAB- -GAB- -GNT-AMP -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, -AMP, 		3		•		891A1al 891A1al 9891B1d
		3650	K 892 893	GNT - AMP, Itan- bis anterleorni Ioar H9-granulnach I methalfungen)		2		• •	-	891510 891512 891512 89242b

- B 113-

CUTTINGS	GAMMA	RAY ~	mm	٨	Ê	÷.		J G			Klüftia-		PR	0 \$	BEN
Kornfraktionen grob,fein,feinst 25 50 75 °/•	0 KALIBER 15 25	35	45 AI	55cm	Teufe (n	Kernmars Verl. Gew. XXX	Lithologie	Einfallwink der Foliatio	Alteration	Störungen	keitsziffer (Klüfte pro Meter) 0 10 20 30 40	Zentrituge RDA / RFA	Kernstücke RDA / RFA	Anschliffe	Dünnschliffe mit Bezeichnung
	14				3650	K 892	GR (mi				/				8 891F1cl 892A2b
	ALL ALL					893 894 895 895 896 897 K 898	ANAT-AMPHIBOLI Htelkörnig, lokal I it HBL-GNS-Eins C C C C C C C C C C C C C C C C C C C								9 898C3f
					3660	K 899	T, fein-bis HP-granulitisch schaltungen )		2			0		Ð	<ul> <li>898E3mK</li> <li>898G3t</li> <li>899A1a</li> <li>899B1e</li> </ul>
	No.				5000		Λ Λ	N ^D			1		8.0		= 899E1m
						к 900 к 901	GRANAT-A mittelkörn alte	50			$\leq$	0	8 8 9 9		<ul> <li>899G1t</li> <li>900A1a</li> <li>90087a</li> <li>901A1a</li> <li>901A2a</li> </ul>
					-		.MPHIBOL ig, flaser riert <	· · · · · · ·	1		<	0			■ 901C2g
	12				3670						Í		• •		■ 901G2s
						K 902	AA Mobil AAAX AAX		1		>		øq		= 98261A
					-	903 <u>-</u> K904	FLS mit isaten		2				8 8	0	= 902F1n = 902G1x = 903A10 = 903A117 = 904A1c
					3680		AMP, mittelkornig, t GNT Reliktren t A A A A A A A A A A A A A A A A A A A		1		<u>}</u>				= 904E1hK

CUTTINGS GAMMA RAY	75 ADI 150 Ê	÷.		on	Τ	Klüftig-		PRO	BEN
grob, fein, feinst 25 50 75 % 15 25 35		Kernmars Verl. Gew	Lithologie	Einfallwin der Foliati	Störungen	Keitsziffer (Klüfte pro Meter) 0 10 20 30 40	Zentrifuge RDA / RFA	RDA / RFA Anschliffe	Dünnschliffe mit Bezeichnung
		) к 905	AMP, mittelkörnig, flaserig, lokal alterieft mit GNT Relikten A A A A A A A A A A A A A A A		2				<ul> <li>904E1hK</li> <li>905D4o</li> </ul>
		к 90 <u>6</u>	GNT-AMP, GNT-, MKO, FLS der B <		1		•		● 906Å1c ● 906B1d
A THOMAS	- - 	к 9 <mark>07</mark>	AMP, MKO u. , ID-GNS in AF fla: sellagerung < < < < < < < < < < <	50	2				<ul> <li>907A1a</li> <li>907C1gKII</li> <li>907D1hKI</li> <li>907D1hKIII</li> </ul>
		к 90 <del>8</del>		70 40	3-				= 90881dK
		K 909	iRANAT-AMPHIBOLI mittelkörnig-flaseri lokal epidotreich < < < < < < < < < < < <	25	2				= 908C1q = 909A1b = 909F1k

- B 115 -



- B 116 -

0 B E N Dünnschliffe	Ans Bezeichnung	e 915B1bK	e 915D1k	a a 91681f		s 916G1q	e 917B1d	a 917E1k	a 01810		= 918C1k	a 918F1t	e 919A1a	e 919C1FK		a 91961a			<ul> <li>920E2JK</li> </ul>	= 920G2IK
C A3	N A D A			0				1-												8
FA ug¢	Zentritu RDA / RI	•						-						•	•					•
Klüftig- keitsziffer	(Klüfte pro Meter) 0 10 20 30 40			0 0	-0-0	0	~		$\land$		~	<u> </u>						0 0		
U01.	Alterat		~	1			~	2	-	2						2			~	
MINKEL	Jog Job	•.•.•	μμ	1111	m	11	777	$\overline{\mathcal{L}}$	((	1	155				19	22	15	11	[[[	720
eice eice	rogre	GNT-A GNT-O litisc	MP, MKO Sehalt, H h, mobilis	, hoher P-granu atreich	GNT- BIO- MET	AMP, reich - UM	MKO mit GNT A -	T-AMP, B-reich	META bis Al mit M	-GABE MP, MK leta-A agen	BRO (O, plit-	GR/ mit v	NA vechse gran	T-AM linden ulitisc	IPH GNT- he B	IBOL Geha	IT, r alten, NT-A	nittel loka MP	körn L HP	nig, )-
itho		v v	< <	<	11	< \	<	</td <td></td> <td></td> <td>1</td> <td>&lt; &lt;</td> <td>&lt;</td> <td>~ ~ ~</td> <td>&lt;</td> <td>&lt;</td> <td>۲ ×</td> <td>&lt; &lt;</td> <td>&lt;</td> <td>&lt; &lt;</td>			1	< <	<	~ ~ ~	<	<	۲ ×	< <	<	< <
		<	< < `	<	\`×	/<		<'	⊲	⊲ +	d d	< <	< <	< <	< <	< <	<	< <	<	<
narsch Gew.	Kernm Verl.	K 915 A	K 916	< <	×		K 917	<1	Q	K 918 △		< <	K 919	< <	< <	< <	K 920	< <	<	<
6 (W)	Teufo Kernm Verl.	-3740 ^{K 915} A	K 916	< <	X				4	K 918 ↓		<	A 619 K 919		< <		K 920	<	<	3770

0 B E N	Dünnschliffe mit Bezeichnung	<ul> <li>920G2IK</li> </ul>	a 921A1b	e 921C1n	921019 92101p	= 921F1×	e 921G1ae 922A15 922A15K	e 922C1g	a 922E1IK	s 922F1n 922G1o				= 924A1b			e 924F1ag e 92461ah	922410		<ul> <li>925E1kK</li> </ul>		= 926A1b	e 926C19
a .,	Kernstück RDA / RFA	8	8 0	• •			88 88		0 0													8	
2	Zentritus ATR / ADR			•			•		1	•	•	9			1	•	•	•		•			-
Klüftig- keitsziffer	(Klütte pro Meter)		$\mathbf{\mathbf{b}}$	p_0		~		¥	•	~	-	~	$\checkmark$	/	1			2	_6_		1		
u	Alteratio		~			Ι	5			~					2	1	t	2	-	-	1	2	m
nkel	Einfallwii Ger Folia	150	77		£5	10	700					0	2	02	55	$\overline{\mathcal{T}}$				·:.:,			
	Lithologie	A A A GNT-AMP	GNT BIO- HBL GNS <	-AM führ -GN übe	IP, F rend T-BI rgeh	KO in io- io-	BL-BIO-Augengneis	AM FK( HP <	P bis ) bis -gra <	GNT- MKO, nuliti	AMP, lokal sch	AMF mit GNS	PHIBC HBL- -Lage <	DLIT, BIO- n- BI	MKO, führ O-Aug	folii ende engn < \	ert en eis-L	AMP, MKO, folilert	MPHIB BOLIT Epi	OLIT b , fein- idot-C	is GRA bis mit alcit-	NAT-A Htelkor Kluft	MPH
				-		<	I N		<	<	:	<	1 <	i i	- 1	<	15	</td <td>&lt;</td> <td>&lt;</td> <td>H</td> <td>&lt;</td> <td>&lt;</td>	<	<	H	<	<
ew. ew.	Kernma Veri. Ge ZZZ	16.0	K 921				K 922		<		K 923	<		K 974		<	1	K 925	<	<	//	K 926	<
(m) (m)	Teufe Kernma Veri. Ge	-3770	K 921			<  ·	K 922		A DATE		K 923	<		K 974		V 06/5	\ [ <u></u> ]	K 925	<	<	<i>H</i>	K 926 A	nnoc
GAMMA RAY WANNA TS API 150 E E	KALIBER Is 25 35 45 55cm	022	K 921		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		K 922				K 923					V 06/5		K925					Innoc

CUTTINGS GAMMA RAY	Ê	÷.		el on	Π	Τ	Klüftig-		PF	0 \$	BEN
Kornfraktionen         Stationen           grob, fein, feinst         KALIBER           25         50         75         %           1         1         15         25         35         45         55cm	Teufe (	Kernmars Verl. Gew	Lithologie	Einfallwink der Foliati	Alteration	Störungen	keitsziffer (Klüftepro Meter) ) 10 20 30 40	Zentrifuge RDA / RFA	Kernstucke RDA / RFA	Anschliffe	Dünnschliffe mit Bezeichnung
	-3800	K 926 K 927 K 928	AMPHIBOLIT bis GRANAT-AMPHIs BOLIT, fein- bis mittelkornig, Epidor-Calcit - Kluft		2 3 2/13 2					u	<ul> <li>926C1g</li> <li>926D11</li> </ul>
	3810	K 929	HBL-BIO-GNS-ALT foliiert, lokal Klüftchen, 5m	60 55 60	3		)	0	•••		<ul> <li>92881f</li> <li>928C1k</li> <li>928D1mK</li> <li>928E1o</li> <li>929C1cK</li> </ul>
		930 K 931 932 K 933	PHIBOLIT, mittelkör I HP-granulitisch, nm-weite Quarz-Calc		1	<	$\rightarrow$	•			₽ 931A2a
	3820	к 934	nig, lokal GN Epidot - (B iit-Kluft (B		2		<u>,</u>				
	-	к 9 <u>35</u> К936	ID-Führend, KKL)		2			•	•••	:	<ul> <li>934F1q</li> <li>935Å1a</li> <li>936A1aK</li> <li>936B1cK</li> </ul>
	3830	K 937 K 938	NT-AMP, KO mit IET-UMA Linsen		2	-	5				■ 93783g ■ 938A10 ■ 938B1cT

- B 119 -

CUTTINGS	GAMMA R	YAY -	mm	1	Ê 5.			u e	Π		Klüftig-	Р		ROBEN	
Kornfraktionen grob,fein,feinst 25 50 75 %	KALIBER 15 25	35	45	55cm	Teufe (r	Kernmars Verl. Gew	Lithologie	Einfallwink der Foliatio	Alteration	Störungen	keitsziffer (Klüfte pro Meter) 0 10 20 30 40	Zentrituge RDA / RFA	Kernstucke RDA / RFA	Anschliffe	Dünnschliffe mit Bezeichnung
	$\left  - \right\rangle$				3830	к 938		155	2					0	= 93783g = 938A1a = 93881cT
	1 3					K 939	Δ Δ Δ MET-GAB, Δ Δ MKO-GKO	Ø			Ī	•			
	5				•		Λ X Λ BIO-GNT- AMP, FKO	Ø	1						a 939518K
					-		Δ Δ Δ MET-GAB Δ Δ Δ FKO-MKO	A							
	12					К940	A A Lagen)	75	2						
					-3840		NT-BIO		3						■ 940D1nK
	: {						~ ~ HBL-BIO- 0 ~ Augengneis	55	2						940F1g     940F1g     940F1g
					-	К941	$\sim$ ^ GNT-AMP,MKO, $\sim$ mit GNT-BIO-GNS	55	3						= 92881X = 941816K
	$\langle \langle \rangle$				-		MP in meis un mechset	20	1		ę				e 841818k
															<ul> <li>941E1nK</li> <li>941G1p</li> </ul>
					-3850	K 942	A A A A X		2		L .				■ 94281d
					5050	K 943	Λ Λ ΒΙΟ-ΑΜΡ,ΜΚΟ, Λ Λ ΕΡD-Klüften				1				■ 943D1n
	ξ				Ī						I				
	1 5				-	К944	TA- BBRO, IKO				>				= 944A6b
							A A BIO-GNT-AMP		2		>			-	= 944C6f
	1 5					K945	A A A A	A	L		_mf	•	• •		B 944E6a 944E61 946A10
					13860	946 K 947	DLIT,	1	3		×				947A1a

- B 120 -

Bezeichnung Dünnschliffe 954A1 aK 954B1d 955010 94941b 953F2pK 954F1m 947A10 955E11K 948099 95083b 953A20 947C1 953821 z E ш 9 . . . 0 . . . . 8 . . 8 0 ۰ 8 . ... . 8 8 8 Anschlifte ¥ ATA / ADA . 8 4 . . Kernstucke Zentrituge ATA / ADA . 8 . . . 8 . . . 8 . . 9 (Klüfte pro Meter) keitsziffer 30 Klüftig-20 10 0 Störungen Alteration 3 1B 2 2 m 2 C 5 65 5 5 3 5 20 der Foliation 99 EINFAILAINKEL AMPHIBOLIT, FKO, poröse MOB und EPD-Mineralisationen AMP, MKO-FLS mit GNT-AMP, MKO,Quarz GRANAT-AMPHIBOLIT, mittelkörnig, Lithologie MET-GAB-Ein= flaserig, lokal grobkörnige MET-GAB-Lage -Plagio= schaltungen und und BIO-HBL-GNS Lagen Quarz-Plagio= klas-MOB glas Mobilisaten < < < < < < < < < < < < < < < × < < < 4 2 2 < < × × 2 × × < < 0 < < × < < < < < < < < < < < < < < < < < < 3890 K956 4 Verl. Gew. K 948 K 949 K 950 K 951 952 K 953 946<u>1</u> K 947 K 954 K 955 Kernmarsch 3870 3880 -3860 (m) stusT 150 55cm API 45 75 35 111 GAMMA RAY KALIBER 25 5 •/• grob, fein, feinst Kornfraktionen CUTTINGS 75 50 25

- B 121 -

CUTTINGS Kornfraktionen	GAMMA RAY 75 API 150	(m)	rsch ew.		nkel tion	c	La	Klüftig- keitsziffer		PP	ROE	BEN		
grob, fein, feinst 25 50 75 %	KALIBER	Teufe	Kernma verl. G	Litho	logie	Einfallwi der Folia	Alteratio	Störunge	(Klüfte pro Meter) 0 10 20 30 40	Zentritug RDA / RFA	Kernstück RDA / RFA	Anschliff	Dünnschliffe mit Bezeichnung	
	VB1/VB1a Zapfenbruch, Fangarbeiten, Ablenkkeil eingebaut	3890	K956		GRANAT-AMPHIBOLIT, mittelkornig, Naserig, lokal grobkornige HET-GAB-Lage und BIO-HBL-GNS Lagen		1			0				
CUTTINGS	GAMMA RAY	î	£			Ta l	c			Klüftia-		PF	2 0	BEN
-------------------------------------------------------------	---------------------------------------------	----------	------------------------	-------	--------	-------------	--------------	------------	-----------	----------------------------------------------------	-------------------------	-------------------------	------------	------------------------------------
Kornfraktionen grob, fein, feinst 25 50 75 % I I I	0 75 API 150 KALIBER 15 25 35 45 55cm	Teufe (n	Kernmars veri. Gew.	Litho	logie	Einfallwink	der Foliatio	Alteration	Störungen	Keitsziffer (Klütte pro Meter) 0 10 20 30 40	Zentrifuge RDA / RFA	Kernstucke RDA / RFA	Anschliffe	Dünnschliffe mit Bezeichnung
		3750						2						
		-3760												
		-												
	VB1 / VB1b													
	Ablenkpunkt (Tf. 3766.9m)	-		,										
$\left \right\rangle$		-3770		*	me						8			
		5//0			ist AM					8				
3		-			PHIBO						•			■ Cut3775
$H \neq$		3780		Λ Λ Λ	AMP			2			•			- Cut3780

- B 123 -

$\square$	iffe ung	Т	80 82	34	96	8	1	2	*	96	80		1	22	7	96		80	10
z	mit mit teichn		Cut37 Cut37	Cut37	Cut37	Cut37	Cut37	Cut37	Cut37	Cut37	Cut37		Cut38	Cut38	Cu138	Cut38		Cu138	Cu138
8	Dül Bez	+	-		8	•	-1	•	•	•	•		1	•	•			•	-
8	A A A A A	IR A											-						-
•	A / RFA	Re Re					-						-						+-
μ	5 C	≥Z				-						_	<u> </u>						-
1	ffer Mete	34			8														
ftia	SZI	-																	
Klü	keit	2 -																	l
	napnurö:	S	]										1						
	noiteret	IA	2		m			_				m	4						4
19	Aniwilein Niteilo3 2	19 13											-						
Γ	.e		AMPH	BOLIT	НО	RNBLE	NDE	-GNEI	Su. A	MPHI	BOLIT	1		AM	Ρu	nd (	5N7	F-AM	IP
	log	fall	Mobili	saten	GR	ANAT-	führ	end, l	okal El	PIDOT	-reict		la	kale	epido	t- ur	nd p	rehn	itreich
	tho	Nach	< <	< <	2.	< 2 <	< 2	< 2	< 2	< 2	< 2	<	< <	<	<	~ <	< .	< <	< <
1			<	<	<	25	7 <	25	25	)<	) <	2		<	<	<		<	<
			<	<		(	( -	2	(-	( -	(	(	<	<		<	<	<	<
F	/erl. Gew.		<	<		( -	<u> </u>	2	(-	( -	(		<	<		<	<	<	<
c y	ernmars /eri. Gew.	N N	<	<		( -		2	(-	( -	2	l	<	<		<	<	<	<
ц) ( ц	eufe (r ernmars /erl. Gew.		V 00/	<		(-		2	(-		(			<		<	<	<	810
ч) (Ч	eufe (r ernmars /erl. Gew.		00/0	<									v 0000	<		<	<	<	3810
ц) (U	و ا أ ح و ا أ و و ا أ و و ا أ م و ا أ م و ا أ		00/0	<			0022		(-				\[	<		<	<	<	3810
сµ ( u	و الو (۱ د ۱۵ می د د ۱۵ می د د ۲۵ می د		V 00/C	<									v	~		<	<	<	3810
ч) (ч)	PH 2015 6016 6016 6000 7000 7000 7000 7000 7000		V 00/C	<			0022						V 0000			×	<	<	3810
сµ м	eufe (r eufe (r evin dew evin dew		V 00/C	<									V 0000			×	-	<	3810
	eufe (r eufe (r eri. Gew.			<			00/2										<	<	3810
RAY www	eufe (r		V 00/C	<			00/2			 							<		3810
THA RAY when a c	IBER		< 00/C	<			3790							<			<	< 	3810
GAMMA RAY www.	KALIBER		< 00/C				UDLE JULIE							~			<		3810
S GAMMA RAY WINN 2 5	inst KALIBER		< no/c			· · · · · · · · · · · · · · · · · · ·	00L2							~			<		3810
INGS GAMMA RAY www.	in, feinst KALIBER		< 00/C				3700							~					3810
UTTINGS GAMMA RAY WWW	b, fein, feinst KALIBER						2 UDL2												3810

- B 124 -

CUTTINGS GAMMA RAY	6	÷.		ia c			Klüftia-	Р	RO	BEN
Kornfraktionen 0 75 API 150	5	ars		atio	E C	en B	keitsziffer	Ake	fe	5." I.I.'II
grob, fein, feinst KALIBER	lfe	E .D	Lithologie	Alle	ati	bun	(Klüfte pro Meter)	RF	hlif	mit
25 50 75 % 15 25 35 45 55cm	Tet	Ker		infa er F	Iter	tör	0 10 20 30 40	erns DA	nsc	Bezeichnung
	2040					N		NCXC	∢	
1 5	13810		A A A AMP und		4				-	- Cut3810 -
			∧~ ±ooo		2					Cut3812
					2					B Cut3814
			^ ~ ă							
	-		^ ^ ^ ខភ				<i>,</i> , , , , , , , , , , , , , , , , , ,			Cut3816
	-									
1 R	ł		^ ^ ^ N					•		Cut3818
KIB	12000									
	13820	ай 								- Cut3820 -
			A A A P M							a Cut3822
			^ ^ ⁷ H							- 6015022
			^ ^ ^ & B							Cut3824
	-									
	-									Cut3826
	-									
	-							0		<ul> <li>Cut3828</li> </ul>
	12830		ΛΛΛ							
	12020		A A AMP							- Cut3830 -
	-									Cut3832
	-									Cut3834
	-				2					
	-				-					Cut3836
	[		∧ ∼		3					Cut3838
	381.0				1					- Cut3840
	12040						1			Cuise40

- B 125 -

PROBEN	Zentrituge RDA / RFA Kernstucke RDA / RFA Dünnschliffe Bezeichnung	e Cut3840	a Cut3842 87-3843.6	6 C C C C C C C C C C C C C C C C C C C	e e Cut3848	e Cut3850	Cut 355	e Cut3854	a SR-535.81					
Klüftia-	Keitsziffer (KlütteproMeter) 50 10 20 30 40		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								~			
U	der Foliation		•••		~ [ ~	7								1
Ja	Aniwiletni3													
	ologie	GRANAT-HOR GNEIS, Titar	NBLENDE- it-haltig	BIO - Mes fü	HBL – G operthi hrend	NS, t-	A epin	MPHIE dot- u	BOLIT, l nd chl	okal oritr	GRANAT- eich, (Ep	führen idot-K	d , lüfte)	
	Litho	<	ر ج ح ک	>< < ک		<b>\</b> <	<	<	<	<			<	V V V
цэ	Kernmars Veri. Gew.													
сµ ( U	Teufe (r Kernmars Veri. Gew.	-3840				-3850				UYBE-		<i>,</i> ,		10/05-

- B 126 -



CUTTINGS	GAMMA RAY	Ê	÷.		e c			Klüftia –		PR	0	BEN
Kornfraktionen grob,fein,feinst 25 50 75 %	KALIBER	Teufe (r	Kernmars Verl. Gew.	Lithologie	Einfallwink der Foliatio	Alteration	Störungen	keitsziffer (Klütte pro Meter) 0 10 20 30 40	Zentrituge RDA / RFA	Kernstucke RDA / RFA	Anschliffe	Dünnschliffe mit Bezeichnung
		3900	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	GRANAT - AMPHIBOLI7 lokal epidot- und prehnitre		4			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			= SR-3907.91
		3910	<pre></pre>	T, HBL- GNT-AMPU. GNT-HBL- GNS		2	-					■ SR-3914.6
		-3920	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	AMPHIBOLIT und HORNBLENDE-GNEIS					0 0 0 0 0 0			
		3930	<pre></pre>	AMP GNT-HBL- BIO-GNS AMP		2			0 0 0 0			■ SR-3927

- B 128 -



- B 129 -

P R 0 B E N Zentrituge RDA / RFA RPA / RFA Remstücke RDA / RFA Dünnschliffe mit mit Bezeichnung	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			<ul> <li>Cui3984</li> <li>Cui3986</li> <li>Cui3986</li> <li>SR-3989.41</li> <li>SR-3989.41</li> </ul>
Klüftig- Keitsziffer (Klüfteprometer o 10 20 30 4				
noits19t1A	4	2	2	4 M
Lintallwinkel				
Lithologie	AMPHIBOLIT, Epidot-führend	GRANAT- AM AMPHIBOLIT A	PHIBOLIT und GRANAT- MPHIBOLIT	AMP und HBL-GNS
Kernmarsch Verl. Gew. ZZZ	< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <
(m) əîuəT	-3960	-3970	-3980	-3990
GS GAMMA RAY ~~~~~ 150 onen feinst 75 */ 15 25 35 45 55cm				

CUTTINGS	GAMMA RAY	( c	£ _		a c			Klüftia-		PR	OBEN	
Kornfraktionen grob, fein, feinst 25 50 75 °/•	0 75 API 150 KALIBER	Teufe (n	Kernmars verl. Gew.	Lithologie	Einfallwink der Foliatio	Alteration	Störungen	Keitsziffer (Klütte pro Meter) 0 10 20 30 40	Zentrituge RDA / RFA	RDA / RFA	Dünnschl mit Bezeichn	liffe lung
	Endteufe 4000,1m	-3990		CHLORIT-(HORNBLEN= DE-BIOTIT)-GNEIS mit AMPHIBOLIT alteriert		4					<ul> <li>Cut39:</li> <li>Cut39:</li> <li>Cut39:</li> <li>Cut39:</li> <li>Cut39:</li> <li>Cut39:</li> <li>Cut39:</li> <li>Cut40:</li> </ul>	90 — 92 94 96 98 00 -
		· · ·										

- B 131 -

Tab. B. 11: Profilbeschreibung für den Teufenabschnitt 3500 m - 4000.1 m

A) VB 1a: Kernstrecke 3500 - 3898 m

Teufe Lithologisch-strukturelle Beschreibung '

## (m)

3497.7 -----

mittelkörniger, flaseriger Sillimanit-Muskovit-Biotit-Gneis; bei 3499.1 m, 3500.6 m und 3501.5 m leukokrat, körnelig; graphitimprägnierte Scherbahn bei 3499.0; cmgroβe Plagioklas-Porphyroklasten bei 3508 m; ab 3512 m aufschiebende Knickzonen; diskrete, kataklastische Scherflächen und Klüfte sind mit Chlorit, selten mit Calcit mineralisiert

3514.5 -----

mittelkörniger Sillimanit-Muskovit-Biotit-Gneis mit Übergängen zwischen flaserigem und lagigem Gefüge; bei 3514.7 m ca. 4x6 cm-groβe Kalksilikat-Linse mit Granat-Kern innerhalb einer mehrere dm mächtigen, stark alterierten kataklastischen Scherzone, aufschiebende Knickzonen bis 3515 m

3519.9 -----

mittelkörniger, lagiger Granat-Sillimanit-Biotit-Gneis, halboffene Falten, z.T. achsenflächenparallel abgeschert

3523.0 -----

feinkörniger, strafflagiger Granat-Sillimanit-Muskovit-Biotit-Gneis, stark alteriert; fischchenförmige Sillimanit-Aggregate von 3537.3 - 3538.7 m, in Verbindung mit nur mikroskopisch sichtbarem 'ecc'- Gefüge; zwischen 3525 und 3527 m eng verfaltete Quarz-Plagioklas-Mobilisatlagen

3538.8 -----

Wechsel zwischen feinkörnigem, flaserigem bis lagigem und mittelkörnig-lagigem, Granat-führendem Sillimanit-Muskovit-Biotit-Gneis, lokal mit verfalteten Mobilisat-Bändern, Turmalin-Aggregaten und Sillimanit-Schlieren; bis 3550 m kataklastisch überprägt, Graphit- und Pyrit-Vererzung; 1 cm mächtiges, konkordantes, schwach verfaltetes Meta-Aplit-Gängchen bei 3554.7 m

3555.2 -----

feinkörniger, flaseriger Sillimanit-Muskovit-Biotit-Gneis, teilweise Granat-führend; bei 3570 m Kyanit-Relikte; Graphit, Chlorit, Pyrit und Laumontit auf Scherflächen und Klüften

3572.1 ----

mittelkörniger, körneliger Biotit-Gneis, mit akzessorischem Allanit; eng verfaltete aplitische Gängchen

3573.5 -----

mittelkörniger Granat-Amphibolit mit überwiegend richtungslosem Gefüge und lokal erhaltenen Gefügerelikten der HP (Hochdruck)-granulitfaziellen Metamorphose,

erstmalig über weite Bereiche Core-disking (scheiben-Zerlegung des Kernes); zwischen artige 3582.2 und 3582.7 m drei wenige cm-mächtige, meta-aplitische Gängchen; halboffene Kluft mit Prehnit-Rasen bei 3587.5 m, cm-dicker Kluftbelag aus Chlorit und Quarz bei 3587.8 m 3595.7 -----Meta-Aplit mit buchtigem, biotitreichem Liegendkontakt 3596.1 ----fein- bis mittelkörniger, HP-granulitischer Granat-Amphibolit mit Sulfiden in der Matrix, am Hangendkontakt schwach foliiert 3597.2 ---feinkörniger, foliierter Granat-Amphibolit 3597.9 ---feinkörniger, Granat-führender Meta-Aplit 3598.2 ----mittel- bis grobkörniger, HP-granulitischer Granat-Amphibolit mit Quarz-Plagioklas-Mobilisat-Schlieren und -Lagen 3600.2 ----feinkörniger Granat-Amphibolit, schwach foliiert, mobilisatreich 3600.6 -----Granat-Hornblende-Biotit-Gneis mit Übergang in foliierten, Biotit-führenden Amphibolit mit konkordanten Quarz-Plagioklas-Mobilisat-Lagen 3602.0 ---straff foliierter Granat-Amphibolit mit Einschaltungen von gebändertem (Granat)-Biotit-Hornblende-Gneis; halboffene Kluft mit Prehnit-Rasen 3606.3 ----grobkörniger, flaseriger Meta-Gabbro; horizontal liegende Streckungsfaser; bis 3 mm weite halboffene Prehnit-Kluft bei 3607.7 m, Sulfidführung auf Klüften 3608.8 ----feinkörniger, teilweise schwach foliierter, lokal HPgranulitischer Metagabbro, zum Liegenden hin granatreicher; Laumontit auf Klüften; zwischen 3610 m und 3611.5 m cm-mächtige, randlich chloritisierte Quarz-Feldspat-Gängchen 3618.1 ----mittelkörniger, foliierter, HP-granulitischer Meta-Gabbro 3620.1 ----mittelkörniger, richtungslos texturierter, HP-granulitischer Meta-Gabbro mit mm-großen Klinopyroxenen 3621.6 ----mittelkörniger, flaseriger Meta-Gabbro, teilweise alteriert; feinkörnig-strafflagig von 3621.6 - 3622.3 m; flach bis steil einfallende Streckungsfaser aus gelängten Plagioklas-Klasten und -Flasern 3625.0 --feinkörniger, im Hangenden mittelkörniger Granat-Amphibolit, mobilisatreich; steilstehende, mit Laumontit

mineralisierte Klüfte und mit Chlorit belegte Scherbahnen bei 3634.6 m, viele cm-mächtige, z.T. versetzte Chlorit-Gängchen (3634.6 m, 3636.3 m, 3638.4 m); 4 cm mächtiges Quarz-Feldspat-Gängchen bei 3627.0 m, Plagioklas-Klasten und 1 cm mächtige Kataklasebahn mit Nebengesteins-Bruchstücken bei 3631.7 m, drusige Hohl-

räume bei 3629.7 und 3632.0 m 3638.8 -----

> feinkörniger, lagiger Amphibolit; zwei flach einfallende, mit Prehnit und Pyrit mineralisierte Klüfte im Liegenden

3639.3 -----

feinkörnig-dichter, foliierter Amphibolit mit deformierten, feinkörnigen Meta-Gabbro-Einschaltungen bei 3641.5 m; poröses Quarz-Feldspat-Gängchen bei 3659.5 m; 7 cm mächtiger, flachliegender Prehnit-Calcit-Gang mit vergrünten, eckigen Nebengesteins-Bruchstücken bei 3639.6 m; strafflagige, leukokrate, Granat-, Hornblende- und Biotit-führende Gneis-Lagen und -Schlieren mit flachliegender Streckungsfaser, asymmetrisch verfaltet bei 3639.8 sowie 3640.9 m; steilstehende, mit Laumontit mineralisierte Klüfte

3644.5 -----

feinkörnig-dichter Granat-Amphibolit mit leukokrater Biotit-Gneis-Schliere und Hornblende-führendem Quarz-Plagioklas-Mobilisat; lokal sehr granatreich

3645.1 -----

feinkörnig-dichter, HP-granulitischer Granat-Amphibolit; mit einzelnen, steil einfallenden, cm-mächtigen Mobilisat-Lagen

3647.6 -----

feinkörniger, flaseriger Granat-Amphibolit, im Liegenden sehr granatreich

3648.1 -----

feinkörnig-dichter bis mittelkörniger Granat-Amphibolit, vereinzelt mit HP-granulitischen Mineralrelikten; von 3657.4 - 3657.8 m mittelkörnig-lagig, plagioklasund granatreich, mit horizontal liegendem Streckungsgefüge; 2 cm mächtige, auskeilende Quarz-Feldspat-Lagen bei 3653.3 sowie 3653.8 m; cm-mächtige Einschaltungen eines Plagioklasgesteins leukokraten mit straff eingeregelten Granat-, Hornblende-Lagen (3652.7)m, 3653.7 m, 3654.6 m), ebenfalls mit horizontal liegender bei 3653.8 m 2 cm mächtiges, Streckungsfaser; grobkörniges, undeformiertes Quarz-Feldspat-Gängchen mit vergrüntem Nebengestein; steilstehende, verheilte von 3655.4 - 3656.2 m; Fiederklüfte steilstehende, subaxiale Brüche von 3656.2 - 3656.8 m

3660.4 -----

mittelkörniger, flaseriger Granat-Amphibolit, alteriert, bereichsweise feinkörnig; durch ungleichmäßig verteilten Plagioklas fleckiges Gefüge; leukokrate, Granat- und Hornblende-führende Gneislage bei 3660.9 m; bei 3663.5 m alterierter, HP-granulitischer Granat-Amphibolit; sehr granatreiche Lagen bei 3665.3 m

und von 3669.1 bis 3669.2 m, bei 3667.1 m verfaltete Biotit-Gneis-Lage und mit Prehnit-Epidot mineralisierte Scherbahn; von 3669.2 - 3669.6 m steilstehende, mit Chlorit mineralisisierte Abschiebung, ebenfalls steilstehende Abschiebung bei 3662.6 m; 10 cm mächtige, kataklastisch überprägte Zone mit flachliegenden, chloritreichen Scherbahnen bei 3666.9 m 3671.8 ----mittelkörniger, flaserig-fleckiger Granat-Amphibolit; mit schlierigen Quarz-Plagioklas-Mobilisaten, von 3674.5 - 3676.1 m sehr granatreich, an der Basis HPgranulitische Mineralrelikte 3677.5 ----mittelkörniger, flaserig-fleckiger z.T. alterierter Amphibolit mit Granat-Relikten und -Pseudomorphosen, am Liegendkontakt Granat-Amphibolit; Haarrisse und verheilte Scherbahnen bis 3681.0 m; bei 3679.8 m flach einfallender Kataklasithorizont mit schwarzer Scherbahn, darunter ein cm-mächtiger Breccienhorizont, bei 3681.9 m 10 cm mächtige, verheilte, chloritreiche Scherzone; feinkörnig-dichte, steil einfallende Scherbahn bildet den Kontakt zur liegenden Einheit 3684.4 ----feinkörniger, foliierter Amphibolit, Streckungsgefüge mit horizontal liegender Streckungsfaser 3685.2 ----mittelkörniger, flaserig-fleckiger Granat-Amphibolit, mit leukokratem Granat-Hornblende-Gneis-Band bei 3687.6 m 3689.8 -----Wechsellagerung aus mittelkörnigem, bereichsweise flaserigem Granat-Amphibolit mit schlierigen Quarz-Plagioklas-Mobilisaten und leukokratem, Granatund Hornblende-führendem Biotit-Gneis; bei 3690.4 m Klüfte mit Quarz, Feldspat und Pyrit mineralisiert 3695.4 ----feinkörnig-dichter Amphibolit mit strafflagigen, leukokraten Granat-Biotit-Hornblende-Gneis-Einschaltungen; Gneis-Einschaltungen mit unregelmäßig-schlierigen Kontaktflächen zum Amphibolit und horizontal liegender Streckungsfaser; steil einfallende, mit Prehnit mineralisierte Klüfte und Scherzonen 3697.1 ----mittelkörniger, flaserig-fleckiger Granat-Amphibolit, leukokrater, granatreicher Gneis-Schliere bei mit 3697.4 m

3700.4 -----

mittelkörniger, lagig-flaseriger Amphibolit; flach einfallendes Streckungsgefüge; steilstehende, kataklastische Scherbahnen, gehäuft am Liegendkontakt, mit Calcit, Chlorit und Laumontit mineralisiert;

3702.3 -----

Kataklasit, verfestigt; flach einfallender Hangend-, steil einfallender Liegendkontakt 3702.9 -----

mittelkörniger, flaseriger Granat-Amphibolit, mit schlierigen Quarz-Plagioklas-Mobilisaten; lokal epidotreich, flache bis steile Klüfte und Scherbahnen, mit Calcit, Chlorit und Laumontit mineralisiert; von 3703.4 - 3704.5 m mittelkörnige, flaserige, leukokrate, HPgranulitische Granat-Amphibolit-Lagen, maximal 20 cm mächtig; bei 3703.8 m flach einfallender, 4 cm mächtiger Kataklasehorizont; bei 3706.9 m steil einfallende Kataklasebahn

3711.3 ----

mittelkörnig-flaseriger, leukokrater, Granat- und Hornblende-führender Gneis; mit zwei jeweils mehrere cm mächtigen, mittelkörnigen Quarz-Feldspat-Mobilisaten; von zahlreichen flachliegenden Klüften und Kataklasebahnen durchzogen

3711.8 -----

mittelkörniger, undeutlich flaseriger Amphibolit mit mittelkörnigen, leukokraten, körneligen bis lagigen Meta-Aplit-Einschaltungen von 3711.8 bis 3712.4 m und von 3713.1 bis 3713.3 m; von flachliegenden Kataklasehorizonten durchzogen, z.B. 3713.4 m; 45 cm mächtiger Kataklasithorizont von 3713.8 - 3714.4 m

3714.8 -----

mittelkörniger, leukokrater Meta-Aplit, körnelig 3716.1 ----

feinkörniger, flaseriger Amphibolit, liegender Bereich mylonitisch-strafflagig; lokal epidotreich; feine, mit Prehnit, Laumontit, Chlorit und Calcit mineralisierte, steilstehende Klüfte

3716.7 -----

feinkörnig-dichter Meta-Ultramafitit (spinellführender Chlorit-Hornblende-Fels = Meta-Pyroxenit), hellgrün mit dunklen Flecken, lokal mit bis zu 1 cm großen Klino-Pyroxenen; von 3717.5 bis 3717.8 m grobkörnige Meta-Gabbro-Einschaltung

3720.2 ----

foliierter, grobkörniger Meta-Gabbro, reich an lagigen und schlierigen, Hornblende-führenden Quarz-Plagioklas-Mobilisaten

3720.7 ----

mittelkörniger, flaseriger Amphibolit, ab 3722.9 m Granat-führend; im Liegenden lokal HP-granulitische Granat-Amphibolite, mit schlierigen Mobilisaten und pegmatoiden Quarz-Feldspat-Lagen; cm-große Meta-Ultramafitit-Lagen und -Linsen bei 3722.4 und 3724.0 m; flach einfallende, mineralisierte Klüfte

3724.2 -----

mittelkörniger, flaseriger, HP-granulitischer Granat-Amphibolit; zum Liegenden hin zunehmender Granatgehalt; horizontal liegende Streckungsfaser

3725.4 -----

mittelkörniger Amphibolit, lokal mit Quarz-Plagioklas-Mobilisaten

3727.2 ----mittelkörniger, epidotreicher Amphibolit; mit mehreren mittelkörnigen, epidotreichen Meta-Aplit-Lagen, meist mit steil einfallenden Kontakten, am Kontaktbereich z.T. cm-große Hornblende-Kristalle; die ganze Einheit ist stark geklüftet (Calcit-Epidot-Mineralisation); halboffene Kluft mit Calcit-Kristallrasen bei 3733.4 m 3735.1 ----mittelkörniger Granat-Amphibolit mit Quarz-Plagioklas-Mobilisat-Schlieren 3736.7 ----mittelkörniger, leukokrater, HP-granulitischer Granat-Amphibolit mit sehr hohem Granat-Gehalt, schwach foliiert, mobilisatreich; lokal besonders granatreiche Lagen und Schlieren 3744.5 ----mittelkörniger, schwach foliierter, biotitreicher Granat-Amphibolit, Mobilisat-Schlieren bei 3745.6 m; cm-große, hellgrünliche Ultramafitit-Schlieren (Klinopyroxen-Hornblende-Gestein) bei 3748.4 m; foliationsparallel eng verfaltet 3748.6 ----mittelkörniger, foliierter Granat-Amphibolit, mobilisatreich; Epidot-Quarz-Feldspat-Gang mit Sulfiden bei 3750.5 m 3751.4 ---mittelkörniger Meta-Gabbro bis Amphibolit mit 5 bzw. 10 cm mächtigen, grobkörnigen Meta-Aplit-Lagen und -Nestern bei 3754.4 und 3755.0 m 3756.1 ----mittelkörniger, richtungslos texturierter Amphibolit bis Granat-Amphibolit; lokal HP-granulitische Biotit-Granat-Amphibolite, sehr granatreiche, 15 cm bzw. 10 cm mächtige Lagen bei 3762.9 und 3763.5 m; zahlreiche, zum Teil lagige Quarz-Plagioklas-Mobilisate; steilstehende, mit Laumontit mineralisierte Klüfte; flache Prehnit-Kluft bei 3767.7 m 3770.5 ----sehr feinkörniger, Biotit-führender Granat-Amphibolit, zum Liegenden ab 3773.2 m in (z.T. massig, Klinopyroxen-führenden) Hornblende-Granat-Biotit-Gneis übergehend, mit stark gestreckten Plagioklas-Klasten bei horizontal liegender Streckungsfaser und teilweise verfalteten plagioklasreichen Lagen 3775.6 -----Granat-führender Hornblende-Biotitstrafflagiger, Augengneis; deutliches Streckungsgefüge der Plagioklase mit horizontal liegender Streckungsfaser, Allanitführend 3776.3 feinkörniger, mobilisatfreier Granat-Amphibolit 3777.6 ---feinkörniger, mit zunehmender Teufe mittelkörniger Amphibolit bis Granat-Amphibolit; lokal Mineralrelikte der HP-granulitfazielle Metamorphose; straff foliier-

tes, steil einfallendes Gneis-Band bei 3780.8 m; flach einfallende Chlorit- und Biotit-führende Ouarz-Feldspat-Gänge bei 3781.8 und 3783.0 m 3783.6 ----mittelkörniger, foliierter Amphibolit mit cm-mächtigen, leukokraten, Hornblende- und Biotit-führenden Gneissteilstehende bis saiger fallende Quarz-Kluft Lagen; von 3784.3 bis 3785.0 m 3792.3 ----mittelkörniger, flaseriger Biotit-Augengneis, Allanitführend 3792.6 ----feinkörniger Epidot-Amphibolit mit wechselnden Granat-Gehalten 3793.3 ----mittelkörniger, bereichsweise foliierter Amphibolit, mobilisatreich, z.T. alteriert; mit horizontal liegendem Streckungslinear 3794.0 ----feinbis mittelkörniger Amphibolit bis Granat-Amphibolit, lokal stärker alteriert, vereinzelt HPgranulitische Mineralrelikte erhalten; mehrere mit Feldspat mineralisierte, mm-mächtige Klüfte; 3798.0 m cm-mächtige Epidot-Plagioklas-Kluft; bei bei 3798.2 m steil einfallende, halboffene Kluft mit Kristall-Rasen aus Epidot und Calcit; ab 3799.9 m lokal stark vergrünt durch Epidot-Klüfte oder -Kluftscharen 3805.9 ----feinkörniger, vollständig alterierter und chloritisierter (Hornblende-Biotit)-Gneis mit vereinzelten Quarzlinsen, titanit- und epidotreich; steile und flache Kataklasebahnen mit Epidotmineralisation 3806.6 ----mittelkörniger, lokal foliierter, lokal HP-granulitischer Granat-Amphibolit mit Mobilisaten, am Hangendkontakt stark geklüftet und mit Epidot verheilt; lokal granatreiche Lagen; zwischen 3807.4 und 3808.2 m, sowie bei 3811.9 m grobkörnige Quarz-Feldspat-Gänge; zwi-schen 3811.2 m und 3812.4 m diskordante Bleichungszonen; zwischen 3817.1 und 3817.3 m eine ca. 5 mm weit geöffnete Kluft mit Quarz-Kristallrasen und vereinzelten, bis 3 mm großen, klaren Calcit-Rhomboedern, verbunden mit dem Zufluß salinarer Formationswässer 3822.6 ----feinkörnig-dichter Granat-Amphibolit, teilweise granatreich, stellenweise Biotit-führend; mit dm-mächtigen Einschaltungen von Granat-führendem, mittelkörnigem Amphibolit; lokal Mineralrelikte der HP-granulitischen Metamorphose erhalten; kataklastische, chloritreiche Scherzone bei 3799.8 m, Einheit reich an schlierigen Mobilisaten; sehr steil einfallender, zerscherter, grobkörniger Quarz-Feldspat-Gang mit Pyrit und Chlorit; sehr steil bis saiger stehende subaxiale Klüfte, mit Chlorit und vereinzelt mit Pyrit mineralisiert 3827.5 -----

feinkörnig-dichter, HP-granulitischer Granat-Amphibolit; sehr granatreich bei 3830.1 und 3831.5 m; reich an schlierigen Mobilisaten; von 3830.1 - 3830.6 m pegmatoide Einschaltung mit Titanit, Biotit-Rosetten und Hornblende; bei 3830.9 m ein cm-mächtiger, feinkörniger Meta-Ultramafitit mit dunklem, buchtigem Salband; cm-große, feinkörnige Meta-Ultramafitit-Linse bei 3831.0 m

#### 3830.9 -----

mittel- bis grobkörniger, granatreicher Meta-Gabbro; wenige schlierige Mobilisate, Streckungsgefüge mit horizontal liegender Streckungsfaser

3833.0 -----

feinkörniger, flaseriger, HP-granulitischer Biotit-Granat-Amphibolit; ab 3833.1 m feinkörnig-dicht, bei 3833.6 m mittelkörniger Quarz-Plagioklas-Gang

3834.1 -----

fein- bis mittelkörniger, granatreicher Meta-Gabbro; einzelne, schlierige Quarz-Plagioklas-Mobilisate

3835.7 -----

feinkörniger, richtungslos texturierter Granat-Amphibolit mit steil einfallender Biotit-Gneis-Lage

3837.6 -----

fein- bis mittelkörniger, flaseriger Granat-Biotit-Hornblende-Gneis, mit horizontal liegender Streckungsfaser; 4 cm mächtige, leukokrate, feinkörnige Biotit-Gneis-Lage am Top, diskordant von steilstehendem, pegmatoidem Hornblende-Quarz-Feldspat-Gang durchschlagen; im Hornblende-Gneis ab 3839.7 m vier dm-lange, feinkörnige, richtungslos texturierte Amphibolit-Linsen; an der Liegendgrenze ein 4 cm mächtiges, richtungslosfeinkörniges Amphibolit-Band, diskordant zur Gneisfoliation liegend

3840.8 -----

mittelkörniger, flaseriger Hornblende-Biotit-Augengneis, verfaltet, mit ausgewalzten Plagioklas-Klasten und flach einfallender Streckungsfaser bis 3841.3 m

3842.1 ----mittelkörniger, richtungsloser, HP-granulitischer Granat-Amphibolit, bereichsweise Übergang in stark vergrünten, mittelkörnigen, lagig-flaserigen Granat-Biotit-Gneis, kontinuierlicher Übergang zur liegenden Einheit

3843.7 -----

verfaltete Wechsellagerung aus mittelkörnigem Biotit-Hornblende-Augengneis und feinkörnigem Amphibolit; Augengneis Mikroklin- und Klinopyroxen-führend, mit gestreckten Plagioklas-Klasten und flach einfallender Streckungsfaser, zum Liegenden hin zunehmende Augentextur im Gneis; sehr steil bis saiger fallende subaxiale Brüche; an der Liegendgrenze mit Epidot mineralisierte Haarrisse

3846.7 ----

mittelkörniger, flaseriger Amphibolit mit schlierigen Quarz-Plagioklas-Mobilisaten; feinkörnig-dicht und

stark vergrünt von 3848.9 - 3849.6 m, Granat-führend 3849.6 - 3849.8 m ; bei 3847.5 m Biotit-führender von Ouarz-Plagioklas-Gang, pegmatoides Quarz-Feldspat-Band bei 3847.6 m, Meta-Gabbro-Linse bei 3848.2 m, Biotit-Gneis-Lage bei 3848.5 m 3850.0 ----mittelkörniger, richtungslos texturierter Biotit-Amphibolit, mit schlierigen Quarz-Plagioklas-Mobilisaten; saigere Klüfte z.T mit Epidot, steil einfallende Klüfte mit Quarz und Feldspat mineralisiert 3851.6 mittelkörniger, massiger, HP-granulitischer Granat-Amphibolit, granatreiche Lage bei 3852.2 m 3852.5 ----mittelkörniger, richtungslos texturierter, HP-granulitischer Meta-Gabbro, zwei lagige Mobilisate bei 3855.0 m 3855.8 -mittelkörniger, richtungslos texturierter Biotit-Granat-Amphibolit, zum Liegenden hin feinkörnig werdend; mit drei lagigen Mobilisaten 3856.6 ----feinkörnig-dichter, Granat-führender Amphibolit; liegende Partien vergrünt und mit Pyrit in der Matrix; bei 3858.1 m deformiertes Quarz-Plagoklas-Mobilisat mit horizontal liegender Streckungsfaser; grobkörnige, poröse MobilisatLagen und Epidot-Mineralisation zwischen 3860.1 und 3861.6 m 3861.7 -mittelkörniger, flaseriger, HP-granulitischer Amphibomit Meta-Gabbro-Einschaltungen, u.a. bei 3864.8 lit und 3866.8 m; leukokrate, mittelkörnige Biotit-Gneis-Lage bei 3862.7 m, mit schlierigen, Titanit-führenden Quarz-Plagioklas-Mobilisaten; bei 3866.6 m isoklinal verfaltete Feldspatbändchen 3867.2 ----mittelkörniger, richtungslos texturierter Granat-Amphibolit, sehr granatreich; mit schlierigen Quarz-Plagioklas-Mobilisaten; dm-mächtige, leukokrate Biotit-Gneis-Einschaltung bei 3872.0 m; feine, mit Epidot und und Pyrit mineralisierte Klüfte, steil einfallend oder saiger stehend 3872.2 ----mittelkörniger, richtungslos texturierter Granat-Amphibolit, mit schlierigen bis lagigen Quarz-Plagioklas-Mobilisaten; von 3872.4 bis 3872.8 m steil einfallende, kataklastische Scherzone, mit Epidot, Chlorit und Pyrit mineralisiert 3873.2 ----feinkörnig-dichter Granat-Amphibolit, reich an schlierigen Quarz-Plagioklas-Mobilisaten; steil einfallende,

mit Quarz und Feldspat mineralisierte Kluft 3873.5 ----

feinkörniger Amphibolit bis Granat-Amphibolit, vergrünt; mit lagigen Mobilisaten und zwei Biotit-GneisLagen; kataklastische Scherbahn an der Liegendgrenze, mit Prehnit mineralisiert; sehr granatreiche Linse bei 3873.6 m

3874.3 -----

mittelkörniger, richtungslos texturierter, bereichsweise feinkörnig-dichter Granat-Amphibolit, stellenweise sehr granatreich, mit schlierigen Mobilisaten bis 3876.0 m; bei 3877.3 m Quarz-Plagioklas-Mobilisat mit cm-großen, idiomorphen Hornblenden; steilstehende Klüfte, grobkörniger Quarz-Feldspat-Gang bei 3877.0 m

3877.5 -----

mittelkörniger, flaserig-fleckiger Granat-Amphibolit, von 3877.5 bis 3877.9 m sehr granatreich; grobkörnige Meta-Gabbro-Lagen von 3878.0 - 3878.4 m und von 3879.0 - 3879.2 m; leukokrate, flaserige Biotit-Hornblende-Gneis-Lage von 3879.2 - 3879.5 m, leukokrate Granat-Biotit-Hornblende-Gneis-Lagen von 3879.7 - 3879.9 m und von 3880.3 - 3880.4 m; Mobilisat bei 3888.8 m; viel Pyrit und Magnetkies auf Klüften

3889.2 ---- Endteufe VB 1a

# B) VB 1b: Meißelstrecke (Cuttings) 3766.9 - 4000.1 m

Die in der Vb 1a beschriebenen Relikte der HP-granulitischen Metamorphose treten bis zur Endteufe auf. Eine genaue teufenabhängige Darstellung der Relikte ist anhand der Cuttings nicht möglich. Daher wurde bei den Gesteinsnamen auf den Zusatz "HP-granulitisch" verzichtet.

3766.9 -----

Ablenkkeil (whip-stock)

3772	
	Nachfall in den Cuttings, meist Amphibolit, Sillima- nit-Biotit-Gneis und Quarz-Körner (vom Sandstrahlen mit hydro-jet-tool)
3780	
	Amphibolit und selten Metagabbro, mit Quarz-Feldspat- Mobilisaten, teilweise Nachfall z.B. Lamprophyr bei 3782 m
3785	
	Hornblende-Gneis und Amphibolit, granatführend, lokal epidotreich (3800.0 m)
3800	
	Amphibolit und Granat-Amphibolit, epidot- und prehnit- reich (3804.0 - 3812.0 m)
3812	
	granatführender Hornblende-Gneis, epidotreich (3814 m)
3815	
	Granat-Amphibolit mit Quarz-Feldspat-Mobilisaten, lokal epidotführend
3830	
	Amphibolit

3832	and and one and and
3836	Granat-Amphibolit und selten Metagabbro
3846	Granat-Hornblende-Gneis, titanithaltig
3850	Biotit-Hornblende-Gneis, mit "Meso"- und "Anti"-Perthi- ten, grünen Biotiten und Titanit
3880	Amphibolit, teilweise granatführend, epidot- und chlo- ritreich, Epidot-Klüfte
3894	Biotit-Hornblende-Gneis, granatführend, selten Epidot
3896	Granat-Amphibolit
3899	Hornblende-Biotit-Gneis
3910	Granat-Amphibolit, lokal epidot- und prehnitreich
3912	Hornblende-Gneis, mit blau-grünen Hornblenden
3916	Granat-Amphibolit und Granat-Hornblende-Gneis
3924	Amphibolit und Hornblende-Gneis
3926	Amphibolit
3928	Granat-Hornblende-Biotite-Gneis
3932	Granat-Amphibolit
2050	Amphibolit mit wechselnden Granat-Gehalten, epidot- und titanitführend, bei 3950 m kataklastischer Epidot- Quarz-Feldspat-Gang
3952	Granat-Amphibolit
3956	Amphibolit, epidotführend
3968	Granat-Amphibolit, selten Metagabbro
3974	Amphibolit und Granat-Amphibolit
3982	Amphibolit und Hornblende-Gneis
3989	feinkörniger epidotreicher Gneis mit vollständig chlo-
2000	ritisierten Biotiten und Hornblenden im Wechsel mit feinkörnigem Amphibolit, bei 3996 m magmatischer quarz- und plagioklasreicher Gang mit Chlorit und Epidot
3998	alterierter Hornblende-Gneis bis Amphibolit, epidot- führend, bei 3999 m gleichartiger Gang wie 3996 m, pyritreich
4000.1	Endteufe Vb 1b

# C. Geochemie

KTB Oberpfalz VB – Röntgenanalytik Spülungsanalytik Gasanalytik

> H.-J. Heinschild A. Stroh M. Tapfer M. Wittenbecher



Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor – Teufenbereich von 3500 bis 4000.1 m:

# C.Geochemie

H.-J. Heinschild, A.Stroh, M. Tapfer und M. Wittenbecher *)

# Inhaltsverzeichnis:

# Seite

	ZusammenfassungC 2 AbstractC 3
C.1	Einleitung C 4
C.2	Probenahme und Probenaufbereitung C 5
C.3 C.3.1 C.3.2 C.3.3	RFA/RDA-AnalytikC 5 AllgemeinesC 5 Ergebnisse an BohrmehlprobenC 6 Bestimmung der Gesteinsdichte mit RDAC 18
C.4 C.4.1 C.4.2 C.4.3	Spülungsanalytik C 21 Allgemeines C 21 Ergebnisse und Diskussion C 21 Fluid Sampler C 22
C.5 C.5.1 C.5.2 C.5.2.1 C.5.2.2 C.5.2.3 C.5.3	GasanalytikC 26 AllgemeinesC 26 ErgebnisseC 26 Kontinuierliche GasanalytikC 26 Esterzusatz - Methanquelle !C 35 BohrlochzirkulationenC 36 Fluid SamplerC 39
C.6	Vergleich der Ergebnisse von VB 1a und VB 1b C 41
C.7	Schriftenverzeichnis C 45
C.8	Danksagung C 46
C.9	Anhang C 47 Tiefenlogs aller Ergebnisse (1:1000) Zusammenstellung sämtlicher Spülungseinleitungen
*) Anschr	rift der Autoren:

KTB Feldlabor

8486 Windischeschenbach

## Zusammenfassung

In diesem Arbeitsbericht werden die Ergebnisse der chemisch/ mineralogischen Bohrungsbearbeitung des Bohrungsabschnittes 3500 bis Endteufe bei 4000.1 m zusammengefaßt. Dieser Abschnitt gliedert sich in zwei Strecken: 1. den letzten Abschnitt der Bohrung VB1a (3500-3893 m) und 2. die Ablenkbohrung VB1b (3766.9-4000.1m).

In der Bohrung <u>VB1a</u> können anhand der Analysen von Bohrmehlproben im Bereich 3500- 3574 m unterschiedliche Gneistypen registriert werden sowie im Bereich 3574-3893 m eine Mafiteinheit i.w.S., die aus Amphiboliten, Granat-Amphiboliten, Ultramafititen, Gabbros und zwischengelagerten geringermächtigen Hornblendegneisen besteht.

Bei der Ablenkbohrung <u>VB1b</u> konnten die ersten 33 m wegen einer bohrtechnisch verursachten Kontamination des Bohrmehls mit Quarzsand nur bedingt interpretiert werden. Von 3800m bis zur Endteufe der KTB Vorbohrung bei 4000.1 m läβt sich die durchteufte Strecke anhand der Bohrmehlproben jedoch untergliedern. Die weitaus häufigsten Gesteine sind Amphibolite und Granat-Amphibolite, die mit weniger mächtigen Hornblendegneisen und Biotitgneisen wechsellagern. Die Granat-Gehalte in den Amphiboliten erreichen Werte bis über 30 Gew.%.

Die Analysenergebnisse erlauben weiterhin die Abgrenzung mehrerer mächtiger epidotisierter Zonen, die stellenweise mit anormal hohen Spurenelementkonzentrationen von Y und Zr verbunden sind. Zum Teil zeigen sie erhöhte Klüftigkeiten, die vereinzelt mit Zuflüssen von Formationswässern korrespondieren. In der Vb1b treten bei 3996 m erhöhte Thoriumkonzentrationen (> 30 ppm) auf.

Im Überlappungsbereich der Bohrungen VB1a und VB1b (3766.9-3893 m) ist die Lithologie annähernd gleich. In der VB1b wurden im Vergleich zur VB1a starke Anreicherungen in den Sr-, CaO-,  $P_2O_5$ - und Epidot-Gehalten im Bereich 3850-3880 m festgestellt.

Die Dichtewerte, die von jeder RDA Analyse berechnet werden, korrelieren gut mit den Dichtewerten geophysikalischer Meßmethoden. Die mittlere Dichte der Gneise schwankt um 2.74 g/cm³ und steigt in den Metabasiten auf > 3.20 g/cm³ an.

Mit den Ergebnissen der Spülungsanalytik können vier Zuflußhorizonte nachgewiesen werden. Im Teufenbereich 3817 m in der VB1a und der VB1b (offene Kluft in VB1a), in Teufe 3875 m nur in der VB1a. In der Bohrung VB1b wird zwischen 3980 und 4000.1 m der stärkste Zufluß in der gesamten VB detektiert. Chemisch können diese Wässer als Ca-Cl-reich charakterisiert werden.

Die kontinuierliche Gasanalytik zeigt in den Teufenbereichen 3817 m, 3860-3880 m sowie 3980-4000 m erhöhte Methan- und Heliumgehalte. Im überlappenden Bereich von VB1a und VB1b treten diese Anreicherungen in den gleichen Teufenbereichen auf.

Während der KTB VB1b konnte erstmals ein kontaminationsfrei (ohne Atmosphären-Luft) arbeitendes Degassersystem unter Bohrbedingungen getestet werden.

## Abstract

This eighth KTB field laboratory report presents preliminary results of the geoscientific investigations on drilling site of the pilot well KTB Oberpfalz VB from 3500- 4000 m. Because of the rupture of a drill pipe male connection at 3893m depth a whip stock was installed at 3766 m depth. Therefore the intersected section is separated into two parts:

- 1: the end of KTB VB1a 3500- 3893 m depth
- 2: the side tracking operation KTB VB1b from the kick off point at 3766 m depth down to the end of pilot well KTB VB at 4000.1 m depth

From the results of the chemical and mineralogical analysis of rock flour material it is possible to differentiate various kinds of paragneises in the upper section from 3500 -3574 m. The deeper part from 3574 m - 3893 m final depth of the pilot well <u>VB1a</u> exists mainly of metamafic rocks, which could be classified as amphibolites, garnet-rich amphibolites and metagabbros. Small domaines of hornblende bearing gneisses are sometimes intercalated below 3574 m.

The first 33 meters of the side-tracking operation (<u>VB1b</u>) are extremely contaminated with quartz-sand. Therefore a classification of the intersected rocks based on mineralogical and chemical data is not possible in this section. From 3800 to the final depth 4000,1 m for the pilot well, the dominant rock types are amphibolites and garnet-rich amphibolites partly with garnet contents over 30 wt.%. Locally occur small layers of hornblende gneisses.

Epidotisation of the amphibolites is common, partly coupled with anormal high concentrations of trace elements (Sr, Y, Zr) and a higher number of joints or fractures together with an influx of saline formation waters. At 3996 m depth a Thanomalie of over 30 ppm was detected.

Both wells, VB1a and VB1b show nearly identically lithologies in the overlap-range of 126.1 m (3776,9 - 3893 m). Strong differences are found between 3850 m and 3880 m. Hole VB1b showes huge enrichments in Sr, CaO, and epidote contents. Densities, calculated from mineral composition, show a good agreement with the values obtained by physical methods (e.g. buoyancy method). The mean densities of the drilled rocks are 2,74 g/cm³ and 2,96 g/cm³ for gneisses and amphibolites, respectively. In garnet rich amphibolites the highest values were observed, reaching up to 3,20 g/cm³.

The analysis of the drilling fluid reveals four horizons with influx of formation waters, at 3817 m in both wells VB1a and VB1b (open fissure) and at 3875 m only in well VB1a. In the bottom area of well VB1b (3980 - 4000,1 m) the strongest influx of formation waters during the total pilot hole VB1 was observed. Chemical analysis proved these waters to be Ca-Cl-rich.

The continuous analysis of the liberated gases from the drilling mud shows enrichments of methane and helium at 3817 m, 3860 - 3880 m, and 3980 - 4000,1 m. In the overlapping section of well VB1a and VB1b the increase of the methane and helium contents are mainly observed in hole VB1a.

During the side tracking operation VB1b, a degasser-system working without air contamination could be tested for the first time.

#### C.1 Einleitung

In diesem Teil des achten Arbeitsberichtes werden die Ergebnisse der chemisch/mineralogischen Bearbeitung des Teufenbereichs 3500 m bis 4000.1 m vorgestellt und diskutiert. Der Bohrungsabschnitt läßt sich in zwei Strecken gliedern:

1. in den letzten Abschnitt der Bohrung VB1a 3500- 3893 m und

2. in eine zweite Ablenk/Richtbohrung VB1b 3766.9- 4000.1 m, was gleichzeitig die Endteufe der KTB Vorbohrung VB darstellt.

Für die Charakterisierung der Feststoffe wurden kontinuierlich Bohrmehlproben im Abstand von 2 m auf ihre chemische und mineralogische Zusammensetzung analysiert. Während der gesamten kernlosen VB1b wurde der Analysenabstand auf 1 m verringert. Mit den Analysenergebnissen des Bohrkleins wurde ein vorläufiges Litho-Profil erarbeitet und dem Kernprofil gegenübergestellt. Die chemisch/mineralogische Zusammensetzung ausgewählter Kernstücke ist im Teil B.(Geologie) dieses Arbeitsberichtes zusammen mit den Ergebnissen der petrographischen Bearbeitung dargestellt.

Die während des Bohrens verwendete Bohrspülung wurde kontinuierlich chemisch analysiert. Die Beprobungsdichte der KatGelöste Gase wurden mit einer Gasfalle aus der Bohrspülung freigesetzt und on line auf ihre Komponenten untersucht.

Fluidträchtige Horizonte wurden mit Fluid-Samplern beprobt und die Proben auf ihre Kationen-, Anionen- und Gasgehalte analysiert.

## C.2 Probennahme und Probenaufbereitung

Probennahme und Probenaufbereitung entsprechen den Verfahren, die im KTB Feldlabor erarbeitet und in Heinschild et al. (1988 a), Heinschild et al. (1988 b), Stroh et al. (1988), Homann et al. (1988) sowie bei Tapfer & Stroh (1988) beschrieben wurden.

# C.3 RFA/RDA-Analytik

# C.3.1 Allgemeines

Die Bestimmung der Haupt- und Spurenbestandteile der Bohrmehlproben erfolgt mittels RFA. Die Bestimmung des quantitativen Mineralbestandes wird röntgendiffraktometrisch (RDA) an denselben Proben durchgeführt.

Da die Forbohrung des KTB Projektes zum weitaus größten Teil gekernt wurde, bestand hier die Möglichkeit Ergebnisse von Bohrmehlproben und Kernproben aus gleichen Teufen miteinander zu vergleichen. Das an den Kernen erarbeitete geologische Profil dient als Referenz für ein aus RFA/RDA Daten von Bohrmehlproben erarbeitetes Litho-Log. Diese Untersuchungen werden im Hinblick auf die überwiegend ungekernte Hauptbohrung des Projektes durchgeführt.

Die Ergebnisse aller untersuchten Bohrmehlproben aus dem beschriebenen Bohrabschnitt sind in Teufenlogs im Anhang dargestellt (Anhang C.9.1 und C.9.2). Neben diesen chemisch/ mineralogischen Ergebnissen ist zum Vergleich das geologische Übersichtsprofil abgebildet.

## C.3.2 Ergebnisse von Bohrmehlproben

# Bohrstrecke 3500-3893m (VB1a)

Die durchteufte Strecke läßt sich anhand der Ergebnisse der RFA/RDA-Analysen von Bohrmehlproben in unterschiedliche Gesteinseinheiten gliedern (vergl. Anhang C.9.1 und C.9.2, Abb.C.3.1).

Die Konzentration von SiO₂, TiO₂, Fe₂O₃, MgO, CaO, K₂O, Sr und Rb erlauben die eindeutige Ansprache einer Gneissequenz im Hangenden und einer Mafiteinheit i.w.S im Liegenden, wobei der Übergang bei Teufe 3574 m liegt. Die Gneiseinheit ist gekennzeichnet durch SiO₂-Gehalte zwischen 60 und 69 Gew.%, TiO₂-Gehalte zwischen 0.5 und 1 Gew.%, MgO-Gehalten um 2 Gew.%, CaO- Gehalten um 1.5 Gew.% und Rb- Gehalten > 60 ppm. Davon läßt sich die Mafiteinheit durch geringere SiO₂-(50 Gew.%), K₂O- (< 1 Gew.%) und Rb-Konzentrationen sowie durch höhere MgO- (4 - 8 Gew.%), CaO- (5 - 8 Gew.%), und Sr-(> 200 ppm) Gehalte unterscheiden (Abb.C.3.1).



Abb. C.3.1: SiO₂-CaO-K₂O-Diagramm zur vorläufigen Unterscheidung der Gesteinstypen

Die Konzentrationen der oben genannten Oxide und Elemente sowie die Gehalte der gesteinsbildend wichtigen Mineralphasen variieren innerhalb der Gneis- respektive der Metamafit-Einheit deutlich. Damit ist die Möglichkeit gegeben, die beiden Bereiche jeweils weiter zu gliedern. Dafür werden die relativen Konzentrationsänderungen innerhalb der jeweiligen Haupteinheit verwendet (Tab.C.3.1). Es können dabei im wesentlichen folgende Gesteinstypen unterschieden werden:

- 1) Biotit- Gneise
- 2) Amphibolite
- 3) Granat- Amphibolite (z.T. > 30 Gew.% Granat)
- 4) Epidot- Amphibolite (z.T. > 50 Gew.% Epidot)
- 5) Meta- Gabbros (meist MgO- reicher als Amphibolite)
- 6) Bio- Hbl- Gneise
- 7) Meta- Aplite (?)

Die jeweilige Veränderung der einzelnen zur Charakterisierung verwendeten Parameter ist für die verschiedenen Gesteinstypen in Tab. C.3.1 zusammengefaßt. Die Tabelle berücksichtigt nicht die lokale Mächtigkeit der Gesteinspakete, sondern zeigt nur relativiert welche charakteristischen Parameter zunehmen bzw. abnehmen.

In Abb.C.3.3 ist das lithologische Bohrmehlprofil der VB1a im Vergleich zum geologischen Kernprofil dargestellt.

Stellenweise wurden hohe Gehalte an TiO₂, MnO und Yttrium gemessen die sich recht gut mit den Granatgehalten der Mafite korrelieren lassen (Abb.C.3.2).



Abb.C.3.2: Korrelation der Yttrium- und Granatgehalte in der VB1a 3500-3893 m

Во	ohrmehl	lproben	n - che	emisch.	/minera	logisc	he Para	ameter		
Teufenbereich	MgO	CaO	K2 O	Rb	Sr	QRZ	HGL	BIO	CHL	AMPH
3500m- 3524m MUS-BIO-GNS			1							
3524m- 3536m CHL-BIO-GNS				ſ						
3536m- 3550m Biotit-Gneis										
3550m- 3574m CHL-BIO-GNS										
3574m- 3600m AMPH / CHL+ BIO führend									ſ	
3600m APLIT										
3600m- 3606m CHL-führender GNT-AMPH										

- C 8 -

Bo	ohrmehl	lprobe	n - che	emisch	minera	logisch	ne Para	ameter		
Teufenbereich	MgO	Ca0	K2 0	Rb	Sr	QRZ	HGL	BIO	CHL	AMPH
3606m- 3626m Meta- Gabbro										
3626m- 3690m Granat- Amphibolit										
3690m- 3716m Wechselfolge AMPH/HBL-GNS										ſ
3716m- 3726m Amphibolit / Meta- Uma										
3726m- 3752m Granat- Amphibolit										
3752m- 3758m Meta- Gabbro					1			1		
3758m- 3778m Granat- Amphibolit										
3778m- 3784m Meta- Gabbro										
3784m- 3838m GNT-AMPH / Meta- Gabbro										
3838m- 3850m HBL-BIO-GNS			}							
3850m- 3856m Meta- Gabbro										
3856m- 3893m GNT-AMPH sehr GNTreich										

KERNPROBEN

BOHRMEHLPROBEN



Abb.C.3.3: Lithologisches (Kern-) Profil VB1a im Vergleich mit dem Profil, das aus den Ergebnissen der RDA/RFA-Bohrmehlanalysen erstellt wurde. Die ab 3814m extrem erhöhten Ni-Werte (> 500 ppm) sind auf eine Kontamination durch den Bohrbetrieb zurückzuführen. In Teufe 3813.9 war die Matrix einer Bohrkrone im Loch verblieben und mußte zerfräst werden. Ni und Cr zeigen danach erhöhte (kontaminierte) Werte bis zum Festwerden des Bohrstranges bei 3893m und können daher nicht zur geochemischen Charakterisierung des Bohrmehls verwendet werden. Gleiches gilt mit Einschränkungen für die Fe $_2O_3$ -Werte.

## Bohrstrecke 3766.9-4000.1m (VB1b)

Nachdem der Bohrstrang in der Vbla bei 3893m fest wurde, mußten für den Beginn der VB1b Fang- und Ablenkarbeiten durchgeführt werden. Der detaillierte Verlauf der Arbeiten ist in den Tagesberichten dokumentiert. Mit whip-stock-Technik wurde der Bohrstrang bei 3766.9m (kick-off-point) aus der VB1a abgelenkt und die VB1b als Meißelstrecke bis 4000.1m niedergebracht. Der Bereich von 3766.9- 3800 m ist erheblich (bis max. 60 Gew.%) durch Quarzsand kontaminiert. Dieser Sand stammt vom Einsatz eines Hydro- jet- Sandstrahlers, mit dem der verkeilte Bohrstrang der VB1a gekappt wurde (vgl. Anhang C.9.1, C.9.2, Abb.C.3.5). Wird auf den QRZ- Gehalt unterhalb 3800 m normiert, entspricht die mineralogische Zusammensetzung einem schwach alterierten granatführenden Amphibolit.

Die am häufigsten vertretenen Gesteine der KTB VB1b sind:

1) Amphibolite (granatführend) und

2) Granat- Amphibolite,

in die in den Teufenbereichen 3836- 3852 m, 3878- 3885 m, 3895- 3900 m und 3984- 3991 m, Bio-Hbl- Gneise eingeschaltet sind.

Die chemischen Daten der Amphibolite und Granat- Amphibolite betragen: SiO₂ 48 - 53 Gew.%, MgO 6 - 8.5 Gew.%, CaO 7 - 12.5 Gew.% und K₂O fast durchweg < 1 Gew.%. In den Bio-Hbl- Gneisen nehmen dagegen SiO₂ und Alkalien zu, die mafischen Komponenten ab. Mineralogisch unterscheiden sich diese Typen durch Qrz-, Amph- und Gnt- Gehalte. Die Spurenelementdaten von Yttrium (30-65 ppm), Zirkonium (200-450 ppm) und vor allem Strontium (200-1250 ppm) sowie die Gehalte der Hauptbestandteile CaO (8-12 Gew.-%), Na₂O (3-4.5 Gew.-%) und vor allem P₂O₅ (0.2- >1.2 Gew.-%) variieren extrem, vor allem in epidotisierten Bereichen. Stellenweise konnte auch Kalifeldspat nachgewiesen werden.

Im Teufenbereich 3848- 3878 m wurden häufig epidot- und chloritreiche Partien angetroffen. Das Mineral Epidot konnte bis über 50 Gew.% nachgewiesen werden, wobei es sich anscheinend z.T. auf Kosten der Amphibole bildet (Abb.C.3.4). In einer Tiefe von 3936- 3964 m tritt ebenfalls verbreitet Epidot auf. Epidot und Granat kommen alternierend vor. Im Dünnschliff konnten Pseudomorphosen von Chlorit und Epidot nach Granat beobachtet werden.

Die jeweilige Veränderung der einzelnen zur Charakterisierung verwendeten Parameter ist für die verschiedenen Gesteinstypen in Tab.C.3.2 zusammengefaßt.

Tab.C.3.2: Variationen des stofflichen Bestandes von Bohrmehlproben in der KTB VB1b 3766-4000 m.

Bohrmehlproben - chemisch/mineralogische Parameter										
Teufenbereich	MgO	CaO	K2 0	Rb	Sr	QRZ	HGL	BIO	CHL	AMPH
3800m- 3818m alt.BIO-führ. GNT-AMPH										
3818m- 3836m AMPH(GNTnicht nachweisbar)										
3836m- 3852m BIO-HBL-GNS										
3852m- 3860m Amphibolit EPD- führend										
3860m- 3878m EPD-AMPH (50Gew.% EPD)										
3878m- 3885m BIO-HBL-GNS					1					
3885m- 3895m Granat- Amphibolit										
3895m- 3900m BIO-HBL-GNS										
3900m- 3936m Granat- Amphibolit							1			



Tab.C.3.2: Fortsetzung

Bohrmehlproben - chemisch/mineralogische Parameter											
Teufenbereich	MgO	CaO	K2 0	Rb	Sr	QRZ	HGL	BIO	CHL	AMPH	
3936m- 3964m EPD-AMPH EPD- reich											
3964m- 3984m Granat- Amphibolit											
3984m- 3991m CHL-HBL-GNS											
3991m-4000.1m EPD-AMPH EPD- reich			ſ								



Abb.C.3.4: Epidot- und Amphibolgehalte von Bohrmehlproben in der KTB VB1b 3840-4000 m

Das lithologische Bohrmehlprofil ist zusammen mit dem geologischen Cuttingsprofil in Abb.C.3.5 verglichen.

# LITHOLOG VB1b

CUTTINGS-PROBEN

BOHRMEHLPROBEN



Abb.C.3.5: Lithologisches (Cuttings-) Profil VB1b, im Vergleich mit dem Profil, das aus den Ergebnissen der RDA/RFA-Bohrmehluntersuchungen abgeleitet wurde.
Die extrem erhöhten Sr- Werte sind an die hohe Epidotführung gebunden. Der Ionenradius des Sr läßt in diesem Zusammenhang Substitution für Ca erwarten (SHANNON 1976). Eine Mögeine lichkeit Epidot (Ca-Mineral) in den gemessenen Konzentratiozu bilden, ist 1. Saussuritisierung (Zerfall nen der Anorthit- Komponente der Plagioklase) und 2. die autopneumatolytische bis autohydrothermale Bildung auf Klüften und in Hohlräumen. Es wurde zwar keine wesentliche Veränderung der PLG-Gehalte gemessen, da aber die primären PLG-Gehalte dieser Gesteine nicht bekannt sind, kann eine Saussuritisierung hier nicht ausgeschlossen werden. Wie in Abb.C.3.4 dargestellt ist, bildet sich Epidot auch auf Kosten der Amphibole.

Unmittelbar unterhalb der Bereiche der Epidotisierung tritt eine Zr- und Y-Anreicherung auf (Abb.C.3.6). Die Y- und Zr-Konzentrationen erreichen hier die höchsten Werte in der gesamten VB1b (60 ppm bzw. 400 ppm). Die Konzentrationen der Mineralphasen Amphibol sowie Chlorit gehen hier zurück, z.T. bis unter die Nachweisgrenze.

Im Intervall von 3996m bis zur Endteufe der Vb1b bei 4000.1m kommen erneut stark erhöhte Zr-, Y- und Sr- Werte in Verbindung mit Epidotgehalten bis 20 Gew.-% vor, (Zr >400 ppm, Y >60 ppm, Sr >400 ppm, vergl. Abb.C.3.6).

Aus dem KTB-Umfeld ist bekannt, daß das Vorkommen epidotisierter Gängchen und Klüfte mit der Annäherung an die Marginalbereiche von Granitintrusionen zunimmt und mit wachsenden Abstand von den Kontaktbereichen gänzlich verschwindet (z.B. Aufschluß Steinbruch Rupprecht, frdl. pers. Mittl. G. Zulauf). Die Epidotisierung in der KTB Vorbohrung könnte also ebenfalls durch die benachbarten Granitstöcke initiert worden sein.

Die Konzentrationen von Th, gemessen an Bohrmehlproben, der VB1b sind in Abb.C.3.7 dargestellt. Die Gehalte liegen überwiegend im Bereich < 5 ppm. Ab 3985 m sind diese Werte jedoch auffällig erhöht. Thorium zeigt um Teufe 3997 m ein Maximum von 30 ppm, bei einem Th/U- Verhältnis zwischen 10 und 13.5. Dies ist für gewöhnliche Metamorphite sehr hoch. Nach WEDE-POHL 1969 erreichen lediglich Biotit-Hornblende-Gneise (Schwarzwald) mit Th-Werten von 27 ppm und Th/U-Verhältnissen von 13.5 ähnliche Konzentrationen. Die Zusammensetzung einer Schwermineralfraktion (Fraktion > 3.34 g/ccm), die aus einer Cuttingsprobe aus 3996.5 m gewonnen wurde, ist in Tab. C.3.3 dargestellt. Die Th-Gehalte sind möglicherweise an Epidot gebunden, da dieses Mineral von WEDEPOHL (1969) nach Monazit als Hauptthoriumträger in Frage kommt.





Abb.C.3.6: Mineral- und Elementverteilung in epidotisierten ? Bereichen der VB1b.

- C 17 -





An Cuttingsproben aus den Teufen 3887 m und 3890 m wurden ebenfalls Schwerminerale separiert und mit der RDA analysiert, um Erkenntnisse über die mineralspezifische Spurenelementverteilung von Zr und Y zu erhalten. Das Element Y ist im Granat angereichert. Da kein Zirkon nachgewiesen wurde muß Zirkonium in anderen Schwermineralen eingebaut worden sein. Als Zirkoniumträger in den Metamafiten kommmt in Abwesenheit von Sphen überwiegend Rutil in Frage, mit durchschnittlichen Zirkoniumgehalten von 0.48 Gew.% (vergl. WEDEPOHL 1969). Die Ergebnisse der RDA-Analysen sind in der Tab.C.3.3 zusammengefaßt.

Tab.C.3.3: RDA Analysen der Schwermineralfraktion von Cuttingsproben, Fraktion > 3.34 g/ccm, alle Ergebnisse in Gew.-%

Teufe	3887	m	3890	m	3996.5	m
Granat	26		34		19	
Amphibol	25		40		19	
Epidot	39		21		45	
Biotit	6		-		-	
Chlorit	5		5		12	

#### C.3.3 Bestimmung der Gesteinsdichte mit RDA

Die im Feldlabor angewendete Methode der Gesteinsdichtebestimmung mit RDA ist bei HOMANN et al. (1988) beschrieben.

In Abb.C.3.8 und Abb.C.3.9 sind die Dichtedaten von Cuttings, Kernen und Bohrmehlproben in Abhängigkeit von der Teufe dargestellt. Am rechten Rand dieser Abbildungen sind die Profile der VB1a und der VB1b abgebildet. Die lithologischen Grenzen wurden dabei anhand der RDA/RFA Ergebnisse von Bohrmehluntersuchungen festgelegt. In Abb.C.3.9 sind die Ergebnisse der RDA Dichtebestimmung (XRHO) von Bohrmehl aus VB1a und VB1b sowie RDA Dichtebestimmungen von Kernen abgebildet. Die Abbildung C.3.8 zeigt die Ergebnisse der RDA Dichtebestimmung von Bohrmehlproben (Z-Proben) sowie die nach dem Archimedischen Prinzip und die mit einem Pyknometer bestimmten Dichten von Kernen bzw. Cuttings (siehe Teil Geophysik D1. Dichte).

Die Gneise von 3500-3574 m heben sich mit Dichten von 2.68 bis >2.80 g/ccm (Mittel 2.74 g/ccm) deutlich von der im Liegenden folgenden Metamafit-Einheit mit Dichtewerten von 2.80 bis >3.20 g/ccm (Mittel 2.96 g/ccm) ab.

Zwischen 3574 und 4000m ist die Variabilität der gemessenen Dichtewerte groβ. Die größten Dichtewerte werden im Bereich 3870- 3890 m erreicht, in dem Granat-Amphibolite mit bis über 30 Gew.% Granat auftreten.

Die mit verschiedenen Methoden untersuchten Probenarten zeigen untereinander gut übereinstimmende Ergebnisse. Stark nach oben oder unten abweichende Kernstück-Dichten lassen sich geringmächtigen Gneis- oder Aplit-Einschaltungen (z.B. bei ca. 3600, 3700 m) zuordnen. Im Bohrklein sind solche Bereiche mit dem Nebengestein vermischt.



Abb.C.3.8: Ergebnisse der verschiedenen Dichtebestimmungsmethoden an unterschiedlichen Proben.

BOHRMEHLPROBEN



Abb.C.3.9: Ergebnisse der RDA-Dichtebestimmungen von Kernen und Bohrmehlproben.

********

CILLING

0007

- Hillin

06.V1

VAVAV

#### C.4 Spülungsanalytik

#### C.4.1 Allgemeines

Tm Teufenbereich 3500.0 - 4000.1 m wurde die Bohrspülung in Abständen von 2 bzw. 4 m auf ihre Gehalte an den Kationen Na, Ca, K, Li, Sr, Ba, Fe, Mg, Mn, Zn, Si und Al (ICP-AES) sowie den Anionen Cl- und SO42- (IC) untersucht.

Liste der Spülungseinleitungen sowie die als Teufenlogs Eine dargestellten Ergebnisse befinden sich im Anhang. An den Teufenlogs ist die aktuelle Bohrlochteufe zu Beginn der Spülungseinleitungen aufgetragen.

#### C.4.2 Ergebnisse und Diskussion

#### VB1a:



Der Li-Gehalt der in der VB 1a eingesetzten Bohrspülung variiert zwischen 55 und 65 ppm. Dies entspricht einem D-HT-Gehalt von ca. 1.8 - 2.2 Gew.-% (Abb.4.1). Gegenüber einer frischen Ansatzspülung glei-D-HT-Konzentration zeigt cher die Bohrspülung bereits 211 Beginn dieses Teufenabschnittes deutlich höhere Konzentrationen an Na, K, Sr, Ba, Fe Bis auf Zusätze von und Mn. NaOH wurden der Spülung keine weiteren Verbindungen der genannten Elemente zugesetzt, so daβ deren Gehalte, mit Ausnahme des Na, im wesentlichen auf Austauschprozesse zwischen durchteuftem Gestein und Spülung zurückgeführt werden können.

> Ab ca.3810 m ist eine Zunahme an Na, Ca, Sr und Cl- zu verzeichnen, deren Gehalte nach Erreichen eines Plateaus ab 3870 m weiter etwa zunehmen. 3875 m wird Bei ein Maximum 600 ppm Cl- erreicht. von ca.

Abb.C.4.1: D-HT-Konzentration der Bohrspülung

Als mögliche Zufluβhorizonte salinarer Wässer zeigt der Kernbefund eine offene Calcit-Kluft bei ca. 3817 m sowie eine poröse, epidotisierte Zone bei ca. 3860 m.

#### VB1b:

Die eingesetzte Bohrspülung weist einen Variationsbereich im Li-Gehalt von 35 - 45 ppm entsprechend einem D-HT-Gehalt von 1.2 - 1.5 Gew.-% (siehe Abb.4.1) auf. Der Spülung wurden aus technischen Gründen zu Beginn der VB1b erstmals Wasserglas und Ester zugesetzt.

Die kontinuierliche Zunahme des Na-Gehaltes geht überwiegend auf NaOH-Zugaben zur pH-Wertsteuerung der Bohrspülung zurück. Eine Zunahme an Elementen, die als Indikatoren für salinare Zuflüsse dienen, ist in der VB1b nur schwach ausgeprägt. So deuten sich nur anhand der Chlorid-Gehalte der Bohrspülung zwei Zuflußbereiche und zwar 3817 m und ca. 3990 m an. Nach Abschluß der Bohrung wurden bei Zirkulations-, Absenk- und Injektionstests sowie durch Bohrlochmessungen allerdings salinare Zuflüsse im Bereich der Bohrlochsohle festgestellt.

#### C.4.3 Fluid Sampler

In Tabelle C.4.1 sind Ergebnisse von Fluid Sampleranalysen im Vergleich mit der Zusammensetzung der letzten aktuellen Spülungsprobe vor der Fluidprobennahme (Bezugsprobe) aufgeführt.

Die während des Bohrbetriebs zwischen dem 14.12.88 und 17.01.89 (Teufen siehe Tab.C.4.1) gewonnenen Proben zeigen nur geringe Anreicherungen an Ca, Sr und Cl-, wobei das letztgenannte Element den empfindlichsten Indikator darstellt. Demgegenüber zeigen die Proben vom 12.05.89 bis 17.05.89, also nach Abschluß der Bohrung und einem längeren Spülungsstillstand, aus den Teufen 3930 m , 3985 m sowie 3995 m, die nach einem Absenktest genommen wurden, deutliche Anreicherungen an Na, Ca und Sr mit bis zu 3 Gew.-% Cl-. Die in Tab. C.4.2 dargestellten Extremwerte von Elementverhältnissen der zu charakterisierenden Fluide wurden nach der in WITTEN-BECHER et al. (1989) beschriebenen Methode berechnet. Die aus Teufen 3930 m, 3985 m sowie 3995 m entnommenen Proben den zeigen eine im Fehlerbereich identische Zusammensetzung bezüglich ihrer Na/Ca- und Ca/Sr-Verhältnisse.

Aufgrund von Leitfähigkeitsmessungen wurde am 01./02.06.89 ein Multifluidsampler eingesetzt, d.h. die Bohrspülung wurde in verschiedenen Teufen bei einer Sondeneinfahrt beprobt. Die Ergebnisse sind in Abb.C.4.2 dargestellt. Sie belegen einen deutlichen Anstieg der Na-, Ca-, Sr- und Cl--Gehalte mit zunehmender Teufe. Dieser Effekt beruht auf der Vermischung zwischen dem aus dem Bohrlochsohlenbereich zutretenden Fluid und der im Bohrloch stehenden Bohrspülung. Tabelle C.4.1.: Analysenergebnisse der Fluid Samplerproben im Vergleich zur letzten aktuellen Spülungszusammensetzung vor der Fluidprobennahme (Bezugsprobe). Alle Angaben in ppm.

Fluid	Sampler	Teufe (m)	Na	Ca	K	Sr	C1-
Geocom	14.12.88	3567	730	140	110	1.6	150
Bezug	14.12.88	3624	760	120	130	1.1	66
Geocom	03.01.89	3736	950	320	120	2.9	260
Bezug	02.01.89	3803	880	160	100	1.1	55
Geocom	14.01.89	3801	1130	450	110	5.4	740
Bezug		3849	920	200	80	1.9	170
Geocom Bezug	17.01.89	3740 3799.5 3817.2 3849	1000 970 970 920	300 200 210 200	90 80 80 80	3.2 2.0 2.0 1.9	410 240 230 170
Geocom Geocom Geocom Geocom Bezug	12.05.89 13.05.89 17.05.89 17.05.89	3985 3930 3995 3930	6100 6000 5800 6100 1400	14700 13900 14100 14400 150	210 210 200 210 70	240 220 230 240 1.3	31000 30000 33000 29000 200

Fluid Sampler	Teufe	(m)	Na	Ca	K	Sr	Cl-
Multifluid Sam	pler 3830		4200	7600	160	137	21000
MSST	3730		2400	1600	100	36	6100
01.06./02.06.	89 3730		2400	1490	100	34	6400
	3700		2040	400	80	12	3400
	3675		1850	70	60	2.5	2600
	3650		1620	40	50	0.5	2000
	3625		1470	40	60	0.4	1400
	3600		1220	30	40	0.2	850
	3500		970	30	40	0.3	330
Bezug MSST	528		1060	60	50	0.8	230

#### Tab. C.4.2 : Elementverhältnisse

Fluid	Sampler	Teufe (m)	Na/Ca	Ca/Sr
Geocom	12.05.89	3985	0.32 - 0.41	61
Geocom	13.05.89	3930	0.33 - 0.43	63
Geocom	17.05.89	3995	0.32 - 0.41	61
Geocom	17.05.89	3930	0.33 - 0.42	60



Abb.C.4.2.: Darstellung des beprobten "Salinitätsgradienten" beim Einsatz des Multifluid-Samplers vom 01. und 02.06.89 am Beispiel der Na-, Ca-, Sr- und Cl--Gehalte im Teufenbereich von 3500 - 4000 m.

Zirkulation am 13.06.89

am 13.06.89 durchgeführten Zirkulation wurde Bei der die Spülung durch den Ringraum in das Bohrloch gepumpt, SO daß sie durch das Gestänge wieder zu Tage trat ("linksherum" zirkulieren lassen"). Die Ergebnisse sind in Abb C.4.3 gegen die Zeit aufgetragen, da eine Teufenzuordnung nur indirekt über das Bohrlochvolumen und die Pumprate möglich ist. Die Bohrspülung wurde am Auslauf zu konstanten Zeiten beprobt. Die Bohrspülungproben von ca. 1630 bis 1645 zeigen deutliche Ca, Sr und Cl-. Dieser Zeitabschnitt Anreicherungen an Na, entspricht etwa der Endteufe von 4000.1 m (1630) bis hoch zu (1645), womit die Anreicherungen an den genannten 3800 m Zuflüssen in diesem Teufenbereich zugeordet werden Elementen können, die bereits während der kontinuierlichen Spülungsanalytik in der VB 1a detektiert (dieser Bericht Seite C21) und mit Hilfe von Fluid Samplern in der VB1a und VB1b beprobt und charakterisiert werden konnten.

- C 24 -



Abb. C.4.3: Ergebnisse der Zirkulation am 13.06.89

#### C.5. Gasanalytik

#### C.5.1 Allgemeines

Im Teufenbereich 3500 - 4000 m (KTB VB1a und VB1b) wurden die mit einem Quirlentgaser aus der Bohrspülung freigesetzten Gase kontinuierlich auf ihre Gehalte an Stickstoff, Sauerstoff, Argon, Helium, Kohlendioxid, Methan sowie Wasserstoff massenspektrometrisch analysiert.

Für Übersichtslogs erfolgte eine Glättung der Meβwerte über ein 30 m langes Intervall.

In diesem Berichtszeitraum wurde ein kontaminationsfrei arbeitendes Bohrspülungs-Degassersystem der Firma NL-BAROID über mehrere Tage während des Bohrbetriebes (Rotary-Bohrverfahren) erprobt. Die Ergebnisse dieser Erprobungsphase sind unter Kapitel x. in diesem Report zusammengefaβt.

#### C.5.2. Ergebnisse

#### C.5.2.1 Kontinuierliche Gasanalytik

Im Teufenbereich der KTB VB1a (3500 - 3893 m) und der VB1b (3767 - 4000.1 m) lassen sich einzelne Zonen mit deutlich ausgeprägten Methan- bzw. Heliumanreicherungen (3800 - 3820 m, 3860 - 3880 m und 3980 - 4000 m) abgrenzen (siehe Abb. C.5.1 und C.5.2).

Die Methangehalte zeigen für die VB1a und die VB1b im Teufenbereich der Überschneidung einen identischen Kurvenverlauf. Die Methangehalte der VB1b sind in den Anreicherungszonen jedoch jeweils niedriger als die der VB1a. Die räumliche Nähe beider Bohrlöcher könnte die Ursache für diesen Unterschied sein. Es ist vorstellbar, daß der genannte Teufenbereich schon während des Durchteufens der VB1a zum Teil "entgast" ist.

In Abb. C.5.2 sind die Heliumgehalte der KTB-VB1a mit an Bohrkernen festgestellten offenen bzw. mineralisierten Klüften dargestellt. Zum Teil läßt sich eine gute Übereinstimmung zwischen dem Auftreten von Klüften und der Anreicherung von aus der Bohrspülung freigesetzten Helium in der Gasphase Demnach stellen diese Klüfte die Wegsamkeiten für aufzeigen. Helium in diesem Teufenbereich dar. Infolge der Helium-Methan-Korrelation muβ diese Aussage auch für Methan gültig sein.

Die KTB VB1b wurde mit dem Rotary-Bohrverfahren bis zur Endteufe von 4000.1 m abgeteuft; dabei wurde nicht gekernt, so daß die oben aufgezeigte Abhängigkeit zwischen den Klüften und Helium für diesen Teufenbereich nicht überprüft werden kann. Anhand von Abb. C.5.2 ist ersichtlich, daß die Klüfte häufig mit Epidot mineralisiert sind. Für den Teufenbereich der KTB VB1b wurde daher versuchsweise als Kluftindikator der mit der RDA an Bohrmehlproben nachgewiesene Epidot gewählt. Auffällig ist, daß wieder eine recht gute Übereinstimmung zwischen der Methan- bzw. Heliumanreicherung und dem Auftreten von Epidot besteht, so daß auch in der VB1b die Gaszutritte vorwiegend an epidotreiche (klüftige?) Zonen gebunden sind (vgl. Abb.C.5.3).



Abb. C.5.1: Methangehalte der aus der Bohrspülung freigesetzten Gasphase (Meßwerte sind geglättet) Datenlücken in der VB1a entstanden durch Degasser-Testphasen







Abb. C.5.3: Abhängigkeit zwischen dem Auftreten von Epidot (RDA-Analysen von Bohrmehlproben) und dem Methangehalt (geglättet) der aus der Bohrspülung freigesetzten Gasphase der KTB-VB1b

Die Wasserstoffgehalte der aus der Bohrspülung freigesetzten Gasphase sind in Abb.C.5.4 für die KTB-VB1a und VB1b zusammen dargestellt.



Abb. C.5.4: Wasserstoffgehalte der aus der Bohrspülung freigesetzten Gasphase (Meβwerte sind geglättet) Datenlücken in der VB1a entstanden durch Degasser-Testphase

Bei dem Vergleich der Wasserstoffgehalte der KTB VB1a und der VB1b kann ein deutlicher Konzentrationsunterschied zwischen beiden Ästen der Vorbohrung aufgezeigt werden. Diese Differenz kann auf das eingesetzte Bohrverfahren zurückgeführt werden. So wurde in dem dargestellten Teufenbereich bei der VB1a die Seilkerntechnik mit schnell drehenden, schmallippiimprägnierten Diamantbohrkronen eingesetzt, während die gen, VB1b mit Rollenmeißeln und dem Rotary-Bohrverfahren abgeteuft Da die Wasserstoffgehalte je nach eingesetzten Bohrwurde. werkzeugen und bohrtechnischen Parametern von < 0.01 bis > 10 Vol.% variieren und das scheinbar unabhängig von der durchteuften Lithologie, wird eine überwiegend künstliche Bildung für Wasserstoff angenommen.

Ab 3500 m ist auffällig, daß die Wasserstoffgehalte bis auf einige Ausnahmen mit den Methangehalten korrelieren (vgl Abb. C.5.1 und C.5.4). In Abb. C.5.5 und C.5. sind die Methanbzw. Heliumgehalte gegen die Wasserstoffkonzentrationen aufgeführt.



Abb. C.5.5: Methan- bzw. Helium/Wasserstoff-Diagramm KTB VB1a (3500 - 3893 m)



Abb. C.5.6: Methan- bzw. Helium/Wasserstoff-Diagramm KTB VB1b (3767 - 4000.1 m)

In Abb. C.5.5 ist eine Abhängigkeit zwischen den Methan- und Wasserstoffgehalten bis auf einige wenige Wertepaare klar ersichtlich. Wie aus dieser Abbildung hervorgeht, müßte analog zur Wasserstoffbildung ebenfalls eine Methanbildung beim mit Diamantbohrkronen auftreten. Bohrprozeß Demnach weisen Methandaten, die außerhalb der Trendlinie liegen, die auf Methanzutritte Für Helium kann natürlich hin. kein Trend aufgezeigt werden. In der KTB VB1b läßt sich, bedingt durch das schon erwähnte Rotarybohrverfahren, der o.a. Methan-Wasserstoff-Trend nicht mehr in dieser Form nachweisen . Es kann keine Beziehung zwischen Helium und Wasserstoff für die VB1b nachgewiesen werden.

Ist der Bohrprozeß für die Wasserstoffbildung verantwortlich, so sollte eine Abhängigkeit zwischen den Wasserstoffgehalten und den Mineralphasen der durchteuften Lithologie bestehen, die Mineralhärte und die Spaltbarkeit neben bohrda z.B. technischen Parametern einen Einfluβ auf die beim Bohrprozeß Die mögliche Abhängigkeit wurde auftretende Reibung besitzt. an Bohrmehlproben des Teufenbereichs 3500 - 3893 m untersucht, da diese Proben, bedingt durch ihren Mischprobencharakter im dm-Bereich, das ideale Probenmaterial für diesen Vergleich darstellen (vgl. Kapitel C.3). Der Probenabstand des analysierten Bohrmehls beträgt durchschnittlich 2 m. Die Wasserstoffgehalte wurden für diesen Vergleich nicht qeglättet. In der folgenden Abbildung C.5.7 sind einige ausgewählte Mineralphasen (Quarz, Granat, Amphibol, Chlorit) gegen die Wasserstoffgehalte der aus der Bohrspülung freigesetzten Gasphase dargestellt. So nehmen die Wasserstoffgehalte der Bohrspülung beim Durchteufen von quarz- und granatreichen Gesteinen (Ritzhärte der Minerale > 6) zu, während sie bei amphibol- und chloritreichen Gesteinen (Härte < 6) den entgegengesetzten Trend aufzeigen.



Abb. C.5.7: Wasserstoffgehalte der aus der Bohrspülung freigesetzten Gasphase in Abhängigkeit von der Zusammensetzung der durchteuften Lithologie (RDA-Analysen von Bohrmehlproben)

Interpretationen der Methan/Helium-Verhältnisse in den Für freigesetzten Gasphasen muβ gewährleistet sein, daß es sich nicht um künstliches, während des Bohrprozeß gebildetes, handelt. Der deutliche Unterschied in den Methankon-Methan je nach eingesetzten Bohrwerkzeugen (vgl. Abb. zentrationen, KTB VB1a und VB1b) sowie die Korrelation der Methan-C.5.1 Wasserstoffgehalte sprechen für die Existenz von artifiund ziellem Methan. Isotopen-Untersuchungen an Gasen der KTB-Vorbohrung belegen ebenfalls die Existenz von künstlich qebildeten Kohlenwasserstoffen (FABER & WHITICAR 1989).

den Abb. C.5.8 und C.5.9 sind die Methan/Helium-Verhält-In nisse von Gasphasen ausgewählter Teufenbereiche dargestellt. Teufenbereiche zeichnen sich durch Gasanreicherungen Diese auch durch Fluidzutritte aus, so daß und z.T. für diese der Anteil artifiziellen Methans vernachlässigbar Gasphasen Zum Vergleich sind die Gasphasen des sein sollte. Teufenbebis 3890 m der VB1a mit Heliumkonzentrationen reichs 3570 ≥ 15 ppm ebenfalls aufgeführt (vgl. Abb. C.5.8 und C.5.9).



Abb. C.5.8 und C.5.9: Methan/Heliumverhältnisse ausgewählter Teufenbereiche

Wie schon in WITTENBECHER et al. 1989 beschrieben, lassen sich einzelne Gasphasen nach ihren Methan/Helium-Verhältnissen voneinander abgrenzen.

Auffällig ist z.B., daβ die Gasphase der Zone zwischen 3980 und 4000 m im Vergleich zu 3202 m und 3447 m wieder höhere Methan/Heliumverhältnisse aufweist.

#### C.5.2.2 Esterzusatz - Methanquelle!

In der KTB VB1b wurde der Bohrspülung ein Ester (Terradrill 451 der Fa. HENKEL) zur Herabsetzung der Gestängereibung zugesetzt.

Nach dem Start der VB1b traten Änderungen in der Gaszusammensetzung der aus der Bohrspülung freigesetzten Gase im Vergleich zur VB1 und Vb1a auf: Bei Beginn einer Bohrspülungszirkulation wurde nun sofort Methan ohne eine gleichzeitige Heliumanreicherung gefunden. Abb. C.5.10 zeigt beispielhaft dieses Phänomen (mit T markiert) nach einem Gestängeaus- und -einbau.



Roundtrip 02.04.89; T: 3984.6 m

Abb. C.5.10: Helium- und Methangehalte der aus der Bohrspülung freigesetzten Gasphase nach einem Gestängeaus- und -einbau (KTB VB1b)

Um ca. 4°° Uhr wurde die Zirkulation gestartet und kurze Zeit später stieg die Methankonzentration auf über 1000 ppm an, während für Helium keine Konzentrationsänderungen auftraten (vgl. Abb. C.5.10). Die Bohrspülung aus dem Bohrlochsohlenbereich wies wie üblich eine Methan- und Heliumanreicherung auf. Bis zum Beginn der VB1b wurden keine Methananreicherungen ohne einen gleichzeitigen Heliumkonzentrationsanstieg verzeichnet. Deshalb ist es wahrscheinlich, daß die Methananreicherung bei Zirkulationsbeginn artifiziellen Ursprungs ist.

#### C.5.2.3 Bohrlochzirkulationen

Einen Tag nach Erreichen der Endteufe wurde die Bohrspülung neu konditioniert. Während der dabei notwendigen Bohrspülungszirkulation wurden die in der Spülung gelösten Gase freigesetzt und wieder kontinuierlich analysiert. Die Ergebnisse dieser Zirkulation sind in der nachfolgenden Tab.C.5.1 sowie in der Abb.C.5.11 zusammengefaßt.

Tab.C.5.1: Helium-, Wasserstoff- und Methangehalte der aus der Bohrspülung freigesetzten Gasphase während der Spülungszirkulation vom 04.04.1989

	Helium ppm	Wasserstoff ppm	Methan ppm
Zirkulationsbeginn (Spülung aus der Verrohrung)	8	7500	800
Spülung aus dem Bohrlochsohlenbe- reich	160	5000	5500

Auffällig ist dabei wieder die zu Beginn der Zirkulation (vgl. Abb. C.5.11; Start = 18°° Uhr) auftretende Methananreicherung ohne gleichzeitige Änderung der Heliumgehalte. Die Methan- und Heliumanreicherung um 1915 Uhr stellt die in der Bohrspülung gelöste bzw. freigesetzte Gasphase aus dem Bohrlochsohlenbereich dar. Deutlich wird, daß der Kurvenverlauf für die Methan- und Helium- Anreicherungen einen identischen Verlauf besitzen. Dahingegen läßt sich für die Wasserstoffgehalte ein anderer Trend aufzeigen. Im Bohrlochsohlenbereich wurde keine Anreicherung festgestellt, während nach Zirkulationsbeginn eine Wasserstoffanreicherung auftrat. Eine mögliche Erklärung für diesen Unterschied könnte eine im Bohrloch stattgefundene Gasfraktionierung sein, da Wasserstoff sehr mobil ist. Dann müßte sich aber auch Helium von Methan abtrennen und dürfte nicht den identischen Kurvenverlauf im unteren Bereich zeigen.

Vielmehr ist eine wie auch immer geartete Methanbildung aus

dem Ester (unter einer Wasserstoffaufzehrung ?) denkbar. Der Wasserstoff entsteht z.B. auch beim Gestängeeinbau durch Wasserzersetzung am Bohrgestänge. Deshalb nehmen die Wasserstoffgehalte nach einer anfänglichen Anreicherung (= Bildung am Gestänge) mit zunehmender Zirkulationsdauer (= keine Anreicherung in der Spülung aus dem Bohrlochsohlenbereich) ab. Am 11.05.1989 wurde ein sogenannter Absenktest (= Zuflußtest)

durchgeführt. Durch die Reduzierung der Spülungssäule wurden Zuflüsse initiiert (ca. 9 m³, siehe KESSELS et al. 1989). Der deutlichste Zufluß erfolgte im Bohrlochsohlenbereich. Dieser Bereich wurde mehrmals mit Fluid Samplern beprobt (vgl. Kap. C.4 und C.5.3). Eine erneute Bohrlochzirkulation erfolgte am 13.06.89. In Tab.C.5.2 und Abb. C.5.12 ist eine Auswahl der gemessenen Gase aufgeführt.

Tab.C.5.2: Helium-, Wasserstoff- und Methangehalte der aus der Bohrspülung freigesetzten Gasphase während der Spülungszirkulation vom 13.06.1989

	Helium ppm	Wasserstoff ppm	Methan ppm
Zirkulationsbeginn (Spülung aus der Verrohrung)	10	< 1000	220000
Spülung aus dem Bohrlochsohlenbe- reich	3800	160000	230000

Abgesehen von den Absolutgehalten kann für Methan, Helium und Wasserstoff der gleiche Trend, wie bei der Zirkulation vom 02.04.1989, aufgezeigt werden. Für Methan wurden Maximalgehalte von 23 Vol.%, für Helium 0.38 Vol.% und für Wasserstoff bis zu 16 Vol.% erreicht. Die Änderung der Stickstoff/Argon-Verhältnisse belegt, daß das zugetretene Fluid neben Methan und Helium auch Stickstoff enthielt. In der aus der Bohrspülung freigesetzten Gasphase konnte bis zu 10 Vol.% Kohlendioxid nachgewiesen werden. Da die freisetzbare Kohlendioxidmenge vom pH-Wert der Bohrspülung abhängt, entspricht der Verlauf der Kohlendioxid-Kurve der des pH-Wertes (vgl. Kap. C.4). Der pH-Wert nahm von Werten um 10 auf 5 im Bereich der größten Kohlendioxidanreicherung ab.



Zirkulation 04.04.89; T: 4000.1 m

Abb. C.5.11: Ergebnisse der Bohrlochzirkulation vom 04.04.89



#### C.5.3 Fluid Sampler

Im Berichtszeitraum wurden mehrere Horizonte, die sich durch Gasanreicherungen (Methan und Helium), Änderungen der Bohrspülungszusammensetzung (Kationen und Anionen) sowie Änderungen von physikalischen Gröβen, wie elektrischer Widerstand der Bohrspülung, auszeichneten, mit Fluid Samplern beprobt. Die gewonnenen Proben wurden entgast und mit dem Massenspektrometer gemessen. Je nach freisetzbarer Gasmenge kann die Gasphase über 50 Vol.% Wasser enthalten. Die Meßergebnisse sind daher auf wasserfreie Basis korrigiert. Die Sauerstoffgehalte werden als Luftkontamination definiert und sind ebenfalls korrigiert.

In den Tabellen C.5.3 bis C.5.5 sind sämtliche eingesetzten Fluid Sampler im Teufenbereich > 3500 m aufgeführt (Stand Nov.1989).

Tab.	C.5.3:	5.3: Zusammense		g der	Gasphasen,		die durch		eine
		Entgasung	der	durch	Einsatz	von	Fluid	Sam	plern
		gewonnenen	Flui	idprobe	en erziel	Lt wu	rden		

I	)atum	14.12.88	03.01.89	14.01.89	17.01.89 3817.2
T	Teufe (m)	3567.0	3736.0	3801.0	
S	Sampler	Geocom	Preussag	Geocom	Geocom
Stickstoff	(Vol.%)	53.60	78.90	67.0	93.24
Argon	(Vol.%)	0.68	1.00	1.01	1.97
Kohlendioxid	I (Vol.%)	0.09	0.36	2.77	0.04
Methan	(Vol.%)	$1.40 \\ 44.10 \\ 0.07$	9.18	19.40	0.39
Wasserstoff	(Vol.%)		10.60	9.57	1.89
Helium	(Vol.%)		0.20	0.35	0.01

Da Te	atum eufe (m)	17.01.89 3799.5	17.01.89 3740.0	
Sa	ampler	Geocom	Geocom	
Stickstoff	(Vol.%)	90.01	78.90	
Argon	(Vol.%)	1.09	1.00	
Kohlendioxid	(Vol.%)	0.08	0.36	
Methan	(Vol.%)	1.26	9.18	
Wasserstoff	(Vol.%)	7.50	10.60	
Helium	(Vol.%)	0.04	0.20	

Nach Beendigung der Absenktestphase wurde der Teufenbereich sich im Spülungswiderstandslog durch eine Abnahme ausder zeichnete, mit Fluid Samplern beprobt. Zum Einsatz kamen der

Geocom-Probennehmer (12.05., 13.05. und 17.05.1989) und ein Multi-Fluid Sampler (MSST; 01.06. bis 02.06.1989). Die Meßergebnisse der entgasten Geocom-Proben sind in Tabelle C.5.4 und die des Multi-Fluid Samplers in Tab.C.5.5 zusammengefaßt.

Tab. C.5.4: Meßergebnisse der Geocom-Proben des Absenktestes

D	atum	12.05.89	13.05.89	17.05.89	17.05.89
T	eufe (m)	3985.0	3930.0	3930.0	3995.0
S	ampler	Geocom	Geocom	Geocom	Geocom
Stickstoff	(Vol.%)	61.89	54.48	56.31	33.61
Argon	(Vol.%)	0.18	<0.10	0.02	0.07
Kohlendioxid	(Vol.%)	1.78	2.11	2.58	7.48
Methan	(Vol.%)	35.59	42.57	40.01	57.46
Wasserstoff	(Vol.%)	0.11	0.32	0.48	0.94
Helium	(Vol.%)	0.44	0.53	0.61	0.45

Die gewonnenen Proben zeichneten sich erstmals durch sehr starke Gasanreicherungen aus. So konnte durch die Entgasung der 3 l-Probe aus einer Tiefe von <u>3985 m</u> ca. <u>1800 cm³ Gas</u> gewonnen werden. Das entspricht pro l Fluid <u>150 cm³ Methan</u> sowie <u>1 cm³ Helium</u>.

Tab. C.5.5: Meßergebnisse der MSST-Proben

Те	ufe (m)	528	3625	3675	3700	3830
Kohlendioxid	(Vol.%)	0.57	4.85	14.57	15.41	5.96
Methan	(Vol.%)	0.68	0.19	0.16	0.21	2.92
Wasserstoff	(VOL.%)	0	1.65	1.08	1.56	1.70
Helium	(Vol.%)	0	0.008	0.01	0.02	0.29

Auch anhand Tabelle C.5.3 kann wieder das "Methan-Phänomen" aufgezeigt werden. Unterhalb 3600 m ist die Bohrspülung mit dem durch den Absenktest initiierten Zufluß versetzt (Methanund Heliumanreicherung sowie Kationen- und Anionenzunahme, vgl. Kap.C.4.x).

#### C.6 Vergleich der Ergebnisse von VB1a und VB1b

Die beiden Bohrlöcher VB1a und VB1b überlappen sich im Bereich 3766.9-3893m (Überlappung 126.1m). Bohrlochmessungen mit magnetischer Orientierung (BGT) ergaben eine horizontale Abweichung der beiden Bohrlöcher von stellenweise wenigen Dezimeter bis maximal 1- 1.5 Meter.

Bei einem Vergleich der beiden Äste 1a und 1b ergeben sich auf den ersten Blick annähernd identische Lithologien (Abb.C.6.2). Eine eindeutige Identifizierung gabbroider Relikte und teufenmäßige Zuordnung ist anhand von Bohrmehlproben aufgrund der höheren Pumpraten beim Richtbohren (stärkere Bohrkleinvermischung) nicht mehr eindeutig möglich. Nach dem Cuttings-Dünnschliffbefund sind Meta-Gabbros in der VB1b ohnehin weniger stark vertreten als in der VB1a und sind unterhalb von 3900 m nicht mehr zu beobachten.

Chemisch und mineralogisch ist der überlappende Bereich bis auf eine Zone von 3850- 3880 m recht einheitlich. Dieser Abschnitt der KTB VB1b unterscheidet sich von der VB1a durch Konzentrationsveränderung mehrerer Parameter (Abb.C.6.3). In der VB1b steigen die Sr-Gehalte von ca. 220 ppm (VB1a) auf ein Maximum von ca. 1250 ppm an, die P2O5-Werte steigen auf über 1 Gew.-%. Verstärkt tritt Epidot auf, der Werte bis zu über 50 Gew.% erreicht. Y- und Zr- Daten durchlaufen unmittelbar nach dem Maximum der Epidotisierung in <u>beiden</u> Ästen ein Maximum.

In den Dichtedaten von Kernen der VB1a und Bohrklein der VB1b ergeben sich ebenfalls erhebliche Unterschiede. Während die Kerndichten in der VB1a in diesem Bereich z.T. bis auf Werte von 2.65 g/cm³ sinken, erreichen sie in der VB1b nur etwa 2.80 g/cm³ als Minimaldichte. Ob diese Differenz der beiden Äste in ihren Dichtedaten auf eine verminderte Porosität in der VB1b schließen läßt oder auf die verstärkte Epidotisierung (Epidot 3.25 g/cm3 - 3.45 g/cm3, BOENIGK 1983) zurückzuführen ist, kann hier nicht mit Sicherheit geklärt werden. Die starke Epidot-Mineralisation könnte jedoch ein weiterer Hinweis darauf sein, daβ die offenen Klüfte, wie sie in der VB1a beobachtet wurden, in der VB1b trotz des geringen Ab-(wenige dm - max. 2 m) der beiden Äste von einander standes bereits verheilt sind. Die Ergebnisse der Spülungsanalytik können diese Vermutung teilweise belegen. Während in der VB1a noch Fluidzutritte nachgewiesen wurden, ist die VB1b dagegen in diesem Teufenbereich "trocken".

Mit Hilfe der kontinuierlich durchgeführten Spülungsanalytik können zwei Zuflußhorizonte im Überlappungsbereich nachgewiesen werden. Der Zuflußhorizont im Teufenbereich um 3817 m kann in beiden Ästen der Vohrbohrung nachgewiesen werden, wenn auch der Fluidzutritt während der VB1b nur noch sehr schwach ausgeprägt ist. Bei ca. 3875 m konnte nur in der VB1a ein Zufluß salinarer Wässer festgestellt werden. Das Fehlen oder stark verminderte Auftreten von Zuflußindikatoren (wie z.B. Chlorid Abb.C.6.1) kann dahin interpretiert werden, daß die Zuflußbereiche entweder schon entleert oder durch Spülung abgedichtet sind. Bei 3875 m deuten dagegen die chemischen und mineralogischen Daten auf eine verminderte Permeabilität bzw. verheilte Klüftigkeiten hin.

In dem Überlappungsbereich der VB1a und VB1b zeichnen sich die oben beschriebenen Zonen durch Methan- und Heliumanreicherungen in der Bohrspülung aus. Für die VB1b sind diese Anreicherungen analog zum Chlorid weniger stark ausgeprägt. Das deutet ebenfalls darauf hin, daß die Zone bei 3817 m bebeim Durchteufen der VB1a z.T. entgast ist, während reits der Bereich um 3875 m in der VB1b anscheinend weniger permeabel ist.



Abb.C.6.1: Chlorid-Konzentrationen in VB1a und VB1b mit den markanten Anstiegen im Bereich von Zuflüssen.







C. 7. Literaturübersicht

- BOENIGK, W. (1983) : Schwermineralanalyse Enke Verlag, Stuttgart
- HEINSCHILD, H.J., HOMANN, K.D., STROH, A.& TAPFER, M, (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 0 -480 m. - In: EMMERMANN, R., DIETRICH, H.-G., HEI-NISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-1: C1-C73, Hannover.
- HEINSCHILD, H.J., HOMANN, K.D., STROH, A.& TAPFER, M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 480 bis 992 m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-2: C1-C107, Hannover.
- HOMANN, K.D., HEINSCHILD, H.J., STROH, A.& TAPFER, M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 1530 bis 1998m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-9: C1-C88, Hannover.
- HOMANN, K.D. und MÜLLER, H. (1989): Wechselwirkung zwischen Dehydril HT-Bohrspülung und Gesteinsmehl. Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 1709 bis 2500m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 89-2: F1-F45, Hannover.
- FABER, E. & WHITICAR, W.I. (1989): C- and H-Isotope in leichtflüchtigen Kohlenwasserstoffen der KTB-Vorbohrung. - Vortrag 2. Kolloquium des DFG-Schwerpunktprogramms KTB, Gießen 15.-17.03.1989
- KESSELS, W., ZOTH, G. & KÜCK, J. (1989): Erste Ergebnisse eines Absenk- und Injektionstestes in der KTB-Oberpfalz VB, Niedersächsisches Landesamt für Bodenforschung, Hannover, Projektgruppe KTB

- SHANNON, R. B. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, 751-767, 1976
- STROH, A., HEINSCHILD, H.J., HOMANN, K.D.& TAPFER, M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 992 bis 1530m. - In: EMMERMANN, R., DIETRICH, H.-G., HEINISCH, M., WÖHRL, T. (Hrsg.): KTB-Report, 88-6: C1-C109, Hannover.
- WEDEPOHL, K. H. (ex. ed., 1969): Handbook of Geochemistry J.J.W. Rogers and J.A.S. Adams, Vol. II Springer Verlag, Heidelberg, Berlin, N.Y.

#### C. 8 Danksagung

Unser Dank gilt den technischen Mitarbeitern der Geochemiegruppe im Feldlabor, Frau A. Heinschild, Herrn H. Kamm, Herrn R. Lippert, Herrn S. Merz, Frau B. Weber. Für die kritische Durchsicht des Manuskripts danken wir Herrn Prof. Dr. K. H. Wedepohl, Herrn Prof. Dr. R. Emmermann, Frau Dr. H. Müller und Herrn Dr. Lauterjung.

### C.9 Anhang

- C.9.1 Tiefenlogs RFA Analysen VB 1a
- C.9.1.1 Tiefenlogs RFA Analysen VB 1b
- Tiefenlogs RDA Analysen C.9.2
- C.9.3
- Tiefenlogs der Kationen-, Chlorid- und Sulfatge-halte der Bohrspülung Zusammenfassung der Spülungseinleitungen der VB 1a im Teufenbereich 3503.3 3893 m C.9.3.1
- Zusammenfassung der Spülungseinleitungen der VB 1b im Teufenbereich 3766 4000.1 m C.9.3.2

## C.9.1

# Tiefenlogs RFA Analysen VB 1a



χ. C 49

.



.


# C.9.1.1

# Tiefenlogs RFA Analysen VB 1b



.



. 0 54 .



- C 55 -

# C.9.2

# Tiefenlogs RDA Analysen (1:2000)



. 0

57 π.





- C 58 -

## C.9.3

Tiefenlogs der Kationen- und Anionenanalysen (1:2000)



C 60 .





C.9.3.1: Zusammenfassung der Spülungseinleitungen der VB1a im Teufenbereich von 3503.3 m - 3893 m.

Nr.	Datum	Teufe (m)	Technische Einleitungen	TCV (m ³ )	pH-Wert
1	10.11.88	3507.2	9 m³ 2.3% D-HT 10 kg NaOH	101.8	10.0
2	13.11.88	3527.4	10 kg NaOH	92.8	10.3
3	15.11.88 16.11.88	3533.7	5 m³ 2.5% D-HT 3 m³ 2.5% D-HT	98.3 100.6	10.2 10.1
4	17.11.88 18.11.88 19.11.88 23.11.88	3550 3550.6 3553.5 3553.5	3 m³ 2.5% D-HT 10 kg NaOH 5 m³ 2.5% D-HT 5 m³ 2.5% D-HT	100.1 100 98.6 99.8	10.1 10.5 10.4 10.3
5	24.11.88 25.11.88	3557.5 3557.5	10 m ³ 2.5% D-HT 7 m ³ 2.2% D-HT	93.1 99.8	10.2
6	28.11.88	3580.6	9 m³ 1.67% D-HT 10 m³ 1.75% D-HT	102.7	10.1
7	01.12.88	3598.8	10 m³ 2.0% D-HT	97.7	10.0
8	03.12.88	3618.9	10 m³ 1.0% D-HT 10 kg NaOH	100.7	10.0
9	04.12.88	3628	$7 \text{ m}^3 \text{ H}_2 \text{ O}$	101.5	10.1
	14.12.88	3633.5	5 m ³ 2.5% D-HT	97.7	10.0
10	15.12.88	3650.8	9 m ³ 1.9% D-HT	99.1	10.0
	18.12.88	3658	10 kg NaOH 10 m³ 2.0% D-HT 10 kg NaOH	99.1	10.1
11	19.12.88	3664.4	6 m³ 2.0% D-HT 4 m³ 2.2% D-HT 10 kg NaOH	102.1	10.1
12	20.12.88	3671.4	4.5 m ³ 2.2% D-HT	101	10.2
13	22.12.88	3694	10 m³ 2.2% D-HT 10 kg NaOH	102.4	10.5
14	28.12.88	3719.3	9 m³ 2.2% D-HT	103.3	10.4
15	29.12.88	3740.1	6 m ³ 2.5% D-HT	105	10.4

C.9.3.1: Fortsetzung

Nr.	Datum	Teufe (m)	Technische Einleitungen	TCV (m³)	pH-Wert
16	04.01.89 05.01.89 07.01.89	3813.9 3813.9 3814.2	6 m ³ 2.5% D-HT 10 m ³ 2.5% D-HT 10 kg NaOH 6 m ³ H ₂ O	103.7 105.6 105.6	10.0 9.9 10.0
17	10.01.89 11.01.89	3825.3 3829.6	10 kg NaOH 6 m³ 2.5% D-HT 10 kg NaOH	101.6 101.4	9.9 10.1
18	14.01.89	3849.6	10 m³ 2.5% D-HT 10 kg NaOH 6 m³ 2.5% D-HT	108	9.8
	21.01.89 25.01.89	3849.6 3854.7	10 m³ 2.25% D-HT 10 m³ 2.0% D-HT 10 m³ 1.9% D-HT	102 103.1	10.0 10.2
19	26.01.89	3859.8	10 m³ 1.5% D-HT 10 m³ 1.0% D-HT	107.3	10.1
20	01.02.89	3872.8	8 m³ 1.25% D-HT 3 m³ 1.0% D-HT	105	10.0
21	04.02.89	3888.5	8 m ³ 1.5% D-HT 10 kg NaOH 2 m ³ 1.0% D-HT	107	10.0
	05.02.09	2092.0	S MG T.OS D-HI	101	9.9

Nr.	Datum	Teufe (m)	Technische Einleitungen	TCV (m³)	pH-Wert
1	03.03.89	3768.2	2 m³ Esteröl	90	9.5
2	06.03.89	3791.7	8 m³ 2.2% D-HT 5 Faβ Petrofree 10 kg NaOH	104.2	9.7
3	11.03.89 12.03.89	3824.2 3824.4	10 kg NaOH 8 m ³ 2.5% D-HT 3 Faβ Petrofree 50 kg NaOH	100.2 105	9.3 10.0
4	15.03.89	3845.2	6 m³ 2.5% D-HT 5 kg NaOH	104.6	9.6
5	17.03.89 18.03.89	3867.2 3871.0	10 kg NaOH 8 m³ 2.5% D-HT mit 8% Esteröl 10 kg NaOH	101.9 105	9.4 9.5
6	20.03.89	3887.6	10 kg NaOH	102	9.6
7	23.03.89	3907.8	10 kg NaOH	103.3	9.2
8	24.03.89	3914.6	8 m³ 2.5% D-HT mit 8% Esteröl	106	9.4
9	26.03.89	3927.6	10 kg NaOH	102	9.3
10	28.03.89	3947	6 m ³ 2.5% D-HT 5 m ³ H ₂ O 3 Faβ Petrofree	106.5	9.6
	29.03.89	3949.6	10 kg NaOH 4 m ³ 2.5% D-HT 6 m ³ H ₂ O	108	9.6
11	31.03.89	3963.2	10 kg NaOH	108	9.5
12	02.04.89	3989.6	6 m³ 1.25% D-HT 4 Faβ Petrofree 20 kg NaOH 6 m³ 2.5% D-HT	110	9.6
13	03.04.89	3997.9	10 m ³ ausgeschert mit 100 L D-TA und 20 kg	109	10.1
	04.04.89	4000.1	10 m ³ ausgeschert mit 50 L D-TA und 10 kg NaOH wieder zugesetzt	107	10.3



## D. Geophysik

Tiefbohrung KTB-Oberpfalz VB Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach) Teufenbereich: 3500 – 4000.1 m

> A. Rauen E. Huenges Ch. Bücker K. E. Wolter J. Wienand



KTB-Report	90-2	D1D64	53 Abb.	Hannover 1990
		Cheven and the second state of the second	a barrent de la contra de	

### Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 3500 bis 4000.1 m:

D. Geophysik

A. Rauen, E.Huenges, Ch. Bücker, K.E. Wolter & J. Wienand *)

### Inhaltsverzeichnis :

D.1	DichteD 2
D.2	UltraschallseismikD 5
D.3	Natürliche RadioaktivitätD14
D.4	WärmeleitfähigkeitD23
D.5	Natürliche Remanente Magnetisierung (NRM)D28
D.6	Magnetische SuszeptibilitätD34
D.7	Elektrische LeitfähigkeitD38
D.8	Entspannungsdeformation und akustische EmissionD44
D.9	PermeabilitätD57
D.10	PorositätD60
D.11	LiteraturD62
D.12	DanksagungD64

*) Adresse der Autoren: KTB - Feldlabor Postfach 67 D - 8486 Windischeschenbach

#### D.1 Dichte

#### D.1.1 Allgemeines

Die Dichte der Bohrkerne (3500 - 3889 m) wurde an 408 Kernen nach dem Archimedischen Prinzip bestimmt (siehe KTB-Report 88-1, BÜCKER et al. 1988). Die Dichtebestimmung der Cuttings (3767 - 4000) erfolgte mit dem Pyknometer nach dem im KTB-Report 88-6 (RAUEN et al. 1988) beschriebenen Verfahren. Dargestellt sind die Dichtedaten in Abhängigkeit von der Teufe in Abb. D.1.1. Ebenfalls sind in der Abb D.1.1 die Dichtewerte der Zentrifugenproben dargestellt, die aus der Mineralphasenanalyse (RDA) berechnet wurden (siehe KTB-Report 88-9, HOMANN et al 1988).

#### D.1.2 Dichte der Bohrkerne

Im Bereich bis 3574 m beträgt die mittlere Dichte 2.74 ± 0.02 g/cm³. Bis zu dieser Teufe setzt sich die homogene Abfolge von Gneisen fort, die schon im KTB-Report 89-5 (WIE-NAND et al. 1989) beschrieben wurde. Die Schwankungsbreite reicht von 2.7 g/cm³, gemessen an einem Sillimanit-Muskovit-Biotit-Gneis aus einer Teufe von 3501 m, bis zu 2.79 g/cm³, gemessen an einem Sillimanit-Biotit-Gneis aus einer Teufe von 3521 m. Unterhalb von 3574 m ist eine starke Heterogenität in den Dichtewerten erkennbar. Lithologisch handelt es sich hier um eine Abfolge von Metabasiten mit Einschaltungen verschiedener Gneise mit einer mittleren Dichte von 2.96 ± 0.1 g/cm³. Die Schwankungsbreite reicht von 2.62 g/cm³, gemessen an einem mittelkörnigen, undeutlich flaserigen Amphibolit mit mittelkörnigen, leukokraten, körneligen bis lagigen Meta-Apliten bis 3.29 g/cm³ gemessen an einem Granat-Biotit-Hornblende-Gneis mit Amphibolit-Linsen.

Im Abbildung D.1.2 ist die Häufigkeitsverteilung der Dichtewerte dargestellt. In der Häufigkeitsverteilung deutlich zu erkennen sind die zwei verschiedenen Gesteinsarten, die sich durch die zwei Maxima bei 2.7 g/cm³ (Gneise) und bei 2.9 g/cm³ (Metabasite) abzeichnen.

#### D.1.3 Dichte der Cuttings

Cuttings fielen ab 3767 m (Beginn der VB1b) an. Ab hier wurde die Dichte der Cuttings kontinuierlich jeden Meter bestimmt. Die mittlere Dichte beträgt  $2.91 \pm 0.07$  g/cm³. Die niedrigste Dichte (2.69 g/cm³) wurde an einem Gemisch aus Amphibolit, Sillimanit-Biotit-Gneis und Quarz aus einer Teufe von 3777 m und die höchste Dichte (3.11 g/cm³) wurde an Amphibolit aus einer Teufe von 3871 m gemessen. Bei den Cuttings ist ab 3980 m ein deutlicher Abfall der Dichtewerte erkennbar. Lithologisch läßt sich dies mit einer epidotreichen Störungszone erklären.



Abb. D.1.1: Teufenlog der Dichte

Vergleicht man die Dichtewerte der Cuttings und der Kerne, so stellt man eine recht gute Übereistimmung fest. Hierbei ist allerdings zu berücksichtigen, daß die Kerne aus der VB1a und die Cuttings aus der VB1b stammen. In Abbildung D.1.3 ist die Häufigkeitsverteilung der Dichtewerte der Cuttings dargestellt.



Abb. D.1.2: Häufigkeitsverteilung der an Kernen gedessenen Dichten





#### D.1.4 Dichte der Zentrifugenproben

Vergleicht man in Abb. D.1.1 die Dichten der Zentrifugenproben mit denen der Kerne (VB1a), so läßt sich eine gute Übereistimmung feststellen. Diese Übereinstimmung tritt auch beim Vergleich der Zentrifugenproben mit den Cuttings (VB1b) auf.

#### D.2 Ultraschallseismik

### D.2.1 Einführung

Die Daten der p- und s-Ultraschallgeschwindigkeitsmessungen wurden mit der am Institut für Allgemeine und Angewandte Geophysik der Universität München entwickelten Apparatur ermittelt (Huenges et al. 1989).

Das auffallendste Ergebnis im vorliegenden Teufenbereich ist eine starke Zunahme der Geschwindigkeiten bei 3575 m, bei gleichzeitigem Anwachsen der Dichte und dem Wechsel der Lithologie von Sillimanit-Gneis zu Granat-Amphibolit. Im Gegensatz zu anderen Parametern zeigen die Wellengeschwindigkeiten jedoch einen eher kontinuierlichen Übergang an.

#### D.2.2 Ergebnisse

Die dargestellten Daten aller Abbildungen umfassen alle Meßwerte, d.h. sowohl Werte, die direkt nach Entnahme der Bohrkerne erfaßt wurden, als auch solche, die zur Untersuchung zeitabhängigen Verhaltens später gemessen wurden.

Die Abbildungen D.2.1 bis D.2.4 zeigen die maximalen und mittleren radialen (d.h. senkrecht zur Kernachse gemessenen) p-Wellengeschwindigkeiten, ihre Anisotropie sowie die axialen (d.h. parallel zur Kernachse gemessenen) p- und s-Wellengeschwindigkeiten in Abhängigkeit von der Teufe.

In Abbildung D.2.1 ist ein allmählicher Anstieg der maximalen radialen p-Wellengeschwindigkeit von etwa 5900 m/s auf etwa 6500 m/s in einem Teufenbereich von 3540 bis 3580 m zu erkennen. Die axialen Geschwindigkeiten vp und vs (Abb. D.2.4) steigen ebenfalls allmählich von 5200 m/s auf ca. 6000 m/s bzw. 2800 m/s auf 3300 m/s an.

Bei den mittleren radialen p-Wellengeschwindigkeiten (Abb. D.2.2) hingegen ist ein fast sprungartiger Anstieg bei einer Teufe von 3575 m zu erkennen. Die Anisotropie (Abb. D.2.3) nimmt mit einem Mittelwert von 5% im Amphibolit kleinere Werte als im Gneis an.Die Streuung der gemessenen Werte ist in allen vier Logs unterhalb von 3575 m erheblich größer als darüber, was vorwiegend auf vorhandene Gneis-Einschaltungen im Amphibolit zurückzuführen sein dürfte.

Die Abbildungen D.2.5 und D.2.6 zeigen 6 Histogramme der mittleren radialen p-Wellengeschwindigkeit und der Dichte. Die im oberen Teil erkennbaren zwei Maxima sind, wie die im mittleren und unteren Teil erfolgte Aufteilung (bezüglich der Teufe) zeigt, durch das Vorherrschen von Gneis oberhalb und von Amphibolit unterhalb von 3575 m bedingt. Die Mittelwerte beider Gruppen stimmen mit 5765 m/s und 6284 m/s gut mit den Mittelwerten für Gneis und Amphibolit in geringeren Teufenbereichen der Vorbohrung überein. Die Histogramme für den Teufenbereich 3575m - 3900 m sind relativ breit, was in Anbetracht des lithologischen Befundes dadurch zu erklären ist, daß in diesem Teufenbereich neben dem dominierenden Amphibolit auch untergeordnet Gneis auftritt.

Die Korrelation zwischen den maximalen radialen bzw. axialen Geschwindigkeiten mit den Dichten (Fig. D.2.7 und D.2.8) ist schwach (r = 0.64 bzw. r = 0.57). Bei einer Aufteilung in die Teufenbereiche 3500 m - 3575 m und 3575 m - 3900 m ist innerhalb dieser Gruppen praktisch gar keine Korrelation zu erkennen (r=0.13 bzw. r=0.44 und r=0.06 bzw. r=0.42). Überraschenderweise liefert aber eine Regressionsanalyse zwischen Dichte und maximaler radialer p-Wellen-Geschwindigkeit mit

vp = (1636 * Dichte + 1587) m/s einen Zusammenhang, der praktisch deckungsgleich mit dem Ergebnis einer gleichartigen Analyse für den Teufenbereich 2500 m - 3000 m ist. Für den Zusammenhang zwischen der axialen p-Wellengeschwindigkeit und der Dichte ergibt sich dagegen ein davon stark abweichendes Ergebnis (Fig. D.2.8). Die Ursache dürfte darin zu sehen sein, daß die axialen p-Wellengeschwindigkeiten stärker als die maximalen radialen p-Wellengeschwindigkeiten (die i.a. parallel zur Foliation gemessen wurden) durch Effekte der Druckentlastung und Gefügeauflockerung beeinflußt werden.

Generell sind Regressionsanalysen zwischen Dichten und Geschwindigkeiten wegen der großen Restvarianzen nur von geringem prognostischem Wert. Sie sollten nicht als eindeutige Zusammenhänge mißverstanden werden.

Die Geschwindigkeitsanisotropie der untersuchten Kerne variiert sehr stark (Fig. D.2.3) und ist im Mittel in den Gneisen deutlich größer als in den Amphiboliten. Eine Gegenüberstellung von mittlerer radialer p-Wellengeschwindigkeit und zugehöriger Anisotropie (Fig. D.2.9) zeigt, daß sowohl der Mittelwert wie auch die Varianz der Anisotropie mit zunehmender mittlerer Geschwindigkeit abnehmen. Das ist verständlich, denn große Anisotropie ist mit relativ kleinen mittleren Geschwindigkeiten verknüpft und umgekehrt lassen hohe mittlere Geschwindigkeiten keine großen Anisotropien zu, da die maximalen Geschwindigkeiten begrenzt sind. Die Gneise liegen in Fig.D.2.9 überwiegend bei kleineren Geschwindigkeiten und die Amphibolite überwiegend bei hohen Geschwindigkeiten. Bei den ganz rechts liegenden Punkten handelt es sich um Messungen an relativ homogenen isotropen Amphiboliten, deren Geschwindigkeiten durch Effekte der Druckentlastung nur wenig beeinflußt wurden.







Abb. D.2.3: Log der Anisotropie radialer p-Wellengeschwindigkeiten.Streuung und lokale Maxima sind teilweise bedingt durch zeitabhängige Effekte die bei Wiederholungsmessungen hervortreten.





- D 11 -







■■■■ Teufe 3500 m bis 3575 m ▶▶▶▶ Teufe 3575 m bis 3900 m



### D.3.1 Natürliche Radioaktivität der Bohrkerne

Die natürliche Radioaktivität der Bohrkerne im Teufenbereich von 3500 - 3893 (KTB-VB 1a) wurde an 491 Kernstücken mit der bei WIENAND et al. (1990) beschriebenen Methode gemessen. Dieser tiefste gekernte Bereich der KTB VB wurde möglichst dicht vermessen, auch mit dem Hintergrund, den Teufenversatz zwischen Bohrlochmessungen und Bohrkernen mit dem bei BÜCKER & ZIMMERMANN (1990) beschriebenen Verfahren möglichst genau bestimmen zu können. Im Mittel wurde alle 0.8 m ein Kernstück vermessen.

In Abb. D.3.1 ist das Teufenlog der natürlichen Gamma-Strahlungsaktivität der Bohrkerne widergegeben. Deutlich zu erkennen ist die Abnahme der Aktivität bei dem Lithologiewech-sel von Gneisen zu Metabasiten bei 3575 m von etwa 75 c/s auf etwa 15 c/s. Innerhalb der Gneise schwanken die Werte zwischen 50 und 100 c/s (vgl. a. Abb. D.3.2, Häufigkeitsverteilung), der körnelige Biotit-Gneis im Übergang zu den Metabasiten bei 3575 m fällt durch Werte über 100 c/s auf. Die Peaks zu höheren sowie zu niedrigeren Werten innerhalb der Metabasitstrecke unterhalb von 3575 m können lithologisch erklärt werden: die Meta-Aplite bei 3596 m und 3718 m sowie der Biotit-Augengneis bei 3862 weisen besonders hohe Werte der Gamma-Strahlung auf (80 - 120 c/s), während die Zählraten des Meta-Ultramafitits bei 3717 m und die des Granat-Amphibolits bei 3771 m nahe der Nachweisgrenze liegen (kleiner als 5 c/s). Die drei Peaks bei 3775 m - 3795 m sind den Biotit-Augengneisen bzw einem Quarz-Feldspat-Gang zuzuschreiben. Der Biotit-Augengneis bei 3845 m fällt ebenfalls durch Werte von über 40 c/s in der Metabasitstrecke auf.

Die Häufigkeitsverteilung der gemessenen Gammastrahlungswerte (Abb. D.3.2) zeigt die Metabasite im Bereich von 0 - 40 c/s mit einer schmalen Halbwertsbreite und die Gneise und Meta-Aplite um 75 c/s mit einer etwas größeren Halbwertsbreite.

Der Zusammenhang der Zählrate mit der Dichte der Bohrkerne ist in Abb. D.3.3 dargestellt. Wie bereits bei WIENAND et al. (1990) für den Teufenabschnitt 3000 - 3500 m beschrieben, zeigen die Gneise im Dichtebereich von 2.68 - 2.78 g/cm³ auch im Teufenabschnitt von 3500 - 3893 m eine schwache positive Korrelation mit der Zählrate. Bei den Metabasiten mit Dichten über 2.78 g/cm³ und Zählraten unter 40 c/s ist eine solche Korrelation nicht erkennbar. - D 15 -



Abb. D.3.1: Teufenlog der natürlichen Gamma-Strahlungsaktivität der Bohrkerne



Abb. D.3.2: Häufigkeitsverteilung der Gammastrahlungswerte der Bohrkerne im Teufenbereich 3500 - 3893 m. Die zwei Maxima sind den Metabasiten bzw. Gneisen zuzuschreiben.



Abb. D.3.3: Zusammenhang der Dichte mit der Zählrate der Bohrkerne. Im Dichtebereich der Gneise (2.68 – 2.78 g/cm³) ist eine schwache positive Korrelation zwischen Dichte und Zählrate erkennbar.

- D 16 -

#### D.3.2 Natürliche Radioaktivität des Bohrkleins

Die KTB VB 1B wurde ab dem Ablenkpunkt bei 3766 m nicht gekernt. Die natürliche Radioaktivität des Bohrkleins wurde jeden Meter (jeweils etwa 300 g Trockenmasse) mit dem bei HUENGES et al. (1989) beschriebenen Verfahren gemessen. Die Messungen sind aufgrund der langen Meßzeiten noch nicht abgeschlossen. Die gemessenen Gamma-Spektren wurden hinsichtlich der Gesamtstrahlungs-Aktivität (in c/s) und der Kalium-, Uran- und Thorium-Gehalte ausgewertet.

In Abb D.3.4 ist die Gesamtzählrate der Bohrlochmessungen (in der Einheit GAPI) zusammen mit der an die Bohrlochmessungen angeglichenen Zählrate der Cuttings im Teufenbereich 3900 - 4000 m dargestellt. Für diesen Vergleich wurden die Cuttings-Zählraten mit einem empirisch ermittelten Faktor von 27.7 multipliziert. Aufgrund der unterschiedlichen Meßgeometrien bei den Bohrloch- bzw. Cuttings-Messungen können die jeweils ermittelten Gesamtzählraten, wie bereits bei WIENAND et al. (1990) für die Kernmessungen beschrieben, nicht direkt verglichen werden.

Unterhalb von 3900 bis 3992 m liegen die Zählraten, wie für die hier erbohrten Granat-Amphibolite zu erwarten, durchweg niedrig zwischen etwa 20 und 40 GAPI (zur Einheit GAPI s.a. WIENAND et al., 1990). Ab 3992 m steigen die Werte stark an und erreichen bei 3996 m bei den Bohrlochmessungen die höchsten in der KTB VB gemessenen Werte von über 300 GAPI. Die angeglichenen Cuttings-Messwerte weicehn mit über 200 GAPI in diesem Abschnitt deutlich ab. Lithologisch wird dieser tiefste Bohrlochabschnitt durch vollständig chloritisierte und epidotreiche Biotitgneise beschrieben (s.a. Abschnitt B in diesem Report). Der Grund für die Differenz der GAPI-Werte zwischen Bohrloch- und Cuttings-Messungen in diesem Teufenbereich muß noch näher untersucht werden. Die Teufendifferenz zwischen Bohrlochmessungen und Cuttings kann aus Abb. D.3.4 bei 3990 bei dem Anstieg der GAPI-Werte zu etwa 2 m entnommen werden.

Unterhalb von 3998 m scheinen die Meßwerte wieder leicht abzunehmen. In Zusammenhang mit der starken Gamma-Strahlungsanomalie ist interessant, daß diese mit einer Dichte-Abnahme von 2.95 g/cm³ auf 2.8 g/cm³ einhergeht.

Zur Verdeutlichung der Ursachen für die Anomalie sind in der Abb. D.3.5 die Kalium-, Uran- und Thorium-Gehalte sowie die daraus und mit der Dichte ermittelte Wärmeproduktionsraten mit der Formel nach RYBACH. (1976) gegen die Teufe aufgetragen. Von 3920 m bis 3985 m sind die K-, U- und Th-Gehalte relativ konstant mit nur kleinen Schwankungen; K liegt zwischen 0.5 % und 1 %, der U-Gehalt ist fast durchweg kleiner 1 ppm und der Th-Gehalt liegt zwischen 2 ppm und 8 ppm. Unterhalb von 3985 m nimmt der U-Gehalt zunächst auf 3 ppm zu, fällt dann wieder ab und liegt auf den letzten 4 m der



Abb. D.3.4: Gamma-ray Log (KTB-Referat Bohrlochmessungen) und an die Bohrlochmessungen angeglichene Gesamtzählrate der Cuttings-Messungen. Unterhalb von 3985 ist die stärkste in dieser Bohrung gemessene Gamma-Strahlungsanomalie zu erkennen.
Thorium, ppm WPR,  $\mu$ W/m³ Kalium, Gew.% Uran, ppm 1.0 8 16 2 3 0.0 0.5 2 0 0 1 0 1 1.1 1 11111 3900 -3920 -3940 -Teufe, m 3960 3980 -0 × 8

> Cuttings, preliminary results KTB-Feldlabor Geophysics File: GAM%CUTH, 14.12.89

4000 .

Abb. D.3.5: Kalium-, Uran- und Thorium-Gehalte der Cuttings im Teufenbereich von 3920 - 4000 m. Die Gamma-Strahlungsanomalie unterhalb von 3985 wird hauptsächlich durch eine Thorium-Anreicherung verursacht.



Abb. D.3.6: Darstellung des Thorium/Uran-Verhältnisses für die Cuttings-Messungen aus dem Teufenbereich von 3920 - 4000 m. Die meisten Messwerte liegen oberhalb der Geraden, die das Verhältnis von Th/U = 4 kennzeichnet.

Bohrung unter der Nachweisgrenze. Der Th-Gehalt nimmt in diesem Teufenbereich demgegenüber stark zu bis über 20 ppm und ist unterhalb 3996 m wieder bei 6 ppm. Der K-Gehalt liegt zwischen 3992 m und 3997 m bei 0.5 % und steigt im Bohrlochtiefsten wieder auf 1 % an. Diese Ergebnisse stimmen gut mit den RFA-Messungen überein (vgl. Abschnitt C in diesem Report). Die Wärmeproduktionsrate hat bei 3996 m ein Maximum von über 2  $\mu$ W/m³ und ist auf den letzten 4 m wieder bei 0.5  $\mu$ W/m³. Insgesamt läßt sich festhalten, daß die Gamma-Strahlungsanomalie unterhalb von 3985 m im wesentlichen durch eine starke Thorium-Anreicherung verursacht wird. Dies spiegelt sich auch in dem Thorium/Uran-Verhältnis wider, das in Abb. D.3.6 dargestellt ist. Die meisten Meßwerte liegen oberhalb der Geraden, die ein Verhältnis von Th/U = 4 kennzeichnet.

Zum Vergleich mit der oben beschriebenen Gammastrahlungs-Anomalie bei 3990 m sind in Abb. D.3.8 die K-, U- und Thgehalte sowie Wärmeproduktionsraten der Cuttings aus der KTB VB 1 im Teufenabschnitt von 1900 - 2000 m dargestellt. Die Lithologie ist hier durch Biotit-Sillimanit-Gneise gekennzeichnet, in dem ebenfalls eine erhöhte Gammastrahlungs-Aktivität gemessen wurde. In diesem Teufenbereich wird die Anomalie allerdings hauptsächlich durch eine Uran-Anreicherung ab 1980 m verursacht. Zusammen mit der Uran-Anreicherung wurden auch starke Graphitisierungen (vgl. MASSALSKY et al., 1989) und hohe Helium-Gehalte festgestellt (vgl. HOMANN et al., 1989). Die Th- und K-Gehalte bleiben mehr oder weniger konstant. Uran-Gehalt und Wärmeproduktionsrate zeigen bei 1994 m ein Maximum und fallen danach wieder ab. Erhöhte Helium-Gehalte konnten auch unterhalb von 3985 m festgestellt werden (vgl. Abschnitt C in diesem Report). Es liegt die Vermutung nahe, daß die erhöhten Helium-Gehalte in diesen Teufenabschnitten mit den  $\alpha$ -Teilchen aus den Uran- bzw. Thorium-Zerfallsreihen in Zusammenhang stehen.

Uran, ppm Thorium, ppm 5 10 15 0 5 10 15 D Quilium function for the second se WPR,  $\mu W/m^3$ Kalium, Gew.-% 2-2 6 3 0 0 4 1 1900 +£. 1 1925 Ξ Teufe, 1920 -1975 -2000

Abb. D.3.7: Kalium-, Uran- und Thorium-Gehalte der Cuttings im Teufenbereich von 1900 - 2000 m. Die Gamma-Strahlungsanomalie unterhalb von 1980 m wird hauptsächlich durch eine Uran-Anreicherung verursacht.

Die Wärmeleitfähigkeit und deren Anisotropie wurden ca. alle 5 m an Bohrkernen der Strecke zwischen 3500 und 3893 m mit dem bei HUENGES et al. (1989 a) beschriebenen Verfahren gemessen und bestimmt. Abb. D.4.1 zeigt die Meßdaten, ermittelt mit der Orientierung der Halbraum-Linien-Quelle in 3 senkrecht zueinander stehenden Richtungen auf den Bohrkernen. Erkennbar ist der Übergang von den Gneisen zu den Metabasiten bei 3575 m mit einer Änderung der mittleren Wärmeleitfähigkeit von 3.4(3) W/m K auf 2.6(3) W/m K (siehe auch die Häufigkeitverteilung der Werte in Abb. D.4.2). Innerhalb der Metabasitabfolge unterhalb 3575 m treten einige geringmächtige Einschaltungen von Meta-Apliten bei 3596 und 3718 m, einem Biotit-Augengneis bei 3862 m und einem erzreichen Meta-Ultramafitit bei 3717 m (siehe Abb. D.6.1), die auch höhere Wärmeleitwerte als die übrigen Metabasite besitzen.

In Abb. D.4.1 sind die aus der Modalanalyse des Bohrkleins berechneten Wärmeleitwerte (siehe HUENGES et al. 1989 b) eingezeichnet. Die hier berechneten Werte wurden mit dem aus dem Vergleich aller in der KTB VB gemessenen und berechneten Wärmeleitwerten ermittelten Faktor von 1.2 kalibriert. Man erkennt abgesehen von den oben erwähnten geringmächtigen Einschaltungen eine gute Wiedergabe der Tiefenstruktur der gemessenen Werte. Der Mittelwert für die Gneise in o.g. Teufenbereich beträgt 3.25(8) W/m K und für die Metabasite 2.6(3) W/m K. Man ist also in der Lage, auf den nicht gekernten Teufenbereich zu extrapolieren. Interessant ist dabei, daß die Wärmeleitfähigkeit auf den letzten 50 m ein Maximum von ca 2.8 W/m K durchläuft.

Um die Frage der Anisotropie zu beleuchten, wurden an ausgewählten Gesteinen Abhängigkeiten der Wärmeleitfähigkeit von der Lage der Linienquelle auf der Stirnfläche gemessen. Dabei wurde der Poreninhalt wie folgt variiert: 1.) Probe im Ofen bei 80° C und im Vakuum getrocknet und in der Umgebungsluft gemessen; 2.) Probe evakuiert, unter Vakuum destilliertes Wasser eingesogen und unter Wasser gemessen.

Abb. D.4.3 zeigt die Messung an einem Gneis mit steiler Foliation aus 1908.70 m. Man erkennt die starke Anisotropie, die auch nicht verringert wurde, wenn die Luft in den Rissen durch das um mehr als eine Größenordnung besser wärmeleitende Wasser ersetzt wurde. Das kann so interpretiert werden, daß mehr die Mineralzusammensetzung als die Mikrorißbildung die Anisotropie der Wärmeleitfähigkeit der Gneisprobe verursacht.



Abb. D.4.1

Wärmeleitfähigkeit von KTB-VB-Kernen. Die Signaturen geben jeweils einen Mittelwert mit mittlerem Fehler aus 5 Wiederholungsmessungen in einer Ebene an. Diese wird mit den sie aufspannenden 2 Richtungen bezeichnet (0°, 90° zur Referenzlinie in der Horizontalen oder z = Bohrkernachse). Eingetragen ist die aus der Modalanalyse berechnete Wärmeleitfähigkeit (siehe Text; durchgezogen: Bohrklein aus KTB VB1a; gestrichelt: Bohrklein aus KTB VB1b) jeweils über 50 m gleitend gemittelt.



Abb. D.4.2 Häufigkeitsverteilungen der gemessenen Wärmeleitfähigkeiten (gestrichelt: Metabasite aus dem Teufenbereich 3575 m bis 3893 m; durchgezogen: Gneise aus dem Teufenbereich 3500 m bis 3575 m).

Aus der Tatsache, daß innerhalb der Metabasitserie die 3 Messungen parallel 90°/z, parallel 0°/z und parallel 0°/90° nicht streuen (siehe Abb. D.4.1), kann man in erster Näherung eine Isotropie der Wärmeleitfähigkeit der Metabasite ableiten. Dagegen zeigt Abb. D.4.3 doch noch eine Anisotropie mit kleiner Amplitude bei einem Amphibolit aus 3839.50 m Tiefe. Diesmal hat die Wassersättigung den Effekt, daß die Amplitude kleiner wird. D.h. eine Interpretation als mikrorißverursachte Anisotropie ist möglich.



Abb. D.4.3 Abhängigkeit der Wärmeleitfähigkeit vom Azimut der Lage der Linienquelle auf der Stirnfläche bei verschiedenen Porenfüllungen: oben Gneis mit steiler Foliation, Kernstück 430A1a aus 1980.7 m Tiefe; unten Amphibolit 940D1n aus 3839.5 m Tiefe.

Zur Aufnahme einer Sättigungskurve wurde die Probe 430A1a nachdem sie längere Zeit der Umgebungsluft ausgesetzt war, eine bestimmte Anzahl von Stunden in Leitungswasser gelegt und in der Umgebungsluft gemessen. Die Routinemessung der Wärmeleitfähigkeit im Feldlabor wird ausgeführt, nachdem die Probe mindestens 24 Stunden in Leitungswasser gelegen hat. Abb. D.4.4 zeigt diese Sättigungskurve ermittelt über die Gewichte der Probe. Man erkennt, daß der Einfluß der Dauer der Wassersättigung gering ist. Schon nach einer Stunde im Wasser erhält man Werte, die sehr nahe den Messungen an vollständig wassergesättigten Proben liegen. Es ist jedoch eine Streuung zu beobachten, die auch Werte oberhalb des Wertes der wassergesättigten Probe beinhalten. Es muß berücksichtigt werden, daß keine besonderen Vorkehrungen getroffen wurden, das Austrocknen der Probe während einer Messung und damit eine zusätzliche Abkühlung, die eine höhere Wärmeleitfähigkeit vortäuscht, zu verhindern. Ferner ist offen, wie das Wasser in der Probe verteilt ist. Diese Effekte liegen jedoch innerhalb der für diese Messungen angegebenen Genauigkeit von 5 %.



Abb. D.4.4 Sättigungskurve der Wärmeleitfähigkeit von Kernstück 430A1a aus 1980.7 m Tiefe beim Azimut der Lage der Linienquelle bei -75° auf der Stirnfläche (siehe Abb. 4.3). Markiert sind die Zeitdauern der Lage der Probe in Leitungswasser.

D.5 Natūrliche remanente Magnetisierung NRM

### D.5.1 Allgemeines

Im Teufenbereich von 3503 m bis 3889 m konnten Messungen der NRM an 248 Kernstücken durchgeführt werden. Davon waren 240 Messungen auswertbar mit Magnetisierungen > 1 mA/m. 117 Kerne zeigten Magnetisierungen > 10 mA/m. Das Meßprinzip ist bei BÜCKER et al. (1988) beschrieben.

## D.5.2 Ergebnisse

Das Teufenlog sowohl der Totalintensität der NRM als auch der Inklination (2 Meßwerte pro Kernstück) ist in Abb. D.5.1 dargestellt. Grob lassen sich drei Bereiche unterschiedlicher remanenter Magnetisierung unterscheiden. Von 3500 m bis 3572 m wurden relativ geringe Werte der NRM im Bereich von 1 mA/m bis 400 mA/m gemessen. Die Inklinationen liegen größtenteils steil, sowohl bei +90° als auch bei -90°. In diesem Abschnitt wurden Gneise erbohrt. Im anschließenden Teufenbereich bis etwa 3690 m (Amphibolit) ist die NRM höher (um 100 mA/m) mit relativ geringer Streuung und es wurden meist positive Inklinationen gemessen. Ab 3690 m bis Endteufe der gekernten Vorbohrung streuen die NRM-Werte stärker zwischen 1 mA/m und 5000 mA/m. Hier treten wieder sowohl positive als auch negative Inklinationen auf. Es wurde Amphibolit erbohrt mit Einschaltungen von Gneisen und einigen Klüften. Das herausragende Maximum der NRM von 175 A/m wurde im Meta-Ultramafitit bei 3719.5 m angetroffen. Diese magnetische Anomalie ist unter Punkt D.5.3 ausführlicher dargestellt.

In Abb. D.5.2 ist die Inklination der NRM der Totalintensität gegenübergestellt. Es fallen meist steile Inklinationen um  $\pm 90^{\circ}$  auf. Flachere Inklinationen beider Vorzeichen treten eher bei schwachen Remanenzen auf. Mit steigender NRM scharen sich die gemessenen Inklinationen immer mehr um +90°. Auch die Inklination der stärksten Anomalie (175 A/m) liegt bei +90°. Die auffallende Häufung der steilen Inklinationen könnte durch den Bohrprozess bedingt sein und damit nicht der in-situ Remanenz entsprechen (DIRM  $\triangleq$ drilling <u>i</u>nduced <u>r</u>emanent <u>m</u>agnetization, siehe RAUEN et al., 1988).

Die Häufigkeitsverteilung der NRM in logarithmischer Skalierung ist in Abb. D.5.3 gezeigt. Es zeichnen sich zwei Maxima ab (um etwa 6 mA/m und um etwa 100 mA/m).



Abb. D.5.1 : Teufenlog der Totalintensität der NRM (links) und der Inklination der NRM. Zwei Messungen pro Kernstück sind gezeigt. Magnetisierungen < 1 mA/m sind nicht berücksichtigt. Rechts stark vereinfachtes Litho-Profil (G=Gneise, M=Metabasite, MUM=Meta-Ultramafitit).





Abb. D.5.2 : Gegenüberstellung von Totalintensität der NRM und Inklination der NRM.



Abb. D.5.3 : Häufigkeitsverteilung der Totalintensität der NRM. Die Logarithmen der Meßwerte zwischen 1 mA/m und 100 A/m sind in 50 gleiche Intervalle geteilt. Die Anzahl der Meßwerte pro Intervall wurde berechnet.

#### D.5.3 Die magnetische Anomalie bei 3719.5 m Teufe

In der Abb. D.5.4 sind die Messungen der Horizontalkomponente der NRM und die der Suszeptibilität (aufgrund des Meβprinzips in Achsenrichtung, siehe auch Abschnitt D.6 im gleichen KTB-Report) gegen die Teufe im Bereich von 3716 m bis 3720.5 m dargestellt. Beide magnetische Parameter zeigen in diesem Bereich die höchsten Werte in der KTB-Vorbohrung.

Wie aus dem Vergleich der Lithologie (schematisiert am rechten Rand) und der lückenlos gemessenen Suszeptibilität zu sehen ist, ist die magnetische Anomalie eng an das Vorkommen des Meta-Ultramafitit gebunden. So liegen im oben und unten angrenzenden Amphibolit die Suszeptibilitäten um 0.6*10⁻³ SI (eine für Amphibolit eher geringe Suszeptibilität, wie aus der Häufigkeitsverteilung der Suszeptibilität im Kapitel D.6 sichtbar wird), während im Meta-Ultramafitit die Suszeptibilität bis auf 0.167 SI ansteigt.

Abb. D.5.5 zeigt einen Anschliff aus dem Bereich der stärksten Magnetisierung. Der Träger der Magnetisierung ist Magnetit (siehe auch Kapitel "B" und Abschnitt D.6 im gleichen Band).

Die H-Komponente der NRM konnte nicht an jedem Kernstück bestimmt werden. Trotzdem fällt eine sehr gute Korrelation zwischen beiden magnetischen Parametern auf. Das absolute Maximum beider Messungen befindet sich jeweils exakt bei 3719.45 m Teufe. Die Messung der Horizontalkomponente der NRM erlaubt eine detailliertere Auflösung, wie z.B. am Minimum der NRM bei 3719.67 m zu sehen ist. Dieses Minimum paust sich bei der Suszeptibilität nur als Plateau durch. Das Minimum der Suszeptibilität bei 3718.45 m zeigt bei der NRM sogar noch eine Feinstruktur durch ein zusätzliches relatives Maximum. Dieser 'Tiefpaß-Effekt' wird durch die integraler wirkende Messung der Suszeptibilität hervorgerufen (BÜCKER et al., 1988).

Suszeptibilität,  $10^{-3}$  SI H-Komponente (NRM), mA/m1000 10 * 10 * 10 * 0.1 10 100 10 * 10 1.1.1100 3716.0 Amphibolit 3716.5 3717.0 3717.5 3718.0 Meta-Ultra-Mafitit Teufe, m 3718.5 Anschliff 3719.0 3719.5 3720.0 Amph

Abb. D.5.4 : Teufenlog der H-Komponente der NRM und der Suszeptibilität (in z-Richtung gemessen). Jede durchgezogene Linie stellt die zusammenhängende Messung an einem Kernstück dar. Das Abfallen der Meßwerte an den Enden der Kernstücke ist durch Randeffekte bedingt. Rechts zur Verdeutlichung ein vereinfachtes Litho-Profil. Bei 3719.51 m wurde eine Anschliff-Probe entnommen.

KTB FL, Geophysik, 14.3.90

3720.5

- D 32-



Abb. D.5.5 : Anschliff aus dem Bereich der in Abb. D.5.4 gezeigten magnetischen Anomalie (Kernstück 911F1ahK, Teufe 3719.51 m). Man erkennt im linken Bereich einen Spinell mit Magnetitsaum. Rechts umgibt Magnetit ideomorphen Pyrit. Lange Bildkante 0.25 mm, Öl, 1 Nicol.

# D.6 Magnetische Suszeptibilität

# D.6.1 Allgemeines

Im Teufenintervall von 3500 m bis 3893 m (=Ende der VB1a) wurde die Suszeptibilität an Bohrkernen mit einer Datendichte von 1 Messung/cm bestimmt. Aus diesen Rohdaten wurden arithmetische Mittel über 20 cm dargestellt. Cuttings aus VB1b (3767 m bis 4000 m) wurden mit 1 Messung/m registriert. Zusätzlich konnten 25 Seitenkerne aus dem Teufenbereich 3658.7 m (Seitenkern Nr. 44) bis 3999.8 m (Nr. 72) in der Cuttings-Probenhalterung vermessen werden. Die Meβund Auswerteverfahren sind bei BÜCKER et al. (1988) beschrieben.

# D.6.2 Ergebnisse

In Abb. D.6.1 ist das Teufenlog der magnetischen Suszeptibilität, gemessen an Bohrkernen (VB1a), Seitenkernen (VB1a und VB1b) und Cuttings (VB1b) dargestellt. In vergleichbaren Teufen liegen die Cuttings-Meßwerte auf höherem Niveau als die an Bohrkernen oder an Seitenkernen gewonnen Werte. Dies mag durch einen erhöhten Gehalt an metallischem Abrieb im Cuttingsmaterial begründet sein ( siehe z.B. RAUEN et al. 1988, WOLTER et al. 1989). Unmittelbar vor der Endteufe der VB1b (von 3997 m auf 3998 m Teufe) ist ein Anstieg in der Suszeptibilität der Cuttings zu verzeichnen, was möglicherweise auf einen Gesteinswechsel hindeutet. Dieser Anstieg zeichnet sich jedoch nicht in der Suszeptibilität der Seitenkerne ab. Die Ursache hierfür könnte in einem Teufenversatz zwischen Seitenkern-Teufe (≜ Log-Teufe) und Bohrkern-Teufe (≜ Bohrmeister-Teufe) zu suchen sein.

In den Kerndaten ist bei ca. 3575 m der Übergang von Gneis (geringere Suszeptibilität) zu Amphibolit zu sehen. Insgesamt repräsentieren die Kerndaten einen weiten Wertebereich von 0.07*10⁻³ SI (Meta-Aplit aus Quarz und Feldspat, 3715.14 m) bis 167*10⁻³ SI (Meta-Ultramafitit, um 3719 m). Wie im Log zu sehen ist, konnten auf kurzen Distanzen von wenigen Metern große Änderungen der Suszeptibilität registriert werden.

Die <u>stärkste Suszeptibilitäts-Anomalie</u> in der KTB-Vorbohrung <u>um 3719 m</u> ist zusammen mit der Anomalie der natürlichen remanenten Magnetisierung (NRM) im Abschnitt D.5 detailliert dargestellt. Diese magnetische Anomalie ist an einen Meta-Ultramafitit gebunden. Nach erzmikroskopischen Untersuchungen (siehe Anschliff-Photo Abb. D.5.5 im Abschnitt D.5 (NRM) und Abschnitt "B" im gleichen Report) konnten Magnetit



Abb. D.6.1 : Teufenlog der magnetischen Suszeptibilität. Rechts vereinfachtes lithologisches Profil.

und Graphit nachgewiesen werden, jedoch kein Pyrrhotin. Eine ähnlich starke Suszeptibilitäts-Anomalie (bis 151*10⁻³ SI) konnte bei 115.7 m Teufe ermittelt werden, auch hier wurde Magnetit als Träger der Magnetisierung bestimmt (BÜCKER et al. 1988).

Abb. D.6.2 zeigt die Häufigkeitsverteilung der Kern-Suszeptibilitäten. Es überlagern sich zwei annähernd logarithmische Normalverteilungen mit Häufigkeitsmaxima bei 0.3*10⁻³ SI und, stärker vertreten, bei 0.9*10⁻³ SI. Die Zuordnung dieser Verteilungen zu den zwei Haupteinheiten in diesem Teufenbereich (Gneise, um 0.3*10⁻³ SI und Amphibolite, um 0.9*10⁻³ SI) verdeutlicht Abb. D.6.3.



Abb. D.6.2 : Häufigkeitsverteilung der magnetischen Suszeptibilität von Bohrkernen im Bereich von 3500 m bis 3889 m. Es sind zwei annähernd logarithmische Normalverteilungen zu erkennen. Suszeptibilitäten um 0.3*10⁻³ SI entsprechen Gneisen, solche um 0.9*10⁻³ SI Amphiboliten (siehe auch Abb. D.6.3) Ein trennendes Minimum zwischen beiden Verteilungen liegt bei 0.47*10⁻³ SI.



G = Gneise M = Metabasite MUM = Meta-Ultramafitit

Abb. D.6.3 : Suszeptibilitäten >= 0.47*10⁻³ SI (Minimum aus der Häufigkeitsverteilung, Abb. D.6.2) wurden einem Mittelwert von 0.9*10⁻³ SI zugeordnet, solche < 0.47*10⁻³ SI einem Mittelwert von 0.3*10⁻³ SI. Aus der Teufenverteilung lassen sich die höheren Suszeptibilitäten den Amphiboliten zuordnen, die geringeren den Gneisen (siehe nebenstehendes stark vereinfachtes lithologisches Profil).

## D.7 Elektrische Leitfähigkeit

# D.7.1 Allgemeines

Es konnten 218 Messreihen an Bohrkernen durchgeführt werden. Pro Meßreihe wurden im Schnitt 12 Einzelmessungen mit einer 4-Elektroden-Anordnung (linear, Elektrodenabstand jeweils 2 cm, auf Kernmantelfläche unbehandelter Kerne) parallel zur Bohrkernachse bei 150 Hz Frequenz ausgeführt. Aus diesen Einzelmessungen wurde über den arithmetischen Mittelwert der (scheinbare) spezifische Widerstand bestimmt und zusammen mit minimalem und maximalem Widerstand pro Kernstück gespeichert. Jedes Kernstück wurde vor der Messung für 24 Stunden in Leitungswasser eingelegt. Näheres zur Meßapparatur, zur Probenbehandlung und zur Auswertung findet sich bei HUENGES et al.(1989).

Im Kapitel D.7.2 sind die Ergebnisse der Widerstandsmessungen dargestellt und im Kapitel D.7.3 folgt ein erster Vergleich dieser Meßergebnisse mit elektrischen Bohrlochmessungen.

### D.7.2 Ergebnisse

In Abb. D.7.1 wird das Teufenlog des spezifischen elektrischen Widerstandes gezeigt. Ebenso sind die geglätteten Meßergebnisse (gleitendes Mittel über 10 m) eingezeichnet.

Die Widerstände liegen größtenteils im Bereich von 1000  $\Omega$ m bis 10000  $\Omega$ m. Der kleinste Widerstand beträgt 16.6  $\Omega$ m, gemessen an einem Sil-Bio-Gneis ('865B2n') aus 3535.35 m Teufe mit einer Graphit-belegten Störungsfläche. Der maximale Widerstand wurde mit 69900  $\Omega$ m an einem Meta-Gabbro ('883D1g', 3609.8 m) bestimmt. In 3730.21 m Teufe konnte ein weiterer niedriger Widerstand an einem Meta-Aplit ('913E1s') ermittelt werden. Das Nebengestein ist Amphibolit, der in diesem Bereich stark geklüftet ist.

Wie bereits bei WIENAND et al. (1989) für den Teufenbereich 3000 m bis 3500 m erläutert, sind die Daten auch im Teufenabschnitt 3500 m bis 4000 m nicht normalverteilt. Die Logarithmen der Widerstände folgen dagegen in etwa einer Normalverteilung, wie in der Abb. D.7.2 gezeigt ist. Man erkennt ein breites Häufigkeitsmaximum im Bereich von 2000  $\Omega$ m bis 7000  $\Omega$ m. Alle Meßergebnisse zusammengenommen ergeben einen logarithmischen Mittelwert von 3086  $\Omega$ m (zur Berechnung des logarithmischen Mittelwertes siehe WIENAND et al., 1989).



Abb. D.7.1 : An Bohrkernen bestimmte (scheinbare) spezifische elektrische Widerstände. Die Daten wurden mit einer linearen 4-Pol-Anordnung bei 150 Hz Meßfrequenz ermittelt und zeigen den in-Phase-Anteil des komplexen Widerstandes. Dargestellt sind der Mittelwert aus meist 12 Einzelmessungen und der Wertebereich vom kleinsten zum größten Meßwert. Gestrichelte Linie: gleitendes Mittel über 10 m-Intervalle. Rechts das stark vereinfachte lithologische Profil (G=Gneise, M=Metabasite, MUM=Meta-Ultramafitit, Klu=Kluft, Po=poröse Zone). Bei 3535 m Graphitvorkommen.



Abb. D.7.2 : Häufigkeitsverteilung der spezifischen Kern-Widerstände. Das Widerstandsintervall von 100 Ωm bis 100000 Ωm wurde logarithmisch in 50 gleiche Intervalle geteilt. 218 Kernmessungen wurden berücksichtigt.

# D.7.2 Vergleich Kernmessungen - Bohrlochmessungen

Für einen Vergleich standen die folgenden Bohrloch-Logs zur Verfügung (mit freundlicher Genehmigung der Fachgruppe Bohrlochmessungen, zu den Meßprinzipien siehe HÄNEL, 1987): <u>MSFL</u> (<u>Micro Spherically Focussed Log</u>) mit 'geringer' Eindringtiefe in das umgebende Gebirge, <u>LLD</u> (Latero Log Deep) mit 'hoher' Eindringtiefe und <u>LLS</u> (Latero Log Shallow) mit 'mittlerer' Eindringtiefe. Die Leitfähigkeitsmessungen mit induzierenden Verfahren (Induction Logs IDPH und IMPH) lieferten aufgrund des hohen Gebirgswiderstandes keine brauchbaren Ergebnisse. LLD und LLS- Ergebnisse waren sehr ähnlich, so daß zu Kernvergleichszwecken die MSFL und LLS-Messungen (also die beiden mit den geringeren Eindringtiefen) herangezogen wurden. Abb. D.7.3 zeigt diese 2 Logs zusammen mit den Kernmessungen nebeneinander. Man erkennt bei den Bohrlochmessungen einen sehr viel größeren Wertebereich. Bei 3767 m Teufe zeigen beide Bohrlochmessungen einen deutlich erniedrigten Widerstand, der sich auf den metallischen Ablenkkeil an der Grenze VB1a und VB1b zurückführen läßt, der niedrige Gebirgswiderstände vortäuscht. Bei 3535 m Teufe konnte am Kern eine Graphit-belegte Störung gemessen werden (Abschnitt D.7.2), welche auch im Bohrloch deutlich wird.

Um einen leichteren Vergleich der Daten zu ermöglichen, wurden sie für Abb. D.7.4 geglättet (gleitendes Mittel über 10 m). Auch hier ist der Ablenkkeil in den Bohrlochmessungen zu sehen.

Es ergibt sich im oberen Bereich, in dem Gneise erbohrt wurden (bis ca. 3575 m), eine gute Übereinstimmung aller 3 Meßverfahren. Unterhalb etwa 3575 m, mit dem Einsetzen der Metabasite, korellieren nur noch Labor- und MSFL- Messungen bis etwa 3620 m. In diesem Bereich sind demzufolge die Bohrkerne und der bohrlochnahe Bereich des Gebirges (wegen der geringeren Eindringtiefe des MSFL gegenüber dem LLS) elektrisch ähnlich, während sich in weiterer Entfernung von der Wand ein wesentlich erhöhter Widerstand zeigt. Deutlich wird auch ein Teufenversatz zwischen Kern-Log und MSFL, wobei das MSFL etwa 2-3 m tiefer liegt.

Im weiteren Verlauf fallen einige Minima der Bohrloch-Logs auf, die oft in beiden Logs an gleichen Teufen auftreten (3640m, 3809 m, 3875m, 3888 m und um 3945 m). Diese Minima wurden in den Kernmessungen nicht beobachtet. Eine Erklärung hierfür könnte sein: klüftige Bereiche im Gebirge erniedrigen den Widerstand durch eindringende Bohrspülung mit geringem spezifischem Widerstand (einige  $\Omega$ m). Aus diesen klüftigen Bereichen sind kompakte Kerne nicht erhalten und damit liegen auch keine Kernmessungen vor.

Weiterhin liegen unterhalb von ca. 3650 m Teufe (bis auf die angesprochenen klüftigen(?) Bereiche in der Bohrlochwand) Kernmessungen systematisch unter dem MSFL und dieses Log unter dem LLS. Dies könnte erklärt werden durch Risse, die im Kern bevorzugt, aber auch im nahen Umfeld um die Bohrlochwand entstehen. Weitere Arbeiten zu diesem Thema, auch im Hinblick auf Core-Disking, laufen derzeit noch im Feldlabor.



Abb. D.7.3 : Widerstandslogs dreier Meβverfahren: Labormessung (Kerne) und 2 Bohrlochmessungen (MSFL, kleinere Eindringtiefe und LLS, größere Eindringtiefe). Rechts stark vereinfachtes Litho-Profil (Legende bei Abb. D.7.1)



Abb. D.7.4 : Widerstandslogs aus Abb. D.7.3, jeweils geglättet durch Anwendung eines gleitenden Mittelungsfensters über 10 m (Legende des lithologischen Profils bei Abb. D.7.1).

## D.8 Retardierte Entspannungsdeformation und akustische Emission

## D.8.1 Allgemeines

Der vorliegende Bericht ist schwerpunktmäßig in drei Teile gegliedert. Der Abschnitt D.8.2 beinhaltet die Ergebnisse der retardierten Entspannungsdeformation und die der Messung der akustischen Emissionen. Der Abschnitt D.8.3 stellt die Ergebnisse einer qualitativen Analyse akustischer Emissionen bezüglich deren Charakteristik des Ersteinsatzes dar. Der Berichtsabschnitt D.8.4 beschreibt eine Extrapolation der Beträge der zeitabhängigen Entspannungsdeformation zurück zu dem Zeitpunkt, zu dem der Bohrkern aus dem Gebirge herausgebohrt wurde.

### D.8.2 Meβergebnisse der retardierten Entspannungsdeformation und der akustischen Emission.

Im Teufenbereich zwischen 3500 - 3857 m wurden an neun Bohrkernproben Messungen der Entspannungsdeformation und der akustischen Emission (AE) durchgeführt. Die Versuchsdurchführung dieses Relaxationsexperimentes ist in WOLTER et al. (1988) und WOLTER & BERCKHEMER (1989) beschrieben. Bei den untersuchten Proben handelt es sich um petrographisch unterschiedliche Materialien, deren Teufe und Petrographie aus der Tab. D.8.1 zu entnehmen ist. Mit Ausnahme der stark foliierten Gneis-Proben (865E2zK und 874G1vK) handelt es sich um einen Ultramafitit und um Amphibolite, die nur teilweise eine Foliation aufweisen.

Probe	Teufe	[m]	Petrographie
	and the same time.	5 · · · · · · ·	

865E2zK 874G1vK	3537.6 3573.5	Sil-Bio-Gneis, feinkörnig, foliiert Sil-Bio-Gneis, mittelkörnig, foliiert
877F3aeK	3589.8	GNT-Amphibolit, mittelkörnig
889G1pK	3638.4	GNT-Amphibolit, feinkörnig
902G1wK	3675.6	Amphibolit, mittelkörnig
909F1nK	3709.3	GNT-Amphibolit, schwach foliiert
911E1adK	3719.2	Ultramafitit, feinkörnig
928E1pK	3808.0	GNT-Amphibolit, feinkörnig
944D6rK	3857.5	Amphibolit, mittelkörnig, foliiert

Tab. D.8.1: Petrographie der untersuchten Bohrkernproben

In der Tab. D.8.2 sind die erzielten Meßergebnisse aufgeführt.  $e_1$ ,  $e_2$ ,  $e_V$  sind die Beträge der Hauptdeformationen,  $\alpha$ ist die Orientierung der maximalen radialen Hauptdeformation ( $e_1$ ) bezogen auf die Feldlabor-Referenzlinie (WOLTER et al. 1988),  $\Theta$  ist die Absolutorientierung der radialen Hauptdeformation  $e_1$ ,  $\tau_{\sigma}$  ist die durchschnittliche Relaxationszeit der Retardation (LIPPMANN et al. 1988, WOLTER & BERCKHEMER 1989),  $\tau_{AE}$  ist die Relaxationszeit der akustischen Emissionen und AE(n) ist die Anzahl der akustischen Signale, die während des vollständigen Retardationsprozesses registriert wurden.

Probe	eı [µm∕m]	e2 [µm/m]	ev [µm/m]	α [°]	⊖ [N°E]	τø [h]	τ _{ΑΕ} [h]	AE [n]
865E2zK	260	152	284	21	-	37	32	6752
874G1vK	126	98	113	131	-	15	-	-
877F3ael	K 50	21	50	178	-	40	-	-
889G1pK	41	13	19	141	-	29	-	-
902G1wK	41	22	40	61	—	40	32	407
909F1nK	17	12	13	173	-	5	5	468
911E1adB	K 9	7	8	150	-	1	-	92
928E1pK	64	54	58	83	-	36	32	3913
944D6rK	225	32	70	148	-	37	-	1113

Tab. D.8.2: Meβergebnisse der Entspannungsdeformation und der akustischen Emission



Abb. D.8.1: Zeit-Deformationsverlauf der Ultramafitit-Probe

Bei der Betrachtung der Ergebnisse der Retardationsmessungen (Tab. D.8.2) ist für die beiden Bohrkernproben 909F1nK und 911E1adK zu entnehmen, daβ ungewöhnlich niedrige Beträge der zeitabhängigen Entspannungsdeformation und sehr kurze Relaxationszeiten von 5 h bzw. 1 h erzielt wurden. In Abb. D.8.1 ist der Zeit-Deformationsverlauf der Ultramafitit-Probe 911E1adK dargestellt. Das Diagramm zeigt deutlich, daß der Retardationsprozeß schon nach 2-3 h abgeschlossen war.

Derart niedrige Ergebnisse der Retardation wurden bisher an keiner Bohrkernprobe aus der KTB-Vorbohrung ermittelt. Die Ursache hierfür dürfte nicht darin liegen, daß die in situ Spannung in diesem Teufenbereich relativ niedrig ist, sondern daß die Materialeigenschaften (Elastizität und Bruchfestigkeit) der Gesteine möglicherweise einen nicht unerheblichen Einfluß auf den Retardationsprozeß haben. Bei den beiden oben erwähnten Bchrkernproben handelt es sich um Materialien mit sehr hohen E-Moduli. In der Tab. D.8.3 sind für verschiedene Gesteine die im einaxialen Druckversuch statisch bestimmten E-Moduli (E(stat)), Bruchfestigkeiten  $(\sigma_{U})$  und die Poissonzahl ( $\nu_{stat}$ ) aufgeführt (RÖCKEL & NATAU 1989). Weiterhin enthält die Tab. D.8.3 die aus Vp- und Vs-Daten errechneten dynamischen E-Moduli (E(dyn)) und die Poissonzahl ( $\nu_{dyn}$ ). Aus der Tab. D.8.3 ist zu entnehmen, daß die Probe 909F1k einen sehr hohen E-Modul aufweist, der deutlich über den E-Moduli der anderen Gesteinen liegt. Der Elastizitätsmodul eines Materials ist umso größer, je weniger dieses den formverändernden Kräften nachgibt. Möglicherweise ist der Anteil der zeitabhängigen Entspannungsdeformation bei Gesteinen mit hohem E-Modul und hoher Bruchfestigkeit kleiner als bei Gesteinen mit niedrigem E-Modul und geringer Festigkeit.

Kern-Nr.	Gesteinstyp	Teufe [m]	E(stat) [GPa]	E(dyn) [GPa]	συ [MPa]	Vstat	𝒴 d y n	
307D1f	GNT-Amph	1471.6	44.5	-	84.5	-	-	
468G1p	Lamprophyr	2050.7	72.2		151.1	0.40	-	
526G2u	Lamprophyr	2231.5	68.7	-	77.4	0.35	-	
603C1eK	HBL-Gneis	2478.5	41.1	57.6	62.7	-	0.31	
652A1a	BIO-Gneis	2698.3	9.6	67.0	9.2	-	0.25	
909F1k	Amphibolit	3709.0	90.0	73.8	167.3	0.33	0.26	
911E1af	Ultramafitit	3719.2	-	76.9			0.28	

Tab. D.8.3: Gesteins-Parameter verschiedener Gesteinstypen (statisch bestimmte E-Moduli und Bruchfestigkeiten aus RÖCKEL & NATAU 1989).

Es sind vorläufig noch keine Orientierungsdaten unterhalb 3500 m vorhanden, sodaβ über die Strain-Orientierungen der Bohrkerne derzeit keine Aussage gemacht werden kann. Die Ermittlung der Absolutorientierung der Bohrkerne aus der Vorbohrung VB1a ist nur möglich bis in eine Teufe von 3766 m (Kernmarsch 920). Unterhalb dieses Punktes liegen aus der VB1a keine FMST-Daten vor, die als Grundlage für die Kernorientierung herangezogen werden.

# D.8.3 Analyse akustischer Signale

Eine statistische Auswertung von 153 akustischen Signalen, die während des zeitabhängigen Entspannungsprozesses petrographisch unterschiedlicher Bohrkernproben digital gespeichert wurden, soll einen qualitativen Überblick geben über die Charakteristik des Ersteinsatzes sowie der Maximal-Amplitude. Es ist dies eine Erweiterung der von BERCKHEMER (1989) im Tätigkeitsbericht zum DFG-Forschungsvorhaben Be299/63-5 dargestellten "Bemerkungen zur Physik der Entspannungsrisse". Die einzelnen vorliegenden Signale wurden unterschieden in Kompressionssignale und Dilatationssignale (Abb. D.8.2), wobei die Dauer der ersten Halbschwingung und die Dauer bis zum Erreichen der Maximal-Amplitude bestimmt wurden. Typische akustische Signale, wie sie während des Relaxationsvorganges über ein Oszilloskop aufgezeichnet wurden, sind in der Abb. D.8.3 (Kompressionssignal) und in der Abb. D.8.4 (Dilatationssignal) dargestellt. Die Auswertung ergab folgende prozentuale Verteilung des Vorzeichens des Ersteinsatzes:

> 58% Kompression 21% Dilatation 21% unbestimmbar

Kompressionssignal

Dilatationssignal

Abb. D.8.2: Skizze unterschiedlicher Ersteinsätze

Eine eindeutige Zuordnung der einzelnen akustischen Signale zu einem entsprechenden Bruchmechanismus kann nicht vorgenommen werden, da aufgrund der apparativen Ausstattung (Signalaufnahme erfolgt nur über einen Sensor) eine Auswertung nach der Art der Herdflächenlösung nicht möglich ist. In der Abb.D.8.5 ist die Abstrahlungs-Charakteristik von akustischen Signalen durch einen Trennbruch in einer einfachen Skizze wiedergegeben. Man ersieht daraus, daß ein Trennbruch nur P-Impulse vom Kompressionstyp abstrahlt. Scherbrüche strahlen, wie aus der Seismologie wohl bekannt, im räumlichen Mittel mit gleicher Wahrscheinlichkeit Kompressionsund Dilatationsimpulse ab. Aus der beobachteten Häufigkeitsverteilung der Kompressionen und Dilatationen folgt daher, daß Trennbrüche und Scherbrüche etwa mit gleicher Häufigkeit auftreten.

815	A1	lk	Teu	fe	: 3	348.	60 m		10	-13-	988	14:5	7:39		La	enge	4	000	Byte	es
						Λ,	V	V	M	Au	14	M		4	$\sim$	~~~	~	har.	WY'N, p	A
4	ł														KTE	}-Fe	Idlat	or		

Abb. D.8.3: Kompressionssignal (eine Gittereinheit auf der Zeitscala sind 10µsec)



Abb. D.8.4: Dilatationssignal (eine Gittereinheit auf der Zeitscala sind 10µsec)



Abb. D.8.5: Abstrahlungs-Charakteristik eines Trennbruches

Die prozentuale Häufigkeitsverteilung der Dauer und Amplitude der ersten Halbschwingung der akustischen Emissionen ist in Abb. D.8.6 und Abb. D.8.7 dargestellt. Die Dauer der ersten Halbschwingung liegt bei 53% der Signale bei 2µsec. Die Amplitudenstärke ist in relativen Einheiten angegeben. Ein deutliches Häufigkeitsmaximum für die Amplitude der ersten Halbschwingung liegt bei der Stärke 7.

Der ziemlich gleichmäßige Abfall der Ereigniszahl (Abb. D.8.7) mit zunehmender Amplitude oberhalb des Maximums entspricht etwa der Gutenberg`schen Magnituden-Häufigkeitsverteilung bei Erdbeben. Ob der steile Abfall hin nach kleinen Amplituden allein durch die Triggerschwelle des Transientenrecorders bedingt ist, wäre noch zu klären.

In der Abb. D.8.8 ist die Dauer der ersten Halbschwingung gegen deren Amplitude aufgetragen. Aus dem Diagramm läβt sich jedoch keine Charakteristik erkennen, die eine Abhängigkeit der Dauer von der Amplitude der ersten Halbschwingung anzeigt. Die Häufigkeitsverteilung der Zeitdauer bis zum Erreichen der Maximal-Amplitude ist in der Abb. D.8.9 dargestellt.



Abb. D.8.6: Häufigkeitsverteilung der Dauer der ersten Halbschwingung



Abb. D.8.7: Häufigkeitsverteilung der Amplitude der ersten Halbschwingung



Abb. D.8.8: Dauer gegen Amplitude der ersten Halbschwingung

Die gesamten Daten der AE-Analyse befinden sich im Kapitel D.8.6: Anhang. Eine quelldynamische Interpretation der Daten ist Untersuchungen im Institut für Meteorologie und Geophysik in Frankfurt vorbehalten.



Abb. D.8.9: Häufigkeitsverteilung der Maximal-Amplitude

### D.8.4 Extrapolation der Deformationsbeträge

Die Zeitdauer, die zwischen dem Herausbohren des Bohrkerns (Zeitpunkt:  $T_B$ ) und dem Beginn der Messung (Zeitpunkt:  $T_M$ ) liegt, beträgt ca. 5 h. In dieser Zeit vollzieht sich ein bestimmter Anteil der zeitabhängigen Entspannungsdeformation. Mit Hilfe einer Extrapolation (freundl. Mitt. A. Zang 1989) erfolgt eine Abschätzung des Anteils, der sich in dieser Zeit ( $\Delta t=5h$ ) ereignet. Die Skizze in Abb. D.8.10 zeigt in halblogarithmischer Darstellung die Restdeformation e'(t), d.h. die Differenz von gemessener Enddeformation e(m B x) und der aktuellen Deformation e(t) für einen einfachen viskoelastischen Körper.

Die bisherige Erfahrung zeigt, daß die Entspannungsdeformation der Kerne in guter Näherung durch einen solchen einfachen Relaxationsprozeß beschrieben werden kann (WOLTER & BERCKHEMER 1989).

Nach dem Relaxationsgesetz gilt:

 $e'_{(t)} = e_{(max)}[(1-EXP(-t/\tau)] \quad \tau = Relaxationszeit$  (8.1)

Die Relaxationszeit ( $\tau$ ) ist die Zeit, in der 1-1/EXP(1) $\approx$ 63% der maximalen Entspannungsdeformation erreicht werden.

Als Datengrundlage für die Rückwärts-Extrapolation dienen die Meβwerte der ersten 10h nach Beginn der Retardationsmessung.



Abb. D.8.10: Skizze des Zeit-Deformationsverlaufes für den zu extrapolierenden Zeitraum &t=5h

Abb. D.8.11 und Abb. D.8.12 sind zwei Darstellungen der Extrapolation des Deformationsverlaufes zweier petrographisch unterschiedlicher Bohrkerne mit deutlich unterschiedlichen Relaxationszeiten.



Abb.D.8.11: Extrapolierter Zeit-Deformationsverlauf der Lamprophyrprobe (526G2u)



Abb.D.8.12: Extrapolierter Zeit-Deformationsverlauf der Paragneisprobe (588E5ac)

Tab. D.8.4 beinhaltet die gemessenen Maximaldeformationen  $e_1(max)$ , die extrapolierten Maximal-Deformationsbeträge  $e_1(extr)$  für den Zeitpunkt TB sowie die Relaxationszeiten  $\tau_1$ (i=1,2,v) für die zeitabhängigen Hauptdeformationen  $e_1$  (i= 1,2,v) verschiedener Bohrkernproben. Weiterhin sind die Quotienten  $q_1$  (i=1,2,v) angegeben.

$$q_i = e_i(e_{xtr})/e_i(m_{a_x}) \qquad (8.2)$$



Abb.D.8.13: Abhängigkeit des Anteils der nicht erfaßbaren Deformation von der Relaxationszeit

Der relative Anteil der Deformation, der sich in den 5 h zwischen dem Herausbohren des Kerns und dem Beginn der Messung ereignet, ist abhängig von der Relaxationszeit. Diese Abhängigkeit wird in der Abb. D.8.13 dargestellt. Je kürzer die Relaxationszeit, desto größer der Retardationsanteil, der nicht erfaßt werden kann.

				e	i (ma	х)	e	1 ( e x	tr)	€i (e x	tr)/6	€i(max)
Kern-Nr.	τ1	1 τ ₂ τν [h]		eı e2 ev [µm/m]		eı	eı e2 ev [µm/m]			Q2	qv	
464B1g	11	10	9	233	63	188	373	106	337	1.6	1.7	1.8
468G1r	11	14	9	287	94	128	451	136	222	1.5	1.5	1.7
526G2u	29	30	43	637	197	593	757	233	666	1.1	1.2	1.1
588E5ac	18	22	19	201	39	68	265	49	89	1.3	1.3	1.3
604B1g	9	8	8	22	7	12	40	12	22	1.8	1.7	1.8
632G1r	12	11	15	60	30	27	91	46	38	1.5	1.5	1.4
638D2j	12	11	4	106	22	11	163	35	41	1.5	1.6	3.7
656G1p	41	29	30	133	57	87	150	68	103	1.1	1.2	1.2
699H2xK	18	18	15	111	71	92	147	94	128	1.3	1.3	1.4
753G1wK	5	35	7	67	41	94	200	47	191	3.0	1.2	2.0
789F1xK	14	11	13	345	175	680	496	277	988	1.4	1.6	1.5
797FlaeK	9	9	6	47	20	34	83	35	81	1.8	1.8	2.4
802F1tK	16	18	13	35	29	121	48	38	177	1.4	1.3	1.5
810D1oK	10	8	7	72	53	94	120	98	196	1.7	1.9	2.1
830H1acK	4	6	6	42	10	11	138	23	25	3.3	2.3	2.3
855C2nK	14	13	15	50	30	34	71	44	48	1.4	1.5	1.4
865E2zK	17	15	14	260	152	284	347	213	401	1.3	1.4	1.4
874G1vK	21	18	18	126	98	113	160	129	149	1.3	1.3	1.3
877F3aeK	22	31	28	49	21	50	61	25	60	1.2	1.2	1.2
889G1pK	20	20	23	41	13	19	53	17	24	1.3	1.3	1.3
909F1nK	7	8	7	17	12	13	36	23	28	2.1	1.9	2.2
928E1pK	12	12	10	105	89	100	161	137	164	1.5	1.5	1.6
944D6rK	12	6	10	323	89	127	489	200	207	1.5	2.3	1.6

Tab. D.8.4: Daten der Extrapolation für verschiedene Bohrkernproben
### D.8.5 Zusammenfassung

Bei den Ergebnissen der zeitabhängigen Entspannungsdeformation der Bohrkerne zwischen 3500-3857 m fallen zwei Bohrkernproben durch niedrige Deformationsbeträge und kurze Relaxationszeiten auf. Beide Proben zeichnen sich aus durch hohe E-Moduli und hohe Bruchfestigkeiten. Es wird vermutet, daß die Elastizität und Bruchfestigkeit der Bohrkernprobe einen Einfluß auf die zeitabhängige Entspannungsdeformation hat und zwar in folgender Form: Je höher der E-Modul und die Bruchfestigkeit desto geringer der zeitabhängige Deformations-Anteil.

Die qualitative Analyse von 153 akustischen Emissionen ergab, daß 58% der Signale Kompressionssignale sind, die vermutlich zum großen Teil durch Trennbrüche verursacht werden. Eine quantitative Analyse des Bruchmechanismus ist, bedingt durch den Versuchsaufbau, nicht möglich. Das Maximum in der Häufigkeitsverteilung für die Dauer der ersten Halbschwingung liegt bei 2 µsec.

Die Extrapolation der zeitabhängigen Deformation für den Zeitraum ( $\Delta$ t=5h) zwischen dem Herausbohren des Kerns und dem Beginn der Messung verdeutlicht die Abhängigkeit dieses Deformationsanteils von der jeweiligen Relaxationszeit. Je kürzer die Relaxationszeit eines Materials, desto größer ist der Retardationsanteil, der in den ersten 5 h vor Meßbeginn stattfindet und somit für die Messung verloren ist. Im Mittel werden etwa 60% der gesamten zeitabhängigen Entspannung durch die Messung erfaßt. Dies beinhaltet nicht die momentane elastische Entspannung, die sofort nach dem Herausbohren des Bohrkerns auftritt und der Messung nicht zugänglich ist.

Kern-Nr.	Richt.	τs [µs]	Ampl.	τ _{α ε x} . [µs]		
579D1g	+	2.6	6	30	874G1VK + 2 16	9
	+	3.5	5	31	- 3 8	28
	+	2.6	8	22	- 2 8	13
E0231b	+	1.7	8	12	+ 3 16	10
JOJAIN	-	4.3	6	10	- 3 10	12
	+	3	6	8	- 2 24	8
	+	3.5	15	16	- 2 12	10
	-	1	9	38	- 3 10	10
5992580	+	2 2	11	20	877F3meK + 2 13	7
JoobJac	-	1.5	9	11	- 4 10	10
	0	-	-	14	+ 2 8	8
	0	-	-	15	+ 2 /	5
	+	3.5	7	25 25	+ 2 4	10
59981m	+	1.4	11	8	889G1pK o	14
	-	1	7	8	+ 2 4	6
	+	1.5	15	5	+ 3 6	11
	-	1	8	16	902G1w + 2 4	10
60411b	-	2.6	10	10	+ 1 2	10
ovenin	-	2.6	12	12	+ 2 3	17
	+	3.5	9	8	- 2 3	15
	0		-	14	- 3 3	8
62002-	+	1.5	5	10	o	8
030023	0	-	17	-	+ 2 3	20
	ō .	-	-	-	0	25
	+	2	9	14	909F1agE + 1 4	16
	0	-	-	-	0	10
	-	2	9	12	+ 4 10	35
656G1p	-	2.5	6	10	°	18
000019	+	3	6	17	+ 1 10	4
	+	3	6	8	911EladE + 4 6	6
	+	4	8	8	+ 3 4	11
	1	2.0	6	6	+ 2 3	4
	-	2	5	11	+ 1 3	4
699H2x	-	1.5	7.2	15	+ 2 5	8
	0		-	7	928E1pK + 4 4	25
	0	-	-	11	+ 1 16	17
753619	+	2	5	10	- 4 12	20
	+	3	8	16	0	15
	+	2.3	5	10	928E1pE + 3 4	18
	0	-	-	-	+ 2 12	8
789F1x	+	3	18	8	+ 3 6	14
	0	-		10	- 2 4	13
	0	2	-	13	o + 3 6	11
	+	2	3	15	+ 2 10	18
	-	1	7	13	+ 1 6	8
	-	2	7	12	o	12
802F1t	-	2	10	16	+ 2 4	18
810D1o	+	2	13	11	- 2 4	13
	0	-	-	16	+ 2 6	10
	0	-	-	20	+ 2 4	11
	0	-	16	21	+ 4 6	10
8154118	-	2	16	12	944D6rK + 2 13	8
v. unitally	+	ĩ	16	5	· · ·	12
	0	-	-	9	+ 2 4	17
	+	1	8	18	+ 2 4	9
05500a	0	-	-	12	- 2 4.5	12
055CZn	-	2	8	8	+ 2 /	8
	+	1	20	6	T 4 J	0
	-	2	20	12	Richt.:	
	-	2	19	13	+ Ersteinsatz positiv	
	+	2	20	6	<ul> <li>Ersteinsatz negativ</li> </ul>	
	0	-	-	-	o unbestimmbar	
	+	3	15	12	T. · Daver der ersten	
865E2zk	-	3	13	10	Halbschwingung	
	+	2	8	10		
	+	0.5	12	15	Ampl.: Relative Amplitude	
	+	2	12	12	des Ersteinsatzes	
	+	1	6	8	Teas : Zeitdauer bis	
	+	1	10	7	zum Erreichen der	
	+	1	9	8	Maximal-Amplitude	

### D.8.6 Anhang: Daten der AE-Analyse:

### D.9 Permeabilität

Im Teufenbereich von 3329 - 3719 m wurde die Permeabilität nach d'Arcy mit dem im KTB-Report 89-5 (WIENAND et al. 1989) beschriebenen Permeameter gemessen. Ergänzt wurden Daten aus dem Teufenbereich von 1500 - 2604 m, die als Auftragsmessungen am "Mineralogischen Institut" der Universität Bonn bestimmt wurden. Die Messungen erfolgten mit einem Druckausgleichverfahren bei verschiedenen äußeren Druckstufen mit der bei HUENGES (1987) beschriebenen Meßapparatur.

In Abb. D.9.1 sind die Permeabilitätswerte mit einem vereinfachten lithologischen Profil dargestellt. Ohne auf Details in der Abbildung einzugehen, ist festzustellen daß die Daten, die sowohl an Gneis- als auch an Metabasitproben ermittelt wurden, im nd bis  $\mu$ d-Bereich streuen, unabhängig von der Lithologie. Messungen an unmittelbar benachbarten Proben zeigen, daß der Durchfluß parallel zur Foliation (offene Symbole) deutlich stärker ist als senkrecht dazu (geschlossene Symbole).

Die Druckausgleichsmessungen wurden bei variablen Drücken mit dem Manteldruck gleichen uniaxialen Druck auf die zylindrische Probe durchgeführt. Zwecks übersichtlicher Darstellung wurden Messungen bei verschiedenen Manteldrücken in die Klassen von 50 bar; 100 - 200 bar und 300 - 900 bar zusammengefaßt. Meßwerte gleicher Proben bei unterschiedlichen Drücken sind mit einer Linie verbunden. Wichtig ist eine Untersuchung, ob diese Änderung der Permeabilität mit dem Druck foliationsabhängig ist. Das Beispiel in Abb. D.9.2 zeigt parallel zur Foliation keine stärkere Druckabhängigkeit als senkrecht dazu. D. h. der Anisotropiefaktor, der bei 50 bar ca. 1000 beträgt, wird mit zunehmendem Druck nicht verringert.



Abb. D.9.1: Permeabilität von Bohrkernproben (φ=30 mm; l=10...50 mm) in Abhängigkeit von der Teufe. Die Symbolform gibt den in der jeweiligen Apparatur eingestellten Manteldruck gemäß Legende wieder. Mit geschlossenen Symbolen sind senkrecht zur Foliation und mit offenen Symbolen parallel zur Foliation erbohrte Proben gekennzeichnet. Meßwerte gleicher Proben bei unterschiedlichen Drücken sind mit einer Linie verbunden. Rechts: Vereinfachtes lithologisches Profil (M=Metabasite;

BG=Biotit-Gneis)



Abb. D.9.2: Permeabilität in Abhängigkeit vom Druck parallel und senkrecht zur Foliation eines Gneises aus 2429 m (Kernstück 591B2bK)

### D.10 Porosität

#### D.10.1 Allgemeines

Im Bereich von 3303 - 3889 m wurde die Porosität an 278 Miniplugs bestimmt. Die Porositätsbestimmung erfolgte nach dem "Archimedischen Prinzip" (HUENGES et al. 1989).

### D.10.2 Porosität der Miniplugs

Bei den Miniplugs ergab sich eine mittlere Porosität von 0.75 %. Die Schwankungsbreite der Porosität reicht von 0.2 %, gemessen an einem feinkörnigen, lagigen Amphibolit aus einer Teufe von 3638.87 m, bis zu 6.0 %, gemessen an einem fein- bis mittelkörnigen Amphibolit aus einer Teufe von 3632.02 m. In Abb. D.10.1 ist die lineare Häufigkeitsverteilung der Porositäten und in Abb. D.10.2 ist die logarithmische Häufigkeitsverteilung der Porositäten dargestellt.



Abb. D.10.1: lineare Häufigkeitsverteilung der Porositäten



Abb. D.10.2: logarithmische Häufigkeitsverteilung der Porositäten



Abb. D.10.3: Teufenlog der Porosität

### D.11 Literatur

- BERCKHEMER, H. (1988): Bemerkung zur Physik der Entspannungsrißbildung.- Tätigkeitsbericht zum DFG-Forschungsvorhaben Be 299/63-5,II, (unveröffentl.).
- BÜCKER, CH., EIGNER, K.-H., RAUCH, E., RAUEN, A., WIENAND, J. & K.E. WOLTER (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 0-480 m: D. Geophysik. - KTB-Report 88-1: D1-D42, Hannover.
- BÜCKER, C. & G. Zimmermann (1989): Vergleichende Untersuchung der Gamma-ray-Messungen (GR) im Bohrloch und an Bohrkernen im Teufenbereich 3000-3500 m. - KTB-Report 89-5, E1-E9, Hannover.
- HÄNEL, R. (1987): Arbeitsprogramm KTB-Bohrlochgeophysik sowie Bohrlochmessprogramm KTB-Oberpfalz VB (1.9.87). KTB-Report 87-3, S. 93 ff., Hannover.
- HOMANN, K.D., HEINSCHILD, H.-J., STROH, A. & M. TAPFER (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 1530-1998 m: C. Geochemie.- KTB-Report 88-9: C1-C88, Hannover.
- HOMANN, K.D. & H. MÜLLER (1989): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor: F. Wechselwirkung zwischen Dehydril HT-Bohrspülung und Gesteinsmehl.- KTB-Report 89-2: F1-F33, Hannover.
- HUENGES, E. (1987): Messung der Permeabilität von niedrigpermeablen Gesteinsproben unter Drücken bis 4 kbar und ihre Beziehung zu Kompressibilität, Porosität und komplexem elektrischem Widerstand. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
- HUENGES, E., BÜCKER, Ch., WOLTER, K.E., WIENAND, J., RAUEN, A. & E. LIPPMANN (1989, 1989a): Deep Drilling KTB-Oberpfalz VB, Results of the Geoscientific Proceedings in the KTB-Laboratory; Depth Interval: 1709 - 2500 m: D. Geophysik.- KTB-Report 89-2, D1-D83, Hannover.
- HUENGES, E., REIBELT, M. & LAUTERJUNG, J. (1989b): Vergleich der an Kernen gemessenen Wärmeleitfähigkeit mit der aus den Modalanalysen berechneten Wärmeleitfähigkeit. KTB-Report 89-5, F1-F9, Hannover.

- LIPPMANN, E., HUENGES, E., BÜCKER, Ch., WIENAND, J., WOLTER, K.E. & A. RAUEN (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 1530 bis 1998 m: D. Geophysik. - KTB-Report 88-9: D1-D60, Hannover.
- MASSALSKY, T., H. MÜLLER, C. RÖHR, G. GRAUP, W. HACKER, S. KEYSSNER & J. KOHL (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 1530 bis 1998 m: B. Geologie.- KTB-Report 88-9: B1 - B66, Hannover.
- RAUEN, A., LIPPMANN, E., HUENGES, E., BÜCKER, Ch., WIENAND, J. & K.E. WOLTER (1988): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbei tung im KTB-Feldlabor (Windischeschenbach), Teufenbe reich von 992 bis 1530 m: D. Geophysik.- KTB-Report 88-6: D1-D60, Hannover.
- RÖCKEL, T. & O. NATAU (1989): Erste Ergebnisse der felsmechanischen Indexversuche im Teufenbereich von 2000-3000 m. – in: Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, (Hrsg.) Emmermann, Dietrich, Heinisch, Wöhrl, KTB-Report 89-5, H1-H13, Hannover.
- RYBACH, L. (1976): Radioactive heat production, a physical property determined by the chemistry of rocks. In: R.G.J. Strens (ed.): "The Physics and Chemistry of Minerals and Rocks", Wiley & Sons, London.
- WIENAND, J., RAUEN, A., HUENGES, E., BÜCKER, C. & WOLTER, K.E. (1989): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 3000 - 3500 m: D. Geophysik. KTB-Report 89-5: D1-D50, Hannover.
- WOLTER, K.E., AULBACH, E. & H. BERCKHEMER (1988): Spannungsnachwirkungsuntersuchungen: Messung der Retardation und der akustischen Emission: D. Geophysik.- KTB-Report 88-6: D47-D60, Hannover.
- WOLTER, K.E. & H. BERCKHEMER (1989): Time Dependent Strain Recovery of Cores from the KTB-Deep Drill Hole. - Rock Mech. and Rock Eng., Vol. 22, 273-287, Springer.
- WOLTER, K.E., WIENAND, J., RAUEN, A., LIPPMANN, E., HUENGES, E. & BÜCKER,C. (1989): Tiefbohrung KTB Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich 2500 - 3009 m: D. Geophysik. KTB-Report 89-4: D1-D39, Hannover.

### D.12 Danksagung

Unser Dank gilt den technischen Mitarbeitern der Arbeitsgruppe Geophysik im Feldlabor, Frau M. Jäger, Frau A. Kick, Herrn R. Fürnrohr und Herrn H. Köstler.

Herrn A. Zang (Geophysikalisches Institut, Frankfurt) sei gedankt für die Mitarbeit bei der Erstellung der Extrapolation der Bohrkern-Entspannungsdeformation.

Für die kritische Durchsicht des Manuskripts danken wir Frau Dr. H. Müller, Herrn Prof. H. Berckhemer, Herrn Prof. Dr. R. Emmermann und Herrn Prof. Dr. H. Soffel.

### E. Gefüge und Deformation

Kontinuierliche makroskopische Aufnahme der duktilen Verformung und kinematischer Markierungen an KTB-Kernen (480 m – 2004 m)

- A. Zadow H. Heinisch J. H. Behrmann S. Lich
- A. Volp



KTB Report	90-2	E1-E21	10 Abb.	Hannover 1990

Kontinuierliche makroskopische Aufnahme der duktilen Verformung und kinematischer Markierungen an KTB-Kernen (480m -2004m).

E. Gefüge und Deformation

A. Zadow¹, H. Heinisch¹, J.H. Behrmann², S. Lich² & A. Volp²

Inhal	tsverzeichnis:	Sei	ite
E.1	Fragestellung	Е	2
E.2	Methodik	E	2
E.3	Ergebnisse und Interpretation	E	5
E.4	Schriftenverzeichnis	E	12
E.5	Anhang: Datenliste der aufgenommenen Scherkri- terien von 480m bis 2004m.	Е	13

Anschrift d. Autoren: Institut für Allgemeine und Angewandte Geologie, Univ. München¹, IGL, Univ. Giessen²

### E.1 Fragestellung

Schersinn-Kriterien sind Strukturen, die Informationen über die rotationalen Eigenschaften einer plastischen Deformation enthalten. Mit ihrer Hilfe läßt sich koaxiale von nicht koaxialer Verformung unterscheiden. Bei letzterer ist eine Bestimmung der Bewegungsrichtung des tektonisch Hangenden relativ zum Liegenden möglich. Eine auf derartige kinematische Markierungen basierende strukturgeologische Analyse liefert wichtige Informationen zur Verifizierung tektonischer Modelle für die saxothuringisch-moldanubische Kruste. Von den beiden Arbeitsgruppen wurden kinematische Markierungen aus der Zeit der Bildung der ältesten sichtbaren Foliation ("metamorpher Lagenbau", mylonitische Foliation" sensu WEBER & VOLLBRECHT 1987) in den Gesteinen der ZEV analysiert. Damit soll ein Beitrag zur Klärung von Teilbewegungspfaden der tektonischen Dislokation in der frühen Orogenesegeschichte geleistet werden. Um mögliche Gradienten und Sprünge im Deformationsverhalten der durchteuften Gesteine erfassen zu können, wurde eine kontinuierliche Aufnahme der gesamten Kernstrecke an noch unzerstörten Kernen angestrebt.

### E.2 Methodik

Die Aufnahme fand in mehreren Aktionen unter Einsatz von Teams beider Arbeitsgruppen im Feldlabor statt. Die Arbeit erwies sich als sehr zeitaufwendig: in Abhängigkeit von der Lithologie wurde ein Arbeitsfortschritt von ca. 33m pro Mann und Tag erreicht. Eine Übersicht zum Aufnahmestand gibt folgende Tabelle:

Teufenmeter	Anzahl der Markierungen	Arbeitsgruppe					
480m - 1250m 1250m - 1650m 1650m - 2432m 2432m - 3000m 3000m - 3500m 3500m - 4000m	588 46 660  1490	Heinisch/Zadow (München) Behrmann (Giessen) Behrmann (Giessen) fehlt * Heinisch/Sprenger (München) fehlt *					

* Die Aufnahme der noch ausstehenden 1000m Kernstrecke ist für März 1990 von Heinisch & Sprenger (München) geplant, falls die Projektmittel ausreichen. Dieser Bericht beinhaltet die Daten und eine vorläufige Interpretation für den Abschnitt von 480m bis 2004m.

789,20	dd	Marsch: /	KTB-Ob KTB-Fe hier
		A 64	erpfal Idlabo
789,35	dd	0bere Teufe: <u>783</u> , <u>70</u> m ( <u>F</u> )	z VB ARGE5 r: " M a k r o s k o p i : : Duktile Deformation ,
789,42	dd	Datu: Bearbeiter	"Gefüge und che Au Schersinn
	dd	n: 2 1 8 11988 Alexander Zada	Deformation * fnahme*
-	13,42	13,42 dd dd	Bearbeiter: <u>Alexandre Zada</u> 13,42 dd dd

Abb. E.2.1: Beispiel einer Seite des Archivierungsformblattes.

Um eine kontinuierliche und detaillierte Aufnahme zu gewährleisten, wurde jedes einzelne Kernstück aus der Kernkiste entnommen und jede kinematische Markierung archiviert. Zu diesem Zweck wurde ein Formblatt "Makroskopische Aufnahme - duktile Deformation/Schersinn" entworfen (Abb. E.2.1). Neben einer Skizze des Indikators wird hierbei seine Größe, seine Position auf dem Kern (Abb. E.2.2) sowie sein Schersinn (up-dip = Aufschiebung der Hangendscholle; down-dip = Abschiebung der Hangendscholle; symm. = symmetrische Markierung) notiert. Zusätzliche Angaben zur Verläßlichkeit des Indikators sollen eine spätere sinnvolle Klassifizierung in Bereiche mit einheitlicher Scherrichtung bzw. einheitlichem Deformationsverhalten ermöglichen.

Mit den vom Feldlabor gelieferten Orientierungsdaten konnten die Indikatoren später in ihre wahre Raumlage rückorientiert werden. Die Rohdaten stehen dem Feldlabor und interessierten Arbeitsgruppen als dBASE III+ Datenbankfile zur Verfügung. Eine Auflistung der Daten befindet sich im Anschluß an diesen Bericht.



Abb. E.2.2: Festlegung der Position des Indikators auf dem Kernstück; die Angabe erfolgt sowohl relativ zur Einfallsrichtung der Foliation als auch zur Markierungslinie.

Folgende Scherkriterien (Abb. E.2.3) wurden identifiziert:

- (a) Porphyroklasten-Systeme
- (b) Scherbänder
- (c) Asymmetrie von Schleppfalten der Foliation
- (d) Kinematik von "bookshelf sliding" in rigiden Mineralen

(c) und (d) benötigen zur Bildung mechanische Instabilitäten und sind daher eigentlich mit Vorsicht zu interpretieren (vgl. SIMPSON & SCHMID 1983; COBBOLD et al. 1987). Die Kontrolle durch unmittelbar benachbarte, eindeutige Klasten zeigt jedoch eine extrem hohe Zuverlässigkeit der Falten als Schersinnindikatoren. Die Bestimmung des Schersinnes an der Kernoberfläche liefert scheinbare Richtungen (2D-Schnitte durch das Teilbewegungsfeld). Markierungen mit deutlich asymmetrischer Ausbildung sollten jedoch in guter Näherung die tatsächliche Scherrichtung anzeigen, während bei zunehmender Winkeldifferenz zur Scherrichtung die Asymmetrie abnimmt und sich der Zustand nahezu koaxialen plastischen Fließens einstellt. Im Extremfall zeigt ein 90° zur tatsächlichen Scherrichtung angeschnittener, asymmetrischer σ-Klast eine vollkommen symmetrische Ausbildung (vgl. PASSCHIER & SIMPSON 1986). Bei spitzen Winkeln schräg zur Scherrichtung sind die Asymmetrien noch interpretierbar. Diese geometrisch bedingte Streuung in der Richtungsangabe der Scherrichtung kann durch eine hohe Anzahl an Beobachtungen genügend kompensiert werden, was die deutlich ausgebildeten Scherrichtungs-Maxima der asymmetrischen und symmetrischen Marker zeigen (vgl. Abb. E.3.7).



Abb. E.2.3: Cartoon der aufgenommenen Indikatoren und ihre kinematische Interpretation.

### E.3 Ergebnisse und Interpretation

Es wurden zwischen 480m und 2004m ca. 1000 Scherindikatoren registriert. Bei weitem die häufigsten Typen sind mit etwa 65% die  $\sigma$ -Klastensysteme (Abb. E.3.1; Abb. E.3.2), seltener treten  $\delta$ -Klasten (Abb. E.3.3) und Schleppfalten auf. Vereinzelt werden primäre  $\delta$ -Klasten von einer späteren  $\sigma$ -Bildung überprägt (Doppelausbildung, Abb. E.3.4).

Aus den hier dokumentierten Daten lassen sich drei Ergebnisse ableiten:

- a) eine alternierende Umkehr der Scherrichtung
- b) die Richtung der Scherbewegung
- c) die Polarität der Scherrichtung



Abb. E.3.1: Prozentualer Anteil der verschiedenen Indikatoren-Typen am Gesamtinventar; unter "Sonstige" fallen makroskopische S-C-Gefüge, Scherbänder, 'Bookshelf-Structures'.



Abb. E.3.2:  $\sigma$ -Klast, Kernstück 95C1m (Teufe 540.97m),  $\phi \approx 0.7$  cm; Schersinn down-dip (sinistral).



Abb. E.3.3:  $\delta$ -Klast, Kernstück 79B1e (Teufe 497.00m),  $\phi \approx 0.5$ cm; Schersinn down-dip (sinistral).



Abb. E.3.4: Primärer  $\delta$ -Klast mit sekundärer  $\sigma$ -Überprägung, Kernstück 81A1g (Teufe 503.77m),  $\phi \approx$ 0,4cm; Schersinn up-dip (dextral); Versatz an Bruchfläche von  $\approx$  0.5cm.

zu a) Umkehr der Scherrichtung: Die einzelnen Indikatoren wurden mit ihrem Schersinn (vgl. Abb. E.3.5) auf ein Bohrprofil aufgetragen und in Homogenbereiche zusammengefaßt. Bei 75% Richtungsidentität konnten so Domänen von up-dip, down-dip und symmetrischer Deformation abgetrennt werden. Wie aus Abb. E.3.5 ersichtlich, erfolgt recht häufig eine Umkehr der Scherrichtung. Der Teufenabstand der Umkehrpunkte variiert in der Größenordnung von 8m bis 50m.



Mit Verfaltung der Foliation kann zumindest ein Teil der Umkehrungen des scheinbaren (d.h. im Einzelfall durch Anschnitt-Effekte in seiner Richtungsaussage eingeschränkten) Schersinns erklärt werden. Diese Umkehrungen sind scharf definiert. Weiterhin finden sich diskrete Zonen koaxialer Deformation. Umkehrungen waren bisher in keinem Fall an das Auftreten von Kataklasezonen gebunden. Geometrisch gesehen erfolgt Umkehrung bei Vertikaldurchgang der Foliation (Abb. E.3.6a); dies trifft hauptsächlich im tieferen Teil der in diesem Bericht behandelten Kernstrecke zu. Akkordeon-artige Knickfaltung in der ZEV (Abb. E.3.6b) mit zentral gelegenen Scherbändern ist eine weitere mögliche Erklärung. Eine Umkehrung des Schersinns entsteht geometrisch auch bei monoklinaler Faltung: entweder werden die vorher angelegten Klasten um Achsenlagen parallel zur Scherrichtung gefaltet (Abb. E.3.6c) oder sie entstehen gleichzeitig mit den Scherfalten durch Kompetenzkontrasten der Grenze Klast/Matrix und mechanische Instabilitäten in den Faltenschenkeln (Abb. E.3.6d).



Abb. E.3.6: Interpretative Modelle zur Umkehrung des Schersinns: a) Vertikaldurchgang der Foliation durch Verfaltung um horizontale Achsenebenen. b) Knickfaltung der Foliation (gestrichelt). C) Monoklinale Verfaltung der Foliation. Bei Verfaltung senkrecht zur Scherrich-(1) erfolgt keine tung Umkehrung, bei Verfaltung zur Scherrichparallel tung (2) erfolgt eine Umkehrung des Schersinns. d) Gemeinsame Bildung von 'similar folds' und asym-Klasten durch metrischen plastisches Fließen in den Faltenschenkeln.

zu b) Richtung der Scherbewegung:

Nach Reorientierung der Kerne wurde das Azimut der Klastenposition (Blickrichtung) am Kern statistisch ausgewertet. Zunächst ist davon auszugehen, daβ Klasten mit deutlicher Asymmetrie bevorzugt in Winkeln nahe 90° zur Scherrichtung am Kernstück auftauchen. Dies war aufgrund geometrischer Überlegungen zur Klastenform (vgl. PASSCHIER & SIMPSON 1986) eine plausible Arbeitshypothese.

Die Richtungsanalyse der daraus ableitbaren Scherrichtungen (Klastenposition ± 90°) ergab – aufgeteilt in asymmetrische und symmetrische Indikatoren – Richtungsrosen mit einem Vektormittel des in die Horizontale projizierten Azimuts bei 27° bzw 31° und einem relativ schwachen vektoriellen Regelungsgrad von 52% bzw. 58% (Abb. E.3.7). Das vektorielle Mittel der



prozentualer Regelungsgrad = 52%

Vektormittel

Schiefe

Kurtosis

268 Daten N H- 13 X

Symmetrische Indikatoren

prozentualer	Regelungsgrad	=	58%
Vektormittel		=	31°
Schiefe		=	3,6
Kurtosis		=	-46,3

Abb. E.3.7: Richtungsrosen und vektorielle Statistik der im Feldlabor aufgenommenen Schersinn-Indikatoren; Markierungen mit zweifelhafter Aussage wurden nicht berücksichtigt.

= 27°

= 4,6

= 1, 2

Nach den bisher vorliegenden Daten ist, mit den genannten methodischen Einschränkungen, von einer Scherdeformation der Gesteine (vor ihrer Wiederfaltung und Aufrichtung in steile Foliationslage) in NNE/SSW-Richtung auszugehen.

### zu c) Polarität der Scherrichtung:

Der prozentuale Anteil der verschiedenen Domänen an der bisher untersuchten Teufe stellt sich wie folgt dar:

	480m - 970m	1.250m - 2.004m	480m - 2.004m
up-dip :	53%	40%	47%
down-dip:	31%	46%	40%
koaxial :	16%	14%	13%

Die hier dargestellte Gesamtteufe wurde versuchsweise in zwei Großbereiche unterteilt. Die Trennung ist einerseits durch die Richtbohrstrecke vorgegeben, in der keine Kerne vorliegen (992m bis 1229m). Andererseits ist sie auch lithologisch durch eine mächtige Metabasit-Abfolge mit extrem geringer Anzahl von Schersinn-Indikatoren bedingt (1160m bis 1610m). Betrachtet man die nicht entzerrten Rohdaten, so deutet sich im prozentualen Anteil der Indikatoren ein Wechsel von einem updip- in ein down-dip-Regime an. Der Trend ist allerdings nicht sehr deutlich. Bei Mittelwert-Bildung über die gesamte betrachtete Strecke überwiegen leicht die Bereiche mit up-dip-Indikatoren.

Im Hangenden der Metabasite fällt die Foliation im Mittel steil (60°) nach SSW. In der Liegendfolge ist häufig ein Pendeln der Foliation um die Vertikalstellung mit WNW-ESE-Streichen festzustellen (KOHL et al. 1989). Mögliche Zusammenhänge zwischen diesen Vertikaldurchgängen und der Schersinn-Umkehr sind Gegenstand laufender Untersuchungen in enger Zusammenarbeit mit dem Feldlabor.

Insgesamt wurde in den beiden betrachteten Gneisfolgen offensichtlich eine Sequenz mit kleinräumigen Scherfalten durchteuft, die eine ausgeprägte Vergenz und ausgeprägte Lang-Kurz-Beziehungen der Faltenschenkel aufweisen. Nach den vorliegenden Daten ist es unwahrscheinlich, daß hangendes und Gneispaket korrespondierende liegendes Schenkel einer asymmetrischen Großfalte mit Metabasiten im Faltenkern darstellen.

Im betrachteten Abschnitt zwischen 480m und 2004m überwiegt insgesamt der Anteil der kinematischen Markierungen, die eine Aufschiebung des jeweiligen tektonisch Hangenden anzeigen (vgl. Tab.). Bezogen auf die Horizontalkomponente der Partikelbewegung ergäbe sich eine Hauptbewegungsrichtung nach NNE. Der Anteil der koaxial deformierten Klasten ist hoch.

Für eine Interpretation dieser Daten hinsichtlich möglicher Deckentransporte in der frühen Orogengeschichte der ZEV oder die Festlegung des Teilbewegungspfades in der tieferen kontinentalen Kruste (Anlage der mylonitischen Foliation) ist die gesamte spätere Deformationsgeschichte zu berücksichtigen. Die untersuchten kinematischen Markierungen sind bezüglich aller späteren tektonischen Phasen als transportierte Gefüge zu betrachten und sind daher palinspastisch rückzuorientieren. Besonders wichtig ist hierfür, welches Modell man für die Entstehung der steilen Raumlage der Foliation annehmen möchte (Primär angelegte steile Raumlage?, Rotation im duktilen pT-Regime, evtl. im Zusammenhang mit den Granit-Intrusionen?, Schleppung an der Fichtelnaab-Störung im Zusammenhang mit Spröddeformation und Knickfaltung?, großräumige Blockrotationen an kataklastischen Störungen?). Eine abschließende Interpretation der Daten kann daher nur nach Kenntnis der gesamten Kernstrecke und nach intensiver Diskussion mit anderen Arbeitsgruppen, insbesondere dem Feldlabor, erfolgen.

### **B.4** Schriftenverzeichnis

- COBBOLD, P.R: & GAPAIS, D. (1987): Shear criteria in rocks: an introductory review.- J. Struct. Geol., 9, 521-778.
- KOHL, J., HACKER, W. & SIGMUND, J. (1989): Geowissenschaften im KTB-Feldlabor - Geologie - Geologische Strukturen in Ge steinen und KTB-Vorbohrung.- KTB Report 89-3, 467, Hannover.
- PASSCHIER, C.W. & SIMPSON, C. (1986): Porphyroclast systems as kinematic indicators.- J. Struct. Geol., 8, 831-843.

SIMPSON, C. & SCHMID, S.M. (1983): An evaluation of criteria to deduce the sense of movement in sheared rocks.- Geol. Soc. Am. Bull., 94, 1281-1288.

WEBER, K. & VOLLBRECHT, A. (1987): Ergebnisse der Vorerkundungsarbeiten Lokation Oberpfalz.- 2. KTB-Kolloquium Seeheim/Odenwald, 186 S., ohne Impressum.

	-	2	
-	1	0	-

# E.5 Anhang: Datenliste der aufgenommenen Scherkriterien von 480m bis 2004m.

TEUFE (m)	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN	TELFE (m)	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN
482	75	E15d	/85	σ	dd	588	110	B2i	210/65	δ	75 ud
		E17e	/85	δ	dd			C2i	210/65	δ	10 ud
		E17f	/80	F	dd			C2k	210/65	σ	20 ud
486	76	C3k	/80	F	dd				210/65	σ (±symm)	325 ?ud
488	77	B17a	/80	σ (±symm)	?ud			E2r	190/47	σ	65 ud
		D18c	/80	SZ	— ud			G2z	180/55	σ (symn)	190 -
497	79	Ble2	/45	δ	ud	595	m	ALD	200/62	σ x/P	340 ud
			/45	8	ud			Cluz	200/65	0/2	DU C
504	81	Alg	/55	0(p)0(s)	bu			Fildi	200/57	a	55 ud
512	02	CG	-/55	N N	bb	598	112	Ala	220/60	σ	40 ud
210	05	COLI	-/60	F	dd	000		B1h	220/70	σ (symm)	230 -
520	86	B1m	/60	or (tsymm)	?ud				220/70	σ (symm)	260 -
523	87	Ala	-/60	σ	ud				220/70	σ	240 —
		С7ь	/80	δ/F	ud			Cim	220/70	σ	25 ud
529	91	Alm	-/72	σ	ud			F3a	220/70	σ (symm)	180 —
		Blr	/90	δ	dd	603	113	A2	200/62	σ (symm)	245
	1.101.00	Bls	/90	δ	dd			C3d	200/62	σ (symm)	150 -
540	95	B1j	/52	σ	ud			D3h(b)	210/62	$\sigma$	255 00
		-	/52	σ (±symm)	rud			D3h(C)	210/62	10(p)0(s)	145 700
541	06	CIE	-/10	o a/E				D3k(a)	210/62	σ/SB	180 dd
544	90	B2m	-/60	0/1	- 44			E31	210/62	σ	205 dd
548	98	13h	-/47	s-c	dd				210/62	σ	205 dd
553	100	B2d	/60	σ	dd				210/62	δ	200 dd
555	101	Alc	/60	σ	— ud	610	115	Ale	200/63	σ	150 dd
			/60	σ	ud			Ali	200/63	σ	155 dd
557	102	Clae	/45	σ	- dd			B3a	200/60	σ	350 ud
		C1t	/45	σ	— dd				200/60	σ	50 ud
		Clx	-/45	δ	— dd	610	110		200/60	σ	25 Ud
559	103	Ala	/50	σ	dd	612	116	FSDG	200/62	o (isymm)	350 244
		BIT	-/63		- 00	011	11/	BAC	190/60	O (ISYMM)	10 ud
563	104	CIA	/62 /55	D (ISYMM)	bb	623	118	Ale	190/60	σ	140 dd
565	105	Cla	/45	σ (svm)		020	220		190/60	o (±symm)	220 ?dd
	100	Card	/45	o (tsymm)	?dd			Blg	190/60	σ (±symm)	200 ?dd
		Dir(a)	/50	σ/Bk	ud			Dlu	190/70	σ	190 dd
			/50	σ	ud				190/70	σ (±symm)	190 ?dd
		Dir(b)	/50	σ	ud			Elad	200/65	δ	190 dd
			/50	σ	— ud			Flai	200/65	σ	260 dd
569	106	B2e(a)	/50	σ	— ud	629	119	Alh	200/60	σ (±symm)	50 7ud
	107	B2n	/50	σ	ud			CIS	200/40	O (ISYMM)	10 vd
5/3	10/	CJaa	/45	0	bu		120	RIG	210/55	a (+summ)	80 244
		Clah	-/45	r a			140	DIC	200/55	a (maint)	340 ud
		D3ah	-/60	σ	ud			Dlaa	200/60	or (symm)	205 —
1		D3ah	/60	σ (±symm)	?ud				200/60	σ (symm)	145 —
577	108	Ald	190/57	σ	20 ud.	639	123	B7d	210/70	σ (±symm)	175 ?dd
583	109	C10e	200/52	σ	185 dd	640	124	Dlq	210/60	σ (symm)	160 —
		D10g	200/52	SB	dd				210/60	σ (symm)	230 —
		G10s	200/52	σ	195 dd			Dis	210/60	σ (symm)	230 -
			200/65	σ (symm)	170 -	643	125	A4e	200/65	σ (symm)	40
		710	200/65	σ (symn)	190 -			BAL	200/65	0	175 44
		TIOM	200/65	o (symm)	180			Dax	200/50	a (suma)	350 -
			200/65	or (summ)	210 -	647	126	Bld	210/60	0 (DImm)	10 ud
588	110	B2m	210/65	C (STWW)	60 ud			Fiv	210/75	σ	60 ?ud
			210/65	σ (±symm)	10 ?ud			Gly	210/60	σ	40 ud
		B2h	210/65	δ	65 ud	4		Ilak	210/60	σ (syma)	235 —

- E 14 -

TEUFE [m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- MARSCH	KERN- Stück	SF (FMST)	KRITERIUM	SCHERSINN
653	127	Alc	200/70	F	60 ud	685	135	Ble	210/70	σ (symm)	210 —
		B1h	200/70	σ (symm)	195 —			C11	200/80	σ (symm)	170 —
		Bin	200/70	σ	15 ud			E2g	200/60	o (symm)	190 -
		C1w	200/70	F	320 ud			FOL	200/60	σ	250 dd
		Dlaa	200/70	σ	345 Ud			E-2K	200/60	a (symm)	25 —
659	128	A1c	190/50	σ (symm)	150 -				200/60	σ (±symm)	200 ?dd
0.55	140	Bld	200/50	σ (±symm)	20 ?ud	690	136	Ald	190/82	F	20 ?ud
			200/50	σ (±symm)	45 ?ud			Ale	190/82	σ (±symm)	240 ?dd
			200/50	δ	65 ud			C4c	200/57	σ (±symm)	290 ?ud
			200/50	σ	55 ud	604	127	D11	200/57	σ (symm)	230
			200/50	σ (symm)	10 10	694	137	BID	190/67	G	230 dd
		Rle	200/50	σ	20 ud			Bla	190/67	σ (symm)	230 -
		Clh	210/62	σ (symm)	150 -	700	138	D1k	220/65	σ	265 ud
			210/62	σ (symm)	220 —			D1t	220/65	σ (±symm)	50 ?ud
		C11	210/62	σ	10 ud	706	140	Ble	210/67	σ (±symm)	10 ?ud
	100	Flac	210/70	σ (symm)	230	707	141	Clu	200/65	σ (symm)	260 dd
002	129	ALD A1f	200/65	σ (+summ)	155 2dd	711	142	Ale	210/65	o (symm)	90 —
		Bin	200/52	o (symm)	150 -	/			210/65	σ (symm)	255 —
		B10	200/52	σ (symm)	205 —				210/65	σ (symm)	180 —
			200/52	σ (symm)	220 —				210/65	σ (symm)	200 -
		Clae	210/55	σ (symm)	180 -			Alg	210/05	o (isymm)	40 rud 55 ud
		D2C	210/12	o (symm)	210 -			BIO	210/72	σ	60 ?ud
		EAE	210/65	a (symm)	185 -	716	143	B2s	190/72	σ (symm)	180 —
		F4h	210/65	σ (symm)	240 —				190/75	σ (±symm)	345 ?ud
			210/65	σ (symm)	280			B2v	190/75	σ (symm)	195 —
		G4t	210/75	σ (symm)	245 —	727	146	Ble	200/75	σ (symm)	210 -
672	131	Ala	210/70	σ (±symm)	170 rud	730	147	Elr	210/52	o (symm)	60 ud
		ALD R1m	210/10	o (symm)	100 ud	/30	2.07	E3s	210/52	σ	30 ud
			210/60	σ (±symm.)	340 ?ud			F3aa	210/60	σ	50 ud.
		C3c	200/65	σ	40 ud	736	148	Blp	200/53	σ	40 ud
		C3d	200/65	σ (±symm)	20 ?ud			Cls	200/65	σ (±symm)	10 ?ud
		C3f	200/65	o (tsymm)	340 ?ud	740	149	Bae	190/62	o (camp)	40 ua
		D.Sm D.So	200/65	a (symm)	150 -			CALL	190/57	o (symm)	220 ud
676	132	Ala	200/67	σ (symm)	220			C41	190/57	σ (symm)	15 -
0.0	200		200/67	σ (symm)	220 —				190/57	σ (±symm)	205 ?ud
		Alc	200/67	σ (symm)	250 —			D6h	180/60	σ	20 ud
			200/67	σ (symm)	225 -			Ffad	200/62	σ	35 ud
		111	200/67	σ (symm)	1/0			Foz	200/62	o (symm)	180 -
		ALL	200/67	σ (symm)	180 -	746	150	A2b	200/60	σ (symm)	230 -
		Ali	200/67	σ (symm)	200 —			A2d	200/60	σ (symm)	170 —
		Bin	200/70	σ (symm)				B2k	190/65	σ (±symm)	165 ?dd
677	133	Alo	200/50	σ	50 udl			C2▼	200/60	σ (symm)	180 -
		Alq	200/60	σ (symm)	245			Flat	200/70	0	20 ua
		B1ai	200/60	o (III)	195	751	151	Bla	200/52	σ (symm)	220 -
679	134	Colt	200/70	σ (tsvmm)	10 ?ud	102		Cip	200/60	σ (symm)	240 —
010			200/70	σ (symm)	180 —			EAk	200/67	σ (symm)	235 —
		D8b	190/55	σ (symm)	240 —			-	200/67	σ (symm)	170 -
		F9b	190/65	δ	150 dd	75.6	150	F41	200/10	o (symm)	130 244
			190/65	o (tsymm)	155 244	150	152	ALA	190/55	F	55 ud
695	135	Ble	210/60	σ (symm)	240			B1k	190/50	F	315 ud
005	100	DIC .	1100	o (oliman)							

SCHERSINN KRITERIUM SCHERSINN SF KRITERIUM TELFE KERN-KERN-SF TELFE KERN-KERN-(FMST) MARSCH STÜCK (FMST) MARSCH STUCK [m] [m] 190/52 20 ud 789 164 C1t 200/65 σ 30 ud 759 153 A1b σ 225 ?dd ud 190/52 σ (±symm) 200/65 F 50 Ald 160 ?dd B1h 200/47 σ (tsymm) Dlab 200/62 40 ud σ **B1**k 200/47 δ 60 ud Dlac 200/62 σ (symm) 220 -350 ud Cln 200/45 ud 200/62 F 30 σ 210 C1p 200/45 F 60 ud 200/62 σ (symm) -80 ud ud D3a 200/52 F Diag 200/62 F 10 ud 200 D3b 200/52 J/F 40 200/62 σ (symm) -55 ud 110 ?ud 200/52 F Elai 210/42 σ (±symm) ud 230 762 154 Alc 190/55 F 0 793 165 B1h 190/60 σ (symm) -50 ud 765 155 **B61** 210/72 F 796 166 Ald 190/55 40 ud σ **B60** 210/72 σ (symm) 220 190/55 70 uđ Ale F 10 C6t 210/70 ud Alf 190/55 F σ 156 A3b 200/60 60 ud 798 167 B2b 190/60 σ (±symm) 170 ?dd 768 σ 340 ud B2c 350 ud A3e 200/60 190/60 F σ 30 ud 800 168 Alb 200/60 F 230 dd B10b 210/62 F 230 55 ud Alc 200/60 F dd 770 157 B7c 200/65 σ 70 ?ud 200/60 F 180 dd 158 B2k 210/62 σ (±symm) 773 210/60 60 ud D1n 200/55 F 30 ud 775 159 Ale F 210/60 70 ud Elu 200/60 P 0 uđ Alg F 200/60 F 50 ud 210/60 ud B1k F 169 A3a 200/42 F 230 dd 220/47 210 ----804 779 161 B11 σ (symm) A3f 200/42 F 60 ud 220/47 σ (symm) 180 -B3D 200/45 F 230 66 210/55 75 ud Clq a 200/45 160 dd 210/40 60 ud B3q F D1s F 30 ud 805 170 C4aa 200/45 20 ?ud 210/40 F D1x σ 200 C4ac 200/42 F 80 ud 162 B2c 200/65 o (symm) 782 30 ud C4ad 200/42 F 50 ud C2g 210/62 F 0 ud D4an 190/40 F 240 dd 210/62  $\sigma(symm)/\delta$ 30 C21 210/62 ud 190/40 240 dd δ σ 25 ud 210/60 808 171 A3k 210/40 60 ud D2r σ σ 210/60 25 ud **B**30 210/65 65 ud D2t O/P σ 235 210/60 B3p 210/50 F 10 uđ σ (symm) _ 200/42 220 _ C1ad 200/25 30 ud E2aa σ (symm) σ 30 200/42 o (symm) 180 _ 200/25 ud σ 200/42 230 200/25 0 ud σ (symm) σ 70 ud 30 ud 200/40 818 176 Ale 200/62 F2ab F σ 30 uð 200/40 10 ud 177 B3q 200/57 F 819 σ 30 uđ 200/40 F 350 ud 200/57 σ 180 F2ae 200/40 F 60 ud 821 178 C3al 210/60 σ (symm) dd 60 235 786 163 A11 210/50 σ ud C3W 210/60 σ 210/50  $\sigma(p)/\delta(s)$ 30 ud 827 181 Cli 180/47 0 ud σ 210 180/47 30 ?ud 210/50 σ (symm) C1j σ (±symm) 20 uđ 829 182 200/30 50 uđ Alm 210/50 δ Ala σ 80 ud 200/30 85 nd 210/50 σ σ 80 ud B1c1 200/52 F 220 dd Ain 210/50 σ B1c2 195 dd 30 ud 200/52 210/50 δ σ 250 ?dd 150 832 183 Ale 210/75 σ (±symm) B1g 200/57 o (symm) 190 dd 330 ?ud 210/75 P Bir 200/57 σ (±symm) Alf-g 210/57 150 dd 330 ?ud F Bis 200/57 σ (±symm) 210/62 180 dd 35 uđ B1n F Diak 210/62 F 210/62 180 210 sin σ (symm) Dial 210/62 SB 210/62 180 ?dd F 180 dd Blg σ (±symm) 789 164 Ala 200/62 **bb** 210/60 180 dđ 200/62 265 C1v Alf δ a 225 dd 184 Ali 210/50 0 ?ud 200/62 834 σ (±symm) Alg σ 350 ud Alk 210/50 260 B11 200/65 σ (symm) σ dd 200/65 F 95 ud A11 210/50 170 P 60 uđ 190 ?dd 200/65 F 210/50 **B10** σ (±symm) 10 ud 200/65 F B1n 210/47 30 ud Cls F

			L								
TEUFE (n)	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [n]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN
834	184	Bln	210/47	σ (tsymm)	90 ?ud	867	198	Ald	220/45	σ (±symm)	30 ?ud
835	185	Ald	200/45	σ	350 ud			Blg	220/35	σ (±symm)	10 ?ud
000	200		200/45	σ (±symm)	90 ?ud				220/35	σ (symm)	280 —
		Alg	200/45	F	10 ud			B1h	220/35	σ	270 dd
			200/45	σ (±symm)	50 ?ud				220/35	σ	260 dd
		Alj	200/45	F	70 ud			B1k	220/35	F	290 dd
			200/45	δ	30 ud	869	199	C2n	220/42	σ	240 dd
		B1s	190/47	F	40 ud	870	200	Alf	220/40	σ	105 44
837	186	A3d	200/42	F	30 100			ALK p11	220/40	a/P	160 44
			200/42	σ	50 UC			Clab	220/30	or (+symm)	230 2dd
		AJI D24	200/42	O (ISAmi)	110 204	873	201	Ale	220/45	σ/S-C	40 ud
020	107	MIC	200/45	or (+summ)	40 201	0/5	201	Clo	210/57	σ	350 ud
039	10/	Ald	200/40	σ (+symm)	10 ?ud	875	203	A5c	210/55	σ	180 dd
		Ale	200/40	σ	25 ud	878	204	C1o	200/57	σ	20 ud.
		B1p	210/45	σ	35 ud.			Elaa	210/62	σ	30 ud
		Clu	210/55	σ (±symm)	20 ?ud				210/62	F	80 ud
		Elak	210/50	σ	5 ud.			Flaf	200/62	σ (±symm)	10 ?ud
		Flaq	220/50	σ (symm)	180 —			-	200/62	F	355 ud
843	188	A3a	210/52	σ	10 ud			Flag	200/62	σ	60 ud
		A3b	210/52	σ	60 ud	002	205	Glam	210/40	o (symm)	220 -
		A3C	210/52	σ (symm)	185 -	883	205	Ale	200/42	0	555 uu bu 0
		DCA	210/52	o (symm)	230 -			λ1σ	200/42	a (+sump)	350 2ud
		D3aa	210/52	o (symm)	65 ud	885	206	Ald	200/42	δ (LLL)	40 ud
		DJaa	210/52	σ	40 ud		200	122.0	200/42	δ	320 ud
		D3x	210/65	o (svmm)	215 -			B1e	210/45	σ	235 dd
847	189	A2a	200/57	o (1symm)	40 ?ud				210/45	σ	245 dd
		B2k	200/60	σ	355 ud			B1f1	210/45	σ	175 dd
		B2r	200/60	σ	0 ud			Clg	200/30	σ	15 ud
		D2ah	210/50	σ (±symm)	190 ?dd	886	207	A4c	210/47	σ	75 ud
		D2aq	210/50	σ	265 dd			B4f	200/42	σ (symm)	110 -
		D2ar	210/50	σ (±symm)	45 ?ud	000	010	Clj	200/40	F	
852	191	A5a	200/50	σ (symm)	240 -	890	210	Ala	220/41	0 (+mm)	330 2113
		A5b	200/50	σ	160 dd			A10	220/47	a (summ)	170 -
		DEA	200/50	0	25 ud	892	211	AdbE	220/60	o (symm)	240
		DCG	210/45	F	20 ud	893	212	A4a	210/60	σ (symm)	190 —
		C5i	210/60	or (+symm)	50 ?ud		100000	A4b	210/60	σ (symm)	220 —
			210/60	σ	50 ud	894	213	Alb	200/55	σ	10 ud
		ESax	210/45	σ	350 ud				200/55	δ	340 ud
856	192	B11	210/62	σ	60 ud				200/55	σ (±symm)	150 dd
			210/62	σ (symm)	200			Alt	200/55	σ	100 ud
		Dlaa	210/42	σ	40 ud			Clg	180/47	σ	0 ud
			210/42	σ (±symm)	340 ?ud				180/47	σ (±symm)	20
1000		Dlac	210/42	σ (symm)	160 -			DTJ	190/42	E F	30 uu
860	193	A2a	220/45	r	20 ud				190/44	r (+summ)	330 2ud
		BZI	220/50	I	40 113			F11	210/42	σ (tsymm)	30 ?ud
		C21	220/50	F	20 ud				210/42	σ (svmn)	190 —
		Lan	220/50	σ	110 ud			Fin	210/40	σ	50 ud.
		D2o	210/52	σ (symm)	210 -				210/40	σ	40 ud
			210/52	σ (symm)	200 —			Fin	210/40	σ/Bk	60 ud
		E2t	210/60	F	10 ud			Glo	220/45	σ (symm)	110 —
863	194	A2b	210/55	F	60 ud	igner an			220/45	σ	250 ud
		- 222	210/55	F	0 ud	900	214	Ble	210/55	o (symm)	190 -
865	197	A2b	210/35	σ (±symm)	10 7ud				210/55	0	250 244
		100	210/35	σ (±symm)	40 200			mile	220/47	Bly	210 44
		AZI	210/35	0	U ua			DTV	18º 1000	LAR.	410 444

- E 17 -

TEUFE (n)	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN
900	214	Elm	210/47	Bk	240 dd	955	240	Alg	210/80	σ	155 dd
		Hlr	210/42	σ (±symm)	20 ?ud		00.00MS	Faf	210/65	σ	345 ud
		I1m	210/60	σ	180 dd	965	242	Clm	230/65	σ	80 ud
			210/60	σ	140 dd			C1o	230/65	σ	50 ud
908	216	Alc	200/57	F	30 ud.	968	243	Ble	210/70	σ	75 ud
910	217	Ald	210/52	σ	25, ud			Blm	210/70	σ (±symm)	115 ?ud
		Ale	210/52	σ (symm)	235 —	0.000		C1f	200/60	σ	0 ud
		Blg	220/50	σ	95 ud	969	244	Blm	200/67	σ (symm)	215 -
			220/50	o (symm)	210 -			Claa	210/70	σ	60 ud
914	218	ALD	220/40	0	DU 00			Diad	210/60		200 uu
015	210	<b>B</b> 24	240/40	0 F	65 ud			ELan	200/72	σ (symm)	200
017	220	1 1 h	220/40	F	70 ud	972	245	A1	210/70	σ	5 ud
511	640	Cla	210/40	F	50 ud	514	L'av	E3r	220/52	o (symm)	215 —
919	221	D9r	210/47	σ	175 dd				220/52	σ (symm)	250 —
922	222	A4g	210/47	δ	230 dd			F3ag	220/62	σ (symm)	210 —
		B4k	210/47	σ (symm)	200 —				220/62	σ (symm)	195 —
923	223	Blh	220/60	σ	55 ud.			G3ag	210/62	σ (symm)	180 —
			220/60	σ	60 ud				210/62	σ (symm)	195 —
925	225	A3c	210/55	σ (±symm)	125 ?dd				210/62	σ (symm)	210 -
		DF 1	210/55	δ	160 dd			GJak	210/62	σ (symm)	250
000	007	850-0	210/52	r D	120 00	047	246	820	220/65	o (symm)	240
928	261	A4	210/45	R	250 44	347	2490	n4a	220/05	o (symm)	195 -
969	660	Ald	210/40	a (summ)	220			B2h	220/67	σ (symm)	155 -
		Din	210/47	σ (symm)	225 -			C2ad	220/67	σ (symm)	190 —
		Ma	210/47	F	205 dd	982	248	A2m-p	210/60	o (symm)	200 —
933	229	Alc	210/52	σ (Symm)	295 —	984	249	C1f	210/65	σ (±symm)	240 ?dd
			210/52	σ (symm)	280 —	987	250	Cin	200/62	σ (±symm)	200 ?dd
		Cik	220/62	σ (symm)	80 —			Elac	210/60	σ (±symm)	10 ?ud
			220/62	σ	80 ud.			Elad	210/60	σ (±symm)	140 ?dd
			220/62	σ	240 ud				210/60	σ (symm)	215 —
935	230	Ala	210/65	δ	25 ud	990	251	A3e	200/55	o (symm)	175
		Clh	210/65	σ	30 ud			3.24	200/55	σ σ (term)	350 UQ
940	233	Ala	210/57	σ	355 UQ			AJI D3m	200/55	o (Teshimi)	125 11
		BLI	210/60	0 G	350 ud			DOLL	200/55	a (summ)	170 -
042	234	112	210/60	(STAND)	205 -			B3rr	200/70	δ (Symm)	95 ud
746.6	6.3M2	Blb	210/65	o (syma)	200 -	992	252	A1b	200/70	σ	340 ud
944	235	Alb	210/60	σ	25 ud	1177	253	Clg	210/80	σ (±symm)	80 ?ud
		Alc	210/60	σ	40 ud	1288	268	D1h	200/55	δ	80 ud.
		Ble	210/62	σ (±symm)	50 ?ud	1333	280	G2ee	145/55	σ (symm)	105 —
		Ble-d	210/62	σ (±symm)	340 ?ud	1345	282	A2a	145/55	δ	235 ud
		Clg	210/65	σ	90 —	1351	283	Gle	240/50	σ	235 dd
			210/65	σ	85 ud				240/50	δ	305 dd
	-	-	210/65	σ	230 Ud				240/50	σ (symm)	280 -
0.47	026	DIA	210/60	σ	1/5 00	1			240/50	σ x	250 dd
947	230		200/07	O (Syman)	180 33			Cim	240/50	σ	250 dd
		D31	200/07	đ	215 -			01m	240/50	σ	240 dd
		DOA	220/47	o (svmm)	180 —	1357	284	Gle	150/60	δ	10 ud
949	237	A1	200/62	o (tsymm)	20 ?ud				150/60	σ	300 ud.
951	238	A2c	220/67	o (±symm)	40 ?ud	1434	298	C6d	200/75	σ (symm)	130 —
953	239	B7e	220/70	σ (±symm)	220 ?dd	1446	300	Ala	80/45	δ	330 ud
			220/70	σ/F	280 dd	1457	302	Alc	20/40	δ	125 ud
			220/70	δ	260 dd				20/40	ð	285 ud
		B7f	220/70	Ó	250 dd	1461	305	Blf	30/65	o (symm)	90 — 25 —
955	240	DIA	210/80		210 00			R1h	30/65	C (SYMM)	50 44
		ALO	210/80	O (ISAUT)	210 :00				50/05	-	

TEUFE [m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN
1514	316	F1j	30/70	δ	100 ud	1714	375	Ala	185/80	σ	200 dd
1541	323	C1f	275/50	δ	115 ud		1000	E3o	185/80	δ	5 ud
1564	327	Dlac	280/50	σ	10 ud			E3q	185/80	δ	35 ud
1623	338	Ald	230/80	σ (symm)	250 —	1719	376	B2d	210/80	σ	30 ud.
1626	339	Blc	230/90	σ (symm)	280 -			C2e	210/80	σ (symm)	180 —
1007	240	Clg	230/80	σ	10 ud			D3a	210/80	σ (symm)	210 —
1027	340	BIN	230/80	σ σ (mmm)	220 dd		10000	E2a	210/80	σ (symm)	200 —
1620	2/1	Cle	230/80	o (symm)	310 -	1723	378	C2j	210/75	F	30 ud.
1030	341	Dán	190/75	o (synn)	15 ud	1729	382	D1k	200/85	σ	200 dd
		FAG	200/70	F	20 ud	1734	383	B2h	200/75	σ	205 dd
1633	342	C2a	200/70	σ	215 dd			COL	200/75	σ	230 dd
			200/70	σ (symm)	195 —	1738	395	82a	200/75	0 (ct. (ct.mm)	210
1636	343	Alc	210/80	σ (symm)	210 -	1/30	505	C2m	200/70	o (symu)	350 11
		Ale	210/80	σ (symm)	225			C2g	200/70	F	20 ud
		B1g	210/80	δ	45 ud				200/70	σ	70 ud
			210/80	σ	50 ud			C2h	200/70	σ	350 ud
			210/80	σ	45 ud				200/70	F	10 ud
1639	344	C1m	200/80	σ (symm)	255 —			D2k	200/70	σ	35 ud
1642	345	C2h	200/85	δ	335 ud	1743	386	Alb	210/70	σ (symm)	220 —
		20	200/85	F	80 ud			B1h	210/70	σ	50 ud
1646	246	D20	205/85	σ (symm)	190 -	1000000			210/70	δ	20 ud
1040	340	AIC	210/85	0	50 UC	1748	387	A2d	210/70	δ	65 ud
		Flan	210/05	0	20 ua			B2e	210/70	δ	230 dd
		PTGII	210/85	δ/F	0 110			C2f	210/70	σ	30 ud
			210/85	σ	bu 0	1750	200	001	210/70	σ	35 ud
		Flao	210/85	F	0 ud	1750	390	DZn	210/75	σ	220 Ud
1650	347	D3w	210/85	δ	240 dd	1/59	391	B4C	220/78	r x	120 ud
		D3x	210/85	σ	19 ud				220/78	x	120 ud
		E3z	210/85	σ (symm)	209 —	1765	393	Bla	210/65	a d	70 ud
		F3ab	210/85	σ (symm)	40 —	1105	555	C11	210/65	δ	40 ud
			210/85	δ	340 ud			Cli	210/70	σ	40 ud
		F3ac	210/85	σ	50 ud	1775	399	Alh	200/55	δ	170 dd
			210/85	δ	50 ud			D1r	200/55	δ	185 dd
4050	240	G3ad	210/85	σ (symm)	40			Elae	200/55	δ	170 dd
1656	348	C2h	210/85	0	240 dd				200/55	δ	175 dd
		₽∠p	210/85	0	170 44				200/55	F	180 dd
1660	3/0	Flad	210/85	2	195 22	1780	400	Ale	200/65	σ (symm)	55 —
1665	350	12f	200/03	σ (symm)	200	4.500	101	Alf	200/65	σ	0 ud
1669	351	Elaa	210/68	σ	50 uđ	1/82	401	CII	190/70	σ	1/5 dd
		Flac	210/68	F	40 ud			D11	190/70	F	110 dd
			210/68	σ	10 ud			Elo	190/70	a (summ)	165 -
1674	352	Ald	210/70	σ	30 ud	1786	402	C6b	190/65	$\delta/\sigma$	180 dd
1676	353	A2b	210/70	σ	40 ud	1100	100	G6a	190/65	σ	40 ud
		B2h	210/70	Bk	180 dd	1792	403	Alc	195/70	σ	205 dd
1682	355	Blf	200/75	δ	0 ud			B1d	195/70	δ	5 ud
			200/75	σ	10 ud				195/70	σ	10 ud
		C10	200/75	σ	0 ud			D11	195/70	δ	195 dd
1687	358	A2d	200/70	δ	30 ud	1796	404	B1g	210/65	δ/F	30 ud
1690	360	AZa	210/80	0	200 dd			C1h	210/75	F	30 ud
1600	267	AZI	210/80	0/1	15 Ud				210/75	F	20 ud
1033	307	A2D B2r	210/70	a	50 ud				210/75	σ	90 ud
1700	368	A2a	210/65	F	40 111			nd !	210/75	F	10 ud
1,00	300	C2i-m	210/65	F	30 ud			DII	210/70	F	220 dd
1712	374	A2a	170/85	δ	210 dd				210/70	x	260 44
		A2d	170/85	σ	160 dd				210/70	a	185 44
									410/10		105 00

TEUFE KERN-KERN-SF KRITERIUM SCHERSTNN TEUFE KERN-KERN-SF KRITERIUM SCHERSINN [m] MARSCH STÜCK (FMST) [m] MARSCH STÜCK (FMST) 1844 1801 405 Ala 260/70 δ 310 dd 417 F2aa 210/75 σ (symm) 140 260/70 210/75 180 F1z σ (symm) 80 σ (symm) _ 1849 418 210/75 G1w 260/70 40 ud C1t σ (symm) 200 _ σ 220/75 1802 409 A1d 230/80 30 Elal SB F ud 220/75 230/80 335 SB F ud 210/75 190 1807 407 HIK dd B1i 240/80 F 20 ud δ 220/75 1853 419 210 240/80 40 ud Ala σ (symm) F _ 220/75 70 B11 nđ 1807 410 B1g 230/80 80 ud σ σ 1856 420 220/75 B1i 45 Elv 230/80 40 ud σ ud σ 220/75 210 1812 411 Ala 220/70 δ 70 ud σ (symm) _ 210/75 205 D1p 44 C2d 220/60 220 dd σ σ D1r 210/75 175 dd F 220/60 180 dd σ Fla 220/75 215 dd F20 δ 220/60 δ/F 30 ud 200/82 220 1813 408 σ (symm) 240/80 70 A1b Bk ud ----220/75 G1aa 10 ud B1d 240/80 0 ud σ σ 1818 412 Glab 220/75 210 G1w 210/80 20 ud σ (symm) F 210/80 1862 421 A1a 220/75 220 dd 20 uđ F σ 210/80 25 ud F1p 220/82 F 215 dd F 1823 413 B1g 230/75 280 dd 220/82 F 190 dd  $\sigma$ C1m 230/70 260 dd G1r 200/85 F 210 dd σ D2f 230/85 o (symm) 230 200/85 F 210 dd 230/85 σ (symm) 200 200/85 σ 165 dd E2n 230/85 δ/F 200 dd H1t 200/75 F 170 dd 230/85 σ (symm) 235 _ 200/75 F 160 dd 230/85 σ (symm) 235 _ J1ac 200/75 F 345 ud E20 230/85 σ (symm) 235 _ 220/75 F 210 dd 200/75 230/85 σ (symm) 220 _ σ 0 ud 220/75 F2q 230/85 σ (symm) 230 _ Klad σ (symm) 240 _ 1867 422 220/75 230/85 σ (symm) 215 _ B1f σ (symm) 180 1828 414 220/75 350 ud 220/80 Fls A1f σ (symm) 240 _ F 20 220/75 ud 220/80 190 Glu F  $\sigma$  (symm) 423 1873 A2b 210/70 210 C1n 220/80 355 ud σ σ (symm) ----B2e 210/70 220/80 230 180 _ D1o σ (symm) σ (symm) 210/70 235 220/80 200 σ (symm) σ (symm) C2i 210/70 170 dd 220/80 210 Elq σ (symm) σ 220/80 190 210/70 170 dd σ (symm) σ 220/80 235 C2m 220/82 185 σ (symm) σ (symm) 220/80 220 D2m 220/82 185 σ (symm) σ (symm) 220/80 220 F2x 220/82 170 σ (symm) σ (symm) 220/82 230 220/80 170 G2al σ (symm) σ (symm) 1878 424 220/82 210 220/80 170 Elh σ (symm) σ (symm) 1833 415 200/75 220/82 210 Ala σ (symm) 200 σ (symm) _ 210/80 220/82 215 Ela σ (symm) 230 σ (symm) _ 1838 416 210/75 F1j 220/82 215 Ala σ (symm) 230 σ (symm) 425 210/85 D1g 200/75 220 1884 B1f 30 ud σ (symm) σ 200/75 210/85 240 C1g 180 σ (symm) σ (symm) 200/75 1889 426 200/85 180 ____ **B1fK** 230 ____ σ (symm) σ (symm) 200/75 155 200/85 220 σ (symm) (symm) σ 200/75 220 DInK 200/85 170 dd σ (symm) _ σ Elh 200/75 230 200/85 220 dd σ (symm) σ Fli 200/75 210 200/85 240 dd σ (symm) F 200/75 230 200/85 240 dd σ (symm) σ 200/75 200 σ (symm) 200/85 240 dd σ 200/75 200 _ 1893 427 A1bK 200/85 σ (symm) 30 ud σ 200/75 205 C1fK 200/85 250 σ (symm) dd σ 210/75 G11 200 200/85 230 σ (symm) _ σ (symm) -

210/75

210/75

200/75

1844

417

B2da

B2e

σ (symm)

σ (symm)

σ (symm)

210

235

180

Elk

F1p

H1t

200/85

200/85

200/85

σ (symm)

Bk

δ

180

170 dd

10 ud

- E 19 -

TEUFE [m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN	TEUFE [m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN
1893	427	Hit	200/85	δ	10 ud	1923	433	E5k	220/65	σ	55 ud
		H1z	200/85	δ	15 ud	1930	435	Alc	220/65	δ	30 ud.
		Jlad	200/85	δ	190 dd			B11	220/65	δ	100 ud
		Jlaf	200/85	σ (symm)	225	1932	436	C1i	220/65	δ	70 ud
1898	428	Albf	220/90	σ (symm)	270 —				220/65	δ	110 ud
			220/90	σ (symm)	310 —	1934	437	C2h	220/60	δ	260 dd
		Clhf	220/90	σ (symm)	310 -	1938	438	Ala	220/55	σ	70 ud
		Elm	220/90	δ	260 dd				220/55	δ	15 ud
		Gly	220/90	δ	310 sin			Blc	220/55	δ	210 dd
1903	429	A2b	220/90	δ	130 dex	4000	430	Clm	220/55	8	190 dd
		B2c	220/75	δ	265 dd	1939	439	ALD	220/62	0	180 dd
		603	220/15	0	230 00			BII	220/62	σ	265 00
		1 620	220/75	2	160 dd			D11	220/62	2	170 44
		D20	220/75	or (summ)	220 -			DIK	220/62	G	180 dd
		Der	220/75	a (Simu)	40 ud	1		D1tK	220/62	δ	45 ud
			220/75	σ (symm)	255 -			Die	220/62	δ	10 ud
		E2h	220/75	F	255 dd	1		Flw	220/62	δ	25 ud
			220/75	F	235 dd				220/62	σ	35 ud
			220/75	δ	180 dd				220/62	δ	80 ud
		F2m	220/75	σ (symm)	255 —	1945	440	B2m	190/68	σ	350 ud
1909	430	Ala	220/72	δ	230 dd				190/68	δ	315 ud
		B1b	220/72	σ (symm)	260 —			C2r	190/68	δ	210 dd
			220/72	σ (symm)	295 —				190/68	δ	170 dd
		Clg	220/72	δ	245 dd	1948	441	Alj	190/70	F	340 ud
			220/72	σ	45 ud			Cla	190/70	0	350 ud
		CII	220/12	0	245 00			CIS	190/70	0	25 Ud
		Clai	220/72	0	290 00			D1w	190/70	Ā	10 11
1914	431	Blc	210/85	o (symu)	300 sin			DIN	190/70	σ	310 ud
1714	401	C1h	210/85	σ	300 sin			Elx	190/70	σ	35 ud
		D1K	210/85	σ	300 sin				190/70	δ	35 ud
		D11	210/85	δ	300 sin	1953	442	B2c	200/85	σ	65 ud
		-	210/85	δ	300 sin				200/85	σ	0 ud
		Flu	210/85	σ	190 dd			B2d	200/85	δ	45 ud
			210/85	σ	185 dd			C2k	200/85	δ	60 ud
		Flv	210/85	σ	130 dex			D2n	200/85	δ	355 ud
			210/85	σ	130 dex	1050		D2o	200/85	0 F	350 ud
1000	420	023	210/85	0	300 sin	1959	443	D2m	240/78	0	255 dd
1920	432	CSa	200/85	0	345 UC	1		F200	240/18	0	260 ad
		031	200/85	a (summ)	210 -			EGII	240/78	x	70 ud
1923	433	B5a	220/65	δ	0 ud			F2a	240/78	σ	240 dd
1,000	100	200	220/65	δ	10 ud			1.59	240/78	σ	260 dd
	1	B5b	220/65	σ (symm)	310 -	1964	444	Elw	240/79	σ	85 ud
			220/65	δ	130 dex	1968	445	Ala	60/80	σ (symm)	100 —
			220/65	δ	310 sin			Ble	60/80	σ	75 dd
		B5c	220/65	δ	310 sin			Clg	60/80	σ (symm)	150 —
			220/65	δ	310 sin	1972	446	A2c	50/85	σ	60 dd
		C5d	220/65	σ	65 ud	1077	447	101	50/85	σ	75 dd
			220/65	σ	sin	19/1	441	AZD	50/85	0	DD 00
		CEF	220/65	0 (51mm)	240				50/85	(summ)	45 —
		COL	220/65	δ (Symm)	200 44			A2c	50/85	a (Symm)	70 dd
		D5m	220/65	δ	0 110			B2g	50/85	δ	50 dd
		2009	220/65	δ	10 ud				50/85	δ	70 dd
			220/65	F	60 ud				50/85	δ	10 dd
		D5j	220/65	σ	40 ud	1980	448	C4k	40/85	σ (symm)	75 —
		E5k	220/65	σ	350 ud			D4p	40/85	σ (±symm)	45 ?dd

TEUFE (m]	KERN- MARSCH	KERN- STÜCK	SF (FMST)	KRITERIUM	SCHERSINN
1980	448	D4p	40/85	σ	60 —
1983	449	A2a	30/80	σ	300 ud
			30/80	σ	140 ud
		B2d	30/80	δ	210 ud
			30/80	σ	220 ud
		E4c	30/80	σ	5 dd
1988	450	C2b	220/80	σ (symm)	265 —
		E2d	220/80	σ	140 dd
1993	451	Bld	40/80	σ	35 dd
			40/80	σ	35 dd
		D1f	40/80	σ	130 sin
		Hlo	40/80	σ (symm)	40 —
			40/80	δ	245 ud
1999	452	Ala	40/72	σ	345 dd
		B1c	40/72	σ	220 ud
		C1đ	40/72	δ	10 dd
		D1j	40/72	σ (symm)	180 —
		D1m	40/72	σ (symm)	190 —
		Gla	40/72	δ	175 ud
		Hlv	40/72	σ	20 dd
			40/72	σ	20 dd

<u>Legende</u>: SF (FMST) = Reorientierte Raumlage der Foliation;  $\sigma$  = Sigma-Klast;  $\delta$  = Delta-Klast; symm = symmetrisch; F = Faltung; (p) = primär; (s) = sekundär; SB = Scherbänder; Bk = Bookshelf Structures; S-C = S-C-Gefüge; ud = up-dip (Bewegung des tektonisch Hangenden gegen die Einfallsrichtung der Foliation); dd = down-dip (Bewegung des tektonisch Hangenden in Einfallsrichtung der Foliation).

- E 21 -



## F. Ergänzende Untersuchungen

Tiefbohrung KTB-Oberpfalz VB Bruchtektonik im Teufenbereich von 2500 bis 3893 m


KTB-Report	90-2	F1 - F26	13 Abb.	Hannover 1990
------------	------	----------	---------	---------------

Tiefbohrung KTB-Oberpfalz VB, Bruchtektonik im Teufenbereich von 2500 bis 3893 m:

F. Ergänzende Untersuchungen

G. Zulauf *)

# Inhaltsverzeichnis:

		Set	ite
F.1	Einleitung	F	2
F.2 F.2.1	Ergebnisse der Untersuchungen Kinematik, Raumlage und Ausbildung der spröden Verschiebungszonen	F F	3 3
F.2.1.1 F.2.1.2 F.2.2 F.2.3 F.2.4	Aufschiebungen Abschiebungen Mineralisation auf den Verschiebungsflächen Extensionsrisse Altersabfolge der bruchhaften Gefüge	F F F F	3 8 9 18 21
F.3	Schlußfolgerung	F	23
F.4	Schriftenverzeichnis	F	25
F.5	Danksagung	F	26

*) Anschrift des Verfassers: Geologisch-Paläontologisches Institut der Johann Wolfgang Goethe-Universität, Senckenberganlage 32-34, 6000 Frankfurt a.M. Die folgenden Untersuchungsergebnisse beziehen sich lediglich auf den untersten Teil der Bohrung VB 1a (2500 bis 3893 m). Die Ablenkbohrung VB 1b (3766,9 bis 4000,1 m) wurde nicht gekernt, so daß auf die Untersuchungen im tiefsten Abschnitt der KTB-Vorbohrung verzichtet werden mußte.

lithologische Abfolge des untersuchten Teufenbereichs Die beginnt bei 2500 m mit Biotit-Hornblende-Gneisen, in die Paragneise (vor allem +/- granatführende vereinzelt Sillimanit-Biotit-Gneise) und Amphibolite eingeschaltet sind (Tab. F.1.; vgl. KOHL et al. 1989). Unterhalb dieser Biotit-Hornblende-Gneise folgen ab 2690 m Paragneise, die im oberen Bereich (ca. 2690 bis 3010 m) vorwiegend aus +/- granatführenden Sillimanit-Biotit-Gneisen, im unteren Teil (ca. 3010 3573 m) hauptsächlich aus +/- granatführenden Sillimabis nit-Muskovit-Biotit-Gneisen aufgebaut werden (vgl. KOHL et 1989; MÜLLER et al. 1989). In die Paragneise sind al. an zahlreichen Stellen geringmächtige Lamprophyre eingedrungen. Der unterste Teufenabschnitt (3573 bis Endteufe) besteht aus einer Metabasitserie, die sich vor allem aus Granat-Amphibolit und Metagabbro zusammensetzt (SIGMUND et al. 1990).

Die lithologischen Grenzen der oben aufgeführten Gesteinsabfolge sind häufig "primären", das heißt entweder sedimentären oder metamorphen Ursprungs. An einigen Stellen jedoch erfolgt der lithologische Wechsel entlang spröder Verschiebungszonen, so z.B. am Kontakt von Sillimanit-Biotit-Gneis zu Amphibolit bei 2506 m (Abb. F.1.1).

Die ab 2450 m festgestellte Abnahme der Kataklasezonen (ZULAUF 1989) setzt sich bis 3893 m deutlich fort. Der Volumenanteil an kataklastischem Gestein, dessen Matrixgehalt makroskopisch mehr als 50 % einnimmt (Kataklasit im engeren Sinne; vgl. SIBSON 1977), beläuft sich auf weniger als 1 %, gemittelt auf 50 m Kernstrecke. Oberhalb 2450 m beträgt der Anteil an Kataklasiten (im engeren Sinne) häufig mehr als 1 %. Einen auffällig geringen Anteil an spröder Deformation zeigen die feinkörnigen Metabasite im tiefsten Abschnitt der Bohrung 3600 bis 3900 m). Die Fülle an kinematischen und (ca. mineralogischen Daten (vor allem Harnischlineare und -stufen, Harnischbeläge), wie sie aus den oberen Teufenbereichen bekannt sind, nimmt dementsprechend stark ab. Darüber hinaus sind die vorhandenen Kataklasite in den Metabasiten in der Regel stark verfestigt, so daß es nur selten zum Bohrkernzerfall entlang der spröden Verschiebungsflächen kam und sich diese somit der Beobachtung entziehen.



Abb. F.1.1: Katataklastischer Kontakt von Sillimanit-Biotit-Gneis zu Amphibolit. Kst.-Nr. 612B1b, ca. 2506 m.

## F.2 Ergebnisse der Untersuchungen

F.2.1 Kinematik, Raumlage und Ausbildung der spröden Verschiebungszonen

Ähnlich wie in den oberen Teufenabschnitten nehmen Aufschiebungen den größten Anteil der Verschiebungszonen ein. Als Schersinnindikatoren dienten Stufen auf Harnischflächen (nur mineralisierte Harnische), Versatzrichtung und Schleppung (Foliation, Gänge) sowie Riedel (R1)-Scherflächen. Es konnten so ca. 400 Aufschiebungen nachgewiesen werden, welche etwa 80 % der gesamten spröden Scherzonen ausmachen. Die restlichen 20 % umfassen vornehmlich Abschiebungen. Die Vermutung, daß Abschiebungen mit zunehmender Teufe gänzlich verschwinden (ZULAUF 1989), bestätigte sich somit nicht. Blattverschiebungen konnten nur sehr selten auf foliationsparallelen Verschiebungszonen beobachtet werden.

### F.2.1.1 Aufschiebungen

Makroskopisch lassen sich an den Bohrkernen zwei Generationen von Aufschiebungen unterscheiden. Wie in den oberen Teufenabschnitten sind die ältesten Aufschiebungen in den Gneisen

unter anderem mit Graphit mineralisiert und wesentlich häufiger als die jüngeren graphitfreien Aufschiebungen. Die bereits im mittleren Teufenbereich (bis 2500 m) beobachtete Mächtigkeitsreduzierung der Graphitkataklasite setzt sich bis zur Endteufe fort. Häufig beobachtet man diskrete, weniger als 1 mm breite graphitgeschwärzte Verschiebungsflächen, die in Abständen von 0,5 bis 3 cm folgen (Abb. F.2.1). Nur selten treten dickere, bis zu 2 cm breite Graphitkataklasite in den Gneisen auf (Abb. F.2.2.). Die mittlere Mächtigkeit der graphitreichen Scherzonen beträgt ca. 2 mm, gemittelt auf jeweils 50 m Kernstrecke. Mit der Abnahme der Scherzonenmächtigkeit hat sich auch der Durchmesser der Porphyroklasten in den Graphitkataklasiten erheblich verringert. Die Graphitkataklasite liegen deshalb häufig als Ultrakataklasite vor, deren maximaler Porphyroklastendurchmesser in der Regel weniger als 1 mm beträgt. Die Begrenzungen der graphitreichen Ultrakataklasite zum Nebengestein sind an einigen Stellen deutlich suturiert (z.B. Kernstück 655E1jk, ca. 2730 m), was auf syn- bis postkinematische Drucklösungsprozesse hindeutet.



Abb. F.2.1: Diskrete, für den Untersuchungsabschnitt typische graphitreiche Scherzonen, die +/- parallel zur Foliation verlaufen. Kst.-Nr. 741B1d, ca. 3028 m.



Abb. F.2.2: Relativ breite, für den Untersuchungsabschnitt eher untypische graphitreiche Kataklasezone im Granat-Sillimanit-Biotit-Gneis. Kst.-Nr. 702A1a, ca. 2870 m. Länge des Etiketts: 2 cm.

In den Metabasiten des untersten Teufenabschnitts beobachtet man an einigen Stellen erheblich breitere aufschiebende Scherzonen. Die Porphyroklastendurchmesser betragen hier bis zu 1 cm. Aufgrund des fehlenden Graphitgehaltes kann jedoch nicht entschieden werden, ob es sich hierbei um die ältere oder jüngere Generation von Aufschiebungen handelt. Auffällig ist, daß die breiten Aufschiebungen bevorzugt entlang der Kontaktzonen zu granitoiden Gängen auftreten. Im Gegensatz zu den Gneisen sind konjugierte, meist flache Aufschiebungen in den Metabasiten häufiger zu beobachten (z.B. Kernstück 908G1q, ca. 3704 m).

Die Lamprophyre zeigen lediglich diskrete, wenige mm breite Aufschiebungen, die durch den Versatz von älteren, meist reichlich vorhandenen präkinematischen Gängchen sichtbar werden (Abb. F.2.3). Die Kontakte zum Nebengestein stellten bei den postintrusiven spröden Bewegungen Schwächezonen dar. Sie sind häufig intensiv vergrünt und kataklastisch überprägt (vgl. auch KOHL et al. 1989).

Innerhalb der Paragneise erfolgten die Aufschiebungen häufig entlang der Foliation (Tab. F.1; Abb. F.2.4). Das Umbiegen der Foliation von SW/SSW nach vorwiegend E bei ca. 3050 m hat offensichtlich einen wesentlichen Einfluß auf die Raumlage der Aufschiebungen. Anhand der ersten Rückorientierungsdaten war es möglich, einem geringen Anteil der gemessenen Störungen, Harnischflächen und -lineare die wahre Raumlage zuzuordnen (siehe auch MÜLLER et al. 1989: Abb. B.6.4 u. B.6.5). Im Teufenintervall von 2500 bis 3050 m (Foliation fällt nach SW/SSW) fallen ca. 70 % der Aufschiebungen nach SSW bis WSW. -F6-



Abb. F.2.3: Diskrete flache Aufschiebungen im Lamprophyr versetzen die reichlich vorhandenen, z.T. fiederspaltenartigen Gängchen, die meist aus Calcit bestehen. Kst.-Nr. 732Clf, ca. 2989 m.



Abb. F.2.4: Foliationsparallele Aufschiebungen versetzen präkinematischen Quarz-Feldspat-Gang im fein- bis strafflagigen granatführenden Sillimanit-Biotit-Gneis. Kst.-Nr. 689F1s, ca. 2825 m.

Nur wenige Flächen fallen in die entgegengesetzte Richtung, nach NE. Der größte Teil der Aufschiebungen hat annähernd "dip-slip"-Charakter, das heißt, daß Fläche und Bewegungslinear etwa die selbe Einfallsrichtung besitzen und somit keine nennenswerte Schrägverschiebungskomponente vorliegt.

Zwischen 3050 und 3700 m fällt der größte Anteil der Aufschiebungen nach ENE bis ESE. Die Bewegungslineare dieser Flächen fallen zum einen nach NE (meist Schrägverschiebungen), zum anderen nach E. Lediglich ein geringer Anteil der Flächen fällt nach N bzw. S (SSW). Die hierzu gehörigen Bewegungslineare zeigen N-S gerichtete aufschiebende Bewegungen an.

In phyllosilikatreichen Gneisen gehen die Aufschiebungen häufig in Knickzonen und Falten über (Abb. F.2.5). Die Achsen der Falten und Knickzonen weisen in solchen Fällen häufig das selbe Streichen wie die Aufschiebungen auf.



Abb. F.2.5: Übergang von Faltenstrukturen in diskrete Aufschiebungen im Granat-Sillimanit-Muskovit-Biotit-Gneis. Kst.-Nr. 751E3g, ca. 3067 m Nachdem abschiebende Bewegunszonen ab 1610 m nur noch gelegentlich beobachtet wurden (ZULAUF 1989), treten sie ab 3150 m wieder verstärkt auf (vgl. Tab. F.2.1). Es handelt sich meist um nach E einfallende Verschiebungsflächen, welche die älteren Aufschiebungen versetzen (Abb. F.2.6).



Abb. F.2.6: Eine flach liegende, graphitreiche Kataklasezone wird entlang jüngerer Abschiebungen versetzt. Man beachte die Schleppungsstrukturen entlang der Abschiebungen. Kst.-Nr. 769F3t, ca. 3150 m.

rückorientierten Meßwerte ergeben überwiegend Die wenigen einen nach NE bzw. E gerichteten Bewegungsvektor. Die abschiebenden Bewegungen sind häufig entlang der Foliation sowie entlang diskreter, wenige mm breiter Klataklasezonen erfolgt, deren meßbarer Versatz mindestens 7 cm beträgt F.2.6). Selten treten diese als steile konjugierte (Abb. Systeme auf, wie z.B. im Kernstück 813E1pk (ca. 3341 m). Neben den diskreten Abschiebungen können an einigen Stellen jedoch breite, bis zu mehrere cm mächtige Abschiebungen beobachtet werden. Im Gegensatz zu den älteren Aufschiebungen sind sie stark entfestigt (Abb. F.2.7). Das mehr oder weniger intakte Nebengestein ist häufig mit bis zu 2 mm breiten F.2.7). subvertikalen Gängchen durchsetzt (Abb. Die auffälligste dieser Abschiebungen wurde zwischen 3195 und

3200 m im Kernmarsch 782 A beobachtet (siehe auch MÜLLER et al. 1989: Abb. B.5.8). Es handelt sich hierbei um eine 30 cm breite Störung, die sehr steil (mit 75°) nach E einfällt und stark entfestigt ist. Die Porphyroklasten sind bis zu 1 cm groβ. Obwohl Versatz- oder Schleppungsstrukturen sowie Harnische mit Stufen als kinematische Indikatoren fehlen, sowie Bewegung es Indizien, die auf eine abschiebende gibt hinweisen. Zum einen fällt die Verschiebungsfläche – genau wie die zugehörigen Bewegungslineare - sehr steil ein, was eher bei Abschiebungen als bei Aufschiebungen zu erwarten ist (z.B. PRICE 1981: 58). Zum anderen treten im mehr oder weniger intakten Nebengestein diskrete Scherflächen vom Typus Riedel (R1-Flächen, vgl. z.B. RUTTER et al. 1986) auf, die einen abschiebenden Schersinn anzeigen (vgl. auch MÜLLER et al. 1989).



Abb. F.2.7: Abschiebende, stark entfestigte Kataklasezone im Sillimanit-Muskovit-Biotit-Gneis. Subvertikale, fiedrig angeordnete präkinematische Gängchen sind, wie die Scherzonen, mit Laumontit mineralisiert. Kst.-Nr. 873E1p, ca. 3567 m.

#### F.2.2 Mineralisation auf den Verschiebungsflächen

Aus Tab. F.1 kann man entnehmen, daß Chlorit das weitaus häufigste, auf den kataklastischen Scherflächen neugebildete Mineral darstellt. Mit Ausnahme einiger epidot- und prehnit-

Tab. F.2.1: Teufenabhängiges Auftreten von Abschiebungen (ABS), Aufschiebungen (AUF), foliationsprarallelen Verschiebungen (// FOL) und der Harnischmineralisation. Ausgefüllte Kreise = durch RDA nachgewiesene Minerale. Vereinfachtes lithologisches Profil nach KOHL et al. (1989), MÜLLER et al. (1989) und SIGMUND et al. (1990). Die Abkürzungen der Mineralnamen entsprechen den Vorschriften aus GRAUP et al. (1988).

Harnischminerale													
		ABS	AUF	FOL	QRZ	CHL	CAL	LAU	PRH	EPD	PYR	CCC	sonstige
2500-													
	$\wedge \sim \wedge$					0							
	$\land \land \land \land$		0			0							
	$\wedge \sim \wedge$		0										
	$\sim \wedge \sim$				•								
	$\wedge \sim \wedge$		0			0	0						
	$\wedge \sim \wedge$		•	•	•	0				0	0	0	KFS, PLG
	$\sim \Lambda \sim$		0	•		0	0				ŏ	0	
	$\wedge \sim \wedge$		00			8	0	0		•			KFS, ZNS
	x ^~		0			0							N S
	$\land \sim \land$					000							
	~^~		0			0	0						
	$^{\wedge} \sim ^{\wedge}$					0						00	
	$\sim \sim$		0			0					o		
	$\wedge \sim \wedge$		•								0	0	
		0	0			00		00				0	
2600-	$\sim \sim$		0		•	•		•				0	PLG,HGL
	$\sim$ ,					0						0	
	$\sim \sim$					0						0	
	$\sim \Lambda \sim$					000						0	
	~		۰	•		00						0	
	~ ~	•				00		0				8	
	$^{\wedge} \sim ^{\wedge}$					-							
	$\sim \Lambda \sim$												
	$  \wedge \sim \wedge  $												
	$\land \land \land \land$												
													145
	$\sim \wedge \sim$												
	$\wedge \sim \wedge$												
	$\sim$ $\sim$						-						
	$\wedge \sim \wedge$		•				0						
	~~~					0	0						
2700-	LAM		0	•		80					0	0	
	$\sim \sim \sim$		0	0		8						0	
	$^{\wedge} \sim ^{\wedge}$		•			0							
	$\sim \sim$					0							
	\sim		•	•									KES PLG
	$\sim \sim$		8			8		0				8	
	\sim		0	۰		000		0			0	0	
12102000	LAM				•			•			•	0	FLO, NFS, HOL
2750 -	\sim	1. S						0	e				

- F 10 -

.

- F 11 -

								Har	niscl	hmin	erale			
			ABS	AUF	FOL	QRZ	CHL	CAL	LAU	PRH	EPD	PYR	000	sonstige
2000-														
3000	\sim			8	•	0	8						0	PLAKES HAL
	\sim			8	ě	•	8						0	-LO, NI 5, HOL
	$\sim \sim$		0	0	0		8					0	000	HGL
	\sim			8	۰		0					0	00	HGL
	$\sim \sim$			0			0					0	00	
		LAM					0							
	$\sim \sim$					0	ŏ						8	HGL
	\sim			•		•			0			0	00	HGL
	$\sim \sim$			8		•	8		0			0	000	HGL, PLG
	\sim			0			0					0	0	
	~ ~			0			0						0	ЧСІ
							0						0	HUL
	\sim						0	0					0	
	$\sim \sim$			•	•		ŏ						ŏ	HGL GNT
	~			ě			0						õ	100,000
	$\sim \sim$			0			8					0	00	
	~				•		00						00	
	~ ~			•			0					0	0	
3100-	\sim		•		•		8	0				0	00	HGL, PLG
	\sim \sim			0		0	0							
	\sim						õ						0	
	$\sim \sim$						0							
	\sim			ě			00					0	0	
	$\sim \sim$						0					0	0	
	~			•			ŏ						ŏ	
	$\sim \sim$						0					0	0	
	\sim			0			000							
	$\sim \sim$			ŏ		۰	ě	•					0	HGL, PLG
	\sim			8		•	0		õ					PLG
	$\sim \sim$		•	0		1.00	0	0	0		0		0	
	\sim			0			00	0	0				0	
	$\sim \sim$		•	0	۰		00	0					00	
	\sim			0			000	0				8	0	
	$\sim \sim$			ŏ	ě		00						00	
	~			8			8	•					ŏ	HGL
							000	0	ŏ				0	
2200-	$\sim \sim$			8			00		8			0	00	
3200	\sim	-1.414		2			8						0	-
	$\sim \sim$	LAM		ŏ			00		8				00	
	\sim						0		0			0	0	
	~ ~			•			0		0			0	0	HGL
	~			•	•		00	0	0			0	0	
	$\sim \sim$	LAN		0			0	0					0	
	\sim		•	•			0		0				0	
	$\sim \sim$		0				8		0				0	
2250	\sim			0			0						0	HGL.KES
3250-						-								

- F 12 -

			1			1		Har	niscl	hmin	erale	2		
		_	ABS	AUF	FOL	QRZ	CHL	CAL	LAU	PRH	EPD	PYR	CCC	sonstige
3250-		т —												KFS HGL
	~~~		0	0			0		00			0		
				0	0		0							HGL
	$\sim$		0	0		0	0		0					
	$\sim \sim$			0			000					0		
	$\sim$			0	0		00					0	0	HGI
	~ ~			0	0		00							
	$\sim$			00	8		000							HGL
3300-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0	0	0	× ×					0	0	HGL, PLG
	$\sim \sim$		•	00	0		8						0	
	~			0			0						0	KES HOL
	$\sim \sim$		ľ	0	•	•	0					0		KFS, HOL
	~			0	0	0	0							KFS, HGL
	~	× .	0	0	ě		00	00					00	HGL
	~	LAM	•	0			000	0				0	0	
	~~~		0	•			000	0					0	HGL
	$\sim \sim$		0	0			000					0	0	
	~			000	0	•	000		ř.				000	KFS, HGL
	~ ~			0		•	0						0	KFS, HGL
	~		•	0	0		0					0	0	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			000			000	0				0	000	
	~ ~		0	•			00						000	
	$\sim$	*	•			0	0	0						
3400-	$\sim \sim$		•				0	0					0	
	$\sim \sim$				۰	0 ●	0					0		KFS, HGL, PLG
	$\sim$			•			0					0		1000
	~ ~						0	0				0	0	
	$\sim$		0			0	0			•		0	0	KFS, PLG
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		۰	000			000	ŏ					00	
	$\sim \sim$		•	000			000						0000	
	~		0	8		0	0000	8				0	000	
	$\sim \sim$		0				ŏ					0	0	
	\sim			0		0	000					0	000	HGL
	~ ~		0	0		0	000	0				0	0	HGL
	~			•			Ó	0					0	
	~			0	0		000	0				0		
	$\sim \sim$			•	٥		0	0						
	\sim		•	•	•	0	00							

- F 13 -

3500

								Har	nisc	hmin	erale	2		
		1	ABS	AUF	FOL	QRZ	CHL	CAL	LAU	PRH	EPD	PYR	CCC	sonstige
3500-	2 2 2		0	0000		• •	000	0				0	o	HGL, KFS KFS, HGL
	2 2 2 2 2 2			•	0		00	00						
	2 2 2		•	0000		۰	000 • 000	0000	•			0	o	HGL
	۲ کر ۲		•	0 0 0 0		•	0000000	•	•			0	0000	FES
	2 2 2		•	0 0 0			000	0	0				0	
			•	0000			000 000		0			0		KFS,PGL, GNT
3600-				• • •		0	0 0 0	•		0		o		AMF
			0 0 0	0 000		0 0	0 0 0 0 0 0 0		000					
	$\frac{\Lambda}{\Lambda}$			0		0	0	0		0		0		
			0 0	0 0 0		00	0 000	0	0			0		
		1					0000		0			0		FES
3700 —			0	00000		0	000 0 000	0		•	•			AMF
			0	00		•	0 0 0 000	0		•		0		KFS, PLG
				0 0			0 0			0	•	0 0		PLG
3750-						0	0 0							

- F 15 -

reicher Kataklasezonen in den Metabasiten und hornblendeführenden Gneisen findet man Chlorit auf fast allen spröden Verschiebungsflächen. Eine auffällig starke Anreicherung beobachtet man zwischen 3635 und 3670 m entlang von jungen steilen Abschiebungen im Granatamphibolit. Hier kam es zur Bildung von bis zu 2 cm langen "pull-apart"-artigen Mineralisationen (Abb. F.2.8), die nach röntendiffraktometrischen Analysen ausschließlich aus Chlorit bestehen. Ob es sich hierbei um durch "crack-seal" entstandene Strukturen (shear fibre veins, vgl. RAMSAY & HUBER 1983: Abb. 13.32) handelt, müssen Dünnschliffuntersuchungen zeigen. In der bei 3199,4 m vorliegenden auffällig breiten Abschiebung besteht ein 0,5 cm breiter Ultrakataklasit aus 50-60% Chlorit (MÜLLER et al. 1989).

Abb. F.2.8: Junge Abschiebung mit einer "pull-apart"-artigen Mineralisation aus monomineralischem Chlorit (C, linke untere Bildecke). Kernstück 889G1qk, ca. 3639 m.

Insbesondere in den Paragneisen findet man neben Chlorit gehäuft **Graphit**, zu dem sich in der Regel auch **Pyrit** gesellt. Graphitmineralisation ist jedoch auf die ältesten, nach SSW bis WSW bzw. ENE bis ESE fallenden Aufschiebungen beschränkt. Hierbei läßt sich an einigen Stellen beobachten, daß sehr feinkörniges graphitreiches Matrixmaterial von den Scherzonen aus in Risse des mehr oder weniger intakten Nebengesteins eingedrungen ist. Daneben stellt man häufig eine schwache Dunkelfärbung des Nebengesteins an Kontakten zu den graphitreichen Kataklasiten fest, die auf eine diffuse Einwanderung des Graphits (bzw. des Kohlenstoff führenden Mediums) in das Nebengestein schließen läßt.

Wie in den oberen Teufenabschnitten werden hinsichtlich der Harnischmineralisation 70 bis 100 m mächtige graphitreiche durch bis zu ca. 30 m breite graphitarme Paragneispartien getrennt. Zudem tritt Graphit auf den Verschiebungsflächen der Paragneise mit zunehmender Annäherung an den bei 3573 m beginnenden Metabasitkomplex auffällig zurück. Eine ähnlich starke Verminderung des Graphitgehaltes wurde bereits auf den Harnischflächen der Paragneise zwischen 1620 und 1730 m – ebenfalls im Kontaktbereich zum hangenden Metabasitkomplex – festgestellt (ZULAUF 1989: Tab. E.2.1). Selteneres Auftreten von Graphit beobachtet man auch in den ältesten aufschiebenden Kataklasezonen der hornblendeführenden Gneise.

Vollständig frei von Graphit sind die Harnischflächen der Metabasite (Amphibolite und Metagabbros) und der eingeschalteten Lamprophyre. Pyrit findet man jedoch in fast gleicher Intensität als Harnischmineral in den Metabasiten, wobei idiomorphe, meist wenige mm große würfelige Aggregate keine Seltenheit sind.

Quarz tritt sowohl auf den Verschiebungsflächen der Paragneise als auch auf den Harnischen der Metabasite auf. Es kann davon ausgegangen werden, daß Quarz in Tab. F.2.1 im Gegensatz zu den restlichen Mineralen unterrepräsentiert ist, da die makroskopische Ansprache häufig schwierig ist. In den Metabasiten kommt Quarz nur im obersten Abschnitt vor.

auf den Verschiebungsflächen der Paragneise Ein häufig vorkommendes Mineral ist Hellglimmer, der vor allem durch röntgendiffraktometrische Analysen nachgewiesen wurde. Da die Paragneise zum Teil primären Muskovit führen (MÜLLER et al. 1989), kann nicht ausgeschlossen werden, daß sich bei den Phyllosilikaten auf den Verschiebungsflächen diese primären Muskovite neben neugebildeten Hellglimmern beteiligen. Eine Unterscheidung zwischen beiden wird erst exakte durch Dünnschliffuntersuchungen möglich sein.

In den Paragneisen kommt Hellglimmer häufig zusammen mit Kalifeldspat und/oder Plagioklas vor. Diese beiden Feldspäte wurden darüber hinaus auf den Verschiebungsflächen der Metabasite nachgewiesen.

Calcit ist als Harnischmineral in den Paragneisen zwischen ca. 3150 und 3570 m sowie in den Lamprophyren zu beobachten. In den darüber liegenden Paragneisen (2500 bis 3150 m) sowie in den darunter folgenden Metabasiten kommt Calcit nur sehr untergeordnet vor. Zum Teil beobachtet man ihn in hypidiomorpher bis idiomorpher Ausbildung als postkinematisch gebildetes Mineral auf den Verschiebungsflächen.

In meist idiomorpher Form findet man auch Laumontit, der sowohl in den Gneisen als auch in den Metabasiten vorkommt. Zwischen 3150 und 3300 m tritt er in den Paragneisen gehäuft Ab 3690 m wurde auf den Scherzonen kein Laumontit auf. mehr beobachtet. Gleichzeitig stellt man ein gehäuftes Auftreten von Prehnit und Epidot fest, welche zwischen 2500 und 3700 m in den Gneisen nur gelegentlich beobachtet wurden. Beide Minerale sind vor allem entlang kataklastisch überprägter Grenzflächen von granitoiden Einschaltungen zum Nebengestein beobachten. Eine mit Epidot "durchtränkte", ca. 10 cm 211 breite Kataklasezone liegt bei ca. 3873 m vor (Kernstücke 953 und 953 A2b). Prehnit wurde an wenigen Stellen auch als A2a idiomorphe, postkinematische Bildung auf den Bewegungsflächen beobachtet (z.B. Kernstück 619 D1fk, ca. 2548 m).

Sphalerit, der bereits bei 1940 m auf den Verschiebungsflächen nachgewiesen wurde, kommt bei 2550 m zusammen mit Prehnit und Kalifeldspat im Hornblende-Biotit-Gneis vor. Man findet Sphalerit des weiteren auf den Harnischen der Metabasite bei 3810 m, zusammen mit Epidot und Calcit. Pyrrhotin wurde bei 3560 m neben Chlorit, Quarz, Calcit und Laumontit nachgewiesen.

Bei den an wenigen Stellen durch röntgendiffraktometrische Analysen nachgewiesenen Mineralen Granat und Amphibol handelt es sich vermutlich nicht um neugebildete Minerale, sondern um primäre, in die Scherzone eingearbeitete Minerale des Nebengesteins. Ob es sich bei den Amphibolen eventuell um neugebildeten Aktinolith handelt, müssen die weiteren Untersuchungen zeigen.

F.2.3 Extensionsrisse

Im untersuchten Teufenabschnitt lassen sich mehrere Generationen von Extensionsrissen unterscheiden. Je nach Lithologie und Altersstellung weisen diese unterschiedliche Mineralisationen auf.

Wie in den oberen Teufenbereichen lassen sich als älteste bruchhafte Bildungen **subvertikale Extensionsrisse** nachweisen (vgl. ZULAUF & KOHL 1989; ZULAUF 1989). Diese haben sich am häufigsten in den Metabasiten gebildet und sind hier, wie im Metabasitkomplex zwischen 1152 und 1610 m, mit Prehnit und Epidot mineralisiert. Im Kernstück 928B1f (ca. 3807 m) konnte zudem Klinozoisit durch röntgendiffraktometrische Analyse innerhalb der steilen Gänge nachgewiesen werden.

In den hornblendeführenden Gneisen sind die subvertikalen Extensionsrisse häufig mit Epidot (am Rand) und Calcit (in Gangmitte) verfüllt. Die Gänge werden an zahlreichen Stellen entlang aufschiebender, z.T. graphitreicher Störungszonen versetzt (z.B. Kernstück 619G11; vgl. auch Abb. F.2.9). Im Kernstück 622B1h (ca. 2564 m) konnte neben Epidot und Calcit zusätzlich Flußspat in einem präkataklastischen steilen Gang

röntgenographisch nachgewiesen werden.

Abb. F.2.9: Der mit Epidot und Calcit mineralisierte, fast vertikal verlaufende Gang, wird zusammen mit den mittelsteil einfallenden schmäleren Gängchen entlang einer flachen Aufschiebung versetzt. Kst.-Nr. 620F1m, ca. 2555 m.

Innerhalb der in die Paragneise eingeschalteten geringmächtigen Granatamphibolite und Hornblendegneise wurde in den steilen Gängen Quarz, Epidot, Calcit und Prehnit vorgefunden (z.B. Kernstück 770E1ad; ca. 3156 m).

In den Paragneisen selbst treten die subvertikalen Gangbildungen wesentlich seltener auf als in den Metabasiten und hornblendeführenden Gneisen. Sie sind in der Regel mit Feldspat und Quarz verfüllt, wobei an mehreren Stellen Mikroklin durch röntgendiffraktometrische Analysen nachgewiesen werden konnte. Ein typischer Gang dieser Art befindet sich im Kernstück 821E3p (ca. 3366 m) im Paragneis. Er besteht aus 70 % Quarz, 25 % Mikroklin und 5 % Calcit und wird entlang foliationsparalleler Aufschiebungen versetzt.

Die jüngeren, **subhorizontalen Extensionsrisse** sind in der Regel postkinematisch in bezug zur ältesten aufschiebenden Graphitkataklase. So beobachtet man vielfach weniger als 1 mm breite subhorizontale Gängchen, welche die Graphitkataklasite durchschlagen (z.B. Abb. F.2.10). Diese Gängchen sind meist mit Quarz, Feldspat, Chlorit oder Calcit mineralisiert.

Abb. F.2.10: Eine relativ steile, graphitführende Kataklasezone wird von subhorizontalen Gängchen durchsetzt. Kst.-Nr. 823Fluk, ca. 3375 m.

Die Graphitkataklasite müssen bei der Bildung der Gänge bereits intensiv verfestigt gewesen sein, da sie sonst nicht in dieser Weise durch spröden Bruch reagiert hätten. In den Metabasiten kann man das jüngere Alter der subhorizontalen Gängchen daran ablesen, daß sie die älteren subvertikalen Gängchen durchschlagen und z.T. auch um geringe Beträge versetzen (Abb. F.2.11). Im Gegensatz zu den flachen Gängen der oberen Metabasitfolge (1152 bis 1610 m), welche vornehmlich mit Laumontit mineralisiert sind, treten hier meist Prehnit und Epidot als Gangfüllung auf.

Die jüngsten Gangbildungen, die sowohl in steiler als auch flacher Raumlage vorliegen, zeichnen sich durch starke Entfestigung aus. Im Gegensatz zu den älteren Gängen fungieren sie deshalb als Sollbruchstellen. Oft findet man sie als bis zu 1 mm breite Gängchen, die als postkinematische Bildungen auch in fiedriger Ausbildung in kataklastisch vorgeprägten Regionen vorkommen können. Die Mineralisation dieser jungen Extensionsrisse ist ebenfalls vom Nebengestein abhängig. In den Metabasiten findet man häufig Laumontit in idiomorpher meist nadeliger Form. In den Paragneisen beobachtet man neben Laumontit häufig Calcit neben Quarz, Feldspat, Chlorit und Hellglimmer (siehe auch MÜLLER et al. 1989: Tab. B.4.2). Offene Klüfte in den Gneisen sind mit Calcit und Tonmineralen (Kaolinit, Smectit) mineralisiert (vgl. MÜLLER et al. 1989). In den Metabasiten findet man auf offenen Klüften Epidot und Prehnit.

Abb. F.2.11: Eine ältere, subvertikal verlaufende Gangschar wird von einer jüngeren, subhorizontal verlaufenden Gangschar durchschlagen. Die älteren Gängchen bestehen aus Prehnit. Die jüngeren, meist breiteren Gängchen sind mit Epidot neben wenig Prehnit und Klinozoisit mineralisiert. Kst.-Nr. 928B1f, ca. 3806 m. Länge des Etiketts = 2 cm.

F.2.4 Altersabfolge der bruchhaften Gefüge

Der bisher dargelegte, aus Untersuchungen bis 2500 m abgeleitete spröde Deformationspfad (vgl. ZULAUF 1989) wird durch die Untersuchungen bis 3893 m weitgehend bestätigt. Ab ca. 3050 m jedoch tritt zu den bisher vorgefundenen Aufschiebungen (bisher 2 Generationen) eine dritte älteste hinzu. Der Deformationspfad ist in Abb. F.2.12 dargestellt. Er läßt

- Spätvariszische Bildung von subvertikalen Extensionsrissen während metamorpher Bedingungen der Prehnit-Aktinolith-Fazies (vgl. LIOU et al. 1987).
- Erste spätvariszische aufschiebende Kataklase unter E-W-Einengung und metamorphen Bedingungen der Prehnit-Aktinolith-Fazies (nur unterhalb ca. 3050 m nachweisbar). Bildung von graphitreichen Kataklasiten
- Zweite spätvariszische aufschiebende Kataklase unter NE-SW-Einengung und metamorphen Bedingungen der Prehnit-Aktinolith-Fazies. Bildung von graphitreichen Kataklasiten.
- 4) Dritte postvariszische (? kreidezeitliche) aufschiebende Kataklase unter N-S-Einengung und metamorphen Bedingungen der Zeolith-Fazies (vgl. LIOU et al. 1987). Im untersten Teufenbereich findet vermutlich Übergang zur Prehnit-Aktinolith-Fazies statt. Bildung von subhorizontalen Extensionsrissen.
- 5) Bildung von (? kreidezeitlichen) Blattverschiebungen unter N-S bis NW-SE-Einengung und metamorphen Bedingungen der Zeolith-Fazies.
- 6) Bildung von Abschiebungen unter N-S und NE-SW-Extension im oberen Teufenbereich und E-W-Extension im tieferen Teufenbereich (Zeolith-Fazies).
- 7) Junge Kluftbildungen während jüngster schneller Heraushebung.

Argumente für das spätvariszische Alter der präkinematischen subvertikalen Extensionsrisse (1) und der Graphitkataklase (2) und (3) sind bereits dargelegt worden (ZULAUF 1989).

Für den älteren Teil der spröden Verformungsgeschichte läßt sich eine Drehung der größten kompressiven Hauptnormalspannung (o1) entgegen dem Uhrzeigersinn verfolgen. Diese Drehung von den ältesten Aufschiebungen bis zu den Blattverreicht schiebungen. Den ältesten, nur im tiefsten Teil der Bohrung vorhandenen Aufschiebungen (E-W-Einengung) folgen Aufschiemit NE-SW-Einengung. Man kann dies anhand bungen von sich überschneidenden Harnischlinearen in vielen Fällen feststel-Auf den im tieferen Teil der Bohrung nach E len. fallenden werden "dip-slip"-Lineare Verschiebungsflächen (E-W-Kompression) von Schrägverschiebungslinearen (NE-SW-Einengung) überprägt. Andererseits werden die bis 3050 m vorkommenden, fallenden Harnischflächen mit "dip-slip"meist nach SW (NE-SW-Eingengung) von Schrägverschiebungslinearen Linearen (N-S-Einengung) überprägt.

Unter anhaltender N-S-Einengung wurde dann die kleinste gegen die mittlere Hauptnormalspannung vertauscht (o3 <--> o2), so daß es zur Bildung von Blattverschiebungen kommen konnte. Die Blattverschiebungen sind im Umfeld der KTB-Lokation wesentlich häufiger als in der Vorbohrung. Man findet sie in Gesteinen der Erbendorfer Grünschieferzone, in der ZEV und im Falkenberger Granit. Sie sind ebenfalls polyphas und vermitteln zwischen den älteren Aufschiebungen und den jüngeren Abschiebungen (siehe hierzu MANDL 1988: 16). Daß die Blattverschiebungen sowie ein Teil der Abschiebungen offensichtlich noch vor dem Tertiär entstanden sind, wurde bereits diskutiert (ZULAUF 1989).

Abb. F.2.12: Beziehungen zwischen den spröden Deformationsphasen und den zugehörigen metamorphen Bedingungen. Stabilitätsfeld von Laumontit nach LIOU et al. (1987). Die Pfeile im oberen Bildteil geben bei den Auf- und Blattverschiebungen die Richtung der größten, bei den Abschiebungen die Richtung der kleinsten Hauptnormalspannung an.

F.3 Schlußfolgerung und Aussichten

Durch die kontinuierliche Erfassung der die kataklastischen Scherzonen betreffenden Daten (Raumlage von Verschiebungsflächen und -linearen, Schersinnindikatoren, Mineralisation) ist es möglich geworden, das Grundgerüst für die Rekonstruktion des sehr komplexen polyphasen spröden Deformationspfades zu erarbeiten. Die vollständige Rekonstruktion wird erst nach Abschluß der Dünnschliffuntersuchungen möglich sein.

Unter Zuhilfenahme der sehr zuverlässig erscheinenden Kernorientierungsdaten ist es möglich, die einzelnen Störungsflächen bestimmten Populationen zuzuordnen, welche ein jeweils anderes Spannungsfeld reflektieren. Sich hieraus

ergebende grundsätzliche Trends bezüglich der Lage der Paläospannungstensoren wurden bereits dargelegt. Die Darstellung einzelnen erfolgt nach Abschluß der Arbeiten im (weitestgehend vollständige Rückorientierung und numerische Paläospannungsanlyse). Für die Frage, ob unweit unterhalb der Endteufe (4000 m) die prognostizierte Grenze von ZEV zur Erbendorfer Grünschieferzone folgt (potentielles master décollement), könnten die ab 3050 m erstmals erscheinenden Aufschiebungen mit E-W-Einengung relevant sein. In der näheren Umgebung von größeren Störungen findet im allgemeinen eine merkliche Rotation der Hauptnormalspannungen statt. So beobachtet man beispielsweise im Umfeld der San Andreas Störung eine Drehung der horizontalen Spannungsrichtungen um 50 bis 60° (vgl. ZOBACK et al. 1989). In diesem Zusammenhang muβ auβerdem auf einen in Erbendorf (Araltankstelle) gelege-Bauaufschluß hingewiesen werden, wo Ultrabasite nen (u.a. Talk-Chlorit-Schiefer) der Erbendorfer Grünschieferzone unter ESE-WNW-Einengung auf Gneise der ZEV aufgeschoben werden. In den übrigen Aufschlüssen der ZEV, der Erbendorfer Grünschie-Τn ferzone sowie im Falkenberger Granit wurden hingegen nirgendwo Harnische und Störungen vorgefunden, die mit E-W bzw. ESE-WNW-Einengungen in Zusammenhang stehen.

Neben der durch röntgendiffraktometrische Analysen unterstützten makroskopischen Ansprache der Harnischund Störungsmineralisation werden Dünnschliffuntersuchungen zur Identifizierung der Art der Mineralisation in bezug zum jeweiligen Deformationsstadium (prä-, syn- und postkinemaherangezogen. Die Dünnschliffuntersuchungen sind tisch) bis zur Teufe von 3000 m fortgeschritten. Sie sind weiterhin für die Aussage wichtig, ob die Art der Verformung bezüglich der Graphitkataklase im tieferen Teil der KTB-Vorbohrung vom spröden in den spröd/duktilen Übergangsbereich wechselt. Die starke Reduktion der Scherzonenmächtigkeit (nur Graphitkataklasite) weist zusammen mit der im Dünnschliff Z.T. beobachteten beginnenden Quarzrekristallisation auf zunehmenkontrollierte Rißausbreitung neben gesteigerter kristallde plastischer Deformation hin. Dünnschliffuntersuchungen müssen zudem die zwischen 3600 m und 3700 m vorliegende potentielle Übergangszone Zeolith-Fazies/Prehnit-Aktinolith-Fazies näher beleuchten. Offensichtlich betrifft dieser Wechsel die graphitfreien Aufschiebungen, jüngeren die unter N-S-Einengung entstanden sind.

Eine bis zur Endteufe der KTB-Vorbohrung verfolgbare Erscheinung ist das Fehlen von Graphit in den Scherzonen der Metabasite, obwohl die zur Graphitkataklase gehörenden Störungen auch in den Metabasiten vorhanden sind.

Die Untersuchungen haben ergeben, daß sich fast alle Deformationsstadien vom Beginn des Bohrloches bis zur Endteufe verfolgen lassen. Zudem hat sich gezeigt, daß mit zunehmender Teufe hinsichtlich der spröden Deformation viele Veränderungen auftreten. Mit der Hauptbohrung wird die Möglichkeit gegeben sein, diese Veränderungen mit fortgesetzter Teufe weiter zu verfolgen, zumal die Hauptbohrung die in der nördlichen Oberpfalz reichlich vorhanden Störungssysteme sicherlich nicht unberührt lassen wird. Die wichtigsten Fragestellungen an die Hauptbohrung bezüglich der Kataklase und spröden Verformung sind:

- Lassen sich die ab 3050 m erstmals auftretenden Aufschiebungen mit E-W-Einengung tatsächlich auf eine in fortgesetzter Teufe vorhandene Mega-Scherzone zurückführen?
- 2) Verschwindet Laumontit gänzlich auf den Scherzonen, was den angenommenen Übergang von der Zeolith-Fazies zur Prehnit-Aktinolith-Fazies (in bezug zur jüngeren aufschiebenden Deformationsphase) unterstützen würde.
- 3) Was passiert mit den graphitreichen Kataklasezonen in gröβerer Tiefe? Ein Übergang zu Myloniten ist aufgrund der gesteigerten Kristallplastizität von Quarz in der Hauptbohrung zu erwarten.
- 4) Trifft man in der Hauptbohrung auf einen Graphitlieferanten?

F.4 Schriftenverzeichnis

- GRAUP, G., HACKER, W., KEYSSNER, S., MASSALSKY, T., MÜLLER, H., RÖHR, C. & UHLIG, S. (1988): KTB Oberpfalz VB - Erste Ergebnisse der geologischen Aufnahme bis 480 m. - KTB Report, 88-1: B1-B104; Hannover.
- KOHL, J., HACKER, W., KEYSSNER, S., MÜLLER, H., RÖHR, C., SIGMUND, J., STROH, A. & TAPFER, M. (1989): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor, Teufenbereich von 2500 bis 3009.7 m: B. Geologie. - KTB Report 89-4: B1-B106, 78 Abb.; Hannover.
- LIOU, J.G., MARUYAMA, S. & CHO, M. (1987): Very low-grade metamorphism of volcanic and volcaniclastic rocks mineral assemblages and mineral facies. - in: FREY, M. (ed.): Low temperature metamorphism. - 351 S.; New York (Chapman & Hall).
- MANDL, G. (1988): Mechanics of tectonic faulting, models and basic concepts. 407 S. (Elsevier).
- MÜLLER, H., HACKER, W., KEYSSNER, S., RÖHR, C., SIGMUND, J., KOHL, J., STROH, A. & TAPFER, M. (1989): Tiefbohrung KTB Oberpfalz VB 1a, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 3009,7 bis 3500 m. - KTB Report 89-5: B1 - B94; Hannover.
- PRICE, N. J. (1981): Fault and joint-development in brittle and semi-brittle rock. - 176 S.; New York (Pergamon Press).
- RAMSAY, J.G. & HUBER, M.I. (1983): The techniques of modern structural geology, volume 1: strain analysis. - 307 S.; London (Academic Press).
- RUTTER, E.H., MADDOCK, R.H., HALL, S.H. & WHITE, S.H. (1986): Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. - Pure and Applied Geophysics, **124**: 3-30.

SIBSON, R.H. (1977): Fault rocks and fault mechanisms. - J. geol. Soc. London, 133: 191-213.

- SIGMUND, J., KOHL, J., MÜLLER, H., HACKER, W., KEYSSNER, S., RÖHR, C., STROH, A. & TAPFER, M. (1990): Tiefbohrung KTB Oberpfalz VB 1a, VB 1b, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 3500 bis 4000,1 m. - KTB Report (dieser Band).
- ZOBACK, M.L., ZOBACK, M.D., ADAMS, J., ASSUMPCAO, M., BELL, S., BERGMAN, E.A., BLÜMLING, P., BRERETON, N.R., DING, J., FUCHS, K., GAY, N., GREGERSEN, S., GUPTA, H.K., GVISHIANI, A., JACOB, K., KLEIN, R., KNOLL, P., MAGEE, M., MERCIER, J.L., MÜLLER, B.C., PAQUIN, C., RAJENDRAN, K., STEPHANSSON, O., SUAREZ, G., SUTER, M., UDIAS, A., XU, Z.H. & ZHIZHIN, M. (1989): Global patterns of tectonic stress. - Nature, 341: 291-298.
- ZULAUF, G. (1989): Tiefbohrung KTB-Oberpfalz VB, Bruchtektonik im Teufenbereich von 1530 bis 2500 m: E. Ergänzende Untersuchungen. - KTB Report, 89-4: E1-E22, 11 Abb.; Hannover.
- ZULAUF, G. & KOHL, J. (1989): Tiefbohrung KTB-Oberpfalz VB, Bruchtektonik im Teufenbereich von 1177 bis 1530 m. - KTB Report, 89-2: E1-E14; Hannover.

F.5 Danksagung

Ich danke der Arbeitsgruppe Geochemie im KTB-Feldlabor für die röntgendiffraktometrische Bestimmung der Harnischminerale Ein Teil der Messdaten aus dem Teufenbereich von 3000 bis 3893 m wurde mir von der Arbeitsgruppe Geologie/Petrologie im KTB-Feldlabor überlassen, wofür ich mich ebenfalls herzlich bedanke.

Der Deutschen Forschungsgemeinschaft danke ich für die finanzielle Unterstützung (A.Z.: Kl 429/7-2).

G. Kernorientierung in der KTB-VB – aktueller Stand –

KTB Oberpfalz VB1a Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor

> J. Kohl D. Schmitz C. Röhr

KTB-Report 9	0-2 G1	- G5 2	Tab.	Hannover	1990
--------------	--------	--------	------	----------	------

Tiefbohrung KTB-Oberpfalz VB1a, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor

G. Kernorientierung in der KTB-VB - aktueller Stand

J. Kohl*, D. Schmitz** und C. Röhr*

Von 576.80 - 1292.71 m sowie von 3002.20 - 3503.3 m sind die Kerne inzwischen nach der "indirekten" Methode kontinuierlich orientiert (vgl. SCHMITZ et al. 1989).

Auβerdem wurden insgesamt 13 Kernmärsche zwischen 2256.2 m und 3715.8 m "direkt" orientiert gebohrt (vgl. KESSELS 1988), von denen 9 Kernmärsche auswertbare Daten lieferten.

Die Ergebnisse der indirekten Methode sind in Tab. G.1, die der direkten Methode in Tab. G.2 aufgeführt. Der Azimut der Feldlabor-Referenzlinie ist in dem jeweils angegebenen Kernstück- bzw. Teufenintervall gültig. Es ist zu beachten, daß die hier angegebenen Bohrmeisterteufen nach wie vor unkorrigiert sind. Eine eindeutige Probenzuordnung muß deshalb mit der Bohrmeisterteufe und der Kernstück-Nummer erfolgen.

Die Zuverlässigkeit der direkten Methode wurde inzwischen anhand der Formation Micro Scanner Tool-Logs (FMST) überprüft. Für die anpaßbaren Strecken der orientierten Kernmärsche 712, 785, 802 und 806, die detailliert überprüft wurden, kann eine insgesamt gute Übereinstimmung festgestellt werden, wenn man die Meß- und Ablesefehler beider Methoden, die sich im ungünstigsten Fall zu etwa 30° addieren können, berücksichtigt (Mitt. Hirschmann, Hannover).

Ausnahmen stellen die Kernstrecken der orientierten Kernmärsche 656 und 773 dar. Bei generell ähnlichem Kurvenverlauf sind die Meßwerte um 180° bzw. 165° gedreht. Die Ursache dieser Unstimmigkeit ist bisher nicht bekannt; es wird kein Azimut angegeben.

Berichtigung zum KTB-Report 89-5, Tab.G.2: Der anpaßbare Bereich des Kernmarsches 837 erstreckt sich von Kernstück 838Ala bis Kernstück 839Fln und nicht wie angegeben bis Kernstück 840Glp. Der Azimut des direkt orientierten Kermarsches 773 weicht von der sichereren indirekten Auswertung ab (s.o.). Der in Tab.G.1 angegebene Wert ist korrekt.

Anschrift der Verfasser: * KTB-Feldlabor, 8486 Windischeschenbach ** DMT, 4630 Bochum Tab. G.1: Nach der indirekten Methode N-orientierte Bohrkernbereiche (Daten von Schmitz, DMT Bochum); der Azimut der Referenzlinie ist jeweils für den Bereich zwischen dem angegebenen obersten (ersten) und untersten (letzten) Kernstück gültig. In den nicht aufgeführten Zwischenbereichen ist aufgrund von Kernverlust oder stark zerbrochenem Kern keine Orientierung möglich:

Erstes		Letztes	Obere		Untere	Azimut (<u>+</u> o)		
Ker	nst	ück	unkor	rig.	Teufe	Referenzlinie		
				_				
1084	-	108D	576.8	0 -	579.30	290	20	
109F	-	109H	586.0	7 -	588.01	204	13	
110	-	110	588.4	2 -	593.77	26	15	
111	_	112C	594.4	0 -	600.59	200	12	
1130	-	113F	604.6	2 -	607.80	208	8	
1144		114D	607.1	8 -	609.10	293	22	
114E		114F	609.6	1 -	610.50	350	10	
1154	_	115A	610.0	0 -	610.87	278	4	
115B	-	115B	610.8	7 -	611.37	235	7	
116	_	116	612.0	6 -	616.39	124	9	
1174		117E	616.7	0 -	620.55	354	14	
117F	_	117T	620.5	1 -	622.70	8	10	
118	_	118	622.7	0 -	628.50	282	13	
119	_	120	628.6	8 -	634.52	168	10	
121		123	634.5	0 -	639.45	42	9	
124	_	124	640.0	0 -	642.90	211	15	
125		126	643 0	4 -	651 96	111	9	
1271		1271	652 5	0 -	653.40	139	0	
127R	-	129	653 2	2 -	667.84	112	10	
130	_	1310	668 0	0 -	674.63	308	16	
1310	_	1310	674 6	3 -	675.21	310	0	
1323		1340	675 4	0 -	680 66	109	0	
1340	-	13459	680 8	7 –	682 44	84	5	
134EQh		1346	682 4	1 -	684 18	55	6	
125	_	135	684 6	n –	689 36	111	8	
136	_	138	689 9	0 -	703 26	105	15	
130		140	703 8	0 -	706 90	120	7	
1 4 1		1/33	706.9	0 -	716 73	109	11	
141		1430	716 6	6 -	718 29	94	5	
1430		1/35	718 8	1 -	719 77	77	6	
1430		1450	719 7	1 -	725 87	108	12	
1450	_	1450	725 8	т 1 —	727 86	87	6	
145D		1460	723.0	1 -	728 98	58	10	
1460		1460	728 9	2 -	729 65	110	0	
1460		1400	720.9	5 -	733 23	127	8	
1401	_	1/18	733 1	5 -	740 18	108	10	
1476	_	15/B	740 6	4 -	763 71	104	11	
1540		1540	763 7	1 -	764 48	80	7	
154C	-	156	764 4	8 -	768 74	115	6	
157		160	770 4	7 -	778.63	129	8	
161	1	161	779 0	0 -	782.00	304	12	
1623	_	1620	782 0	0 -	783 91	1.38	4	
1620		163	783 8	1 -	789.19	110	12	
164		164	789.2	0 -	792.77	130	4	
TOI		101	100.4	M			-	

Erstes Kerr	ıst	Letztes tück	Obere unkorrig	Untere .Teufe	Azimut Referenzl	(<u>+</u> σ) inie
165 171 172C		170 172B 173A	792.90 - 808.11 - 811.47 -	807.76 811.67 813.05	107 112 92	11 9 11
173B 173C 174	-	173E 173C 187D	813.05 - 813.99 - 814.50 -	813.99 814.60 841.58	50 111	0
187E 188	-	187F 195	841.57 - 843.33 -	842.97 863.55 869.27	76 111 127	9 11 9
199B 203	_	202 204	869.27 - 876.90 -	876.77 882.30	115 137	11 12
205 210	-	207 216A	882.50 - 890.00 -	890.00 908.69	105 118 132	10 11 7
216B 216C 234	-	233 235	909.41 - 941.38 -	941.12 946.40	132 116 131	10 10
236 239A	-	238 239A	946.34 - 952.30 -	952.31 953.24 961 60	120 135 118	13 5 11
239B 241 243B	-	240 243B 246	961.40 - 968.63 -	967.92 979.15	133 115	13 10
247 248A 248B	-	247 248A 249	979.40 - 981.47 - 982 16 -	981.50 982.17 986.64	144 111 137	6 5 6
250 253A		252 253H	986.90 - 1177.00 -	991.82 1183.00	118 304	6 23
254A 256A 257A	-	255D 256J 257F	1228.80 - 1232.40 - 1238.40 -	1232.40 1238.40 1242.06	315 277 359	15 11 9
257G 258A	-	257H 259A	1243.00 - 1244.20 - 1245.50 - 1245	1243.50 1245.50 1251 76	300 340 300	10 14 14
262B 262H	-	262G 262I	1245.30 - 1252.00 - 1256.28 -	1256.28	110 350	19 0
263B 263C 264A		263B 263I 264C	1258.40 - 1259.22 - 1263.60 -	1259.30 1263.20 1265.67	325 11 120	7 19 17
264D 265A		264H 265B	1265.86 - 1269.60 -	1269.60	159 137	11 6
265D 265H 267A		265G 266H 267G	1271.19 - 1273.92 - 1281.60 -	1281.55	349 115	14 8
268A 268C	-	268B 268I	1286.65 - 1287.97 -	1287.94 1292.71	263 319	6 14
734A01a 736A01a 739A01a	1 1	735B01c 738C04h 740H01v	3002.20 - 3003.60 - 3013.45 -	3003.49 3014.95 3026.78	122 112 138	9 10 10
741A01a 745A01a 746A02b	-	744G01w 745G01ak 749C03c	3026.75 - 3048.40 - 3054.60	3048.02 3053.90 3063 40	118 314 343	13 11 13
751212	_	751B	3063 70 -	3065.50	328	10

Engtog		Lotatoa	Oboro	Untoro	Azimut	$(+\alpha)$
LISLES		Letztes	unkorria	Toufo	Referenzli	nie
Keri	ISU	LUCK	unkorrig	. leure	Kererenzii	nic
751C	_	751F	3065 54 -	3068.27	132	10
7521012	_	752H02b	3068 25 -	3074 32	141	11
7531012	_	75640120	3074 30 -	3092 30	344	13
757A01a	_	758G01ad	3092 36 -	3102.62	178	15
7501010		7601022	3102.70 -	3108 00	1	12
760802h		760F02a	3108 76 -	3112 80	94	16
7611062	_	762612r	3112 97 -	3122 39	294	18
763102a	_	7635021	3122.65 -	3126 95	195	12
7636020	_	764C01i	3127 26 -	3129.89	241	12
764C01k	_	764H01ag	3129 89 -	3134.16	42	15
7651012	_	765H01aa	3134.15 -	3140.20	253	14
7671032	_	767H03ab	3140 50 -	3146.17	357	12
7682012	_	768101a	3146 20 -	3146.45	210	14
769103a	_	769D031	3146.51 -	3149.06	331	17
769D03m	_	769H03ak	3149.06 -	3152.11	279	13
7701012	_	770E01ag	3152.10 -	3156.03	14	14
771201c	_	771B01g	3155.97 -	3157.23	50	20
773402a	_	775B02e	3162.72 -	3171.50	332	11
776A01a	_	776G01ad	3171.60 -	3177.40	175	15
777101a	_	7782010	3177.40 -	3182.68	296	10
778B07a	_	781H01ag	3183.18 -	3199.03	351	13
78233a	_	782B3d	3199.98 -	3200.40	152	13
78346a	_	783F6b1	3203.29 -	3208.33	120	10
78412a	_	784G2ab	3208.62 -	3214.16	337	10
78543a	_	785G	3214.26 -	3220.00	56	12
7864	_	787E1t	3220.20 -	3226.80	121	15
788112	_	788G1an	3226 80 -	3232.75	134	12
789A1a	_	789G	3232.60 -	3238.40	33	11
7903	_	790H1ad	3238.40 -	3243.72	16	14
791A5a	_	791C5k	3244.37 -	3246.09	0	11
791D	_	791D	3246.20 -	3246.61	150	0
79232a	щ.	794E1ac	3246.70 -	3259.70	325	13
795A1a	_	799G1ax	3259.70 -	3279.99	342	15
800A1b	_	804G1ae	3280.00 -	3302.45	357	10
805A5a	_	810E	3302.48 -	3330.90	2	9
811A	_	815G1ad	3330.90 -	3353.23	356	9
816A1a	-	817B1fd	3353.80 -	3357.40	321	10
818A1a	-	820A1f	3357.40 -	3362.63	6	9
821A3a	-	824H1ad	3362.82 -	3382.84	332	10
825A1a	-	825F1v	3382.80 -	3386.92	4	9
826A1a	-	826D21	3387.46 -	3389.93	191	18
827A4a	-	827G40	3390.26 -	3395.00	333	13
828A1a	-	830H1af	3395.30 -	3406.45	22	13
831A3a	-	837G1z	3406.65 -	3429.02	0	11
838A1a	-	839F1n	3429.00 -	3433.71	38	10
840A1a	-	841A1e	3433.90 -	3439.85	327	13
842A1a	-	843G1af	3440.00 -	3450.76	79	15
843G1ah	-	844E1nf	3450.85 -	3454.85	155	14
845A1a	-	846G1y	3455.00 -	3464.19	3	10
847A1a	-	847G1av	3464.60 -	3470.07	75	10
848A1a	-	848F1u	3470.10 -	3475.43	46	9
848F1v	-	851A1c	3475.43 -	3478.00	269	17

Erstes	stes Letztes		Obere		Untere	Azimut $(\pm \sigma)$			
Kernstück			unkorr	ig	.Teufe	Referenzlinie			
851A2b	-	853D2ab	3478.10	-	3489.82	44	10		
854A2a	-	854G2ag	3489.90	-	3494.78	66	14		
855A2a	-	856H	3495.30	—	3503.30	20	9		

Tab. G.2: Nach der direkten Methode N-orientierte Bohrkernbereiche; der Azimut der Referenzlinie ist jeweils für den Bereich zwischen dem angegebenen obersten (ersten) und untersten (letzten) Kernstück gültig. Diese orientierten Bereiche umfassen in der Regel durch Anpassen darüber bzw. darunter liegender Kernstrecken größere Teufenbereiche als der in der Spalte Kernmarsch angegebene, eigentliche orientiert gebohrte Kernmarsch. ¹) jeweils geringfügiger Versatz in der Referenzlinie, ²) Bereich über Ausrichtung der Foliation anpaβbar:

Erstes		Letztes	Obere		Untere	Azimut	Kern-
Kerr	nst	ück	unkorri	g.	Teufe	Referenzlinie	marsch
709A2b	-	715B1e	2888.30		2917.63	102	712
785A3a	-	786A1a	3214.26	-	3220.04	61	785
799G3a	-	804G1ae	3280.09	-	3302.45	344	802
806A1a	-	807D1g	3305.18	-	3313.43	19	806
807E1h	-	808C11	3313.38	-	3318.22	24	8061
808C1nK	-	815G1ad	3318.22	-	3353.45	20	8061
835A1a	-	837G1z	3416.45	-	3429.02	9	837
838A1a	-	839F1n	3429.00	-	3438.94	49	8372
859A2a	-	860A1a	3512.26	-	3516.77	63	860
860A1b	-	860A1c	3516.76	-	3516.95	75	8601
907G2a	-	911H1az	3699.30	-	3721.17	206	910

KESSELS, W. (1988): Die orientierte Kernentnahme unter Verwendung eines Neigungs- und Richtungsrekorders am Innenkernrohr. - In: DRAXLER, J.K. und Hänel, R. (Hrsg.): KTB Report 88-7: 157-161.

SCHMITZ, D., HIRSCHMANN, G., KOHL, J., RÖHR, C. & DIETRICH, H.-G. (1989): Die Orientierung der Bohrkerne in der KTB-Vorbohrung. In: EMMERMANN, R. und GIESE, P. (Hrsg.): KTB-Report 89-3, 100-110.

H. Sedimentrohr-Proben in der KTB-Vorbohrung VB1b

> J. Sigmund H.-G. Dietrich

KTB-Report	90-2	H1-H9	12 Abb.	Hannover 1990
------------	------	-------	---------	---------------

Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich: 3500 - 4000.1 m

H. Sedimentrohr-Proben in der KTB-Vorbohrung VB1b

Sigmund, J. & Dietrich, H.-G. *

In der KTB-Vorbohrung VB1b wurde ab 3824.2 m ein Sedimentrohr (Abb.H.1) zur Bergung von Bohrwerkzeugresten (Abb.H.2, Tab.H.1) eingesetzt. Zusätzlich konnten mit diesem Gerät Gesteinsbruchstücke (siehe Tab.H.1) gewonnen werden. Die Bearbeitung und Analyse dieser Gesteinsbruchstücke erfolgt analog zur Cuttingsanalyse (siehe Sigmund et al. 1990). Dabei bilden die kontinuierlich am Schüttelsieb genommenen Cuttingsproben die Grundlage für das geologische Detailprofil, während die Probenahmen mit dem Sedimentrohr eine "kumulative" Beprobung darstellen. Die aus dem jeweiligen Bohrlochtiefsten stammenden Sedimentrohr-Proben liefern aufgrund ihrer Größe von z.T. über 4 cm (Abb.H.3 - H.8) gegenüber den Cuttingsproben (max. Korngröße einige mm) zusätzliche Informationen über die erbohrten Gesteine.

Zur Abschätzung der mittleren Korngröße wurden bei den Proben aus dem Teufenbereich 3832.1 bis 3927.6 m, die im wesentlichen nur gröbere Gesteinsbruchstücke enthielten, die größte und kleinste Achse vermessen. Daraus ergibt sich, daß die durchschnittliche Korngröße zwischen 1.29 und 1.62 cm variiert. Der Median der Kornsummenkurven erreicht Werte von 1.05 bis 1.30 cm. In den untersten, nicht im Detail vermessenen Proben nimmt die durchschnittliche Korngröße bei gleichzeitiger Zunahme der absoluten Probenmenge (Tab.H.1) deutlich ab (vergleiche Abb.H.6 u. H.8).

*) Adresse der Autoren:

KTB-Feldlabor Postfach 67 D-8486 Windischeschenbach

Abb.H.1: Schema (links - aus Whittaker 1985) und Foto (rechts) des verwendeten Sedimentrohres.

17 180

Abb.H.2: Bohrwerkzeugreste von einem Rollenmeißel aus Sedimentrohr-Probe KTB VB1b 3895.5 - 3907.9 m.

Abb.H.3: Sedimentrohr-Probe KTB VB1b 3832.1 - 3843.6 m.

Abb.H.4: Sedimentrohr-Probe KTB VB1b 3843.6 - 3855.8 m.

Abb.H.5: Sedimentrohr-Probe KTB VB1b 3855.8 - 3871.0 m.

Abb.H.6: Sedimentrohr-Probe KTB VB1b 3895.5 - 3907.9 m.

Abb.H.8: Sedimentrohr-Probe KTB VB1b 3989.6 - 3997.5 m.

Teufen	bei	reich	Länge	Gesteins	bruchstücke	Bohrwerk- zeugreste
	m		m	g	g/m	g
3824.2	-	3824.4	0.2	-		44.6
3832.1	-	3843.6	11.5	131	11.4	58.5
3843.6	-	3855.8	12.2	174	14.3	
3855.8	-	3871.0	15.2	182	12.0	-
3877.4	-	3895.2	17.8	83	4.7	50.3
3895.2		3907.8	12.6	266	21.1	288.1
3907.8	-	3914.6	6.8	258	38.0	15.4
3914.6	-	3927.6	13.0	247	19.0	20.8
3947.0	-	3949.6	2.6	978	376.1	29.3
3949.6		3963.2	13.6	1182	86.9	12.8
3963.2	-	3989.4	26.2	1679	64.0	80.2
3989.4	-	3997.9	8.5	1258	148.0	25.8

Tab.H.1: Sedimentrohr-Proben

Nachfall kann in diesen Proben aber aufgrund der Konstruktion des Sedimentrohres (Abb.H.1) nicht ausgeschlossen werden. Die eindeutig als Nachfall erkennbaren Bruchstücke sind meist grobkörniger, weniger kantengerundet und nicht so plattig wie die tatsächlich erbohrten Gesteinsbruchstücke. Dieser Unterschied läßt sich durch eine geringere bis fehlende mechanische Beanspruchung des Nachfalls erklären, wenn sich z.B. beim Ausbau des Gestänges Gesteinsbruchstücke von der Bohrlochwand lösen und in das Sedimentrohr gelangen.

Zur Abschätzung des realen Nachfallanteils wurden von vier Sedimentrohr-Proben der VB1b die Gewichtsprozente der gewonnenen Gesteine mit der jeweiligen Kernstrecke des parallel verlaufenden Bohrloches VB1a verglichen (Abb.H.9 -H.12). Hierbei wurden zur Vereinfachung der Auswertung bei der Kernstrecke Volumen-Prozente zugrunde gelegt. Der Vergleich der prozentualen Darstellung ergibt eine durchweg gute Korrelation zwischen Sedimentrohr-Strecke (VB1b) und Kernstrecke (VB1a). Der Anteil an Nachfall aus höheren Bohrlochabschnitten mit anderen Gesteinen und Lithologien ist meist gering und beträgt max. 5 % (z. B. Abb.H.10 - GNT-BIO-GNS). Schwierig und aufwendig ist die Abschätzung des Mobilisatgehaltes in der erbohrten Kernstrecke (VB1a), der daher hier nur qualitativ angegeben wird. Die Ansprache und Zuordnung der Gesteinsbruchstücke aus dem Sedimentrohr ist dann nicht immer einfach und eindeutig im Vergleich zum Kernmaterial (z.B. Metagabbro), wenn die Bruchstücke z.B. nicht groß genug sind.

Im unteren Bereich der VB1b ab 3895.2 m konnten die Sedimentrohr-Proben nicht mehr mit Kernmaterial korreliert werden, da der Bohrungsabschnitt VB1a bei 3893.0 m endet. Daher wurde nur eine Komponentenanalyse durchgeführt, soweit die Lithologie dies erlaubte, d. h. nicht zu homogen war. Die Ergebnisse sind in Tabelle H.2 dargestellt.

Abb.H.9: Vergleich der Lithologie von Sedimentrohr VBlb und Kernstrecke Vbla im Teufenbereich 3832.1 - 3843.6 m.

hneilisat-führend * r.z *

Abb.H.10: Vergleich der Lithologie von Sedimentrohr VB1b und Kernstrecke Vbla im Teufenbereich 3843.6 - 3855.8 m.

- L H -

bnərdül-JasilidoM .T.s *

Abb.H.11: Vergleich der Lithologie von Sedimentrohr VB1b und Kernstrecke Vbla im Teufenbereich 3855.8 - 3871.0 m.

Abb.H.l2: Vergleich der Lithologie von Sedimentrohr VBlb und Kernstrecke Vbla im Teufenbereich 3877.4 - 3895.2 m.

Tab.H.2: Grobfraktion (> 5 mm) der Sedimentrohr-Prok 3895.2 - 3997.9 m.	oen v	on
3895.2 - 3907.8 m Amphibolit, wechselnde Granat-Gehalte Quarz-Feldspat-Mobilisate im Amphibolit	84.5 15.5	5 %
3907.8 - 3914.6 m Amphibolit Mobilisate in Amphibolit Leukokrate, foliierte Amphibolite u. Hornblendegneise	74.2 13.2 12.6	2 % % %
3914.6 - 3927.6 m Amphibolit mit wechselnden Granat-Gehalten Leukokrater Granat-Amphibolit Mobilisat-reicher Amphibolit	74.1 5.1 20.8	0% 0% 0%
3947.0 - 3949.6 m Amphibolit mit wechselnden Granat-Gehalten Quarz-Feldspat-Epidot-Mobilisate in Amphibolit Biotit-Gneis (Nachfall)	66.5 8.5 25.0	90 90 90 90 90 90

3949.6 - 3963.2 m Amphibolit mit wenigen Mobilisaten

3963.2 - 3989.4 m Amphibolit mit wechselnden Granat- und Mobilisatgehalten

3989.4 - 3997.9 m Amphibolit und epidotführender Chlorit-Gneis

Der hohe Anteil an großen, eckigen Nachfall-Bruchstücken im Teufenbereich von 3947.0 bis 3949.6 m (siehe Tab.H.2 -Biotit-Gneis) läßt sich auf bohrtechnische Probleme beim Vertiefen der Bohrung zurückführen. Auch die ungewöhnlich hohe Probenmenge (siehe g/m in Tab.H.1) steht damit im Zusammenhang.

Zusammenfassend haben diese ersten Untersuchungen gezeigt, daß der Nachfall in der Regel gering ist. Das Sedimentrohr liefert deshalb wichtiges Probenmaterial aus dem abgebohrten Teufenbereich. Soweit möglich, sollte deshalb beim Vollbohren in der Hauptbohrung ein Sedimentrohr eingesetzt werden.

Kontaminationsfreie Bohrspülungsentgasung

١.

KTB Report	90-2	I1-I10	9 Abb.	Hannover 1990
------------	------	--------	--------	---------------

I. Kontaminationsfreie Bohrspülungsentgasung

H.-J. Heinschild *)

Inhaltsverzeichnis:

Seite

I.1	Einleitung	I 2
I.2	Ergebnisse	Ι3
I.3	Bewertung	I 5
I.4	Schriftenverzeichnis	I10
I.5	Danksagung	I10

*) Anschrift des Autors: KTB Feldlabor 8486 Windischeschenbach

I.1 Einleitung

Die in der Bohrspülung gelösten Gase wurden in der KTB Vorbohrung ab einer Bohrlochtiefe von ca. 1000 m kontinuierlich mit einer Gasfalle (Quirlentgaser) der Firma GEO-data aus der Bohrspülung freigesetzt und massenspektrometrisch analysiert (vgl. z.B. HOMANN et al. 1988). Mit dieser Gasfalle ist jedoch eine Quantifizierung der in der Bohrspülung gelösten Gasmenge nicht möglich, da insbesondere bei geringen Gasgehalten in der Bohrspülung Fremdluft mitangesaugt wird.

Neben dieser "konventionellen" Gasfalle wurde während der KTB Vorbohrung ein luftkontaminationsfrei arbeitendes Spülungsseparator-System im Bypass erprobt und erstmals im Routinebetrieb eingesetzt. Mit diesem Bypass-Degasser der Fa. NL International Inc. von der ARGE KTB-Mud-Logging ist <u>erstmals</u> eine <u>Quantifizierung</u> der in der Bohrspülung gelösten bzw. freigesetzten Gase möglich.

In diesem Report werden nur die Ergebnisse, die während der Testläufe des Bypass-Degassers erzielt wurden, vorgestellt. Die Beschreibung des Bypass-Degassers mit sämtlichen Erläuterungen zur Arbeitsweise und den technischen Problemen bei der Realisierung des Projektes ist Bestandteil eines gesonderten Berichtes.

Der für die KTB Vorbohrung verwendete Spülungskreislauf mit der Anbindung des Bypass-Degassers und der Gasfalle ist aus Abb. I.1 dargestellt.

Spülungstechnische Parameter

Abb.I.1: Schema des Spülungskreislaufes

I.2 Ergebnisse

Nach langwierigen und umfangreichen Konstruktionsarbeiten wurde während eines ersten Degasser-Testlaufes (Dez. 1988) ein Gasgemisch zur Bohrspülung dotiert, um die Funktionstüchtigkeit und Effizienz des Bypass-Degassers zu testen. In der nachfolgenden Tabelle I.1 sind die Zusammensetzung des Dotiergases und die durch den Bypass-Degasser freigesetzte Gasphase aufgeführt. Die gemessenen Sauerstoffgehalte wurden als Luft (Hinweis auf Undichtigkeiten und/oder eventuell in der Bohrspülung gelöste Luft) definiert, so daß diese Stickstoffgehalte um diesen Betrag korrigiert worden sind.

Tabelle I.1: Zusammensetzung des Dotiergases vor der Zuführung in die Bohrspülung und die prozentuale Wiederfindung nach der Entgasung aus der Bohrspülung

	Dotiergas		Wiederfindung in %
Stickstoff	99.75	45.9	46
Sauerstoff	0.05	-	
Kohlendioxid	0.05	0.009	17
Wasserstoff	0.05	0.029	57
Methan	0.05	0.013	26
Helium	0.05	0.031	61

Die Zusammensetzung der aus der Bohrspülung mit dem Bypass-Degasser freigesetzten Gasphase entspricht nicht der Zusammensetzung der Gasphase des Dotiergases, das der Bohrspülung zugesetzt wurde. Es ist anzunehmen, daß die unterschiedliche Löslichkeit der einzelnen Gase in der Bohrspülung (pH der Bohrspülung \approx 10) deren Freisetzung mit dem Bypass-Degasser hauptsächlich beeinflußt.

Nach MESSER GRIESHEIM (1982) nimmt die Löslichkeit der gemessenen Gase in Wasser bei 10°C in folgender Reihe ab:

Helium < Stickstoff < Wasserstoff < Methan < Kohlendioxid

Im Rahmen eines zweiten Testlaufes konnte im März 1989 nach weiteren Optimierungsarbeiten der Bypass-Degasser erstmals während des Bohrbetriebs, also unter realen Bohrbedingungen, getestet werden. Zu dieser Zeit wurde der Bohrlochabschnitt der KTB VB1b mit dem Rotary-Bohrverfahren von 3860 auf 3936 m vertieft.

Parallel zum Einsatz des Bypass-Degassers war weiterhin eine konventionelle Gasfalle im Betrieb, so daß beide freigesetzten Gasphasen kontinuierlich analysiert und verglichen werden konnten.

Beim Vergleich der Meßergebnisse muß berücksichtigt werden, daß die Gasfalle, wenn sie weniger als 5 1 Gas/Stunde aus der Bohrspülung freisetzen konnte, Fremdluft ansaugte, während beim Degasser systemgesteuert Argon zugegeben wurde. Abb.I.2 sind die Methangehalte der Bohrspülung, In die mit unterschiedlichen Methoden freigesetzt wurden, dargestellt. Methangehalte der Gasphasen sind sowohl bei der Die konvenauf tionellen Gasfalle als auch beim Degasser nicht den bzw. Fremdluftanteil zugegebene Argonmenge korrigiert. Die Korrelation der Ergebnisse der unterschiedlichen Gasfrei-

Abb.I.2: Vergleich der Methangehalte zwischen Gasfalle und Bypass-Degasser

Abb.I.3: Korrelation der Methangehalte

Es ergibt sich eine relativ gute Korrelation. Unterschiede können aufgrund der unterschiedlichen Konfiguration der beiden verwendeten Gasfreisetzungsmethoden erklärt werden.

I.3 Bewertung

Sowohl mit der Gasfalle in der Spülungsrinne als auch mit dem Bypass-Degasser sind Gasanreicherungen in der Bohrspülung nachweisbar. In den Abbildungen I.4 bis I.6 sind die Gehalte für Methan, Helium und Sauerstoff für beide Entgasungsverfahren sowie die freigesetzte Totalgasmenge, die unter den gegebenen Bedingungen gewonnen wurde, für den Testlauf vom März 1989 dargestellt.

Beim Vergleich der Methan- und Heliumgehalte fallen die z.T. stark schwankenden Meßwerte für den Degasser im Vergleich zum Quirlentgaser auf, die durch technische Probleme bei diesem Degasser-Prototyp verursacht wurden und in einem gesonderten Bericht behandelt werden.

Auβerdem sind die Gaspeaks der Gasphase, die durch eine Entgasung der Bohrspülung mit dem Bypass-Degasser freigesetzt wurde, breiter. Dies könnte durch eine längere Verweilzeit der Bohrspülung im Degasser sowie durch das größere Volumen (Gasraum) über der Bohrspülung im Degassertank verursacht werden.

Die um den Faktor 2 höheren Sauerstoff-Gehalte bei der "Gasfallen-Messung" verdeutlichen, daß die Gasfalle Fremdluft mitangesaugt haben muß, was bei der on line-Analyse zu geringeren Methangehalten führt (vgl. Abb.I.4).

Anhand Abb.I.7 kann gezeigt werden, daß die freigesetzte Gasmenge etwa 5 l Gas/m³-Bohrspülung betrug. Da während der Testphase am Bypass-Degasser aber Undichtigkeiten auftraten, ist dieser Wert wahrscheinlich noch zu hoch. Wird nämlich nur der Teufenbereich berücksichtigt, in dem kein Sauerstoff in der freigesetzten Gasphase nachgewiesen werden konnte, variieren die Werte zwischen 2 - 4 l Gas/m³-Spülung.

Für den Teufenbereich (3868 - 3879 m), in dem Sauerstoff nicht in der Gasphase nachgewiesen werden und damit eine System-Undichtigkeit (Luft) ausgeschlossen werden konnte, wird eine Korrelation der Resultate mit einigen Degasserparametern versucht.

Abb.I.4 und I.5: Vergleich der Meβergebnisse der "Gasfallen-Gasphase" für Methan und Helium mit den um der zudotierten Argonmenge korrigierten Werten der "Bypass-Degasser-Gasphase"

Abb.I.6 und I.7: Sauerstoffgehalte der freigesetzten Gasphase sowie die insgesamt freigesetzte Gasmenge in l Gas/m³-Spülung

In Abb.I.8 ist die Abhängigkeit der Zusammensetzung der freigesetzten Gase sowie der Totalgasmenge von der Bohrspülungstemperatur dargestellt.

Es kann keine eindeutige Abhängigkeit zwischen der Freisetzung von gelösten Gasen und der Temperatur im Bereich zwischen 28 und 37 °C festgestellt werden. Die freigesetzte Gasmenge bleibt in diesem Temperaturintervall relativ konstant; die Zunahme der freigesetzten Heliummenge mit der Temperatur wird wahrscheinlich durch höhere Heliumgehalte in dem durchteuften Gestein verursacht. Abb.I.9 zeigt die Korrelation der freigesetzten Gase bzw. des zugegebenen Argons mit dem Druck im Degassertank.

Abb.I.8: Korrelation zwischen Bohrspülungstemperatur und Methan, Helium, Argon sowie Gasmenge (ohne Argon)

Abb.I.9: Korrelation des Drucks im Degassertank mit der freigesetzten Gasmenge (1 Gas/m3-Spülung bzw. zudotiertem Argon)

beobachtende Trend, daß mit abnehmendem Druck Der zu die freigesetzte Gasmenge zunimmt bzw. die Dotiergasmenge abnimmt, wird durch die Konfiguration des Degassers verursacht. einem Druckabfall unter 970 mbar wird Argon Bei zugegeben. Hierbei kann der Druck so schnell ansteigen, daß die Druckobergrenze erreicht ist und "überschüssiges" Gas abgepumpt werden muß. Demnach sind bei hohen Drucken hohe Argongehalte in der Gasphase nachweisbar und die freigesetzte Gasmenge ist dann geringer (Verdünnungseffekte).

Zusammenfassend ist nach den vorliegenden ersten Messungen festzuhalten, daß erstmals eine kontinuierliche Quantifizierung der in der Bohrspülung gelösten Gase über etwa 14 Tage durchgeführt werden konnte.

Wegen verschiedener technischer Probleme war es jedoch nicht möglich, einen Dauerbetrieb des Bypass-Degassers für die Routineuntersuchungen einzurichten.

Das Konzept der kontaminationsfreien Bohrspülungsentgasung sowie der Registrierung der Parameter, wie z.B. Bohrspülungsund Gasmengen, sollte aufgrund der positiven Erfahrungen weiter verfolgt werden, da sonst keine Bilanzierung der aus dem Gebirge ins Bohrloch zutretenden gasförmigen Fluide möglich ist. HOMANN, K.D., HEINSCHILD, H.J., STROH, A. & TAPFER M. (1988): Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 1530 bis 1998 m. - In: EMMERMANN, R., DIETRICH, H.G., HEINISCH, M. WÖHRL, T. (Hrsg.): KTB-Report 88-9: C1-C88, Hannover.

MESSER GRIESHEIM (1982): Gasehandbuch, Düsseldorf 1982

I.5 Danksagung

Besonders gedankt sei Herrn H. Kamm für seinen unermüdlichen Einsatz bei der Bewältigung ungezählter technischer Probleme in der Vor- und Testphase des Degassers in Zusammenarbeit mit der ARGE MUD LOGGING.

Herrn Dr. J. Erzinger vom Institut für Geowissenschaften und Lithosphärenforschung in Gießen sei an dieser Stelle für sein Engagement bei der Realisierung eines kontaminationsfrei arbeitenden Bohrspülungsentgasungssystems und für seine fortwährende Diskussionsbereitschaft gedankt.

