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Abstract Sediments in rivers record the dynamics of erosion processes. While bulk sediment fluxes are
easily and routinely obtained, sediment caliber remains underexplored when inferring erosion mechanisms.
Yet sediment grain size distributions may be the key to discriminating their origin. We have studied grain
size-specific suspended sediment fluxes in the Kali Gandaki, a major trans-Himalayan river. Two strategically
located gauging stations enable tracing of sediment caliber on either side of the Himalayan orographic barrier.
The data show that fine sediment input into the northern headwaters is persistent, while coarse sediment
comes from the High Himalayas during the summer monsoon. A temporally matching landslide inventory
similarly indicates the prominence of monsoon-driven hillslope mass wasting. Thus, mechanisms of sediment
supply can leave strong traces in the fluvial caliber, which could project well beyond the mountain front and
add to the variability of the sedimentary record of orogen erosion.

1. Introduction

The grain size of river sediments is set by supply from interfluves, in-channel comminution, and sorting.
While progressive downstream fining of alluvial river sediments is attributed to in-channel processes of
selective transport [e.g., Paola and Seal, 1995], the granulometry of erosional rivers appears to be less regular
due to external influences such as variations in hillslope sediment supply [Brummer and Montgomery, 2003;
Attal and Lavé, 2006; Marshall and Sklar, 2012]. Most material building sedimentary archives in distant
depositional basins is carried in suspension [Turowski et al., 2010]. In mountain rivers, suspended sediment
transport is rarely limited by the transport capacity [e.g., Andermann et al., 2012a], and thus, the effects of
episodic sediment supply may be expressed in the quantity of suspended material, as well as its caliber,
which can be easily measured. Although the source geology and mechanisms of sediment mobilization
and transfer likely feature a granulometric fingerprint, the caliber is underexplored for geomorphological
purposes. Yet this may be useful in mountain belts such as the Himalayas where the links between
distributed erosion and fluvial sediment transfer remain underconstrained. On the southern side of the
mountain belt hillslope sediment delivery to river channels promotes high monsoonal sediment fluxes
[e.g., Gabet et al., 2008; Andermann et al., 2012a; Wulf et al., 2012]. Less is known about the processes that
supply sediment to Himalayan rivers on the northern, lee side of the orographic barrier, and it is generally
assumed that these trans-Himalayan compartments contribute little to the clastic fluxes at the mountain
front [e.g., Wulf et al., 2012].

The aim of this study is to show that suspended sediment caliber contains information about supplymechanisms
of sediments to rivers and about their mobilization on hillslopes. Therefore, we analyze daily discharge and
suspended sediment concentrations and grain size data from two hydrometric stations on the Kali Gandaki
(KG), one of the major trans-Himalayan rivers (Figure 1). One station sits at the edge of the Tibetan Plateau,
within the topographic transition from the dry, high-elevation zone to the monsoon-drenched southern
Himalayan front (Figures 1 and 1 b). The second station integrates both the arid and humid portions of the
KG watershed.
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2. Kali Gandaki Basin

The KG (Figure 1) has a drainage area of ~12000 km2, straddling the semiarid southern Tibetan Plateau (mean
precipitation P< 500mm/yr) and themonsoon-dominated Himalayas (P~ 2000mm/yr; Figure 1b). These two
climatic domains are separated by the High Himalayan orographic barrier including the >8000m peaks of
Dhaulagiri and Annapurna. North of this barrier, the watershed is underlain by Tethyan sedimentary rocks,
and the trunk river mostly occupies extensive braid plains flanked by complex terrace staircases cut into the
Miocene-Quaternary fill of the Takkhola Graben [Fort, 2000; Adhikari and Wagreich, 2011]. At least 3.7 km3

of poorly consolidated sediment are stored in this graben system [Blöthe and Korup, 2013], ranging from
coarse fan conglomerates to silty backwater deposits, and clay-rich lake beds [Adhikari and Wagreich, 2011].
Much of these deposits is pervasively gullied and locally prone to slow, deep-seated landsliding. Downstream,
the river has carved narrow, steep gorges through metamorphic rocks of the Higher and Lesser Himalayan
sequences [Lavé and Avouac, 2001]. Hanging tributary valleys illustrate the ongoing rapid incision of the main
stream [Goode and Burbank, 2009], and steep bedrock hillslopes directly connect to the fluvial system. Glaciers
occupy similar portions (~10%) in both subbasins (Figure 1c), but theywere considerablymore extensive during
the Last Glacial Maximum [Zech et al., 2009].

The Indian Summer Monsoon (ISM) supplies ~80% of the annual precipitation in the central Himalayas over a
4month period [Andermann et al., 2011], and water and sediment discharge mimic this pattern [Gabet et al.,
2008; Andermann et al., 2012a]. Across the Himalayas, intensemonsoon rainfall, enhanced by orographic forcing,
drives landsliding in threshold topography [Korup and Weidinger, 2011], sustained by rapid tectonic shortening
[Lavé and Avouac, 2001]. Landslides are known to have mobilized up to tens of cubic kilometers of rock

a b c

Figure 1. The Kali Gandaki watershed. (a) River longitudinal profile of the KG plotted as distance toMirmi hydropower facility.
South of Lete the basin is characterized by a deeply incising river and to the north by a braided system. Shaded areas
represent ridge topography along the river, obtained from 30 km wide swath profiles for 5 km river increments [after
Hergarten et al., 2014]. (b) Annual precipitation distribution (blue, mean± one standard deviation) over the whole map width
of Figure 1c, derived from TRMM-3B42 [Huffman et al., 2010] and landslide density distribution (black) plotted against distance
toward south. Black landslide density in % area illustrates the occurrence of fresh landslide surfaces mapped between 2006
and 2013. Density is measured over 10 km wide east-west transects (Figure S1). (c) Color-coded DEM strapped over shaded
relief map. Dark blue lines are major rivers; KG featured in bold blue line with along-river distance marks in white boxes
(distance toward Mirmi). Areas bordered by white lines represent the two basins upstream of the gauging stations.
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[Weidinger, 2006]; however, smaller landslides are muchmore frequent during the ISM [Gabet et al., 2004; Dahal
and Hasegawa, 2008]. The suspended sediment concentration of Nepalese rivers scales linearly with direct
discharge (Qd) [Andermann et al., 2012a], i.e., the fast discharge component generated when intense rainfall
exceeds infiltration capacities, rather than with total river discharge (Q). In the central Himalayas roughly
two thirds of the river discharge drains through a deep groundwater reservoir [Andermann et al., 2012b],
but sediment transport in these rivers appears to be dominated by the supply of material through rapid surface
drainage during rainstorms [Andermann et al., 2012a].

3. Data

We use data from two stations in the KG basin to assess variations in water discharge, sediment concentration
(Cs), and caliber on either side of the orographic divide (Table S3 and Text S4-1 in the supporting information).
The upper station near Lete village (~2500mabove sea level (asl); Figures 1 and S2) has an upstream area of
3450 km2. Here twice daily Cs and Q values are available over 2 years (2011–2012). The median grain size, sand
(125–2000μm), and mud (<125μm, defined as mud for simplification) fractions were obtained from 107
particle size distributions (Text S4). The lower station at Mirmi (520masl) is located within the thalweg
of the river, ~100m upstream of the water intake of a run-of-the-river hydropower facility (Nepal Electricity
Authority), at an upstream area of 7580 km2. River discharge is syphoned from November to May, but only a
small fraction (~5%) is diverted during the monsoon season. During the low-flow season, the sampling site is
locatedwithin a backwater-affected river reach, but during ISM river discharge exceedswater diversion bymore
than an order of magnitude, and the river is free flowing (Figure S5). Daily Cs (separated into sand fraction
Csand>125μm and mud fraction Cmud<125μm), and hourly Q data were collected between 2006 and 2012
(Text S4-1). We used the data for 2011 and 2012 for a direct comparison with Lete station. We separated Q into
base flow Qb, sourced by groundwater and meltwater, and fast-changing direct discharge Qd, using the
recursive digital filter method (BFImax) by Eckhardt [2005]. This hydrograph separation technique was successfully
applied by Andermann et al. [2012a] and Tolorza et al. [2014] to assess sediment fluxes. For the KG, it yields
important base flow contributions, similar to what has been reported by Andermann et al. [2012b] and Müller
et al. [2014] for Himalayan rivers. We used daily precipitation (P) data from the Tropical Rainfall Measuring
Mission (TRMM-3B42, V7) [Huffman et al., 2010] for comparison with the discharge components. To assess
the spatial pattern of mass wasting, we mapped fresh landslide scars from Landsat 5, 7, and 8 imagery (http://
earthexplorer.usgs.gov/, Table S7 and Text S4-2). Wemapped surface changes related to fresh scars of deep-seated,
catastrophic landslides that occurred between pre- and post-ISM images of each year.We also recorded landslides
between post- and pre-ISM images, in order to cover monsoonal and nonmonsoonal periods (Text S4-2).

4. Results

Throughout the KG basin, the bulk precipitation was associated with the ISM (Figures 2 and S6), which
contributed ~70% of annual water fluxes at Lete and ~80% at Mirmi (see Table S3). Sediment concentrations
mirrored this seasonality, with high Cs of >6 g/L during the ISM and consistently low (Cs< 0.5 g/L) during
most other times (Figures 2 and 3). The seasonal granulometry differed clearly between the stations.

At Lete, ~2% of the total suspended sediment transport occurred outside the ISM season. The sand-to-mud
ratio (C*) was 1:2. The monthly median C* varied little, between 0.3 and 0.5 throughout the year, with a
dominant fraction of fines (>50%). On average, 63% of the suspended load had a grain size <63μm.
Measured grain size distributions displayed no seasonal pattern, scattering ~40% (Figure S8). The total estimated
suspended sediment flux was 9.7± 1.2megaton (Mt)/yr from 2011 to 2012, of which 6.5± 0.8Mt/yr was mud
and 3.2± 0.4Mt/yr was sand.

At Mirmi, <1% of the annual flux occurred outside of the ISM season. Sediment discharge shows seasonal
hysteresis, with values of sand, mud, and total suspended sediment concentrations remaining highwhenQ or P
dropped off in the post-ISM period (Figure S8). These effects disappear when comparing corresponding
variables to Qd (Figure S8). At Mirmi, monthly median C* varied considerably during the ISM seasons, with
a nearly fivefold increase from C* = 0.2 in June to C*≥ 1.0 in mid-ISM (Figure 2). During the dry season (Figure 2,
grey shading), the sampling location was within the backwater from the hydropower intake. Elevated C* values
during ISM occurred when backwater effects were minimal (unshaded interval in Figure 2). The evolution of C*
over the ISM is not matched by Q, and C* decreased by September already while Q remained high
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a

b

Figure 3. Lete daily Cs measurements June 2011 to November 2012 (analog to Mirmi (Figure 2)). (a) Seasonal pattern of
mean daily Cs. Inset shows upstream basin area (shaded in green). (b) Box plots of monthly mean suspended sand-to-mud
concentration ratios C* (sand>0.125μm). Red dots aremean C* values and bold black bars median ratios. Dashed line is equal
sand and mud concentration. Boxes enclose first and third quartiles; whiskers span the 1.5-fold interquartile range. Square
boxes contain the number of outliers.

b

a

Figure 2. Mirmi daily Cs measurements and hydrology data from 2006 to 2012 (analog to Lete (Figure 3)). (a) Mean daily Cs.
Inset indicates upstream basin area. (b) Box plots of monthly mean suspended sand-to-mud concentration ratios C* (sand
>0.125μm). Red dots and horizontal thick lines aremeans andmedians of C*, respectively. Boxes enclose first and third quartiles;
whiskers span the 1.5-fold interquartile range. Square boxes contain the number of outliers. Color of quartile boxes coded to
seasons: white =winter, blue = pre-ISM, green= ISM, and yellow=post-ISM. Dashed line represents equal sand and mud
concentrations. Cumulative mean daily precipitation P (blue), dischargeQ (dark green), and direct dischargeQd (orange). Crosses
show mean daily water level at intake dam normalized by its average annual sum. Shaded area covers base flow period with
regulated streamflow.
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(Figure 2). At other times, the granulometry of the river load may have been affected by the presence of
the dam. The samples contained little material <63 μm, with an average of 4.6%. At Mirmi, the average
estimated suspended sediment flux from 2011 to 2012 was 30.2 ± 3.2Mt/yr, of which 18.8 ± 1.2Mt/yr was
mud and 11.4 ± 2.0Mt/yr was sand. For 2006 to 2012, the average flux was 36.9 ± 10.6Mt/yr, of which
18.6 ± 3.7Mt/yr was mud and 18.3 ± 6.9Mt/yr was sand.

Between 2006 and 2013, seven landslides occurred upstream of Lete and 120 downstream (Figure 1c), all of them
during the ISM. During 2011–2012, five landslides occurred upstream of Lete and 40 downstream. Detected
landslides affected <0.05% of the surface area upstream of Lete and up to 0.24% downstream (Figure 1b).

5. Discussion

At Lete and Mirmi stations, virtually all suspended sediment transport occurred during the ISM and its
immediate aftermath (Figures 2, 3, S6, and S9), with similar trends for both sand and mud. However, the
sources andmobilization mechanisms of sediment varied greatly across the basin, embossing a characteristic
sediment granulometry.

Upstream of Lete, muddy sediment was prevalent, with a granulometry that was variable during winter when
temperatures are lowest. This indicates that glacial production of sediments is not an immediate source of the
river load in this part of the basin. Instead, themuds could have been remobilized from the Takkhola Graben fill.
Bulk 14C ages of organic matter in fluvial sediment collected upstream of Lete [Galy and Eglinton, 2011] attest
to potentially long-lived nonglacial sources of sediment in the upper KG. Onmonthly and longer time scales, the
granulometric variability is smoothed toward a steady output of sediment containing ~60% of the <63μm
fraction and ~70%mud. There is no indication that deep-seated, catastrophic landslides are an important source
of this sediment, neither in the size distribution of the suspended load nor in the satellite imagery (Figure 1).
During field observations in 2014, no landslides were discovered, lending further support to this interpretation.

In contrast, the sand fraction of the river load systematically increases during the ISM at Mirmi (Figure 2).
Backwater effects make a complete description of the seasonal cycle difficult; however, the fivefold increase
of C* within ISM is significant. The seasonal contrast is also supported by bulk suspended sediment data
[Andermann et al., 2012a] predating the dam construction. These data demonstrate that backwater has
only little impact on the seasonality of the suspended load. Suspended sediment transport at Mirmi is
driven by direct discharge Qd, not total discharge Q (Figure S8), implying that the sediment load of the KG
and its granulometry are not set by river flow conditions. Instead, the observed coarsening and increasing
concentrations of all suspended sediment fractions are correlated with changes of direct discharge, which
depends on precipitation intensity [Andermann et al., 2012a]. This indicates that suspended sediment load
and caliber at Mirmi during the ISM are linked to precipitation-driven processes in the southern Himalayas,
downstream of Lete. Furthermore, most of the sediment carried by rivers in the Nepal Himalayas does not
seem to result from anthropogenic soil degradation. Gallo and Lavé [2014] demonstrated that landslides in a
Himalayan headwater catchment dominate the erosional work, while soil-mantled hillslopes do not release
any relevant volumes of sediments. Similarly, we attribute the observed shifts in sediment granulometry
during the ISM to mass wasting of fresh hillslope materials with larger clasts. Mass wasting processes are
widely documented across the High Himalayas and are major sources of sediment [Gabet et al., 2008; Gallo
and Lavé, 2014]. Fresh landslide scars almost exclusively form during the ISM season along the wet, south
facing Himalayan front (Figure 1c), a pattern also evident in the recorded timing of >700 well-documented
landslides all over Nepal [Dahal and Hasegawa, 2008; Kirschbaum et al., 2009] (Figure 4).

The mean erosion rate inferred from the sediment fluxes recorded between 2011 and 2012 upstream of
Lete is surprisingly high (1.0 ± 0.1mm/yr) and highlights the importance of the Thakkhola Graben fill as a
potentially major sediment source. For the whole basin the suspended sediment-derived erosion rate was
1.9 ± 0.2mm/yr and 2.5 ± 0.9mm/yr for the monsoon-prone Himalayan section between Lete and Mirmi.
These values are consistent with independent estimates from this area [Andermann et al., 2012a; Lupker et al.,
2012]. The increased erosion rate in the downstream part of the catchment may well reflect the sediment
supply from intense mass wasting.

Volumetrically, the entire <63μm load of the KG River at Mirmi can be explained by export from the Tibetan
part of the basin as recorded at Lete. Moreover, ~35% of the mud fraction (<125μm) gauged at Mirmi may
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stem from the upper, dry part of the
basin. Much of this material might
derive from the Thakkhola Graben fill,
thus projecting the characteristics of
this Miocene-Pleistocene sedimentary
system onto the present-day
Himalayan erosion flux. In contrast,
about 70–80% of the sand traveling in
suspension at Mirmi is likely to be
sourced directly from bedrock or
relatively young colluvial deposits in
hillslopes of the southern Himalayan
front. If the different grain sizes
resegregate due to downstream
sorting, then grain size populations
that were convolved by accumulation
along the KG River may be well
sorted along the alluvial continuation

of the river in the Indian foreland. This can affect the record of mountain processes in distant depocenters,
with coarser, sandy deposits in the Gangetic foreland primarily registering the exhumation of the southern
Himalayan flank by mass wasting and trans-Himalayan muds affecting accumulation of deposits farther
down the Gangetic plains and distal deposition in the Bay of Bengal. Sediment archives are often
interpreted according to volumetric thickness of particular layers and attributed to the most obvious
source area [e.g., Métivier et al., 1999]. Our results demonstrate that it is important to combine particle
size with provenance analysis to better pinpoint the source areas [Goodbred et al., 2014], especially for
inferring large-scale climate variations from intense erosion phases [Clift et al., 2008].

6. Conclusions

Grain size information contained in Cs fluxes hold valuable though often overlooked information to probe
into themechanisms of source-to-sink sediment cycles from fast-eroding orogens. Daily records of Cs support
previous findings of downstream coarsening across the Himalayan range from bed load size distributions
[Attal and Lavé, 2006] and add a new temporal component to these observations, demonstrating that the
classical downstream fining of sediments is not applicable for monsoonal trans-Himalayan rivers. Instead,
downstream coarsening of Cs in the KG River is linked to sediment input by hillslope mass wasting processes,
which are almost exclusively associated with the ISM season and the dissected southern Himalayan front.
We demonstrate that supply of sediments in the Himalayas to first order depends on hillslope-channel
connectivity and the availability of water and how it is portioned over space and time into river discharge.
Our findings stress the importance to better understand sediment supply and hillslope-channel connectivity
in mountain headwaters for the interpretation of Cs records and depositional archives.
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