Originally published as:

DOI: http://doi.org/10.1093/gji/ggv291
Upper-mantle P- and S-wave velocities across the Northern Tornquist Zone from traveltime tomography

Babak Hejrani,1,* Niels Balling,1 Bo Holm Jacobsen1 and Frederik Tilmann2

1Department of Geoscience, Aarhus University, Aarhus, Denmark. E-mail: babak.hejrani@anu.edu.au
2GFZ, German Research Centre for Geosciences, Potsdam, Germany

Accepted 2015 July 9. Received 2015 June 13; in original form 2014 December 7

SUMMARY
This study presents P- and S-wave velocity variations for the upper mantle in southern Scandinavia and northern Germany based on teleseismic traveltime tomography. Tectonically, this region includes the entire northern part of the prominent Tornquist Zone which follows along the transition from old Precambrian shield units to the east to younger Phanerozoic deep sedimentary basins to the southwest. We combine data from several separate temporary arrays/profiles (276 stations) deployed over a period of about 15 yr and permanent networks (31 stations) covering the areas of Denmark, northern Germany, southern Sweden and southern Norway. By performing an integrated P- and S-traveltime analysis, we obtain the first high-resolution combined 3-D V_P and V_S models, including variations in the V_P/V_S ratio, for the whole of this region of study. Relative station mean traveltime residuals vary within ±1 s for P wave and ±2 s for S wave, with early arrivals in shield areas of southern Sweden and later arrivals in the Danish and North German Basins, as well as in most of southern Norway. In good accordance with previous, mainly P-velocity models, a marked upper-mantle velocity boundary (UMVB) is accurately delineated between shield areas (with high seismic mantle velocity) and basins (with lower velocity). It continues northwards into southern Norway near the Oslo Graben area and further north across the Southern Scandes Mountains. This main boundary, extending to a depth of at least 300 km, is even more pronounced in our new S-velocity model, with velocity contrasts of up to ±2–3 per cent. It is also clearly reflected in the V_P/V_S ratio. Differences in this ratio of up to about ±2 per cent are observed across the boundary, with generally low values in shield areas to the east and relatively higher values in basin areas to the southwest and in most of southern Norway. Differences in the V_P/V_S ratio are believed to be a rather robust indicator of upper-mantle compositional differences. For the depth interval of about 100–300 km, thick, depleted, relatively cold shield lithosphere is indicated in southern Sweden, contrasting with more fertile, warm mantle asthenosphere beneath most of the basins in Denmark and northern Germany. Both compositional and temperature differences seem to play a significant role in explaining the UMVB between southern Norway and southern Sweden. In addition to the main regional upper-mantle velocity contrasts, a number of more local anomaly features are also outlined and discussed.

Key words: Body waves; Seismic tomography; Cratons; Dynamics of lithosphere and mantle; Europe.

INTRODUCTION AND TECTONIC OUTLINE
The European continent is divided into an old and a younger part by the northwest-southeast trending Tornquist/Trans-European Su-

ture Zone, which extends from the Black Sea to the North Sea. It separates the East European Craton with Archean and Proterozoic lithosphere from the younger terranes accreted during the Phanerozoic that form Central and Western Europe (Gee & Stephenson 2006). These major tectonic units are characterized by significant differences in structural and physical properties such as crustal structure, deep seismic velocity and heat flow (Zielhuis & Nolet 1994; Artemieva et al. 2006; Artemieva & Thybo 2013). Low heat flow, thick crust and thick lithosphere are observed in the old craton

*Now at: Research School of Earth Science, Australian National University, ACT, Australia.
to the east and north, in marked contrast to generally higher heat flow, thinner crust and thinner lithosphere in most of Central and Western Europe. The focus of this study is the variation of seismic velocities (P waves and S waves) in the upper mantle across the northern part of the Tornquist Zone in Southern Scandinavia and Northern Germany and its geodynamic implications.

The main structural and tectonic units in the study area are the Baltic Shield (mainly southern Sweden), the Caledonides (southern Norway) and the Danish and North German Basins (Fig. 1a). There is a general younging of tectonic units from the Svecofennian (1.9–1.8 Ga) shield units to the northeast, over the Precambrian units in the southwestern part of the shield, formed about 1.65–1.5 Ga ago with significant reworking during the 1.15–0.9 Ga old Sveconorwegian orogeny, to the Palaeozoic and Mesozoic sedimentary basins to the southwest. The shield units constitute the western part of the palaeo-continent Baltica. For recent reviews of the formation and evolution of this continent and its southwestern margins we refer to Bogdanova et al. (2008) and Bingen et al. (2008a,b).

Precambrian crust extends to the southwest beneath the Danish Basin down to the Thor Suture (Fig. 1a; part of the Trans-European Suture Zone, also referred to as the Tornquist Suture) formed by the collision/docking of Baltica with the micro-continent Avalonia around the Ordovician-Silurian boundary (c. 440 Ma, Cocks & Torsvik 2006). This collision was followed by that of Baltica/Avalonia with Laurentia which resulted in formation of the large-scale Caledonian Mountain Range, including the c. 430–390 Ma old Scandinavian Caledonides (Roberts 2003; Cocks & Torsvik 2006).

The southwestern part of the study area (Danish, North German and adjacent North Sea areas) was subject to significant Late Carboniferous-Permian magmatic and tectonic activity (e.g. Heeremans & Faleide 2004) which, according to Torsvik et al. (2008), have the characteristics of a Large Igneous Province (LIP) centred on the Skagerrak Sea (Skagerrak-Centered LIP: SCLIP). Both the Danish Basin and the North German Basin were initiated in relation to these magmatic and tectonic events. Lithospheric stretching in the thermally weakened crust–upper-mantle formed an important basin-generating mechanism leading to deep sedimentary basins (Van Wees et al. 2000; Frederiksen et al. 2001; Scheck-Wenderoth & Lamarche 2005; McCann et al. 2006). The
Oslo-Skagerrak rift and graben system were also formed as part of these events. During the Mesozoic and the Cenozoic, the southwestern areas experienced rifting and subsidence offshore Norway, dominating in the central North Sea (Mid-Jurassic) and finally the Palaeocene (c. 55 Ma) opening of the North Atlantic. The age and origin of high topography of the Scandinavian Mountains (the Scandes) are a matter of debate. A widely held view has been that the high topography is relatively young, with a main uplift phase during the Cenozoic (e.g. Dore 1992; Stuevold & Eldholm 1996; Japsen & Chalmers 2000; Lidmar-Bergstrom et al. 2000; Bonow et al. 2007; Green et al. 2013). Recently, Nielsen et al. (2009, 2010) argued that the present high topography is mainly a long-lived remnant of the Caledonian Mountains. This view has generated some debate (Chalmers et al. 2010; Nielsen et al. 2010).

A main tectonic and deep structural boundary in our study area is defined by the transition from old shield units to deep basins along east and of the Sorgenfrei–Tornquist Zone (STZ, eastern Denmark and southwestern Sweden) and along the Teisseyre–Tornquist Zone (TTZ, northern Poland and northeastern Germany) (Fig. 1a; Medhus et al. 2012a). These zones are here collectively and informally referred to as the Northern Tornquist Zone. The STZ is a marked structural lineament within the Precambrian Baltic crust and defined in EUGENO-S Working Group (1988) along the trend of Late Cretaceous-Tertiary inversion tectonics. We emphasize that the boundary between Baltic crust and Avalonia/Caledonian crust is not along the STZ but further to the southwest along the Thr Suture, close to the Caledonian Deformation Front (Fig. 1a) (cf. Abramovitz & Thybo 2000; Balling 2000; Torsvik & Rehnström 2003).

Our study area is almost the same as that covered by P-velocity models in Medhus et al. (2012a). We include new data (in particular JULS project data in the southwestern part, Fig. 1b), and present results of an integrated relative traveltomeography study giving information of P-wave velocity, S-wave velocity and the Vp/Vs ratio. High-resolution information on this ratio for this region is presented here for the first time. This allows a better understanding of the role of compositional differences, in addition to temperature differences, in explaining significant variations in the upper-mantle velocity. In this study, we present high-resolution 3-D seismic velocity models for the upper mantle across the region of southern Scandinavia and main tectonic units, as outlined above.

Previous studies

The study area is generally quite well covered with geophysical investigations to provide information about the structure of the crust and upper mantle. Crustal velocity and thickness are mainly determined by seismic refraction experiments and by analyses of receiver functions (EUGENO-S Working Group 1988; Iwakashi et al. 1994; Svenningsen et al. 2007; Olsson et al. 2008; Sandrin & Thybo 2008; Stratford et al. 2009; Stratford & Thybo 2011; England & Ebbing 2012). For a recent compilation and analysis, see Artemieva & Thybo (2013). The typical thickness of shield crust in southern Sweden is around 45 km (range about 40–50 km), which contrasts with the significantly thinner crust of about 30 km across the Danish and North German Basins. Crustal thickness increases from about 30 km along the Norwegian west coast to about 40 km beneath areas of high topography below the Scandes Mountains. This increase in crustal thickness is associated with a decrease in Bouguer gravity from close to zero in coastal areas to around –100 mGal in areas of high topography (Balling 1980; Ebbing et al. 2012). The deeper parts of shield crust are characterized by relatively high P-wave velocity (>7 km s−1) (cf. Artemieva & Thybo 2013) and high density (Ebbing et al. 2012).

Several studies have shown the existence of distinct contrasts in seismic velocities in the upper mantle of the study area, with generally high velocity to the east beneath shield areas in Sweden and lower velocities beneath sedimentary basins to the southwest, as well as in most of southern Norway. The first high-resolution study to outline a significant velocity contrast in this area was the teleseismic Tor project with information on seismic velocity contrasts across the southeastern part of the STZ (cf. Gregersen et al. 2002, 2010 for reviews). Medhus et al. (2012a), using P-wave teleseismic traveltomeography covering most of the present study area, showed that the boundary between upper mantle with high and low velocities extends to the north-northwest close to the STZ in the Kattegat area between Denmark and Sweden, but then deviates from the STZ (which continues to the northwest into northernmost Denmark and the Danish Basin, cf. Fig. 1a) by running north into southern Norway near the Oslo Graben. That study also outlined a P-wave low-velocity uppermost mantle below most of southern Norway, an area also characterized by low S-wave velocities, as shown by both S-wave traveltime tomography (Wawerzinek et al. 2013) and surface wave analysis (Weidle & Maupin 2008; Maupin 2011; Köhler et al. 2012). The above studies with results for southern Norway included data from the MAGNUS project (Weidle et al. 2010) and formed part of the TopoScandiaDeep project (for a review see Maupin et al. 2013), a component of the TOPOEUROPE program. Some recent continent-scale models also show velocity contrasts in southern Scandinavia for both P and S waves (Jakovlev et al. 2012; Zhu et al. 2012; Rickers et al. 2013), although they generally have lower resolution than the above studies. Kind et al. (2013) studied the upper mantle from Germany across Scandinavia to northern Sweden with seismic S receiver functions. Of particular interest to the present study is the interpretation of a significant increase in lithospheric thickness from Germany and Denmark (about 100 km) to further north in Scandinavia (about 200 km).

In addition to significant differences in crustal and upper-mantle structures, the study area also presents marked differences in heat flow, with generally relatively low values in the old shield and platform areas to the east (about 50–60 mW m−2) in contrast to higher values (about 70–80 mW m−2) in basins areas to the southwest. Southern Norway and the Scandinavian Caledonian areas show mostly intermediate values around 55–60 mW m−2 (Balling 1995; Slagstad et al. 2009). For most of the area, in particular across the STZ/TTZ, differences in heat flow seems to be associated with marked differences in depth to the lithosphere-asthenosphere boundary (Pedersen et al. 1994; Balling 1995; Cotte et al. 2002; Norden et al. 2008; Jones et al. 2010; Köhler et al. 2015).

DATA

We combined data from several temporary arrays/profiles run by different institutions since 1996 (Tor, CENMOVE, CALAS, MAGNUS, DANSEIS, cf. Medhus et al. 2012a) and from the new JULS project (Jütland-Lower Saxony, 2010–2012) covering southwestern Denmark and northwestern Germany. The JULS profile covers the gap between Tor and CALAS data in the German and Danish Basins and supplies the extra ray coverage to constrain 3-D tomography along the northermost STZ. We picked arrival time data from these projects together with data from permanent stations in the region: Norwegian National Seismic Network (NNSN),
Table 1. Summary information including number of arrival time readings for seismological stations/arrays applied in this study (compare with Fig. 1b). Temporary arrays are indicated in italic.

<table>
<thead>
<tr>
<th>Project/stations</th>
<th>Number of stations</th>
<th>Period of experiment/recordings</th>
<th>P-wave readings</th>
<th>SV-wave readings</th>
<th>ST-wave readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>JULS</td>
<td>26</td>
<td>2010–2012</td>
<td>1600</td>
<td>537</td>
<td>572</td>
</tr>
<tr>
<td>DANSEIS</td>
<td>6</td>
<td>2008–2009</td>
<td>689</td>
<td>59</td>
<td>73</td>
</tr>
<tr>
<td>MAGNUS</td>
<td>34</td>
<td>2006–2008</td>
<td>2334</td>
<td>962</td>
<td>1262</td>
</tr>
<tr>
<td>CALAS/CENMOVE</td>
<td>72</td>
<td>2002–2009</td>
<td>2137</td>
<td>716</td>
<td>722</td>
</tr>
<tr>
<td>Tor</td>
<td>138</td>
<td>1996–1997</td>
<td>2556</td>
<td>469</td>
<td>417</td>
</tr>
<tr>
<td>NNSN</td>
<td>16</td>
<td>2006–2012</td>
<td>918</td>
<td>399</td>
<td>468</td>
</tr>
<tr>
<td>SNSN</td>
<td>4</td>
<td>2005–2006</td>
<td>56</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>HFC2</td>
<td>1</td>
<td>2002–2012</td>
<td>523</td>
<td>183</td>
<td>205</td>
</tr>
<tr>
<td>NORSAR</td>
<td>7</td>
<td>2002–2009</td>
<td>2671</td>
<td>924</td>
<td>960</td>
</tr>
<tr>
<td>DK</td>
<td>3</td>
<td>1996–2012</td>
<td>857</td>
<td>339</td>
<td>368</td>
</tr>
</tbody>
</table>

Figure 2. Location of the seismological events used in this study. The yellow frame shows the study area.

METHOD

Traveltime residuals, that is, the difference between observed and calculated traveltimes for each earthquake-station pair, reflect the deviation of the 3-D real Earth from a stratified Earth reference model (such as the IASP91 model of Kennett & Engdahl 1991) along the ray. In the case of regional tomography, we are interested in velocity variations in the upper mantle beneath the area covered by the stations. The effect of velocity structure outside the study area on the residuals is reduced by subtracting the mean of residuals from the residuals of each event. The effect of the crust is subtracted using a ‘known’ crustal velocity and thickness model. These steps are discussed in more detail below.

Since some of the stations used in this study are short period (∼1 Hz) and very short period (>1 Hz), the instrument response removal procedure is an important step in picking the P wave at about 1 Hz, and a crucial step when picking the S wave at around 0.1 Hz. The comparison of waveforms before and after removing instrument response shows the significant improvement in waveform similarity which is required before picking arrival times (Fig. 3).
The P- and S-wave arrival times were determined using an improved cross correlation technique presented in Medhus et al. (2012a) combined with a careful manual check. We used the mixed phase procedure described in Medhus et al. (2012b) to filter P waves around 1 Hz and S waves around 0.1 Hz.

Synthetic traveltimes for P and S waves were computed using the IASP91 velocity model. The importance of having a uniform event list (catalogue of origin time and hypocentre location of each event) is discussed at length in Medhus et al. (2012b).

After these quality-enhancing steps the traveltime residuals were sorted based on the deviation from the median of the traveltime residuals for each event and excluded arrivals deviating more than ± 1.5 s for the P wave and ± 3.0 s for the S wave. The application of these criteria reduced the number of P residuals from 14 349 to 14 079, $S'v$ residuals from 4611 to 4502 and SH residuals from 5070 to 4962, indicating that the vast majority of residuals are within ± 1.5 s of the median residual for P waves and ± 3.0 s of the median for S-waves for each event. After these quality-enhancing steps the traveltime residuals were assessed in two ways. First, we produced maps of regional station residuals in the following way. The station HFC2 has been used as a reference station because it has permanent recording at a high signal-to-noise ratio, giving each event a quality level (ranging from 1 for very noisy data to 8 for high-quality data. For later calculations we used only events within the quality range of 3–8). The second quality control step involved comparison with the reference station HFC2. This station is a permanent station with generally high signal-to-noise ratio, located on bedrock in southern Sweden, where it has been recording during most of the study period (2002–2012). Traveltime residuals were excluded if they deviated more than ± 5 s from the HFC2 traveltime residual. Moreover, residuals at stations showing a trend, or sudden change in time (e.g. due to wrong GPS correction for leap second), were excluded or corrected.

Finally, we sorted arrivals based on the deviation from the median of the traveltime residuals for each event and excluded arrivals deviating more than ± 1.5 s for the P wave and ± 3.0 s for the S wave. The application of these criteria reduced the number of P residuals from 14 349 to 14 079, $S'v$ residuals from 4611 to 4502 and SH residuals from 5070 to 4962, indicating that the vast majority of residuals are within ± 1.5 s of the median residual for P waves and ± 3.0 s of the median for S-waves for each event.
southwest of the Tornquist Zone (Medhus et al. 2012a), is even more strongly imaged by the S-wave residuals. Second, the residuals were subjected to inversions, leading to tomograms of relative anomalies in P-wave velocity, S-wave velocity and the V_P/V_S ratio, as described below.

INVERSION RESULTS

P- and S-wave tomography

The P- and S-velocity tomography models are presented in Figs 5 and 6, respectively. Cells with ray coverage below a threshold (here 200 km cumulative ray length per cell) have been blanked. The P-velocity tomography model confirms and extends the general pattern revealed in previous works (Medhus et al. 2012a), with a prominent upper-mantle velocity boundary (UMVB) separating generally low mantle P velocity in the Danish Basin, most of the North German Basins and in southern Norway, and generally high P velocity in shield areas of southern Sweden.

In general, our S-velocity model shows a pattern very similar to the P-velocity model, but generally with even stronger contrasts (Fig. 6). In particular, the same regional upper-mantle boundary is recovered. There are differences, however, such as the kink in the Kattegat Sea where the regional boundary swings northwards away from the STZ. Here we see a distinct sharp boundary in S-velocity, whereas the P velocity shows a more diffuse low contrast boundary. These differences already point towards anomalies in the V_P/V_S ratio.

V_P/V_S variations

Fig. 7 shows the implied contrasts in the V_P/V_S ratio. We have derived the relative anomalies in V_P/V_S from the relative anomalies in V_P and V_S through the following simple approximations. All anomalies are computed in principle relative to the IASP91 model. Thus

$$\Delta \left(\frac{V_P}{V_S} \right) = \frac{V_P}{V_S,\text{IASP}} - \frac{V_P,\text{IASP}}{V_S,\text{IASP}}$$

By dividing the denominator into the terms in the numerator we get

$$\Delta \left(\frac{V_P}{V_S} \right) = \frac{V_P}{V_P,\text{IASP}} - \frac{V_S}{V_S,\text{IASP}} - 1$$

$$= \left(\frac{V_P - V_P,\text{IASP}}{V_P,\text{IASP}} + 1 \right) \times \left(\frac{V_S - V_S,\text{IASP}}{V_S,\text{IASP}} + 1 \right)^{-1} - 1$$

$$= \left(\frac{V_P - V_P,\text{IASP}}{V_P,\text{IASP}} + 1 \right) \times \left(\frac{V_S - V_S,\text{IASP}}{V_S,\text{IASP}} + 1 \right)^{-1} - 1$$

(2)
Figure 5. Modelled P-wave velocity variations in four depth intervals as indicated. (Model depth interval is 50 km. Each figure thus represents an average of two layers.) Black lines show main tectonic boundaries (STZ, CDF and OG, cf. Fig. 1a). The green dashed line shows the position of the main Upper Mantle Velocity Boundary (UMVB) as determined from this P-wave model. Letters indicate prominent anomaly features discussed in the text cf. Table 2.

If we assume that $\frac{\Delta V}{V} \ll 1$, with $\Delta V \equiv V - V_{\text{IASP}}$ for both P and S velocities (using simple approximation for small $x, 1 + x \approx 1 - x$ and $x^2 \approx 0$), we may simplify the expression for the relative anomalies

$$
\frac{\Delta \left(\frac{V_p}{V_S} \right)}{\frac{V_{\text{IASP}}}{V_{\text{IASP}}}} = \frac{V_p - V_{\text{P,IASP}}}{V_{\text{P,IASP}}} - \frac{V_S - V_{\text{S,IASP}}}{V_{\text{S,IASP}}} \quad (3)
$$

This means that the relative anomaly in V_p/V_S is equal to the relative anomaly in V_p minus the relative anomaly in V_S. Change in V_p/V_S is believed to be an important indication of change in composition of upper-mantle rocks (see below).

Our V_p/V_S model shows a distinct contrast of ± 1–2 per cent across the main UMVB. This prominent feature is very stable down to a depth of 200–300 km, indicating the existence of significant upper-mantle compositional differences, in addition to thermal
Regularization and resolution analysis

The inverse equation for modelling seismic velocity variations may be summarized as

\[\mathbf{m}_{\text{sat}} = \left(\mathbf{A}^T \mathbf{A} + \frac{\sigma_{\text{obs}}^2}{\sigma_0^2} \mathbf{I} + \frac{\sigma_{\text{obs}}^2}{\sigma_{xy}^2} \mathbf{G}^T \mathbf{G} \right)^{-1} \mathbf{A}^T \mathbf{d}_{\text{obs}} \]

where \(\mathbf{m}_{\text{sat}} \) is the vector of slowness anomalies (inverse of the velocity); the matrix \(\mathbf{A} \) contains ray lengths in cells; \(\sigma_{\text{obs}} \) is the observation error standard deviation; \(\sigma_0 \) is the assumed standard deviation of the slowness anomalies; \(\sigma_{xy} \) is the assumed standard deviation of the difference between cell slowness and mean slowness of neighbour cells in the same plane; \(\mathbf{G} \) is the matrix describing the constraint of slowness to neighbours, that is the smoothing; and \(\mathbf{d}_{\text{obs}} \) is the vector of traveltine residuals. The values of the three involved standard deviations control the regularization of the slowness estimates and hence the noise rejection and the smoothing in the inverse model.
Based on previous experience, we regard slowness deviations of 3 per cent as likely, so we used $\sigma_{P0} = 0.03 \times (V_P - IASP)^{-1}$. For the P-velocity inversion, a subjective assessment of arrival time uncertainty led us to the value $\sigma_{Pobs} = 0.2$ s. A conventional L-curve study led to a choice of $\sigma_{Pxy} = 0.0025 \times (V_P - IASP)^{-1}$. The resulting P-velocity model in Fig. 5 defines model data which fit the observed data with an RMS misfit of 0.18 s. This is nicely consistent with the observational error assumed above. The total variance of the observed data is 0.11 s² compared with a misfit variance of $(0.18 \text{ s})^2 = 0.032$ s². The variance reduction factor is therefore 0.30.

For the S-velocity inversion, the traveltime residuals may be expected to be about $\sqrt{3}$ times higher, measured in seconds, if a typical V_P/V_S ratio of $\sqrt{3}$ is assumed. The observational error is also expected to be somewhat higher because arrival times are read at much lower frequencies. However, in order to avoid a bias in V_P/V_S owing to different regularization of the P-velocity models and the S-velocity models, it is mandatory that both inversions...
Figure 8. P-wave velocity, S-wave velocity and Vp/Vs ratio variations (upper, middle and lower panels, respectively) along three cross sections, AA’, BB’ and CC’ (locations in Fig. 1a). Topography (vertical exaggeration) and main tectonic and geological elements are indicated in the top panel (BS, Baltic Shield; CDF, Caledonian Deformation Front; DB, Danish Basin; NGB, North German Basin; RFH, Ringkøbing Fyn High; SNF, Sveconorwegian Front; STZ, Sorgenfrei-Tornquist Zone). Major anomaly features with high contrast are outlined with green in the P model, with purple in the S model and with a black line in the Vp/Vs model.

have the same degree of regularization. This is achieved by selecting $\sigma_{SO} = 0.03 \times (V_{S-IA})^{-1}$, $\sigma_{SOV} = 0.0025 \times (V_{S-IA})^{-1}$ and $\sigma_{SOs} = 0.2 \times V_{P-IA}/V_{S-IA} \pm 0.35$ s.

The resulting S-velocity model in Fig. 6 defines model data which fit the observed data with an RMS misfit of 0.65 s. This is clearly larger than the above assumed observational error. Similarly, at a fixed Vp/Vs ratio we would expect the S residuals to be larger than the P residuals by a factor of about $\sqrt{3}$, implying a data variance of 0.11 s$^2 \times 3 = 0.33$ s2. The actual total variance of the observed S data is 1.16 s2, that is, higher by a factor of more than 3. This reflects the marked anomalies in V_p/V_s ratio which emerge in Fig. 7. The theoretical S-velocity residuals of the S-velocity model in Fig. 6 have a misfit variance of $0.65^2 = 0.42$ s2. Thus, for the S-velocity inversion the variance reduction factor is 0.37.

We analyse resolution in two ways. First, we perform a classical checkerboard test with blocks of a size comparable to the units we see in the tomograms (Figs 5 and 7). Second, we define a simple synthetic structural model which in more detail mimics the main structural features that were identified in the real-data tomograms. We take great care to use exactly the same ray coverage and regularization in these synthetic tests as for production of the real tomograms. Hence, the degree of recovery of checkerboard patterns, as well as the features of the specific structural model, serves as validation of the interpretations we may draw from the real-data tomograms.

Vp and Vs resolution

Fig. 9 shows the input checkerboard for both P and S models. It consists of 150×150 km alternating blocks (with ±4 per cent velocity contrast) separated by 50 km neutral zones. Blocks occupy the depth intervals 100–200, 250–350 and 400–500 km, thus leaving 50 km thick blank intervals. Figs 10 and 11 show the recovery of this checkerboard in P and S models, respectively.

For the P tomography (Fig. 10), we observe a recovery of clear block outlines, however with significant upward smearing to the interval just below the crust (50–100 km). At deeper levels (greater than 250 km), the block contours are still nicely resolved, but the amplitudes are below 50 per cent of the ‘real’ velocity contrasts in the synthetic model. This indicates that lateral resolution of boundaries may be reliable even down to the greatest depths, but real
velocity variations at this wavelength are likely to be significantly larger than the modelled amplitudes. S velocity shows the same upward smearing to the depth interval of 50–100 km. The ray coverage is weaker (c. 5000 rays versus c. 14 000 rays in the P model). However, the checkerboard resolution comes out almost as well for the S rays as for the P-ray distribution, in particular in the upper depth levels. At greater depths (more than 250 km), in addition to lower amplitude, about 50 per cent of the ‘real’ velocity contrast, the block contours are less clear than those of the P model.

Fig. 12 shows the more elaborate characteristic structural input model, which we define by inspiration from the real-data tomogram in Figs 5 and 6. This characteristic model features a boundary between thick and thin lithosphere. The blocks cover depths of 100–300 km with velocity differences of up to ±3 per cent. In the
North German Basin we include a deep high-velocity block at the depth interval of 200–300 km.

The result of forward computation of synthetic anomalies, followed by inverse tomography, is shown in Figs 13 and 14 for P and S waves, respectively. We see considerable vertical smearing. Thus, both low- and high-velocity features smear upwards to the mantle just below the crust (50–100 km), as well as downwards to below 300 km. However, still we observe good recovery of amplitudes and lateral boundaries are very well recovered in this synthetic test in both P and S models, and the downward-smearing is only moderate.

V_p/V_s uncertainty estimation

The V_p/V_s ratio variation, calculated directly from V_p and V_s variations, may easily be affected by different resolution and different
ray coverage in P and S. Fig. 15 shows the recovery of V_P/V_S in the characteristic model. The V_P/V_S ratio in this characteristic model is constant, so the relative model anomalies in V_P/V_S are zero. Indeed, Fig. 15 shows a very faint pattern which represents the noise level owing to actual differences in ray coverage in P and S and the associated different influence of regularizations. The inversion of the real data reveals significantly larger V_P/V_S ratio variations, of up to ±2–3 per cent, that is, comparable to the recovered P-model contrasts.

DISCUSSION AND CONCLUSIONS

Based on careful analysis of about 20 000 waveforms collected in several separate projects over a period of about 15 yr in southern
Scandinavia and northern Germany, we have defined tomograms of relative anomalies in P-wave velocity, S-wave velocity and V_P/V_S ratio. Resolution analysis has been performed in terms of both checkerboard tests and characteristic structure models, inspired by the real-data tomograms. Some vertical smearing is observed, as would be expected, given the generally near-vertical ray direction inherent in regional teleseismic traveltime tomography. Still, the lateral resolution is very good, as would also be expected.

The S-wave traveltimes are defined from signals with a dominant frequency of about 0.1 Hz, so significant sensitivity away from the geometric ray path is expected; at a depth of 300 km the radius of the first Fresnel zone is about 75 km. Note, however, that the
characteristic model analysed is composed of larger blocks, so the resolution of these larger structures is not likely to be invalidated by finite-frequency effects. We may therefore proceed to the interpretation of velocity variations and anomalies exposed as horizontal section in Figs 5 to 7 and as three vertical sections in Fig. 8.

Main velocity anomalies, 100–300 km depth

The main UMVB is clearly outlined at depths of 100–300 km in both the P-wave and the S-wave models (Figs 5, 6 and 8). It follows the boundary found in Medhus et al. (2012a) based on P tomography alone. The UMVB defines a generally very narrow velocity
transition that rather closely follows the trace of the STZ in most of the Danish area, but continues north into southern Norway.

In the following we focus mainly on the S-velocity structure and the V_p/V_s ratio contrasts implied by the P and S tomograms. The main S-velocity transition closely follows the transition found in the P velocity. In the southernmost part the transition at the level 200–300 km is displaced towards northeast, relative to that of depth 100–200 km, implying a dip of about 45° in this direction (consistent with the results of Voss et al. 2006). Near (12°E, 57.5°N, termed the ‘Kattegat Bend’) the boundary bends northwards with a particularly high S-velocity zone centred at 14°E, 58.5°N (termed the ‘South Sweden Fast Zone’ and marked c in Figs 5 and 6). At this location the boundary is near-vertical. The main boundary runs just east of the Oslo Graben.

The UMVB separates two main anomaly features, the ‘South Sweden Fast Zone’ and a prominent low-velocity region, termed the
‘Danish Slow Zone’ (marked e in Figs 5 and 6), which is aligned from around (9° E, 57° N) to around (11° E, 55° N), running from the Skagerrak through most of the Danish area and extending south into the northernmost part of Germany. This ‘Slow Zone’ is apparent in both P and S models and in particular as a pronounced S-anomaly (down to −2 to −3 per cent) in the 100–250 km depth interval (Figs 6 and 8).

A particularly deep local minimum in S-velocity, as well as in P velocity, is found northwest of the Oslo Graben around (10° E, 61° N), called the ‘South East Norway Slow Spot’ and marked b in Figs 5 and 6. In western Norway (near Sognefjord and Hardanger Fjord), relatively higher S-velocities are found at 100–200 km depth (7° E, 61° N), termed the ‘Southwest Norway Fast Spot’ and labelled a in Figs 5 and 6. At the southernmost end of the resolved model...
volume (10°E, 53°N, f in Figs 5 and 6), we see an enigmatic deep fast region, termed the ‘North German Fast Spot’. This high-velocity mantle body was also resolved by the Tor project in several studies (cf. Gregersen et al. 2002, 2010). As the Tor picks are included in the present study, we have validated this high-velocity anomaly by performing an inversion using only the new JULS data, where station locations differ from station locations in the Tor project (cf. Fig. 1b). This inversion was based on the ray-adapted tomography procedure described in Hejrani et al. (2014). The resulting velocity anomalies discussed above are summarized in Table 2.

The fact that S-velocities generally show stronger contrasts than P velocities implies that there will be contrasts in the Vp/Vs ratio aligning with the velocity anomalies. In general, this is indeed the case (Fig. 7). Note that where Vp is relatively high and Vs is relatively even higher (both blue colour) the Vp/Vs ratio will be relatively low and hence show up as red. Similarly, relative high Vp/Vs ratios (blue) are seen in areas of relatively low Vp and even lower Vs. We observe that high Vp/Vs ratios dominate southwest of the UMVB, whereas relatively low Vp/Vs ratios dominate northeast of the boundary. The slow spot near the Oslo Graben, (b), has a relatively high Vp/Vs ratio, whereas the relative fast spots in western Norway (a), southern Sweden (c) and northern Germany (f), all have relatively low Vp/Vs ratios.

We should expect some downward smearing of the strong velocity structure at shallower depths (<300 km). We indeed observe the same main anomalies in a weakened form at depths of 300–500 km. Although the resolution tests indicated that we have some deep resolution, we hesitate to interpret the structure at these deep levels.

Table 2. Summary of characteristics of main velocity anomaly features with approximate anomaly centres (cf. Figs 5, 6 and 7).

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Latitude</th>
<th>Main depth (km)</th>
<th>δVs (per cent)</th>
<th>δVs/Vs (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main upper-mantle velocity boundary (UMVB)</td>
<td>15°E to 12°E</td>
<td>54°N to 62°N</td>
<td>100–300</td>
<td>±1</td>
</tr>
<tr>
<td>Southwest Norway Fast Spot, labelled a</td>
<td>7°E</td>
<td>61°N</td>
<td>100–200</td>
<td>~0</td>
</tr>
<tr>
<td>Southeast Norway Slow Spot, labelled b</td>
<td>10°E</td>
<td>61°N</td>
<td>100–300</td>
<td>~2</td>
</tr>
<tr>
<td>South Sweden Fast Zone, labelled c</td>
<td>14°E</td>
<td>58.5°N</td>
<td>100–300</td>
<td>+1</td>
</tr>
<tr>
<td>Kattegat Bend, labelled d</td>
<td>12°E</td>
<td>57.5°N</td>
<td>100–300</td>
<td>±1</td>
</tr>
<tr>
<td>Danish Slow Zone, labelled e</td>
<td>9°E to 11°E</td>
<td>57°N to 55°N</td>
<td>100–250</td>
<td>~1</td>
</tr>
<tr>
<td>North German Fast Spot, labelled f</td>
<td>10°E</td>
<td>53°N</td>
<td>100–300</td>
<td>+0.5</td>
</tr>
</tbody>
</table>

Svecofennian, Sveconorwegian and Caledonian units

Northeast of the main UMVB the high velocities and low Vp/Vs ratios extend down to depths of 250 km or more. We interpret these velocities in terms of a thick lithosphere with strong depletion in iron and fluids, thus with a high solidus temperature and high viscosity, thereby furthering longevity. The interpretation of thick lithosphere is in accordance with several previous works (Cotte et al. 2002; Gregersen et al. 2002, 2010; Hieronymus et al. 2007; Medhus et al. 2012a). We note that in southwestern Sweden this zone of thick lithosphere crosses the boundaries between Early Proterozoic Svecofennian units, the Trans-Scandinavian Igneous Belt and eastern Sveconorwegian units (compare with Fig. 1a).

In contrast to southern Sweden, low velocities and high Vp/Vs ratios are found in southern Norway, west of the UMVB. We interpret this region as having thinner lithosphere and higher temperatures. The upper mantle is likely to be less depleted, consistent with the observed higher Vp/Vs ratios, which lowers the ‘resilience’ of the LAB. We note that the change in Vp/Vs ratio is large compared to what is easily explained by a change in composition alone, thus implying higher upper-mantle temperatures, despite of relatively low heat flow. If the asthenosphere has developed partial melt here, it would imply even greater lowering of mainly Vs and hence a further increase in Vp/Vs ratio. Notably, the UMVB follows the eastern flank of the Late Carboniferous-Permian Oslo Graben, which has been suggested to have formed in a weakness zone between the eastern and western Sveconorwegian units (Pascal et al. 2002). The existence of a marked, old lithosphere boundary is supported by the results of a recent integrated lithospheric modelling study by Gradmann et al. (2013); see also discussion below.

Other studies have detected the particularly low S velocities below southern Norway using teleseismic tomography (Wawerzinek et al. 2013), surface wave tomography (Weidle & Maupin 2008; Maupin 2011; Köhler et al. 2012) and full waveform low-frequency
tomography (Rickers et al. 2013). Rickers et al. (2013) interpret this anomaly as being connected westwards to the ‘Iceland - Jan Mayen plume system’. We find the centre of this low S-velocity anomaly close to the northern end of the Oslo Graben (marked b in Fig. 6), but we also identify higher relative S-velocities in southwestern Norway (a in Fig. 6), so if low velocities near the Oslo Graben connect at all, it looks more like a connection southwards. Note that our checkerboard and recovery tests (Figs 9 and 15) show very good lateral resolution in this central part of the study area. This speaks against a single west-to-east protruding tongue of hot/slow material from the Atlantic side. Close scrutiny of Rickers et al. (2013: Fig. 6 at 160 km depth) shows that this study also detects the area of increased velocity in southwestern Norway. However, we do not rule out that flows in the asthenosphere can transport hotter and/or more fertile material over large distances, possibly leading to patchy low-velocity structure guided by, or generating, LAB topography, which may be what we see in southern Norway.

An obvious question is, if our results, emphasizing marked velocity anomalies in the upper mantle, may add new elements to the debate about the origin and nature of high topography of western Scandinavia including southern Norway (Caledonian as well as Sveconorwegian units, Fig. 1). A key point is the age of these anomalies. From previous studies on crustal thickness and gravity data (e.g. Balling 1980; Svenningsen et al. 2007; Ebbing et al. 2012), we find that the high topography of the Southern Scandes Mountains is isostatically compensated mainly by a thickened crust, thought to be largely of Caledonian age, resulting from continent-continent collision between Baltica and Laurentia (cf. introduction and Nielsen et al. 2009). However, reduced upper-mantle seismic velocities, thinned lithosphere and higher upper-mantle temperatures, as argued above, all point to some reduction in density, which means that some buoyancy from both within the mantle lithosphere and below are likely (see also detailed discussions in Medhus et al. 2012 and Maupin et al. 2013). Our present results emphasize that most likely both temperature and compositional differences are needed to explain observed differences in seismic velocities between southern Norway and southern Sweden, dating back, at least in part, to Late Carboniferous-Permian (see discussion below), and perhaps even older tectonic processes as well. This indicates that such deep buoyancy and associated topography is more likely to have a relatively old origin. If some parts of the upper-mantle low-velocity anomalies connect to the North Atlantic, as discussed above, may a minor part of buoyancy and related topography be of a more recent nature.

Danish and North German Basins

In the region of the Danish and North German Basins, the shallower mantle zone, 100–200 km, is dominated by low relative P velocity and even lower relative S-velocity, so that the relative \(V_P/V_S \) anomaly is predominantly positive. This is consistent with a relatively shallow LAB inferred from surface-wave analysis (Pedersen et al. 1994; Cotte et al. 2002; Köhler et al. 2015) and thermal modelling (Balling 1995; Norden et al. 2008). The low velocities and high relative \(V_P/V_S \) ratio suggest a less depleted mantle and higher temperatures compared with the adjacent thick shield lithosphere in southern Sweden. Several previous studies have interpreted these basins in terms of a complex sequence of rifting, stretching, and subsidence events (e.g. Van Wees et al. 2000; Frederiksen et al. 2001; McCann et al. 2006), with the Late Carboniferous, Permian and Triassic magmatic and tectonic activity (Heeremans & Faleide 2004; Torsvik et al. 2008) as important episodes.

The enigmatic high-velocity body recovered in both \(P \) and \(S \) velocity between 200 and 300 km depth, centred near 10° E, 53° N (marked with f in Figs 5 and 6) also has a lower \(V_P/V_S \) ratio compared to the surrounding North German Basin. The upward smearing of this deeper high-velocity anomaly explains an apparent hole in the shallow North German low-velocity anomaly, however, still resolved and most clearly seen in the \(P \) model (Fig. 5 and at depth 50–200 km in Fig. 8). A very deep, local remnant of an old depleted lithospheric root in the Avalonian terrane, comparable to what is found under southern Sweden, could be an explanation for the high-velocity unit, but it would be very unlikely in the middle of a region subjected to Carboniferous–Permian–Triassic magmatism and rifting events. A more likely, but still somewhat speculative interpretation would be that the positive velocity anomaly is caused by an advected neutrally buoyant body, depleted in iron and fluids, implying a significantly higher solidus, relatively higher \(V_S \), and lower \(V_P/V_S \) ratios.

The importance of the main UMVB and the relationship between the Danish Basin and this boundary are emphasized further in three vertical sections (Fig. 8). Section AA runs the direction of previous studies along the Tor array. The STZ is located at profile distance 650 km. The UMVB is very clearly expressed in all velocity indicators, and it seems to dip at about 45° under Sweden. Hieronymus et al. (2007) modelled this principal structure as a convective system southwest of the UMVB, bounded by high viscosity, long lived lithosphere northeast of the UMVB. The \(P \)- and the \(S \)-velocity models differ in detail regarding this dipping interface. We infer that the causes of velocity anomalies are both temperature (differences in heat flow and thermal structure, Balling 1995; Hieronymus et al. 2007; Norden et al. 2008) and the degree of depletion and possibly minor amounts of melt in a relatively shallow and well developed asthenosphere beneath the basins. These influence \(V_P \) and \(V_S \) differently, and do not need to follow the same subsurface distributions. So the different fine structure in \(V_P \) and \(V_S \) may be real.

Section BB runs from the Danish Basin across the STZ and the UMVB (at the ‘Kattegat Bend’) into the ‘South Sweden Fast Zone’. The \(P \) velocity boundary is more diffuse, where \(S \) velocity contrasts stand strongly and \(V_P/V_S \) is more negative to the east compared with the lithosphere in profile AA. We interpret this thick lithosphere beneath southwestern Sweden as being even more depleted than that found in profile AA, implying even higher viscosity. This strong unit may have played an important role as control of the tectonic development of this area, as will be discussed below. The upper mantle below \(\sim 300 \) km shows more normal \(V_P/V_S \) values.

Section CC runs north-south from the basins, across the STZ, into the Sveconorwegian units, across the Caledonian Front and into the highest topography of the Southern Scandes Mountains. Apart from a very nice delineation of the enigmatic high-velocity body deep under the North German Basin, this profile shows a surprisingly uniform low-velocity level with some deeper negative anomalies, particularly in \(V_S \) (depth 100–200 km at profile distance 500–600 km and depth c. 200 km at profile distance 900–1100 km). Most notably, we do not see much difference between the Danish Basin and the Southern Scandes Mountains (Sveconorwegian and Caledonian areas of high topography, Fig. 1a). An apparent clear separation of anomalies between these units around km 800 in section CC (in particular in the \(S \) model and the \(V_P/V_S \)), is due to the position of this profile passing close to the UMVB at its westernmost position (compare Figs 1a, 6 and 7).
The main UMVB and the Carboniferous-Permian magmatism

The similarity between southern Norway mantle and basin mantle to the south is remarkable. The indicated moderate thickness of the lithosphere under southern Norway is not easily explained considering the small differences in heat flow relative to the adjacent areas of southern Sweden (Balling 1995; Slagstad et al. 2009), but both temperature and compositional differences are likely to exist. Thus, in a recent integrated geophysical–petrological modelling study, Gradmann et al. (2013) emphasize that differences in the composition of the lithosphere between southern Norway and Sweden are needed to satisfy the gravity field and isostatically compensated topography. We see a north to south trend in the deepest minima in S-velocity (see intervals 100–300 km in Figs 5 and 6), running from just north of the Oslo Graben to central parts of the basins. Note that Rickers et al. (2013) also found relatively low S-velocity at levels 80–120 km, as well as deeper, under southern Norway. These features may be associated with a shallow LAB and related higher temperatures and lower average depletion at depths of 100–200 km. Such antiforms in the LAB may be remnants of loss of lithosphere due to thermal erosion or convective instability at the climax of magmatism in the Late Carboniferous-Permian tectonic and magmatic activity.

The presence of such LAB antiforms today implies that the surviving lithosphere in Norway and Denmark has remained sufficiently resilient to convective/conductive smoothing of the LAB under the more ‘normal’ thermal and dynamic conditions after the Permian. This would attest to a degree of depletion which may even be as high as that we have mapped in southern Sweden outside the Fast Zone. The main UMVB may therefore be understood as representing the northeastern limit of ‘lithosphere-asthenosphere attenuation’ associated with the Late Carboniferous-Permian tectonic and magmatic activity, the eastern boundary of which is outlined very close to the UMVB (cf. Heeremans & Faleide 2004). The fact that section BB’ in Fig. 8 shows the signature of a particularly high degree of lithospheric depletion and hence resilience right at the ‘Kattegat Bend’, where the UMVB turns northward, could indicate that this ‘strong-point’ played an important role in controlling the geometry of the Danish Basin and the Oslo Graben.

ACKNOWLEDGEMENTS

This work was conducted in the framework of the TopoScandia-Deep project (part of the ESF TOPO-EUROPE EUROCORES Programme) as well as project TopoReal, both with economic support from the Danish Council for Independent Research. BH was also supported by a grant from Aarhus University. Acquisition of the JULS (JUTland to Lower Saxony) data was supported by equipment from Aarhus University and by equipment loans from Geophysical Instrument Pool Potsdam (GIPP). Project MAGNUS data were recorded with the mobile KARlsruhe BroadBand Array (KABB) of the Karlsruhe Institute of Technology, Germany as well as with permanent stations of the NORSAR array and the Norwegian National Seismological Network (NNSN). Projects CENMOVE and CALAS data were recorded by mobile seismographs from the Geophysical Instrument Pool Potsdam (GIPP), from the NERC Geophysical Equipment Facility (SEIS-UK), from the Danish broad-band pool and from the University of Aarhus. We are grateful to Peter Voss and Søren Gregersen (Geological Survey of Denmark and Greenland, GEUS) for availability of project Tor data and data from permanent Danish stations, to NORSAR (Johannes Schweitzer) and the University of Bergen (Lars Ottentmuller) for access to data from permanent stations in Norway, to the University of Uppsala (Roland Roberts) for availability of data from stations of the Swedish SNSN network and to the University of Copenhagen (Hans Thybo) for data from DanSeis stations deployed in Sweden. We acknowledge project coordination by Valerie Maupin, Oslo (TopoScandiaDeep) and Søren B. Nielsen, Aarhus (TopoReal) and are grateful for stimulating discussions. Thanks are also due to Steen Roj Jacobsen, Aarhus, and Kurt Wylegalla, Potsdam, who participated in deploying and visiting the JULS temporary stations. We thank J. Richard Wilson, Aarhus, for improving the English text and two anonymous reviewers for constructive comments and suggestions.

REFERENCES

Balling, N., 1995. Heat flow and thermal structure of the lithosphere across the Baltic Shield and northern Tornquist Zone, Tectonophysics, 244, 13–50.

Maupin, V. et al., 2013. The deep structure of the Scandes and its relation to tectonic history and present-day topography, Tectonophysics, 602, 15–37.

