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Preface 
 
The scope of the Science Plan is to describe the scientific background, applications, and activities 
related to the Environmental Mapping and Analysis Program (EnMAP) mission. Primarily, the 
document addresses scientists and funding institutions, but it may also be of interest for environmental 
stakeholders and governmental bodies. It is conceived to be a living document that will be updated 
throughout the entire mission.  
Chapter 1 provides a brief overview of the principles and current state of imaging spectroscopy. This 
is followed by an introduction to the EnMAP mission, including its objectives and potential impact on 
international programs as well as major environmental and societal challenges to their understanding 
and management EnMAP can contribute. Chapter 2 describes the EnMAP system together with data 
products and access, calibration/validation issues, and synergies with other missions. Chapter 3 gives 
an overview of the relevance, current lines of research, and potential contributions of EnMAP for 
major fields of application, such as vegetation, geology and soils, coastal and inland waters, 
cryosphere, urban areas, atmosphere and hazards to address the environmental and societal challenges 
presented in Chapter 1. Finally, Chapter 4 outlines the scientific exploitation strategy, which includes 
the strategy for community building and training, preparatory flight campaigns and software 
developments. 
A list of abbreviations is provided in the annex to this document, while an extended glossary of terms 
and abbreviations is available at the EnMAP website. 
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1 Introduction  
1.1 Principles of imaging spectroscopy 
Surface materials, such as vegetation, soil, and rock, can be discriminated and characterized based on 
their so-called spectral signatures, i.e., diagnostic absorption and reflection characteristics over the 
electromagnetic spectrum. Because every material is formed by chemical bonds, their harmonics and 
overtones of vibrational electronic transitions result in characteristic spectral absorption features that 
can be detected in narrow wavelength intervals. Some of the most significant absorption features 
occur between wavelengths of 400 nm to 2500 nm, where reflected solar radiation dominates the 
natural electromagnetic spectrum (Figure 1). These absorption characteristics can vary in their 
spectral depth, width, and location and, therefore, serve as diagnostic indicators, which enable to 
characterize vegetation conditions (e.g., Knipling, 1970) to detect water constituents (Lee et al., 1999) 
or to identify mineral assemblages (e.g., Hunt and Salisbury, 1970). 

  
Fig. 1: Solar radiation spectrum of extra-terrestrial radiation (Top of Atmosphere) and global radiation (Sea 
level, composed of incoming, diffuse, and reflected radiation) with major atmospheric absorption bands. 
Irradiance data are derived from the American Society for Testing and Materials’ (ASTM’s) Terrestrial 
Reference Spectra (http://rredc.nrel.gov/solar/spectra/am1.5/). 

 
Imaging spectroscopy, also known as hyperspectral imaging, is defined as a passive remote sensing 
technology that acquires simultaneous images in many spectrally contiguous, narrow bands such that 
for each pixel a reflectance spectrum can be derived (Goetz et al., 1985; Schaepman, 2007). As 
described hereinafter, application areas of hyperspectral sensing include ecosystem processes, surface 
mineralogy, water quality, soil type and erosion, vegetation type and condition, canopy chemistry, 
snow and ice properties, but it is also widely used in other areas, such as in medicine or 
manufacturing industries. 
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In ecosystem studies, the spectroscopic focus is on the detection and identification of plant 
succession, phenology, plant health, and invasive species to provide information about ecosystem 
conditions in general and the locations and types of environmental stresses in particular (Asner et al., 
2008; Schmidtlein and Sassin, 2004; Ustin et al., 2004). In the past, most research has been focused 
on the spectral properties of leaves and canopies, providing estimates of (forest) species, foliar 
chemistry, biomass and carbon (Goodenough et al., 2012). In general, the spectral characteristics of 
vegetation exhibit strong pigment absorptions in the visible (VIS: 400 nm to 700 nm) portion of the 
spectrum (Figure 2). The near infrared (NIR: 700 nm to 1400 nm) is marked by a steep increase of 
reflectance that can be related to biomass, state and type of cellular arrangement, density, geometry 
and water content of a vegetation canopy. A shift of the "red edge" at 680 nm to 780 nm to shorter 
wavelengths is related to chlorophyll decrease, which can in turn be an indication of heavy metal, 
water or nutrient stress. Also senescent leaves are characterised by a decrease in chlorophyll, followed 
by losses of other pigments and leaf water content (Ustin et al., 2004). The biochemical content of 
leaves and canopies, including nitrogen-containing compounds and lignin, absorbs radiation at 
fundamental stretching frequencies, generally in the NIR and shortwave-infrared (SWIR: 1400 nm to 
2500 nm) regions. In general, stress and aging increase the VIS and SWIR reflectance while 
decreasing it in the NIR (Ustin et al., 2004). Consequently, imaging spectroscopy is highly suitable to 
quantify vegetation state and to distinguish between various vegetation species. 
 

 
Fig. 2: Reflectance spectra of selected Earth’s surface components. Reflectance data are derived from the USGS 
Digital Spectral Library (http://speclab.cr.usgs.gov/spectral.lib06/). The laboratory measurements represent 
samples of an oak leaf from Colorado (leaf), Aventurine quartz from India (rock), montmorillonite and illite 
from Virginia (soil), seawater from the Pacific Ocean (water), fresh snow from Colorado (snow), and black road 
asphalt from Colorado (urban). 

 
For geologic applications, imaging spectroscopy is used to map the Earth’s surface composition (in 
terms of mineralogy or lithology) and quantify rock and soil chemistry, which is based on spectral 
absorption features. Reflectance spectra of minerals are dominated in the visible near-infrared (VNIR) 
wavelength range (400 nm to 1400 nm) by the presence or absence of transition metal ions (e.g., Fe, 
Cr, Co, Ni) resulting in absorption features due to electronic processes. The presence or absence of 
water and hydroxyl, carbonate and sulphate determine absorption features in the SWIR region due to 
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vibrational processes. These phyllosilicates, sorosilicates, hydroxides, sulphates, amphiboles and 
carbonates are widespread components of the Earth’s surface. The absorption band depth is related to 
grain or particle size, as the amount of light scattered and absorbed by a grain is dependent on grain 
size (van der Meer et al., 2012). In general, absorption band depth is correlated with the (relative) 
amount of material present. Based on the relative absorption depth, for example, it has been shown 
that kaolinite and organic carbon content can be derived with an accuracy of about 2 % by weight 
(Krueger et al., 1998).  
Soils are dynamic environmental components of extremely variable physical and chemical 
composition (Ben-Dor et al., 1999) and essential for ecosystem functions. They comprise a major sink 
for biospheric carbon and organic matter in the topsoil, whereas the proportion of these components 
provides a good indication of soil quality, erosion, and dominant physical processes (Ustin et al., 
2004). Since the major constituents of soil minerals do not exhibit absorption features in the VNIR 
and SWIR range (Hunt, 1977), their spectral reflectance characteristics are mainly influenced by 
organic matter content, clay mineral composition, iron-oxide content, moisture content, salinity, 
texture and surface roughness. Typically, soils have broad, shallow absorption features at wavelengths 
between 400 nm and 2500 nm that are related to iron oxide and organic matter (Figure 2). In general, 
reflectance decreases with increasing organic matter and/or moisture content. Increases in particle size 
also cause a decrease in overall reflectance. Even small amounts of iron oxides can alter VNIR spectra 
significantly, causing broad absorption features particularly around 400 nm, 700 nm and 870 nm 
(Ben-Dor et al., 1999). In contrast, several clay minerals (e.g., montmorillonite, kaolinite, illite, 
smectite) and carbonates display distinctive narrow-band absorption features in the SWIR range 
between 2000 nm and 2500 nm (Ustin et al., 2004). Recent studies on soil properties focused on soil 
degradation, genesis and formation, contamination, classification and mapping, as well as on soil 
water content and swelling soils (Ben-Dor et al., 2009). 
Imaging spectroscopy has been widely used to monitor oceans and inland waters, which are 
characterized by an overall high absorption of radiant energy compared to land surfaces (Figure 2). 
This characteristic makes water suitable to isolate and measure its optical constituents, such as 
pigments (e.g., chlorophyll), a wide range of phytoplanktonic species, dissolved organic matters, and 
suspended non-algal particles (e.g., minerogenic sediments). Coastal and inland waters are optically 
more complex as compared to open oceanic waters, which can be characterized mainly by one optical 
parameter and are generally referred to as case-1 waters (Morel and Prieur, 1977). In contrast, inland 
and coastal waters are influenced by multiple parameters. 
Snow cover and its subsequent melt can dominate local to regional climate and hydrology in the 
world’s mountainous and Polar Regions. To model the snowmelt distribution and its impact, 
hyperspectral remote sensing allows for the retrieval of snow properties, such as snow-covered area, 
albedo, grain size, very near surface liquid water, and impurities (Dozier and Painter, 2004). Among 
natural materials at the Earth’s surface, snow has a huge range of spectral reflectance values 
depending on its physical characteristics, primarily the grain size but also dust or soot content, organic 
substances such as algae, and liquid water (Dozier et al., 2009). Clean, deep snow is highly reflective 
in the VIS spectrum, whereas reflectance in the NIR and SWIR wavelengths shows a general 
decrease, but varies considerable depending primarily on the grain size (Figure 2). 
Urban areas are characterized by a wide range of spectrally distinct surface materials, whose spectral 
signature is determined by its chemical composition (Heiden et al., 2012). For example, roofing tiles 
and polyethylene exhibit pronounced absorption features and high-spectral variation, whereas other 
urban surfaces, such as concrete and asphalt, are characterized by low reflectance and low spectral 
variation. Heldens et al. (2011) identified the following current major topics regarding urban 
applications: urban development and planning, urban growth assessment, risk and vulnerability 
assessment, and urban climate. 
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EnMAP has the capability to detect individual absorption features in the spectra of many materials, 
solids, liquids, or gases. Actual detection depends on the instrument´s spectral coverage, spectral 
resolution, signal-to-noise ratio, the abundance of the material, and the strength of the material’s 
absorption features in the measured wavelength region. The spectral molecular absorption and 
scattering properties of materials, as mentioned in the previous paragraphs, form the basis for the 
identification and determination of the abundances of surface and atmospheric constituents. 
Accordingly, research and development efforts within the EnMAP mission employ these fundamental 
spectral characteristics as a basis for the extraction of information from spaceborne hyperspectral 
data. 

1.2 Current scenario in imaging spectroscopy and EnMAP 
More than three decades of effort have been devoted to the development of imagers capable of 
acquiring contiguous spectra in different wavelength regions, thereby permitting precise and 
quantitative analysis of terrestrial and aquatic ecosystems. These imaging spectrometers have 
primarily been flown in aircrafts for experimental and commercial purposes, e.g., AIS, (Vane et al., 
1983), FLI and casi (Gower et al., 1992), AVIRIS (Vane et al., 1993; Green et al. 1998), GER/DAIS 
(Collins and Chang, 1990), SFSI (Neville and Powell, 1992), Hydice (Rickard et al., 1993), MIVIS 
(Bianchi et al., 1994), HyMap (Cocks et al., 1998), APEX (Itten et al., 2008; Schaepman et al., 2004 
and 2015), AVIS (Oppelt and Mauser, 2007), AISA (www.spectralcameras.com/aisa), HySpex 
(www.hyspex.no), and Hyperspec (www.headwallphotonics.com) (Figure 3). However, data 
acquisition from an aircraft platform cannot provide a synoptic view of extended areas and repeated 
acquisitions are costly. For a more complete overview of airborne imaging spectroscopy sensors and 
their history refer to Schaepman (2009). 

 

 
Fig. 3: Overview of the spectral and spatial resolution of selected airborne and spaceborne hyperspectral and 
multispectral sensors. 
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In general, operational optical satellite sensors have been multispectral instruments, operating in 
selected discrete bands in the VNIR region including in some cases bands in the SWIR and thermal 
infrared (TIR) region of the spectrum (e.g., Landsat, ASTER). The panchromatic sensors provide only 
spatial information, while the multispectral instruments, such as the broadband systems Landsat, 
SPOT, IRS, CBERS, ASTER, ALI, or recently Sentinel 2 augment the spatial data with mainly 
qualitative information about the surface materials. Exceptions are the few launched hyperspectral 
sensors NASA’s Hyperion (from 2000 to likely 2016; Ungar et al., 2003, Pearlman et al., 2003), 
NASA’s HICO (from 2009 to 2015; Corson et al., 2008; Lucke et al., 2011), and ESA’s CHRIS (since 
2001; Barnsley et al., 2004) (Figure 3). Considering that Hyperion and CHRIS were designed for a 1-
year lifetime, they have provided exceptional results. Nonetheless, CHRIS and HICO are limited to 
the VNIR region, while Hyperion is characterized by a low signal-to-noise ratio. Both of these factors 
limit the sensors in their feature detection capabilities. Therefore, current spaceborne sensors provide 
only limited information on biochemical and geochemical parameters, which are required for detailed 
environmental studies. 
In view of these developments, the EnMAP mission represents a milestone towards a comprehensive 
hyperspectral observation from space. Other imaging spectroscopy missions are prepared by ASI 
(Italian Space Agency) in the form of PRISMA (PRecursore IperSpettrale della Missione Operative; 
Pignatti et al., 2013), by JAXA (Japanese Aerospace Exploration Agency) in the form of HISUI 
(Hyperspectral Imager Suite; Iwasaki et al., 2011), by NASA in the form of HyspIRI (Hyperspectral 
Infrared Imager; Green et al., 2008), and by CNES (Centre National d’Études Spatiales) in the form of 
HYPXIM (Michel et al., 2011), among others. A comprehensive overview on all running and future 
Earth Observation IS missions is available for download from the EnMAP website.  
EnMAP is a German hyperspectral satellite mission that aims at monitoring and characterising the 
Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes 
of the Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters, which 
provide information on the status and evolution of various terrestrial and aquatic ecosystems. An 
overview of the EnMAP mission is provided in Guanter et al. (2015). Once operating, EnMAP will 
provide unique data needed to address major environmental issues related to human activity and 
climate change. The mission’s main objective is to study and decipher coupled environmental 
processes and to assist and promote the sustainable management of the Earth’s resources. Despite 
being a primarily scientific mission, EnMAP has a clear potential to evolve towards an operational 
service. 
The EnMAP mission consortium comprises the Helmholtz Centre Potsdam - German Research Centre 
for Geosciences (GFZ) as the principal scientific investigator, OHB Systems AG as the industrial 
prime contractor in charge of providing the instrument and satellite service module, the Space 
Administration at the German Aerospace Agency (DLR) managing the project, and DLR 
Oberpfaffenhofen responsible for the ground segment. 
 

1.3 EnMAP mission objectives 
The main scientific goal of the hyperspectral EnMAP mission is to study environmental changes, 
investigate ecosystem responses to human activities, and monitor the management of natural 
resources. By measuring diagnostic parameters that quantify the state and trend of environmental 
change, the stability of ecosystems, and the sustainability of resource use, the EnMAP mission aims to 
provide critical information for an improved understanding and management of the Earth System. 
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The primary mission objectives are: 
• to provide high-quality calibrated hyperspectral data for advanced remote sensing analyses; 

• to foster and develop novel methodologies that improve the accuracy of currently available 
remote sensing information and to provide advanced science-driven information products; 

• to obtain diagnostic geochemical, biochemical and biophysical parameters that describe the 
status and dynamics of various ecosystems to improve our understanding of complex 
environmental processes; 

• to provide information products that can serve as input for ecosystem models; 

• to significantly contribute to environmental research studies, particularly in the fields of 
ecosystem functions, natural resource management, natural hazards and Earth system 
modelling; and 

• to develop new concepts and techniques for data extraction and assimilation to achieve 
synergies with other sensors. 

EnMAP will significantly increase the availability of currently infrequent hyperspectral 
measurements. To understand and fully exploit the information content provided by EnMAP, novel 
evaluation techniques need to be developed, which fully utilize EnMAP’s regional coverage on a 
global scale. EnMAP data will provide a unique opportunity to adapt and extrapolate existing 
hyperspectral data analysis approaches derived from laboratory, field, and airborne measurements to 
spaceborne imagery. Their integration in regional ecosystem models will allow to complement, 
enhance, and extend current local case study findings to a regional scale. Consolidated and improved 
regional scale science on the state and evolution of ecosystems is the prerequisite for improvements in 
global ecosystem models. Such upscaling studies require a sensible generalisation of the derived 
quantitative ecosystem parameters and the synergistic analysis with other spaceborne imagery, such as 
provided by ESA’s Sentinels. 
Due to the 30° across track off-nadir pointing capability, EnMAP is suited for repeated coverage of 
multiple key target sites with a maximum revisit cycle of 4 days. This ability allows EnMAP to 
repeatedly observe a globally distributed network of local to regional key target sites during its five 
years of mission operation.  

1.4 Overarching research themes for EnMAP 
EnMAP’s repeated observations with an advanced spectral coverage and resolution will provide new 
insights into multiple interrelated environmental subjects. The EnMAP Science Advisory Group 
(EnSAG) identified several research topics for which EnMAP data can provide a substantial 
contribution. Because hyperspectral image analysis is applicable to a wide range of research topics, 
this selection focuses only on some of the most challenging environmental and societal questions. 
 
Climate Change Impact and Measures 

• How does climate change affect state, composition and seasonal cycles of terrestrial and aquatic 
ecosystems? 

• What measures can effectively combat climate change, and how can their implementation be 
monitored? 

Land-Cover Changes and Surface Processes 
• Where and to what extent do land degradation processes and land-use / land-cover changes 

occur from local to global scale? 
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• Which processes drive land degradation, and how efficient are countermeasures? 

• What are the consequences of land degradation and land-use / land-cover changes in view of 
food security and environmental sustainability? 

Biodiversity and Ecosystem Processes 
• What is the spatial pattern of ecosystem and diversity distributions from local to global scale? 

• How do ecosystems change over time in their composition and health? 

• How are ecosystem processes affected by human activities or natural causes, and how can 
harmful consequences on their biodiversity be reduced or prevented? 

Water Availability and Quality 
• Which areas are affected by water scarcity and water quality problems from local to global and 

from seasonal to decadal scales? 

• How do climate change and human activities, such as intensive agriculture, water demanding 
industries and high population density, reinforce water scarcity and water quality problems? 

Natural Resources 
• How can natural resources, such as mineral deposits, energy sources and ground water sources, 

be explored and managed in a sustainable way? 

• What impact do human activities, such as industry, mining and agriculture, have on natural 
resources? 

• How can environmentally harmful impact, such as water and air pollution, land contamination 
and mine waste, be minimized in order to conserve and sustain natural resources? 

Hazard and Risk Assessment 
• Which areas are to what extent vulnerable to natural and man-made hazards? 

• In case of a natural or man-made disaster, which areas are to what extent affected? 

1.5 Impact on international programs 
The products and information generated from EnMAP data will be of substantial interest for the 
scientific community, several European and international organizations, and the general public.  
First and foremost, researchers need EnMAP data to improve their understanding of Earth surface 
processes and reduce uncertainties in associated ecosystem models. Scientific requirements for 
terrestrial and aquatic observations have long been articulated, especially at the international level, by 
the International Geosphere-Biosphere Program (IGBP), the Land Ocean Interaction in the Coastal 
Zone Program (LOICZ), the International Human Dimensions Program (IHDP), DIVERSITAS, the 
World Climate Research Program (WCRP), the Global Land Project (GLP), the Global Biodiversity 
Information Facility (GBIF), the Global Environment Outlook (GEO), the UN Agenda for Sustainable 
Development defining 17 Sustainable Development Goals (SDGs), and others. The major new 
“Future Earth” alliance on Earth system research for global sustainability integrates and consolidates 
international expertise in environmental and social science under one umbrella and forms a 
programmatic and societal justification for Earth observation research and development. This is 
underlined by the welcoming of Future Earth as a participating organization in the Group on Earth 
Observations (GEO) in 2015. GEO aims at building the Global Earth Observation System of Systems 
(GEOSS) that will link global Earth observation resources contributed by organizations and countries 
within GEO across multiple Societal Benefit Areas (SBAs) to facilitate access to the data for better 
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informed decision-making. The SBAs include biodiversity and ecosystem sustainability, disaster 
resilience, energy and mineral resources management, food security and sustainable agriculture, 
infrastructure and transportation management, public health surveillance, sustainable urban 
development, and water resources management (GEO, 2015). 
Key international stakeholders with a potential interest in the scientific results of the EnMAP mission, 
include organizations that make up the United Nations System (e.g., UNEP, FAO, UNESCO and 
WMO) as well as global observing systems, such as the Global Climate Observing Systems (GCOS), 
Global Ocean Observing System (GOOS) and Global Terrestrial Observing System (GTOS). 
Furthermore, EnMAP observations may be a valuable source of quantified information needed for 
multilateral environmental agreements, such as REDD+, UNFCCC, UNCCD, and CBD, as well as by 
key international entities, such as the Intergovernmental Panel on Climate Change (IPCC), the 
Intergovernmental Platform on Biodiversity & Ecosystem Services (IPBES) and the International 
Union for Conservation of Nature (IUCN). 
At the level of the European Union, several Commission directories (e.g., DG VI - Agriculture, DG 
VIII - Development, DG XI - Environment, DG XII - Transport, and DG XVI - Regional policy) are 
anticipated to require continuous remotely sensed land observations, because these governmental 
departments need to set, monitor, and enforce their policy agenda. For example, specified biological, 
hydromorphological and physico-chemical parameters of water bodies have to be monitored on a 
regular basis according to the EU Water Framework Directive. In addition, national/local authorities 
will need increasingly detailed information for implementing local measures to combat desertification 
and to plan alternative land uses. In view of these developments, data products (e.g., soil status, 
vegetation cover, change detection maps, degradation index maps) will be beneficial for decision 
makers. In particular, the European Copernicus programme provides users with reliable and up-to-
date information through a set of services related to environmental and security issues (European 
Commission, 2015). 
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2 EnMAP system and data products 
2.1 Technical parameters and observational requirements 
The EnMAP satellite carries a push-broom type hyperspectral imager, that records reflected radiation 
from the Earth surface in the wavelength region from 420 nm to 2450 nm in 242 contiguous bands. 
The mean bandwidth is 6.5 nm the VNIR range and 10 nm in the SWIR range. Accurate radiometric 
and spectral responses are ensured by a reference signal-to-noise ratio (SNR) of ≥400:1 in the VNIR 
and ≥170:1 in the SWIR (based on an albedo of 30 % and a solar zenith angle of 30°), a radiometric 
calibration accuracy of better than 5 %, and a spectral calibration uncertainty of 0.5 nm in the VNIR 
and SWIR. 
The sensor is characterized by a ground sampling distance of 30 m (nadir at sea level) and provides a 
swath width of 30 km. EnMAP can record strip lengths between 30 km and 1000 km (subject to 
potential conflicts in the acquisition plan) with a capacity of 5000 km per day. The nominal target 
revisit time of 27 days can be reduced to 4 days by use of an across-track off-nadir pointing capability 
of ±30°. EnMAP will be launched in a sun-synchronous orbit (653 km altitude at 48°N; 97.96° 
inclination) with a local equatorial crossing time of 11:00 hr. The satellite launch is scheduled for 
2019 with an Indian “Polar Satellite Launch Vehicle” and has a designed lifetime of five years. A 
summary of the main mission and instrument specifications is given in Table 1. Further descriptions 
can be found in Guanter et al. (2015) and Kaufmann et al. (2016). 
 

Table 1: EnMAP mission and instrument specifications. 

Hyperspectral instrument 
Imaging principle Push-broom-prism 
Spectral range VNIR: 420 nm - 1000 nm 
 SWIR: 900 nm - 2450 nm 
Mean spectral sampling distance VNIR: 6.5 nm 
 SWIR: 10 nm 
Spectral oversampling 1.2 
SNR at reference radiance VNIR: > 400:1 at 495 nm (nadir looking, 30° solar zenith angle, 
 SWIR: > 180:1 at 2200 nm 0.3 earth albedo) 
Spectral calibration accuracy VNIR: 0.5 nm 
 SWIR: 1.0 nm  
Spectral stability 0.5 nm 
Radiometric calibration accuracy < 5 % 
Radiometric stability < 2.5 % 
Radiometric resolution 14 bit, dual gain in VNIR 
Sensitivity to polarization < 5 % 
Spectral smile/keystone effect < 20 % of a pixel 
Co-registration VNIR-SWIR < 20 % of a pixel 
Mission 
Ground sampling distance 30 m 
Swath width 30 km 
Swath length up to 1000 km/orbit and 5000 km/day 
Coverage Global in near-nadir mode (VZA ≤5°) 
Orbit Sun-synchronous,11:00 local time descending node 
Target revisit time 27 days (4 days with 30° across track pointing) 
Pointing accuracy (knowledge) 500m (100m) at sea level 
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2.2 Data products and access 
During the operational phase, the following EnMAP data products will be delivered to the user 
community: Product Level 1B, Product Level 1C, and Product Level 2A. Please, note that the raw 
data and the subsequent Level 0 (Figure 4) products are not available to the user community. This 
section provides a short definition of these products, while a more detailed description can be found in 
Guanter et al. (2015) and Kaufmann et al. (2016).  
The Level 1B product represents top-of-atmosphere radiance. This product is radiometrically 
corrected, spectrally- and geometrically characterized, quality controlled, and annotated with 
preliminary pixel classification (usability mask). The auxiliary information (e.g., position and pointing 
values, interior orientation parameters) necessary for further processing is attached, but not applied. 
The Level 1B processor corrects the hyperspectral image for known effects, e.g., radiometric non-
uniformities, and converts the system corrected data to physical at-sensor radiance values based on the 
up to date radiometric calibration values. 
The Level 1C product represents geocoded top-of-atmosphere radiance. This product is derived from 
the Level 1B product, which is subsequently geometrically corrected (orthorectified) and re-sampled 
to a specified grid. Auxiliary data for further processing are attached, but not applied. The Level 1C 
processor creates orthoimages by direct geo-referencing, utilizing an adequate digital elevation model. 
The extraction of ground-control-points from existing reference images using image matching 
techniques serve to improve the line-of-sight vector and, therefore, to increase the geometric accuracy 
of the orthoimages. The Level 1C processor orthorectifies image tiles from the VNIR and SWIR 
instrument independently. The co-registration error is expected to be better than 0.2 pixels.  
 

 
Fig. 4: The EnMAP data processing chain from the raw data to the geometrically and atmospherically corrected 
Level 2A product (reproduced from Guanter et al., 2015). 
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Finally, the Level 2A processor will convert the Level 1C products to surface reflectances separately 
for land and water applications. The atmospheric correction involves generation of sun glint maps for 
water surfaces by identification of specular reflections, detection (and correction) of haze and cirrus, 
estimation of aerosol optical thickness and columnar water vapor and retrieval of surface reflectance 
after adjacency correction. Auxiliary data for further processing are attached, but not applied. Most 
applications are envisioned to use the Level 2A product for further analysis. 
Typically, Level 0 products will be in the archive within 24 h after completion of the corresponding 
downlink, and processing and delivery of Level 2A products are to be conducted within a maximum 
of eight hours. Thereby, the user can choose the image format (BSQ, BIL BIP, JPEG2000 or 
GeoTIFF). The metadata is always in Extensible Markup Language (XML) format, and the product is 
accompanied by a report in portable document format (PDF). 
EnMAP data distribution differentiates between several user categories to set acquisition priorities. In 
summary, Category 1 users (Cat. 1) will be scientific users. Scientists can submit research proposals 
that will be evaluated by the EnSAG and potential external reviewers. Category 2 users (Cat. 2) will 
be non-registered international public or private entities. The priorities for data requests are, in 
decreasing order: internal (high priority, e.g., calibration), emergency Cat. 2 (e.g., international charter 
on space and major disasters), Cat. 1 users, non-emergency Cat. 2, internal (low priority, e.g., to fill 
up or extend requests). Requests of the first two priorities are scheduled regardless of their success 
concerning, for example, cloud probabilities or quota. Thus, especially requests of the last four 
priorities are advised to take the revisit times into account when planning the acquisition time period 
in order to increase the probability that the scheduling meets their requirements. 
The EnMAP website (www.enmap.org) is the central entry point for all users interested in the 
EnMAP mission, its objectives, status, data products and processing chains. Additionally, this 
platform informs about the conditions and requirements for the EnMAP data access and the ongoing 
scientific program and activities. 

2.3 Sensor calibration and product validation 
In order to ensure a high data quality, EnMAP requires a well-characterized primary sensor, on-board 
calibration facilities, and ongoing vicarious calibration measurements throughout the entire mission 
lifetime. The derived data products also require independent validation by means of field and image 
measurements. The pre-flight sensor characterization is performed in the laboratory for both the 
individual subsystems and the complete end-to-end sensor system. It includes spectral, radiometric, 
and geometric calibrations. The spectral measurements include the band centres, bandwidths, and 
spectral response profiles for each band of each pixel in the array. The radiometric measurements 
encompass the detector array responsivity, linearity, uniformity, noise characterization, straylight, and 
optics transmittance with the objective of properly characterising the instrument’s performance. The 
geometric measurements include the total field-of-view, the view angle for each pixel and each band, 
and the modulation transfer function. After launch, in-flight calibration is carried out using on-board 
calibration devices, such as the solar full aperture diffuser for the absolute radiometric calibration 
using the sun as the known reference, a main sphere for the relative radiometric calibration, a small 
sphere for spectral characterization, focal plane assembly LEDs for non-linearity calibration and a 
shutter for dark current calibration. Additionally, residual signals caused by thermal emissions from 
the shutter mechanism are regularly determined by looking into deep space. 
These measurements will be complemented by vicarious calibration experiments on demand. As the 
imaging spectrometer and the on-board calibration instrumentation age, there is a growing need for 
periodic in-flight calibration, vicarious and on-board calibrations. 
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Validation of the EnMAP products will be performed during the commissioning phase and the 
operational mission period. The validation procedure includes ground- and scene-based techniques for 
the product evaluation to derive characteristic error estimates for the final EnMAP products and 
detailed information to track potential error sources back to instrument and processing chain levels. 
These validation results will be incorporated in calibration activities and will be provided as 
additional information on the instrument spectral and radiometric performance.  

2.4 Synergies of EnMAP with other Earth observation missions 
While EnMAP is conceived as a stand-alone mission with scientific objectives driven by the user 
community, valuable synergies exist between EnMAP and optical and radar imagery. 
A large potential for synergies exists between EnMAP and Copernicus’s Sentinel missions (Berger et 
al., 2012). The Sentinels aim at providing global coverage of high quality data in the optical and 
microwave domain in both high and medium spatial resolution. These missions will serve the 
Copernicus programme by providing continuous and global Earth observation from space on an 
operational basis.  
Sentinel-2 will provide Landsat/SPOT-like imagery in a high spatial (10 m – 60 m) resolution and a 
moderate temporal (<5 days) and spectral (13 bands) resolution (Drusch et al., 2012). Its global 
coverage in a comparable spatial resolution to that of EnMAP (30 m) holds the synergistic potential to 
expand EnMAP’s advanced regional information to a global scale. Complementary, Sentinel-3 and 
similar medium-spatial-resolution optical missions, which will operate concurrently with EnMAP, 
provide global coverage data in an almost daily temporal resolution (Donlon et al., 2012). Synergies 
between EnMAP and these missions include more frequent ecosystem observations allowing to 
resolve surface processes with high temporal variations. 
In addition to optical sensors, Synthetic Aperture Radar (SAR) missions also provide complementary 
information to EnMAP data. For example, Sentinel-1 operationally provides C-band SAR-data of the 
Earth’s surface with spatial resolutions of up to 10 m – 20 m (Torres et al., 2012). This ability allows 
for analysing the state and variation of physical parameters, such as surface roughness and soil 
moisture, which complements EnMAP’s strength to derive bio-geochemical properties of the Earth 
surface. Furthermore, digital elevation model (DEM) data as retrieved from TerraSAR-X or Tandem-
X using InSAR techniques may serve for data correction purposes, such as the removal of geometric 
distortion effects in mountainous terrain (Krieger et al., 2007). 
The high spectral resolution of EnMAP can be combined with the current and future panchromatic 
and multispectral satellite systems like IKONOS, QuickBird, WorldView, RapidEye, and Pleiades, 
which are characterized by a high to very high spatial resolution. Such sensors offer additional options 
to improve object recognition, product validation, and temporal coverage. For example, the high 
temporal and spatial resolution data provided by RapidEye (one day revisit, 6.5 m ground sampling 
distance) can be combined with EnMAP to augment temporal coverage, which is suitable to monitor 
damage or infestations in agricultural crops and forests. 
For the development and utilization of such synergies profound understandings of small-scale 
interactions between irradiation and complex 3D surface objects are required. Airborne data, 
especially in-flight fusion of hyperspectral and LiDAR data, delivers this understanding by their 
expanded data dimensionality (X, Y, Z, λ) and its very high spectral and spatial information content 
(Asner et al., 2012). Thus, this data can serve as a small-scale link between EnMAP and other Earth 
observation missions. Especially the comparability and the transferability of derived surface 
parameters to larger scales can be refined and evaluated based on such airborne data. 
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3 Main application fields for EnMAP 
 
Accurate, quantitative information on the state and evolution of terrestrial and aquatic ecosystems is 
needed to support resource management, conservation strategies, rehabilitation measures, and 
ecosystem services. Hyperspectral image analysis can support a wide range of environmental 
applications, ranging, for example, from the assessment of vegetation state over mineral assemblages 
to water constituents and environmental hazards. EnSAG identified some of the most challenging 
environmental issues to which EnMAP can contribute (see section 1.4). Addressing these 
environmental issues requires interdisciplinary approaches across the Earth’s spheres, because they 
are interconnected by various links and interactions (Figure 5). Fluxes of energy, water, carbon and 
sediment affect multiple spheres through complex feedback mechanisms and can be assessed by direct 
and indirect means with imaging spectroscopy. This chapter provides an overview of the relevance, 
current areas of research, and potential contribution of EnMAP for major environmental fields of 
application, including vegetation, geology and soils, coastal and inland waters, cryosphere, urban 
areas, atmosphere and hazards. 
 

 
Fig. 5: Major research themes and associated application areas for imaging spectroscopy. 

3.1 Vegetation 
3.1.1 Natural ecosystems and ecological gradients 
 
Pristine ecosystems on Earth are scarce (Kareiva et al., 2007) and global environmental change 
impacts even remote areas of our planet. Within this context, it is referred to ecosystems that are 
largely untouched by human land use and unmanaged or protected. Unlike managed ecosystems, these 
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are mostly characterised by a large heterogeneity with multiple ecological gradients, as well as 
gradual transitions between different ecosystem types and conditions. 
Specifically, monitoring and better characterizing natural or close to natural vegetation is essential to 
support sustainability of human-environment systems from local to global scales. Moreover, analysing 
and monitoring processes related to unmanaged land are crucial to deepen our understanding of 
indirect global environmental impacts and help to improve environmental models. 
Quantifying ecosystem characteristics and the services they provide require using information at the 
meso- to macro-scale, which needs to be consistent and reproducible through space and time. Such 
information can only be obtained by means of remote sensing (Defries et al., 2005). EnMAP data and 
products derived from them will overcome current limitations, particularly in respect to the 
quantification of complex processes and gradual changes, which are prevalent in natural ecosystems 
(Asner et al., 2005; Leitão et al., 2015a). Concepts for the description of heterogeneous vegetated 
surfaces and floristic composition become possible, e.g., plant traits (Oldeland et al., 2012) or the 
plant functional types concept (Ustin and Gamon, 2010; Lavorel et al., 2011). 
Previous studies made use of field-based or airborne hyperspectral data for quantifying biophysical 
parameters of natural vegetation, such as primary production, leaf area index or photosynthetic 
activity (Lee et al., 2004; Smith et al., 2002), biomass (Mutanga and Skidmore, 2004; Cho et al., 
2007), carbon storage and water fluxes (Fuentes et al., 2006), ecosystem structure (Asner et al., 2005), 
or vegetation successional stage (Oldeland et al., 2010). Further uses of hyperspectral imagery have 
been on biodiversity mapping, both at the single species and at the community level (Cochrane, 2000; 
Clark et al., 2005; Feilhauer and Schmidtlein, 2009; Leitão et al., 2015b), including, for example, the 
monitoring of invasive species (Underwood et al., 2003; Somers and Asner, 2013). However, most of 
these studies are limited to one acquisition per year or less and none of them could make use of high 
quality hyperspectral data as EnMAP will provide. While the relatively coarse spatial resolution of 
hyperspectral satellite data will add challenges to such applications, data quality and availability will 
open up new pathways for parameter retrieval. 
In this sense, high temporal data and systematic coverage by hyperspectral satellite systems, such as 
EnMAP, will allow for continuous monitoring of natural processes as demonstrated by pilot studies 
using data from experimental spaceborne systems (Asner et al., 2004; Stagakis et al., 2010; Leitão et 
al., 2015a) and, thus, will improve our understanding of these processes (Ustin et al. 2004). 
Phenological studies, previously based on existing platforms (Hoare and Frost, 2004; Fisher et al., 
2006), are likely to reveal new insights by improved information that can be retrieved from high 
spectral resolution data. These data should be fundamental in improving existing carbon emission 
accounts and monitoring efforts (Numata et al., 2011), necessary to make mechanisms, such as REDD 
(UN Collaborative Initiative on Reducing Emissions from Deforestation and Forest Degradation) 
effective. EnMAP data will also be determinant in deriving Essential Biodiversity Variables (EBV; 
Pereira et al., 2013; Skidmore et al., 2015), this way contributing to monitor progresses towards the 
Aichi Targets set by the Convention on Biological Diversity (Petrou et al., 2015). 
Physical-based modelling concepts are not particularly advantageous for the work in natural 
environments, because model calibration of such heterogeneous surfaces is mostly too complex. 
However, advances in statistical and machine learning provide a set of methods that are capable of 
coupling qualitative and quantitative analyses without being affected by collinearity effects in 
contagious datasets. Such new developments, such as self-learning decision trees, partial least square 
regressions, sparse ordination methods, Gaussian processes or support/import vector machines 
(Breiman, 2001; Helland, 1990; Vapnik, 1998; Witten et al., 2009; Zhu and Hastie, 2005) have high 
potential in making best use of the extended information in EnMAP data and allow for describing the 
aforementioned processes (e.g., Feilhauer et al., 2010; Verrelst et al., 2012; Schwieder et al., 2014; 
Leitão et al., 2015b; Suess et al., 2015). 
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Beyond the direct use of such generic algorithms for empirical modelling approaches, the generation 
of new indices and thematic transformations is of utmost importance. For example, multi-band indices 
and non-linear transformations may be developed based on insights derived from empirical studies 
with a non-linear kernel-based approach. Such developments have to be robust and transferable. 
However, in most cases a biome-specific calibration procedure will be required. Such calibration will 
be a key aspect in algorithm development in the near future. 
EnMAP imagery will thus be extremely useful for monitoring natural ecosystems and their services, 
by allowing the accurate quantification of gradual biophysical and biochemical parameters, and the 
description of heterogeneous landscapes through the estimation of natural composition and pixel 
fractional cover. 
The following main scientific tasks are related to natural ecosystems: 
• Retrieval of biochemical and biophysical parameters as input into ecosystems and species habitat 

models to improve the understanding of ecosystems and ecological processes; 

• Assessment of spatial pattern of ecosystems and biodiversity from local to global scales in the 
context of nature protection legislation, such as the European Special Areas of Conservation 
(Habitats Directive) within the Natura 2000 Network; 

• Mapping and quantification of species traits, which can relate to ecological processes, ecosystem 
functioning and their provided services;  

• Assessment of the state of biodiversity and ecosystems, as well as the services they provide, such 
as the above-ground carbon sequestration potential, and thus, contributing to international 
initiatives, such as the regional and global assessments being done by the Intergovernmental 
Platform on Biodiversity and Ecosystem Services (IPBES); 

• Monitoring of natural or quasi-natural vegetation areas (such as nature protection areas, 
naturalized, un-used or extensively used areas) to understand causes and driving forces of changes; 
for example, in the context of land abandonment, forest disturbance or land degradation processes 
in order to combat biodiversity loss and promote ecosystem stability (e.g. REDD);  

• Deriving of Essential Biodiversity Variables (EBV) relating to species populations, species traits, 
community structure, ecosystem structure and ecosystem function, this way contributing to 
monitor progresses towards international targets such as the Aichi targets set by the Convention on 
Biological Diversity (CBD); 

• Quantification of spatial and temporal ecosystem transitions, such as vegetation succession, habitat 
heterogeneity, plant or animal community transitions, and assess potential feedback mechanisms; 
and 

• Investigation of the effect of climate change and other anthropogenic and non-anthropogenic 
forces on global vegetation gradients. 

 

3.1.2 Forests 
 
Worldwide, forests provide timber and non-timber products as well as numerous environmental goods 
and services, such as conservation of biological diversity and climatic control, which are crucial for 
local livelihoods (FAO, 2010). However, forests and forested ecosystems are being rapidly depleted 
under increasing pressure due to global warming (Peng et al., 2011) and expanding human 
populations and economies (Hansen et al., 2008). Deforestation associated with conversion of forests 
to agricultural land, legal and illegal timber harvesting, drought stress, biotic stress, and recurrent 
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wildfires are some of the most important processes, which affect forested landscapes (Bond, 2010; 
Anderegg et al. 2013; Ciais et al. 2005). 
The challenges in forest management are multiscale and intricately linked to society’s needs to 
preserve multiple forest values and benefit from its products. The pressing need for sustainable forest 
management aims at combining economic interests with ecologic concerns. In this context, remote 
sensing data serve economically oriented assessments and management needs as well as studies of 
ecological processes and functions (Franklin, 2001). Applications of remote sensing contributing to 
sustainable forest management are generally presented in four categories that include classification of 
forest cover type (i.e., tree species), estimation of forest structure and available resources (i.e., timber 
volume, height, age, crown closure), forest change detection and forest modelling. For each category, 
measurable indicators are needed to quantify the effects of management activities and natural 
phenomena on the sustainability of forest resources. Current research is directed at quantitatively 
relating remotely sensed spectral information to ground-based assessments of structural and 
physiological aspects of forest condition. 
The future EnMAP satellite can efficiently characterize the spatial distribution of forest ecosystems 
and provide an inventory of forest resources. Such inventories typically comprise quantitative 
attributes related to forest species, health, and functioning, including estimates of chlorophyll, 
nitrogen, lignin and canopy water content (Goodenough et al., 2003a; Matson et al., 1994; Schlerf et 
al., 2005 and 2010; Asner et al. 2011). Quantifying such species-specific canopy biochemistry 
differences is well established to map forest species and ecosystems (Goodenough et al., 2003b; 
Martin et al., 1998). The fusion of hyperspectral data with other remote sensing data sources like 
Radar or LiDAR offers additional perspectives to estimate forest structure, forest type, biomass, 
timber volume, tree heights, stem densities, and age classes (Anderson et al., 2008; Dalponte et al., 
2008; Huang et al., 2007; Hyde et al., 2006; Buddenbaum et al. 2013). Furthermore, it is possible to 
estimate the above-ground carbon stored in the forests, e.g., in the context of REDD, by combining 
hyperspectral imagery with geographic information, field calibrations and physiological models 
(le Maire et al., 2005), as well as texture and object information (Blaschke, 2010; Buddenbaum et al., 
2005; van der Linden et al., 2007).  

Also reforestation, afforestation, and deforestation rates on regional scales can potentially be better 
assessed by employing hyperspectral imaging from space (Clark et al., 2011; Goodenough et al., 
1998). Such measures provide an essential contribution for documenting changes in the forests over 
time and will be urgently required when implementing the Agreement of the Paris Summit on Climate 
Change from December 2015. Previous studies on forest ecosystems emphasized the role of imaging 
spectroscopy allowing detailed and accurate retrievals of relevant vegetation properties (Ollinger and 
Smith, 2005; Schaepman et al., 2004), where the most important vegetation parameters are leaf 
chlorophyll and nitrogen content, the fractions of photosynthetically absorbed radiation (fAPAR), 
canopy water content, annual maximum leaf mass per area (LMA), and annual maximum leaf area 
(LAI) (e.g., le Maire et al., 2008). Thus, imaging spectroscopy offers accurate ways to provide 
substantial contributions to forestry information as well as new indicators of vegetation health, forest 
biochemistry and functioning. An important requirement for some of these applications is that canopy 
contributions to the signal on leaf level are successfully compensated (Knyazikhin et al., 2013). Thus, 
it can be anticipated that EnMAP is able to estimate changes in forest structure and condition, 
including above-ground carbon stocks at improved accuracies. This also extends to biotic stressors, 
such as bark beetles; the impact on forest ecosystems is expected to increase because of global 
warming. Spaceborne imaging spectrometers hold the potential to identify insect attacks already at 
early stages when the effects on forest reflectance are subtle and cannot be detected with conventional 
multispectral sensors (Fassnacht et al., 2012; Niemann et al., 2015; Wulder et al., 2009). 
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It should also be understood that global warming will trigger a further increase of devastating wild 
fires in many regions of the world (e.g., Australia, US, Mediterranean Europe). The enhanced 
potential of imaging spectrometers to identify drought effects and critical fuel moisture levels will 
open additional important application perspectives (Koetz et al. 2004 and 2008; Veraverbeke et al., 
2014).  
Important ecological processes in forests include carbon exchange (photosynthesis and respiration), 
evapotranspiration, and nutrient cycling (Coops et al., 2009; Waring and Running, 2007). To model 
these processes on a regional to global scale, imaging spectroscopy currently provides accurate local 
estimates of forest structural and chemical properties, which serve as required inputs to initialize, 
calibrate, and validate such models (Tenhunen et al., 1998). In the mid-term perspective, these models 
can assist management decisions to mitigate the effects of climate change on a regional scale. 

Sun-induced chlorophyll fluorescence, which is closely linked to photosynthetic activity, can also be 
measured using imaging spectroscopy (Rascher et al., 2009; Meroni et al., 2009; Guanter et al., 2014). 
However, because the spectral resolution of the sensor used is critical (Damm et al., 2014), it remains 
to be evaluated to which extent EnMAP’s spectral band design allows to estimate vegetation 
fluorescence; this will be important with respect to defining instrument requirements for future 
spaceborne systems. 
Given the complexity of hyperspectral analysis, expert systems to support the analysis for EnMAP 
data have been developed (Goodenough et al., 2007 and 2012). Forest reflectance models, as 
compared to agricultural models, require much greater attention to forest structure, clumping, 
shadowing and understory effects. Reflectance models ranging from simple approaches like INFORM 
(Atzberger, 2000) or 4-scale (Chen and Leblanc, 1997) to more complex geometric-optical radiative 
transfer models like FRT (Kuusk and Nilson, 2009) or raytracing models like FLIGHT (Gerard and 
North, 1997) have been developed and validated in order to analyse the complex hyperspectral signal 
of forests (Foerster et al., 2010). Despite some successful attempts (Combal et al., 2002; Koetz et al., 
2004; Schlerf and Atzberger, 2006; White et al., 2000), the inversion of these models is still a 
challenge and a pressing research issue for the next years. 
EnMAP will enable to derive spectral indices that will serve as bio-indicators of forest condition. 
Through repetitive sampling of selected forest condition test sites, EnMAP will add the phenological 
history to the full spectral sampling data to yield effective bio-indicators of forest condition. EnMAP 
will provide a capability to compare observations of spectral properties of forests in many different 
countries. This is essential in order to develop a consistent tool for monitoring the carbon state of the 
world’s forests and their response to climate change. Frequent and broad coverage will increase our 
understanding of the links between pigments, canopy chemistry, stress, and forest type. For forest 
inventory programs, hyperspectral data from EnMAP will provide an important sampling system to 
ensure precise measurements of indicators for a sustainable development. 
Accordingly, the following main scientific tasks are considered important concerning forest 
applications: 
• Mapping of forest species distributions using hyperspectral, fused and multitemporal datasets, 

exploring the potential of advanced classification algorithms, texture and object information, and 
linkages to geographic databases, etc.;  

• Estimation of forest biomass, above-ground carbon, and productivity;  

• Assimilation of biochemical and structural forest parameters into process models;  

• Enhancement and development of invertible vegetation canopy reflectance models for the 
extraction of forest parameters, and forest mensuration, health, and risk assessment;  

• Investigation of the viability of phenological signatures through indicators of canopy pigments and 
chemistry with regard to ecophysiological processes;  
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• Development of improved optical indices that will serve as bio-indicators of forest condition;  

• Development of forest monitoring procedures, including multi-temporal and multi-sensor data, for 
the detection of changes in forest quality and canopy cover; and  

• Creation of advanced expert systems to improve the efficiency of hyperspectral information 
extraction within the forestry context.  

 

3.1.3 Agricultural land 
 
Limited bio-productive land resources, progressing land degradation, rising population numbers, an 
increasingly meat-prone diet, a growing demand for biofuels, and on-going climate change, coupled 
with more frequent extreme meteorological events, cause substantial land use conflicts between food, 
fiber and energy production on one hand and ecosystem services including biodiversity conservation 
on the other. To sustain the benefits of natural ecosystems, a growing demand for agricultural 
commodities can only be met by sustainable increases in global land productivity (Mauser et al., 
2015b). Thereby, global scale studies highlight that large appropriation of land resources leads to low 
efficiencies in land management (e.g., water use; Haberl et al., 2007; Kijne et al., 2009). The 
challenge of sustainably satisfying the demand for agricultural goods, thus, involves a wide range of 
land management aspects, including the selection of suitable crops and cultivars, the monitoring and 
increase of water productivity, the promotion of organic farming, the optimization of fertilizer and 
pesticide management, the implementation of soil conservation, and the development and application 
of efficient irrigation systems. Because of the spatial variability in climate, soils, and topography, as 
well as due to societal aspects, such as culture, education, technology, and markets, agricultural 
management critically relies on spatial data to support management decisions. Therefore, modern 
farming practices incorporate the identification, analysis, and management of spatial and temporal 
heterogeneity and variability within regions, farms, and fields to optimize between profitability, 
sustainability, and environmental protection (Mauser et al., 2015a).  
Moran et al. (1997) already identified key areas where remote sensing can provide spatial information 
for agricultural management. These include the mapping of crop yield and biomass status as well as 
the monitoring of seasonally variable and spatially heterogeneous soil and crop characteristics. Since 
this early assessment, our understanding of farming related land heterogeneity management has 
progressed towards the application of detailed site-specific management measures to support 
sustainable production and to increase productivity. Sustainable agricultural management thereby 
includes early detection of infections, and water or fertilizer deficits. It further includes monitoring the 
ecological intensification of extensive agriculture and tracing the ecological extensification of 
intensive agriculture. Furthermore, it includes the identification and evaluation of new land reserves, 
where agriculture is gradually becoming viable due to climate change induced shifts of potential 
cultivation belts (Zabel et al., 2014). The implementation of these land management practices has led 
to a new demand for more complex and integrated spatial information around the globe, for example, 
concerning land evaluation, determination of site and plant specific yield gaps (i.e., the differences 
between potentially achievable and actually harvested yields), monitoring of fertilizer use intensity as 
well as determination of seeding dates and detection of phenological phenomena. 
Hyperspectral Earth Observation instruments, providing agricultural information more accurately and 
in more detail compared to multispectral sensors, can substantially support farming management 
decisions (Staenz et al., 1998). Conventionally, multispectral systems were applied to derive 
agriculturally relevant information through statistical regression analysis between laborious ground-
based measurements of biophysical variables and simple spectral indices. Hyperspectral Earth 
Observation systems enable the application of more thorough approaches, which fully exploit the 
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continuous spectral information provided by spectrometers. One important approach, making full use 
of the continuous spectral information, is the application of invertible canopy reflectance models. 
These models infer biochemical/biophysical parameters, such as chlorophyll and water content, from 
continuous canopy spectral reflectance signatures and have already been successfully applied to field 
crops and grasslands (Jacquemoud et al., 2000; Bach et al., 2003; Verhoef and Bach, 2003; Migdall et 
al., 2009; Migdall et al., 2010; Bach et al., 2011; Richter et al., 2012; Locherer et al., 2015). 
Some of the parameters that control productivity and health of crops can be estimated through model 
inversion using hyperspectral optical measurements such as retrieved from EnMAP: 
• Leaf area index (LAI) describing the size of the producing layer (Weiss et al., 2001; Locherer et 

al., 2015);  

• Absorbed photosynthetic active radiation (APAR) providing the amount of absorbed energy usable 
for production (Weiss et al., 2010);  

• Chlorophyll content as the chemical actor for photosynthesis, which is dependent on the crop 
nitrogen status (Haboudane et al., 2002; Oppelt and Mauser, 2003);  

• Water content as indicator for crop water status and crop maturity (Ceccato et al., 2001; 
Champagne et al., 2003; Hank et al., 2010);  

• Plant density as indicator of disease sensitivity (Larsolle and Hamid Muhammed, 2007); and 

• Plant pigments, such as carotinoids and anthocyanins, as indicators of adaptation of the canopy to 
varying light conditions (Blackburn, 2007).  

Assimilation of these parameters into agro-ecological models allows for an explicit simulation of crop 
growth, development, and yield for each location on the Earth’s surface based on spatially 
heterogeneous parameters retrieved from hyperspectral remote sensing data. Model-based 
assimilation approaches provide site-specific information on key farming parameters, such as 
biomass, plant height, crop yield, nitrogen or phosphorus deficit and/or uptake, which are not directly 
observable with remote sensing. Thus, time series of remotely sensed crop parameters account for 
spatiotemporal heterogeneity in agricultural production models, which then can be used to explore the 
suitability of different management options (Hank et al., 2012 and 2015). The assimilation of crop 
parameters, such as pigment concentrations or water content, that can predominantly be deferred from 
hyperspectral systems, can further be enriched by additional remotely sensed vegetation parameters. 
They can also be derived from multispectral, thermal or microwave sensor time series, such as LAI, 
phenology, seeding and harvesting dates or soil moisture. Ultra-high spectral resolution systems allow 
for the monitoring of sun-induced chlorophyll fluorescence, which could be used as a proxy for 
photosynthetic efficiency (Guanter et al., 2014). Thus, they offer opportunities for using remote 
sensing data in agricultural management also beyond the scope of EnMAP. For all of these 
applications of remote sensing in the context of investigating managed farmland, a continuous 
monitoring of temporal dynamics is crucial. EnMAP will be the first imaging spectrometer to provide 
high-quality multi-temporal imagery from space and, therefore, will largely contribute to enhanced 
process understanding. 
From the large number of existing crop growth models, the CERES family (Ritchie and Otter, 1985) 
is one of the most prominent approaches, which relies on statistical relationships between 
environmental variables and plant growth and development. PROMET-V (Schneider and Mauser, 
2001) is an advancement of such an agricultural model towards spatially distributed simulations that 
integrate remote sensing data. A further development towards process understanding is achieved by 
dynamic vegetation models, which simulate plant growth on the basis of eco-physiological processes 
and feedbacks during the photosynthesis and respiration process. 

ENMAP Technical Reports: EnMAP Science Plan, doi:10.2312/enmap.2016.006  20 

http://doi.org/10.2312/enmap.2016.006


 Chapter 3 Main application fields for EnMAP 
 

Currently, the most realistic representation of vegetation dynamics in regional agro-ecological models 
as well as in regional to global ecosystem and Earth system models is based on the combination of 
dynamic vegetation models, agricultural management models, and appropriate canopy models that 
simulate the distribution of assimilates among the plant constituents (i.e., roots, stem, leaves, grains) 
in order to allow for a realistic representation of the complex canopy layers (e.g., LPJ-mL (Bondeau et 
al., 2007), PROMET (Hank, 2008)). Recent studies have shown that data assimilation approaches are 
viable and provide good results (Weiss et al., 2001; Bach et al., 2003; Hank et al., 2012; Machwitz et 
al., 2014; Hank et al., 2015). Nevertheless, further research and development is needed to improve 
models, in particular with regard to process representation and accuracy. In order to reach an 
operational stage of such coupled model systems, various data assimilation methods should be in 
addition tested under a broad range of farming conditions, especially in regions with low-efficiency 
farming systems, different crops (e.g., cassava, sorghum, groundnut) and energy plants (e.g., sugar 
cane, oil palm, jatropha), different stresses (e.g., water, fertilizer, temperature), irrigated agriculture, 
and mixed silvi-agricultural systems. 
Besides further improvements in modelling approaches, sophisticated agricultural applications need to 
be based on frequently available hyperspectral imagery with high data quality standards. Based on the 
knowledge already gained in numerous studies with airborne sensors, EnMAP will offer hyperspectral 
data in a suitable spatial and temporal resolution to approach the next major scientific steps, leading 
away from regression analysis and towards mechanistic process representation. 
Accordingly, the following major scientific tasks are considered to be of importance for agricultural 
applications: 
• Development and improvement of accurate, robust and reliable crop parameter retrieval methods 

based on inversion of improved canopy reflectance models using imaging spectroscopy data (crop 
type, LAI, APAR, chlorophyll content, plant water content, canopy geometrical structure);  

• Development and improvement of methods for the quantitative mapping of soil parameters, also 
taking the spectral signal of vegetation into account;  

• Development and improvement of approaches to derive complex canopy parameters, e.g., crop 
phenology, management intensity, or yield gap, from hyperspectral remote sensing data in 
conjunction with ancillary remotely sensed data;  

• Development of operational methods for yield and biomass estimation and forecasting based on 
hyperspectral remote sensing and ancillary data; 

• Mapping of crop species distribution using time series of hyperspectral information;  

• Distinguishing of crop stressors like nitrogen deficiency, crop disease, insect infestation, water 
stress, and chlorosis; and  

• Development and improvement of approaches to assimilate remote sensing derived spatial 
distributions of vegetation and soil parameters into dynamic agro-ecological models.  

3.2 Geology and soils 
Imaging spectroscopy has proven to be an effective tool to detect, monitor, and manage key abiotic 
natural resources including minerals, soils, and fossil fuels, which are largely non-renewable. Current 
research in hyperspectral remote sensing focuses on the assessment of mineral deposits (e.g., Clark et 
al., 2003), the detection of oil discharges on the Earth surface (e.g., Lammoglia and de Souza Filho, 
2011), the deduction of soil properties (e.g., Ben-Dor et al., 2009), and the evaluation and monitoring 
of soil function (such as water storage, carbon storage) and threats (such as acidification, soil erosion) 
(e.g., Stevens et al., 2013; Schmid et al., 2015).  
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3.2.1 Geological exploration 
 
Minerals, or more specifically ore minerals, contain economically valuable elements (mainly metals), 
which are essential to modern industry and, therefore, to the development of society. The constantly 
changing demand of ores and the criticality to the producing industry causes perennial re-evaluations 
of existing occurrences, deposits and mines, and the global detection and validation of new deposits. 
Among geophysical and geochemical field surveys, hyperspectral remote sensing surveys are 
increasingly applied to exploration investigations. The basic principle of hyperspectral remote sensing 
for mineral detection is the mathematical description and statistical analysis of material characteristic 
signals in the spectral ranges of the visible and infrared wavelength range (Hunt, 1977; Clark et al., 
2003; van der Meer, 2004 and 2012). These characteristic signals (absorption bands) are physically 
based on electronic transitions in the d- or f-orbitals of the elements (e.g., transitions into the valence 
band for Fe and crystal field transitions for rare earth elements), or vibrational motions and their 
overtones in the molecular bonds (e.g., Fe-OH and Mg-OH in amphiboles, Al-OH in clay minerals, 
CO3 in calcium carbonates) (Hunt, 1977; Dieke and Crosswhite, 1963; Swayze et al., 2014). Mineral 
mapping tools, such as the USGS Tetracorder and its successor MICA and the EnGEOMAP 2.0, and 
image analysis software, such as the EnMAP-Box and ENVI-Exelis Visual Information Solutions, 
utilize the mineral characteristic absorption bands to spectroscopically characterize and map surface 
materials (Clark et al., 2003; van der Linden et al., 2015). The characteristic absorption bands of 
identifiable minerals serve as a proxy for the lithological units of the different deposit types. These 
proxy minerals include, for example, alunite, chlorite, dickite, epidote, jarosite, kaolinite, and sericite. 
They serve as key indicators representative for epigenetic and sedimentary hydrothermal deposits 
(copper, gold, iron, lead, zinc bearing) (Mielke et al., 2014; Swayze et al., 2014). Carbonatite-alkaline 
igneous related deposits (rare earth element, lithium, tantalum, niobium bearing) can be mapped using 
the ankerite, calcite, dolomite, epidote, rare earth element absorption bands and the clay 
mineral/carbonates ratio (Turner et al., 2014; Boesche, 2015; Boesche et al., 2015a). In this manner 
proxy minerals can be found for most deposit types and, thus, their occurrences can be mapped. In 
addition to mineral mapping for resource detection, mining monitoring, natural erosion and 
environmental pollution as well as Earth’s crust forming processes (e.g., volcanic activities) can be 
assessed using the aforementioned mineral mapping methodologies. 
The following main scientific tasks are related to geological exploration: 
• Development of algorithms and expert systems for mineralogical mapping with emphasis on 

alteration zones and index minerals of metamorphic zonations;  

• Analysis of the capability of hyperspectral data for the detection of rare earth minerals based on 
different globally distributed sites;  

• Development of new algorithms and models for non-linear, weighted unmixing and mineral 
quantification approaches; and 

• Investigation of the effects of mineral-induced stress on the spectral signature of dense vegetation 
canopies to establish a link between vegetation stress and specific minerals. 

 

3.2.2 Digital soil mapping 
 
Soil is a fundamental and irreplaceable natural resource, which is largely non-renewable. Soils are 
complex dynamic systems, which are formed and developed as a result of the combined effects of 
climate and biotic activities, and modified by topography. Soil development can be either progressive 
or regressive with time, and a modification of the chemical, physical, and mineralogical properties of 
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soil surfaces can take place at variable time scales from event-based to seasonal. Soil provides a 
multitude of land-based ecosystem goods and services supporting and regulating life on the planet. It 
carries out a number of key environmental functions that are essential for human subsistence, such as 
food, fibre and timber production, water storage and redistribution, pollutant filtering or carbon 
storage. Understanding the response of soils to external drivers (global environmental changes, 
management) to assist in decision making at all scales requires precise spatially referenced soil data 
and maps. However, conventional soil surveys are scarce, expensive, time-intensive and not cross-
comparable (harmonized), which precludes a meaningful assessment of the state of the soil resource at 
large scales. As an alternative, soil spectroscopy in the laboratory has proven to be a fast, cost-
effective, non-destructive, and repeatable analytical technique that can be used to monitor the state of 
soils (Nocita et al., 2015). From airborne platforms, hyperspectral remote sensing (HRS) of soil has 
demonstrated a large potential to quantify topsoil key properties (organic carbon, texture, mineralogy) 
over a broad gradient of soils. In particular, the amount of organic matter and iron content, particle 
size distribution, clay mineralogy, water content, soil contamination, cation exchange capacity and 
calcium carbonate content, can be determined with imaging spectroscopy (e.g., Ben-Dor et al., 2009; 
Stevens et al., 2013). Due to soil’s complexity as a mixture of organic and inorganic compounds and 
expressed in their VNIR reflectance properties, simple band assignment techniques or spectral 
matching, such as done in the geology HRS field, are rarely used. However, multivariate calibration 
(i.e. statistical) approaches, which allow full quantification of the soil properties based on field data 
for local calibration, are preferred. 
Hyperspectral data as provided by the EnMAP satellite will hold considerable potential to characterize 
the pedosphere by identifying soil properties and their changes in time. Digital soil mapping toolboxes 
that include automatic identification and semi-quantification of key soil properties, such as organic 
carbon, water content, clay, iron, carbonates mineral content, are already available that are applicable 
at a global scale (Chabrillat et al., 2011). For the full quantification of soil properties, current EnMAP 
simulations allowed to develop soil maps in specific test sites where ground-reference data were 
available (Chabrillat et al., 2014). In view of the limited arable land area and rising population, the 
emerging field of precision farming is receiving increased attention and the soil science community is 
facing a growing need for regional, continental, and worldwide digital soil databases to monitor the 
status of the soil. Supported by imaging spectroscopy, soil conditions can be assessed to allow farmers 
to better evaluate critical needs such as irrigation, nutrient supply, and cultivation to gain increased 
agricultural yields (Dematte et al., 2000). Nonetheless, advances are still necessary to fully develop 
HRS products that can support, in a credible manner, digital mapping and monitoring of soils (Wulf et 
al., 2015). 
The following main scientific tasks are related to digital soil mapping: 
• Retrieval of soil properties, such as organic matter and iron content, particle size distribution, clay 

mineralogy, water content, soil contamination, cation exchange capacity and calcium carbonate 
content to analyse status and changes of soils; 

• Improvement of methodologies and algorithms for the extraction of key soil parameters based on 
remote sensing spectral signal with emphasis on prediction accuracy and influence of spatial scale; 

• Quantitative estimation of the influence of surface parameters in bare and semi-bare areas (such as 
water content, vegetation cover, surface roughness) on the spectral signature of soils and on the 
retrieval of soil properties; 

• Analysis of the contribution of global soil databases to calibrate the remote sensing based soil 
condition indices against reference samples; and 

• Monitoring of the state of soils and development of spatio-temporal maps of soil properties. 
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3.3 Coastal and inland waters 
Coastal and inland water bodies are vital for recreation, food supply, commerce and human health, 
and they also support habitats for a large floral and faunal diversity. Since decades, these ecosystems 
experience high pressure from increasing social and economic human activities as well as climate 
change in future. As sinks for pollutants, coastal and freshwater ecosystems are among the most 
sensitive indicators of environmental impacts related to human activities (UNEP, 2012). For example, 
a major global ecological problem is the increasing eutrophication and pollution of coastal and inland 
water bodies caused by fluvially transported substances, such as phosphate and nitrogen compounds, 
which derive from intensified agricultural and industrial activities. Monitoring and managing the 
water quality of coastal and inland habitats is necessary as they are vital to many kinds of utilization, 
including urbanisation, tourism, transportation, industry, fish farming and drinking water supply. 
According to the EU Water Framework Directive, specified biological, hydro-morphological and 
physico-chemical parameters of water bodies have to be monitored on a regular basis.  
A major advantage of hyperspectral data covering coastal and shallow freshwater bodies is the ability 
to spectrally unmix various in-column optical constituents and the sea floor or lake bottom (Carder et 
al., 1993; Goetz, 2011). The advanced spectral resolution of EnMAP in the VIS and NIR region will 
allow the assessment of water constituents including phytoplankton pigments, suspended matter, 
dissolved organic matter, dissolved organic carbon concentration, and water transparency. Moreover, 
phytoplankton taxonomic groups can be identified, which provide indications for the occurrence of 
harmful algal blooms (Bracher et al., 2009). Chlorophyll-a concentration is widely used as an 
indicator of algal biomass that depends upon nitrogen and phosphate availability in the water bodies 
(Carlson and Simpson, 1996; Kamarainen et al., 2009). Water transparency is a widely used indicator 
of the trophic state, which is influenced by the abundance of organic and inorganic suspended 
particulate and dissolved matter (Kirk 1994). Several researchers have developed algorithms to 
quantify various parameters, such as chlorophyll-a, humic substances, suspended matter, yellow 
substances, and water transparency (Giardino et al., 2007; Kallio et al., 2001; Schiller and Doerffer, 
1999; Thiemann and Kaufmann, 2000 and 2002). EnMAP can make use of these standards for 
detailed observations of coastal zones and inland waters, while sensors such as MODIS, VIIRS, and 
the recent OLCI as part of ESA’s Sentinels are designed for ocean applications with frequent 
observations at coarser spatial resolutions. Algorithms for coastal and inland water constituents with 
different phytoplankton, particulate and dissolved matter composition will be adapted and improved 
for EnMAP to provide water quality data at a higher spatial resolution. Water quality assessment 
serves both monitoring of freshwater security and the still increasing importance of aquaculturally 
used coastal and inland water bodies. Moreover, water quality assessment is crucial for the monitoring 
and management of endangered ecosystems, such as coral reefs, seagrass meadows or mangrove 
forests (Bell et al., 2008; Landvelde and Prins, 2007).  
EnMAP data will not only offer more frequent observations of in-column constituents but will 
provide frequent information about the type and status of the sea floor substrate and its changes for 
optical shallow waters. Water column correction approaches using hyperspectral data allow the 
identification of bottom vegetation types and, if regularly monitored, the observation of sedimentation 
dynamics, as well as short- and long-term changes in species distribution and structure (Vahtmaee et 
al., 2011). Quantitative analyses of coastal benthic communities enable the investigation of net 
primary production (Dierssen et al., 2010). Moreover, many benthic species act as environmental 
indicators. Therefore, their frequent monitoring enables an estimate of the state of coastal marine 
environments and provides evidence for environmental changes (Phinn et al., 2003; Vahtmaee et al., 
2006). In this context, the fusion of EnMAP data and satellite data with a high geometric resolution 
(e.g., Worldview, GeoEye) offers the potential to pinpoint heterogeneously distributed vegetation and 
sediment patches. The monitoring of benthic vegetation can support integrated coastal zone 
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management when species of certain genera (e.g., Ulva, Laminaria, seegrasses) are grown as a food 
supply for humans or aquaculture of marine animals (Anderson et al., 2007; Radiarta et al., 2011). 
The fusion with spatially high-resolution data also offers the potential to monitor frequently invasive 
benthic and emergent species (Albright and Ode, 2011; Forrest et al., 2012).  
Coastal ecosystems are highly productive and store large amounts of carbon (Cole et al., 2007; 
Pidgeon, 2009). The distribution and dynamics of organic carbon in the vegetation, in combination 
with dissolved organic matter, are important in understanding regional and global carbon cycles. In 
this context, the EnMAP data provide efficient means to characterize the role of coastal and inland 
water bodies in carbon uptake and release.  
Coastal and freshwater ecosystem management involves modelling and monitoring, which require a 
reliable information base and robust analytical techniques. Conventional mapping methods are 
logistically constrained, while airborne campaigns are cost intensive and often are limited to a few 
acquisition dates. The EnMAP satellite will enable a repeatable quantitative monitoring of the water-
related environmental parameters mentioned above. The combination of hyperspectral data with 
ecological or hydrological models, geographic information systems and in-situ measurements allows 
the development of advanced integrated management plans for coastal zones and catchments 
characterized by inland water bodies, wetlands or reservoirs (Yang, 2009; Radiarta et al., 2011). The 
fusion of hyperspectral data with thermal infrared data offers additional perspectives to the analysis of 
the trophic state of coastal or freshwater ecosystems. A combination of EnMAP derived bathymetry 
with RADAR, LIDAR or Laserscan data can be useful to derive underwater topography and morpho-
dynamics of shallow water areas (Pleskachevsky et al., 2011). Thus, imaging spectroscopy enables an 
accurate estimation of water quality and sea floor parameters. Moreover, it offers the potential for new 
and complementary indicators for the characterization of the state of coastal and inland water bodies. 
 
Coral Reefs 
Coral reefs are mosaics of coral, algae and sand. They occupy an area of approximately 250,000 km2 
to 600,000 km² (Hochberg, 2011), corresponding to about 5 % – 15 % of the shallow sea areas (0 m – 
30 m depth), and are spatially heterogeneous at sub-meter scales. Coral reefs host a diversity of 
organisms whose complex dynamics are affected by a vast range of interconnected processes. In 
addition to their ecological value, they also provide significant economic value, supporting, for 
example, fisheries, aquaculture, tourism and recreation (Andréfouët et al., 2005). Thriving in a narrow 
range of conditions, they are very sensitive to environmental changes and react quickly to new 
stressors, making them one of the most threatened coastal ecosystems in the world and a unique 
indicator of global change (e.g., Andréfouët et al., 2005). A decline in reef status is represented by a 
shift from coral- to algal-dominated community structures and accompanied by a general decrease in 
biodiversity. However, current reef surveys usually cover only small regions, leaving vast areas of the 
world’s coral reefs unsurveyed (Hochberg, 2011). Remote sensing is one technique with a huge 
potential for quantifying reef community status at large scales.  
Historically, remote sensing approaches used the Landsat series, SPOT HRV and ASTER data for the 
detection of reefs and reef geomorphology from the mid-1970s (Hochberg, 2011). Development of 
imaging spectrometers operated on airborne platforms in the 1990s enabled identification and 
mapping of reef communities. While broadband data allow the discrimination of three to six classes 
(Mumby et al., 2004), an increased number of and narrower bands may allow more than 10 habitat 
types to be discriminated (Hedley, 2013). More recent developments include spectral unmixing, 
“wavelength feature” approaches and radiative transfer model inversion methods that require 
hyperspectral data (Hedley, 2013), while change detection analyses still depend on multispectral 
imagery due to limitations in multi-temporal hyperspectral data availability. The most ambitious 
objectives, such as the discrimination of live coral versus dead coral and/or macroalgae, quantification 
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of live coral cover, or the detection of coral bleaching events, are not yet routinely achieved (Hedley, 
2013).  
In summary, coral reef remote sensing is a very dynamic field and upcoming sensors, such as 
EnMAP, are expected to have a major impact in the near future by providing data currently acquired 
from airplanes at great costs. Not only will EnMAP’s high-spectral resolution likely allow for 
identification of the three basic reef bottom-types with high accuracy, spectral unmixing to 
discriminate sub-pixel composition, or modelling of light absorption and water optical properties, it 
will enable global mapping of benthic community structure and long-term monitoring of reef status, 
increasing the understanding of the large-scale oceanographic and ecological processes that affect reef 
health (Hochberg, 2011). 
 
Accordingly, the following main scientific tasks are related to coastal and inland water body 
applications:  
• Improvement of the identification of different substances by their spectral characteristics, such as 

improved chlorophyll quantification, the differentiation between ecological important 
phytoplankton groups, and dissolved organic compounds;  

• Enhancement of the identification of different fractions of suspended mineral and organic 
particles; 

• Monitoring of the spatio-temporal dynamics and structure of optical shallow sea/lake bottom 
substrate (vegetation and sediment);  

• Monitoring of the distribution patterns of invasive submersed and emergent algae;  

• Monitoring of the variety of algal species/genera in space and time as a bio-indicator of coastal and 
freshwater ecology;  

• Monitoring and taxonomic identification of (potentially toxic) algal and phytoplankton blooms in 
eutrophicated coastal and inland waters;  

• Estimation of processes, such as primary production in inland and coastal waters and suspended 
matter transport and its impact on coastal ecosystems;  

• Monitoring of the distribution of sediments in tidal flats, wetlands, coral reefs and mangrove 
forests; and 

• Monitoring of coastal erosion and changes in coastal morphology.  

3.4 Cryosphere 
The magnitude of predicted global warming is largest in high-latitude and high-altitude regions 
(IPCC, 2014). Retreating inland ice, decreasing sea ice extent, shorter snow cover periods, and 
accelerated degradation of permafrost areas testify this longstanding trend (e.g., Pritchard et al., 2009; 
Liston and Hiemstra, 2011; Stroeve et al., 2007; Lawrence and Slater, 2005; IPCC, 2014). Complex 
feedback mechanisms imply a wide range of climatic, hydrologic, ecologic, and geomorphic changes 
in these regions. Quantifying the state and changes of snow, glaciers, ice caps, sea ice and permafrost 
landscapes is strongly hampered by missing ground observations due to the challenging logistics as a 
result of the remote and complex terrain. Therefore, satellite observations represent a unique database 
to track and quantify variations in the cryosphere.  
Despite the environmental limitations for optical sensors in the Polar Regions (i.e., months of polar 
night, high cloud coverage, and year-round low solar incidence angles), hyperspectral satellite and 
airborne data provide unique synoptic information on biogeochemical and -physical environmental 
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quantities. Hyperspectral data provide the most important input and enabling from data in space and 
time to derive terrestrial and aquatic energy, water, sediment, and carbon fluxes. Accordingly, 
hyperspectral remote sensing offers the great potential to measure key diagnostic parameters that map, 
monitor and model the cryosphere at landscape scales. 
 

3.4.1 Permafrost and Vegetation 
 
Permafrost covers about 25 % of the northern hemispheric land area and, hence, represents one of the 
largest components of the Arctic cryosphere. Permafrost arctic environments maintain important 
ecosystems with unique plant communities which are particularly sensitive and responsive to climatic 
changes. In permafrost environments, the vegetation, thermal sub-ground conditions, geomorphology, 
hydrology and atmospherical fluxes highly interact with each other. Field observations of the active 
layer (top layer of soil that thaws during the summer) and the underlaying permanently frozen ground 
show a continuously warming trend with a high-spatial variability in warming rates that depend on ice 
content and absolute ground temperatures (Smith et al., 2010; Romanovsky et al., 2010). Large-scale 
permafrost degradation may provoke feedbacks, such as activation of the soil carbon pool and a 
northward expansion of shrubs and forests (Lawrence and Slater, 2005). Increased permafrost 
knowledge is particularly important for the design and maintenance of infrastructure in permafrost 
environments and for designing effective adaptation strategies for the local communities under 
warmer climatic conditions (Romanovsky et al., 2010). 
Permafrost is a sub-ground thermal phenomenon which cannot be directly observed by optical remote 
sensing. However, there are a large number of surface indicators suited for hyperspectral remote 
sensing applications, such the state of the vegetation, surface morphology, hydrology, and aquatic 
ecosystems. In particular, the discrimination of different vegetation types, biophysical variables and 
the photosynthetic activity is of great interest in taiga and tundra permafrost landscape research (Rees 
et al., 2003; Laidler and Treitz, 2003; Hope et al., 2003). For example, Muster et al. (2012 and 2013) 
used the hyperspectral CHRIS-sensor and other optical remote sensing data to investigate the surface 
water and the moisture regime for process studies of energy and water fluxes and to extract the 
subpixel fraction of surface water. Buchhorn et al. (2013a) and Buchhorn (2014) provided a base for 
hyperspectral remote sensing of high-latitude tundra permafrost landscapes by analysing the 
hyperspectral and spectro-directional reflectance properties of the main tundra plant communities 
under changing illumination conditions, showing that they can be well distinguished spectrally. 
Measurements with an EnMAP-specific spectro-goniometer system (Buchhorn and Schwieder, 2012; 
Buchhorn et al., 2013a; Buchhorn, 2014) revealed that up to a sensor viewing zenith angle of 30°, the 
backshadow effect seems to dominate the gap effect, which leads to lower reflectance values in the 
forward viewing directions compared to the nadir or backward viewing directions. Additionally, the 
contrast between shadowed and illuminated surfaces is reduced, because even low-growing plant 
canopies can produce long shadows at high solar zenith angles. On the other hand with increasing 
SZA, the reflectance anisotropy changes to an azimuthally symmetrical, bowl-shaped distribution of 
reflectance values with the lowest ones at nadir. The explanation for these findings is that the 
erectophile moss and lichen understory together with widely dispersed erectophile grasses suppress 
the planophile-like BRDF (bidirectional reflectance distribution function) behavior. At a SZA of 55° 
to 60°, the gap effect starts to become dominant in the overall more erectophile tundra canopy with 
complete dominance at a SZA beyond 68°. This knowledge of the spectro-directional reflectance 
characteristics of tundra vegetation is now available for the retrieval of high-quality, consistent and, 
therefore, comparable and reproducible datasets from airborne and spaceborne sensors for the high-
latitudes. 
The following main scientific tasks are related to permafrost and vegetation: 
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• Assessment of the state and changes in vegetation, hydrology, and surface morphology in 
permafrost landscapes; and 

• Discrimination of different vegetation communities and plant functional types, vegetation 
succession on disturbances, and phenological and photosynthetic state of Arctic vegetation. 

 

3.4.2 Snow & Ice 
 
Snow 
Characterization of snow-covered areas and inland ice is critical for understanding the Earth’s 
hydrology, climatology and ecology, because of their significant effect on the energy balance at the 
land-atmosphere boundary and their importance as fresh water sources. Distributed snow-surface 
energy-balance models need the following spatially distributed parameters that potentially can be 
provided by hyperspectral remote sensing: snow-covered area, snow albedo, grain size, and snow 
water equivalent (Dozier and Painter, 2004). Accurate measurements of these physical snow 
properties are also prerequisites to drive distributed hydrological models in order to quantify timing 
and magnitude of snowmelt runoff and its source areas. 
However, detailed ground-based measurements of snow and inland ice properties are completely 
scarce due to the remoteness and challenging and often dangerous logistics. Satellite-based imaging 
spectroscopy can be used to retrieve key snow inland ice parameters:  
Snow albedo and snowmelt are directly linked to the growth of grain size (Warren and Wiscombe, 
1980). The snow reflectance decreases dramatically, especially in the NIR range, as the snow grains 
evolve after deposition. Liquid water inclusions of melting snow yield albedo reductions, because 
liquid water in snow causes the grains to form clusters (Colbeck, 1979). Repeated hyperspectral 
measurements of snow enable to quantify the evolution of albedo by accounting for various effects 
like grain size and snow contaminants.  
Snow contaminants, such as dust, algae, and soot, degrade snow reflectance significantly, especially 
in the VIS spectrum by adsorption of incoming radiation and at longer wavelength by increases in 
grain size through local microscale metamorphism (Dozier et al., 2009). For example, an experiment 
that compared hyperspectral data to field-measured impurities showed good agreement between 
measured dust concentrations and snow reflectance (Tanikawa et al., 2002). The extensive glacial 
debris cover, which characterizes most mountain glaciers, can be spectrally analysed to decipher their 
origin and to improve glacial mapping as well as our understanding of glacial ablation and kinematics 
(Casey et al., 2012). 
Organic materials in the snow may have even distinctive spectral features (Takeuchi, 2002). Snow 
algae (Chlamydomonas nivalis) may be abundant on top of the snow and inland ice causing albedo to 
decrease. Their distinctive reddish colour, caused by pigment absorption allows measurement of their 
concentration with hyperspectral data (Painter et al., 2001).  
Because varying grain sizes and ablation of contaminants and organic materials translate into 
variability of spectral reflectance, multiple snow endmembers are necessary to characterize snow. 
Spectral mixture analysis enables to accurately represent the spatial distribution of snow (Nolin et al., 
1993). Painter et al. (1998) improved subpixel snow mapping by allowing the spectrum of the snow 
endmember to vary to match the spectral shape of the pixel’s snow reflectance. The authors used 
hyperspectral airborne AVIRIS data to estimate both subpixel snow cover and grain size over a wide 
range of snow conditions in the Sierra Nevada. Rosenthal and Dozier (1996) developed linear spectral 
mixture analysis for subpixel snow-covered area from Landsat. Although only based on multispectral 
data, they were able to map patchy snow cover several times during a season. This Landsat spectral 
mixing model was also used to map snow on glaciers. For example, Klein and Isacks (1999) applied 
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the spectral mixture analysis to identify the ablation and accumulation zones and the transient 
snowline on several tropical glaciers.  

 
Sea ice 
Knowledge of properties of the sea ice is of greatest importance, because the sea ice albedo is among 
the most crucial parameters, which govern the climate processes.  
In the context of the changing Arctic climate, knowledge on sea ice surface melting, its spatial 
distribution and the length of the melt season is required to predict the role of the sea ice cover in the 
radiative balance. Melt ponds change the radiative balance in the Arctic, because they drastically 
reduce the ice albedo and, therefore, increase the flux of absorbed sun light energy and speed up the 
melting process (positive feedback mechanism). Snow accumulation on the sea ice needs to be 
considered as one of the most critical variables in determining ice permeability and melt pond 
development (Eicken et al., 2004). 
Sediment-laden sea ice, i.e., ‘dirty sea ice’, is a common phenomenon in the Arctic. The sea-ice 
sediments mainly consist of terrigenous sediments with clay minerals, quartz and feldspars as main 
components (Nuernberg et al., 1994). Due to surface melt, the sediment accumulates at the surface of 
multi-year sea ice, often concentrated into layers of mud several millimetres thick. The quantification 
of sediment transport by sea ice presents a considerable challenge due to the patchy distribution of 
sediments and the overall difficulty in obtaining data on the areal distribution and suspended 
particulate matter concentrations, while published quantitative estimates of sea-ice transported 
sediment loads differ significantly (Eicken et al., 2005 and further references therein). Lisitzin (2002) 
postulated that 10 % to 50 % of the total Arctic sea-ice area is covered by dirty sea ice.  
In order to assess the change of the energy budget in the region, the sea ice reflective properties, such 
as pure ice or ‘dirty ice’, snow and melt pond coverage on sea ice have to be known. These products 
can serve as an input for Global Climate Models, hydrological models and for the estimation of 
sediment on sea-ice flux. In addition to these applications, knowledge of the spectral properties of sea 
ice surface, such as the melt pond fraction, is useful to plan ship navigations. Therefore, spectral 
remote-sensing potentially provides the different sea-ice albedo types, extracts melt pond fractions, 
maps the extent of particle-laden sea ice and assesses its particulate loading. Perovich et al. (2007) 
refer to direct measurements of the anisotropic reflectance factor for snow covered, bare, and ponded 
sea ice. Huck et al. (2007) built up a radiative transfer model for sea ice coupled with an optical model 
for particulates included in sea ice to model different sea ice surfaces of variable sediment load. They 
distinguish between different degrees of sediment loading and the melt pond fraction. Istomina et al. 
(2014) developed an algorithm to retrieve the melt pond fraction and different sea ice types from 
MERIS data and validated it against aerial, shipborne and in-situ campaign data. The developed 
algorithm is based on a newly developed optical model of sea ice reflection, accounting also for the 
bi-directional reflection from the ice/snow surface (Zege et al., 2015). This is particularly important 
for Polar Regions where the SZA is high. The results show the best correlation for landfast and 
multiyear ice of high ice concentrations. The presented melt pond fraction and sea ice albedo retrieval 
need various spectral bands in the VIS and NIR regions of the spectrum (Istomina et al., 2014; Zege et 
al., 2015). 
 
Future snow and ice research will benefit from a synergistic data collection that combines fine 
spectral and spatial resolution (EnMAP) with sensors with a broad swath and daily coverage of the 
whole Earth (MODIS, Sentinel 3, VIIRS). Envisioned applications include regular tests of medium-
spatial resolution data with EnMAP and data assimilations to improve mapping and monitoring of, 
sea-ice types, snow cover on inland ice and sea ice, ice algae, sediment and dust on ice, melt pond 
fraction and evolution on inland ice and sea ice by an increased temporal and spatial resolution. 
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The following main scientific tasks are related to snow and ice: 
• Development and improvement of new hyperspectral approaches to retrieve snow properties (e.g., 

albedo, grain size and near-surface liquid water, mineral and organic contaminants) and spatial 
snow cover distribution;  

• Exploration of synergies to multispectral sensors with varying spatial scales to improve snow 
mapping in forests and adapt to angular variability; 

• Determination of the spatial and temporal variability of ponded ice spectral reflectance properties 
as a key parameter in determining the large-scale sea-ice albedo; and 

• Determination of snow accumulation, melt pond areal fraction, and sediment load on sea-ice to 
overcome problems associated with the significant spatial inhomogeneity observed and the fact 
that it occurs in largely inaccessible parts of the world's oceans. 

3.5 Urban areas 
Over the past 50 years, anthropogenic ecosystem changes were more rapid and extensive than in any 
comparable period of time in history (MEA, 2005). The world currently experiences rapid 
urbanization and an increase in the number of megacities, particularly in developing countries. 
According to the United Nations Development Program, urban population growth will continue to rise 
substantially over the next several decades (UN, 2012). The (often uncontrolled) process of 
urbanization always results in changes in land use and cover and causes serious problems, such as 
environmental pollutions, destruction of ecosystems, waste disposal and others. Moreover, 
urbanization and related changes in lifestyle increase the per capita demand for energy, goods and 
services (Meyerson et al., 2007). Land conversions, introduced by urban consumption patterns, have 
regional consequences for the biophysical system that may lead to global consequences (Sanchez-
Rodriguez et al., 2005). Thus, there is a critical need to map urban land cover composition and 
monitor urban growth. Remote sensing techniques are widely used to study urban environments. 
However, hyperspectral applications are comparably scarce (Xu and Gong, 2007; Cavalli et al., 2008; 
Weng et al., 2008), which may, to a great extent, be explained by the spectral and structural 
complexity of urban areas (Small, 2001 and 2003; van der Linden and Hostert, 2009) and to a limited 
availability of appropriate sensors covering the full reflective wavelength range (Roberts et al., 2012). 
EnMAP hyperspectral data of medium spatial resolution will open up new opportunities to describe 
and monitor land-cover composition in urban areas and along urban-suburban gradients assisting in 
the understanding of the dynamics of global urbanization (Heldens et al., 2011). 
Classification schemes for urban areas are generally influenced by the spatial scale of analysis and the 
scope of related studies (Heiden et al., 2007; Herold et al., 2004). Research is needed to determine the 
most suitable classification scheme for EnMAP. Given the 30 m ground sampling distance of 
EnMAP, urban mapping will often require a quantification of the sub-pixel land-cover composition. 
For these types of analyses, techniques such as spectral unmixing or regression modelling that are 
capable of dealing with the spectral variety of urban surfaces have to be developed (Roessner et al., 
2001; Franke et al., 2009; Okujeni et al., 2013). For both qualitative and quantitative analyses of 
urban areas, the implementation of reference spectral libraries is essential (Herold et al, 2004; Heldens 
et al., 2011; Heiden et al., 2012; Bieniarz et al., 2014; Jilge et al., 2015; Okujeni et al., 2015a). 
However, it poses a challenging step that requires extensive collaboration between international 
research groups (Hueni et al., 2009; Rasaiah et al., 2011). The combination of medium-spatial 
resolution and high-spectral information content requires new concepts for the description of land-
cover composition. While the occurrences of spectrally pure surface materials are rare, urban spectral 
mixtures contain compositional information that might be characteristic for certain urban structures, 
such as inner city centres or commercial areas. Recent studies that focused on plant species variations 
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used compositional variation to extract major vegetation gradients (Schmidtlein and Sassin, 2004; 
Feilhauer et al., 2011). Applying such concepts to urban areas could account for the spectral and 
spatial information content of EnMAP data. 
One essential application with regard to urban planning is reliable mapping of imperviousness. Within 
this context, approaches that combine qualitative and quantitative analyses appear most suited to 
make full use of the additional information from EnMAP. This additional information will help make 
approaches based on the V-I-S concept (vegetation - impervious surface - soil, Ridd, 1995; Wu and 
Murray, 2003; Lu and Weng, 2006) more reliable or help to extend such models by additionally 
differentiating built-up and non-built-up areas. Recent analysis of simulated data showed EnMAP’s 
potential for improved and extended V-I-S mapping compared to broadly available multispectral 
Landsat data (Okujeni et al., 2015a). 
Reliable surface material indicators are needed for applications, such as urban climate studies and 
other approaches that require knowledge on the biophysical properties of the urban land cover. 
Remote sensing data is more and more used to study the urban climate at meso and macro scales. 
Especially physical properties of urban areas, such as reflection, absorption, emissivity, specific heat 
capacity, but also height and spatial arrangement of urban objects, are needed to parameterize climate 
models (Jin et al., 2007; Yang, 2000; De Foy et al., 2006). Spaceborne hyperspectral EnMAP data 
will have the potential to provide this information (Okujeni et al., 2015b) on an operational basis. 
However, suitable concepts are needed to derive urban ecological indicators (Behling et al., 2015) and 
to integrate the surface information into urban climate models. Local climate zones (LCZ) are a 
concept especially developed for climate studies in urban areas (Stewart and Oke, 2012).  
In this context, fusion of spectral and thermal data (at the feature or knowledge level) may reveal the 
relationship between thermal patterns, urban surface materials, and urban structure and, thus, helps to 
understand their influences on the urban climate (Oke, 1988). Such data fusion studies have already 
been carried out at local scales with airborne thermal and hyperspectral data (e.g., Xu et al., 2008). 
Novel fusion techniques combining future EnMAP data with thermal sensors (e.g., ASTER, HyspIRI) 
can open up new opportunities for urban climate studies on larger scales. Another challenging task is 
the combined analysis of hyperspectral data and spatially high-resolution remote sensing data, which 
enables a detailed analysis of urban structures combined with surface material information. In this 
context, image data fusion (Zhang, 2010) is a promising technique to retrieve further information 
from EnMAP data. However, methodological gaps exist for spatial upscaling techniques that preserve 
spectral information content. Overall, the synergistic use of hyperspectral, thermal, and optical data 
with advanced data analysis techniques may result in enhanced socioeconomic and environmental 
indicators to model urban dynamics and their social and environmental consequences. 
Accordingly, main scientific tasks related to urban areas include:  
• Mapping and monitoring of urbanization and its dynamics with high spectral detail worldwide;  

• Development of comprehensive urban spectral libraries for universal urban land-cover mapping 
based on EnMAP data; 

• Development and improvement of classification algorithms to quantify urban land cover, including 
classes that are spectrally ambiguous in multispectral data; 

• Investigation of new concepts for information extraction based on spectral mixtures;  

• Application and extension of the V-I-S concept to produce biophysical surface maps with respect 
to the needs of urban environmental process models , e.g., on urban climate and hydrology; and 

• Mapping of the abundance of hazardous materials such as asbestos, e.g., in the context of risk 
analyses.  
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3.6 Atmosphere 
Although EnMAP is not specifically designed for atmospheric research, variables that describe 
atmospheric conditions and constituents may be retrieved from EnMAP data. These variables include 
atmospheric levels of methane, atmospheric water vapour, mineral dust, particulate matter clouds, and 
pollen.  
Methane is among the most important greenhouse gases and its concentration was increased three fold 
since pre-industrial times (e.g., IPCC, 1995; Bousquet et al., 2006). Besides large-scale emissions e.g. 
from wetlands or due to land-use changes, small-scale emissions play an important role in the total 
amount and variability of current day methane emissions (e.g., Katey et al., 2006; Cao et al., 1998). 
Satellite observations with coarse spatial resolution were a key to identify previously unknown 
emission sources of methane (e.g., Houweling et al., 2006). Smaller scale anthropogenic and natural 
sources can contribute significantly to the total global emissions (Katey et al., 2007; Kort et al., 2014) 
and their monitoring can significantly reduce uncertainties on their budget estimates. Small-scale 
methane sources could be identified from hyperspectral aircraft measurement using techniques which 
are in principle applicable to EnMAP measurements in the SWIR spectral region (e.g., Bradley, 2011; 
Thorpe et al., 2014; Thompson et al., 2015). Thus, retrievals of atmospheric methane concentrations 
from EnMAP observations could bridge the current gap between airborne campaigns and coarse 
spatial resolution spaceborne observations. Initial tests have demonstrated the feasibility of methane 
column content retrievals with EnMAP, which suggests that one can leave the realm of methane 
anomaly detection and start to monitor and quantify small spatial scale methane emissions either from 
natural sources, such as lakes and fires, or anthropogenic sources, such as mines or industrial sites. 
The detection limit and absolute retrieval accuracy from algorithms for EnMAP observations are 
currently an active field of research and remain to be determined. 
Atmospheric water vapour is important for many environmental applications, because it constitutes 
one of the most effective greenhouse gases in the atmosphere. It shows a high-spatial and temporal 
variability, depending on meteorological conditions and land use at the underlying Earth's surface. 
Information on the regional distribution of atmospheric water vapour may, for example, facilitate the 
analysis of SAR data, because the radar signal transit time depends on the atmospheric conditions. A 
few algorithms for the retrieval of columnar water vapour content from hyperspectral remote sensing 
data have already been developed (e.g., Barducci et al., 2004). 
Atmospheric constituents such as mineral dust and particulate matter clouds originating from sand 
storm areas or biomass-burning activities also show a highly variable temporal and spatial 
distribution. Mineral composition of such transported dust is essential to our understanding of climate 
forcing, mineralogy of dust sources, aerosol optical properties, and mineral deposition to the ground. 
Furthermore, the differentiation of spectral signals from the ground and from mineral dust may allow 
separating atmospheric influences from the actual ground signal by determining their mineral 
composition. Chudnovsky et al. (2009) showed that, for the suspended dust, the absorption signature 
could be decoupled from scattering, allowing detection of key minerals. For vegetation and 
phenological studies, temporal and spatial pattern of pollen spread may be retrieved from 
hyperspectral data as few studies have already demonstrated (e.g., Kaleita et al., 2006). 
Accordingly, scientific tasks related to atmospheric applications include:  
• Development of a retrieval algorithms for total column methane concentration from EnMAP 

observations;  

• Establishment of figures on the detection limit and total accuracy of a potential methane product; 

• Development and improvement of algorithms to retrieve columnar water vapour based on 
hyperspectral data;  
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• Development and improvement of algorithms to characterise mineral dust, particulate matter 
clouds and pollen based on hyperspectral data; and 

• Development and improvement of algorithms to separate the spectral signal of mineral dust from 
the actual ground signal. 

3.7 Hazards and Risks 
EnMAP data can contribute to various information needs, originating from the goal of an improved 
hazard and risk assessment. These include process-related (hazard) as well as damage-related 
(vulnerability and risk) aspects and apply to both, natural and man-made hazards. Overall, the main 
benefit of hyperspectral data lies on their potential for a more differentiated characterization of 
predisposing (contributing) factors as well as changes caused by hazardous phenomena in regard to 
environmental conditions and affected infrastructures. 
 
Landslides  
In mountainous areas, landslides of various forms and composition impose a constant threat to local 
communities and infrastructures. Landslide inventories (Guzzetti et al., 2012) and hazard assessment 
(Guzzetti et al., 2005) studies have long been based on the analysis of remote sensing data for an 
improved characterization of predisposing factors as well as for the establishment of up-to-date 
landslide inventories (Metternicht et al., 2005 and references therein; Behling et al., 2014; Scaioni, 
2014). Remote sensing based landslide analysis can be improved with hyperspectral data, especially 
for an improved characterization of environmental factors predisposing landslides. For example, this 
includes a better differentiation of the lithological conditions and an improved identification of 
inhomogeneities within landslide-prone slopes, indicating an increased potential for the onset of slope 
failures. This way, hyperspectral data can contribute to a better characterization of active unstable 
slopes, such as debris-covered areas, fractured/disjointed rock walls, landslide accumulation borders 
and individual structural features and landforms, such as major faults and fractures, trenches, 
elongated depressions, and counterslope scarps (Mondino et al., 2009).  
 
Swelling soils 
Expansive clays and clay-shales cause costly damages world-wide every year. The distribution of 
reported instances of heaving (Chen, 1988) indicates that the problem of expansive soil is widespread 
throughout the five continents, mostly confined to semi-arid regions of the world. Soil spectroscopy 
has been shown to be a useful tool for evaluation of expansive potential (e.g., Goetz et al., 2001) and 
hyperspectral remote sensing with its potential for direct identification of constituent minerals in soils 
allowed detection and mapping of expansive clays in different locations and at different spatial scales 
(e.g., Chabrillat et al., 2002; Chabrillat and Goetz, 2006; Kariuki et al., 2004). Hyperspectral imagery 
can identify heaving soils and map their spatial distribution and, thus, offer practical help to planners. 
 
Floods  
Many riverine and coastal areas in the world are threatened by floods caused by rainstorms, snowmelt, 
cyclones, tidal waves or dam-failures. A major challenge related to flood monitoring is the timely 
detection and the broad regional extent. Consequently, satellite imagery has been extensively used 
since the 1970s to detect and monitor floods allowing for a more rapid emergency response, the 
assessment of damaged areas, and the study of water quality changes (Ip et al., 2006). Hyperspectral 
remote sensing has proven to be particularly suited to estimate soil contamination in floodplains (e.g., 
Goetze et al., 2010). 
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Droughts 
Droughts can have a substantial impact on the ecosystem and agriculture of the affected area. For 
example, large-scale agricultural losses can have local to global socioeconomic implications in the 
form of income losses and increasing commodity prices (Simelton et al., 2012; Ubilava, 2012). In 
general, drought periods lead to an increased fire susceptibility and tree mortality, whereas carbon 
uptake decreases significantly (Nepstad et al., 1999; Asner et al., 2000; Williamson et al., 2000). 
Spaceborne imaging spectroscopy has a large potential to study climate–vegetation interactions by 
detecting the state of vegetation on a regional scale (Asner et al., 2004). Such ecosystem studies may 
yield an increased accuracy of ecological models and could result in drought-preventive measures for 
agricultural areas. 
 
Volcanoes 
In concert with seismic and geodetic measurements, hyperspectral information on volcanic debris 
flows, pyroclastic materials, and gas emissions are fundamental to the understanding of eruptive 
systems (Crowley et al., 2003; Tralli et al., 2005). In particular, hyperspectral information may 
provide valuable insights into volcanic activity (Cipar et al., 2010). While these studies illustrate the 
potential of a hyperspectral sensor in volcanic research, the approaches need to be fine-tuned and 
tailored to the information needs of crisis management. For example, the differentiation between 
various crater types, lava flow types and volcanic deposits would significantly improve the risk 
assessment to enable a timely planning of evacuation measures. 
 
Land degradation and soil erosion  
As a result of climatic variations and human mismanagement, deterioration in soil and plant cover has 
adversely affected nearly 70 % of the world´s dry-lands that cover approximately one third of the 
continental surface of the Earth. These facts have led to the ratification, by almost 180 nations, of the 
UN Convention to Combat Desertification (UNCCD, 1994), which emphasizes the need to monitor 
and assess land degradation processes worldwide. Combating desertification requires accurate 
knowledge of the current land-degradation status and the magnitude of the potential hazard. It is 
widely agreed that accelerated erosion is one of the most important sources of land degradation that, 
together with the destruction of vegetation cover and structure, contributes to the potential increase of 
land degradation and desertification (Pickup, 1989). 
EnMAP data holds considerable potential to assess various degrees of land degradation by retrieving 
important variables that control the susceptibility to soil erosion, such as soil compaction, surface 
roughness, infiltration rate, and soil moisture (Haubrock et al., 2004 and 2008). Due to distinct topsoil 
characteristics, soils previously affected by erosion can be spectrally distinguished from intact soils 
(Dematte et al., 2000), and soil erosion and deposition stages can be mapped with hyperspectral 
remote sensing (Schmid, 2015). Another manifestation of soil degradation is increased salinity, which 
is commonly caused by rising water tables induced by land clearing or irrigation. In this case, imaging 
spectroscopy proved to be an effective tool to infer the degree of soil salinity as indicated by the shape 
of the hydroxyl absorption feature at 2200 nm and by the presence of indicator minerals such as 
gypsum or smectite (Taylor et al., 2001; Taylor, 2004). Further applications to investigate land 
degradation based on hyperspectral imagery include the analysis of spatial patterns and temporal 
dynamics of desertification (Asner and Heidebrecht, 2005) and the identification and mapping of dry 
senescent vegetation cover, thus, providing an accurate vegetation cover in arid areas (e.g., Chabrillat, 
2006). Overall, EnMAP will open up new possibilities to assist agricultural land use and to combat 
land degradation and soil erosion processes. 
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Oil spills  
Imaging spectroscopy has been employed to detect the occurrence and migration of oil spills and 
contamination. Oil seepages may occur naturally within onshore or offshore basins or result from 
leaks and spills during the extraction, transportation, storage, and utilization of petroleum. In marine 
environments hyperspectral data can be used to track an oil spill's areal extent, the oil thickness, and 
oil categories. For example, Salem (2001) developed methods to detect oil-polluted surfaces (soil and 
water) and to predict oil spill trajectories and migration rates for a quick disaster response. However, 
the spectral behaviour of oil in water is inherently a highly non-linear and variable phenomenon that 
changes depending on oil thickness and oil/water ratios (Rand et al., 2011). In addition, hyperspectral 
imagery has been used to detect ecosystem changes by weathered oil in coastal littoral zones (Bostater 
et al., 2011; Salem, 2005) and by oil-induced vegetation stress (Li et al., 2005). 
 
Marine litter  
The pollution of marine and coastal environments with marine litter, which is mainly composed of 
plastics, has been identified as a long-term hazard for associated ecosystems (Galgani et al., 2010; 
UNEP, 2009). Continuously increasing disposal quantities and low plastic degrading rates (on the 
order of centuries) caused an increasing litter accumulation in these environments over the past 
decades. Marine litter causes several harms including entanglement of and ingestion by marine 
organisms (e.g., fishes, seabirds) (Gregory, 2009). Because persistent toxic substances, such as 
organochlorines (e.g., PCB, DDE, DDT) and others, are accumulating at high concentrations on the 
surface of plastics (e.g., Mato et al., 2001; Ogata et al., 2009), the ingestion of plastics by marine 
organisms represents the entrance point of those substances into the food chain (e.g., Bjorndal et al., 
1994; Eriksson and Burton, 2003; Graham and Thompson, 2009; Boerger et al., 2010). However, 
whether there is enrichment or depletion within the food chain is subject to on-going research (Zarfl et 
al., 2011). Despite a basic understanding of principle sources and sinks of plastic pollution, a detailed 
assessment of their quantities and transport pathways is still lacking (Zarfl et al., 2011). Therefore, the 
monitoring of marine litter is prescribed as a mandatory task in the Marine Strategy Framework 
Directive (MSDF-indicator 10.1.3) and, consequently, on EU level as well as on the global level 
guidelines which have been compiled for the best practices of conducting this monitoring (Cheshire et 
al., 2009; JRC, 2013). Given that imaging spectroscopy is suitable to identify marine plastics (e.g., 
Thompson et al., 2004; Kuriyama et al., 2002), EnMAP might contribute to the localization of major 
pollution sources, sinks and pathways of marine litter. A potential application to localize marine litter 
is related to natural hazards like tsunamis and floods, which can act as transport agents for large 
amounts of artificial materials into the marine environment. A major challenge in such a scenario is 
the timely acquisition and analysis of remote sensing images, which requires the development of 
efficient image processing techniques for a near-real-time support to enable the removal of marine 
litter. 
 
Industrial and mine waste and environmental rehabilitation 
The extraction of natural resources is frequently associated with environmental degradation due to the 
dispersion of potentially toxic substances. For example, numerous abandoned mines (e.g., open pit 
coal, copper and gold mines) have left an environmental legacy of acidic drainage and toxic metals in 
downstream watersheds with adverse effects to human and ecosystem health (Swayze et al., 2000). 
Acid mine drainage derives from an enhanced sulfide hydro-oxidation process due to the increased 
effective surface of crushed and milled rocks during the mining process. Sulfuric acid enters the food 
chain through contaminated soils and water, which can ultimately result in the collapse of wetlands 
(McCarthy et al., 2007) and the decline of ecosystems in general (Wepener et al., 2011). In addition, 
technical accidents or illegal dumpings that release toxic industrial waste can contaminate the 
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surrounding environment (Mayes et al., 2011; Minh et al., 2003; Okoronkwo et al., 2006; Wong et al., 
2007). Imaging spectroscopy can effectively identify contaminations and determine its sources and 
impacts on the water cycle and vegetation health (Clark et al., 2003; Kemper and Sommer, 2004).  
For example, hyperspectral mapping of areas affected by acid mine drainage has accelerated the site 
clean-up and saved millions of dollars in clean-up costs (EPA, 1998). Based on an improved 
understanding of environmental impacts, many countries strengthened legislation to enforce 
environmental protection and to implement rehabilitation measures (MMSD, 2002). In this context, 
imaging spectroscopy represents a comprehensive monitoring tool to assess the mining related 
environmental impacts and to monitor the progress of ecosystems restoration. Regarding waste 
management, hyperspectral applications provided information on the concentration and distribution of 
asbestos and other debris materials in the aftermath of the September 11th terrorist attacks (Clark et 
al., 2001). Therefore, EnMAP has the potential to become an efficient operational tool to monitor both 
the effects of environmental pollution and the progress made in the rehabilitation of affected sites. 
 
The following main scientific tasks are related to hazards and risks:  
• Monitoring of tectonic, lithological and soil parameters for better characterization of factors 

predisposing landslide formation to improve hazard assessments; 

• Detection and mapping of swelling soils occurrences to assess swelling potential and to improve 
hazard assessment and application of adequate countermeasures; 

• Detection and monitoring of flood occurrences to assess flood risks, damaged areas, and water 
quality; 

• Monitoring of the state of vegetation during drought periods to improve the accuracy of ecological 
models and to develop drought-preventive measures for agricultural areas;  

• Investigation of volcanic systems with regard to their crater types, lava flow types and volcanic 
deposits to improve risk assessment and evacuation measures; 

• Monitoring land degradation processes (erosion and deposition) by providing regular maps of 
vegetation distribution and characteristics (taking into account highly variable background 
substrates) and soil status, such as organic matter (TOC), CaCO3, iron content, infiltration rate, 
salinity, and physical crusting development;  

• Identification and quantification of various soil contaminants through their specific spectral 
signatures or indicators (e.g., bio-indicators based on eco-toxicological effects on vegetation) 
linked to change in chemical composition of the polluted soil; 

• Investigation of oil spills with respect to type, distribution, migration rates, and environmental 
impacts;  

• Identification of sources, sinks and pathways of marine litter during large-scale plastics discharge 
events;  

• Monitoring of mining sites for their sustainable management; and 

• Monitoring and quantification of the distribution of toxic materials in waste dumping sites and 
assess the degree of environmental contamination and the success of remediation strategies. 
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4 Scientific exploitation strategy 
 
In the preparatory phase of the EnMAP mission, a considerable effort is dedicated to develop tools for 
data processing and build an expert scientific community around imaging spectroscopy to ensure 
exploitation of the full information content of the EnMAP data once operational. This chapter 
provides a brief overview of the various activities. 

4.1 Information and training 
The primary source of information about the EnMAP mission is the EnMAP website 
(www.enmap.org). In addition, a mailing list was established to spread EnMAP-specific news and 
announcements. One can subscribe to the list by sending an email to EnMAP_wiss-on[at]gfz-
potsdam.de. As of May 2016, the list has approx. 300 subscribers from research, administration and 
business. 
Key documents of the EnMAP mission, targeting the scientific community and other users, are 
highlighted in Table 2. Note that some of these documents are under preparation and will be available 
at a later stage. Research results related to EnMAP are frequently published in scientific journals and 
presented at international conferences. To raise public awareness, relevant information about the 
mission and its status are spread through the media. 
EnMAP science workshops and organized conference sessions are held regularly with the objectives 
to inform about the progress of the mission, to present and discuss EnMAP-related research, and to 
raise awareness of the mission.  
The YoungEnMAP group represents a research community of PhD students, early PostDocs and 
undergraduate students based at various universities and research institutes in Germany and 
elsewhere. To promote and train these junior scientists, EnMAP schools are conducted by the EnSAG 
on a regular basis covering a broad range of topics.  

4.2 EnMAP preparatory flight campaigns 
In the framework of the EnMAP preparatory program, a large number of hyperspectral airborne flight 
campaigns have been and will be carried out in the future to support scientific application 
development in a wide range of environments. These campaigns facilitate the evaluation of the 
potential performance for the retrieval of key environmental parameters, the exploitation of synergies 
with other sensors, and the development and testing of new image processing algorithms and 
calibration/ validation methods (Guanter et al., 2015). In addition, the datasets are input for EnMAP 
end-to-end scene simulations (see section 4.3). In the future, methods developed and experiences 
gained from the work with these airborne and simulated EnMAP datasets can be readily employed 
during the mission operation period. 
Most of the test sites were covered by multi-seasonal flights to support the analysis of multi-temporal 
process studies. Furthermore, acquisitions at different flight altitudes were obtained, which facilitate 
spatial scaling studies. In some occasions, the simultaneous data collection with other sensors (e.g., 
LiDAR) enables multi-sensoral studies. Most campaigns were accompanied by extensive ground-data 
sampling to calibrate and validate the airborne data acquisitions. 
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Table 2: Key documents of the EnMAP mission. 

Document Author Target group Language Objectives Availability 

EnMAP Science 
Plan 

PI, EnSAG Scientists, 
funding 
institutions, 
environmental 
stakeholders 
and govern-
mental bodies 

eng Describe the scientific 
background, requirements and 
activities related to the 
EnMAP mission 

www.enmap.org 
(2016, 
continuously 
updated) 

EnMAP flyer PI, EnSAG General public eng  Brief information about 
mission, objectives and 
application fields 

www.enmap.org 
(2015) 

EnMAP brochure PI, EnSAG General public eng/ger Information about scientific 
objectives and application 
fields 

www.enmap.org 
(2014/12) 

Hyperspectral 
algorithms report 

PI, EnSAG Hyperspectral 
community 

eng Overview of algorithms for 
hyperspectral analyses 

www.enmap.org 
(2010) 

EnMAP 
Algorithms 
Theoretical 
Baseline 
Document 
(ATBD) 

Ground 
segment 

(potential) users 
of EnMAP data 

eng Detailed information on 
algorithms and databases used 
by the ground segment for 
data processing 

www.enmap.org 
(at launch) 

EnMAP Mission 
Handbook 

DLR Space 
Administra-
tion 

(potential) users 
of EnMAP data 

eng Give mission overview, 
inform about data access 
(general and AO process), 
main aspects of data policies 
(priorities, contingents), data 
(level, formats, processing 
etc.) 

www.enmap.org 
(due 1 year ahead 
of launch) 

EnMAP User 
Manual of the 
Instrument 
Planning 

Ground 
segment 

(potential) users 
of EnMAP data 

eng Information about the 
instrument planning 

www.enmap.org 
(at launch) 

EnMAP User 
Manual of the 
Planning Portal  

Ground 
segment 

(potential) users 
of EnMAP data 

eng Information about EOWEB 
data access portal 

www.enmap.org 
(at launch) 

The EnMAP 
Spaceborne 
Imaging 
Spectroscopy 
Mission for 
Earth Observation 

PI, EnSAG (potential) users 
of EnMAP data 

eng Overall mission overview Guanter et al. 
(2015) 

Environmental 
Mapping and 
Analysis Program 
– A German 
Hyperspectral 
Mission 

PI, OHB, 
EnSAG 

(potential) users 
of EnMAP data 

eng Detailed technical description Kaufmann et al. 
(2016) 

 
The datasets are successively made freely available to the scientific community as DOI-referenced 
data publications which are under a Creative Commons Licence. An overview of all available datasets 
at http://www.enmap.org/?q=flights provides details about the campaigns, such as information about 
recorded airborne hyperspectral datasets, other data associated with the respective campaigns such as 
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field and laboratory measurements, and availability of simulated EnMAP and Sentinel-2 imagery. In 
addition, all datasets are accompanied by data reports (EnMAP Technical Reports), describing in 
detail how the data were acquired and (pre)processed and which ground truth and additional data are 
available. 
In addition to these campaign data, a number of field sampling guides and spectral libraries developed 
within the mission’s preparatory program are made available as EnMAP Technical Reports via the 
EnMAP website. 

4.3 EnMAP end-to-end scene simulations   
Preparatory activities involve the simulation of the entire image generation and processing chain using 
the EnMAP end-to-end scene simulator (EeteS; Segl et al., 2012). EeteS comprises four main modules 
(atmospheric, spatial, spectral, and radiometric) to generate EnMAP-like raw data and is capable of 
simulating EnMAP-like data products using a L1B, L1C and L2A processor. These simulated data are 
important for activities related to the optimization of fundamental instrument configurations, allowing 
the effect of parameter changes to be tested using simulated benchmark datasets. In addition, these 
datasets support the development and evaluation of data pre-processing algorithms as well as the 
testing of new algorithms for the improved scientific exploitation of future EnMAP data, such as tools 
for geometric alignment of EnMAP to co‐existing Earth observation missions, facilitating synergetic 
uses, for example, with Sentinel-2 data. Sample datasets generated with EeteS are provided upon 
request to scientific users. 

4.4 EnMAP-Box 
Full exploitation of the high-spectral information content of EnMAP data requires the availability of 
state-of-the-art image processing approaches for all users and application fields. Therefore, the 
EnMAP-Box is developed targeting both, novices as well as experienced users, and offers basic 
processing and visualization functionality as well as advanced approaches for image analysis. 
Moreover, the open source code may easily be extended by individual applications. This way, the 
exchange and centralized distribution of latest developments shall be fostered within the EnMAP user 
community. From the first versions in 2009, the conceptual development of the EnMAP-Box was 
driven by the following objectives:  

• User-friendliness: for example, achieved by an intuitive graphical user interface (GUI) 
(Figure 6), focusing on the handling and visualization of data with high-spectral dimension, 
widget controlled machine learning algorithms, common file formats, selected basic tools and 
easy-to-use advanced methods, and the possible integration into ENVI; 

• Comprehensiveness: the set of available tools and applications as well as interfaces to 
scripting languages make the constant switch between different software obsolete; 

• Standardization: the implementation and use of applications is standardized to assist external 
developers and provide the users a common look-and-feel, which also constitutes a key 
component for user-friendliness; and 

• Addressing external developers: availability of well-documented source code, offering an 
application programming interface (API) and an application wizard. 

A detailed description of the concept and status of the EnMAP-Box is given in van der Linden et al. 
(2015). 
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Fig. 6: Graphical user interface of the EnMAP-Box 2.2.1, showing simulated EnMAP data and mapping results 
of Berlin, Germany. 

 
The EnMAP-Box (Version 2.2 released in January 2016 at www.enmap.org) works stand-alone, but 
may be integrated into the ENVI classic menu. It can also be used with any multispectral imagery. It 
combines functionality for spectrally high-dimensional data with latest machine learning and 
interfaces to R or Python. The toolbox is delivered together with an API for a standardized integration 
of new developments independent from the respective programming language. Since 2012, more and 
more external applications were added, all following the idea of a standardized implementation 
(Table 3).  
Prior to the start of EnMAP, the toolbox will be converted into a Python plug-in to be used in Q-GIS. 
It will be extended by a set of sensor product specific tools including additional pre-processing tools, 
e.g., for a locally adapted atmospheric correction to transfer data from level 1B to 2A. In addition, 
import filters for complementary sensors, e.g., Sentinel-2/3 or Landsat OLI, will be included.  
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Table 3: List of available applications in the EnMAP-Box version 2.2. 

Type of application Application name(s) and 
reference 

Reference Contributor* 

General applications 

Support vector machine classification and 
regression incl. adapted learning strategy 
for gradual class transitions 

imageSVM Janz et al. (2007); Suess 
et al. (2015) 

HUB 

Random forests for classification and 
regression 

imageRF Waske et al. (2012) UB, HUB 

Partial least squares regression autoPLSR Wold et al. (2001) UB 

Spectral feature clustering Feature Clustering Held et al. (2015) HUB 

Spectral index data mining tool SpInMine  UT 

Iterative spectral mixture analysis iterativeSMA Rogge et al. (2006) UT 

SVR-based unmxing using synthetic 
libraries 

syntMix-SVR Okujeni et al. (2013) HUB 

Maximum entropy analysis MaxEntWrapper  UB 

Calculator for spatial and spectral image 
processing  

imageMath  HUB 

Application related tools 

Agricultural applications (including tools 
for estimating (i) the red-edge inflection 
point, (ii) a suite of 65 agricultural 
vegetation indices, (iii) spectral integrals 
and advanced statistical evaluation, and 
(iv) the estimation of optical active water 
thickness in vegetation 

iREIP , AVI, ASI, ASE, 
OAWI 

 LMU 

Soil properties mapping EnSoMAP Chabrillat et al. (2016) GFZ 

Mineral detection and mapping EnGeoMAP - Base Mielke et al. (2014) GFZ 

Rare earth element detection and mapping EnGeoMAP – REE Boesche et al. (2015b) GFZ 

Ocean related parameter retrieval  Phytobenthos Index, 
Ocean Color Chlorophyll 

 HZG 

Data specific tools  

Surface water body detection EnWaterMap Bochow et al. (2012) GFZ 

* HUB – Humboldt-Universität zu Berlin, UB – University of Bonn, UT – Trier University, LMU - Ludwig-
Maximilians-Universität München, HZG - Helmholtz-Zentrum Geesthacht, GFZ - Helmholtz Centre Potsdam - 
German Research Centre for Geosciences. 
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List of acronyms 
 
A list of abbreviations is provided in Table 4, while an extended glossary of terms and abbreviations 
is publically available at the EnMAP website at 
http://www.enmap.org/sites/default/files/pdf/EnMAP_Glossary.pdf. 
 

Table 4: List of abbreviations used in this document. 

Acronym Name 
APAR Absorbed Photosynthetically Active Radiation 
API Application Programming Interface 
BRDF Bidirectional Reflectance Distribution Function 
CBD Convention on Biological Diversity 
CNES Centre National d’Études Spatiales 
DEM Digital elevation model 
DLR German Aerospace Agency 
EBV Essential Biodiversity Variables 
EeteS EnMAP end-to-end scene simulator 
EnMAP Environmental Mapping and Analysis Program 
EnSAG EnMAP Science Advisory Group 
fAPAR Fraction of Absorbed Photosynthetically Active Radiation 
GBIF Global Biodiversity Information Facility 
GCOS Global Climate Observing Systems 
GEO Global Environment Outlook 
GEO Group on Earth Observations 
GEOSS Global Earth Observation System of Systems 
GFZ German Research Centre for Geosciences 
GLP Global Land Project 
GOOS Global Ocean Observing System 
GTOS Global Terrestrial Observing System 
GUI Graphical User Interface 
HISUI Hyperspectral Imager Suite 
HRS Hyperspectral Remote Sensing 
HUB Humboldt-Universität zu Berlin 
HZG Helmholtz-Zentrum Geesthacht 
IGBP International Geosphere-Biosphere Program 
IHDP International Human Dimensions Program 
IPBES Intergovernmental Platform on Biodiversity & Ecosystem Services 
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 List of acronyms 
 

Acronym Name 
IPCC Intergovernmental Panel on Climate Change 
IUCN International Union for Conservation of Nature 
JAXA Japanese Aerospace Exploration Agency 
LAI Leaf Area Index 
LCZ Local Climate Zone 
LMA Leaf Mass per Area 
LMU Ludwig-Maximilians-Universität München 
LOICZ Land Ocean Interaction in the Coastal Zone Program 
MERIS MEdium Resolution Imaging Spectrometer 
NIR Near infrared 
PRISMA PRescursore IperSpettrale della Missione Operative 
REDD UN Collaborative Initiative on Reducing Emissions from Deforestation and 

Forest Degradation 
SAR Synthetic Aperture Radar 
SBA Societal Benefit Area 
SDG Sustainable Development Goal 
SNR Signal-to-noise ratio 
SZA Solar Zenith Angle 
SWIR Shortwave-infrared 
UB University of Bonn 
UT University of Trier 
VIS Visible 
V-I-S Vegetation – Impervious surface - Soil 
VZA Viewing Zenith Angle 
WCRP World Climate Research Program 
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