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Abstract 16 

Spatially explicit multi-year crop information is required for many environmental applica-17 

tions. The study presented here proposes a hierarchical classification approach for per-plot 18 

crop type identification that is based on spectral-temporal profiles and accounts for deviations 19 

from the average growth stage timings by incorporating agro-meteorological information in 20 

the classification process. It is based on the fact that each crop type has a distinct seasonal 21 

spectral behaviour and that the weather may accelerate or delay crop development. The classi-22 

fication approach was applied to map twelve crop types in a 14 000 km² catchment area in 23 

Northeast Germany for several consecutive years. An accuracy assessment was performed 24 

and compared to those of a maximum likelihood classification. The 7.1 % lower overall clas-25 
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sification accuracy of the spectral-temporal profiles approach may be justified by its inde-26 

pendence of ground truth data. The results suggest that the number and timing of image ac-27 

quisition is crucial to distinguish crop types. The increasing availability of optical imagery 28 

offering a high temporal coverage and a spatial resolution suitable for per-plot crop type map-29 

ping will facilitate the continuous refining of the spectral-temporal profiles for common crop 30 

types and different agro-regions and is expected to improve the classification accuracy of crop 31 

type maps using these profiles.  32 

 33 

Key words: crop type mapping, NDVI temporal profiles, multi-temporal, phenological correc-34 

tion, agro-meteorological data 35 

 36 

1 Introduction 37 

 38 

Timely availability of large-scale information on the spatial distribution of crop types is re-39 

quired to support modeling and managing of agro-environmental systems from regional to 40 

national scales. Often this information is only available as averages at the level of administra-41 

tive units and is usually not obtainable for areas with deviating boundaries, e.g. river basins 42 

(De Witt and Clevers, 2004). Many agro-environmental applications such as agricultural 43 

flood damage estimation or water quality modeling, however, require spatially distributed 44 

crop data. 45 

For these applications remote sensing is nowadays an important source of information 46 

(Vincikova et al., 2010). Due to the dynamic character of agricultural systems, crop type 47 

mapping based on multi-temporal approaches is superior over single-date image analyses. 48 

While traditional approaches using parametric or non-parametric classification algorithms re-49 

quire ground truth data to train the classifier (e.g., Yang et al., 2011; Castillejo-González et 50 
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al., 2009), the use of crop-specific spectral-temporal profiles is independent of ground truth 51 

data. The independence of ground truth data nevertheless facilitates operational monitoring of 52 

agricultural land use over large areas and longer time periods. 53 

The use of spectral-temporal profiles for crop identification by satellite data was first pro-54 

posed in the 1980s. Odenweller and Johnson (1984) presented characteristic profiles observed 55 

for a variety of crops by use of a vegetation indicator that measures the infrared reflectance 56 

relative to the reflectance in the visible range. The term ‘spectral-temporal profile’ refers to 57 

the spectral behaviour of a certain crop type throughout the year. Profile-based crop identifi-58 

cation is based on the fact that profiles representing a specific crop are usually more similar 59 

than profiles representing different crops (Odenweller and Johnson, 1984). Several studies 60 

investigated the use of crop-specific seasonal profiles for crop discrimination and mapping at 61 

different spatial scales from local to state level (Wardlow et al., 2007; Murthy et al., 2003; 62 

Sakamoto et al., 2005; Jakubauskas et al., 2002). Most of the studies are based on temporal 63 

profiles of the Normalized Difference Vegetation Index (NDVI) as an effective indicator of 64 

the photosynthetically active vegetation (e.g., Bradley et al., 2007; Wardlow and Egbert, 65 

2008). The NDVI is the most commonly used vegetation index applied in agricultural applica-66 

tions, however, several other vegetation indices have been proposed to reduce the influence of 67 

the canopy background and the atmosphere (Reed et al., 2003), such as the Soil Adjusted 68 

Vegetation Index (SAVI, Huete, 1988) or the Enhanced Vegetation Index (EVI, Huete et al. 69 

1997). The NDVI is a measure of photosynthetic capacity of the vegetation cover, while the 70 

SAVI is more suitable to reflect the vegetation canopy structure (Reed et al., 2003). The EVI 71 

was found to be more sensitive to variations over high biomass areas, e.g. forests, when the 72 

NDVI tended to saturate (Huete et al., 2002). Furthermore, EVI may be advantageous in areas 73 

with high humidity since it is designed to minimize the effects of the atmosphere. Huete et al. 74 

(1997) conclude that each index had its strengths and weaknesses for certain applications. 75 
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Depending on the application at hand, satellite imagery ranging from low to high spatial reso-76 

lution is applied for studying agricultural landscapes (Vincikova et al., 2010). For per-field 77 

crop type mapping, the spatial resolution of the imagery should be chosen relative to the typi-78 

cal field size. Apart from an adequate spatial resolution, the temporal resolution of the satel-79 

lite data is critical for crop discrimination and mapping. Several authors have studied optimal 80 

times of image acquisition with respect to the growing stages (Murakami et al., 2001; Van 81 

Niel and McVicar, 2004).  82 

The appearance of crop profiles is affected by regional variations in climate and management 83 

practices, which should be accounted for by setting-up individual crop profiles for each ho-84 

mogenous agro-region (Wardlow et al., 2007). Crop profiles, however, also vary from year to 85 

year resulting from specific weather conditions and, in particular, deviations in the tempera-86 

ture and precipitation distribution throughout the growing season (Siebert and Ewert, 2012). 87 

These inter-annual variations have so far hardly been accounted for in crop type mapping ap-88 

proaches. 89 

In this study we therefore propose an efficient hierarchical classification algorithm that is 90 

based on spectral-temporal profiles of crop types and accounts for weather-induced inter-91 

annual variations in the spectral-temporal behaviour through the use of agro-meteorological 92 

information. The proposed approach was tested using multi-temporal LANDSAT satellite im-93 

agery for the per-field crop type mapping of a large lowland river catchment in Germany.  94 

 95 

2 Data basis and pre-processing 96 

To set up characteristic temporal profiles for each crop, NDVI data from a sixteen year satel-97 

lite image time series were combined with cultivation data collected from farming companies 98 

for the same time period and agro-meteorological data provided by the weather service. The 99 
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spectral-temporal profiles were then used to map crop types in the study area, the Havel River 100 

catchment, for the years 1994-2000 utilizing agro-meteorological data from the same period. 101 

The study area is located in the north east of Germany (Figure 1). It comprises the catchment 102 

of the Havel River, a tributary of the Elbe River, excluding the Spree catchment, and covers a 103 

total area of 14 000 km². Arable land is the dominant land use covering 37.7 % of the total 104 

area. Soils are predominantly sandy with areas of high and low ground water. The average 105 

plot size is 21 ha. Major crops are winter rye (15 %), winter wheat (12 %), maize (12 %) and 106 

oilseed rape (10 %) (Amt fuer Statistik Berlin Brandenburg, 2010). 107 

 108 

< Figure 1 > 109 

 110 

2.1. Crop cultivation data 111 

Cultivation data from the years 1987 to 2002 of 424 agricultural plots with a total area of 112 

9021 ha were collected from six agricultural companies in the study area. More specifically, 113 

for each of these 424 plots information on the specific crops grown in the years of satellite 114 

image data acquisition was made available, resulting in a total of 3745 reference plot data 115 

(Table 1). These data served the development of the spectral-temporal profiles and were used 116 

to validate the final crop type map.  117 

For the per-plot crop type mapping, a data set of the agricultural plots present in the study ar-118 

ea is required in order to exclude other land use types from the classification process and ena-119 

ble a crop type identification at the plot level. This plot map may be either derived from offi-120 

cial land cover data sets or from object-based image analysis (Blaschke, 2010). For our study 121 

area a digital land cover data set based on mapping CIR aerial photographs was available 122 

from the state ministry of environment.  123 

 124 



6 
 

< Table 1 > 125 

 126 

2.2. Satellite image time series 127 

Spectral information from 35 LANDSAT TM/ETM images acquired between the years 1987 128 

and 2002 was used to set up the temporal crop type profiles. The image acquisition dates are 129 

listed in Table 2. LANDSAT images were chosen for this study for different reasons. They 130 

are available for several years to decades and are therefore suitable for long-term monitoring 131 

studies (Wulder et al., 2008). The spatial resolution of 30 m allows for single plot crop type 132 

identification and the image size of approximately 175 by 175 km encompasses the whole 133 

study area. The repetition rate of 16 days results in approximately two to five cloud-free 134 

coverages of our study area per year. The LANDSAT images were atmospherically and geo-135 

metrically corrected to allow for multi-temporal analyses (Richter, 1996) andthe NVDI was 136 

then computed for each image We chose the most commonly used NDVI for this study, since 137 

our agricultural study area in Central Europe is characterized by low biomass and no particu-138 

larly high humidity..  139 

 140 

2.3. Agro-meteorological data 141 

The different crop types undergo certain specific growth stages and agro-technical treatments 142 

throughout the growing season. These are for the example of cereals, sowing, seedling 143 

growth, tillering, stem elongation, flowering, grain-fill period (milk and dough development), 144 

ripening and harvest. As a result of specific weather patterns throughout individual years, par-145 

ticularly the temperature and precipitation characteristics, the onset and duration of the growth 146 

stages and the times of agro-technical treatments may deviate from an average year. Depend-147 

ing on the demands of the individual crop types, the timing not only differs among certain 148 

years but also among the individual crops in the same year. Growth stage timings in the study 149 
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area can deviate up to approximately 20 days in both directions, i.e. ahead or behind the aver-150 

age development. To account for these deviations, agro-meteorological data were incorpo-151 

rated in the process of setting up spectral-temporal profiles and in the crop type classification.  152 

Nowadays many weather services provide such agro-meteorological data. For our study we 153 

used data made available by the German Weather Service (Deutscher Wetterdienst - DWD, 154 

www.dwd.de) for the period 1951-2003 collected at 40 stations within our study area. They 155 

contain information on times of growth stages, e.g. the onset of flowering, and agro-technical 156 

treatments for most common crop types in each year. Based on these data we calculated the 157 

average day of the year of each of these stages to obtain the average phenological pattern for 158 

each individual crop type present in the study area.  159 

 160 

< Table 2 > 161 

 162 

3 Methods 163 

3.1 Spectral-temporal profiles of crop types including phenological correction 164 

 165 

The spectral-temporal profiles represent the average phenological behaviour of each of the 166 

twelve most commonly grown crop types in North Germany. These comprise winter rye, win-167 

ter wheat, winter barley, oilseed rape, sugar beets, maize, summer grain, potatoes, oilseed 168 

crops and legumes, first year and perennial field grass and fallow land. Based on the dates of 169 

image acquisition of the 35 LANDSAT images collected between the years 1987 and 2002, 170 

for each crop type the phenological day was determined according to the agro-meteorological 171 

information. Different from the actual day of the year, the term ‘phenological day’ refers to 172 

the phenological stage of a crop type in a certain year as a result of the temperature and pre-173 

cipitation pattern in that specific year. The phenological correction is shown schematically in 174 
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Figure 2. Dotted and dashed lines represent the deviation in days for two individual crop types 175 

and two different years as compared to the average year. The average is derived from the 176 

mean timings of the growth stages based on the agro-meteorological data from the weather 177 

service of the years 1951-2003. In the hypothetic Year 1, unfavourable temperature and pre-178 

cipitation conditions in spring may have led to a delay as compared to the average NDVI de-179 

velopment. In the course of the year the lines slowly approach the average line as the delay 180 

reduces. Conversely, in the hypothetical Year 2 crop development in spring is ahead of the 181 

average due to favourable weather conditions, while in the later course of the year the crop 182 

development lags behind the average. The deviation among individual crop types in the same 183 

year is due to the crop types’ different weather tolerability. 184 

 185 

< Figure 2 > 186 

 187 

The resulting list of phenologically corrected dates was combined with the average NDVI 188 

values for each of the 3745 agricultural reference plots. Subsequently, for each crop type the 189 

seasonal NDVI was plotted and studied in regard to its average development and variability 190 

throughout the season. While natural vegetation is characterized by a relatively continuous 191 

seasonal NDVI development, the seasonal NDVI of arable lands decreases more abruptly due 192 

to agro-technical treatments such as harvesting or mowing. These distinct NDVI declines are 193 

characteristic for each crop type and must therefore be contained in the individual NDVI tem-194 

poral profiles. The final spectral-temporal profiles were then generated by interpolating the 195 

average NDVI values while retaining the characteristic decline features. 196 

 197 

3.2 Crop type mapping by hierarchical classification 198 
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Once the NDVI temporal profiles are set up they can be used to map crop types for any year 199 

without the need of additional ground truth data. The study area should be located in the same 200 

broad agro-region to ensure transferability of the profiles. 201 

A two-level hierarchical classification scheme was implemented. At the first level the three 202 

broad groups of summer crops, winter crops and perennial field grass / fallow land were clas-203 

sified. To separate perennial field grass / fallow land from the other two groups, those pixels 204 

that had high NDVI values in all available images throughout the growing season were classi-205 

fied as belonging to this group. Using a majority filter, the respective plots were excluded 206 

from the subsequent separation of summer and winter crops. This separation was based on 207 

two images, one acquired in winter / early spring and a second acquired in late spring / sum-208 

mer. While winter crops exhibit high NDVI values in both images, summer crops are charac-209 

terized by a large difference in NDVI between both images with low values in winter / early 210 

spring and high values in late spring / summer. Again, a majority filter was used to assign the 211 

broad groups to the respective plots. As a result we obtained three separate masks containing 212 

plots with summer crops, winter crops and perennial field grass / fallow land. 213 

At the second level single crop types within the three groups were classified based on their 214 

NDVI temporal profiles. For each date of image acquisition and each crop type, the 215 

phenological date, i.e. the day of the year corresponding to the actual phenological stage, was 216 

determined based on the agro-meteorological data. From the temporal profiles NDVI infor-217 

mation was extracted for these phenologically corrected dates of image acquisition. This in-218 

formation was then used in the pixel-based classification using parallelepiped classification. 219 

The classification thresholds were defined by the standard deviation of the NDVI temporal 220 

profiles for each crop type and date. In cases of class overlap a minimum distance algorithm 221 

was applied using the image in which the classes to be separated show the largest difference 222 

in NDVI. In cases when the pixel was not within the thresholds, these were iteratively in-223 
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creased. Finally, the classification results were combined in a joint crop type map. Using a 224 

majority filter, the dominant crop type per plot based on the plot boundaries was determined 225 

and assigned to each plot to derive the final crop type map for a certain year. 226 

Additionally, a traditional maximum likelihood classification based on the same satellite im-227 

agery and on ground truth data was performed in order to assess the quality of the new classi-228 

fication algorithm based on NDVI temporal profiles. 229 

 230 

4 Results 231 

For each of the crop types the seasonal NDVI was plotted as exemplarily presented for winter 232 

rye and maize in Figures 3 and 4, respectively. The box plots show the variance of the NDVI 233 

values for each image acquisition date, while only those dates are included that have more 234 

than ten values. The NDVI exhibits a distinct seasonal pattern throughout the year with high-235 

est values between days 120 and 130 (early May) for winter rye and around 230 (mid August) 236 

for maize. The variability of NDVI values varies throughout the year and among different 237 

crops. For winter rye, the variability is largest during times of tillering until approximately 238 

day 115 (mid April) and after harvest from day 220 (early August) onwards, while it is small-239 

est between days 115 (mid April) and 150 (end of May) during times of stem elongation and 240 

between days 200 (mid July) and 210 (end of July) during times of yellow-ripe. Maize shows 241 

a less distinct seasonal behaviour regarding NDVI variability. This can be attributed to the 242 

fact that maize shows a stronger dependence on the local soil and groundwater conditions, 243 

which the phenological correction does not account for. Hence the NDVI variability is higher 244 

throughout the year and the NDVI development is less continuous as compared to winter rye.  245 

 246 

< Figure 3 > 247 

< Figure 4 > 248 



11 
 

 249 

The spectral-temporal profiles for each of the 12 major crop types generated from the NDVI 250 

data can be clustered into three phenological groups (Figures 5 to 7). These are winter crops, 251 

summer crops and perennial field grass / fallow land. Among the groups each profile is spe-252 

cific in respect to the onset and duration of growth stages and agro-technical treatment times, 253 

the length of the growing period and the amount of photo-synthetically active vegetation pre-254 

sent at the plots throughout the year. 255 

 256 

< Figure 5, in colour > 257 

< Figure 6, in colour > 258 

< Figure 7, in colour > 259 

 260 

Winter crops such as winter wheat and oilseed rape are sown in autumn. Accordingly, the 261 

NDVI values are characterized by a first increase in autumn and a second rapid increase in 262 

spring until reaching a maximum in early summer that is followed by a rapid decrease during 263 

the maturity stage in which harvesting and mowing dates are clearly distinguishable. Oilseed 264 

rape shows a characteristic temporary drop in NDVI values in May due to flowering. 265 

Different from winter crops, summer crops are sown in spring and were therefore separable 266 

using spring images in the classification process. For other summer crops such as potatoes, 267 

maize and sugar beets, the increase in NDVI values starts only in mid May. While potatoes 268 

have a comparably short phenological cycle with a rapid NDVI decrease due to leaf senes-269 

cence during maturing, sugar beets are characterized by high NDVI values until late October.  270 

Fallow land and perennial field grass exhibit high NDVI values throughout the year with less 271 

variation as compared to summer and winter crops. Abrupt decreases in NDVI are due to 272 
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mowing in the case of perennial field grass and the natural annual cycle of growth and wither-273 

ing in case of the natural vegetation on fallow land.  274 

The presented hierarchical classification algorithm based on the generated NDVI temporal 275 

profiles was applied to map crop types in the study area for seven consecutive years 1994-276 

2000. For each year two to five satellite images were available (cf. Table 2). Figure 8 shows 277 

the resulting crop type map of the entire study area for the year 2000. The distribution of the 278 

predominant crop types reflects the pattern of soil quality and water availability. On the sandy 279 

nutrient-poor areas, fallow land and winter rye predominate, while in the lowland areas with 280 

high soil quality and good water availability maize is the dominant crop type. Figure 9 pre-281 

sents crop type maps for a subset area of approximately 30 by 30 km for the years 1994-2000. 282 

Mapping crops of consecutive years allows the study of crop rotation patterns. We found that 283 

there are no fixed crop rotations, which was confirmed by the farmers. 284 

 285 

< Figure 8, in colour > 286 

< Figure 9, in colour > 287 

 288 

A per-plot accuracy assessment was performed for the crop type map of the growing season 289 

1994/1995, based on 144 agricultural plots comprising an overall area of 1°620°ha. For this 290 

growing season four satellite images were available (Table 3). Thus, the winter crops were 291 

represented by four images, while the summer crops were represented by three images. Table 292 

3 also lists the phenologically corrected days of the year that were used in the classification 293 

process for each of the twelve crop types and each image. 294 

 295 

< Table 3 > 296 

 297 
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The results of the accuracy assessment are summarized in Table 4. It presents the errors of 298 

commission (user’s accuracy), omission (producer’s accuracy), and the overall accuracy. The 299 

error of omission is the proportion of agricultural plots (given in hectare and percent) that is 300 

not correctly identified as belonging to a particular crop class. The error of commission is the 301 

proportion that is incorrectly identified as belonging to a particular class. The overall accuracy 302 

gives the proportion of correctly classified plots relative to the total number of validation 303 

plots. The overall accuracy was found to be 65.7 %. When interpreting this number, one has 304 

to bear in mind that the classification algorithm is transferable, i.e. no ground truth data are 305 

required in the classification process, and that the large number of twelve different crop types 306 

were distinguished. When summarizing the results at the hierarchical level of summer crops, 307 

winter crops and perennial field grass / fallow the overall accuracy increases to 86.3 %. While 308 

winter crops were classified with a high accuracy of 91.9 %, only 83.1 % of the summer crop 309 

plots were correctly classified. This may be primarily due to the different number and timings 310 

of images available for classifying summer and winter crops, while the information content of 311 

the July and August images is similar in regard to class separability. The misclassification be-312 

tween winter and summer crops at the first level of the hierarchical classification can be 313 

mainly attributed to the fact that an early spring image was not available in that particular 314 

growing season. 315 

Highest crop-specific accuracies were obtained for winter wheat (91.7 %), oilseed rape 316 

(97.3 %) and oilseed crops and legumes (92.1 %), while moderate accuracies of more than 317 

70 % were obtained for fallow land, winter barley and winter rye. Most of the classification 318 

error was associated with potatoes, sugar beets and maize. Only 14.5 % of maize plots were 319 

correctly classified, while 68.5 % were misclassified as being potatoes. Sugar beets were 320 

completely misclassified as being oilseed crops and legumes. This misclassification may be 321 

partly attributed to the unfavourable image acquisition dates, when a September image would 322 
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allow a better differentiation between these crops. Furthermore, the end of July and early Au-323 

gust 1995 were characterised by exceptionally low precipitation rates, leading to a negative 324 

water balance in the study area. The water stress led to a rapid withering of maize leaves in 325 

sandy locations with low groundwater making them appear spectrally similar to withered po-326 

tato leaves. Maize that is cultivated in lowland areas with good access to groundwater does 327 

not show the withering phenomenon and is correctly classified as maize.  328 

 329 

< Table 4 > 330 

 331 

To assess the quality of the classification algorithm based on NDVI temporal profiles, a tradi-332 

tional maximum likelihood classification using the same four satellite images was performed. 333 

The results of the accuracy assessment are summarized in Table 5. With 72.8 % the overall 334 

accuracy was found to be higher as compared to the classification based on NDVI temporal 335 

profiles. This expected increase in classification accuracy can be attributed to the fact that the 336 

maximum likelihood classification is based on ground truth data and therefore the classifier is 337 

adjusted to the specific image statistics. When comparing the error matrices of both classifica-338 

tion approaches (Table 4 and 5) similarities become apparent. In both approaches most classi-339 

fication error was associated with summer crops suggesting that the availability of images has 340 

a larger influence on the final result as compared to the type of classifier.  341 

 342 

< Table 5 > 343 

 344 

5 Discussion and conclusions 345 

The classification approach proposed in this study allows an effective crop type mapping for 346 

large areas and several consecutive years. It can facilitate various environmental applications 347 
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that require spatially explicit multi-year crop information such as water quality modeling 348 

(Krysanova et al., 1998) or agricultural flood loss estimation (Pantaleoni et al., 2007).  349 

The hierarchical classification algorithm for per-plot crop type identification is based on dis-350 

tinct spectral-temporal profiles and accounts for inter-annual weather variations by incorpo-351 

rating agro-meteorological information in the classification process. The classification ap-352 

proach was applied to map twelve crop types in a 14 000 km² catchment in Northeast Germa-353 

ny for several consecutive years. Several recent crop mapping studies that compared the accu-354 

racy of supervised classification methods found the maximum likelihood classifier to perform 355 

best (Yang et al., 2011; Castillejo-Ganzález et al., 2009). Therefore the accuracy of the crop 356 

type mapping based on the spectral-temporal profiles was compared to that of a maximum 357 

likelihood classification (MLC). The overall accuracy increased from 65.7 % using the NDVI 358 

temporal profiles approach to 72.8 % using the ML classifier. While the MLC is based on 359 

training sets for each image used in the classification process, the NDVI temporal profiles ap-360 

proach is independent of ground truth data and solely requires information on the 361 

phenological stages of the individual crops at the time of image acquisition. The independ-362 

ence of ground truth data and therefore the transferability may justify the 7.1 % lower overall 363 

classification accuracy of the classification approach based on NDVI temporal profiles. 364 

There are two major reasons for the slightly lower accuracy. These are the number and timing 365 

of image acquisitions and the occurrence of exceptional weather conditions. The classification 366 

based on the spectral-temporal profiles is more sensitive to the image acquisition dates than 367 

the MLC. This fact is illustrated by the confusion of summer grain and winter wheat in the 368 

growing season 1994/95 (cf. Tab. 4). The only major difference between the two spectral-369 

temporal profiles is the later onset of NDVI increase of summer grain (around day 100) as 370 

compared to winter wheat (around day 70). If no image from this period is available, the clas-371 

ses will be confused. For the separability of all twelve crop type classes, the number and ac-372 
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quisition date of the images is therefore crucial. Optimal acquisition periods are those that al-373 

low the highest differentiation between crops, but are not necessarily peak growth times 374 

(Panigrahy and Sharma, 1997). For our study area these optimal acquisition periods were 375 

found to be early/mid April, mid May, early July, mid August and mid September. The se-376 

cond major reason for the slightly lower accuracies achieved with the spectral-temporal pro-377 

file approach is the occurrence of unusual weather conditions, such as periods of exceptional-378 

ly high or low temperature or precipitation that lead to strong deviations from the average 379 

spectral-temporal profiles for certain crop types in certain years. These deviations are particu-380 

larly due to drought stress or changes in cultivation practices as a result to these weather con-381 

ditions. They are not accounted for by the phenological correction using the agro-382 

meterorological data, because this correction only implies a temporal shift of the spectral-383 

temporal curve, but no modification in its shape or height. If the height of the profile strongly 384 

deviates from the average, e.g., due to exceptionally low NDVI values during drought condi-385 

tions or some major management practices such as an earlier harvest, the spectral-temporal 386 

profile approach fails to classify correctly. One example for such an event is the summer 387 

drought period in 1994/95 that led to a rapid leave withering of (the water demanding crop) 388 

maize. 389 

In both cases, i.e. if images of optimal acquisition periods are missing or the spectral-temporal 390 

profile is extremely deviating from the average, the accuracy of the spectral-temporal profiles 391 

approach is expected to be lower as compared to the MLC. This is due to the fact that the 392 

MLC uses image spectral information for a statistical adaption, while the spectral-temporal 393 

profile approach is solely relying on the average annual behaviour of the NDVI. Figure 10 394 

compares the overall accuracy of both classification approaches for all twelve crop type clas-395 

ses for the growing season 1994/95. While the misclassification of summer grain and sugar 396 

beets using the spectral-temporal profiles approach can be mainly attributed to unfavourable 397 
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image acquisition dates (missing early spring and September images, respectively), the mis-398 

classification of maize can be mainly explained as a result of the water stress maize plants at 399 

sandy locations experienced during the drought period in July and August of 1995. Figure 10 400 

also shows that in the growing season 1994/95 for most crop types, i.e. fallow, perennial field 401 

grass, winter crops, oilseed rape, potatoes, and first year field grass, the results of the spectral-402 

temporal profiles classification is comparable and even slightly better (by 0.6 % overall accu-403 

racy) as compared to the MLC. In case of the oilseed crops and legumes, the spectral-404 

temporal profiles classification outperforms the MLC by 49 %, because in the MLC oilseed 405 

crops and legumes are often confused with perennial field grass. This points out the advantage 406 

of a hierarchical approach used in the spectral-temporal profile classification that separated in 407 

a first step perennial field grass and fallow land from summer and winter crops based on their 408 

high NDVI values throughout the year. 409 

 410 

< Figure 10 > 411 

 412 

The generated spectral-temporal profiles are only valid within one agro-region, i.e. a region of 413 

similar characteristics with regard to climate, soil and agro-technical conditions, and need to 414 

be adapted when applied to other agro-regions. However, even within an agro-region crops 415 

may develop differently depending on the soil and groundwater conditions, which may lead to 416 

misclassifications. While some crop types are characterized by a distinct continuous seasonal 417 

NDVI curve with low variation across the study area such as shown at the example of winter 418 

rye (Figure 3), other crop types such as maize (Figure 4) show a high variability across the 419 

study area as a result of its strong dependency on soil and groundwater conditions. Hence, the 420 

spectral-temporal profile is not valid for maize grown at different conditions. This suggests 421 

that the classification accuracy may be further improved by the inclusion of additional a-422 
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priori information on the cultivation suitability for certain crop types such as soil quality or 423 

water availability. Apart from the spatial variation in crop phenology within and among dif-424 

ferent agro-regions, also a temporal development in crop phenology over the last few decades 425 

can be observed. Siebert and Ewert (2012) found out that the average temperature increase in 426 

Germany in the last 50 years resulted in an earlier onset and shortening of most phenological 427 

stages of oat. According to their study, the length of the growing season of oat in Germany 428 

decreased by about two weeks between 1959 and 2009. Consequently, the spectral-temporal 429 

profiles of crop types are subject to both spatial and temporal variations. 430 

The further development of the proposed spectral-temporal profiles approach will benefit 431 

from the recent rapid increase in the availability of optical imagery, offering a high temporal 432 

coverage and a spatial resolution suitable for per-plot crop type mapping (Schreier and Dech, 433 

2005). The increased availability of cloud-free images will facilitate the continuous refining 434 

of the spectral-temporal profiles for common crop types and different agro-regions under cur-435 

rent climatic conditions and is expected to improve the classification accuracy of crop type 436 

maps using these profiles. 437 
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Tab. 1: Cultivation data collected from six agricultural companies between the years 1987-504 

2002 used for setting up the spectral-temporal profiles 505 

Crop type Total number of plots 

Fallow 760 

Field grass (perennial and first year) 120 

Winter rye 890 

Winter wheat 345 

Winter barley 320 

Oilseed rape 270 

Summer grain 125 

Sugar beets 60 

Maize 365 

Oilseed crops and legumes 325 

Overall sum of plots 3745 

 506 

507 
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Tab. 2: Acquisition dates of the 35 LANDSAT images sorted by the day of the year and re-508 

spective crop development stages of winter wheat used for setting up the spectral-temporal 509 

profiles 510 

 511 
512 

Acquisition date of satel-

lite image 

Day of the year of 

image acquisition 
Growth stage / agro-technical treatment  

12.01.1989 12 Tillering (hibernation) 

01.02.1996 32 Tillering (hibernation) 

12.02.2000 43 Tillering (hibernation) 

26.03.1998 85 Tillering 

15.04.1988 105 Tillering 

21.04.1996 111 Tillering 

24.04.1997 114 Tillering 

29.04.1987 119 Stem elongation 

30.04.1999 120 Stem elongation 

02.05.2000 122 Stem elongation 

05.05.1995 125 Stem elongation 

09.05.1988 129 Stem elongation 

28.05.1992 148 Stem elongation 

02.06.1997 153 Stem elongation 

08.06.1996 169 Stem elongation 

19.06.2000 170 Flowering 

21.06.1998 172 Flowering 

07.07.1989 188 Begin of yellow-ripeness 

08.07.1995 189 Milk-ripeness 

11.07.1999 192 Milk-ripeness 

21.07.1994 202 Yellow-ripeness 

09.08.1995 221 Shortly after harvest (stubbles) 

11.08.1996 223 Yellow-ripeness 

11.08.2002 223 Shortly after harvest (stubbles) 

14.08.2000 226 Shortly after harvest (stubbles) 

20.08.2002 232 Shortly after harvest (stubbles) 

22.08.1994 234 After harvest 

27.08.2002 239 After harvest 

04.09.1987 247 After harvest 

12.09.2002 255 After harvest 

13.09.1999 256 After harvest 

15.09.1991 258 After harvest 

15.09.1997 258 After harvest 

14.10.1996 287 Sowing 

25.10.1994 298  Start of seeding development 
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Tab. 3: Acquisition dates of satellite images and phenologically corrected days of year used 513 

for crop type classification for the growing season 1994/1995 514 

Acquisition date of satellite image 25.10.1994 05.05.1995 08.07.1995 09.08.1995 

Day of year of image acquisition 298 125 189 221 

 Fallow 293 132 184 226 

Perennial 

field grass 

293 132 184 226 

Winter rye 298 128 193 221 

Winter wheat 293 132 184 226 

Winter barley 298 135 189 221 

Oilseed rape 298 135 183 221 

Summer grain  125 183 225 

Sugar beets  128 191 224 

Maize  128 189 218 

Oilseed crops 

and legumes 

 125 183 225 

Potatoes  128 191 224 

First year 

field grass 

 125 183 225 

 515 

516 
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Tab. 4: Error matrix for classification based on NDVI temporal profiles using four images of 517 

the growing season 1994/1995 518 
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Tab. 5: Error matrix for maximum likelihood classification using four images of the growing 522 

season 1994/1995 523 
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 528 
Fig. 1: Location of study area 529 

530 
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 531 

Fig. 2: Schematic graph of the phenological correction for two different years (marked as 532 

Year 1 and Year 2). Dotted and dashed lines represent the deviation from the average year in 533 

days for two different crop types. Positive values indicate a delayed crop development, nega-534 

tive values a crop development ahead of the average. 535 

536 
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Fig. 3: NDVI response during the growing season of winter rye. Whiskers represent the 1.5 538 

times interquartile range and the dots represent outliers.  539 

540 
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Fig. 4: NDVI response during the growing season of maize. Whiskers represent the 1.5 times 543 

interquartile range and the dots represent outliers. 544 
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Fig. 5: NDVI temporal profile of winter crops 547 
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Fig. 6: NDVI temporal profile of summer crops 550 
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Fig. 7: NDVI temporal profile of perennial field grass / fallow land 553 
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 555 

Fig. 8: Crop type map of the entire study area for the year 2000, subset region (Fig. 9) marked 556 

in green. For legend refer to Fig. 9. 557 

558 
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 559 

Fig. 9: Crop type maps for a subset region for the years 1994-2000 560 

561 
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 562 

Fig. 10: Deviation of the overall accuracy (OA) between maximum likelihood classifica-563 

tion (MLC) and spectral-temporal profiles classification per crop type class for the grow-564 

ing season 1994/95. Positive values indicate higher overall accuracies of the spectral-565 

temporal profiles classification. 566 

 567 


