
DOI: http://doi.org/10.1038/s41558-018-0095-z
Methane production as key to the greenhouse gas budget of thawing permafrost

Christian Knoblauch1, 2*, Christian Beer3, 4, Susanne Liebner5, Mikhail N. Grigoriev6, Eva-Maria Pfeiffer1, 2

1Institute of Soil Science, Universität Hamburg, Hamburg, Germany
2Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
3Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
4Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
5GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
6Russian Academy of Sciences, Siberian Branch, Mel’nikov Permafrost Institute, Yakutsk, Russia

Permafrost thaw liberates frozen organic carbon, which is decomposed to carbon dioxide (CO\textsubscript{2}) and methane (CH\textsubscript{4}). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO\textsubscript{2} and CH\textsubscript{4} concentrations and accelerates climate change1, 2. Current studies report a minor importance of CH\textsubscript{4} production in water-saturated (anoxic) permafrost soils3, 4, 5, 6 and a stronger permafrost carbon-climate feedback from drained (oxic) soils1, 7. Here we show through 7-year laboratory incubations that equal amounts of CO\textsubscript{2} and CH\textsubscript{4} are formed in thawing permafrost under anoxic conditions after stable CH\textsubscript{4}-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO\textsubscript{2}-C equivalents were formed than under oxic conditions when taking the higher global warming potential (GWP) of CH\textsubscript{4} into account8. An organic carbon decomposition model, calibrated with the observed decomposition data, predicts until 2100 a higher loss of permafrost carbon under oxic conditions (113±58 g CO\textsubscript{2}-C kgC-1) but a twice as high production of CO\textsubscript{2}-C equivalents (241±138 g CO\textsubscript{2}-C-eq. kgC-1) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1, 7 and emphasize the importance of CH\textsubscript{4} production in thawing permafrost on climate relevant time scales.
Permafrost-affected landscapes of the northern hemisphere contain about 1300 Pg organic carbon of which about 800 Pg are perennially frozen in permafrost. The predicted thawing of permafrost will cause the microbial decomposition of this currently frozen organic carbon. In drained, oxic soils, microorganisms oxidize organic carbon to CO₂. Anoxic conditions, which prevail in water-saturated soils, slow down organic carbon decomposition but enable the formation of both CO₂ and CH₄, latter having at least a 28 fold GWP of CO₂ (100 years).

Since permafrost impedes water drainage, water-saturated soils are widespread in permafrost-affected landscapes though landscape hydrology will likely change in response to permafrost thawing. However, a major knowledge gap today concerns the dynamics of long-term anoxic organic carbon mineralization from thawing permafrost, which prevents a reliable projection of future land-atmosphere GHG exchange in northern permafrost areas.

While field observations demonstrate rising CH₄ emissions with soil warming and increased permafrost thaw, laboratory incubations indicate that CH₄ represents only a minor fraction of total anoxic organic carbon decomposition in thawing permafrost. Therefore, current evidence suggests that permafrost thaw in dry soils will cause a stronger permafrost carbon-climate feedback than in water-saturated soils. However, anoxic incubation studies of permafrost are scarce and generally last for only several days to weeks.

Consequently, the role of CH₄ production on climate-relevant time scales is still highly uncertain.

We challenged the existing view that CH₄ production is of minor importance for organic carbon decomposition in thawing permafrost by two hypotheses. (H1) The reported low contribution of CH₄ production to anoxic carbon decomposition in thawing permafrost is due to the lack of an active methanogen community that only establishes over longer time periods. (H2) Long-term anoxic permafrost organic matter decomposition releases less carbon but more CO₂-C equivalents than oxic organic matter decomposition when considering the higher GWP of CH₄.
To test these hypotheses, we combined long-term incubation studies (> 7 years) of permafrost samples with numerical modelling and simulated both oxic and anoxic GHG production from thawing permafrost until 2100. Permafrost samples (n=29) from two sites in northeast Siberia (Holocene river deposits, Pleistocene Yedoma sediments) were incubated under oxic and anoxic conditions at 4 °C (ref 15). Samples were pre-incubated for four years until constant CH₄ production rates were recorded in most of the anoxic samples before the start of the main experiment spanning another three years (Suppl. Fig. S1).

Maximum CO₂ production rates were observed both under oxic and anoxic conditions at the beginning of the pre-incubation phase¹⁵ but anoxic CH₄ production only started after a lag-phase lasting from few weeks up to several years. The multi-annual lag-phases indicate a low abundance of methanogenic communities in the original samples, which may be caused by permafrost formation under conditions not suitable for methanogenesis, e.g. in dry soils¹⁶,¹⁷. However, these communities were activated after suitable conditions prevailed for long enough time. Only four samples showed no CH₄ production even after seven incubation years (Suppl. Table S1). The gene-copy numbers of the key enzyme of methanogenic archaea (mcrA) were below the detection limit in these four samples (Suppl. Table S2).

When inoculating these inactive samples with permafrost material containing active methanogens, CH₄ production could be established instantaneously in most samples (Fig. 1, Suppl. Table S2). Hence, the lack in CH₄ production in these samples was caused by the absence of methanogens and not by the intrinsic properties of permafrost organic matter.

After the pre-incubation phase of four years, representative samples (n=12, organic carbon content of 0.6% to 12.4%, Suppl. Table S1) that passed maximum CH₄ production rates were selected for the main experiment (Methods, Suppl. Fig. S1). Maximum CH₄ production rates in these samples (mean = 4.9 ± 3.1 g CH₄-C kgC⁻¹ yr⁻¹, Suppl. Table S1) were four times higher than maximum rates (1.2 g CH₄-C kgC⁻¹ yr⁻¹) from mainly short-term incubation studies of pan-Arctic soils¹². Under field conditions, permafrost thaw enables the exchange of labile organic matter between the active layer and the former permafrost, e.g. by
cryoturbation18 or leaching of DOC19. To simulate the input of fresh plant litter into thawing permafrost, the organic carbon mineralized during the pre-incubation phase was backfilled at the onset of the main experiment with 13C-labelled carbon from \textit{Carex aquatilis}. Greenhouse gas production from permafrost carbon was quantified over another three years by the amount and the \(\delta^{13} \text{C} \)-signature of produced CO\textsubscript{2} and CH\textsubscript{4} (see Methods). Only GHG production from permafrost carbon, excluding GHG production from \textit{Carex} carbon, was then used to calibrate a two-pool organic carbon decomposition model that was fitted to the non-linear decomposition of permafrost carbon over time (Fig. 2). After calibration, the model was run forward for each sample until 2100 (see Methods).

At the onset of the main experiment, CO\textsubscript{2} and CH\textsubscript{4} production rates from permafrost organic carbon were generally slightly higher than at the end of the pre-incubation phase, which might be due to the availability of fresh \textit{Carex} litter causing a positive “priming” of permafrost organic carbon decomposition. However, this “priming effect” only lasted for about one month and caused a minor increase of permafrost organic carbon decomposition (Suppl. Text and Suppl. Table S3). Organic carbon decomposition rates further declined over the incubation period, which was most likely caused by the decreasing availability of labile organic components. During the three incubation years of the main experiment a mean amount of 19 ± 9.6 g CO\textsubscript{2}-C kg-1 of permafrost carbon (n=12) was mineralized to CO\textsubscript{2} under oxic conditions (Suppl. Table S4). Anoxic conditions slowed down organic carbon mineralization by a factor of 3.0 ± 1.2 (n=12, Suppl. Table S4) which confirms the ratio (3.4) previously reported as the mean for permafrost affected soils7. But more importantly, a similar amount of permafrost carbon was mineralized to CO\textsubscript{2} (3.2 ± 1.7 g CO\textsubscript{2}-C kgC-1, n=12) and to CH\textsubscript{4} (3.6 ± 1.9 g CH\textsubscript{4}-C kgC-1, n=12). When considering the higher GWP of CH\textsubscript{4}, the average production of CO\textsubscript{2}-C equivalents under anoxic conditions (40 ± 21 g CO\textsubscript{2}-C equivalents kgC-1, Suppl. Table S4) was about twice as high as under oxic conditions. The CO\textsubscript{2}:CH\textsubscript{4} ratio for anaerobic organic carbon decomposition depends on the oxidation state of the organic carbon and the availability of alternative electron acceptors such as nitrate, ferric iron or sulfate, but under optimum conditions for methanogenesis about equal amounts of CH\textsubscript{4} and CO\textsubscript{2} are formed20.
The CO$_2$:CH$_4$ ratio of 0.92 ± 0.18 (n=12, Fig. 2b insert, Suppl. Table S4) from the long-term incubations is close to the theoretical value of about one, but three orders of magnitudes lower than the ratio reported for permafrost samples (median = 1163) in a meta-analysis of mainly short-term incubations12. Our results indicate an equal contribution of CO$_2$ and CH$_4$ production during anaerobic decomposition of permafrost organic carbon as soon as an active methanogen community has established (H1).

Available field observations consistently show CH$_4$ production in the active layer of water-saturated permafrost soils$^{13, 22, 23, 24}$ and indicate elevated CH$_4$ emissions after permafrost thaw as long as water saturated conditions prevail$^{13, 14, 22}$. Therefore, it is unclear if the observed long lag-phase is also required for establishing active methanogenesis under field conditions, where organic matter, nutrients and organisms can be exchanged within the whole soil profile, thereby promoting methanogenesis at the bottom of the active layer.

The multi-annual incubations provided for the first time a dataset enabling the calibration of a carbon decomposition model for predicting long-term CO$_2$ and CH$_4$ formation from thawing permafrost. Under oxic conditions, the model predicts an average degradation of 113 ± 58 g CO$_2$-C kg$^{-1}$ of permafrost organic carbon until 2100 (Fig. 3a), when assuming microbial activity during four months per year, which represents the short summer thaw period of permafrost soils (see Methods). These model results are in the range of current estimates of oxic long-term permafrost organic carbon decomposition$^{15, 25, 26}$. Under anoxic conditions, the CO$_2$ production accounts for 17 ± 9.3 g CO$_2$-C kg$^{-1}$ of initial permafrost carbon and CH$_4$ production releases 22 ± 13 g CH$_4$-C kg$^{-1}$ of permafrost carbon (Fig. 3a, Suppl. Table S5). However, when comparing the GHG production under oxic and anoxic conditions based on CO$_2$-C equivalents, i.e. by considering a GWP of 28 for CH$_4$ (weight corrected), the GHG release under anoxic conditions is on average 2.4 ± 1.2 times higher than under oxic conditions (Fig. 3b; H2; Suppl. Table S5). These observation-calibrated long-term estimates of anoxic CO$_2$ and CH$_4$ production contradict recent studies reporting a minor importance of
methanogenesis and a lower GHG production after permafrost thaw under water-saturated, anoxic conditions3, 4, 7, 12.

The predicted formation of \(\text{CH}_4 \) over 90 years (until 2100) would relate to an annual production of about 0.24 g \(\text{CH}_4 \)-C kgC\(^{-1}\) yr\(^{-1}\). These rates are lower than maximum \(\text{CH}_4 \) production rates (1.2 g \(\text{CH}_4 \)-C kgC\(^{-1}\) yr\(^{-1}\)) reported from mainly short term incubation studies12 but our long-term estimates are likely more relevant for predicting GHG production from thawing permafrost on climate relevant time scales. Decadal-scale (60 yr) \textit{in situ} \(\text{CH}_4 \) production rates (0.50 g \(\text{CH}_4 \)-C kgC\(^{-1}\) yr\(^{-1}\)) from thawing permafrost surrounding arctic thermokarst lakes27, are close to our estimates even though our model considers \(\text{CH}_4 \) formation only during 4 months of summer thaw while unfrozen thermokarst lake sediments produce \(\text{CH}_4 \) year round. However, \textit{in situ} \(\text{CH}_4 \)-fluxes from thawing permafrost in two boreal peatlands (0.02-0.04 g \(\text{CH}_4 \)-C kgC\(^{-1}\) yr\(^{-1}\))24 are below the range of our long-term estimates (0.09–0.46 g \(\text{CH}_4 \)-C kgC\(^{-1}\) yr\(^{-1}\)), which indicates a low decomposability of the woody and \textit{Sphagnum} peat in these peatlands24 but might also be influenced by \(\text{CH}_4 \) oxidation during \(\text{CH}_4 \) transport from the anoxic peat into the atmosphere23.

Permafrost soils contain in their permanently frozen subsurface substantial amounts of organic matter since its decomposition was prevented by freezing temperatures9. Furthermore, permafrost impedes water drainage, causing a widespread occurrence of water-saturated soils and sediments in the northern permafrost region11. We can therefore assume a high relevance of anaerobic permafrost carbon mineralization also at the pan-Arctic scale. To contribute to this discussion, we combined, in a simplified assessment, the results from our decomposition model with data from permafrost carbon profiles and thawing depth simulations (see Suppl. Information). In this scenario, less than one third of thawing permafrost organic carbon would thaw until 2100 under water-saturated conditions (Suppl. Table S6) and the carbon release from thawing permafrost would be substantially higher under non-saturated conditions (2.6 ± 3.2 Pg – 9.5 ± 7.0 Pg CO\(_2\)-C) than under saturated conditions (0.4 ± 0.6 Pg – 1.4 ± 1.4 Pg CO\(_2\)-C and \(\text{CH}_4 \)-C). But due to the equal share of CO\(_2\)
and CH$_4$ formation under water-saturated conditions, the GHG production from permafrost thawing at the bottom of water-saturated soils, if expressed as CO$_2$-C equivalents (2.4 ± 3.7 Pg – 8.9 ± 8.8 Pg CO$_2$-C equivalents, Suppl. Table S6), would almost equal those under non-saturated conditions at the pan-Arctic scale. The large uncertainty in these estimates reflect the simplicity of our calculation, which was intended to assess the importance of anoxic decomposition pathways for GHG production in permafrost regions and encourage further spatially explicit approaches. Methane production rates in organic permafrost soils, which store about 14% of organic carbon in permafrost landscapes9, were generally found to be higher than in mineral soils6, 12, even if this is not always the case24. Since we incubated only mineral soil samples, our spatial extrapolation on potential CH$_4$ production from thawing permafrost organic carbon is therefore likely conservative.

However, GHG production in thawing permafrost cannot be directly transcribed into GHG emissions to the atmosphere since a variable fraction of CH$_4$ produced in thawing permafrost will be oxidized by microorganisms to CO$_2$ when passing oxic soil or sediment layers$^{23, 28}$. In this context, the vegetation composition plays a crucial role since many vascular wetland plants channel CH$_4$ from its production zone into the atmosphere thereby circumventing its oxidation23. However, even relatively low CH$_4$ fluxes may turn northern wetlands from a carbon sink into a GHG source (based on CO$_2$-C equivalents) when considering the higher GWP of CH$_4$$^{29, 30}$.

Our results from laboratory incubations and numerical modelling, which for the first time enable a direct comparison of CO$_2$ and CH$_4$ formation in thawing permafrost on climate relevant time scales, contradict the current view of a stronger permafrost-carbon climate feedback from drained, oxic soils and provide the first data-informed projection of long-term CH$_4$ production from thawing permafrost. Sound predictions on the future pan-Arctic release of CO$_2$ and CH$_4$ from thawing permafrost need a better understanding on future wetland distribution and hydrology in the permafrost region as well as on in situ CH$_4$ production in
water saturated permafrost soils including organic soils, which will play a key role for CH₄ fluxes from permafrost landscapes.

References:

Additional information

Supplementary information is available for this manuscript. Correspondence and requests for materials should be addressed to C.K.

Acknowledgements
We gratefully acknowledge the financial support through the Cluster of Excellence “CliSAP” (EXC177), University Hamburg, funded through the German Research Foundation (DFG), the CarboPerm project funded by the German Ministry for Research and Education (03G0836A) to C.K. C.B. and E.M.P and the Helmholtz Gemeinschaft (HGF) by funding the Helmholtz Young Investigators Group of S.L. (VH-NG-919). Special thanks to G. Hugelius for valuable discussions, to D. Wagner and S. Zubrzycki for providing samples, to B. Schwinge for laboratory assistance, to Waldemar Schneider and Günter (Molo) Stoof for help during the field campaigns and the German and Russian colleagues from the Alfred Wegener Institute in Potsdam, the Lena Delta Reserve in Tiksi and the Tiksi Hydrobase for logistical support.

Author contributions

C.K. and C.B designed the study. CK., E.M.P and M.N.G. did the field work. C.K. conducted the incubation experiment, C.B. calibrated the model and predicted site-level and pan-Arctic GHG production, S.L. quantified the methanogen abundance. C.K. and C.B wrote the manuscript with contribution of all co-authors.

Competing financial interests

The authors declare no competing financial interests.
Methods

Soil sampling and sample description. Permafrost samples were collected from two islands in the northeast Siberian Lena Delta situated in the zone of continuous, deep permafrost. The mean annual air temperature at the sampling sites is -12.5 °C and the permafrost temperature is -9 °C. Samoylov Island (72.369 N, 126.475 E) is comprised of Holocene permafrost deposits and characterized by polygonal tundra with alternating water-saturated polygon centers and drier polygon rims. Soils in the wet polygon centers were classified as Typic Historthels and at the drier rims as Typic Aquiturbels. The vegetation is composed of two strata, a moss / lichen layer and a grass / sedge layer. The dominant vascular plant is *Carex aquatilis* which is most abundant in the moist polygon centers. The surface active layer thaws for about four months per year to a mean depth of 50 cm.

Kurungnakh Island (72.333 N, 126.283 E) is composed of late Pleistocene Ice complex deposits (Yedoma) and characterized by polygonal tundra and widespread thermokarst features. Samples from Samoylov (n=9) were collected from 0.6 to 4.3 m depth (14C age 0.18 – 2.5 ka). The samples from Kurungnakh were taken from the permafrost surface (0.7 m) to a depth of 23 m. Between 0.7 m and 2.5 m the carbon was of Holocene age (14C age 2.3 to about 8.7 ka, n=4). Pleistocene samples from below were deposited during the last glacial maximum (Sartan, 3.1 - 11.7 m depth, 14C ages of about 14 to 29 ka, n=10) and the late Pleistocene optimum (Kargin, 16 - 23 m depth, 14C ages of about 34 to 42 ka, n=6).

Organic carbon concentrations in the Samoylov samples ranged between 0.6 and 6.8% and in the Kurunkgnakh samples between 0.6 and 12.4% with highest concentrations in the Holocene and lowest concentrations in the Sartan deposits. All samples were collected in frozen state and stored frozen until processing in the laboratory. Further details on sampling and sample characteristics are given in ref 15 and Suppl. Table S1.

Stable isotope labelling of Carex aquatilis. *Carex aquatilis* plants were labelled with 13CO$_2$ at a water inundated site on Samoylov in July 2008. Before labelling, all *C. aquatilis* leaves were clipped below the water table. Subsequently an area of 0.5 x 0.5 m was covered every
day between 11:00 and 15:00 with a transparent chamber (0.25 m high) to which 98 atom% 13CO2 was added, to reach about twice ambient concentrations of CO2. After three weeks, the fresh 13C-labelled leave biomass was clipped above the water table.

Incubation experiments. The setup of the initial incubation experiment has been described in detail in ref 15. Briefly, samples were thawed in a refrigerator at about 2 °C. Six aliquots of about 20 g fresh weight were placed in sterile 120 ml incubation flasks that were closed with sterile butyl rubber stoppers. Samples for anoxic incubations were processed first and handled under a constant flow of sterilized molecular nitrogen to minimize oxygen exposure. The anoxic incubations (three replicates) were amended with 5 ml of anoxic, sterile water and the headspace was repeatedly exchanged with pure sterilized nitrogen to establish anoxic conditions. No water was added to the other three replicates, which were incubated under oxic conditions. CO2 and CH4 concentrations in the headspace of all replicates were measured with a gas chromatograph (7890, Agilent Technologies, USA)15. The total amount of CO2 and CH4 was calculated from the partial pressure of the gases, the temperature, the head space volume, the amount of water and the water solubility of CH4 (ref 34) and CO2 by also considering carbonate and bicarbonate concentrations at the given pH (ref 35), which ranged between 4.0 and 8.1 (see Suppl. Table S1). A timeline of the incubation experiment is given in Suppl. Fig. S1. All CO2 and CH4 production data are normalized to gram permafrost organic carbon if not stated otherwise. Samples were incubated at 4 °C. Since CH4 production only started after a lag-phase of few weeks up to several years (mean 635 ± 620 d, n=60, Suppl. Table S1) aerobic and anaerobic samples were pre-incubated with three replicates both under oxic and anoxic conditions for four years until most of the anoxically incubated samples established a stable methane producing community (pre-incubation). Subsequently, 12 representative samples that passed maximum CH4 production rates were selected for the main experiment (Suppl. Table S1). Preference was given to surface samples where permafrost thaw is expected to be most pronounced and to samples with still three oxic and anoxic replicates available. At the onset of the main experiment, the organic carbon that was respired during the pre-incubation phase was backfilled with 13C-labelled
organic matter from Carex aquatilis ($\delta^{13}C = 774$ ‰ VPDB). The addition of structural carbon from C. aquatilis, the most abundant vascular plant at the sampling sites, was aimed to simulate the input of fresh organic matter from the recent vegetation into the thawed permafrost. After the addition of Carex plant material to the 12 samples selected for the main experiment the samples were incubated under the same conditions as before for another three years.

The remaining 17 samples were continuously incubated at 4°C for another three years (Suppl. Fig. S1). At the end of the incubation time of these samples (7 years) CH$_4$ production was detectable in all except of four samples (Suppl. Table S1). To test if the lack of CH$_4$ production was due to the absence of a methanogen community, these samples were inoculated with 1 ml of a permafrost sample containing an active methanogen community (Kurungnakh, 21.0 – 21.7 m depth, 14C-age 40.0 ka). After inoculation, the samples were incubated for another 0.6 years at 4°C and CH$_4$ and CO$_2$ concentrations were measured repeatedly. Before inoculation and at the end of the 0.6 years incubation, subsamples were taken from these four samples and the inoculum to quantify the mcrA-gene as marker for methanogenic archaea (Suppl. Table S2).

Partitioning of CO$_2$ and CH$_4$ production into permafrost organic carbon and Carex organic carbon. A simple two endmember model was applied to partition the total amount of CO$_2$ and CH$_4$ produced in the main experiment into CO$_2$ and CH$_4$ originating from permafrost organic carbon and CO$_2$ and CH$_4$ originating from Carex organic carbon. The fraction of CO$_2$ or CH$_4$ originating from permafrost organic carbon was calculated according to equation [1]:

$$[1] \, f_{\text{Poc}} = \frac{\delta^{13}C_{\text{CO}_2, \text{CH}_4} - \delta^{13}C_{\text{Car}}}{\delta^{13}C_{\text{Poc}} - \delta^{13}C_{\text{Car}}}$$

With $f_{\text{Poc}} = \text{fraction of CO}_2 \text{ or CH}_4 \text{ from permafrost organic carbon}$, $\delta^{13}C_{\text{CO}_2, \text{CH}_4} = \text{the } \delta^{13}\text{C-value of the released gas (CO}_2 \text{ or CH}_4)$, $\delta^{13}C_{\text{Car}} = \text{the } \delta^{13}\text{C-value of the added Carex plant material (774 ‰ VPDB)}$, and $\delta^{13}C_{\text{Poc}} = \text{the } \delta^{13}\text{C-value of the CO}_2 \text{ or CH}_4 \text{ at the end of the}$
pre-incubation phase, which only originated from permafrost organic carbon. The fraction of
CO₂ or CH₄ originating from Carex organic matter was calculated according to equation [2]:

\[f_{\text{Car}} = 1 - f_{\text{Poc}} \]

with \(f_{\text{Car}} \) = fraction of produced CO₂ or CH₄ from Carex organic matter.

The partitioning of the produced CO₂ and CH₄ during the main experiment was done for each
measurement (aerobic incubations: n = 21, anaerobic incubations: n = 16) for each of the
replicates.

Stable carbon isotope analysis. The \(\delta^{13} \text{C} \)-values of CO₂ and CH₄ were determined with an
isotope ratio mass spectrometer (ThermoQuest Finnigan, Delta Plus, Germany) equipped
with a GC (Agilent, 6890, USA) and a GC/C III combustion unit (ThermoQuest Finnigan,
Germany). The external standards IAEA NGS3 (-73.3 ‰ VPDB), LSVEC (-46.6 ‰ VPDB),
and B7 (-3.0 ‰ VPDB) were used for unlabeled samples. CO₂ and CH₄ from the main
experiment were measured against the IAEA standards 303A (93.3 ‰ VPDB) and 303B (466
‰ VPDB) to account for the higher \(\delta^{13} \text{C} \)-values resulting from the degradation of the \(^{13} \text{C} \-
labelled organic matter of *C. aquatilis*.

Organic matter dynamic decomposition model and extrapolation into future. The
cumulative CO₂ and CH₄ production from thawed permafrost organic carbon during the main
experiment (three years incubation data after four years of pre-incubation) were used to
calibrate an organic carbon decomposition model and simulate GHG formation from the
thawed permafrost samples until 2100. The model follows the principles of the Introductory
Carbon Balance Model—ICBM¹⁵, ₃⁷. A first-order kinetics equation represents the change of
organic carbon content in time. This equation is applied to two carbon pools with high and
low rate constants, respectively. A fraction of the degrading material from the fast
decomposable pool (labile pool) flows into the slower decomposable pool (stable pool),
which represents stabilization of organic carbon due to a variety of soil processes. The
remaining part leaves the system as the trace gases CO₂ or CH₄. The degradation of the
more stable pool is assumed to fully contribute to the trace gas flux. The initial condition of total organic carbon content is prescribed by observations. The initial fraction of the labile pool is treated as a parameter and the initial fraction of the stable organic carbon pool is then calculated as the difference to the total organic carbon content. Using a nonlinear least-squares approach with a trust-region-reflective algorithm in MATLAB R2015a (MathWorks Inc., USA), the following four model parameters have been optimized: two turnover times (labile and stable pool), initial labile carbon pool fraction, and the stabilization coefficient. The model was calibrated against the cumulative GHG production from each sample and replicate. Then, the calibrated model was run forward for 90 years for each sample and replicate. In doing so, microbial decomposition processes were assumed to be constantly active during four summer months at the temperature of incubation (4 °C) following recent observations at the sampling sites. The model results for aerobic CO2 production and anaerobic CO2 and CH4 production were reported relative to the initial organic carbon content of the respective permafrost samples (Fig. 3a). The results for CH4 production were also multiplied by the GWP of CH4 (weight corrected) to compare aerobic and anaerobic GHG production based on CO2-C equivalents (Fig. 3b). Data on projected organic carbon degradation were tested for normal distribution by using the Kolmogorov-Smirnov test with Lilliefors correction. Calibrating the carbon decomposition model with the incubation data of only the first year of the main experiment (after 4 years of pre-incubation) produced similar results than if using the whole dataset of three years (Suppl. Fig. S2).

Quantification of the methanogen community. Total genomic DNA was extracted in duplicates using the PowerSoil DNA extraction kit (MO BIO laboratories, USA) according to the manufacturer’s protocol with the modification that samples were homogenized through grinding in liquid nitrogen prior to the extraction. DNA was extracted only from replicates of those four samples showing no CH4 production after 7 years, from the same samples 0.6 years after being inoculated with active methanogens and from the samples used as inoculum for the inactive samples (Suppl. Table S2). Quality and quantity of the DNA was assessed through gel electrophoresis and photometry (NanoPhotometer, Implen, Germany).
The enumeration of methanogenic gene copies was realized through quantitative PCR (qPCR) as described elsewhere16 targeting the \textit{mcrA}- gene (methanogens). Briefly, SybrGreen qPCR assays were run on a CFX96TM cycler (Bio-Rad Laboratories, USA). Each qPCR run included \textit{mcrA}-gene copies of \textit{M. barkeri} as calibration standards and blanks and was performed in triplicates. Ahead of the final qPCR run, several sample dilutions were tested for potential inhibition. We used a final primer concentration of 0.4 \textmu M and 10 \textmu l 2x SensiFAST SYBR Mix (KAPA Biosystems, USA) in 20 \textmu l reactions. The specificity of each run was verified through melt-curve analysis and gel electrophoresis. The \textit{mcrA}-gene was amplified with the primers mlas and \textit{mcrA-rev}39 with annealing at 55 °C for 20 s.

\textbf{Data availability.} The data that support the findings of this study and that are not presented within the article and its supplementary information file are available from C.K. on reasonable request.

Figure Captions

Figure 1: Methane production in a permafrost sample from Kurungnakh Island (10.9-11.7 m depth) that did not show CH$_4$ production during 2,500 days of incubation and was then inoculated with a sample from the same sampling site (21.0 – 21.7 m depth) containing active methanogens. Data are means of two replicates, ± SD. The arrow gives the time of inoculation.

Figure 2: Calibration of a two-pool carbon decomposition model with the obtained observational data. (a) Oxic CO$_2$ production and (b) anoxic CO$_2$ and CH$_4$ production in a permafrost sample from Samoylov Island (2.8-3.1 m depth, mean of n=3, ± SD). The lines represent the mean values of the model results from three replicates. The insert in (b) shows the ratio of CO$_2$:CH$_4$ produced during the main experiment for all 12 samples. The box gives the 75% and 25% percentile, the whiskers the 99% and 1% percentile. The horizontal line stands for the median value and the cross shows the arithmetic mean. All values are expressed relative to permafrost organic carbon.

Figure 3: Prediction of CO$_2$ and CH$_4$ production from thawing permafrost organic carbon until 2100. (a) CO$_2$ and CH$_4$ production relative to the initial organic carbon content of permafrost. (b) Comparison of oxic and anoxic GHG production relative to the initial organic carbon content of permafrost after conversion of CH$_4$ production to CO$_2$-C equivalents (CO$_2$-Ceq.) assuming a GWP of 28 for CH$_4$. The boxes in both panels give the 75% and 25% percentile, the whiskers the approximately 99% and 1% percentile. The horizontal lines stand for the median values and the crosses show the arithmetic means of 12 samples.
Fig. 1, Knoblauch et al. 2018
Fig. 2, Knoblauch et al. 2018
Fig. 3, Knoblauch et al., 2018
Methane production as key to the greenhouse gas budget of thawing permafrost

Christian Knoblauch1,2, Christian Beer3,4, Susanne Liebner5, Mikhail N. Grigoriev6, Eva-Maria Pfeiffer1,2

1Institute of Soil Science, Universität Hamburg, Hamburg, Germany
2Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg Germany
3Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
4Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
5GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
6Siberian Branch, Russian Academy of Sciences, Mel’nikov Permafrost Institute, Yakutsk, Russia

Additional Results:

Effect of Carex amendment on permafrost organic carbon decomposition

To account for the effect of the added Carex aquatilis organic matter on CO\textsubscript{2} and CH\textsubscript{4} production from permafrost organic carbon during the main experiment (priming effect), we compared the rates of CO\textsubscript{2} and CH\textsubscript{4} production from permafrost organic matter at the end of the pre-incubation phase (without Carex addition) with those during the main experiment (with Carex addition). Differences were expected preferentially at the beginning of the main experiment, when labile organic matter from the Carex plant litter is available. We observed only an increase of CO\textsubscript{2} and CH\textsubscript{4} production rates (positive priming) during a relatively short period of three to six weeks at the beginning of the main experiment. Supplementary Table S3 shows the duration of the period with CO\textsubscript{2} and CH\textsubscript{4} production rates above those at the end of the pre-incubation phase.

Furthermore, the contribution of additional CO\textsubscript{2} and CH\textsubscript{4} production due to priming of permafrost organic matter decomposition was calculated relative to the total amount of CO\textsubscript{2} or CH\textsubscript{4} production during the main experiment using equation S1:

\[P_p = \frac{P_i - R_{pi} \cdot D}{P_{me}} \times 100 \]

with \(P_p \) = additional production of CO\textsubscript{2} or CH\textsubscript{4} due to priming (in % of total production during the main experiment), \(P_i \) = total amount of CO\textsubscript{2} or CH\textsubscript{4} produced during the initial phase of the main experiment with elevated decomposition rates from permafrost organic matter (see Suppl. Table S3), \(R_{pi} \) = rate of CO\textsubscript{2} or CH\textsubscript{4} production at the end of the pre-incubation phase, \(D \) = duration of elevated CO\textsubscript{2} and CH\textsubscript{4} production rates at the beginning of the pre-incubation
phase (see Suppl. Table S3), P_{me} = total amount of CO$_2$ or CH$_4$ produced during the main experiment.

The priming effect, i.e. the acceleration of permafrost organic matter decomposition due to the addition of labile Carex aquatilis litter, caused only a relatively small increase of total permafrost organic carbon decomposition over the whole main experiment (Suppl. Table S3). The highest effect was found for anaerobic CO$_2$ production (average ± SD: 13.3 ± 10.4 % of total CO$_2$ production) and the lowest effect for anaerobic CH$_4$ production (average ± SD: 5.8 ± 5.0 % of total CH$_4$ production).

Assessment of GHG production from permafrost thawing at pan-Arctic scale

In a first step we estimated the amount of volume of currently frozen soil sediments that will thaw until 2100 based on future projections of active-layer thickness (ALT) deepening as reported in figure 2 of ref 1 for two Representative Concentration Pathways (RCP4.5 and RCP8.5). For this we subtracted the area below each RCP cumulative ALT distribution curve for 2099 from the area below the simulation of the current cumulative ALT distribution curve in that figure. For this integration we defined 7 soil layers such that the cumulative distribution curve can be assumed to be linear (0.3, 0.5, 1, 1.5, 2, 2.5, 3 m depth) and applied the simple rectangle method of integration.

In a second step, we estimated the total content of thawing carbon by multiplying this volume of thawing permafrost soil by the mean carbon density reported for the above defined soil layers using data presented in figure 2 of ref 2. This calculation was done separately for Histels, and gleyed and non-gleyed parts of Turbels and Orthels, respectively. These statistics include all soil horizons including the O horizons. Histels and gleyed parts of Turbels and Orthels are assumed to be anoxic while all other parts of the Turbel and Orthel profiles are assumed to be oxic. In order to account for physical limitations of soil profiles in the field, e.g. depth to bedrock, these profile statistics per depth, in a third step, were further weighted according to vertically stratified results for Histels, Turbels and Orthels at the pan-Arctic scale3. Then, these estimates were scaled by the area of Turbels, Orthels and Histels from ref 3 for calculating the amount of oxic versus anoxic permafrost organic carbon thawing until 2100 in a fourth step. Permafrost thaw is a gradual and not an instantaneous process and we assume a linear thawing in time. Therefore, the increasingly available organic carbon under oxic and anoxic condition (Suppl. Table S6) was multiplied with our model results of the oxic and anoxic fraction of organic carbon decomposing into CO$_2$ and CH$_4$ until 2100 (Fig. 3a) and divided by two, thereby assuming a triangle below the time-evolution curve of ALT.
For estimating uncertainties of this GHG production at the pan-Arctic scale, a normal distribution of all oxic and anoxic organic carbon concentration profiles has been resampled (N=10,000) around the mean values reported in ref 2. For simplicity, we assumed a standard deviation similar to the mean value which is true for most of the soils and depths^2. These distributions have been multiplied by all seven land surface model projections of permafrost thaw (see above) and all organic carbon degradation model results from the 12 samples times 3 replicates. Then, the mean and standard deviation of the resulting distributions of thawing organic carbon stocks and GHG productions were reported in Suppl. Table S6 and the text.

Depending on the future atmospheric GHG concentration pathways (RCP4.5 or RCP8.5), we estimate, with high uncertainty, 67 ± 70 Pg – 243 ± 127 Pg of current permafrost organic carbon to thaw and become available for microbial degradation (Suppl. Table S6). These numbers are lower than recently reported results^2, most probably since we used updated thaw projections^1. In this scenario, less than one third the amount of organic carbon will thaw under water-saturated than under non-saturated conditions (Suppl. Table S6) and the GHG production in terms of carbon will be substantially higher in non-saturated soils (2.6 ± 3.2 Pg – 9.5 ± 7.0 Pg organic carbon into CO₂) than in saturated soils (0.4 ± 0.6 Pg – 1.4 ± 1.4 Pg organic carbon into CO₂ and CH₄). These figures only account for additional organic carbon mineralization from thawing permafrost, and exclude the surface active layer which thaws every summer, receives fresh organic matter from the surface vegetation and generally exhibits higher carbon decomposition rates than deeper permafrost layers^4, 5. Hence, our estimates of permafrost carbon release are substantially lower than the range recently reported from spatially explicit approaches (21-174 Pg carbon) considering the whole soil column including the current active layer^1, 6. Due to the equal contribution of CO₂ and CH₄ production to total GHG formation under oxic conditions and due to the higher GWP of CH₄, water-saturated soils are predicted to contribute equally to the overall GHG production from thawing permafrost if expressed as CO₂-C equivalents at a pan-Arctic scale (2.4 ± 3.7 Pg – 8.9 ± 8.8 Pg CO₂-C equivalents, Suppl. Table S6).
Supplementary Figure S1: Timeline of the incubation experiment. 1: Pre-incubation of 29 permafrost samples for four years under oxic and anoxic conditions at 4 °C until constant CO₂ and CH₄ production rates have been established in most of the anoxic samples. 2: Selection of 12 samples for the main experiment that passed maximum CH₄ production rates and refilling of the mineralized organic carbon with ¹³C-labelled organic carbon from Carex aquatilis. 3: Quantification of CO₂ and CH₄ production from permafrost organic carbon under oxic and anoxic conditions for three years. 4: Calibration of an organic carbon decomposition model with the cumulative CO₂ and CH₄ production from permafrost organic carbon. 5: Incubation of the remaining 17 samples at 4 °C for 3 years. 6: Inoculation of the 4 samples that showed no CH₄ production after 7 years of anaerobic incubation (black squares) with material from an active CH₄ producing permafrost sample. 7: Measurement of CH₄ production in inoculated samples for another 0.6 years. The small figures at steps 1 to 4 represent results from oxic (left panels, squares) and anoxic incubations (right panels, circles) of a sample from 4.1-4.3 m depth from Kurungnakh Island. The figure at step 7 shows results of a sample from 6.1-6.5 m depth from Kurungnakh Island (see Supplementary Table S1).
Supplementary Figure S2: Prediction of CO₂ and CH₄ production from thawing permafrost organic carbon until 2100 using only incubation data from the first year of the main experiment (after four years of pre-incubation). (a) CO₂ and CH₄ production relative to the initial organic carbon content of permafrost. (b) Comparison of oxic and anoxic GHG production relative to the initial organic carbon content of permafrost after conversion of CH₄ production to CO₂-C equivalents (CO₂-Ceq.) assuming a GWP of 28 for CH₄. The boxes in both panels give the 75% and 25% percentile, the whiskers the approximately 99% and 1% percentile. The horizontal lines stand for the median values and the crosses show the arithmetic means of 12 samples.
Supplementary Table S1: Sample characteristics of the incubated permafrost samples and gas production during the pre-incubation phase. Data on permafrost organic carbon (C\text{org}), total nitrogen (N), C/N and pH were taken from ref 7. Samples in bold were selected for the main experiment. Values on gas production and lag-phase are means of generally three replicates with one standard deviation. GHG production is expressed relative to initial organic carbon content in permafrost samples. The surface soils at both sampling locations were classified as Turbic Cryosols8.

![Table S1](image_url)

1lag-phase = time until 0.05 µmol CH4 g-1 was formed and CH4 concentration continued increasing
2n.p. = no CH4 production during the pre-incubation phase
3Samples taken from an outcrop, all other samples were collected from two cores drilled vertically into the permafrost, see ref. 7.
4in = inoculated after 2500 days with samples containing active methanogens (see Table S2)
5only one replicate reached maximum CH4-production rates
6only one replicate out of two showed CH4 production
7only one replicate out of three showed CH4 production
8m.p.n.r. = maximum CH4-production rates not reached in any of the replicates
Supplementary Table S2: Abundance of the *mcrA*-gene as marker for the abundance of methanogenic archaea in four samples without methanogenesis after seven years of anaerobic incubation, and CH₄ production rates after the inoculation of these samples with an active CH₄ producing sample (inoculum). Values are expressed relative to g dry weight permafrost soil.

<table>
<thead>
<tr>
<th>Sample</th>
<th>mcrA-gene abundance after 7 years (10⁵ copies g⁻¹)</th>
<th>mcrA-gene abundance 0.6 years after inoculation (10⁵ copies g⁻¹)</th>
<th>CH₄ production 0.6 years after inoculation (nmol g⁻¹ d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0 - 21.7 m (inoculum)</td>
<td>8.6 ± 3.8</td>
<td>*n.d.</td>
<td>*n.d.</td>
</tr>
<tr>
<td>3.85 - 3.87 m</td>
<td>*b.d.l.</td>
<td>2.1 ± 0.6</td>
<td>no production</td>
</tr>
<tr>
<td>6.1 - 6.5</td>
<td>*b.d.l.</td>
<td>2.4 ± 0.8</td>
<td>1.4 ± 1.0</td>
</tr>
<tr>
<td>9.0 - 9.6 m</td>
<td>*b.d.l.</td>
<td>2.0 ± 1.8</td>
<td>0.32 ± 0.08</td>
</tr>
<tr>
<td>10.9 - 11.7 m</td>
<td>*b.d.l.</td>
<td>0.8 ± 0.4</td>
<td>3.3 ± 0.7</td>
</tr>
</tbody>
</table>

*b.d.l. = below detection limit of 5.1x10³ copies g⁻¹

*n.d. = not determined
Supplementary Table S3: Duration of elevated CO$_2$ and CH$_4$ production (in days) at the beginning of the main experiment and surplus amount of CO$_2$ and CH$_4$ produced during the phase of elevated CO$_2$ and CH$_4$ production rates.

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Depth range (m)</th>
<th>Duration of elevated CO$_2$ and CH$_4$ production (d)</th>
<th>Surplus gas production (% of total production)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO$_2$ aerobic</td>
<td>CO$_2$ anaerobic</td>
</tr>
<tr>
<td>Samoylov</td>
<td>0.6-0.8</td>
<td>35±0</td>
<td>17±5</td>
</tr>
<tr>
<td></td>
<td>0.8-1.0</td>
<td>35±0</td>
<td>14±0</td>
</tr>
<tr>
<td></td>
<td>1.4-1.6</td>
<td>40±4</td>
<td>16±4</td>
</tr>
<tr>
<td></td>
<td>1.9-2.1</td>
<td>35±0</td>
<td>13±0</td>
</tr>
<tr>
<td></td>
<td>2.8-3.1</td>
<td>30±4</td>
<td>25±8</td>
</tr>
<tr>
<td></td>
<td>3.2-3.4</td>
<td>35±0</td>
<td>21±0</td>
</tr>
<tr>
<td>Kurungnak</td>
<td>0.7-0.8</td>
<td>34±0</td>
<td>44±47</td>
</tr>
<tr>
<td></td>
<td>0.9-1.1</td>
<td>29±5</td>
<td>13±0</td>
</tr>
<tr>
<td></td>
<td>1.2-1.3</td>
<td>35±0</td>
<td>13±0</td>
</tr>
<tr>
<td></td>
<td>3.1-3.3</td>
<td>35±0</td>
<td>22±0</td>
</tr>
<tr>
<td></td>
<td>3.6-3.8</td>
<td>42±0</td>
<td>26±8</td>
</tr>
<tr>
<td></td>
<td>4.1-4.3</td>
<td>35±0</td>
<td>31±8</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>35±3</td>
<td>21±9</td>
</tr>
</tbody>
</table>

* n.i. = no increase
Supplementary Table S4: Total amount of CO₂ and CH₄ production normalized to g dry weight of soil (µmol g⁻¹) and relative mineralization of permafrost organic carbon to CO₂-C (g CO₂-C kgC⁻¹), CH₄-C (g CH₄-C kgC⁻¹) and CO₂-C equivalents (g CO₂-C-eq. kgC⁻¹) under oxic and anoxic incubation conditions during the three years’ incubation period of the main experiment. The production of anoxic CO₂-C equivalents were calculated using a GWP of 28 for CH₄ corrected for different weights of CO₂ and CH₄ (ref 9). Presented are mean values of three replicates with one standard deviation.

<table>
<thead>
<tr>
<th>Sample</th>
<th>total gas production</th>
<th>relative mineralization of organic carbon</th>
<th>ratio</th>
<th>ratio</th>
<th>ratio</th>
<th>ratio</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oxic CO₂ (µmol g⁻¹)</td>
<td>anoxic CO₂ (µmol g⁻¹)</td>
<td>CH₄ (µmol g⁻¹)</td>
<td>ratio oxic/anoxic</td>
<td>CO₂/CH₄</td>
<td>oxic CO₂-C (g CO₂-C kgC⁻¹)</td>
<td>anoxic CO₂-C (g CO₂-C kgC⁻¹)</td>
</tr>
<tr>
<td>Samoylov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6-0.8 m</td>
<td>19.5 ± 4.2</td>
<td>3.0 ± 0.9</td>
<td>3.5 ± 1.5</td>
<td>3.0</td>
<td>0.87 ± 0.02</td>
<td>39 ± 8.4</td>
<td>6.1 ± 1.7</td>
</tr>
<tr>
<td>0.8-1.0 m</td>
<td>34.7 ± 2.4</td>
<td>6.8 ± 0.8</td>
<td>6.7 ± 0.5</td>
<td>2.6</td>
<td>1.01 ± 0.05</td>
<td>30 ± 2.1</td>
<td>5.9 ± 0.7</td>
</tr>
<tr>
<td>1.4-1.6 m</td>
<td>111 ± 16.7</td>
<td>21.8 ± 5.2</td>
<td>22.5 ± 6.4</td>
<td>2.5</td>
<td>0.98 ± 0.07</td>
<td>29 ± 4.4</td>
<td>5.7 ± 1.3</td>
</tr>
<tr>
<td>1.9-2.1 m</td>
<td>66.9 ± 9.0</td>
<td>10.4 ± 1.9</td>
<td>11.2 ± 2.1</td>
<td>3.1</td>
<td>0.93 ± 0.01</td>
<td>18 ± 2.5</td>
<td>2.9 ± 0.5</td>
</tr>
<tr>
<td>2.8-3.1 m</td>
<td>48.1 ± 5.2</td>
<td>7.3 ± 0.7</td>
<td>7.8 ± 1.0</td>
<td>3.2</td>
<td>0.94 ± 0.04</td>
<td>12 ± 1.3</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>3.2-3.4 m</td>
<td>61.3 ± 3.5</td>
<td>5.7 ± 0.2</td>
<td>5.8 ± 0.1</td>
<td>5.4</td>
<td>0.98 ± 0.06</td>
<td>18 ± 1.0</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>Kurungnakh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7-0.8 m</td>
<td>52.7 ± 0.5</td>
<td>7.3 ± 1.6</td>
<td>6.5 ± 1.1</td>
<td>3.8</td>
<td>1.13 ± 0.06</td>
<td>16 ± 0.2</td>
<td>2.3 ± 0.5</td>
</tr>
<tr>
<td>0.9-1.1 m</td>
<td>158 ± 23.0</td>
<td>20.9 ± 2.6</td>
<td>23.7 ± 5.2</td>
<td>3.5</td>
<td>0.90 ± 0.12</td>
<td>15 ± 2.2</td>
<td>2.0 ± 0.3</td>
</tr>
<tr>
<td>1.2-1.3 m</td>
<td>36.1 ± 9.1</td>
<td>13.6 ± 1.1</td>
<td>13.2 ± 1.4</td>
<td>1.3</td>
<td>1.03 ± 0.03</td>
<td>5.9 ± 1.5</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>3.1-3.3 m</td>
<td>46.2 ± 3.4</td>
<td>10.9 ± 0.8</td>
<td>15.2 ± 4.0</td>
<td>1.8</td>
<td>0.76 ± 0.20</td>
<td>16 ± 1.1</td>
<td>3.7 ± 0.3</td>
</tr>
<tr>
<td>3.6-3.8 m</td>
<td>29.1 ± 0.5</td>
<td>6.3 ± 0.8</td>
<td>13.5 ± 2.4</td>
<td>1.5</td>
<td>0.48 ± 0.11</td>
<td>9.3 ± 0.2</td>
<td>2.0 ± 0.3</td>
</tr>
<tr>
<td>4.1-4.3 m</td>
<td>56.3 ± 11.2</td>
<td>7.3 ± 0.3</td>
<td>6.8 ± 0.4</td>
<td>4.0</td>
<td>1.07 ± 0.01</td>
<td>14 ± 2.8</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>mean ± SD</td>
<td>60.0 ± 38.6</td>
<td>10.1 ± 5.9</td>
<td>11.4 ± 6.6</td>
<td>3.0 ± 1.2</td>
<td>0.92 ± 0.18</td>
<td>19 ± 9.6</td>
<td>3.2 ± 1.7</td>
</tr>
</tbody>
</table>
Supplementary Table S5: Total amount of CO₂ and CH₄ production normalized to g dry weight of soil (µmol g⁻¹) and relative mineralization of permafrost organic carbon to CO₂-C (g CO₂-C kgC⁻¹), CH₄-C (g CH₄-C kgC⁻¹) and CO₂-C equivalents (g CO₂-C-eq. kgC⁻¹) under oxic and anoxic incubation conditions predicted by the calibrated organic carbon decomposition model until 2100. The production of anoxic CO₂-C equivalents were calculated using a GWP of 28 for CH₄ corrected for different weights of CO₂ and CH₄ (ref 9). Presented are mean values of three replicates with one standard deviation.

<table>
<thead>
<tr>
<th>Sample</th>
<th>total gas production</th>
<th>relative mineralization of organic carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oxic</td>
<td>anoxic</td>
</tr>
<tr>
<td></td>
<td>µmol g⁻¹</td>
<td>CO₂</td>
</tr>
<tr>
<td>Samoylov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6-0.8 m</td>
<td>0.6-0.8 m</td>
<td>0.6-0.8 m</td>
</tr>
<tr>
<td>0.6-0.8 m</td>
<td>0.6-0.8 m</td>
<td>0.6-0.8 m</td>
</tr>
<tr>
<td>0.8-1.0 m</td>
<td>211 ± 22</td>
<td>37.2 ± 5.3</td>
</tr>
<tr>
<td>1.4-1.6 m</td>
<td>683 ± 110</td>
<td>119 ± 37</td>
</tr>
<tr>
<td>1.9-2.1 m</td>
<td>422 ± 63</td>
<td>50.1 ± 12</td>
</tr>
<tr>
<td>2.8-3.1 m</td>
<td>286 ± 30</td>
<td>36.1 ± 3.8</td>
</tr>
<tr>
<td>3.2-3.4 m</td>
<td>363 ± 21</td>
<td>24.8 ± 2.1</td>
</tr>
<tr>
<td>Kurunghan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7-0.8 m</td>
<td>398 ± 77</td>
<td>42.9 ± 11</td>
</tr>
<tr>
<td>0.9-1.1 m</td>
<td>1015 ± 173</td>
<td>103 ± 12</td>
</tr>
<tr>
<td>1.2-1.3 m</td>
<td>211 ± 46</td>
<td>77.2 ± 6.7</td>
</tr>
<tr>
<td>3.1-3.3 m</td>
<td>253 ± 26</td>
<td>64.7 ± 3.0</td>
</tr>
<tr>
<td>3.6-3.8 m</td>
<td>158 ± 12</td>
<td>37.6 ± 18</td>
</tr>
<tr>
<td>4.1-4.3 m</td>
<td>319 ± 78</td>
<td>40.9 ± 0.54</td>
</tr>
<tr>
<td>mean ± SD</td>
<td>369 ± 253</td>
<td>54.0 ± 31</td>
</tr>
</tbody>
</table>
Supplementary Table S6:Projected thaw of permafrost organic carbon and formation of CO$_2$ and CH$_4$ (mean ± SD) in unsaturated (oxic) and saturated (anoxic) soils until 2100 at the pan-Arctic scale under representative concentration pathways (RCP) 4.5 and 8.5.

<table>
<thead>
<tr>
<th></th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oxic/non-saturated</td>
<td>anoxic/saturated</td>
</tr>
<tr>
<td>‡organic carbon thaw</td>
<td>47.6 ± 46.7</td>
<td>19.2 ± 23.4</td>
</tr>
<tr>
<td>(Pg C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$ produced until</td>
<td>2.6 ± 3.2</td>
<td>0.17 ± 0.26</td>
</tr>
<tr>
<td>2100 (Pg CO$_2$-C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$ produced until</td>
<td>-</td>
<td>0.22 ± 0.34</td>
</tr>
<tr>
<td>2100 (Pg CH$_4$-C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum organic carbon</td>
<td>2.6 ± 3.2</td>
<td>0.39 ± 0.60</td>
</tr>
<tr>
<td>mineralization (Pg C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Sum CO$_2$-C equivalent production (Pg)</td>
<td>2.6 ± 3.2</td>
<td>2.4 ± 3.7</td>
</tr>
<tr>
<td>Total C mineralization</td>
<td>3.0 ± 3.6</td>
<td>11.0 ± 7.5</td>
</tr>
<tr>
<td>(Pg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CO$_2$-C equivalent production (Pg)</td>
<td>5.1 ± 5.9</td>
<td>18.5 ± 12.1</td>
</tr>
</tbody>
</table>

‡fraction of saturated : unsaturated soils from ref 2

*based on a GWP of 28 (ref 9), corrected for weight differences between CH$_4$ and CO$_2$
Supplementary References:

