
https://doi.org/10.1080/02723646.2019.1573621

Institutional Repository GFZpublic: https://gfzpublic.gfz-potsdam.de/
Late Pleistocene and Holocene terrestrial geomorphodynamics and soil formation in northeastern Germany: a review of geochronological data

Christoph Kappler*a*, Knut Kaiserb, Mathias Küsterb, Alexander Nicolayc, Alexander Füllingd, Oliver Bensa, Thomas Raabe

aGFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany; bMüritzeum, Zur Steinmole 1, D-17192 Waren (Müritz), Germany; cBrandenburg University of Technology Cottbus-Senftenberg, Chair of Geopedology and Landscape Development, Sieens-Halske-Ring 8, D- 03013 Cottbus, Germany; dHumboldt University of Berlin, Institute of Geography, Unter den Linden 6, D-10099 Berlin, Germany

*Corresponding author: christoph.kappler@gmail.com

1. Introduction

A profound understanding of regional land surface dynamics and their implications for the climate and environment of the past requires a robust reliable chronological framework, necessitating the collection, evaluation and statistical processing of preferably all geochronological data available from a given area. Previous studies dealing with the meta-analysis of geochronological data have shown that this approach is potentially a powerful tool to gain clear insights on the timing of geomorphodynamics and soil formation on larger temporal and spatial scales (e.g., Jones, Macklin, & Benito, 2015).

Macklin and Lewin (2003) developed this approach to analyze fluvial dynamics in Great Britain during the Holocene. They applied cumulative probability density functions (CPDFs), which allowed for the identification of flooding episodes at centennial and millennial time...
scales. Following the recommendations from Johnstone, Macklin, and Lewin (2006) for the
establishment of radiocarbon databases, a multitude of studies have since been conducted for
various regions and sedimentary environments, such as for rivers in Europe (Hoffmann, Lang,
& Dikau, 2008; Macklin, Jones, & Lewin, 2010; Macklin et al., 2006; Starkel, Soja, &
Michczyńska, 2006), northern Africa (Zielhofer & Faust, 2008), India (Kale, 2007), Alaska
(Michczynska & Hajdas, 2010), southwestern USA (Harden, Macklin, & Baker, 2010), and
New Zealand (Macklin, Fuller, Jones, & Bebbington, 2012).

For northern Central Europe, however, only a few rough chronostratigraphic frameworks on
specific aspects of Late Quaternary landscape evolution exist, to date, in a systematic manner
(e.g., on the deglaciation of the Scandinavian Ice Sheet, vegetation history and human
occupation; e.g., Dotterweich, 2008; Dreibrodt et al., 2010a; Giesecke, Wolters, Jahns, &
Brande, 2012, Groß et al., 2018; Lüthgens & Böse, 2011; Terberger, De Klerk, Helbig,
Kaiser, & Kühn, 2004). As considerable regional data are available from aeolian and colluvial
sequences, both sedimentary environments offer a particularly promising synthesis potential
using a geochronological-statistical approach. Among the sedimentary sequences are often
palaeosols (syn. fossil or buried soils; Muhs et al., 2013), which structure the deposits and
represent phases of landscape stability. Thus, sedimentation (with related erosion and relief
formation) and soil formation are two sides of the same coin called landscape dynamics.

Based on previous work both with similar regional and methodological focus (Dreibrodt et
al., 2010a; Hardt & Böse 2016; Tolksdorf & Kaiser, 2012), our study addresses the following
general question: What can be inferred from dated terrestrial sediments and palaeosols in
northern Germany about Late Pleistocene and Holocene environmental changes? As the
regionally available literature reflects, in particular the Late Pleniglacial (~20–15 ka) and
parts of the Holocene (e.g., Late Holocene, ~4.5 ka to recent) are generally not well
understood periods in terms of geomorphodynamics and soil formation. Whereas the first
period is regionally characterized by naturally driven glacial and periglacial processes, the
latter marks the continually increasing presence and impact of people. Therefore, we aim at
the analysis of the dataset with respect to the temporal characteristics of specific sedimentary
and pedogenic facies, and the identification of possible drivers for changes in sedimentation,
relief, and soil formation.

2. Study area

The study area has been shaped by several Quaternary glaciations of the Scandinavian Ice
Sheet. The geochronological ages collected originate from the Weichselian glacial belt (young
morainic area; Weichselian: ~115–12 ka) and from parts of the adjacent Saalian glacial belt
(old morainic area; ~ 150–130 ka; Krbetschek, Degering, & Alexowsky, 2008) of
northeastern Germany (Figure 1). The Weichselian geological record in northeastern
Germany is subdivided into three main ice advances: the Brandenburg (W1B) phase (34.1 ±
4.6 ka; Hardt, 2017) with its associated Frankfurt (W1F) recession stage (26.3 ± 3.7 ka; Hardt,
2017), followed by the Pomeranian phase (W2), representing the Last Glacial Maximum
(LGM) around 20 ka in the area, and the Mecklenburg (W3) phase (15-13 ka; Hardt & Böse
2016; Litt et al., 2007). The earliest ice advance of the Brandenburg phase has a maximum
age of ~34 ka and reached the southernmost position of all Weichselian ice advances roughly
in the Berlin area (Lüthgens & Böse, 2011). The Weichselian inland ice cover terminated in
the study area between 24 to 15 ka (Hardt & Böse, 2016).

The land surface of the study area has an altitudinal range of 0 to ~200 m a.s.l. Sandy and
loamy deposits of glacial, glaciofluvial, glaciolacustrine, aeolian, and colluvial facies prevail
in the study area, accompanied by telmatic, fluvial, and marine deposits. Following the
deglaciation, the river and basin systems in the area developed along ice marginal valleys and
glacially induced relief forms (Kaiser et al., 2012). Both glacial and interglacial processes
created a variety of landforms and sediments as well as soil types. In general, on (dry) till
plains and terminal moraines a mosaic of Cambisols/Arenosols, Luvisols, and Podzols (terminology according to WRB, 2015) has largely developed, whereas in the (wet) valleys and basins the formation of Gleysols, Histosols, and Fluvisols prevailed (Janetzko & Schmidt, 2014).

Hendl (1994) classified the present-day climate of the study area as temperate humid with mean annual air temperatures of around 8–9 °C and a declining precipitation from ~780 mm in the northwest (Kiel at the Baltic Sea coast) to ~450 mm in the east (Oderbruch area east of Berlin).

Human (re-) colonization of that area started in the Final Palaeolithic (Late Glacial) as is indicated by local finds from the Hamburgian (Bölling/Meiendorf), Federmesser (Allerød) and Ahrensburgian cultures (Younger Dryas; Terberger et al., 2004). From the Early Mesolithic (Early Holocene) onward, widespread settlement in rather patchy structures took place in this area (Gramsch 1973; Groß et al., 2018). Already these hunter-gatherer societies were considered to induce local soil erosion by woodcutting, trampling and other small-scale effects, leading to the burial of former surfaces (Tolksdorf & Kaiser, 2012). First Neolithic agriculture (Linear Pottery culture) appeared in the lower Oder River valley area at around 7000 a cal BP and with the funnel-beaker culture at 6000 a cal BP in Brandenburg on a larger scale, thus potentially causing first local forest clearing, erosion, and colluviation (Cziesla, 2008; Kulczycka-Leciejewiczowa & Wetzel, 200). More information on the human impact of younger settlement periods will be given in the discussion chapter.

3. Data and methods

3.1 Dataset properties and conventions

A database was established comprising a total of 616 published and unpublished numerical age data (334 luminescence ages, 282 radiocarbon ages) from a total of 99 study sites (Figures...
Each date is characterized by specific dating attributes (luminescence age with 1-sigma standard error, radiocarbon age with 2-sigma standard error, reliability, lab number, dated material) and further information (e.g., coordinates, stratigraphy, soil type, horizon, sample depth, and reference; Electronic Supplement 1). Due to specific study purposes and sampling strategies, the collected ages are irregularly distributed over the study area. Most of the 248 luminescence dates of the aeolian dataset were derived from aeolian sands (n = 238, 96%; Figure3 D-J). A few dates (n = 10, 4%) originate mainly from periglacial cover sands (Geschiebedecksand in German; Helbig, 1999).

The luminescence dates of colluvial origin (n = 86) comprise OSL datings on the quartz fraction (n = 61; 71%), datings of ceramics using TL (n = 14; 16%) and datings on feldspar using IRSL (n = 14; 16%).

The principles of radiocarbon and luminescence dating are not outlined in this paper; however, the fundamental differences of both dating techniques are explained in brief. The luminescence technique dates the amount of time since the sample got buried in a sediment body, whereas radiocarbon dating determines only the time of death of organic matter that, afterwards, became incorporated in the sediment. For a full overview on these dating methods the reader is referred to specific literature (e.g., Hajdas, 2008; Preusser et al., 2008; Rhodes, 2011).

Since the term colluvial/colluvium bears a potential for misunderstanding with regard to its classification and process considerations, the term is used for sediments of Pleistocene and Holocene age, comprising all slope deposits and mineral infills of kettle-holes – a characteristic geoarchive in the study area and beyond (Hirsch et al., 2015; Kaiser et al., 2012) – be they driven by gravitation or unconcentrated runoff (Kappler et al., 2018).

Most of the radiocarbon ages from aeolian sequences originate from aeolian sand (Figure 2), taking into account that no differentiation between dune sands and drift sands could be made.
because loess sediments are widely lacking in the northern part of the study area (Lehmkuhl, Zens, Krauß, Schulte, & Kels, 2016). In general, radiocarbon ages in aeolian sediments can comprise, for instance, charcoal amidst aeolian sand layers, indicating a period of aeolian activity, since the sediment body was still aggrading when the organic sample got embedded in it (e.g., due to a wildfire induced removal of vegetation and the following reactivation of a dune). However, organic material from buried stable surfaces (e.g., palaeosols / fossil soils) reflects geomorphic stability (Rohdenburg, 1989).

3.2 Data collection and evaluation

The collected ages were evaluated according to location, reliability of the age, and stratigraphy. Ages that do not fit into the sediment sequence from which they originate were rejected before analysis, e.g., when an age inversion could be detected or was considered as too young or too old. Generally, this is based on information given by authors of the respective study. Ages with exceptionally high errors (> 25%) were also excluded from the analysis. The remaining ages were classified according to their sedimentary facies and pedostratigraphical relevance. For instance, luminescence ages of the same facies (i.e., colluvial or aeolian) were sorted and classified according to their stratigraphic origin within the sediment sequence, e.g., ages from the basal part of a sediment layer over a buried surface, yielding a minimum age for that former (palaeo-) surface. Luminescence ages from C-horizons below (buried) topsoil A or B horizons were considered as maximum ages for these soil formations. Dates originating directly from (buried) topsoil horizons reflect mean age estimates of these (palaeo-) surfaces. We are aware that there is generally a multitude of constraints regarding the compilation, statistical analysis, and use of collected age data. A systematic bias can be inherent in such age collections originating from the subjective research agenda of the individual studies contributing the ages. This means, for instance, that
obvious changes in sedimentary sequences are more likely to be sampled than homogenous parts of the profile. This, in turn, can lead to an overrepresentation of so-called change dates (cf. Macklin & Lewin, 2003). To date, only a few geochronological studies in the wider study area have been conducted using an equidistant sampling approach (e.g., Hilgers, 2007; Kaiser et al., 2006). A major pitfall in the analysis of radiocarbon datasets is the general risk of (undetected) sample contaminations with modern or old carbon (e.g., Wohlfarth, Skog, Possnert, & Holmquist, 1998), leading to an age bias or the possible reworking and redeposition of the dated organic matter, as well as old-wood effect for inner tree rings from burnt tree material (e.g., Hajdas, 2008). Considering the luminescence data (OSL and IRSL), it is crucial for correct age estimates that the luminescence signal has been properly reset during transport and deposition of the mineral grain. That is why the method fits best for aeolian sediments, since a proper reset of the luminescence signal is guaranteed in most cases. By contrast, in colluvial, (glacio-) fluvial, and alluvial sediments, quartz and feldspar grains are often not properly reset, leading to some inherited residual signal from previous periods of burial prior to the last transport and deposition (Lomax, Hilgers, Twidale, Bourne, & Radtke, 2007; Wagner, 1998). Hence, in these depositional environments a potential overestimation of the true burial age has to be considered due to incomplete bleaching of the sediment (Fuchs & Lang, 2009).

As a final note, it should be mentioned here that, from further sedimentary (inland) environments of the region, a potentially large set of geochronological data exists. This includes, for instance, peat, lacustrine, and fluvial sequences (e.g., Couwenberg, de Klerk, Endtmann, Joosten, & Michaelis, 2001; Hiller, Litt & Eißmann, 1991; Kaiser et al., 2014) with approximately 300 radiocarbon and luminescence ages. However, systematic collection, evaluation, and analysis of these data are in the early stages and constitute a future research task.
3.3 Data calibration and statistical processing

The radiocarbon ages were calibrated with software OxCal version 4.2 (Ramsey, 2009) using the calibration curve IntCal 13 (Reimer et al., 2013). CPDFs were calculated applying the "sum" command of OxCal. As the shape of the calibration curve influences the resulting CPDF (Macklin, Johnstone, & Lewin, 2005; Ramsey, 2017), a specific correction method must be applied. Bayesian age-depth modelling (Ramsey, 2009) has been proven to overcome these effects in the recent past; however, it requires a priori information on the stratigraphic relationships between the individual ages. This works best for chronologies from a single site but has been considered problematic when used to cross-compare several sites (Kerr & McCormick, 2014). Since our data originate from a wide variety of sites and stratigraphic contexts, we use the approach developed by Hoffmann et al. (2008). The probability distribution for the particular subset is divided by the probability distribution for the entire database to produce a relative probability curve (RPC).

Within the radiocarbon subsets, geomorphic activity is inferred only in areas where the RPC exceeds the mean relative probability of the particular subset. This procedure was successfully introduced by Harden et al. (2010) for the identification of periods of fluvial activity. As a convention, each OSL age is treated as a single accumulation event (activity date) (cf. Stauch, 2015). Radiocarbon ages from aggraded sediment sections were also treated as activity dates, except those from buried or recent surfaces (stability date).

In the following, all radiocarbon ages are stated as calibrated years/kiloyears before present (a/ka cal BP), with the year 1950 AD as reference. Luminescence ages in this study are reported as years (a) or kiloyears (ka) with the year of measurement as the individual reference year, as the term BP is reserved to radiocarbon ages (Brauer et al., 2014). There is a systematic offset of up to 66 years in the comparison between luminescence and radiocarbon age data. Regarding the timescales of interest, this offset is considered negligible. Due to the
fact that the true luminescence age has not a Gaussian distribution within the standard deviation, plotting of luminescence data in the form of a Gaussian PDF is considered problematical (Galbraith, 2010; Vermeesch, 2012). Instead, an algorithm in the statistical programming environment R was developed. From the luminescence age and its error range, a so-called age range was calculated ((mean age + SD)-(mean age – SD)), which was then filled with 10^6 uniformly distributed simulated ages. Subsequently, the kernel density estimate (KDE) of each simulated age within this age range was computed using the command "density()" in order to obtain a uniform probability distribution of the "true" luminescence age within its corresponding age range. Generally, the choice of bandwidth is subject to the user’s intention and, thus, highly variable (cf. Galbraith, 1998). Following Galbraith (2010), a relatively small bandwidth ($b = 50$) for all density estimates was chosen, allowing for a satisfying compromise between resolution and smoothing of the curve (cf. Galbraith & Roberts, 2012; Vermeesch, 2012).

4. Results

4.1 Overall data distribution

Among all ages (616 ages, 100%) Holocene ages (< 11.7 ka) prevail (508 ages, 82%), with a majority within the last 5000 years (372 ages, 60%; Figure 4). Most of the radiocarbon subset clusters in the last 12 ka cal BP with two pronounced peaks between 11 to 12 ka cal BP and 11 to 9.5 ka cal BP. From 9 ka cal BP towards present, the calculated PDF increases constantly with several distinct narrow and high peaks and troughs until 0.3 ka cal BP, from which point it decreases again. The first cluster in the luminescence KDE curve lies in the Late Glacial, with a pronounced peak at 11.5 ka showing a broad bell-shaped KDE-curve. Two further smaller peaks can be differentiated between 1.5 and 2.5 ka and for the last 1000 a. Dates from before the Late Glacial play only a minor role in the entire distribution of ages.
(Figure 4). Since most ages of the database belong to the last 15 ka, synoptic figures for the subsets comprising different sedimentary and pedogenic facies have been limited to this time domain (Figure 5). Furthermore, errors of ages older than 15 ka in the radiocarbon and luminescence data implicate a minor usability and significance of these ages for considerations on geomorphodynamics and soil formation.

4.2 Data on geomorphodynamics

4.2.1 Aeolian dynamics

Among the 128 radiocarbon dates from aeolian sequences, three distinct assemblages of ages can be distinguished (Figure 5 A1). The first cluster ranges from 13.8 to 11.2 ka cal BP, the second from 9.5 to 7.8 ka cal BP, and the third within the last 5000 years.

The overall distribution of luminescence ages is, in comparison to the radiocarbon data, more broadly spread, showing a strong cluster over the whole Late Glacial to the onset of the Holocene (Figure 5 A2). A total of ~200 dates falls into this time period. From that, about 40 ages show a relatively conformal distribution within the Early Holocene. The remaining dates fall into the Late Holocene, showing two distinct peaks between 2.2 and 1.6 ka (n = 13) and in the last 1000 years (n = 65).

4.2.2 Colluvial dynamics

Radiocarbon ages from colluvial sequences (n = 152; Figure 3 K-N), consisting of loamy and silty sands, originate mainly from charcoal (n = 116; 76 %), soil organic matter (n = 25; 16 %) and from plant remains and bones (n = 5; 7%). The majority of dates (n = 135; 89 %) fall within the last 6000 years, preceded by four narrow peaks exceeding the mean PD (7.7, 8.2, 9.5, 10.7 ka cal BP; Figure 5 B1).
Luminescence ages span a broad range, having two significant clusters: around 4–3.2 ka and within the last 2800 years. A further cluster can be identified between 9 and 7.8 ka. The same applies for the five ages with very high uncertainties beyond 10 ka (Figure 5 B2). Worthy of mention is the wide absence of luminescence dates between 7.5 and 5 ka, i.e., in large parts of the Mid-Holocene.

4.3 Data on soil formation (palaeosurfaces)

4.3.1 General aspects

Ages for palaeosurfaces (Figure 6) were classified according to their stratigraphic position within the sediment sequence from which they originate. The term palaeosurface comprises all kinds of (quasi-) stable surfaces of the past (e.g., buried palaeosols, charcoal layers in dunes, archaeological pits and graves, some periglacial features). Dates with an implication for pedostratigraphic questions, such as minimum age estimates (dates from above a palaeosurface) and mean age estimates (dates directly from the palaeosurface), were used for this dataset. Maximum age estimates (dates from below palaeosurfaces), however, were excluded. This is reasoned by the fact that, between the depositional age of the parent material (C horizon) and a considerable soil development (depth), a certain period of time normally passed by. Thus, the whole dataset of palaeosurfaces would experience considerable bias in the shape of the RPC and KDE. Ages from recent surfaces were also excluded.

Radiocarbon dates (n = 151) mainly originate from aeolian sequences (n = 90; 60%), followed by ages from colluvial (n = 38; 25%) and periglacial (n=1) sediments. Among the dated materials, charcoal prevails with 111 dates (74%), followed by dates from bulk soil organic matter (n = 24; 16%), plant remains (n = 2; 1%), peat (n = 2; 1%), and bone (n=1). The resulting RPC shows two distinct time intervals that exceed the mean PD of the dataset. The first cluster, from 14 to 11.5 ka cal BP, comprises ~40 dates. The remaining ~110 dates form
several small peaks during the last 6700 years with an increasing number of dates toward the present (Figure 6). Remarkable is the lack of ages between 7 and 7.8 ka cal BP.

Luminescence data connected to palaeosurfaces (n = 104) come primarily from aeolian sequences (n = 80; 77 %), followed by colluvial (n = 13; 13 %) and periglacial sediments (n = 5; 5 %). The KDE shows two distinct clusters, with a broad peak covering nearly the whole Late Glacial and beginning Early Holocene (n = 36). A second cluster formed during the last 2500 years (n = 50). Between 9.5 and 3 ka, only 17 dates occur (Figure 6).

4.3.2 Specific types of palaeosols

For insights into the pedostratigraphy and development of certain Holocene climax soils (Chernozems, Luvisols, Cambisols/Arenosols, Podzols; WRB, 2015) occurring in this nowadays temperate and humid region, all dates from the database were selected for which a proper assignment to these soils is feasible (i.e., luminescence ages/ minimum age estimates from above the palaeosol, radiocarbon ages from the A or B horizon of the palaeosol/ mean age estimates). Considering the small number of dates, this analysis represents merely a first step toward a palaeopedological application using the numerical age data meta-analysis approach.

The 14 radiocarbon ages related to Cambisols/Arenosols show six clusters from the Late Glacial-Holocene transition to the Late Holocene. Luminescence ages (n = 24) form two major clusters: between 11.7 and 9.5 ka and in the last 2500 years (Figure 7 A1-A2).

Far fewer dates are available for Luvisols, with one radiocarbon age from soil organic matter ranging around 2 ka cal BP and six luminescence dates, comprising two minimum ages obtained above buried Luvisols, ranging between 4.2 and 0.7 ka, and four dates direct from the buried soils, yielding ages between 15 and 2 ka.
A total of 18 radiocarbon dates and 5 luminescence dates are related to buried Chernozems. The radiocarbon dates fall into the last 7000 years, clustering between 6.7 and 4 ka cal BP, whereas the luminescence dates spread between ~8 and 2 ka cal BP (Figure 7 B1-B2).

A total of 19 radiocarbon dates from Podzols form six clusters, distributed throughout the whole Late Glacial and Holocene period. Luminescence data (n = 50), consisting of minimum and mean age estimates, show two assemblages of ages, ranging from the whole Late Glacial to the beginning of the Early Holocene period (n=13), whereas the majority of dates comprises the last 7500 years (n = 37; Figure 7 C1-C2).

5. Discussion

5.1 Methodical implications for the meta-analysis of numerical age data

In all plots, a common pattern can be identified comprising the increasing number of dates toward the present and the change from broader and lower peaks in the radiocarbon data to smaller and narrow ones for the last ~1000 years (Figures 5–8). An explanation for this phenomenon is apparent: Younger sediments are more likely to be preserved until the moment of sampling, compared to older sediments, which were more often prone to erosion. Furthermore, younger sediments are closer to the surface, implying a higher probability of actually being sampled (Hoffmann et al., 2008). Another issue is the comparison of radiocarbon and luminescence data, which necessitates some considerations on these dating techniques in advance. Radiocarbon ages always provides a *terminus post quem* or maximum age for a buried surface/palaeosol or colluvial layer, since the pathway of the dated sample until burial and the associated time lag remains unknown. Therefore, the dated section can be younger or was formed exactly at the same time the organism died from which the dated sample originates (Wagner, 1998). This can lead to an overestimation of the age of deposits. In Southern Germany for instance, this can be up to 3000 years, as Henkner et al. (2018)
showed, dating colluvial layers by both radiocarbon and luminescence methods. Generally, luminescence ages are more reliable for reconstruction of the time of colluvium or dune formation since they date the burial process itself. Thus, they can only provide minimum age estimates of buried surfaces and associated pedogenic processes since they reflect the end of a phase of soil formation or geomorphic stability of the environment.

Thus, a careful use of ages in relation to their stratigraphic position or pedologic context is crucial to obtain meaningful chronostratigraphic results.

5.2 Potential geomorphic drivers: climate and human impact

In the widespread tectonically stable region south of the Baltic Sea, climate and human impact play the most prominent role for Late Glacial and Holocene geomorphodynamics (e.g., Kaiser et al., 2012; Price, 2000; Tolksdorf & Kaiser, 2012). Therefore, some major developments related to both are outlined in the following.

Based on ~ 880 pollen profiles, Mauri, Davis, Collins, and Kaplan (2015) reconstructed the climate of Central Europe for the last 12 ka using vegetation as a climatic proxy. They determined, for the Early Holocene, summer temperatures 2°C lower than the preindustrial level (i.e., prior to 1850 AD). From 7 ka onward, summer temperatures increased again. Winter temperatures rose 2°C from 10-9 ka onward, while warming intensified around 8 ka and peaked at 7 ka, with the highest winter temperatures of the whole Holocene. As compared to late preindustrial conditions, the summers of northern Central Europe were drier throughout the entire Holocene, while, during the winters, extensive dry conditions predominated in the Early Holocene (12–9 ka), contrasted by wetter conditions around 7 ka (Mauri et al., 2015).
To outline the potential human impact, an overview from the onset of human occupation to sub-recent land-use dynamics for northern Central Europe is given here. During the Late Pleistocene (Final Palaeolithic), groups of hunters and gatherers, ascribed to the Magdalenian and subsequent Hamburgian culture, followed the retreating Scandinavian Ice Sheet and arrived in southern Poland at Greenland Stadial 2 (15.8–15.2 ka cal BP; Połtowicz-Bobak, 2012), while most of Central Europe was occupied by Magdalenian people around the onset of Greenland Interstadial 1e (~14.7 ka cal BP; Straus, Leesch, & Terberger, 2012; Svensson et al., 2008). The preferred habitats of these Final Palaeolithic people were close to marine, riverine, or lacustrine environments across Europe. Several radiocarbon and luminescence dated Early Mesolithic sites (~10–8 ka cal BP) from dunes and wetlands prove the human occupation of the study area (Benecke, 2004; Groß et al., 2018; Hilgers, 2007; Tolksdorf, Kaiser, Veil, Klasen, & Brückner, 2009; Tolksdorf et al., 2013). Later, human subsistence changed substantially with the introduction of (livestock) farming in Central Germany by the Linear Pottery culture (Linienbandkeramik, LBK), starting ~7.5 ka cal BP, which represents the transition from the Mesolithic to the Neolithic (cf. Price, 2000, Shennan et al., 2013). The first substantial modification of landscapes took place during the Middle Neolithic at 5.4 to 4.7 ka cal BP by the economic activities of the funnel-beaker culture such as deforestation, application of slash-and-burn practices, and arable farming (Bork, 2006). Kaplan, Krumhardt, and Zimmermann (2009) modelled the prehistorical deforestation of Europe for about the last 3000 years in six time slices. They assumed for 3 ka cal BP a mainly undisturbed, i.e., dense forest cover for wide areas of Central Europe. Around 2.3 ka cal BP, 10 to 60% of northern Central Europe was deforested. Around 1850 AD, 90% of the utilizable area was cleared of the forest cover. This development was interrupted by two distinct recoveries of the forest cover: at around 1.4 ka cal BP, representing the transition from the Roman period to the Migration period, and around 600 a cal BP by the impact of the Black Death (plague; Kaplan et al., 2009). Using pollen data from study sites all over Europe, this study represents a rather
generalized model and can therefore only yield a framework for the land-cover dynamics. The impact of small-scale human activities, such as woodcutting and trampling, in triggering soil erosion is often underestimated and could be proven already for the Mesolithic period, for instance, in adjacent drift sand areas (Sevink, Koster, van Geel, & Wallinga, 2013; Sevink, van Geel, Jansen, & Wallinga, 2018; Tolksdorf & Kaiser, 2012).

5.3 Late Quaternary geomorphodynamics

5.3.1 Aeolian dynamics

Aeolian sedimentation occurred in the study area from the Late Glacial to the beginning Early Holocene (15–11.5 ka) in several prominent phases, interrupted by phases of surface stabilization and soil formation as reported by various studies (Alisch, 1995; Hirsch et al., 2017; Kaiser et al., 2009; Schirmer, 1999; Tolksdorf & Kaiser, 2012; Figure 3 C-D, 9 C3-C4). In the aeolian dataset (Figure 5 A1-A2), both radiocarbon and luminescence ages indicate strong aeolian activity during this period, whereas radiocarbon ages from palaeosurfaces (Figures 6, 9) show two peaks: around 13.2 ka cal BP and 11.9 to 12.5 ka cal BP. This points to a pattern of stability phases as indicated by the occurrence of palaeosols of Usselo and Finow type throughout the study area and their burial in the Younger Dryas, thereby suggesting a climatic driving factor (e.g., Hilgers, 2007; Kaiser et al., 2009; Singhvi, Bluszcz, Bateman, & Rao, 2001).

Hilgers (2007), however, observed by analyzing a smaller set of data, a three-phased dune development within the period 16.7–12 ka for northeastern Central Europe, which cannot be confirmed with the statistical approach used in this study to analyze a larger quantity of data. Between 9.5 and 7.9 ka cal BP, the aeolian radiocarbon RPC shows a distinct peak, reflecting a period characterized by the reactivation of already existing older dunes, drift sand dynamics,
and increased occurrence of wildfires (Figure 5 A1). The majority of dates originate from
charcoal layers in these aeolian sequences (cf. Schlaak, 1997). In general, charcoal forms a
ubiquitous component of nearly all Late Glacial and Holocene sediments in the region
(Tolksdorf et al., 2014). That human-induced ignition caused aeolian dynamics during that
time seems possible and is being discussed, but has, so far, not been unquestionably proven
(Tolksdorf & Kaiser, 2012). Further support for the human influence on aeolian sediment
relocation since the Mid-Holocene at the regional scale can be concluded from the occurrence
of radiocarbon dates from aeolian sequences since ~7.5 ka cal BP and in the luminescence
data by the growing number of dates from ~5 ka onward (Figure 9 B2 & B4), if the
population proxies from Shennan et al. (2013), with rising population levels since ~ 8 ka cal
BP to the peak of the curve at 5.5 ka cal BP (Figure 9 D3-D5), are taken into account. The
record of palaeosurfaces (Figure 9 C1) also shows a plateau between 6.5 and 5.7 ka cal BP,
thereby indicating the burial of these surfaces. Contrary to these cross correlations however,
the lack of aeolian radiocarbon ages between 5.8 and 5.3 ka cal BP has to be mentioned, in
opposition to the peak of the LBK culture in the German population proxy around 5.5 ka cal
BP (Shennan & Edinborough, 2007; Figure 9 D2).

However, both aeolian datasets support the assumption of a landscape opened due to human
activities by the significant increase of ages since the last 2000 years, coinciding with the
beginning Roman Age (Figure 5 A1-A2, 9 B1-B2, D4). The synchronously occurring peaks
in the curves of luminescence-dated aeolian sequences (Figure 9 B1, B4) and luminescence
dated palaeosurfaces around 1000 a (Figure 9 C4) also point to a region-wide burial of
surfaces, thus indicating an increase in geomorphic activity during the Medieval.
5.3.2 Colluvial dynamics

Due to a lack of data, the database allows no conclusions about potential (natural) colluvial dynamics during the Late Glacial. But as alluvial overbank fines from the Elbe River valley, dating into the Younger Dryas period, show (Tolksdorf et al., 2013; Turner et al., 2013), as well similar as records obtained from adjacent central Poland (Petera-Zganiacz et al., 2015), naturally induced erosion at terrestrial (off-) sites including colluviation can already be expected for the Late Glacial.

During the Early Holocene, the first significant occurrence of radiocarbon-dated colluvial sediments can be detected (Figure 5B1, 9A2; 11-9.4 ka cal BP). The data reflect water-induced soil erosion in eastern Brandenburg. This erosional pulse is ascribed to relatively cold and dry climatic conditions at that time, promoting wildfires in pine-dominated forests and, therefore, triggering slope instability (Dreibrodt et al., 2010a). The first occurrence of radiocarbon dates from colluvial sequences related to human activities between 7.8 and 6 ka cal BP (Figure 5 B1; 9 A2) documents the Early Neolithic with the construction of earthworks and major colluviation in the northern Harz foreland (Dreibrodt et al., 2013; Lubos et al., 2011). Interesting in this context is the observed trend of a north-migrating onset of human-induced colluvial deposition in the luminescence datasets compiled by Kappler et al. (2018). The oldest colluvial deposits linked to the onset of agriculture have been found in the Southern part of Germany (Henkner et al., 2018; Lang, 2003; Figure 9 A3, A8), whereas ages become younger to the northeast of Germany, with first substantial colluvial formation during the early Bronze Age (Figure 9, A3-8). This may be explained by the arrival of agriculture at a later stage in Northern Germany, around 6 ka cal BP, compared to 7.4 ka cal BP in Southern Germany (Shennan et al., 2013). Alternatively, this may simply reflect a lack of ages for this period, if one considers the different numbers of ages in the respective datasets. Nevertheless, the onset of agriculture in Northern and Central Germany coincides with distinct peaks in the
colluvial radiocarbon record of NE-Germany at 7.3 and 6 ka cal BP, thereby suggesting a
causal relationship (Figure 9 A2, D4, D5). During the Neolithic population boom, around 5.5
ka cal BP (Shennan et al., 2013), in nearly all compiled regions an increased occurrence of
luminescence ages since 5 ka can also be observed, thus supporting the fact of intensified land
use since the middle Neolithic. This was also observed in the Uckermark, located in the
eastern part of the study area, where Jahns (2000) reported from pollen data a significant
increase in agriculture since the middle Neolithic, around 5 ka cal BP, followed by a second
period of increased settlement activities during the Bronze Age (~ 3.8–2.7 ka cal BP). For this
time, a strong human impact on the environment can unequivocally be assumed, as supported
by distinct increase in nearly all colluvial records discussed in this study.

Probably the strongest pre-modern human impact on Central European landscapes, that of
deforestation and subsequent soil erosion, dates to the High to Late Medieval (late 12th to
14th century AD). This is clearly visible in nearly all records of colluvial sedimentation in
Figure 9 A1, A3, A5-A10 between 1000 a and 800 a. During that time, with a share of ~ 8%,
the largest amount of arable land and grassland of the entire Holocene was developed in
northeastern Germany, accompanying the German colonization of that area (Bork et al.,
1998).

Remarkable in this context is the lack of dates in the colluvial luminescence record from NE-
Germany between 5 and 7.5 ka (Figure 9 A1), while the radiocarbon record from the same
region (Figure 9 A2) indicates colluvium formation during this period and, to a minor extent,
also in SW Germany (Henkner et al., 2018; Figure 9 A8). Similarly, a distinct increase in the
number of dated colluvial layers between 6.7 to 5.4 ka in the record from Northern Germany
is observable (Dreibrodt et al., 2010b; Figure 9 A10). Colluvial signals from luminescence
data between 7.5 and 5.5 ka are observable in the records from Southern Germany, showing
flat peaks in the density plots (Henkner et al., 2018; Kappler et al., 2018; Figure 9 A3, A8).
The question arises in this context why radiocarbon records show higher values back in the past, in contrast to luminescence chronologies. On the one hand, this is probably due to the smaller number of available luminescence ages to create such chronologies, or, on the other hand, to the fact that radiocarbon ages from colluvial layers often suggest a greater age than the layer actually has.

5.4 Late Quaternary soil formation

5.4.1 General considerations

Whereas different sedimentary facies normally reflect activity of geomorphodynamic processes, the record of soils, specifically of buried palaeosols reflects stability of the relief (Rohdenburg, 1989).

In general, geologic, geomorphic, climatic, hydrologic, and anthropogenic factors control the occurrence of the soils in a region. In the glacial landscapes of northeastern Central Europe widespread parent materials are calcareous tills, (glacio-) fluvial and aeolian sands, periglacial coversands (Geschiebedecksand in German), and (glacio-) lacustrine silts and sands. Since the Allerød period of the Late Glacial (since ~13 ka cal BP), this area was predominantly forested, except during periods in which the vegetation cover was being structured by people.

At present, a distinct thermoclimatic gradient exists from northwest to southeast, dividing the region into maritime, sub-maritime, and sub-continental parts with decreasing precipitation from ~780 to 450 mm/a (Hendl, 1994). Whether there already had been a climatic differentiation in the past is probable, but this has not yet been proven by palaeoclimatic or palaeoecologic evidence, except for the Younger Dryas period (12.7–11.7 ka cal BP), when the tundra biome was established in the north (Rügen Island) and the boreal forest biome in the south (Berlin area; Kaiser, 2004; de Klerk, 2008). Crucial for soil substrate formation (e.g., periglacial reworking of the substrate, input of aeolian matter) and pedogenesis is the
Timing of the deglaciation generally enabling the onset and duration of soil formation (Felix-Henningsen, 2017).

5.4.2 Initial Late Pleistocene soil formation

Regional soil formation started with pronounced periglacial influence on the surface sediments, comprising, for instance, allochthonous matter input, cryoclastics and vertical mixing of the substrate. Furthermore, immediately after the deglaciation, at least mosses, grasses, and dwarf shrubs were widespread covers of the land surfaces, as some early vegetation and faunal records (~15 ka cal BP onward) from the region suggest (e.g., de Klerk, 2008; de Klerk et al., 2001; Sommer, Kalbe, Ekström, Benecke, & Liljegren, 2014; Strahl, 2005). Thus, the potential provision of organic substances as an important prerequisite for soil formation and chemical weathering was feasible already in the Late Pleniglacial.

From a glacial sedimentary sequence at Zechow, in northern Brandenburg adjacent to the W1F terminal moraine, a buried Cryosol was reported, providing a radiocarbon date on charcoal (without plant species determination) of 17.8 to 15.9 ka cal BP (Gärtner, 1998, Figure 3 B). If this single age dates the record correctly, it represents the oldest Late Pleistocene palaeosol known in the young morainic (Weichselian) part of the study area after deglaciation so far. Beyond the time limit set for analysis (15 ka cal BP; Figures 5–7), further records of buried Cryosols are available from several sites of the old morainic (Saalian) area in the Niederlausitz region dating from 46 to 28 ka cal BP (Mol, 1997, cf. Figure 3 A; Mol, Vandenberghhe, & Kasse, 2000). Another potential palaeosol in the young morainic area of Vorpommern, described as "Reinberg horizon," was recorded by coring (de Klerk et al., 2001). It is thought to represent an initial in-situ soil formation of the Pleniglacial-Late Glacial transition, and it consists of humic sand bands in a kettle-hole sequence (Figure 3 C). The horizon was palynostratigraphically dated as minimum age estimate to ~14.7 ka cal BP.
The most prominent buried initial soil formations of the Late Glacial are Brunic Arenosols and Albic Arenosols of Finow (Bwb and BwAhb horizons, Figure 3 E) and Usselo type (Ahb and Eb horizons, Figure 3 D), respectively, frequently occurring both in the old and young morainic area of the region and beyond (Hirsch et al., 2017; Jankowski, 2012; Kaiser et al., 2009). Site location and soil properties confirm the dry terrestrial character of both Usselo and Finow soils. Mapping of nearly all Usselo and Finow soil occurrences known so far in northern Central Europe (n = 96) reveals disparate geographical patterns. There is a nearly continuous Finow soil province in between Usselo soil areas in NW Germany and central Poland located mainly in NE Germany. The reason for this areal disparity is not yet known (Kaiser et al., 2009). A total of 13 radiocarbon and 29 luminescence dates available from Finow soils confirm their formation in the whole Late Glacial until the very beginning of the Early Holocene (Figure 8).

5.4.3 Formation of Holocene zonal/climax soils

Two general temporal models exist for the formation of Holocene zonal/climax soils (for terminology see Muhs et al., 2013), comprising Cambisols/Arenosols, Chernozems, Luvisols and Podzols in the region. From a Central European point of view, the first model favors Holocene, in particular Mid-Holocene (Atlantic) soil formation (e.g., Blume et al., 2010; Rohdenburg, 1978), whereas the second model primarily emphasizes Late Pleistocene soil formation (e.g., Altermann, Mautschke, Erbe, & Pretzschel, 1977; Altermann et al., 2008; Brunnacker, 1959; Bussemmer, 1994). However, until the 2000s, the dispute suffered from a lack of unequivocally dated field evidence.

Kühn (2003a) found evidence for Late Glacial clay illuviation of Luvisols at till plains in the northern part of the study area (Mecklenburg-Vorpommern). Evidence for Holocene/modern illuviation was also reported (Kühn, 2003b; Kühn & Bauriegel, 2003), showing that the
formation of Luvisols had already started in the Late Glacial and was completed in the Holocene (Figure 3 G; buried Late Glacial Luvisol).

Eighteen radiocarbon dates of the database are related to Chernozems and Chernozem-Luvisols, pointing at first glance to a Mid-Holocene formation of these soils (Figure 7 B1-B2). However, radiocarbon dates from buried palaeosols generally represent average age estimates. Furthermore, if the soil organic matter (bulk) was dated, the age represents, to some extent, a mixture of modern and old carbon (Lorz & Saile, 2011). Thus, a somewhat older age of Chernozem formation, probably dating into the Early Holocene, is still feasible. Evidence for the already Late Glacial pedogenesis of Chernozems south of the study area is given by Altermann and Mania (1968), who reported an initial Chernozem covered by the well-known Late Glacial Lacher See tephra. It dates this local Chernozem formation to a minimum age of at least 12.9 ka cal BP (Litt, Schmincke, & Kromer, 2003).

As is obvious from the frequent occurrence of Finow soils, brunification (silicate weathering) of sands started in the region already in the Late Glacial and left behind 10 to 20 cm thick Bw(b) horizons. But even unequivocally dated Holocene Bw(b) horizons were recently reported both for the old and young morainic part of the region. Estimations for the time, which is needed in the Holocene to form Bw horizons of a few decimeters thickness, vary from 2400 to 5500 years (Dreibrodt et al., 2013; Küster, Fülling, & Ulrich, 2015; Figure 7 A1-A2).

A total of 50 luminescence dates and 19 radiocarbon dates could be ascribed to buried Podzols, ranging from the beginning of the Late Glacial to the very recent past (Figure 7 C1-C2). The overall distribution of ages points to no significant temporal gap in the formation of Podzols, beside the absence of luminescence ages between 3–2 ka and 9–8 ka. Since the luminescence ages of Podzols represent minimum ages sampled from above the buried soil, this gap can tentatively be explained with low geomorphic activity in the same time intervals.
in the aeolian luminescence dataset (Figure 5 A2). After all, it can be stated that Podzols were formed in the study area throughout the whole Late Glacial and Holocene.

As a fundamental model, a starting pedogenesis during the Late Glacial and completion during the Holocene seems generally to be applicable to soil formation in the formerly glaciated areas of northern Central Europe (Felix-Henningsen, 2017; Kaiser et al., 2009; Kühn, Billwitz, Bauriegel, Kühn, & Eckelmann, 2006).

6. Conclusions

Understanding past landscape dynamics is an indispensable prerequisite for scaling current environmental processes, such as soil erosion and susceptibility to geomorphic change. Particularly, the systematic analysis of numerical ages from a multitude of geoarchives helps provide insights into the Late Pleistocene and Holocene geomorphodynamics and soil formation of a specific region.

For the first time, geochronological data from a broad range of sedimentary environments were systematically collected and analyzed for northeastern Central Europe, forming, with 616 ages, the largest database available for this region to date. Luminescence ages, mainly derived from aeolian sequences, cluster in the Late Glacial to Early Holocene period (15.4–8.2 ka) and in the Late Holocene (4.2 ka – present). The radiocarbon dataset mostly comprises ages from colluvial and aeolian sequences, showing a regular age distribution over the last 15 ka. After a first prominent phase during the Late Glacial and Early Holocene, distinct aeolian activity occurred again in the Late Holocene. The colluvial dataset indicates first mass wasting upon hillslopes at 11 to 9 ka, probably caused by local fluvial incision after wildfires. From 7.4 ka onward, colluvial sedimentation increased, accompanying anthropogenic land use. In comparison to several other records from Germany, the onset of colluvial
sedimentation started in northeastern Germany substantially later, coinciding with the occurrence of agriculture at a later stage in this region.

As particularly reflected by the colluvial and aeolian records, the dataset and further arguments indicate pronounced human influence since ~5 ka due to agricultural activities. Furthermore, the aeolian data shows two distinctive peaks during the last 2 ka, thereby indicating an increasing opening of the landscape.

The radiocarbon chronologies of colluvial sequences seem to reach farther back into the past than luminescence records of the same region suggest. If this, however, represents a bias in the database, due to different amounts of ages available or if it points to a regular reworking and re-embedding of organic samples within colluvial sequences could not be determined unequivocally.

The classification of the data into minimum and maximum age estimates limits possible time frames for the formation of certain soil types. This is exemplarily demonstrated for the palaeosols of Finow type (Brunic Arenosols), dating into the Late Glacial. Typical mid-latitude soil forming processes, such as brunification, clay illuviation and podzolization, started in the Late Glacial and were completed in the Holocene.

Acknowledgements

This study was performed within the TERENO and ICLEA projects of the Helmholtz Association. The authors would like to thank M. Dietze (Potsdam) for his support in developing the R-script for data analysis. Furthermore, we thank H. Helbig (Halle/Saale), P. Kühn (Tübingen), J. Mol (Leiden), F. Ruchhöft (Greifswald) and J. F. Tolksdorf (Dresden) for contributing photographs of some sedimentary sequences and M. T. Lavin-Zimmer (Potsdam) for improving the English. Finally, we thank two anonymous reviewers for their helpful comments.
References

Figures

Figure 1. Map of the study area with sites contributing chronological data to the database analyzed. The size of the symbols corresponds to the number of dates per site. All sites are referenced in Supplement 1. Extent of glaciations (Saalian and Weichselian) after Ehlers, Eissmann, Lippstreu, Stephan, and Wansa, (2004). SRTM terrain model from Jarvis, Reuter, Nelson, and Guevara (2008).

Figure 2. Distribution of the collected numerical ages according to sedimentary environment and dating method.
Figure 3. Photographs of dated characteristic pedosedimentary sequences in northeastern Germany. A: Scheibe section (profile depth: c. 200 cm; photo: J. Mol); B: Zechow section (profile depth: 180 cm; photo: P. Gärtner); C: Reinberg section (core depth: 260-290 cm; photo: H. Helbig); D: Altdarss section (profile depth: 190 cm; photo: K. Kaiser); E: Finow-Postdünne section (profile depth: 300 cm; photo: N. Schlaak); F: Grabow section – profile: W-IX (profile depth: 150 cm; photo: J. F. Tolksdorf); G: Lenzen section – profile Len4 (profile depth: 160 cm; photo: P. Kühn); H: Laasche section (profile depth: 160 cm; photo: J. F. Tolksdorf); I: Boek section (profile depth: 160 cm, photo: K. Kaiser); J: Lake Priesterbäker See section (profile depth: 150 cm; photo: M. Küster); K: Steinfurth section (profile depth: 350 cm; photo: C. Kappler); L: Kühlenhagen section (profile depth: 170 cm; photo: F. Ruchhöft); M: Falkenhagen section (profile depth: 200 cm; photo: C. Kappler); N: Elisenhain section (profile depth: 120 cm, photo: H. Helbig).

Figure 4. Relative probability functions of all radiocarbon ages and kernel density estimate of all luminescence ages.

Figure 5. Relative probability and kernel density estimate of radiocarbon and luminescence ages, respectively, from aeolian (A1, A2) and colluvial (B1, B2) facies. The horizontal dashed line represents the mean of the respective probability distribution.

Figure 6. Relative probability and kernel density estimate of radiocarbon and luminescence ages, respectively, from paleosurfaces.
Figure 7. Relative probability curves and kernel density estimates of radiocarbon and luminescence ages, respectively, from buried paleosols. A1, A2: Cambisols; B1, B2: Chernozems; C1, C2: Podzols.

Figure 8. Relative probability curves of radiocarbon ages and kernel density estimates of minimum and maximum luminescence ages from buried paleosols of Finow type (Brunic Arenosol).

Figure 9. Summarized datasets of colluvial and aeolian records, dated paleosurfaces, human population models and vegetational and climatic reconstructions. The original studies contributing the data are referenced at the bottom and indicated with an index A1…-E2, marking each dataset. Subdivision of the Holocene according to Walker et al. (2012).

Tables

Table 1. Number of ages with respect on the dating methods applied and sedimentary facies.

Supplement

Supplement 1. List of radiocarbon and luminescence age data with corresponding metadata.

Supplement 2. List of references contributing the age data for the analysis.
Figure 1. Map of the study area with sites contributing chronological data to the database analyzed. The size of the symbols corresponds to the number of dates per site. All sites are referenced in Supplement 1. Extent of glaciations (Saalian and Weichselian) after Ehlers, Eissmann, Lippstreu, Stephan, and Wansa, (2004). SRTM terrain model from Jarvis, Reuter, Nelson, and Guevara (2008).
Figure. 2. Distribution of the collected numerical ages according to sedimentary environment and dating method.
Figure 3. Photographs of dated characteristic pedosedimentary sequences in northeastern Germany. A: Scheibe section (profile depth: c. 200 cm; photo: J. Mol); B: Zechow section (profile depth: 180 cm; photo: P. Gärtnner); C: Reinberg section (core depth: 260-290 cm; photo: H. Helbig); D: Alldarss section (profile depth: 190 cm; photo: K. Kaiser); E: Finow-Postdünensection (profile depth: 300 cm; photo: N. Schlaak); F: Grabow section - profile: W-IX (profile depth: 150 cm; photo: J. F. Tolksdorf); G: Lenzen section - profile Len4 (profile depth: 160 cm; photo: P. Kühn); H: Laasche section (profile depth: 160 cm; photo: J. F. Tolksdorf); I: Boek section (profile depth: 160 cm; photo: K. Kaiser); J: Lake Priesterbäker See section (profile depth: 150 cm; photo: M. Küster); K: Steinfurth section (profile depth: 350 cm; photo: C. Kappler); L: Kühlenhagen section (profile depth: 170 cm; photo: F. Ruchhöft); M: Falkenhagen section (profile depth: 200 cm; photo: C. Kappler); N: Elisenhain section (profile depth: 120 cm; photo: H. Helbig).
Figure 4. Relative probability functions of all radiocarbon ages and kernel density estimate of all luminescence ages.
Figure 5. Relative probability and kernel density estimate of radiocarbon and luminescence ages, respectively, from aeolian (A1, A2) and colluvial (B1, B2) facies. The horizontal dashed line represents the mean of the respective probability distribution.
Figure 6. Relative probability and kernel density estimate of radiocarbon and luminescence ages, respectively, from paleosurfaces.
Figure 7. Relative probability curves and kernel density estimates of radiocarbon and luminescence ages, respectively, from buried paleosols. A1, A2: Cambisols; B1, B2: Chernozems; C1, C2: Podzols.
Figure 8. Relative probability curves of radiocarbon ages and kernel density estimates of minimum and maximum luminescence ages from buried paleosols of Finow type (Brunic Arenosol).
Figure 9. Summarized datasets of colluvial and aeolian records, dated paleosurfaces, human population models and vegetational and climatic reconstructions. The original studies contributing the data are referenced at the bottom and indicated with an index A1…E2, marking each dataset. Subdivision of the Holocene according to Walker et al. (2012).
Table 1. Number of ages with respect on the dating methods applied and sedimentary facies.

<table>
<thead>
<tr>
<th>Age Category</th>
<th>Dating technique</th>
<th>Sedimentary facies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OSL TL IRSL</td>
<td>aeolian colluvial periglacial</td>
<td></td>
</tr>
<tr>
<td>Luminescence data</td>
<td>292 31 11</td>
<td>237 86 11</td>
<td>334</td>
</tr>
<tr>
<td>[number]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiocarbon data</td>
<td>AMS conventional</td>
<td>aeolian colluvial other</td>
<td></td>
</tr>
<tr>
<td>[number]</td>
<td>275 7</td>
<td>130 152 0</td>
<td>282</td>
</tr>
<tr>
<td>Age category</td>
<td>Site ID</td>
<td>Site ID Map</td>
<td>Site Category</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1C</td>
<td>1</td>
<td>1C</td>
<td>Age category</td>
</tr>
<tr>
<td>1C</td>
<td>2</td>
<td>1C</td>
<td>GreenChester</td>
</tr>
<tr>
<td>1C</td>
<td>3</td>
<td>1C</td>
<td>NenadinoBlađe</td>
</tr>
<tr>
<td>1C</td>
<td>4</td>
<td>1C</td>
<td>NenadinoBlađe</td>
</tr>
<tr>
<td>1C</td>
<td>5</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>6</td>
<td>1C</td>
<td>NenadinoBlađe</td>
</tr>
<tr>
<td>1C</td>
<td>7</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>8</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>9</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>10</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>11</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>12</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>13</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>14</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
<tr>
<td>1C</td>
<td>15</td>
<td>1C</td>
<td>Blakačka</td>
</tr>
</tbody>
</table>

Supplement 1. List of radiocarbon and luminescence age data with corresponding metadata.
<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Location</th>
<th>Coordinates</th>
<th>Luminescence</th>
<th>Age</th>
<th>Error</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lum/14C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: OSL = Optically Stimulated Luminescence; TL = Thermoluminescence
<table>
<thead>
<tr>
<th>Location</th>
<th>Sample No.</th>
<th>Method</th>
<th>Age (ka)</th>
<th>Location</th>
<th>Sample No.</th>
<th>Method</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgwall Kratzeburg</td>
<td>S3.408861</td>
<td>OSL</td>
<td>9.02</td>
<td>Burgwall Kratzeburg</td>
<td>S3.408861</td>
<td>OSL</td>
<td>9.02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Luminescence: The sample was analyzed using luminescence dating, which is a non-destructive method for dating sediments and archaeological materials.
- OSL: Optical Stimulated Luminescence.
- IRSL: Irradiation-induced Remanent Luminescence.

References:
- Küster et al. 2014
- Schmitz 2000
- Hilgers 2007
- Kappler unpubl.
<table>
<thead>
<tr>
<th>Luminescence</th>
<th>N</th>
<th>Lunn</th>
<th>Jerk</th>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Age</th>
<th>Width</th>
<th>Type</th>
<th>Source</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminescence</td>
<td>88</td>
<td>Lunn</td>
<td>3</td>
<td>Uckermünde-D</td>
<td>53.6144444</td>
<td>14.2786111</td>
<td>12810</td>
<td>960</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Hilgers 2007</td>
</tr>
<tr>
<td>Luminescence</td>
<td>91</td>
<td>Lunn</td>
<td>2</td>
<td>Burow</td>
<td>53.774537</td>
<td>13.273115</td>
<td>13400</td>
<td>1000</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Bussemer et al. 1998</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>1840</td>
<td>120</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser 2001</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>10700</td>
<td>790</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser et al. 2006</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>10870</td>
<td>850</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser et al. 2006</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>12310</td>
<td>910</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser et al. 2006</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>12500</td>
<td>980</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser et al. 2006</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>12890</td>
<td>980</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser et al. 2006</td>
</tr>
<tr>
<td>Luminescence</td>
<td>99</td>
<td>Lunn</td>
<td>19</td>
<td>Altdars</td>
<td>54.41552604</td>
<td>12.53340855</td>
<td>13200</td>
<td>970</td>
<td>aeolian sand</td>
<td>aeolian sand</td>
<td>Kaiser et al. 2006</td>
</tr>
</tbody>
</table>
Supplement 2: References of geochronological data

