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ABSTRACT 

Multi-sensor remote sensing applications consistently gain importance, boosted by a growing number 

of freely available earth observation data, increasing computing capacity, and increasingly complex 

algorithms that need as temporally dense data as possible. Using data provided by different sensors 

can greatly improve the temporal resolution of time series, fill data gaps and thus improve the quality 

of land cover monitoring applications. However, multi-sensor approaches are often adversely affected 

by different spectral characteristics of the sensing instruments, leading to inconsistencies in 

downstream products. Spectral harmonization, i.e., the transformation of one sensor into the spectral 

domain of another sensor, may reduce these inconsistencies. It simplifies workflows, increases the 

reliability of subsequently derived multi-sensor products and may also enable the generation of new 

products that are not possible with the initial spectral definition. In this paper, we compare the effect 

of multivariate spectral harmonization techniques on the inter-sensor reflectance consistency and 

derived products such as spectral indices or land cover classifications. We simulated surface 

reflectance data of Landsat-8 and Sentinel-2A from airborne hyperspectral data to eliminate any 

sources of error originating from unequal acquisition geometries, illumination or atmospheric state. 

We evaluate different methods based on linear, quadratic and random forest regression as well as 

linear interpolation, and predict not only matching but also unilaterally missing bands (red edge). We 

additionally consider material-dependent spectral characteristics in the harmonization process by using 

separate transformation functions for spectral clusters of the input dataset. Our results suggest that 

spectral harmonization is useful to improve multi-sensor consistency of remote sensing data and 

subsequently derived products, especially if multiple transformation functions are incorporated. There 

is a strong dependency between harmonization performance and the similarity of source and target 

sensor’s spectral characteristics. For spectrally transforming Landsat-8 to Sentinel-2A, we achieved 

the lowest radiometric inter-sensor deviations with 50 spectral clusters and linear regression. Based on 

simulated data, deviations are below 1.7% reflectance within the red edge spectral region and below 

0.3% reflectance for the remaining bands (RMSE). Regarding spectral indices, our results show a 
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reduction of inter-sensor deviation (vegetation pixels only) to 38% of the initial error for NDVI 

(Normalized Difference Vegetation Index) and to 43% for EVI (Enhanced Vegetation Index). 

Furthermore, we computed the REIP (Red Edge Inflection Point) with an accuracy of 3.1 nm from 

Sentinel-2 adapted Landsat-8 data. An exemplary multispectral classification use case revealed an 

increasing inter-sensor consistency of classification results from 92.3% to 97.3% mean error. Applied 

to time series of real Landsat-8 and Sentinel-2 data, we observed similar trends, albeit intermingled 

with non-sensor-induced inconsistencies. 

Index Terms – spectral harmonization, satellite image harmonization, machine learning, time series 

analysis, analysis ready data 

 

1. INTRODUCTION 

Optical multispectral sensors like the Landsat legacy sensors deliver valuable information about the 

Earth’s surface for more than four decades (Wulder et al., 2019). Many new sensors provide continuity 

with this record and continuously acquire huge amounts of image data, e.g., Landsat-8 (Irons et al., 

2012) and Sentinel-2A/B (Drusch et al., 2012). All these data are suited for monitoring the changing 

Earth surface over time. Such time series analyses require in particular sensors with a short revisit time 

to detect and monitor slightest changes on the Earth’s surface in a timely manner. However, this is 

often not sufficient, because frequently clouds mask the desired information. Therefore, it is obvious 

to additionally use data from multiple multispectral sensors to fill the temporal gaps (Brown et al., 

2006) and hence to increase the chance of cloud-free acquisitions. Needless to say, this is a very 

challenging task due to different spectral or spatial sensor characteristics, different acquisition 

geometries or illumination conditions, or different atmospheric states (Pacifici et al., 2014; Roy et al., 

2016a).  

In this paper, we focus on the spectral domain. Solutions for homogenizing the spatial domain are 

already existing and well-tested, including methods for improving the co-registration between sensors 

(e.g., Scheffler et al., 2017) and for adjusting the spatial resolution of one sensor to the other (e.g., Gao 

et al., 2006). Different acquisition or illumination conditions as well as variations in the atmospheric 

conditions may also cause large variations in the measured signal (Roy et al., 2016a; Schaepman-Strub 

et al., 2006; Steven et al., 2003; Teillet, 1986). Therefore, images delivered in top-of atmosphere 

(TOA) radiance or reflectance have to be converted to bottom-of-atmosphere (BOA) reflectance for 

harmonization (Hall et al., 1991; Roy et al., 2016a). Numerous approaches exist, such as ATCOR 

(Richter and Schläpfer, 2002, 2019), LaSRC (Vermote et al., 2016), FORCE AC (Frantz et al., 2016) 

or Sen2Cor (Louis et al., 2016) and have been recently compared in Doxani et al., 2018. In the study 

presented herein, we rely on Level-2 data that already have undergone several steps of radiometric 

correction, normalization of acquisition and illumination geometries as well as atmospheric correction. 
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From the spectral side, multi-sensor, multispectral remote sensing applications are often affected by 

variations of the spectral band positions and width of the sensors used (Hong and Zhang, 2008; Steven 

et al., 2003; Teillet et al., 1997). Although many multispectral sensors, such as the Landsat sensors or 

Sentinel-2 have very similar bands in the visible and near infrared wavelength range, they are not 

strictly identical. Moreover, many sensors provide specific bands, e.g., in the red edge spectral region. 

The Sentinel-2 MSI provides 13 bands including three extra red edge bands (Drusch et al., 2012) 

compared to Landsat-8 OLI. Therefore, multi-sensor applications often use only the most similar 

bands, given that they are subject to the same or at least similar physical principles. Some applications 

may even leave out sensors that don’t provide a band at a certain wavelength position. But even if 

spectral bands with a similar wavelength position exist, differences in the spectral responses of the 

sensors will create slightly different pixel values. This in turn creates variations in spectral index 

values or classification maps and thus it can lead to misinterpretations of the results that can solely be 

traced back to unequal spectral characteristics of the input sensors (Teillet et al., 1997). 

Possible solutions are to evolve sensor specific processing chains, separate parameter retrieval models 

or classification approaches (e.g., Hagolle et al., 2010; Useya and Chen, 2018; Zhu et al., 2015) or to 

inter-calibrate multi-sensor products such as spectral indices or band ratios (e.g., Brown et al., 2006; 

Gallo et al., 2005; Miura et al., 2006; Steven et al., 2003). However, this is very time consuming and 

requires comprehensive validation techniques to achieve reliable results. Alternatively, spectral band 

harmonization may be used to approximate the spectral information at a certain wavelength position as 

it would have been acquired by another sensor. This allows to easily create inter-sensor data cubes, 

simplifies processing workflows and provides comparability of the harmonized datasets and 

subsequently generated analysis results. In this regard, research has been conducted to build up 

statistical relations between the acquired signal of equivalent multi-sensor bands. The following table 

summarizes some exemplary studies and highlights how our study is different from them: 

 

Table 1.Examples from the literature for spectral harmonization techniques  

applicable to multispectral remote sensing data. 

Reference Harmonization target/source Harmonization technique(s) Main differences to the study presented herein 

Chastain et al. 

(2019) 

Landsat-8 from Landsat-7, 

Sentinel-2 from Landsat-7 

Sentinel-2 from Landsat-8 

Univariate linear regression Harmonization includes common bands only;  

static transformation coefficients per spectral band 

Claverie et al. 

(2017, 2018) 

Landsat-8 from Sentinel-2 Univariate linear regression Harmonization includes common bands only; 

static transformation coefficients per spectral band 

Flood (2014) Landsat-7 from Landsat-8 Univariate linear regression Harmonization includes common bands only;  

static transformation coefficients per spectral band 

Flood (2017) Landsat-7 from Sentinel-2, 

Landsat-8 from Sentinel-2 

Univariate linear regression Harmonization includes common bands only;  

static transformation coefficients per spectral band 

Hong & Zhang 

(2008) 

IKONOS from QuickBird Various tested, histogram 

matching worked best 

Each IKONOS band covered by an equivalent QuickBird band 

with very similar relative spectral response 

Roy et al. (2016a) Landsat-8 from Landsat-7; 

Landsat-7 from Landsat-8 

Univariate linear regression Harmonization includes common bands only; 

 static transformation coefficients per spectral band 

Zhang et al. (2018) Landsat-8 from Sentinel-2, 

Sentinel-2 from Landsat-8 

Univariate linear regression Harmonization includes common bands only; 

 static transformation coefficients per spectral band 
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For example, Claverie et al. (2018) achieved good inter-sensor consistency for Sentinel-2 data 

transformed to the spectral domain of Landsat-8. However, the underlying techniques only use a single 

set of harmonization coefficients that have been approximated based on average band-to-band 

relationships but without respect to material-dependent spectral characteristics. This causes spatially 

variable prediction performances depending on the surface coverage since a single set of 

transformation coefficients does not perform equally well for all materials, but leads to larger errors 

the stronger spectra deviate from the global average. This effect was also mentioned by Flood (2014) 

as a limitation of his study to be addressed in future. To overcome this, separate transformation 

functions for different surface materials might be helpful. Apart from that, the largest differences in 

the spectral response of source and target bands have been investigated by Flood (2014, 2017), Roy et 

al. (2016a) and Chastain et al. (2019). They occur at the transformation between Landsat-7 and 

Landsat-8 data since the bandwidth of some bands has been significantly narrowed with Landsat-8 

(Irons et al., 2012; Mishra et al., 2016). However, none of the mentioned studies attempted to predict 

data in unilaterally missing bands (e.g., red edge bands), in which case those approaches are not 

expected to work properly as the relationships were only estimated based on homologous bands. 

For larger spectral differences, therefore, new methods are required that accurately estimate the 

reflectance signal within so far not covered wavelength regions. In this context machine learning 

seems to be particularly suitable – especially behind the background that there are direct material-

dependent relations between the remotely sensed signal in covered and not covered spectral regions 

due to specific spectral characteristics of different surface materials (Flood, 2014; Miura et al., 2006; 

Roy et al., 2016a). This means, that even if, e.g., the red edge spectral region is not covered by a 

sensor, it might be predicted with some uncertainty, given that the material can be identified using the 

known signal. 

In this study we investigate the potential to estimate the spectral information of Sentinel-2 from 

Landsat-8. These sensors are widely used and particularly suited for this study because they provide 

both bands with very similar spectral characteristics but also “spectral gaps”, i.e., spectral regions only 

covered by a single sensor (Figure 1). A special focus is placed on wavelength ranges that are not 

covered by Landsat-8 (mainly the red edge). In particular, to draw attention to the specific spectral 

properties of different surface materials, we developed a new method for spectral harmonization using 

multivariate machine learning techniques combined with spectral clustering. More precisely, we utilize 

separate transformation functions for various spectral clusters to adequately transform the acquired 

signal of Landsat-8 into the spectral domain of Sentinel-2. The main research questions of this paper 

are: 

1. How strong is the influence of spectral harmonization on the inter-sensor consistency of spectral 

information and subsequent products, such as spectral indices or classification maps? 

2. May separate prediction functions for different spectral clusters be useful to more accurately 

predict the spectral information of the target sensor? 
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3. Which harmonization accuracies can be achieved within unilaterally existing wavelength regions 

and how does this accuracy vary with different numbers of spectral clusters? 

 

2. DATA 

2.1 Simulated Landsat-8 and Sentinel-2 data from hyperspectral images 

A meaningful comparison of spectral harmonization techniques for multi-sensor remote sensing data 

requires a multi-sensor data basis where the individual acquisitions ideally only differ in the spectral 

responses of the input sensors. Any other side effects affecting the sensed signal, such as different 

spatial sensor characteristics or registration accuracies, acquisition, illumination or atmospheric 

conditions (section 1) should be minimized or not existing. In this manner, it is possible to accurately 

measure the deviation between the predicted and the actual reference spectral information. Therefore, 

we accomplished our study as a simulation study based on hyperspectral data that can be accurately 

transformed to artificial multispectral data as it would be acquired by different sensors. This has been 

similarly done by Claverie et al. (2018) and is generically applicable across different sensors requiring 

the knowledge of the sensor’s spectral response functions. 

For this purpose, we selected representative BOA reflectance spectra from nine hyperspectral airborne 

remote sensing images covering different climatic zones (Table 2, train data) to maximize the spectral 

variety. Selected spectra were used to generate a training database of multi-spectral signatures for 

Landsat-8 and Sentinel-2A. Additionally, independent verification spectra were selected from three 

additional hyperspectral test datasets to evaluate the quality of the harmonization results. 

 

Table 2. Data characteristics of the hyperspectral input data used in this study. 

Train/Test Sensor Location UTM 

Zone 

GSD 

[m] 

Major land cover components Provider 

 
  

snow/ 

ice 

rocks / 

bare soil 

clouds rural/ 

farmland 

forest/ 

bushland 

urban desert water  

Train 1 AISA Eagle/ 

AISA Hawk 

Isabena, Spain 31N 4  x  x x  
 

 GFZ 1 

Train 2 APEX Balaton lake, Hungary 34N 5 
  

x x x x 
 

x VITO 

Train 3 APEX Brussels, Belgium 31N 2 
    

x x 
 

x BELSPO 

Train 4 APEX Neusling, Germany 33N 4    x x x   LMU 2 

Train 5 HyMap Northern Quebec, Canada 18N 2 x x 
      

DLR 

Train 6 HyMap Costa Rica 16N 15 
 

x x x x 
   

DLR 

Train 7 HyMap Döberitzer Heide, Germany 33N 4 
 

x 
 

x x x 
 

x GFZ 3 

Train 8 HyMap Mullewa, Western Australia 50S 4.2 
 

x 
 

x 
  

x 
 

CSIRO 

Train 9 HyMap Arundale, South Africa 35S 3.3 
 

x 
  

x 
 

x 
 

DLR 

Test 1 HyMap Berlin, Germany 33N 3.5  x  x x x  x GFZ 

Test 2 HyMap Dresden, Germany 33N 4  x  x x x  x GFZ 

Test 3 HyMap Potsdam, Germany 33N 4  x  x x x  x GFZ 

 
1 1 Foerster et al. (2015) 
2 2 Hank et al. (2015) 
3 3 Neumann et al. (2015) 

 

Explanation of provider abbreviations: 

GFZ – German Research Centre for Geosciences (www.gfz-potsdam.de); BELSPO – Belgian Science Policy (www.belspo.be); LMU – Ludwig-Maximilians-

Universität München (www.uni-muenchen.de); DLR – German Aerospace Centre (www.dlr.de); CSIRO - Commonwealth Scientific and Industrial Research 

Organisation (www.csiro.au) 

 

http://www.gfz-potsdam.de/
http://www.belspo.be/
http://www.uni-muenchen.de/
http://www.dlr.de/
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The workflow to generate the spectral database is presented in the following. Multi-spectral signatures 

have been generated as in Steven et al. (2003) through a spectral up-sampling of the hyperspectral 

BOA reflectance to 1 nm resolution followed by the computation of weighted averages according to 

the spectral response functions of Landsat-8 and Sentinel-2A (Figure 1). An exemplary vegetation 

spectrum is shown in Figure 1 after transforming the hyperspectral signature into the multispectral 

domains (dashed line for each sensor). To ensure a high spectral variability of the sample spectra we 

intentionally chose images containing a high land cover variety without lacking any major component 

and separated 50 spectral clusters from each hyperspectral image using a K-Means clustering approach 

(implemented after Lloyd, 1982). Next, we randomly extracted 2,000 hyperspectral signatures from 

each cluster to guarantee a high statistical variety and convolved these spectra with the spectral 

response functions of both multispectral sensors as presented in Figure 1. This way, we extracted 

100,000 spectra from each hyperspectral image and then combined the spectra of all images into a 

single “reference cube” for each sensor. 

For this study, the generated reference cubes represent an ideal data basis as they contain a 

comprehensive variation of multispectral signatures from most important surface cover types around 

the world. They solely differ in their spectral dimension so that statistical relations between different 

multispectral sensors, as needed for their spectral harmonization, can be easily deduced. 

 

 

Figure 1. Spectral response functions of Landsat-8 OLI (Barsi et al., 2014) and Sentinel-2A MSI (European 

Space Agency (ESA), 2017). Bands excluded from regressor training are marked with light gray color. The 

dashed lines represent spectrally resampled versions of the hyperspectral signature above. 

 

2.2 Real-world Landsat-8 and Sentinel-2 data 

In addition to the hyperspectral data used to simulate training data for spectral harmonization and to 

evaluate sensor-induced spectral differences, we also evaluated the effect of spectral harmonization to 

real Landsat-8 and Sentinel-2A/B data (section 4.5). For this purpose, we used time series data 

acquired at two exemplary test sites. The first time series contains 9 Landsat-8 and 21 Sentinel-2 
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scenes acquired between 01.07.2018 and 31.12.2018 and represents an agricultural area (6 by 4.8 km) 

at the south coast of Crete, Greece. The second one consists of 20 Landsat-8 and 50 Sentinel-2 scenes 

acquired throughout 2018 and covers an agricultural area (22.5 by 18 km) in Brandenburg, Germany. 

The image data of both sensors have been preprocessed with the FORCE software (Frantz, 2019) that 

allows to apply the same preprocessing algorithm to generate homogenized Level-2 analysis ready 

data (ARD). The processing workflow converts Level-1 products to Bottom-of-Atmosphere Level-2 

products. This includes cloud masking (Frantz et al., 2015, 2016, 2018; Zhu and Woodcock, 2012), 

co-registration (Rufin et al., in submission; Yan et al., 2016), resolution merging of Sentinel-2 bands, 

integrated corrections for atmospheric, topographic and adjacency effects (Frantz et al., 2016), nadir 

BRDF adjustment (Roy et al., 2016b, 2017a, 2017b), as well as re-projection and data cubing (Frantz 

et al., 2016). To homogenize the spatial resolution, we resampled the Sentinel-2 time series to 30m 

using an approximated Point Spread Function, i.e., the images were convoluted with a Gaussian 

lowpass filter with Full Width at Half Maximum of 30m. 

 

3. HARMONIZATION ALGORITHM AND EVALUATION METHODS 

3.1 Training of machine learning regressors for estimating spectral information 

To harmonize the spectral domains of multiple sensors we evaluate three different machine learning 

techniques, multivariate linear regression (LR), multivariate quadratic regression (QR) and random 

forest regression (RFR). Equations for LR and QR are given in Draper and Smith (2014), RFR is 

explained in detail in Breiman (2001). We also compare these regression techniques with the 

performance of linear interpolation (LI) as the simplest approach to derive spectral information at a 

specific wavelength position (e.g., recently used in Griffiths et al., 2019). To be able to investigate the 

effect of separate, material-dependent estimators for various numbers of clusters for LR and QR, we 

not only trained one model for each band as, e.g., in Claverie et al. (2018) or in Flood (2017), but 

trained separate regressors for n subsets of the training data. The subsets were obtained by clustering 

(details in the following paragraphs). In contrast to previous studies (section 1), we use multi- instead 

of univariate regression here because univariate (i.e., band-to-band) regression is not expected to work 

well for unilaterally missing bands. The use of different numbers of clusters allows us to later assess 

the overall harmonization performance with and without consideration of different surface coverage 

types. In this study, we varied the number of clusters between 1 and 100 whereas a single cluster in 

fact is a special case because the sensor-specific spectra are not divided into sub-clusters at all. 

However, this case corresponds in principal to the harmonization techniques used by previous studies 

as listed in Table 1. In case of random forest regression (RFR), we do not subdivide the training data 

into subsets of similar spectra, since the random forest algorithm already models the spectral 

variability of the input data through a sufficiently high number of trees. In this study, we used 250 

trees, which according to our tests represents a good compromise between prediction accuracy and 
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processing speed. We also tested RFR with 500 trees but could not find any significant improvements 

in the prediction result. 

Figure 2 gives an overview about the workflow we used to train these machine learning regressors for 

predicting the spectral information at the target wavelength positions and thus to transform a Landsat-

8 image into the spectral domain of Sentinel-2. As this approach might be applied to any sensor 

combination, the following description will use the terms source and target images, i.e., Landsat-8 and 

Sentinel-2, respectively. 

 

 

Figure 2. Workflow for training machine learning regressors for spectral harmonization  

with respect to spectral variations of surface cover types. 

 

For clustering the source sensor reference cube, we used a combination of the K-Means algorithm for 

computing the cluster centers and the Spectral Angle Mapper (SAM) to assign each pixel to the 

corresponding spectral cluster. We also tested other clustering algorithms, however, this 

implementation turned out to be the fastest and therefore the most suitable solution in terms of 

algorithm operability. Using SAM here instead of the Euclidian Distance (K-Means) reduces the 

spectral outliers within the selected training spectra of each cluster and therefore increases the 

clustering quality as we found that spectral similarity was more important than the spectral distance. 

We iteratively repeated this for different numbers of clusters ranging between 1 and 100. We then used 
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the derived cluster label dictionary per iteration to extract pairs of spectral clusters from both the 

source sensor and the target sensor reference cube. 

The spectra from each pair of spectral clusters were used to train individual spectral harmonization 

regressors, i.e., to separately fit the respective machine learning model for each spectral cluster. The 

computed prediction coefficients were stored along with the mean spectrum of each cluster and 

various model performance metrics, e.g., root mean square error (RMSE) or model score values. 

 

3.2 Prediction of harmonized spectral information 

The workflow we used for performing the spectral harmonization, i.e., for the transformation between 

different spectral domains, is presented in Figure 3. In contrast to previous studies, it is not limited to 

bands with similar wavelength in source and target sensor but also includes the prediction of 

unilaterally missing bands. As input images for the prediction we used multispectral images derived 

from the three hyperspectral test images (Table 2). To generate these multispectral images, we 

spectrally resampled the hyperspectral data as in section 3.1. The resulting multispectral images (three 

images per sensor) were used for two purposes in different combinations: (1) as source images for 

spectral harmonization and (2) as reference image for the target sensor to quantify the harmonization 

error. 

For the prediction considering a specific number of spectral clusters, our goal was to ensure that we 

only use regressors trained with the most similar training data on each pixel. This allows an individual 

spectral transformation for different land cover types. As a measure for spectral similarity we utilized 

the spectral angle which is insensitive to illumination and albedo effects to find spectral signatures 

with similar shapes. Tests showed, however, that it is even better to consider several regressors per 

pixel, all of which are very similar to each other. We achieved good results with five regressors. 

However, using more may further improve the prediction performance but may also cause a much 

higher computational load. Consequently, here we first identified the five most appropriate machine 

learning regressors for each pixel of the source sensor multispectral image. We computed the spectral 

angle between each pixel spectrum of the source image and all mean spectra associated to the cluster 

regressors and incorporated only those regressors with the smallest spectral angles into the prediction 

of the target sensor spectrum. The final prediction result PR was then computed as the weighted 

average of the five selected prediction results PRi with the highest weight corresponding to the 

smallest spectral angle: 

5
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i i
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i

i
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=

=
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The weight of the selected prediction results wi is defined as follows, where SAi represents the spectral 

angle between the pixel spectrum and the regressor mean spectrum and SAmin and SAmax represent the 

minimum and maximum spectral angles calculated throughout the image: 

1 i min
i

max min

SA SA
w

SA SA

−
= −

−
 

(2) 

 

To avoid using inappropriate regressors for spectra insufficiently represented in our training data, we 

added a maximum spectral angle of four degrees. Above this threshold we used global transformation 

coefficients as a fallback (as, e.g., used in Claverie et al., 2018). This procedure of using a weighted 

average of prediction results instead of using a single regressor per pixel helped us to effectively 

reduce artificial spectral edges in the predicted image and maximized the prediction performance. The 

threshold of four degrees spectral angle was determined iteratively by visual inspection of the 

predicted target sensor images along with corresponding error maps. A lower threshold (e.g., one 

degree) enlarges the area where global transformation coefficients are applied, which in turn can lead 

to larger prediction errors, as the global coefficients may not reflect the full spectral variability of the 

source image. A higher threshold value does not force the mean spectrum of the used regressor and the 

source sensor spectrum to be spectrally similar which also leads to poor prediction results. 

 

 

Figure 3. Workflow for prediction of spectrally harmonized images  

and generation of corresponding target sensor/reference images. 
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3.3 Methods used for harmonization performance evaluation 

Based on the predicted target sensor images, we conducted evaluations on the spectral harmonization 

performance for the different techniques and with varying numbers of spectral clusters. Additionally, 

we assessed the effect on typical remote sensing applications as a practical use case by evaluating 

subsequently derived data products. Details are given in the following: 

1. We quantified spectral deviations between the predicted spectral bands and the corresponding 

multispectral target sensor images as reference (generated by spectral convolution from the 

hyperspectral input data) by computing root mean square errors. 

2. We analyzed the spatial distribution of harmonization errors by computing difference images and 

examining differing spectral signatures at prominent image positions. 

3. We evaluated the effect of spectral harmonization on selected subsequently computed vegetation 

indices, namely the NDVI (Normalized Difference Vegetation Index; Tucker, 1979), the EVI 

(Enhanced Vegetation Index; Huete et al., 2002; Liu and Huete, 1995) and the REIP (Red Edge 

Inflection Point; linear four-point interpolation approach after Clevers et al., 2002 and Guyot and 

Baret, 1988). 

4. We performed an exemplary multispectral random forest classification on test dataset 2 (Table 2) 

and compared the classification accuracy of native Sentinel-2 data with the accuracy based on 

predicted data originating from Landsat-8. For each classification scenario we trained one 

classifier incorporating 250 trees, always with the same spectral endmembers used as training 

data to achieve comparable results. These were derived by clustering the hyperspectral test 

dataset 2 into five main classes using a K-Means approach followed by a spectral convolution to 

Sentinel-2A and Landsat-8. We randomly selected 500 spectral signatures per cluster to 

adequately model the spectral variability of each endmember. We computed confusion matrices 

between the classification results and analyzed if an improvement of classification accuracy is 

detectable after spectral harmonization. 

5. We evaluated the effect of spectral harmonization on real Landsat-8/Sentinel-2 data by computing 

difference images and investigating BOA reflectance deviations in time for different 

harmonization techniques. 

 

4. RESULTS AND DISCUSSION 

4.1 Spectral performance evaluation of different harmonization approaches  

4.1.1 Harmonization performance using global prediction coefficients 

We directly compared the harmonization performance without spectral sub-clustering between 

multivariate linear regression (LR), quadratic regression (QR) and random forest regression (RFR) 

with 250 decision trees. Because of its simplicity and the low computational effort, we also added 

linear interpolation (LI) here.  
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Figure 4 shows the spectral deviation for LR, QR, RFR and LI between Sentinel-2A reference images 

and artificial Sentinel-2A data generated from Landsat-8 (harmonization results). The deviation is 

quantified as an overall RMSE per spectral band in percent BOA reflectance, averaged over all test 

image datasets used in this study (Table 2). High harmonization performance is indicated by an RMSE 

close to zero. For comparison, we also added the average RMSE values between Landsat-8 and 

Sentinel-2 without any harmonization (only for spectrally overlapping bands). Note, that these spectral 

differences represent the sensor-induced component, i.e., solely originate from unequal spectral 

responses of the individual bands. Therefore, they cannot be directly compared with deviations found 

in previous studies. Chastain et al. (2019) reported TOA reflectance differences between 1.3% and 

3.1% and Flood (2017) detected them to be between 0.5% and 2.1% for BOA reflectance (homologous 

bands only, without harmonization). Both studies only incorporated image pairs with a maximum time 

difference of one day. However, as these studies were based on real-world data, sensor-induced 

differences cannot be completely separated from additional biases due to varying illumination or 

observation geometries or changing atmospheric conditions. 

 

 

Figure 4. Band-wise reflectance deviation between Sentinel-2A reference sensor bands and artificial Sentinel-

2A data as predicted by LR, QR, LI and RFR harmonization from Landsat-8. Crosses represent deviations 

without any harmonization for similar bands in both sensors. Note that the y-axis is drawn with logarithmic 

scale. 

 

We found that, generally the harmonization performance is clearly dependent on the spectral 

wavelength of the target sensor band. LR outperforms QR, RFR and LI for nearly all target sensor 

bands. The largest errors appear in the red edge spectral region (700–750 nm) and the first near 

infrared bands (below 850 nm), i.e., at wavelengths where the source sensor (Landsat-8) features no 

spectral information similar to the Sentinel-2 bands to be predicted. Within this wavelength region LI 

causes errors up to 6.1% reflectance and QR even exceeds 12.2%. The latter is because QR tends to 

produce spectral artefacts (strong over- or underestimations) if input spectra differ too much from the 
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regressor training data. In this regard, LR offers more outlier robustness whereas QR tends to 

overfitting. However, also the harmonization errors of LR increase by a factor of 15 (1.7% reflectance) 

in this spectral region compared with the remaining spectral bands (below 0.12% reflectance). For the 

spectrally overlapping bands in both sensors, LR increases the inter-sensor similarity compared with 

the similarity without any spectral harmonization (black crosses in Figure 4) for most bands. This has 

also been reported by Flood (2014, 2017). However, there might not be an accuracy improvement if 

the gray value difference between not harmonized bands is smaller than the error caused by spatially 

variable prediction performance. This applies to Sentinel-2´s 664 nm and 865 nm bands. Nevertheless, 

we note that LR achieves very good prediction performances for these bands (0.11% and 0.03% 

reflectance RMSE). RFR causes errors around 2% reflectance in the red edge spectral region and, in 

contrast to the other techniques, it does not show significantly higher performance for bands where 

source and target sensor have similar wavelengths. Additionally, the harmonized output images 

showed clearly visible artefacts and edges at positions where the input image contained spatially 

nearly homogenous pixel values (not shown here). This means, that RFR could not fully model the 

spectral complexity of our test datasets which might be an issue of overfitting. However, we could not 

improve that with different regressor configurations. 

LI and RFR can only be applied to the whole dataset at once. So in the following, we evaluate the sub-

clustering approach for LR and QR only. 

 

4.1.2 Effect of spectral sub-clustering to harmonization performance 

To assess the effect of separate transformation functions for different spectral clusters (sub-clustering), 

we analyzed the deviation between the harmonized image results and their corresponding reference 

images with a varying number of spectral clusters between 1 and 100. Figure 5 shows the results for 

LR and QR with Landsat-8 as source sensor and Sentinel-2A as target sensor. The deviation is again 

quantified per band as RMSE in percent reflectance, averaged over all test images. 
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Figure 5. Band-wise reflectance deviation between Sentinel-2A reference sensor bands and artificial Sentinel-

2A data as predicted by LR and QR harmonization from Landsat-8. Deviation is plotted as RMSE values 

(% reflectance) against different numbers of spectral sub-clusters. The bands in the visible spectral region are 

represented by dashed lines whereas solid lines represent all remaining bands. Note that the y-axis is drawn with 

logarithmic scale. 

 

For both, LR and QR, the predicted bands at 704, 740, 782 and 835 nm show the lowest harmonization 

performance, independently from the number of spectral clusters. As mentioned before, this is due to 

the missing spectral information of Landsat-8 in the red edge and near infrared region below 850 nm. 

All other bands perform much better with RMSE values 10 times lower and better. 

However, in case of LR, we found that the RMSE clearly decreases for most of the predicted bands if 

more and more spectral clusters are involved in the prediction. We observed this trend up to about 50 

clusters above which the RMSE slowly increases again for the predicted 740 and 782 nm bands 

(lighter orange lines in Figure 5, left). We attribute this rebound to the size of the training library in 

our study (reference cubes as described in section 2), which in some cases cannot provide enough 

training signatures for some land cover types at a large number of spectral clusters. The regressors for 

those underrepresented clusters then perform worse and lead to a re-increasing average RMSE as 

shown above. Nevertheless, this is not an issue until up to 50 clusters. For example, for the 740 nm 

band we observed an RMSE-decrease from initially 1.7% reflectance without sub-clustering (also 

visible in Figure 4) to 1.2% reflectance. This means that we could reduce the prediction uncertainty by 

around 30% (average for all test datasets). Against the background of a mean overall reflectance of 

18.8% in the 740 nm band, this corresponds to an error reduction from 9.0% to 6.4%. In our test data, 

the 704 nm band did not show this decreasing RMSE with more clusters but rather kept stable with 

some small variations. The RMSE values of some bands also show slightly increasing trends below 50 

clusters, which we also attribute to the decreasing number of training spectra per regressor with more 

and more clusters used. Additionally, changing cluster center positions in the spectral feature space 
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might also negatively affect the harmonization performance of certain materials in the test images for 

these bands. However, we point out that this only applies to some of those bands with a direct 

equivalent in the source and target sensor where RMSE values generally do not exceed 0.12% 

reflectance. So, the accuracy of the harmonization is already very high there. Regarding the variation 

of harmonization errors among our test images (Figure 12, left, in the supplements), we observed 

similar trends for all of them with standard deviations between 0.9% and 0.4% reflectance for the 

704 nm and 740 nm bands and below 0.2% for the remaining bands. This equals around 30% to 50% 

of the RMSE values mentioned above suggesting a slightly varying harmonization performance from 

test image to test image. This is due to different surface material compositions of the test images 

which more or less match the mean spectra of the used regressors. The slightly increasing RMSE of, 

e.g., the 560 nm band is also visible there as it occurs in only one test image which consequently 

causes an increasing standard deviation among all test images. 

For QR, we observed decreasing RMSE values for all predicted bands (Figure 5, right) which implies 

an increasing spectral harmonization performance if more material-dependent regressors are 

incorporated. However, compared with LR, QR showed much larger harmonization errors and could 

not outperform LR, not even if a large number of spectral clusters was used. For example, the 740 nm 

band showed reflectance errors of 6.7% without sub-clustering, which could be reduced to 4.0% 

reflectance with 100 clusters. Nevertheless, compared with the mean band reflectance, we consider 

this amount of errors as critical for subsequent analysis. Similar to LR, we also observed standard 

deviations between 30% and 50% of the RMSE values per band (Figure 12, right, in the supplements). 

Summarizing the results, the best harmonization performance can be achieved using LR and a number 

of clusters between 20 and 50. For that reason, we focus on LR harmonization in our subsequent 

evaluations to spectrally transform Landsat-8 data to Sentinel-2. 

 

4.2 Spatial distribution of harmonization errors 

In addition to our quantitative analysis of spectral harmonization performance, we also analyzed how 

the deviation between the harmonized data and the reference data varies in space. Figure 6 visualizes 

this deviation between Sentinel-2A (reference) and Landsat-8 (1) using linear spectral interpolation/LI, 

(2) harmonized using LR but without sub-clustering and (3) harmonized using LR with 5, 15 and 50 

spectral sub-clusters. Note, that we provide an animated version of this figure for 1-100 spectral sub-

clusters in the supplements. The figure shows the results for the predicted Sentinel-2A band 3 at 

560 nm and band 6 at 740 nm, i.e., for the green band with very similar wavelength at both sensors 

(561 and 560 nm) and for a band within the red edge region which is not covered by Landsat-8. The 

image (a part of test dataset 2, see Table 2) contains forest/bushland, urban/sealed areas, bare soil and 

water (see true color composite in the upper left of the figure). The classification maps in left column 

indicate the most appropriate spectral cluster for each input image pixel, i.e., demonstrate which pixel 

has been transformed by which regressor. White areas represent input pixels, where no suitable 
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regressor was available in our training data (spectral angle above the four degrees threshold, as 

explained in section 3.2). These pixels were harmonized using global LR coefficients. 

Linear interpolation (Figure 6, top row) causes the largest deviations in the red edge due to the 

strongly increasing reflection of vegetation and the missing coverage of Landsat-8 in this spectral 

region (absolute spectral differences of up to 17.25% reflectance, 7.54% RMSE). This is critical for 

any remote sensing application incorporating the red edge and will lead to large errors in subsequent 

analyses. The predicted green band does not exceed 0.41% reflectance error (0.18% RMSE) for LI due 

to the similar spectral response of both sensors in that spectral region (see Figure 1). It is evident that 

the deviations are highly dependent on the surface cover type (Figure 6, first row, column two and 

three). Densely vegetated areas have large deviations due to the steep red edge slope of vegetation 

spectra whereas sealed surfaces as well as water show small deviations due to much smaller spectral 

gradients. We note that using the spectrally closest Landsat bands (without any harmonization) instead 

of linearly interpolated bands would most likely not be an option in practice for many users as this is 

expected to cause even larger spectral differences depending on the surface coverage. 

If LR harmonization without spectral sub-clustering is performed (Figure 6, second row), the 

deviations are reduced to <0.2% and 4.16% reflectance in maximum for band 3 and 6 (0.07% and 

1.52% RMSE). However, deviations are not uniform after spectral harmonization. There are still areas 

with higher or lower deviations. We attribute this to the global, band-wise transformation function as 

used in Claverie et al. (2018) that cannot sufficiently consider all spectral individualities of different 

surface coverages within the image (as reported by, e.g., Flood, 2014, 2017). 

In case of the 740 nm band, this effect is reduced by using separate transformation functions for 

spectral clusters (sub-clustering approach, Figure 6, rows three to five). The 560 nm band also benefits 

from additional sub-clustering, mainly in densely vegetated image areas. But we note that the 

prediction accuracy with global coefficients is already very high due to the similarity of the Landsat-8 

signal. In contrast, the deviations in the red edge band can be reduced to 1.50%, 1.06% and 0.94% 

reflectance RMSE with 5, 15 and 50 spectral clusters. This clearly demonstrates the benefit of 

considering spectral sub-clusters for the harmonization. In case of the example image in Figure 6, it 

reduces the deviations especially for the vegetated areas and ensures a significantly more 

homogeneous distribution of prediction errors. It has to be noted that in contrast to the RFR 

harmonization approach (not shown here) no brightness artefacts originating from the clustered 

harmonization approach are visible in the harmonized output image. In addition, the output spectra fit 

well to the Sentinel-2A reference spectra, especially for the 50 clusters case (Figure 6, lower right). 

Only the water spectrum (blue line) keeps unchanged in the sub-clustering cases because no material-

specific regressor with a spectral angle smaller than four degrees (section 3.2) was found. This also 

applies to a few other dark surfaces which were instead harmonized with global regressor coefficients. 

From the spectral angles point of view, dark areas are extremely variable and therefore often exceed 

the threshold. Additionally, it is possible that we could not fully capture their entire spectral variability 
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in our reference cubes. Further developments are needed to improve the harmonization performance 

for dark surfaces in future. 

 

 

Figure 6. Reflectance deviation between the Sentinel-2A reference image and artificial Sentinel-2A data as 

predicted from Landsat-8 for the Sentinel-2A bands 3 (560 nm) and 6 (740 nm). Rows contain different 

harmonization scenarios: using linear spectral interpolation (upper row), with LR-harmonized Landsat-8 data, no 

sub-clustering (second row) and with LR-harmonized Landsat-8 data using 5, 15 and 50 sub-clusters. Note, that 

the difference images have separate color ranges per column due to strongly differing value ranges. The spectra 

in column 4 are extracted at the positions indicated in the images to the left. Brighter, thicker and darker, thinner 
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lines indicate reference and predicted spectra. The classification maps in column 1 indicate the regressor 

assignment whereas white areas represent the global LR regressor (used as fallback). Note, that we provide an 

animated version of this figure for 1-100 spectral sub-clusters in the supplements. 

 

4.3 Effect of spectral harmonization on selected spectral indices 

To assess the benefit of spectral harmonization to vegetation indices, we generated NDVI, EVI and 

REIP products based on (1) simulated Sentinel-2A and Landsat-8 data without harmonization, (2) 

Landsat-8 data, LR-harmonized to Sentinel-2A without sub-clustering and (3) Landsat-8 data, LR-

harmonized to Sentinel-2A using 50 sub-clusters. 

Figure 7 compares the results for the NDVI for the same image subset as used in section 4.2; there is 

no visible difference for the three states of harmonization (second column). However, the difference 

images (third column) reveal NDVI differences in the range of -0.04 to +0.04 which corresponds to 

4% absolute NDVI difference. The scatter plots (Figure 7, fourth column) allow to numerically assess 

the effect of spectral harmonization with regard to NDVI differences. 

In case no harmonization is applied to the input data, the NDVI is computed from Sentinel-2A’s 

664 nm and 835 nm bands and Landsat-8’s 655 nm and 864 nm bands. This implies that the Near 

Infrared (NIR) center wavelength position differs by 29 nm. Although Sentinel-2 also features a 

narrower band at 865 nm, we note that this band is acquired by a different focal plane with 20 m 

spatial resolution and therefore does not match the 10 m red band without resampling. To compute a 

10 m NDVI product, the 835 nm band is frequently used in the literature (e.g., Belgiu and Csillik, 

2018; Gao et al., 2017; Van der Meer et al., 2014). The largest NDVI differences appear in sparsely 

vegetated pixels (Figure 7, third column), i.e., at the light green areas in the second column of Figure 

7. This is due to the individual spectral response functions of the red and NIR band of both sensors and 

mainly caused by a higher slope of the vegetation signatures between 835 nm (NIR band of Sentinel-

2) and 865 nm (NIR band of Landsat-8) of sparse compared with dense vegetation. The same pattern 

was also observed in previous studies between Landsat-7 and Landsat-8 (Roy et al., 2016a; Xu and 

Guo, 2014) where Landsat-8 NDVI values were slightly higher for sparse vegetation and nearly equal 

to Landsat-7 for dense vegetation. 

The difference images proof, that the NDVI differences can be reduced if the input images are 

spectrally harmonized using LR (lighter red areas of sparse vegetation in Figure 7, third column), with 

an even stronger reduction when using 50 clusters (Figure 7, bottom row). If LR is applied without 

sub-clustering (Figure 7, center row), the NDVI differences even increase for dense vegetation 

because these spectra are only insufficiently represented by the global transformation coefficients. The 

black areas in the difference image indicate NDVI deviations outside of the data range and correspond 

to water that cannot be accurately predicted using global transformation coefficients, too. If multiple 

clusters are used within LR harmonization, the NDVI differences decrease to <0.01 (except for the 

water areas for which we could only apply global coefficients). This is corroborated by the scatter 

plots for NDVI values above 0.3 (vegetation pixels). These points converge to the red line of zero-
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difference if LR harmonization is applied and even more if multiple spectral clusters are used. The 

RMSE of these pixels decreases from 0.0094 to 0.0082 to 0.0038 NDVI values which equals 1.6%, 

1.4% and 0.6% of NDVI values referred to the NDVI value range that is realistic for vegetation (0.3–

0.9). This suggests that even if the center wavelength position of the NDVI input bands does not 

change much through harmonization, an LR harmonization is useful to eliminate multi-sensor 

inconsistencies within NDVI products, especially if material specific transformation coefficients are 

used (sub-clustering approach). Consequently, it allows to compute 10 m NDVI products from 

Sentinel-2 without large inconsistencies compared with Landsat-8. 

 

 

Figure 7. Comparison of NDVI values computed from Sentinel-2A and (harmonized) Landsat-8 data. Rows 

contain different harmonization scenarios for Landsat-8: without spectral harmonization (upper row), with LR-

harmonized Landsat-8 data, no sub-clustering (center row) and with LR-harmonized Landsat-8 data, 50 sub-

clusters. The true color Sentinel-2 image and the NDVI product computed from it are shown for reference in 

column 1. 

 

To validate that the above findings also apply to large scale satellite data with various land cover 

types, we computed NDVI and EVI products from a full HyMap image (test dataset 1; 1.8 by 26.5 km, 

3.5 m spatial resolution). Additionally, we generated REIP products from Landsat-8 data, LR 

harmonized to Sentinel-2A. To compute the REIP, at least two bands in the red edge spectral region 
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are needed. Therefore, this is only made possible for Landsat-8 by harmonization to Sentinel-2A. So 

the goal was to assess how the REIP based on Landsat-8 differs from a native Sentinel-2A product if 

the red edge bands are artificially generated by LR spectral harmonization. 

Figure 8 shows the index value deviations limited to vegetation pixels only (identified by NDVI >0.3). 

The results for the NDVI confirm the above findings of clearly decreasing deviations if LR 

harmonization including spectral clustering is applied. For global LR coefficients, we observed an 

increasing RMSE from 0.0073 (no harmonization) to 0.0087 (LR harmonization without clustering) 

which is due to too large spectral differences between dense vegetation spectra and the global mean 

spectrum of the training data (as mentioned above). However, using 50 material-dependent regressors 

for prediction reduced these deviations to 0.0028, i.e., to only 38% of the initial error without 

harmonization. On the one hand this demonstrates the limitations of a global LR regressor and on the 

other hand shows that the sub-clustering approach can effectively improve the inter-sensor consistency 

of harmonized NDVI products. 

The EVI uses the same spectral bands like the NDVI plus an additional blue band. It shows a similar 

deviation like the NDVI suggesting an advantage of spectral harmonization but mainly if material-

dependent regressors are used. (95% of the initial error with LR harmonization applied; 43% for LR, 

under the use of 50 clusters).  

Regarding the REIP, which is expressed as a wavelength position, the scatterplots show that it can be 

computed from LR harmonized Landsat-8 data with a mean accuracy of 4.25 nm. Spectral sub-

clustering improves that to 3.12 nm accuracy (RMSE). A REIP-based estimation of biophysical plant 

parameters has been studied several times in the past (Clevers et al., 2002; Gitelson et al., 1996; 

Herrmann et al., 2011; Jago et al., 1999; Main et al., 2011) but is dependent on the crop type. Hermann 

et al. (2011) estimated the relation between REIP and the leaf area index (LAI) for a mix of wheat and 

potato crops and according to their studies, a REIP at 717.9 nm (as the mean in this study with 50 

spectral clusters involved) would correspond to an LAI of around 1.1. An uncertainty of 3.12 nm 

would lead to an LAI uncertainty of around 1.8. 



21 

 

 

Figure 8. Effect of spectral harmonization to NDVI, EVI and REIP generated from Sentinel-2A and 

(harmonized) Landsat-8 data (vegetation pixels only). Columns contain different harmonization scenarios for 

Landsat-8: without spectral harmonization (first column), with LR-harmonized Landsat-8 data, no sub-clustering 

(second column) and with LR-harmonized Landsat-8 data, 50 sub-clusters (third column). 

 

Further improvements could even be achieved by adding a single additional band in the red edge 

spectral region for upcoming Landsat sensors. To reinforce this statement, we used the same 

methodology as described in section 3.1 to simulate RapidEye-5 data and to train corresponding 

regressors, as this sensor provides an additional band at 713 nm. We estimated Sentinel-2 from 

RapidEye-5 data as we did for the Landsat-8 data in this study, and applied the same LR 

harmonization approach (see section 3.2). We achieved a REIP estimation accuracy of 0.96 nm 

without sub-clustering and 0.62 nm with 50 spectral clusters incorporated (Figure 13 in the 

supplements). This corresponds to an LAI uncertainty of around 0.55 and 0.35. It clearly shows that 

even a single additional red edge band can highly improve the estimation accuracy of biophysical 

parameters such as LAI, and we strongly suggest this spectral region to be covered in upcoming 
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satellite missions. Nevertheless, even without a red edge band we were able to estimate LAI with an 

uncertainty of 1.8 from Landsat-8 data, harmonized to Sentinel-2A. 

 

4.4 Effect of spectral harmonization on the multi-sensor consistency of land cover 

classifications 

Finally, we analyzed the effect of spectral harmonization to the consistency of multi-sensor land cover 

classifications. We performed an exemplary multispectral random forest classification on Sentinel-2A 

and Landsat-8 data using test dataset 2 (Table 2) and compared the classification accuracy (see section 

3.3 for details on the classification). We show again three scenarios: (1) without any harmonization of 

Landsat-8, (2) with LR harmonized data but without sub-clustering and (3) with LR harmonization 

incorporating 50 spectral sub-clusters. The classification result directly computed from Sentinel-2A 

data is taken as the reference, since a classification based on perfectly harmonized Landsat-8 data 

should ideally lead to the same classification map. Differing spectral information due to harmonization 

uncertainties should instead cause deviations in the classification maps. 

Figure 9 shows the confusion matrices between the classification results and illustrates the similarity 

between classifying a native Sentinel-2A dataset and the three Landsat-8 harmonization results. 

Without spectral harmonization the classification result of Landsat-8 is at least 82.9% consistent with 

Sentinel-2A. One class achieves an accuracy of 100% but the mean value is 92.3%. However, if an LR 

harmonization is performed to transform the Landsat-8 data to the spectral domain of Sentinel-2A, the 

accuracies can be improved by 7.5% to at least 90.4% or to 96.3% average. Using spectral sub-

clustering with 50 spectral clusters can even further improve that to a minimum and mean consistency 

of 94.2% and 97.3%, respectively. 

 

 

Figure 9. Classification confusion matrices to compare the similarity of a random forest classification (5 spectral 

classes) between Sentinel-2A and (left) Landsat-8 without harmonization, (center) Landsat-8, harmonized to 

Sentinel-2 using LR, without sub-clustering and (right) Landsat-8, harmonized to Sentinel-2 using LR, with 50 

sub-clusters. 
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4.5 Application of the proposed harmonization to real Landsat-8 and Sentinel-2 data 

After evaluating the effect of the proposed harmonization algorithm on simulated data, we tested the 

approach on real Landsat-8 and Sentinel-2 data acquired at two test sites in 2018: (1) at the south coast 

of Crete, Greece and (2) in Brandenburg, Germany, in the northwest of Berlin. However, we point out 

that numerous additional effects occur in real data which can cause differences between dates but are 

unrelated to the sensor-induced reflectance differences investigated in this study. Even small 

differences in the acquisition time, the observation or illumination geometry lead to visible spectral 

differences due to material-dependent BRDF properties or changing atmospheric states (variable 

aerosol or water vapor contents, cloud and cloud shadow positions, etc.) (Roy et al., 2016a). 

As mentioned in section 2, the data were preprocessed by the FORCE software (Frantz, 2019) which 

runs several processing steps to minimize the above described spectral differences. However, a perfect 

correction is not possible (Claverie et al., 2015; Doxani et al., 2018; Ju et al., 2012; Zhang et al., 

2018), i.e., remaining spectral differences are intermingled by the purely sensor-induced deviations 

that we aim to correct in this study. 

Similar to Figure 6, Figure 10 compares these spectral differences depending on several spectral 

harmonization techniques for band 6 of Sentinel-2 (740 nm), as predicted from Landsat-8. The image 

pair of the Crete site has been acquired with a 1-day separation in August 2018 and the one of the 

Brandenburg site represents a same-day acquisition from early May 2018. In both cases, there is a 

difference in daytime of only about 15 min. This minimizes spectral differences due to surface 

coverage or atmospheric dynamics or changes in the illumination geometry. Small-scale elevations are 

usually below 30 m mitigating topographic effects. The Sentinel-2 image, spatially resampled to 

Landsat-8, is taken as the reference. 

At the Crete test site (Figure 10, upper row), surface materials mainly consist of bare soils, shrub and 

rangelands, olive trees and urban areas. In case of LI, the 740 nm reflectance values of Sentinel-2 are 

clearly underestimated from Landsat-8 with an RMSE of 3.64% reflectance. This is because LI cannot 

model the shape of the spectral signature in the red edge (section 4.2). Using LR without spectral sub-

clustering (as used by Claverie et al., 2018), the deviations can be reduced to an RMSE of 1.36% 

reflectance. If, additionally, 50 material-specific regressors are used (proposed sub-clustering 

approach), they can be further reduced to 1.09% reflectance. Moreover, the difference image becomes 

smoother suggesting that deviations due to material-specific individualities could be reduced. Unlike 

our evaluations with simulated data (section 4.2), the remaining spatial variability of harmonization 

errors is not only due to different prediction performances depending on the surface material, but also 

due to uncertainties in preprocessing (as described above). 

An even stronger effect of the proposed spectral harmonization approach can be seen at the 

Brandenburg site (Figure 10, bottom row). Here, a much larger image fraction is covered by 

vegetation (various agricultural areas, forests, few water bodies and urban areas). This causes larger 
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deviations in case of LI (RMSE of 8.65% reflectance), particularly at densely vegetated areas. But also 

if LR with a global regressor is used for harmonization, there are a lot of areas in the predicted image 

that show larger harmonization errors (darker red areas in the difference image in Figure 10; RMSE of 

3.63% reflectance). These areas correspond to surface materials that are spectrally more different from 

the global average spectrum resulting in larger errors with the global harmonization coefficients. 

Using 50 material-specific regressors instead of a single set of harmonization coefficients reduces the 

RMSE to 1.8% reflectance and produces a much more homogenous difference image with errors 

below 1.5% reflectance in the most part of the image. However, some patches with higher spectral 

differences remain. With a view to the true color image, it becomes evident that these patches occur 

mainly at the bright cropland areas which we interpret as rape fields, as rape reaches its full bloom at 

the beginning of May in Germany. Further investigations revealed that our threshold of a maximum 

spectral angle (section 3.2) was exceeded there during harmonization so that the global regressor was 

used as fallback (equivalent errors as in the previous global regressor case). This is because we had no 

spectra of blooming rape in our training database. However, this effect can be avoided by a training 

database that also takes greater account of phenological changes over the year. 

 

 

Figure 10. Reflectance deviation in space between real and artificial Sentinel-2 data as predicted from Landsat-8 

for the Sentinel-2 band 6 at 740 nm. The upper row represents the test site in Crete, Greece and the bottom row 

the one in Brandenburg, Germany. Deviations are shown for different harmonization scenarios: using linear 

spectral interpolation, with LR-harmonized Landsat-8 data (no sub-clustering) and with LR-harmonized 

Landsat-8 data using 50 sub-clusters. The red crosses indicate the positions of the BOA reflectance time series 

shown in Figure 11. 

 

To analyze the effect of spectral harmonization to inter-sensor spectral differences in time, Figure 11 

visualizes the BOA reflectance values of exemplary pixels out of the above shown Landsat-8/Sentinel-

2 time series of both test sites. The positions of the pixels are indicated in Figure 10. In case of LI, the 

above mentioned underestimation is also visible in Figure 11 (left) as a clear offset between the 

reference reflectance of Sentinel-2 and the values predicted from Landsat-8. This offset can be reduced 

by using LR instead of LI (Figure 11, center column). Nevertheless, some predicted values still differ 
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systematically from Sentinel-2. This can be further improved by using a material-dependent LR 

regressor instead of global transformation coefficients (Figure 11, right). 

 

 

Figure 11. Reflectance deviation in time between real and artificial Sentinel-2 data as predicted from Landsat-8 

for the Sentinel-2 band 6 at 740 nm. The upper row contains data from the test site in Crete, Greece and the 

bottom row from the one in Brandenburg, Germany. Deviations are shown for different harmonization scenarios: 

using linear spectral interpolation (left), with LR-harmonized Landsat-8 data, no sub-clustering (center) and with 

LR-harmonized Landsat-8 data using 50 sub-clusters (right). 

 

4.6 Error assessment and limitations of the study 

As limitations of this study, we note some concerns regarding the nine hyperspectral datasets we used 

for the simulation of our multispectral data basis. These hyperspectral data have been radiometrically 

unified prior to spectral convolution as far as possible (section 2). However, different algorithms have 

been used for atmospheric correction in advance of this study and we were not able to correct for 

BRDF effects. This is because a BRDF correction would have to be applied to the hyperspectral data 

prior to the simulation of the multispectral data basis and would require detailed information about 

land cover types (Collings et al., 2010), which was not available for this study. Moreover, we did not 

equalize spatial resolutions to avoid spectral degradation. This means that we might have included 

purer spectra in our training data than usually recorded by Landsat-8 and Sentinel-2A under the same 

acquisition and illumination conditions. Nevertheless, we note that these differences between the 

underlying hyperspectral datasets have been incorporated into our multispectral input database 

(reference cube) for each individual sensor. Therefore, they don´t affect the inter-sensor deviations we 

derive here. On the contrary, they increase the spectral variability of our data basis and therefore 

contribute to a higher robustness of the machine learning techniques we used. 
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As a technical drawback of using multivariate instead of univariate (band-to-band) regressors, we 

would like to mention, that in case of multivariate regressors (as used in our study) all spectral bands 

of a source image have to be read to generate a harmonization result in the target sensor spectral 

domain. This may increase the processing time for disk access intensive workflows. In contrast, 

univariate regression, e.g., only requires two bands to be read from each image to obtain an NDVI 

result based on harmonized spectral information. We therefore also do not recommend to harmonize 

different spectral bands with multiple numbers of clusters as this would severely slow down the 

harmonization process. Apart from that, separate regressors per band might also cause spikes in the 

predicted spectra and consequently affect downstream products. 

Regarding LR and QR based on separate harmonization functions per spectral cluster, we assign the 

most appropriate machine learning regressors for each pixel of the source sensor image by computing 

the spectral angle as similarity measure between input image spectra and the mean spectra of the 

training data associated with each regressor (section 3.2). However, the spectral angle is mainly 

sensitive to a similar shape of spectral signatures but not to brightness differences. This might cause 

some wrong regressor assignments and hence increase deviations at certain positions in the predicted 

image. Generally, this effect is reduced by our procedure of computing weighted averages of multiple 

regressor results. However, further research should be conducted to study the effect of more reliable 

spectral similarity metrics that are sensitive to both, spectral shape and brightness differences and also 

consider spatial adjacencies. 

Additionally, our evaluations revealed that the proposed material-specific regressors could rarely be 

applied to dark surfaces such as water bodies or asphalt since the spectral angle threshold was 

exceeded there. We see two reasons for this. First, we had only insufficient training data to adequately 

train material specific regressors that cover the entire spectral variability of these surfaces in our 

independent test data. Second, due to the low signal, dark surfaces have an extreme spectral variability 

in terms of the spectral angle. Even small reflectance variations may lead to spectral angles exceeding 

our threshold of four degrees. For these materials a more suitable process must therefore be developed 

in future. The hard fallback we used in case of an exceeded threshold may also cause gray value edges 

in the prediction result if the global harmonization coefficients are unsuitable to the corresponding 

surface material. This was especially apparent in our Brandenburg real data use case (section 4.5) 

where we had no suitable material-specific classifier for some rape fields which were then spectrally 

transformed with larger errors. Future versions of the proposed harmonization approach must therefore 

improve the use of this fallback to further reduce the variation of harmonization errors in space. 

Finally, it must be noted that the harmonization coefficients derived in this study may not be suitable 

for all geographic positions of the world due to different land cover (Chastain et al., 2019; Flood, 

2014, 2017; Mandanici and Bitelli, 2016). Nevertheless, we intentionally chose training images 

acquired under different climatic conditions and with a high land cover variability to achieve as much 

model robustness as possible. Since our algorithm tolerates spectral deviations between input spectra 
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and the assigned regressors by handling larger deviations with lower weights, users can still expect 

good harmonization results for surfaces that were not explicitly included in our training data. Apart 

from that, users are able to constrain this spectral deviation with a threshold above which global 

transformation coefficients (as, e.g., in Claverie et al., 2018) are used as a fallback (trained to model 

entire bands instead of material-specific clusters). This keeps the proposed harmonization algorithm 

applicable to “incompatible” surfaces, even though it will not achieve the harmonization accuracy of 

other surface coverages there. 

 

5. SUMMARY AND CONCLUSION 

This paper presents a thorough investigation of the benefit and limitations of spectral band 

harmonization for optical multispectral satellite imagery at the example of simulated Landsat-8 and 

Sentinel-2 data. It particularly addresses the prediction of the Sentinel-2 spectral information at those 

wavelengths that are not covered by Landsat-8, i.e., the red edge and the spectral region up to 850 nm. 

Different harmonization techniques were used, such as multivariate linear regression (LR), 

multivariate quadratic regression (QR), random forest regression (RFR) and linear interpolation (LI). 

Additionally, we developed a new prediction approach to improve the harmonization accuracy by 

respecting material-dependent spectral individualities. It incorporates separate transformation 

functions for different spectral clusters of the input dataset and was examined for LR and QR. We 

evaluated the harmonization performance by computing root mean square errors to simulated 

reference data and quantified NDVI and EVI differences with and without spectral harmonization to 

demonstrate the effect for typical remote sensing applications. Furthermore, we investigated if an 

improvement of classification accuracy is detectable if unequal spectral sensor characteristics are 

unified. In addition to these evaluations based on simulated data, we also applied the harmonization 

techniques to real Landsat-8 and Sentinel-2 data to investigate the effectiveness for realistic remote 

sensing applications. 

Our results show that the quality of the harmonized image data highly depends on the spectral 

wavelength or more precisely on the similarity of the spectral characteristics of source and target 

sensor. Hence, the prediction accuracy of spectral bands with center wavelength positions close to 

existing bands is generally much higher than at spectral positions where the source sensor lacks 

spectral information. Besides that, it is dependent on the shape of the spectral signatures, i.e., high 

reflectance gradients like within the red edge spectral region cause larger errors.  

With global regressor coefficients, i.e., without the proposed sub-clustering approach, LR generally 

outperformed QR, RFR and LI and could also improve the inter-sensor consistency compared with 

non-harmonized data. LI seems to be only useful for already spectrally overlapping bands but is highly 

prone to errors in case of larger “spectral gaps”, i.e., if the source sensor does not provide spectral 

information at the targeted wavelength. Using RFR (250 decision trees in this study) the harmonized 

output data contained clearly visible artefacts and could not outperform the harmonization results of 
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LR. Regarding LR and QR incorporating global harmonization coefficients (as, e.g., in Claverie et al., 

2018), our analysis revealed that deviations highly depend on the surface coverage and vary from pixel 

to pixel. This confirms the presumptions of Flood (2014). The deviations can be reduced by using 

multiple transformation functions for different spectral clusters. To be able to analyze the effect of 

different numbers of material-specific regressors in detail we gradually increased the number of 

clusters from 1 to 100. We found out that there is an improvement of harmonization quality for both, 

LR and QR, if more and more spectral clusters are involved. In case of LR, we achieved the maximum 

harmonization performance with 50 spectral clusters and the spectral angle as technique to assign each 

input pixel to a corresponding spectral cluster and hence to a specific LR regressor. Although we 

mainly attribute the re-increasing harmonization errors at >50 clusters in our study to our limited total 

number of training spectra (section 4.1.2), we note that a larger number of clusters also increases the 

computational load during harmonization. Nevertheless, with 50 material-specific regressors we could 

reduce the inter-sensor deviations by about 30% in the red edge spectral region (averaged for all our 

test datasets, simulated from hyperspectral data) and achieved a much more homogenous distribution 

of remaining errors. QR produces much larger deviations compared with LR. Therefore, we limited 

our further evaluations to LR harmonization. 

Our analyses regarding NDVI products from simulated data revealed that the purely sensor-induced 

deviations between NDVI index values of Landsat-8 and Sentinel-2A are in the range of 4% with 

reference to the whole NDVI value range. Spectral harmonization with a global regressor could not 

reduce them, because material-dependent variations are not considered. However, by using 50 separate 

LR regressors instead of a single one, we could reduce the NDVI deviations to 38% of the initial error 

without harmonization (vegetated image pixels only). For EVI, we observed a slight reduction of 

deviations to 95% using a single LR regressor for homogenization which could be further reduced to 

43% by using 50 spectral clusters. Based on Landsat-8 simulations, LR-harmonized to Sentinel-2A, 

we were able to compute the red edge inflection point (REIP) with an accuracy of 3.1 nm. The REIP 

cannot be computed from native Landsat-8 data due to missing red edge spectral bands. With regard to 

land cover classifications we observed an improvement of multi-sensor consistency of the 

classification maps from 92.3% to 96.3% with LR harmonized Landsat-8 data and to even 97.3% 

under the use of 50 spectral clusters (mean consistencies). 

When applied to real Landsat-8 and Sentinel-2 data, the reduction of purely sensor-induced deviations 

is difficult to quantify because inter-sensor deviations are not only due to spectral response differences 

but also caused by unequal observation and illumination geometries or atmospheric conditions which 

can never be perfectly corrected in the pre-processing of the data. However, with regard to the 740 nm 

red edge band of Sentinel-2 predicted from Landsat-8, we observed a reduction of inter-sensor BOA 

reflectance deviations in both of our test sites. At the Crete site, they decreased from 3.64% using LI 

harmonization to 1.36% using LR with global transformation coefficients to 1.09% using LR with 50 

material-dependent regressors (sub-clustering approach). At the Brandenburg site, the effect was even 
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stronger: deviations reduced from 8.65% to 3.63% to 1.8% RMSE reflectance. This reduction was also 

evident when comparing the harmonized inter-sensor reflectance over time. 

In summary, the study demonstrates on simulated Landsat-8 and Sentinel-2 data that spectral 

harmonization is useful to improve the multi-sensor consistency of remote sensing data, especially if 

multiple transformation functions are incorporated. Whether it is also worthwhile in real world 

applications depends on the individual radiometric accuracy requirements of the application and on the 

question if unilaterally missing bands are incorporated. However, we showed that spectral 

harmonization directly increases the inter-sensor similarity of reflectance values and consequently the 

reliability of all subsequent data products. We suggest linear regression as a robust and easy to 

implement technique to gain unified spectral characteristics of actual multi-sensor data. However, with 

global regressor coefficients, LR has the drawback of remaining material-dependent deviations that in 

some cases exceeded 10% reflectance with our test data simulations. Our proposed algorithm 

accounting for these spectral individualities does exist as a Python package (Scheffler 2020; this study 

is based on version 0.5.1) which will be published as open source code at the following URL soon: 

https://gitext.gfz-potsdam.de/geomultisens/spechomo. It is self-contained, generic and works out-of-

the-box to harmonize Landsat-8 and Sentinel-2A as well as other sensors such as Landsat-5 TM, 

Landsat-7 ETM+, Sentinel-2B, RapidEye-5, SPOT-4 and SPOT-5 using the included material-specific 

machine learning regressors. Moreover, it features an algorithm to train additional regressors (as 

presented section 3.1) for custom sensor combinations based on user provided hyperspectral training 

data. This also allows users to further improve harmonization results according to their specific study 

areas. The proposed approach is considered to be incorporated in the next release of FORCE, a toolset 

for generating and analyzing Landsat and Sentinel-2 Analysis Ready Data (Frantz, 2019). Future work 

may further investigate the effect of spectral and spatial harmonization on real world remote sensing 

applications. 
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SUPPLEMENTS 

 

 

Figure 12. Band-wise variation of harmonization errors among the test datasets used in this study in case of 

Sentinel-2A data as predicted by LR and QR harmonization from Landsat-8. Variation is plotted as standard 

deviation of RMSE values. 

 

 

Figure 13. REIP accuracy for vegetation pixels only compared between Sentinel-2A (reference) and RapidEye-

5, spectrally harmonized to Sentinel-2A using LR. Left: without sub-clustering; right: with 50 spectral clusters. 

 




