Archie’s Law - Boon or Bane?
An approach to estimate gas hydrate saturations
Katrin Schwalenberg (BGR) & Romina Gehrmann (University of Southampton)

Archie’s Law (1942)

$$\rho_f = a \rho_w \Phi^{-m} (1-S_h)^n$$

The Boon: A practical tool to relate resistivity to porosity, salinity, saturation estimates

The Bane: Often used standard coefficients may lead to over- / underestimated saturation estimates

Daube Delta, Western Black Sea
what is the gas hydrate saturation?
Archie’s Law, parameters

\[\rho_f = \alpha \rho_w \Phi^{-m} \]

\[\rho_f = \alpha \rho_w \Phi^{-m} \left(1-S_h\right)^n \]

\[\rho_f = \rho_f \left(1-S_h\right)^n \]

\[\frac{1}{R} = \phi^n \frac{S_h^n}{\alpha R_w \left(1-V_{cl}\right)} + V_{cl} \frac{S_w^{n-1}}{R_{cl}}. \]

- \(\rho_f \) = formation resistivity
- \(\alpha \) = constant, tortuosity factor
- \(\rho_w \) = pore water resistivity
- \(\Phi \) = porosity
- \(m \) = cementation factor
- \(S_h \) = gas hydrate saturation
- \(n \) = saturation exponent
- \(R_{cl} \) = clay resistivity
- \(V_{cl} \) = clay volume fraction

Archie coefficients :

<table>
<thead>
<tr>
<th>(a)</th>
<th>(m)</th>
<th>(n)</th>
<th>Reference</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 for (\Phi = 100%)</td>
<td>1.8 - 2.0</td>
<td>1.9386</td>
<td>0.5 - 4</td>
<td>Archie, 1942</td>
</tr>
<tr>
<td># 1</td>
<td>sand to shell</td>
<td>0.5 - 4</td>
<td>2.5 +/- 0.5</td>
<td>Pearson et al, 1983</td>
</tr>
<tr>
<td>Intercept of the log (\rho / \log \Phi) at (\Phi = 100%)</td>
<td>clean sands</td>
<td>1.945</td>
<td>Archie, 1942</td>
<td>Depends on shape rather than grain size and sorting; Varies with clay content</td>
</tr>
<tr>
<td></td>
<td>compacted sandstone</td>
<td></td>
<td>Jackson et al., 1978</td>
<td>Salem & Chillingaram, 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Riedel et al., 2019</td>
<td>Archie, 1942</td>
</tr>
</tbody>
</table>

a = 1, m = 2, n = 2 are often used standard Archie coefficients
MeBo Drilling:

\[\rho_f = a \rho_w \Phi^{-m} \]

- porosity decrease from \(\sim 70\% \) at seafloor to \(\sim 45\% \) below 30m
- salinity decrease from 22 psu at seafloor to 2.5 (\(\sim 4.0 \)) psu below 30m
- pore water resistivity increase to 2.88 \(\Omega \)m (2.5 psu) below 30m (Fofonoff, 1983)

MeBo res. log is within the range of derived background resistivities

Model selection:

- SW
 - 0.9902
- MTD
 - higher resistivity
- SW
 - 0.9902
- CSEM sensitivity
- SW
 - 0.9902
- eastern levee
MeBo resistivity compared to inverted resistivity:

![Graphs showing resistivity comparison](image)

Saturation Models

- Average porosity: 75% → 45% below 40 m
- Average pore water resistivity: 0.4 Ωm → 2.86 Ωm below 40 m
- \(a=1\), \(n=2.5\)

Does the same set of Archie coefficients hold for the entire model?
Stochastic Approach, 1D

Input parameter ranges:
- Log \(\rho \) ranges (Gaussian)
- Average porosity +/- 20% (Gaussian)
- Average pore water resistivity, salinity +/- 10% (uniform)
- \(a = [0.9 \ 1.1]; m = [1.8 \ 2.5]; n = [2.0 \ 2.5] \) (uniform)

\[S_h = 1 - \left[\frac{a \ \rho_w \ \phi^{-m}}{\rho_f} \right]^{1/n} \]

After Sava and Hardage, 2007

68% confidence intervals

Stochastic Approach, 2D

Saturation with maximum probability

Schwalenberg et al., soon submitted to SI MarPotGeo
Conclusions

Archie’s Law (1942)

\[
\rho_f = a \rho_w \Phi^{-m} (1-S_h)^n
\]

- **The Boon:** A practical tool to relate resistivity to porosity, salinity, saturation estimates
- **The Bane:** Often used standard coefficients may lead to over- / underestimated saturation estimates
- **The stochastic approach** can help to define saturation ranges based on probability and credibility intervals

Acknowledgements

- The SUGAR project which was jointly funded by the German Federal Ministry of Education and Research (BMBF) and the German Federal Ministry of Economic Affairs and Energy (BMWi) (grants 03G0688A, 03SX320Z).
- We acknowledge the captain and crew of R/V Maria S. MERIAN voyage MSM 35 for their excellent support to collect the CSEM data. The German Science Foundation (DFG) provided the ship time on R/V MARIAS MERIAN.
- The MeBo drilling data used in this study were kindly provided by Michael Riedel und Matthias Haeckel.
- We thank Kerry Key for making MARE2DEM available to the community.