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A B S T R A C T

A systematic review and inventory of recent research relating to optical remote sensing of Arctic vegetation was conducted, and thematic and geographical trends
were summarized. Research was broadly categorized into four major themes of (1) time series, including NDVI trends and shrub expansion; (2) disturbance and
recovery, including tundra fires, winter warming, herbivory, permafrost disturbance, and anthropogenic change; (3) vegetation properties, including biomass,
primary productivity, seasonality, phenology, and pigments; and (4) classification and mapping. Remaining challenges associated with remote sensing of Arctic
vegetation were divided into three categories and discussed. The first are issues related to environmental controls including disturbance, hydrology, plant functional
types, phenology and the tundra-taiga ecotone, and understanding their influence on interpretation and validation of derived remote sensing trends. The second are
issues of upscaling and extrapolation related to sensor physics and the comparability of data from multiple spatial, spectral, and temporal resolutions. The final
category identifies more philosophical challenges surrounding the future of data accessibility, big data analysis, sharing and funding policies among major data
providers such as national space agencies and private companies, as well as user groups in the public and private sectors. The review concludes that the best practices
for the advancement of optical remote sensing of Arctic vegetation include (1) a continued effort to share and improve in situ-validated datasets using camera
networks and small Unmanned Aerial Vehicles, (2) data fusion with non-optical data, (3) sensor continuity, consistency, and comparability, and (4) free availability
and increased sharing of data. These efforts are necessary to generate high quality, temporally dense datasets for identifying trends in Arctic tundra vegetation.

1. Introduction

This review was undertaken to summarize the current state of op-
tical remote sensing of Arctic vegetation. The goal was to provide an
overview that would be useful for those developing the hardware and
software tools to remotely sample tundra vegetation, and for re-
searchers who are using the technology to address scientific questions.
The last reviews of this type were conducted in the early 2000s (Laidler
and Treitz, 2003; Stow et al., 2004), and remote sensing technologies
have changed dramatically, especially with the increased use of

unmanned aerial vehicles (UAVs).
Our focus area, the Arctic tundra biome has undergone extensive

climatic and environmental changes in recent decades (IPCC, 2014).
Resulting changes to terrestrial ecosystem structure and functioning
include complex broad-scale shifts in primary productivity, vegetation
species composition, and phenology as well as hydrological and dis-
turbance regimes; collectively, these changes influence global climate
via an array of feedback mechanisms (Chapin III et al., 2005; Elmendorf
et al., 2012b; Post et al., 2009; Prevéy et al., 2017; Wrona et al., 2016).
An extensive body of research detailing the importance of terrestrial

https://doi.org/10.1016/j.rse.2020.111872
Received 17 October 2019; Received in revised form 16 March 2020

⁎ Corresponding author.
E-mail address: alison.beamish@gfz-potsdam.de (A. Beamish).

1 Austrian Polar Research Institute, Universitätsstraße 7, 1010 Vienna, Austria.

Remote Sensing of Environment 246 (2020) 111872

0034-4257/ © 2020 Published by Elsevier Inc.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111872
https://doi.org/10.1016/j.rse.2020.111872
mailto:alison.beamish@gfz-potsdam.de
https://doi.org/10.1016/j.rse.2020.111872
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111872&domain=pdf


Arctic tundra ecosystem functioning to global climate regulation and
the Earth's energy and carbon balance has shifted the urgency of rapid
Arctic change from a local to a global issue (ACIA, 2005).

Effective monitoring of vegetation change in this remote and lo-
gistically challenging biome is greatly supported by both well-estab-
lished and emerging remote sensing technologies. Many tools exist to
address pressing questions related to accelerated Arctic change at
multiple spatial scales, from legacy platforms such as Landsat and the
Advanced Very High Resolution Radiometer (AVHRR) from U.S.
National Oceanic and Atmospheric Administration (NOAA) satellites to
exciting new possibilities provided by UAVs and the explosion in Very
High Spatial Resolution (VHSR) commercial satellite imagery. Since the
last two major reviews by Laidler and Treitz, 2003 and Stow et al.
(2004), the field of terrestrial Arctic remote sensing has seen great
advancements in operational sensors as well as the temporal, spatial
and spectral scales of available data. The last 15 years have also seen
significant improvements in processing power including increased and
freely available cloud computing services that have facilitated invalu-
able long-term, biome scale trend analyses (Beck et al., 2019; Bhatt
et al., 2013; Walker et al., 2009) as well as the cross-over of memory-
intensive methods such as machine learning from mathematics and
physics to environmental remote sensing science (Ali et al., 2015;
Belgiu and Drăguţ, 2016; Lary et al., 2016).

Despite the ever-increasing availability and accessibility of remote
sensing data, challenges remain related to the unique characteristics of
terrestrial Arctic ecosystems. The obvious challenges associated with
optical remote sensing of Arctic vegetation arise from the combination
of a short and rapidly progressing growing season, high cloud fre-
quency, and low sun-angles (Stow et al., 2004). This can translate into
few or no successful image acquisitions in an area of interest across a
growing season. In turn, this makes intra- and inter-annual comparisons
particularly difficult, where effective satellite revisit times are in-
frequent, or the logistics of airborne and field campaigns prohibit
multiple acquisitions. Image time series often include different pheno-
logical or seasonal stages and differ in optical properties, not only due
to vegetation but also the contribution and dominance of other eco-
system factors such as snow cover, surface water, soil moisture, illu-
mination angle, and shadows (Beamish et al., 2017; Huemmrich et al.,
2013). In addition, the scarcity and difficulty of obtaining high-quality
validation datasets make cross-site comparisons and extrapolation to
the biome scale challenging. A clear spatial bias in high quality ground-
based validation datasets exists due to logistical and financial chal-
lenges of Arctic field campaigns. Despite these difficulties, a compre-
hensive and valuable body of research exists employing optical remote
sensing to address questions of Arctic tundra vegetation change. In-
novative new methods to overcome the limitations of optical remote
sensing such as data fusion with non-optical and active sensor data
(Greaves et al., 2016) as well as the supplementation of field-based
measurements with UAVs and time-lapse imagery (i.e., Beamish et al.,
2018; Riihimäki et al., 2019) are on the rise. The coming decade will
see the development and application of legacy systems with a multi-
decadal period of record (e.g., Landsat 9).

In the following review, recent trends in optical remote sensing of
Arctic tundra vegetation spanning from the Tundra Taiga Ecotone
(TTE) to the High Arctic are summarized into four major themes: time
series, disturbance and recovery, vegetation properties, and classifica-
tion and mapping. Identified remaining challenges are then broadly
categorized into environmental controls on observed trends, upscaling
and extrapolation, and philosophical challenges of data accessibility.
Finally, an outlook and best practices are outlined with the intent of
identifying knowledge gaps and informing current practices as well as
future satellite mission planning.

2. Literature review

A systematic literature review from 2004 to 2019 was conducted

using Google Scholar. This timeframe was selected for two reasons.
First, it covers the time period since the last comprehensive reviews of
remote sensing of terrestrial Arctic ecosystems by Laidler and Treitz,
2003 and Stow et al. (2004). Second, research in the field increased
greatly after 2004. Keywords of “Arctic,” “remote sensing,” and “ve-
getation” were used and further filtering and searches were done to
ensure remote sensing of vegetation was the main focus of each record.
Records included in the review encompass ecosystems in the TTE, Low
Arctic and High Arctic. These three subdivisions are defined respec-
tively as follows for the purposes of this review; 1) the tundra taiga
ecotone (TTE) is the transitional zone between tundra and the boreal
forest, a spatially heterogeneous ecosystem with a discontinuous and
non-uniform extent (Love, 1970; Ranson et al., 2011); 2) the Low Arctic
includes ecosystems characterized by well-vegetated tundra commu-
nities dominated by low- and dwarf shrubs, sedges and other herbac-
eous species; (Subzones D and E of the Circumpolar Arctic Vegetation
Map – CAVM, (Walker et al., 2005)) and 3) the High Arctic includes
dwarf and prostrate shrub / sedge tundra and partially vegetated polar
desert, or polar semi-desert ecosystems composed of mostly non-vas-
cular species and herbaceous vascular plants (Subzones A, B, and C of
the CAVM) (Bliss and Matveyeva, 1992). Over 200 records fitting these
criteria were identified. Each record was assigned to nine different
categories related to geographic region, theme, sensor, availability,
spatial scale, ecosystem, and spectral resolution. The complete list of
categories and number of entries for each category plus the inventory is
provided in Supplementary Material (Table S1 and S2).

3. Recent trends in optical remote sensing of Arctic tundra
vegetation

3.1. Time series analyses

Time series analysis was one of the most common themes among the
inventoried research. The majority of these studies used the AVHRR-
derived Normalized Difference Vegetation Index (NDVI) from NASA's
Global Inventory Modeling and Mapping Studies (GIMMS) project,
followed by Moderate Resolution Imaging Spectroradiometer (MODIS)
and Landsat NDVI time series. Most recent change detection studies
were time series analyses conducted in the Low Arctic or at the cir-
cumpolar scale, and the majority focused on NDVI trends also referred
to as tundra greening/browning, productivity, or photosynthetic ac-
tivity in some cases. Studies on shrub expansion, another common time
series analysis, and how it relates to large-scale NDVI trends are also
summarized.

3.1.1. NDVI trends
The publication and free availability of the GIMMS, MODIS, and

Landsat datasets have contributed invaluably to optical remote sensing
of Arctic vegetation resulting in long-term (>20 years), biome-scale
studies of tundra NDVI trends. Derived from multi-day NDVI compo-
sites, many early studies reported positive NDVI trends (greening) oc-
curring extensively in tundra regions from the 1980s to the early 2000s,
with some variability by vegetation cover type and density. Some of
these studies used national boundaries to define their domains (Pouliot
et al., 2008; Verbyla, 2008), others used a vegetation classification
(Goetz et al., 2005), some used a latitudinal cut-off (e.g., > 50 °N for
Bunn and Goetz (2006)), and some used the domain of the CAVM
(CAVM Team, C, 2003; Walker et al., 2005) treeline delineation (Jia
et al., 2003, 2009).

The continual maintenance and update of these time-series have
resulted in corresponding updates of NDVI trends and more recent
analyses revealed areas with strong declines in NDVI (often called
browning, though visually the vegetation might just be less green) since
2000, in stark contrast to the previous 20 years (Bhatt et al., 2013).
Complex spatial heterogeneity in NDVI trends and contrasting trends
for different vegetation types emerged with analysis of the updated
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data, highlighting the non-linear nature of ecological change in the
Arctic tundra biome. Anisimov et al. (2015) found that NDVI trends
were positively correlated with temperature, and negatively with pre-
cipitation, in Arctic and Boreal Russia. Beck and Goetz (2011) found on
a circumpolar scale the same trends as Verbyla (2008), with increases in
NDVI in the Arctic, and declines in the boreal zone. Loranty et al.
(2016) noted a matching contrast between areas of continuous vs.
discontinuous permafrost, with increasing NDVI in areas of continuous
permafrost (mostly Arctic) and decreasing NDVI in areas with dis-
continuous permafrost (mostly Boreal). Miles and Esau (2016) found
similar latitudinal trends in West Siberia, with positive trends in more
northern tundra and taiga (Larix forest) zones, and negative trends in
more southern zones (Picea and Pinus forests). In analyzing the re-
lationship between summer temperatures and NDVI trends, Reichle
et al. (2018) found that relative temperature increases were strongest in
the High Arctic, but NDVI increases were strongest in the Low Arctic.
The annual correlation between the two variables was strongest in the
mid-Arctic subzones, likely because plant biomass is typically very low
in the High Arctic, and other climate variables such as precipitation
become increasingly important in the Low Arctic.

In 2008 when the Landsat data became freely available, sig-
nificantly higher spatial resolution time-series analyses of Arctic tundra
became possible. With the increase in spatial resolution, some studies
found discrepancies in the spatiotemporal patterns of previously re-
ported GIMMS NDVI trends. For example, finer resolution data showed
that increases in NDVI were not evenly distributed across the landscape
and data provided by a different sensor changed the overall landscape
trend (Raynolds et al., 2013). The Landsat data showed more extensive
increases in NDVI in Quebec and Labrador, and less browning in boreal
forests (Ju and Masek, 2016). In northwest Siberia, NDVI trends showed
high interannual variability across and within different biomes and
forest-land cover types, which influenced apparent decadal-scale trends
(Miles et al., 2019).

These finding raised questions about the roles of spatial and tem-
poral scale and land cover in observed tundra dynamics. None of the
satellite records is perfect: AVHRR has a very long record but relatively
coarse resolution (8 km) and is composed of intercalibrated data from a
number of different sensors on different satellites (Pinzon et al., 2014).
Landsat also has a long record but had poor retrieval over much of the
Arctic in the 1990s, with many areas missing mid-summer cloud-free
imagery in many years (Raynolds et al., 2013). Recent sensors such as
Sentinel-2 lack the period-of-record necessary to reasonably estimate
trends. This has prompted closer examination of land cover and in situ
changes in tundra vegetation and surface properties to better under-
stand the drivers of trends seen in satellite data. Researchers found si-
milarly strong local and latitudinal variability in NDVI trends, which
were well explained by vegetation type in Sub, Low and High Arctic
sites (Bonney et al., 2018; Edwards and Treitz, 2017; Lara et al., 2018;
McManus et al., 2012). Areas where divergent NDVI trends emerged
depending on the sensor used, could be validated and resolved by in situ
plant species data (Pattison et al., 2015). There is abundant evidence
for the heterogeneous and divergent response of Arctic vegetation to
climate change (Elmendorf et al., 2012a; Jorgenson et al., 2015; Miles
et al., 2019), and recent tundra dynamics research emphasizes the
importance of linking biome-scale and regional scale NDVI trends to
vegetation changes on the ground.

The complexity of tundra NDVI trends were summarized in the most
recent NOAA Arctic Report Card tundra greenness assessment (Frost
et al., 2019) Fig. 1. Long-term trends continue to show an overall in-
crease in Arctic NDVI over the satellite record, a trend expected to
continue, as widespread and long-term indirect effects such as increased
growing season length and active layer depths, in addition to the direct
effects from a single warmer (or cooler) summer continue to drive
tundra veg. Regional decreases and annual variations in tundra green-
ness were evident in the record; and 2018 was a particularly low NDVI
year for North America, attributed to greater winter snow and below

normal summer temperatures. Low NDVI values in Eurasia in
2015–2016 were attributed to extreme events such as winter warming,
frost damage and drought, thermokarst (terrestrial features caused by
selective permafrost thaw), and fire (Phoenix and Bjerke, 2016). Pre-
dicting and monitoring the events that drive decreasing NDVI signals
with current optical remote sensing techniques represents a major
challenge as they are sporadic in time and space, often occurring in
winter with transient effects (Phoenix and Bjerke, 2016).

Some of the discrepancies in NDVI trends can in part be attributed
to differences in the spectral response and spatial resolution of different
sensors resulting in uncertainties (e.g., Pattison et al., 2015; Pouliot
et al., 2008; Stow et al., 2007). For example, sources of uncertainty in
AVHRR datasets arise from inconsistencies in the sensor bandpasses,
orbital geometries, and imperfect cross-calibration across the many
instruments that have contributed to the record. In addition, the spatial
resolution of the GIMMS dataset is insufficient to reveal landscape-scale
patterns of NDVI trend. In 2014, an updated GIMMS AVHRR-NDVI
dataset (1981–2014) was released that used high quality, well-cali-
brated Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data from
1997 to 2010 to cross calibrate among the AVHRR instruments (Pinzon
et al., 2014). Guay et al. (2014) explicitly compared these widely used
NDVI datasets including both versions of the legacy AVHRR GIMMS-
NDVI datasets as well as more modern records of SeaWiFS,
SPOT-VEGETATION, and MODIS. The authors found equally large areas
of agreement (40%) and disagreement (40%) between the GIMMS da-
tasets as well as with the more modern datasets. A similar comparison
of the GIMMS datasets over North American high latitudes reported
good agreement of NDVI trends observed by AVHRR and MODIS (Beck
and Goetz, 2011). NASA is coordinating with the European Organisa-
tion for the Exploitation of Meteorological Satellites (EUMETSAT) to
continue the AVHRR record and has included an AVHRR sensor on-
board the Metop-B and Metop-C satellites. Recent efforts have high-
lighted the importance of spectral agreement among sensors in Arctic
ecosystems where acquisitions can be limited and conditions are often
less than ideal (Runge and Grosse, 2019). Thus, time-series from con-
current and more modern systems, such as MODIS, Landsat, and Sen-
tinel-2, are useful for corroborating AVHRR-observed trends, while also
providing data at finer spatial scales necessary for comparison with
ground data. We emphasize the value of datasets spanning a range of
spatial and temporal resolutions for answering different questions re-
garding Arctic vegetation. AHVRR data continue to provide long-term,
coarse circumpolar data. Medium and fine-resolution data are neces-
sary for comparison with ground data with the longest period-of-record
available. In addition, the MODIS record now encompasses 20 full
growing seasons (2000–2019), which exceeds the period-of-record that
was available from AVHRR seminal reports of high-latitude greening,
which emerged in the late 1990s and early 2000s (e.g., Jia et al., 2003;
Myneni et al., 1997). Continued effort is required to evaluate large-
scale NDVI datasets against one another as well as against VHSR and in
situ NDVI, aboveground biomass, community composition, and primary
productivity in order to better understand the ecological processes
driving environmental change in the Arctic biome.

3.1.2. Shrub expansion
One of the strongest vegetative changes associated with tundra

greening is the well-documented phenomenon of shrub expansion.
Shrub expansion has the potential to mitigate or exacerbate climate
change making it a highly relevant topic in Arctic change research
(Myers-Smith et al., 2011; Wookey et al., 2009). When historical ima-
gery are included, remote sensing time series tracking shrub expansion
can span up to 70 years (Fig. 2) (Stow et al., 2004; Sturm et al., 2001),
and these datasets are essential for understanding current, and pre-
dicting future patterns of, shrub distribution at landscape scales (Myers-
Smith et al., 2011).

The use of historical imagery and declassified satellite surveillance
photographs has provided indisputable evidence for the expansion of
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shrubs in the TTE and Low Arctic tundra in both Siberia and Alaska.
The now seminal work by Sturm et al. (2001) and Tape et al. (2006)
showcased the power of historical aerial imagery to visually detect this
dramatic vegetative change across Alaska and initiated the extensive
body of research that now exists on shrub expansion across the cir-
cumpolar Arctic. No equivalent aerial photography is available for the
Russian Arctic, but Frost and Epstein (2014) quantitatively analyzed
imagery from declassified, Cold War era surveillance satellites
(1965–1972; ca. 75–200 cm) and modern IKONOS, QuickBird, GeoEYE-
1 and WorldView-1 imagery (2002–2011; 50–80 cm) to evaluate tall
shrub and tree expansion across northern Siberia.

Satellite-derived NDVI trends attributed to shrub expansion in the
western Canadian Arctic and Siberia have been validated with in situ
shrub growth datasets. Long-term NDVI greening trends (> 25 years)
over Siberian tundra show strong linear correlations to den-
drochronologies of willow (Salix) and alder (Alnus), two dominant
shrub genera with circumpolar distributions (Forbes et al., 2010;
MacIas-Fauria et al., 2012). More spatially explicit approaches using
detailed species fractional cover delineated from repeat aerial photo-
graphy and VHSR data to directly link Landsat NDVI greening trends to
expansions in shrub cover. Using visual assessment of aerial photo pairs
(ca. 2 cm) from 1980 and 2013, Fraser et al., 2014b found an increase
in shrub cover corresponding to widespread increases in Landsat NDVI
over the same time period across the Tuktoyaktuk Coastal Plain in
northwestern Canada. Using a similarly spatially explicit approach,
Urban et al. (2014) applied an object-oriented supervised classification
to historical Landsat MSS imagery (79 m) from 1973 and two RapidEye
scenes (5 m) from 2012 and found an obvious increase in woody ve-
getation north of the treeline in northern Siberia.

In addition to validation of landscape NDVI greening trends, de-
tailed, ground-based investigations have explored the relationships
between structural characteristics of shrubs and seasonal NDVI values.
Though providing only a snapshot, these studies aim to create a better

understanding of the biophysical processes influencing observed large-
scale NDVI trends as well as differentiation between increasing shrub
size (e.g., height) and extent (e.g., cover), which can be modelled to
investigate distinct implications for carbon cycling, surface albedo,
radiative energy balance, and wildlife habitat (Boelman et al., 2011a;
Juszak et al., 2014). Using simple linear regression, Boelman et al.
(2011a) found that NDVI collected in an Alaskan Low Arctic tundra
ecosystem prior to leaf-out gives good estimates of percent woody stem
cover especially for larger shrubs which is more closely attributed to
shrub height, while peak leaf is best suited for estimating deciduous
canopy cover, more closely related to shrub extent. Juszak et al. (2014)
used manipulation experiments to increase the variability of Siberian
Low Arctic shrub canopies and determined in situ NDVI is most affected
by leaf biomass and not plant area. However, in this study, phenological
phase was not controlled for potentially influencing the results. Re-
gardless, both of these field-based studies demonstrate the influence of
vegetation biophysical characteristics such as leaf area and percent
cover on NDVI values and highlight the importance of considering and
constraining the phenological phase of satellite acquisitions for accu-
rate retrieval and interpretation of landscape scale NDVI trends. Sa-
tellite and field spectrometer derived NDVI as well as high spatial re-
solution imagery effectively capture changes in Arctic shrub canopy
extent and structure, providing valuable tools to monitor and predict
the greatest vegetative change currently occurring in Arctic tundra
ecosystems.

3.2. Disturbance and recovery

Optical remote sensing has also been used to effectively monitor
disturbance and recovery of Arctic vegetation following tundra fires,
winter warming, herbivory, permafrost disturbance, and anthropogenic
activities across the circumpolar Arctic. Many of these disturbances can
lead to decreased NDVI or tundra browning which can strongly

Fig. 1. Field observations at landscape patches that
have experienced significant increases and decreases
in NDVI reveal mechanisms of “greening” and
“browning” on Alaska's Yukon-Kuskokwim Delta. At
left, dense sedge meadows have developed in a lake
basin that drained in the early 1990s, resulting in
strong increases in NDVI. At right, coastal flooding
during the 2000s induced patchy salt-kill of vegeta-
tion, evident as decreases in NDVI. Photos courtesy
of G. V. Frost.

Fig. 2. A 63-year record of shrub expansion in Arctic Alaska using historical air photos and high-resolution satellite imagery. Letters indicate areas where significant
changes in shrub cover and density have occurred. Photos courtesy of G. V. Frost.
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influence surface energy balance and in turn permafrost stability
(Jorgenson et al., 2010). However, rapid increases in vegetation pro-
ductivity following disturbances have also been observed (Esau et al.,
2016; Yu et al., 2015). Like time series analyses, the vast majority of
these studies use satellite (red, green, blue (RGB), panchromatic, mul-
tispectral) -derived vegetation indices to infer disturbance to vegetation
and subsequent recovery, and most occur in the Low Arctic. Given the
local nature of disturbance, many of the studies use VHSR imagery and
provide local, site-specific information.

3.2.1. Tundra fires
Historically, tundra fires were rarely reported, due to their remote

locations and often small extents (Jones et al., 2013). However, recent
tundra fire activity in Alaska—particularly the large Anaktuvuk River
fire of 2007— has motivated numerous studies of tundra fire and in-
creased recognition of its importance as an ecological disturbance agent
in the Arctic (e.g., Bret-Harte et al., 2013; Higuera et al., 2008). The
frequency of tundra fires is expected to increase, and the resilience of
tundra to fire disturbance is expected to decrease with continued cli-
mate change (French et al., 2015; Hinzman et al., 2005). Remote sen-
sing offers the best tool by which to monitor the extent and severity of
tundra fires, and ecosystem recovery after fire.

Spectral indices typically applied to monitor wildfires in forest
ecosystems, such as the Normalized Burn Ratio (NBR), have shown low
correlations to burn severity in tundra ecosystems (Epting et al., 2005).
In addition, the difficulty of acquiring appropriately timed pre- and
post-fire imagery in the Arctic reduces the practicality of multi-tem-
poral indices such as the differenced Normalized Burn Ratio (dNBR; Key
and Benson, 2005). Studies of Alaskan tundra fires have shown that
single-date, moderate resolution imagery from Landsat TM/ETM+
(30 m) and downsampled MODIS (30 m) imagery collected during the
first post-fire growing season is sufficient to evaluate burn severity in
Low Arctic tundra (Boelman et al., 2011b; Kolden and Rogan, 2013;
Loboda et al., 2013). Boelman et al. (2011) found that the two-band
Enhanced Vegetation Index (EVI2; (Barichivich et al., 2013)) was ne-
gatively correlated with burn severity, thereby reducing dependency on
successful pre- and post-fire images. Loboda et al. (2013) found that
multi-band spectral indices (e.g., Tasseled Cap Greenness), and single-
band NIR observations from Landsat outperformed NBR in north-
western Alaskan tundra. Progress has also been made in applying
contemporary very high resolution data for evaluating landscape-scale
variability in fire severity, and legacy moderate resolution optical sa-
tellite datasets for evaluating the severity of historical fires. Chen et al.
(2020) demonstrated the use of single-band NIR indices from both
modern commercial satellite imagery (e.g., QuickBird-2), and Landsat
Multi-Spectral Scanner (MSS) data for evaluating the severity of his-
torical fires dating to the 1970s.

Post-fire changes in species composition and NDVI following fire
have also been characterized using optical remote sensing to better
understand post-fire succession (Barrett et al., 2012; Frost et al., 2020;
Goetz et al., 2007; Jones et al., 2009; Rocha et al., 2012). In situ studies
indicate that tundra vegetation typically recovers rapidly post-fire;
changes in community composition are typically linked to fast-growing
pioneer species and the proliferation of shrubs. These changes tend to
result in rapid increases in NDVI within burns compared to surrounding
undisturbed tundra (Rocha et al., 2012). Quantitative maps of the cover
of tundra plant functional types (i.e., fuels for fire) derived from field
datasets and Landsat imagery also provide valuable baseline datasets
for monitoring fire impacts and post-fire succession in the future (He
et al., 2019; Macander et al., 2017).

Monitoring tundra fire extent, severity, and post-fire succession is
also crucial for understanding the consequences of fire on ecosystem
function and the Arctic carbon balance. For context, the 1000 km2

Anaktuvuk River Fire in 2007 released 2.1 Tg of carbon into the at-
mosphere, which was estimated to offset the annual carbon uptake by
the entire biome (Mack et al., 2011). Given that 2019 was a record year

with an unprecedented number of wildfires burning across boreal and
tundra regions in Siberia, Greenland, and Alaska, optical remote sen-
sing will play a critical role in quantifying fire impacts to the Arctic
biome as a whole. However, non-optical remote sensing datasets, such
as Synthetic Aperture Radar (SAR), are required for monitoring changes
to permafrost conditions (Michaelides et al., 2019), which can strongly
impact aboveground vegetation many years after the initial fire (Jones
et al., 2015; Liu et al., 2014). Non-optical remote sensing data are also
required for assessing soil thermal and hydrologic properties that re-
quire data collected in winter, when vegetation is snow-covered
(Bartsch et al., 2020). Integration of in situ and disparate remote sensing
datasets will be required to monitor and predict the changes to, and
interactions between fire-affected vegetation and permafrost soils in a
warmer Arctic.

3.2.2. Winter warming
Less well-documented but increasingly relevant vegetation dis-

turbance in the Arctic are winter warming events where full or partial
snowmelt exposes vegetation resulting in damage or death when
normal winter conditions return causing decreases in NDVI during the
growing season (Bokhorst et al., 2012a). Winter warming events have
been identified as a major driver in recent landscape scale decreases in
NDVI and a major challenge to constrain (Phoenix and Bjerke, 2016).
Given that extreme weather events are increasing, the importance of
winter warming and the role it plays in long-term NDVI trends is also
increasing (AMAP, 2011).

These events often occur sporadically and have patchy extents due
to the influence of topography and vegetation on snow depth and
therefore vulnerability to snowmelt. Additionally, events occur during
polar night and vegetation can recover in a few years making identifi-
cation and study of the entire disturbance and recovery process chal-
lenging. From the limited literature available, events are identified and
monitored opportunistically where detailed temperature and snow
depth records exist or retroactively when damage is identified in the
field (Phoenix and Bjerke, 2016).

Low Arctic and TTE vegetation disturbance and recovery as a result
of warming events have been monitored using MODIS, Landsat, and
SPOT-derived NDVI validated with in situ vegetation surveys (Bjerke
et al., 2014; Bokhorst et al., 2012b, 2009). Bokhorst et al. (2009)
concluded that the 16-day NDVI composites from MODIS are the most
effective for landscape-scale monitoring of this disturbance given the
acquisition restrictions, but only with prior knowledge of the event. In
situ observations showed a reduction in summer growth of almost 90%
of the dominant shrub species and an accompanying 26% reduction in
July NDVI values from pre- to post-disturbance over an area of more
than 1000 km2. Snapshots provided by higher resolution satellites such
as SPOT-5 reveal important local patterns of disturbance and facilitate
more detailed characterizations of affected vegetation communities and
species.

Plot and leaf-level optical remote sensing also revealed less obvious
physiological damage to individuals not captured by vegetation surveys
or landscape scale NDVI. Seemingly healthy individuals showed 16%
reductions in leaf-level NDVI in the first growing season post-dis-
turbance indicating physiological stress and changes to photosynthetic
capacity and efficiency (Bokhorst et al., 2012b). These studies highlight
how multi-scale remote sensing data can provide a more complete
understanding of ecological impact of winter warming events compli-
cating direct attribution of changes to only plant death; internal phy-
siological damage may also contribute to observed landscape scale
decreases in NDVI though direct linkages remains difficult.

Overall, multi-scale optical remote sensing is an effective tool for
monitoring the biophysical effects of winter warming on vegetation, but
ancillary data such as snow cover and temperature will be key to fa-
cilitating rapid identification and improved understanding of winter
warming events. SAR data have great potential to contribute relevant
snow cover data given its spatial and temporal scale, sensitivity to
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dielectric properties (moisture) of the surface and independence to at-
mospheric conditions and polar night. SAR sensors are particularly
sensitive to the presence of wet snow (Nagler and Rott, 2000), a pre-
cursor to snowmelt, due to the attenuation of the microwave signal by
water and have been used to track snow melt in Arctic catchments
(Stettner et al., 2018).

3.2.3. Herbivory
Though much of species conservation in animal ecology focuses on

population declines, over-population can result in ecological impacts to
wildlife habitat which can be monitored using optical remote sensing.
Population growth of lesser snow geese (Anser caerulescens caer-
ulescens), a keystone Arctic species, is attributed to ample forage from
agricultural areas in overwintering grounds which has led to an over-
abundance in some areas (Ankney, 1996). This overabundance can
result in excessive herbivory leading to significant reorganization of
vegetation composition and in some cases the complete removal of
vascular plant species, exposing the underlying peat in Arctic sum-
mering grounds (Kotanen and Jefferies, 1997) (Fig. 3).

Conkin and Alisauskas (2017) used two Landsat scenes acquired
23 years apart and supervised classification to quantify land cover
change in the central Canadian Arctic as a result of snow goose abun-
dance. The authors found a greater than fivefold increase in exposed
peat and a significant decrease in preferred feeding and nesting habitats
as a result of the growth of nearby nesting colonies.

Other keystone Artic species with fluctuating populations attributed
in part to forage availability are barren ground caribou (Rangifer tar-
andus groenlandica) and migratory caribou (Rangifer tarandus) (Manseau
et al., 1996). Unprecedented declines in population numbers of barren
ground caribou herds have increased the urgency for a better under-
standing of the population cycles of these ecologically and culturally
important species. Optical remote sensing archives such as AVHRR,
MODIS, and Landsat offer powerful tools to examine regional, long-
term habitat changes concurrently with herd size and more recently,
herd movement (Rickbeil et al., 2017). Newton et al. (2014) found a
negative relationship between Landsat-derived NDVI and caribou
abundance (lagged by six years) between 1984 and 2010 in the Cana-
dian Sub Arctic which is attributed to a decrease in forage quality due
to overgrazing. Rickbeil et al. (2015) found a similar negative re-
lationship between the fraction of photosynthetically active radiation
(fPAR), a proxy of vegetation productivity derived from a combination
of MODIS and AVHRR, and herd density between 1987 and 2013 in the
western Canadian Low Arctic. More recent study found the same

negative trends between AVHRR-NDVI and caribou herd density in the
eastern Canadian Sub Arctic (Campeau et al., 2019). With the use of
optical remote sensing, these studies support the ecosystem exploitation
hypothesis, which states that vegetation is regulated by top-down
herbivory in the absence of significant predation pressure (Fretwell and
Barach, 1977). In contrast to this hypothesis, Fraser et al., 2014b at-
tributed increasing NDVI trends to increased shrub abundance with
concurrent decreases in caribou forage quality due to decreasing lichen
abundance. This research highlights the complexity of tundra vegeta-
tion change and adds to our understanding of current and future car-
ibou population dynamics.

3.2.4. Permafrost disturbance
Though permafrost disturbance is widespread across the Arctic,

research explicitly investigating the impacts to Arctic vegetation
properties using optical remote sensing is limited. Satellite derived
vegetation indices have been used extensively to identify permafrost
disturbance features such as active layer detachments, a downslope
mass movement of soil and vegetation caused by rapidly thawing ice
lenses at the base of the active layer, retrogressive thaw slumps, caused
by thawing of exposed ground ice resulting in the formation of a steep
headwall and near complete removal of vegetation, as well as drained
lake basins and ground subsidence post-fire (Fraser et al., 2011;
Jorgenson and Grosse, 2016; Nitze et al., 2017; Rudy et al., 2013).
However, few studies have used vegetation indices to investigate pre-
and post-disturbance vegetation dynamics likely due to a combination
of detection limitation, particularly of small-scale disturbances, and
relatively rapid vegetation recovery (Phoenix and Bjerke, 2016).

Fraser et al., 2014a found that retrogressive thaw slumps follow a
similar recovery trajectory to tundra fires with vigorous vegetation
growth once a slump stabilizes due to warm, nutrient-rich soil. Walker
et al. (2009) also found that areas previously subjected to active layer
detachments in Siberia had higher NDVI than surrounding undisturbed
areas but noted the need for higher resolution imagery to fully evaluate
the biophysical drivers behind the observed signals. Ground-based in-
vestigations show significant reorganization of vegetation communities
following permafrost disturbance (Cray and Pollard, 2015; Khitun et al.,
2015), with implications for primary productivity, biodiversity and
aboveground biomass, warranting more detailed biophysical in-
vestigation with optical remote sensing data.

Nitze et al. (2018) provided an extensive inventory of permafrost
disturbances using Landsat stacks throughout the circumpolar Arctic
but also noted the limitations of 30 m resolution data in identifying
local disturbances such as active layer detachments and small retro-
gressive thaw slumps which have the most significant impact on ve-
getation. Retrogressive thaw slumps often occur in clusters due to cli-
mate, geology, ground-ice conditions and topography, information that
could inform focused research efforts (Nitze et al., 2018). Closer col-
laborations between Arctic geomorphologists and vegetation scientists
through the identification of disturbance hotspots using a combination
of passive optical as well active sensors such as SAR and Light Detection
and Ranging (LiDAR), which are independent of atmospheric condi-
tions and would improve timely identification and understanding of
vegetation dynamics following thermokarst phenomena.

3.2.5. Anthropogenic activities
Past and current industrial development, which exists in the most

remote corners of the Arctic, results in direct, long-lasting disturbance
to tundra vegetation (Forbes et al., 2001). Research on the ecological
impacts of hydrocarbon development in Siberia demonstrate how es-
sential multi-resolution remote sensing data are to effectively monitor
vegetative disturbance and recovery at scales relevant to nomadic and
semi-nomadic reindeer herders (Kumpula et al., 2010, 2011, 2012;
Walker et al., 2009). Studies highlight how VHSR imagery is necessary
in combination with lower resolution imagery to assess the impact on
reindeer habitat quality given the local and linear nature of many

Fig. 3. Extensive vegetation removal by a rapidly expanding Snow Goose
Colony on the Alaskan North Slope. Photo: Brian Person, North Slope Borough
Department of Wildlife Management.
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features (Kumpula et al., 2012; Yu et al., 2015). The Prudhoe Bay
Oilfield of Alaska is the oldest and most extensive industrial complex in
the Arctic and is situated on extremely sensitive ice-rich permafrost
making it an excellent case study. A high resolution 62-year aerial
photograph time-series revealed extensive disturbance to vegetation
and surface hydrological regimes by thermokarst activity, caused by
selective thawing of permafrost, with implications for wildlife habitat,
local residents, and industry (Raynolds et al., 2014). Further, Raynolds
and Walker (2016) highlighted how increased thermokarst increased
surface wetness confounding NDVI signals and in turn regional trends
in tundra greening.

Esau et al. (2016) found fragmented patterns of vegetation change
around urban areas in western Siberia. Changes to vegetation are time-
dependent with new development decreasing NDVI, while older de-
velopment sites show strong increases in NDVI due to a re-population of
microsites with woody vegetation. Similar increasing greenness and
wetness trends due to revegetation of abandoned mine sites and seismic
lines in the Canadian Low Arctic can be observed using Landsat Tas-
seled Cap transformation trends (Fraser et al., 2014a). In addition to the
impacts of infrastructure and transportation, optical remote sensing has
also been used to quantify the ecological impact of a major oil spill in
the Usa Basin, Siberia in 1994 which found profound changes in ve-
getation community composition and corresponding changes in
Landsat- NDVI (Walker et al., 2006). Given the continued rapid increase
in hydrocarbon infrastructure and likely a concurrent rise in urban
infrastructure development as well as possible increase in the number
of oil spill accidents, particularly in western Siberia, a better inventory
and understanding of the impacts on ecosystem functioning using high
spatial resolution satellite imagery is necessary.

3.3. Vegetation properties

Recent optical remote sensing research to model or estimate Arctic
vegetation properties, which includes biophysical and biochemical
variables as well as phenology and primary productivity, is largely
dependent on inferred relationships with vegetation indices. The ex-
tensive evidence that increased tundra NDVI is due to shrub growth and
other plant compositional changes (Goetz et al., 2005; Jia et al., 2006)
indicate that vegetative change is indeed occurring. However, evidence
directly linking trends to changes of vegetation properties is sparse due
to a limited number of high-quality validation datasets as a result of the
logistical challenges associated with Arctic fieldwork. This review
identifies near-field remote sensing systems such as time-lapse cameras
as a promising tool for validation of vegetative changes in remote Arctic
ecosystems.

3.3.1. Aboveground biomass and Leaf Area Index (LAI)
The majority of recent studies on vegetation properties have focused

on estimations of aboveground biomass using field data and satellite-
derived vegetation indices at multiple spatial scales (e.g., Chen et al.,
2009; Kushida et al., 2009, 2015; Räsänen et al., 2019; Raynolds et al.,
2012; Riedel et al., 2005Liu and Treitz, 2018). The most extensive ex-
amination of the relationship between aboveground biomass and sa-
tellite derived NDVI was conducted by Raynolds et al. (2012) across the
North American and Eurasian Arctic transects. This unique dataset
found that total aboveground biomass measured by destructive sam-
pling was strongly related to peak summer, maximum NDVI at the 1 km
AVHRR scale. This relationship was then used to look at 30 years of
aboveground biomass dynamics across the Arctic biome, which showed
the greatest changes in the Low Arctic, but with high spatial variability
(Epstein et al., 2012). Research at the 30-m Landsat and VHSR scale in
both Low and High Arctic sites has also found strong relationships of
destructively sampled aboveground biomass and vegetation cover with
peak summer NDVI (Berner et al., 2018; Laidler et al., 2009). However,
additional research using VHSR from multiple circumpolar sites sug-
gests that biomass-NDVI relationships derived from vegetation height

and cover are site- and scale-dependent, and models cannot be applied
universally (Atkinson and Treitz, 2013; Räsänen et al., 2019). In the
increasingly relevant field of imaging spectroscopy (i.e., high spectral
resolution optical data), Liu et al. (2017) provided a summary of how
the unique characteristics of Arctic vegetation influences optical prop-
erties and reiterated recent findings that narrowband vegetation indices
provide more accurate estimations of phytomass, biomass, and leaf area
index (LAI) than broadband indices (e.g Bratsch et al., 2017; Buchhorn
et al., 2013). These findings are important in the context of current and
upcoming spaceborne imaging spectroscopy missions such as the
German EnMAP satellite (Guanter et al., 2015) and the Italian PRISMA
satellite (Loizzo et al., 2018), which could greatly improve estimates of
Arctic biomass.

In contrast to biomass, Williams et al. (2008) found that Leaf Area
Index (LAI) and field-based NDVI had a scale invariant relationship, and
when LAI was extrapolated to the Landsat scale, the error magnitude
was comparable to Landsat NDVI calibration errors. These results are
similar to ground-based investigations by both Goswami et al. (2015)
and Riedel et al. (2005) who found strong correlations between LAI and
NDVI. These studies also found that this relationship tends to saturate at
LAI values between 2 and 3 (m2m−2) making upscaling in highly ve-
getated areas prone to underestimations. In situ measurements and
extrapolation of LAI to satellite scales in ecosystems with low-stature
vegetation remains challenging with no standardized methods (Bréda,
2003). Methods to accurately measure and extrapolate LAI in erect-
shrub Arctic ecosystems uses a combination of light fraction penetration
through the canopy, and surface canopy reflectance (e.g., NDVI) (Van
Wijk and Williams, 2005). In prostrate communities where measuring
light penetration is not possible given low canopy height, destructive
sampling and digital photography have been used to generate LAI es-
timates (Goswami et al., 2015). Overall, LAI remains a challenging
biophysical variable to model with optical remote sensing given the
absence of consistent and accurate in situ measurements and validation
in some Arctic ecosystems.

3.3.2. Vegetation seasonality, phenology, and primary productivity
In addition to greening, NDVI datasets have also been used to look

at changes in the seasonality, phenology, and primary productivity of
tundra vegetation related to the period, timing, and magnitude of an-
nual photosynthetic activity and carbon exchange (e.g., Bhatt et al.,
2017; Gamon et al., 2013; Shaver et al., 2013; Tagesson et al., 2010; Xu
et al., 2013; Zeng et al., 2013). In the literature, seasonality is generally
defined as the length and timing of photosynthetic activity and is de-
rived from temporal patterns of NDVI, while vegetation phenology is
related to specific plant developmental stages and is often defined by
NDVI thresholds. The two terms are often used interchangeably, and
while intrinsically linked, they represent two distinct ecological pro-
cesses. To date there are very few studies that directly link optical re-
mote sensing signals to specific in situ phenological stages such as leaf-
out or flowering (e.g., Beamish et al., 2016; Beck et al., 2007).

As with other variables inferred from optical remote sensing,
changes in vegetation seasonality and phenology show non-linear
trends over time with strong scale and geographic dependence. At
continental scales, seasonality derived from AVHRR and MODIS-NDVI
suggests a lengthening and intensification of the growing season at
northern latitudes due to earlier onset of spring, resulting in greater
CO2 uptake and a prolonged period of photosynthetic activity
(Barichivich et al., 2013; Zeng et al., 2011). However, the timeframe,
density of datasets, and extent of the studied area greatly influence
observed trends. For example over a 30-year period Eurasia (> 50°)
showed greater increases in growing season length than North America
(Barichivich et al., 2013), while on shorter, more recent time scales
(2000–2010), North America (> 60°) had far greater advances in the
start of the growing season (Zeng et al., 2011). A recent circumpolar
analysis of tundra vegetation seasonality found decreasing springtime
AVHRR-NDVI, suggesting a shortening of the growing season, likely a
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result of complex ecological phenomena including increased standing
water, delayed spring snowmelt, winter thaw, and re-freezing events
(Bhatt et al., 2017). Field-based investigations into the changing sea-
sonality found that vegetation productivity (field-based NDVI) did not
increase despite earlier snowmelt in a Low Arctic coastal wet sedge
tundra, and corresponding satellite data were unable to identify dif-
ferences in timing of snowmelt and NDVI (Gamon et al., 2013). The
onset of Arctic vegetation activity and phenology have been shown to
be highly correlated with satellite derived snowmelt at the satellite
scale (Zeng and Jia, 2013), but this ground-based investigation once
again highlights the heterogeneity and scale dependence of processes
and the importance of in situ measurements to provide detail not
available from satellite observations. Anderson et al. (2016) used or-
dinary digital cameras to successfully monitor phenology of dominant
High Arctic species highlighting the utility of near remote sensing
systems reducing the dependence on intensive in situ observations.

The relationship between primary productivity and NDVI in Arctic
tundra is highly variable. Direct comparison of carbon fluxes to NDVI or
biophysical variables modelled from NDVI such as Light Use Efficiency
(LUE) or LAI, suggest that optical remote sensing can be used to predict
primary productivity with relative certainty in highly vegetated com-
munities such as wet sedge meadows, fens, and shrub-dominated
tundra (Emmerton et al., 2016; Street et al., 2007; Tagesson et al.,
2010, 2012; Ueyama et al., 2013). Sparsely vegetated polar semi-de-
serts remain challenging to predict due to low plant growth (Emmerton
et al., 2016). Westergaard-Nielsen et al. (2013, 2017) demonstrated
that near-field remote sensing systems of time lapse digital cameras are
also capable of monitoring gross primary productivity in Low and High
Arctic ecosystems with a high degree of certainty. Seasonal estimates
across different vegetation communities and phenological phases have
proven highly variable (La Puma et al., 2007). The relationship between
optical remote sensing signals and primary productivity is not linear,
and vegetation community type, phenological phase, as well as climate
variables such as growing degree-days, must be taken into considera-
tion when scaling to regions and the tundra biome.

3.3.3. Vegetation pigments and nutrients
Photosynthetic pigment and foliar nutrient content are perhaps the

least-well characterized tundra vegetation properties, despite being key
indicators of vegetation health and activity. This is again the result of
limitations in validation datasets due to difficulties in sample con-
servation and processing in remote Arctic sites. The use of image
spectroscopy and spectral indices as proxies is well established across
many other biomes (Asner, 1998; Asner and Martin, 2008; Carlson
et al., 2007; Clevers and Gitelson, 2013; Sims and Gamon, 2002).
Within the timeframe of this review, only two studies examining the
direct relationship between optical remote sensing signals and photo-
synthetic pigment content in the Arctic were identified. Zagajewski
et al. (2018) assessed the feasibility of in situ hyperspectral remote
sensing to monitor High Arctic vegetation vitality and found strong
correlations between narrowband, pigment-driven spectral indices and
pigment content. The second study by Beamish et al. (2018) examined
the relationships among narrowband indices, camera-derived green-
ness, and pigment content and found that simple green indices are
sufficient to track seasonal pigment driven changes in Low Arctic ve-
getation. The relationship between optical remote sensing and foliar
nutrients was notably missing from our review, highlighting the need
for focused research into this area. Van Wijk et al. (2005) found a tight
coupling between canopy fraction measured LAI and foliar nitrogen,
suggesting this relationship could exist with spectrally derived LAI,
though further investigation is needed.

3.3.4. Solar-induced chlorophyll fluorescence
An emerging trend in optical remote sensing of Arctic tundra ve-

getation involves acquisitions of passive solar-induced chlorophyll
fluorescence (SIF). SIF, a by-product of light absorption by the

chlorophyll complex during photosynthesis, is a more direct proxy for
photosynthetic activity than vegetation indices and can be quantified
by both ground and satellite observations (Frankenberg et al., 2014;
Porcar-Castell et al., 2014). The two most common satellite sensors
used in SIF applications are NASA's Orbiting Carbon Observatory-2
(OCO-2) and the European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT)/European Space Agency (ESA)’s
Global Ozone Monitoring Experiment 2 (GOME-2). The GOME-2 col-
lects data at a 40 x 40 km scale, while OCO-2 has a spatial resolution of
1.29 x 2.25 km with sparse and spatially discontinuous coverage, and
these are used to infer regional and biome-scale trends in ozone and
CO2, respectively. In 2017, ESA launched the TROPOspheric Mon-
itoring Instrument (TROMPOMI) with an improved spatiotemporal re-
solution (7 km × 3.5 km, daily spatially continuous global coverage)
but a broad viewing angle requiring cautious interpretation.

The use of SIF data for terrestrial applications in the Arctic is in its
infancy but initial studies suggest that in comparison to vegetation in-
dices such as EVI, SIF is less susceptible to confounding signals from
non-vegetated surfaces, which is a great advantage in patchy and dis-
continuous Arctic ecosystems (Luus et al., 2017). Luus et al. (2017)
compared airborne and tower measurements of CO2 fluxes to EVI and
SIF over Alaskan tundra and found that SIF-based estimates provide
more realistic models of seasonal tundra photosynthesis with green-up
occurring nine days later than EVI-based estimates. A further study
from Walther et al. (2018) found disagreements between pan-Arctic
tundra productivity estimated by vegetation indices (greenness) and
SIF, with VI-derived greenness peaking later than SIF. A recent study
using downscaled GOME-2 SIF (ca. 5 km) to examine recent cir-
cumpolar greening trends once again found disagreement between
long-term NDVI trends (2003–2013) with a clearer tundra browning
signal in the SIF data compared to spatially and temporally hetero-
geneous NDVI greening trends.

Though SIF data are less susceptible to confounding signals from
non-vegetated surfaces and providing a potentially more realistic esti-
mate of photosynthetic activity, it is susceptible to high noise levels.
This is due to the very large footprint and integration time of the sen-
sors, as well as the generally weak signals from prostrate Arctic vege-
tation, and overall low photosynthetic rates and low illumination
conditions. There is a need for more detailed in situ studies at finer
spatial scales and a greater understanding of the technical limitations
and inherent uncertainties to fully understand the relationship between
SIF and photosynthetic activity of Arctic tundra vegetation, yet the
recent research demonstrates the potential for this technique to im-
prove our understanding of vegetation change in the Arctic.

3.4. Classification and mapping

The creation of ecosystem maps is foundational for interdisciplinary
research and long-term monitoring in the Arctic, however circumpolar
scale maps with consistent nomenclature are limited (Macander et al.,
2017).To date, the only circumpolar-scale Arctic land cover map with
consistent nomenclature is the CAVM (Circumpolar Arctic Vegetation
Map, (CAVM Team, C, 2003)). The CAVM provides a hierarchical
classification of the tundra biome using physiognomic units with ac-
companying detailed vegetation descriptions derived from a combina-
tion of AVHRR spectral information and manual delineation by regional
experts. The original map has a 14 km resolution but a 1-km resolution
raster CAVM has recently been developed which greatly improves the
spatial resolution and detail (Raynolds et al., 2019). This map, while
highly valuable for its circumpolar extent, is limited to areas north of
the treeline and is still coarse in scale for some applications. Other re-
gional and local classification and mapping efforts have focused on
integrative ecological classifications similar to the CAVM that combine
vegetation information with other environmental variables such as
geology and climate, as well as efforts to map plant communities, plant
functional types, and percent vegetation cover which are reviewed in
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the following sections.

3.4.1. Ecological classification
The majority of recent mapping efforts using optical remote sensing

data provide rasterized ecological classifications across the circumpolar
Arctic at local and regional scales. These maps are generally produced
through a combination of semi-automated supervised and unsupervised
classifications of satellite spectral reflectance data with the inclusion of
ancillary data, such as terrain attributes, percent vegetation cover,
aboveground biomass, and soil moisture (Johansen et al., 2012). Clas-
sification schemes are essential for accurate modeling of ecosystem
processes such as carbon exchange (Atkinson and Treitz, 2012), me-
thane emissions (Schneider et al., 2009), and for long-term ecological
monitoring in remote national parks (Fraser et al., 2012). Ancillary data
are required for ecological mapping due to the heterogeneous and
patchy nature of Arctic tundra vegetation, which makes spectral se-
paration of distinct ecological classes difficult. Recently Langford et al.
(2019) investigated vegetation mapping using artificial neural networks
and highlighted emerging supervised and unsupervised classification
methods that could improve classification of heterogeneous Arctic ve-
getation.

3.4.2. Community composition, plant functional types, and percent
vegetation cover

Recent quantitative fractional vegetation mapping efforts by
Macander et al. (2017) successfully mapped plant functional types in
Arctic Alaska using spectral predictors from Landsat data. Best results
were found for canopy-forming species such as deciduous shrubs, and
the methodology allows for periodic updates. Ottlé et al. (2013) con-
ducted a similar mapping exercise at a 1-km scale across Siberia using a
variety of land cover products and noted the importance of such efforts
for accurate climate modelling. Bartsch et al. (2016) identified the need
for a separate but compatible plant functional type (PFT) classification
for ecosystems from the Sub to High Arctic that includes robust clas-
sification of shrubs, as well as mosses and lichens in communities where
they are not the dominant functional group. Better resolution of the
presence and abundance of additional vascular plant types such as
graminoids and forbs is also needed across the TTE to High Arctic la-
titudinal gradient. Landsat and Sentinel-2 imagery were identified as
having great potential to fill this gap in land cover mapping, providing
improved spatial and spectral resolutions (Olthof et al., 2009). Further
conclusions by Bartsch et al. (2016) suggest that existing shrub classi-
fications from global land cover products could be extended to Arctic
ecosystems, as they can be easily validated with existing in situ data. In
addition, land cover classes of mosses and lichens, such as those created
by Langford et al. (2016) using WorldView data for the Alaskan Arctic
Coastal Plain, should be modified to use lower spatial resolution data
such as Landsat or Sentinel-2 to facilitate circumpolar-scale mapping.

4. Remaining challenges for optical remote sensing of Arctic
tundra vegetation

4.1. Environmental controls on observed NDVI trends

In addition to technical challenges associated with the identification
of ecological phenomena using remote sensing data, a better under-
standing of the environmental and climatic controls on these phe-
nomena is necessary to validate and better understand observed trends.
This is no easy task given mismatching spatial and temporal scales of
available data as well as the complex interactions and feedback me-
chanisms among variables. Environmental and climatic data such as
soil moisture, precipitation, snow depth, air and surface temperature as
well as sea ice are generally interpolated from a limited number of
meteorological stations or are averaged over large spatial scales from
satellite data making attribution to observed NDVI trends challenging
(Comiso, 2003; Raynolds et al., 2008).

Bhatt et al. (2010, 2013, 2017) have published several foundational
papers examining NDVI productivity trends in relation to near-coastal
sea ice cover and land surface temperatures. Initial examinations of
these trends suggest decreasing sea ice and increasing summer tem-
peratures correspond to observed increases in productivity in both Low
and High Arctic ecosystems (Bhatt et al., 2010). More recently, de-
creases in early season NDVI in Eurasia were concurrent with decreased
sea ice cover and increasing evapotranspiration leading to cloudier
skies and colder temperatures (Bhatt et al., 2013). Phenomena such as
increased standing water, delayed snow melt, winter warming events,
and increased surface moisture have all been identified as decreasing
NDVI at the local scale but do not explain large scale circumpolar trends
(Bhatt et al., 2017; Bieniek et al., 2015; Phoenix and Bjerke, 2016;
Raynolds and Walker, 2016).

Despite identification and discussion of potential drivers in the last
decade of terrestrial Arctic remote sensing research, robustly attri-
buting climate and environmental drivers to changing Arctic pro-
ductivity is, and will continue to be, challenging given the uncertainties
and complex feedbacks inherent in these data. Myers-Smith et al.
(2020) outlines how interdisciplinary research that includes remote
sensing, ecology, Earth-system science and computer science in com-
bination with re-analysis of historical data is necessary to begin to fully
understand the complexity of Arctic NDVI trends.

4.2. Upscaling and extrapolation

The usual trade-offs among spectral, spatial, and temporal resolu-
tions are magnified by the challenges of data acquisition in the Arctic,
including frequent cloud cover, long dark winters, and low sun angles.
To address the challenges identified in this review, a better under-
standing of the differences among sensors in terms of spectral and
radiometric sensitivity, viewing geometry, and geometric resolution is
needed to develop standardized, high latitude-specific methods to allow
the fusion of data from multiple sensors. An additional consideration to
upscaling and extrapolation is the inherent spatial biases in much of the
in situ data collection that occurs in the Arctic. Given the cost and lo-
gistics of data collection outside of established research areas, the
limited high-quality data come from highly localized areas which
should be taken into account when performing upscaling exercises. In
the following sections the ecological factors leading to uncertainties
when upscaling and extrapolating optical remote sensing data in ter-
restrial Arctic ecosystems are outlined.

4.2.1. Unmanned aerial vehicles
UAV technologies have been identified as highly valuable tools for

improving the spatial coverage and scale of remote sensing of Arctic
ecosystems. Recent studies show the promise of UAV-derived imagery
and photogrammetry as an accurate and cost-effective tool for mapping
Low Arctic vegetation cover and height at an intermediate scale (Fraser
et al., 2016; Riihimäki et al., 2019). However, the relatively new
technology of UAVs has the potential to be “cutting edge” as well as
“bleeding edge” (high expense, low reliability), and coordinated efforts
such as those being championed by the High Latitude Drone Ecology
Network (HiLDEN; arcticdrones.org) are required. Assmann et al.
(2018) provide a thorough outline of their best practices and lessons
learned from three years of data collection in the Canadian Arctic. They
identified the following four key components for ensuring high quality
data: flight planning and overlap, weather and sun, geolocation and
ground control points, and radiometric calibration. They concluded
that with a standardized workflow that carefully considers the above
factors, UAV acquisitions can produce multispectral or hyperspectral
data that are comparable across study regions, plots, sensors, and time.

4.2.2. Disturbance and hydrology
A further issue associated with scaling and extrapolation of data and

observed trends is the incorporation of scale-variant features such as
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disturbances and surface hydrology dynamics (e.g., extent of lakes and
ponds). At high spatial resolutions, permafrost disturbances and tundra
wetlands, lakes, and ponds are easily identifiable, but sub-pixel changes
in surface water extent can confound observed trends in vegetation
change using coarser datasets (e.g., Landsat, MODIS) (see Raynolds and
Walker, 2016). A circumpolar-scale inventory of disturbances and
surface hydrological features, such as efforts by Nitze et al. (2017),
would greatly benefit the extraction and interpretation of observed
trends of Arctic vegetation change. Modern, multi-polarization syn-
thetic aperture radar (SAR) platforms were identified as necessary for
mapping Arctic water bodies, given the highly dynamic extent of these
features over short time periods (Barrett et al., 2012; Bartsch et al.,
2012). Pixel-based trend analyses using the Landsat archive, such as
those developed by Nitze and Grosse (2016) and Pastick et al. (2019),
are a promising development for inventorying permafrost disturbance
hotspots, which in turn can be validated with high resolution and in situ
data where available.

4.2.3. Plant functional types
The identification of PFTs also remains a challenge in regional and

biome scale Arctic vegetation remote sensing given varying scales of
data used, as well as a lack of standard circumpolar nomenclature.
Previous studies have found that spectral differentiation of PFTs is
possible (see Macander et al., 2017) but these data have mostly in-
cluded ground-based hyperspectral measurements (Beamish et al.,
2017; Bratsch et al., 2016; Buchhorn et al., 2013; Huemmrich et al.,
2013). As highlighted previously, the identification of mosses and li-
chens, and the standardization of these functional types in terms of
definition and spectral properties, are key requirements for improving
vegetation remote sensing in the Arctic, and high spectral resolution
data is needed. Improved representation of lichens and mosses is also
highly desirable for understanding subsurface properties of Arctic
landscapes, given the importance of these PFTs in maintaining the
ground temperature regime. However, this is a highly complex task and
one that cannot be fully addressed using only multispectral data. For
example, reflectance spectroscopy values of moss species are highly
dependent on their moisture content, which can change very rapidly
but do not always reflect actual changes in primary productivity (May
et al., 2018). As part of the NASAs Arctic and Boreal Vulnerability
Experiment (ABoVE), a concerted effort is being made to understand
the relationships between ground-based and airborne spectral re-
flectance and PFTs. This research will greatly improve the use of data
from the Italian PRISMA hyperspectral satellite and the upcoming
launch of the German EnMAP hyperspectral satellite, which will pro-
vide additional and highly valuable data to address the important non-
vascular component of Arctic vegetation on a much larger extent than is
currently possible.

Another approach to measuring plant diversity using remote sen-
sing, aside from established methods (e.g., PFTs), is to evaluate func-
tional diversity (i.e., the range and values of defined spectral indices
related to ecosystem function) as a potentially more informative and
straightforward measure of ecosystem functioning (Alcaraz-Segura
et al., 2013; Villarreal et al., 2018; Virtanen et al., 2013) based on field,
airborne, and satellite data. This approach may present a more logical
way to link carbon, water, and energy cycling, as well as herbivore
activity and movement, to diversity of ecosystem functioning.

4.2.4. Vegetation phenology
Monitoring vegetation at different phenological stages can be seen

as both a challenge and an opportunity. Given the rapidly lengthening
growing season and the high percentage of senesced vegetation present
in many Arctic vegetation communities, accurately monitoring phe-
nology with remote sensing data at high temporal frequency is difficult.
Archives such as AVHRR and Landsat provide the opportunity for large-
scale monitoring of vegetation phenology (Stow et al., 2004), however
the fine-scale heterogeneous nature of Arctic vegetation, and therefore

vegetation phenology, cannot be captured at such coarse scales. The
incorporation of time-lapse digital cameras and an increase in camera
networks and data sharing offer promising ways to increase phenolo-
gical measurements and validate remote sensing products (Anderson
et al., 2016; Beamish et al., 2016). Remote sensing data from different
phenological phases could provide new possibilities for classification of
spectrally similar communities. Beamish et al. (2017) and Bratsch et al.
(2016) found that the differentiation of spectrally similar Alaskan
tundra vegetation communities increased in the late season owing to a
relative increase in among-community variability in spectral re-
flectance. Macander et al. (2017) also found an improvement in clas-
sification of PFTs in Alaskan tundra using multi-seasonal composites.
These results highlight the need to incorporate non-peak season remote
sensing data into Arctic vegetation monitoring and mapping.

4.2.5. Tundra-taiga ecotone
A final challenge in upscaling and extrapolation is the TTE. This

dynamic transitional ecosystem includes the unique components of Low
Arctic vegetation communities and sparse, isolated trees. The position,
composition, and abruptness of the TTE varies greatly across the cir-
cumpolar Arctic-boreal region (Callaghan et al., 2002). Previous re-
search has identified that monitoring and characterizing the TTE using
remote sensing techniques has large uncertainties and requires fine-
scale, site-based data (Callaghan et al., 2002; Danby, 2011). Due to the
highly variable ecosystem structure, both coarse and fine-scale remote
sensing often contain measurement errors greater than the vegetation
or vegetation change signal (Montesano et al., 2014). Increased ground-
based measurements of vegetation are needed to better characterize
uncertainties at coarse and fine remote sensing scales. This is particu-
larly true for vegetation structure changes that are most closely linked
to changes in climate (Montesano, 2015). Montesano et al. (2014)
outlined how the integration of spaceborne Light Detection and Ran-
ging (LiDAR) data with high resolution spaceborne stereo imagery to
model canopy height could vastly improve our understanding of the
uncertainties and therefore dynamics associated with monitoring TTE
changes. The authors also highlight the potential of the upcoming
spaceborne LiDAR ICESat-2 satellite from NASA to extract vegetation
height data at the circumpolar scale.

In addition to better quantification of forest structure, an effort is
underway for the development of a unified Circum-Boreal Vegetation
Map (CBVM) similar to the CAVM that will include detailed classifi-
cation of the TTE. This effort is coordinated under the Conservation of
Arctic Flora and Fauna (CAFF), an initiative of the Arctic Council to
cooperate on species biodiversity and habitat management and re-
search. As with the CAVM, the CBVM will have applications for many
stakeholders and will provide a much-needed common baseline for
monitoring environmental change, wildlife habitat, and natural re-
source activities.

4.3. Data processing and sharing

With the introduction of platforms such as Google Earth Engine
(GEE), the capabilities of a powerful cloud computing environment are
accessible and readily available to the research community (Gorelick
et al., 2017). Next to providing a wide range of remote sensing imagery
and data products, GEE creates the possibility of long time-series ana-
lyses and continental or global scale analyses. These new capabilities
have allowed scientists to address new questions and have enabled
monitoring efforts that were previously infeasible. While improving
data accessibility and processing power, GEE is by no means a perfect
solution, and working at the circumpolar scale is challenging. In addi-
tion, as it is a commercial platform, it raises concerns regarding, among
others, continued free access and availability of the platform, as well as
privacy and copyright issues. Other platforms, such as EarthServer,
Docker and the Coupled Model Intercomparison Project (CMIP) which
provide cloud-based virtual services have also emerged, and gained
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prominence and acceptance within the research community (Baumann
et al., 2016; Eyring et al., 2016). Different services provided by the
Copernicus program, such as the Copernicus Sentinel Hub, also provide
open access to vast amounts of Earth observation data. However, these
services mostly charge a fee for download or cloud computing cap-
abilities, with expansion into capabilities for processing and analysing
being planned (Sudmanns et al., 2019).

A relatively untapped resource is camera networks from different
organizations which provide data through various protocols and plat-
forms, e.g., Phenocam, FTP, HTTP, web page request, Zenodo, Pangaea.
At the moment, one needs to search for the camera networks and the
data availability separately. It is possible to fetch image data through
common platforms or software that are able to use different protocols
(Tanis et al., 2018). A camera network portal to gather different camera
networks in one place, providing information on the data and how to
access it, would be beneficial to the research community. This portal
would also have an interactive webpage where institutes and re-
searchers could collaborate to gather, share, and maintain the in-
formation and processing procedures (e.g., Confluence, Wiki). In ad-
dition to the data, the portal could have a section for algorithms for
processing image data for vegetation, snow, and ice phenology, along
with the software, if available. Adding a section for projects and pub-
lications, the portal would attract researchers, academics, en-
trepreneurs, and innovators.

While these platforms certainly show immense progress by the
Earth-observation community over recent years, none of them are
specifically created for issues concerning Arctic landscapes. In the case
of GEE, the datasets provided are largely created with a focus on lower
latitudes, which can cause problems, including lower quality data, for
Arctic regions.

5. Best practices and outlook of optical remote sensing of Arctic
tundra vegetation

5.1. Importance of continuity of satellite sensors, products, and free
availability

Continuity of sensors is critical for monitoring changes on the
Earth's surface, however, improving technology results in changes to
successive space missions. Improvements, such as more numerous and
narrower spectral bandwidths, provide higher quality data, but often
make them difficult to analyze long-term trends. For example, NDVI
data from the Landsat 8 OLI sensor are not equivalent to the data from
Landsat 5 and 7 (Roy et al., 2016), and transformation functions may
have to be developed for individual applications. Recent efforts have
provided spectral corrections to allow for direct comparison and the
creation of dense time series of Sentinel-2 and Landsat 8 OLI data over
Eastern Siberia (Runge and Grosse, 2019). Similarly, MODIS data have
been used in conjunction with the AVHRR data record, but these data
are not directly analogous (Fensholt et al., 2009). Space agencies are
working to make new sensors compatible and encourage research on
best practices to translate or merge new sensor data with old records to
create the longest possible databases.

In concert with sensor continuity, the terrestrial Arctic remote
sensing community recognizes the importance of continuity in the
products created and distributed via data portals by various space
agencies. The geo-registered, orthorectified images (Level 1 processing)
and surface parameters calibrated (Level 2) are the primary products
used by the remote sensing community. Processing technology also
changes, but improvements in satellite orbit correction, and resulting
geo-registration and sensor calibration, as well as corrections such as
Bidirectional Reflectance Distribution Function (BRDF) (Buchhorn
et al., 2016), can often be applied retroactively to a whole data series
(e.g., MODIS Version 6 Vegetation Products), and have been less dis-
ruptive than changes in sensor technology.

The privatization of Landsat data in the 1980s resulted in high costs,

low quality products, low usage, and large temporal gaps (Wulder et al.,
2012), clearly demonstrating the inadvisability of this approach. User
fees cannot support the cost of sensor deployment, so any fee reduces
the data utility to society in general. With free availability of Landsat
data, the number of scenes downloaded jumped from less than 50,000
per year to over five million in 2013 (Turner et al., 2015). A large
majority of Arctic vegetation research is based on freely available data,
including Landsat, MODIS, Sentinel-2, TerraSAR-X and TandemX
(limited availability), and other SAR data. Some researchers used free
access to high-resolution data from WorldView and QuickBird, avail-
able as part of their US-funded research. The free availability of satellite
data supports a wide range of studies and applications by students and
early career researchers that would not otherwise be possible. The ex-
ploration of big data sets, such as through Google Earth Engine, would
be most affected by any pricing of satellite data. Consistent, free data
availability is of great importance to the community.

5.2. Sensor advancements and data fusion

The addition of spaceborne imaging spectrometers, i.e., hyper-
spectral satellites, could address some of the identified issues related to
the unique optical characteristics of Arctic tundra vegetation. In this
context, current studies for further operational hyperspectral missions
such as the SBG (NASA) (Green, 2018) and CHIME (ESA) (Rast et al.,
2019), which are presently in phases A/B, are particularly relevant.
These missions are designed to provide global coverage, unlike EnMAP
and PRISMA which are target missions that acquire a limited number of
data acquisitions per day but are valuable for advancing research and
retrieval algorithms, as well as the identification of future potential
changes. Imaging spectroscopy shows great potential to refine and ex-
pand our understanding of Arctic vegetation change.

The field of data fusion is also recognized as highly promising for
Arctic applications given the relative scarcity and limitations of optical
datasets. The inclusion of Light Detection and Ranging (LiDAR) and
Synthetic Aperture Radar (SAR) have been shown to improve estimates
of shrub extent, PFTs, and aboveground biomass (Chen et al., 2009;
Greaves et al., 2016; Langford et al., 2016; Riihimäki et al., 2017).
These data represent an especially promising tool in Arctic land surface
remote sensing given the independence from atmospheric distortions
(e.g., clouds) and illumination.

5.3. In situ validation

A concerted effort to collect and share high quality validated in situ
datasets is the best way to overcome sensor, scale, and geographic
uncertainties in optical remote sensing of Arctic vegetation. Improved
metadata standards will be crucial to accomplish this. An inventory of
all available Arctic databases is provided in the Supplementary Material
(Table S2). Methods such as those by Dafflon et al. (2017), who provide
a comprehensive examination of environmental controls by concurrent
above- and below-ground monitoring of permafrost, soil, and vegeta-
tion optical properties, would be highly valuable to extend to multiple
sites. Time-lapse and repeat digital photography should also be ag-
gregated and expanded through the creation of an Arctic camera net-
work. This simple, cost-effective method can greatly increase the fre-
quency and extent of in situ validation data. Carefully collected UAV
image time-series can fill a similar role, documenting vegetation dis-
tribution and structure at a level of detail equivalent to many tradi-
tional in situ observations. Continued efforts to standardize data col-
lection through protocol sharing and collaboration would also greatly
improve cross-site comparisons and extrapolation.

5.4. Outlook

Overall there is broad consensus that remote sensing is an indis-
pensable tool in monitoring Arctic vegetation change. However, the use
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of remote sensing data in Arctic ecosystems would benefit from a co-
ordinated sharing of lessons learned and best practices among both
remote sensing scientists and plant ecologists. The unique optical
properties of terrestrial Arctic ecosystems, as well as the relative scar-
city of both remote sensing and field-based environmental data, require
collaborative efforts to further the field of Arctic vegetation science. In
particular, the inclusion of in situ environmental control data to validate
observed remote sensing trends at multiple spatial scales is needed. As
freely available databases increase, metadata standards will improve,
leading to greater consistency of data products. Detection of soil
moisture dynamics, water bodies, and disturbances by remote sensing
has received recent attention, and as a result the utility of incorporating
non-optical and active sensor data was highlighted. Data fusion with
SAR and LiDAR shows high potential in monitoring land surface and
vegetation change. The identification and extrapolation of the ecolo-
gically important plant functional types (PFTs) remain a challenge, but
new approaches targeting functional diversity rather than traditional
diversity measures may create a more ecologically relevant classifica-
tion scheme in terrestrial Arctic tundra ecosystems. Monitoring Arctic
vegetation phenology also requires the incorporation of additional data
sources such as time-lapse imagery, which can be used to validate re-
mote sensing trends. With an increased emphasis on data sharing and
availability as well as the advent of technologies such as the Google
Earth Engine, the identified challenges associated with Arctic vegeta-
tion remote sensing at multiple scales can surely be addressed.
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