
https://doi.org/10.1093/gji/ggac041

Institutional Repository GFZpublic: https://gfzpublic.gfz-potsdam.de/
Insights into Moho depth beneath the northwestern Andean region from gravity data inversion

D.S. Avellaneda-Jiménez, 1 G. Monsalve, 2 S. León1,3 and A.M. Gómez-García4

1Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Medellín, 050034, Colombia. E-mail: dsavellanedaj@unal.edu.co

2Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín, 050034, Colombia

3Smithsonian Tropical Research Institute, Balboa, Ancon, 07098, Republic of Panama

4GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

SUMMARY

The complex Moho topography beneath the northwestern Andes is the result of multiple geodynamic processes during the Cenozoic. To contribute to our understanding of the Moho depth distribution beneath this region, we inverted gravity data from two widely used satellite-derived data sets (EGM2008 and EIGEN-6C4) and one regional airborne Bouguer gravity anomaly map (ANH2010). Their inversion allowed choosing the ANH2010, based on lower residual gravity and a higher agreement with seismic estimations, as the most suitable data set to gain insights into the Moho depth beneath the northwestern Andes and its relationship with previously identified tectonic features. The inverted Moho argues for a 40–50 km depth beneath the Central and Eastern cordilleras, reaching depths beyond 50 km below the Eastern Cordillera, and shallower depths between 30 and 40 km mainly along the foreland region to the east, the Western Cordillera and the coastal plains. Three main thickened crust features of regional extent were identified: (1) a deep Moho expression with a crustal thickness greater than 40 km in the northwesternmost foreland region, which we consider a direct consequence of the adjacent thickened Eastern Cordillera involving the fold and thrust deformation migration from the range towards the foreland, and the flexural deformation proposed for the eastern foothills; (2) a regional deep Moho expression (50–60 km) along the axis of the Eastern Cordillera, related to its shortening history including multiple phases of Cenozoic thick-skinned deformation and magmatic underplating; and (3) a Moho deeper than 60 km in a southern latitude (1°S–1°N) beneath the modern magmatic arc, whose interpretation is more complex, likely a combined result of mafic addition to the base of the crust, foundering tectonics, and lateral displacement of the lower crust prompted by the subducting Carnegie ridge.

Key words: Structure of the Earth; Satellite gravity; South America; Inverse theory; Dynamics: gravity and tectonics.

1 INTRODUCTION

The Moho discontinuity is defined as the rheological boundary where seismic velocity sharply increases due to the transition from crustal to mantle materials (Mooney 2021). This boundary can be complex in terms of depth and geometry along active orogens since it is subjected to physical and chemical processes promoted by the interaction between the base of the crust and the underlying uppermost mantle (Larkin et al. 1997; Schreiber et al. 2010; Karabulut et al. 2013; Kay et al. 2014). In subduction-related orogens, as the northwestern Andean region, the complexity of the crust–mantle transition depends on its petrologic contrast, lateral compositional and thermal dissimilarity, underplating and/or delaminating processes, and lower crustal flow, affecting the isostatic equilibrium as well as the rheological response of the overlying crust (Beck & Zandi 2002; Aitken et al. 2013; Spada et al. 2013; Shi et al. 2020; Xuan et al. 2020).

In the case of the northwestern Andes, a complex Moho topography is expected because of multiple tectonic processes that have occurred especially during the Cenozoic. They include the installation of different magmatic arcs during the Palaeogene currently juxtaposed by accretionary tectonics (Cardona et al. 2018; Montes et al. 2019), the development of an Oligo-Miocene to recent times magmatic arc installed above an accretionary orogen (Marín-Cerón...
et al. 2019; Monsalve-Bustamante 2020), the subduction zone migration of two different oceanic plates (Caribbean and Farallon) during the Cretaceous–Palaeogene, and the subsequent fission of the Farallon plate into Nazca and Cocos plate around 23 Ma ago (Lonsdale 2005), the collision of the Panama-Chocó arcc during the early-middle Miocene (León et al. 2018; Montes et al. 2019), and the subsequent establishment of a subducting Caribbean plate to the north and Nazca plate to the west of the northwestern Andes, with changes in the subduction angle and slab tearing along-strike within those slabs (Chiarabba et al. 2015; Syracuse et al. 2016; Wagner et al. 2017; Vargas 2020). Moreover, receiver functions and petrologic constraints have suggested the presence, in multiple regions below the cordilleran belt, of crustal thicknesses above 55 km, high Vp/Vs ratios, and fast seismic velocities at the crust–mantle transition, which are interpreted as reflecting mafic underplating and foundering tectonics (Poveda et al. 2015; Bloch et al. 2017; Monsalve et al. 2019). Such mechanisms are expected to drive important modifications in the mantle structure and along the Moho interface (Beck & Zandt 2002; Thybo & Artemieva 2013).

In consequence, Moho topography beneath the northwestern Andes must be investigated from different approaches to improve our understanding of its spatial distribution and the relationship with modern and ancient tectonics. In this sense, the most reliable approach for estimating Moho depth is considered to be seismic imaging, which permits the determination of broad and fine structures along this discontinuity (Mooney 2021). Nevertheless, the resolution and accuracy of such an approach strongly depend on the coverage and distribution of seismic stations. To overcome this limitation, inversion of gravity data has been widely applied to complement the study of the Moho topography, showing good correlations with seismic-based estimations (Aitken et al. 2013; Prasanna et al. 2013; van der Meijde et al. 2013; Sahoo & Pal 2021). The advantage of using gravity lies in its wider coverage and data accessibility, which makes it a valuable approach to constrain the structure of the lower crust and uppermost mantle in regions with limited coverage of seismic monitoring, such as the study area. Yet, because different gravity data sets with contrasting spatial resolution and coverage are available, a comparison between obtained inversions must be done before any interpretation is proposed. Previous attempts in this regard have been made on a continental scale (van der Meijde et al. 2013; Uieda & Barbosa 2017) overlooking particularities of the northwestern Andes because of different scopes.

In this paper, we contribute to the understanding of the Moho depth beneath the northwestern Andes by initially inverting gravity data from two widely used satellite-derived data sets, that is EGM2008 (Pavlis et al. 2012) and EIGEN-6C4 (Förste et al. 2014; Ince et al. 2019), and one regional airborne Bouger gravity anomaly map built by the National Hydrocarbon Agency of Colombia (Graterol & Vargas 2010). We followed the computation of a 3-D geometry of an interface with a crust–mantle density contrast, through the application of the Parker-Oldenburg iterative approach (Gómez-Ortiz & Agarwal 2005). We examine their differences in terms of convergence of the applied algorithm, their discrepancies with respect to global Moho models, that is CRUST1.0 (Laske et al. 2013) and GEMMA (Reguzzoni & Sampietro 2015), and their consistency with seismic constraints. By using an appropriate combination of parameters, after choosing the most suitable data set based on lower residual gravity and a higher agreement with seismic estimations, insights into Moho depth are discussed focusing on particular regional-extent expressions and their spatial correspondence with identified tectonic features.

2 TECTONIC SETTING

The Colombian Andes include three main mountain ranges named Eastern (EC), Central (CC) and Western Cordilleras (WC); the Magdalena Valley lies between EC and CC, and the Cauca-Patía Valley between CC and WC (Fig. 1). The foreland region lies to the east of the EC bounded by the dextral-reverse East Andean fault zone (Kellogg et al. 2019), composed of several individual thrusting fault systems (Veloza et al. 2012).

Slabs from at least two oceanic plates subduct beneath the Colombian Andes, the Caribbean plate to the north, beneath the Caribbean plains (CP in Fig. 1), and the Nazca plate to the west, beneath the Pacific plains and WC (Fig. 1). At 5–5.5°N, the so-called Caldas tear separates a flat-slab setting to the northwest, characterized by the absence of active volcanism, from normal/steep subduction to the south, where the modern magmatic arc is located (Vargas & Mann 2013; Chiarabba et al. 2015; Syracuse et al. 2016; Wagner et al. 2017; Vargas 2020).

Lithospheric thickness estimates of ~103 km within the foreland region and ~100–110 km along the Colombian Andes have been obtained from receiver functions, with no major latitudinal variations (Blanco et al. 2017). In terms of crustal thickness, seismic constraints suggest a 22–48-km-thick crust at the eastern foothills and the foreland region, and 20–40 km at the WC (Monsalve et al. 2013; Poveda et al. 2015). A crust thicker than 50 km is suggested beneath the central-northern region of the CC and EC (4–6°N), and along the southern CC (1–3°N; Poveda et al. 2015). Below the central EC, the identification of a high seismic velocity layer at the base of the crust has been interpreted as magmatic underplating, which seems to contribute to crustal thickening in this part of the orogen (Monsalve et al. 2019).

In terms of gravity data and modelling, along the CC, EC and the foreland region, Bouger gravity anomalies correlate well with a continental-affinity crust (Case et al. 1971; Vargas & Mann 2013; Kellogg et al. 2019; Gómez-García et al. 2021). The WC is characterized by higher gravity anomalies (e.g. Case et al. 1971) due to the nature of the basement (oceanic crust) mostly associated with fragments of the Caribbean plate (Kerr et al. 1997) accreted during the latest Cretaceous to Palaeogene (Villagómez & Spikings 2013; Pardo-Trujillo et al. 2020; León et al. 2021). Beneath the Caribbean plains, integrated geological, seismic and gravity data suggest the presence of accreted mafic materials related to the Caribbean plate as well (Cardona et al. 2012; Vargas & Mann 2013; Bernal-Olaya et al. 2015).

3 METHODOLOGY AND ANALYSIS

3.1 Inversion code and gravity data sets

3.1.1 Gravity Moho inversion

To estimate Moho topography by means of gravity data inversion, we initially assume isostatic equilibrium and applied the 3DINVERM code implemented by Gómez-Ortiz & Agarwal (2005). We consider isostatic equilibrium to be a good assumption since only positive residual topography has been considered for the northern Eastern Cordillera (Yarce et al. 2014; Siravo et al. 2018) with an amount of excess topography that we will show, is within the uncertainty of the applied method. The inversion code is based on the original equation of Parker (1973), who derived the Fourier transform of the gravitational field for an undulated interface in between
two layers with different densities. A relative height of the undulating surface (Moho) is calculated with respect to a reference average depth \(z_0 \) and a constant density contrast \(\rho = \rho_{ml} - \rho_c \) across \(z_0 \). The density contrast is defined as the difference between the density of the lithospheric mantle \(\rho_{ml} \) and the overlying crust \(\rho_c \).

The original equation is expressed as:

\[
F[\Delta g] = -2\pi G \rho \exp \left(-\frac{\vert \mathbf{k} \vert z_0}{} \right) \sum_{n=1}^{\infty} \frac{\bar{k}^{n-1}}{n!} F[h(r)^n]. \tag{1}
\]

where \(G \) is the gravitational constant, \(\mathbf{k} \) is the wavenumber vector and \(h(r) \) is the relative-height vector with respect to \(z_0 \). Gao & Sun (2019) re-derived the Fourier transform of eq. (1) allowing the \(z \)-axis to be positive downwards, obtaining the following expression that describes the undulations at the interface (Moho):

\[
F[-h(r)] = \frac{F[\Delta g] \exp \left(\frac{\vert \mathbf{k} \vert z_0}{} \right)}{2\pi G \rho} - \sum_{n=2}^{\infty} \frac{\bar{k}^{n-1}}{n!} F[-h(r)^n]. \tag{2}
\]

The inversion procedure is based on an iterative process that uses gravity data (Bouguer anomaly) and constant parameters \(z_0 \) and \(\rho \) until a convergence condition is reached (Oldenburg 1974).

As mentioned by Oldenburg (1974) and Gómez-Ortiz & Agarwal (2005), eq. (2) can be unstable for high frequencies so a high-cut filter multiplying the right-hand side of the equation is applied for
convergence. The low-pass filter rejects all frequencies above a higher threshold value referred to as SH, accepts all frequencies up to a low value referred to as WH, and applies a cosine filter over frequencies between these two reference values (Oldenburg 1974).

3.1.2 Gravity data and inverted area

Gravity was obtained from two satellite-derived data sets: EGM2008 with an average 2.5 arcmin resolution (Pavlis et al. 2012), and EIGEN-6C4 (Förste et al. 2014; Ince et al. 2019) with an equivalent ~18 km topographic wavelength from the spherical harmonic solution up to a degree and order of 2190 (e.g. Förste et al. 2014; Gómez-García et al. 2021). Moreover, a regional total Bouguer anomaly map built by the National Hydrocarbon Agency of Colombia (ANH in Spanish abbreviation), published as a 5 mGal contour map (Graterol & Vargas 2010), was also considered. The latter data set will be hereafter referred to as ANH2010 for simplicity.

In the cases of EGM2008 and EIGEN-6C4, the gridded data were downloaded as available Bouguer gravity anomaly from the International Centre for Global Earth Models (ICGEM; Ince et al. 2019), for which details about equations and parameters were used to compute the Bouguer anomaly are given in Barthelmes (2009). A 0.5° grid spacing was used in all data sets given the intended comparison with respect to global Moho models: CRUST1.0 with a resolution of 1° (Laske et al. 2013) and GEMMA with a resolution of 0.5° (Reguzzoni & Sampietro 2015). These global models were chosen to aim at a comparison with respect to seismic- and gravity-derived estimations.

The inverted area lies between 79.5–66.5°W and 2.5°–10.5°N, according to the spatial extent of the ANH2010 data set. However, considering the edge effects, the implemented code uses a cosine taper window for which we applied the suggested truncation window of 10 per cent of the extended data length (Gómez-Ortiz & Agarwal 2005). We choose to keep our Moho depth discussions in the region between 78–68°W and 1°–9°N (area for interpretation box in Fig. 1), allowing an area for interpretation not closer than 1.5° from the margins of the input gravity data.

As a limitation of our approach, steep Moho changes using this method can be partly evaluated by modifying the grid spacing of the input gravity data. Diminishing the grid spacing allows more constraints (nodes) per unit area which influences the algorithm to invoke steeper transitions in Moho depth. We evaluate this by using different grid spacing (0.2° and 0.25°) before our final 0.5° grid selection. We did not include this analysis in the paper, since the results were more complex and the steep Moho transitions beneath the northwestern Andes were out of the scope of this work. We wanted to depict, therefore, first-order Moho depth distribution and we considered that transitions between different tectono-geologic domains require a more appropriate and detailed methodology than the one used in this work.

3.1.3 The average depth parameter

When using the present approach, gravity inversion has been proven to be strongly influenced by the average depth parameter \(z_0 \) (e.g. Oldenburg 1974; van der Meijde et al. 2013; Ydri et al. 2020). Because this input parameter (average Moho depth) is a constant value that integrates the whole modelled area, what is recommended is to use the average depth beneath the region, although it might have thicker or thinner parts. The adjustments of thicker and thinner regions are what the inversion process allows to estimate. Therefore, initializing the algorithm with an average depth rather than a depth that might be biased for a particular region of the orogen is a valid approach.

To select a value of \(z_0 \) that allows a proper comparison with the global Moho models, we analyse the depth distribution of CRUST1.0 and GEMMA models within the inverted area (Fig. 2). The associated depth histograms for each model suggest that an average depth of 41 km is a reasonable value to compare with CRUST1.0, whereas a 31 km average depth is well suited to compare with GEMMA. The selection of different starting values, when compared to global models, is justified by the fact that within the target region CRUST1.0 and GEMMA models have substantial differences, CRUST1.0 consistently suggesting thicker crust estimates than GEMMA. For the comparison, we made the \(a \) \textit{priori} assumption that one of those models should be more accurate than the other, without knowing which one. By doing this, we selected the data set that minimized the differences with both global models, which means, regardless of which of the global models is more accurate, the chosen data set for final inversion will be better for the studied area than the other data set possibilities.

The comparison between the inverted gravity Moho and the seismic constraints was conducted by converting available crustal thickness into Moho depth (referred to as the depth with respect to mean sea level) below 24 seismic stations (Poveda et al. 2015). The conversion was done via subtracting the surface elevation from the crustal thickness at each station (e.g. van der Meijde et al. 2013), using the elevation data from the ETOPO1 model (Amante & Eakins 2009). The work of Poveda et al. (2015) was considered for such comparison as it contains the best coverage to date along the Colombian region and discusses a comparison between their results and previous gravity and seismic estimates.

To evaluate the convergence of the algorithm, and to select the best parameter combination that minimizes the residual gravity (modelled minus observed data), 5400 different set-ups (combinations of parameter values) were inverted using each gravity data set. The number of different set-ups resulted from allowing the density contrast \(\rho \) to vary between 0.25–0.60 g cm\(^{-3}\) (Sjöberg & Bagherbandi 2011) with increments of 0.01 g cm\(^{-3}\), whereas the WH and SH frequencies were taken between 0.005–0.0095 and 0.010–0.017 km\(^{-1}\) respectively, with increments of 0.0005 km\(^{-1}\).
The lower bound of 0.005 km$^{-1}$, representing a wavelength of 200 km, was initially considered after van der Meijde et al. (2013), but the effects of lowering this bound will be discussed when improving the final inversion. For simplicity, we will discuss residual gravity in terms of its mean value and associated standard deviation.

3.1.4 Sedimentary basin correction

The applied frequency filter during the inversion allows the removal of short-wavelength sedimentary signals. Yet, the magnitude of the induced mismatch between the inverted Moho depth and the seismic constraints, when not removing the contribution of sedimentary basins with larger wavelength signals, remains debatable when applying this method (e.g. van der Meijde et al. 2013 and reference therein). We consider that sedimentary correction is applicable in areas where basement depth and density variation of the sedimentary units are well constrained (e.g. Gómez-Ortiz et al. 2005); otherwise, basement signals can be removed leading to Moho depth miscalculations.

Considering the complex deformaional pattern, together with a strong variation of lateral thickness and sedimentary facies along the EC and the foreland region, where the major sedimentary basins of Colombia have been reported (Bayona et al. 2008; Mora et al. 2013; Sarmiento-Rojas 2019; Horton et al. 2020), there is a high risk of removing basement gravity signals if the correction is applied. Therefore, we decided not to use this correction before inverting the gravity data and removing short-wavelength sedimentary signals by the applied filter, but being cautious when evaluating the possibility of an overestimated Moho depth in areas where thick sedimentary basins have been proven to exist (e.g. Tirel et al. 2004; Aitken et al. 2013), such as the Eastern Cordillera, the foreland region and the coastal plains (Fig. 1).

3.2 Choosing the best data set

3.2.1 Comparison between data sets and global models

For comparison between data sets, using inverted depths at nodes in the considered 0.5° grid within the area for interpretation shown in Fig. 1, we focus on the obtained differences in mean residual gravity and standard deviation. Mean residual gravity is somehow similar for all data sets: ANH2010 ranges between −5 and 7 mGal, whereas EGM2008 and EIGEN-6C4 between −1 and 6 mGal, when using both average depths of 41 and 31 km, respectively (Fig. 3).

The differences between the data sets were more evident in the standard deviation. When considering a z_0 of 41 km, 529 set-ups showed a standard deviation less than 10 mGal using ANH2010, whereas the minimum standard deviation achieved by EGM2008 and EIGEN-6C4 was between ~18–19 mGal (Fig. 3a). Similarly, when using a z_0 of 31 km, 1577 set-ups showed a standard deviation less than 10 mGal using ANH2010 data, whereas the minimum standard deviation obtained from EGM2008 and EIGEN-6C4 was ~14 mGal (Fig. 3b).

When analysing the inversions, by using both average depths, we observed that a higher number of set-ups with lower gravity residuals and standard deviation were accomplished when using a shallower average depth of 31 km, particularly with data from the EIGEN-6C4 model. However, under both scenarios, using a 41 or 31 km average depth, only the ANH2010 data provided inversions with a low gravity residual (~5 to 7 mGal) associated with a standard deviation lower than 10 mGal (Fig. 3). Fig. 3 illustrates the flexibility of the ANH2010 data set to yield inversion models with the lowest gravity residual and standard deviation for a wider range of parameter combinations during the inversion. In simple words, this test shows that the best trade-off between convergence and fitness of the applied algorithm is obtained when using the ANH2010 data set.

Aiming for comparison with global Moho models CRUST1.0 and GEMMA, Moho depth was obtained from each gravity data set by using the parameter combination that minimizes the residual gravity (Supporting Information Table S1). Since the data sets used for inversions are of higher spatial resolution in reference to the global models, the comparison can be made in order to detect first-order differences at a regional scale. In Fig. 4, we show the differences in map view. It can be seen from all data sets, a good agreement for the foreland region, whereas the highest mismatches occur along the cordilleras and coastal plains (darker symbols in Fig. 4).

Regarding CRUST1.0, all data sets show shallower values (squares in Fig. 4), mainly in the central CC and EC and deeper values (circles in Fig. 4) in the northern CC, EC and both the Caribbean and Pacific plains (Figs 4a–c). The largest differences are suggested by the satellite-derived data sets in the Santander Massif and the southern cordilleran belt (darker circles in Figs 4b and c, see also Fig. 1).

Given the higher spatial resolution of GEMMA, the shallower values concerning the global model along the cordilleras (squares) are better depicted; the largest differences are shown by the satellite-derived data sets in central and southern CC and EC (darker squares in Figs 4d–f). Deeper values (darker circles) are mainly shown in northern CC, EC and coastal plains.

EGM2008 and EIGEN-6C4 suggest larger differences along the central-southern cordilleran belt (darker circles in Figs 4e and f). Major differences between data sets and global models, especially for the ANH2010, are within the coastal plains, which might be linked to sedimentary basin infill and uncertainties in the continental to oceanic crust transition (e.g. Gómez-García et al. 2021).

Histograms depicting the differences between each inversion and global model are shown in Fig. 5. The inversion with ANH2010 shows that most of the data differ by ±5 km when comparing with global models, whereas the inversions with EGM2008 and EIGEN-6C4 show that most of the data differ with respect to global models by about ±10 km (Fig. 5). Moho depth differences concerning the CRUST1.0 model include, for ANH2010 up to ~15 km shallower and ~23 km deeper values (Fig. 5a), for EGM2008 up to ~20 km shallower and ~40 km deeper estimates (Fig. 5b), and for EIGEN-6C4 up to ~20 km shallower and ~42 km deeper Moho depths (Fig. 5c). The distribution of these differences is bimodal in all data sets, with major peaks at ±5 km for ANH2010 and ±10 km for satellite-derived data sets (EGM2008 and EIGEN-6C4), as well as a second peak depicting 10–17 km deeper values from ANH2010 data, and 10–20 km deeper estimates from satellite-derived inversions (EGM2008 and EIGEN-6C4; Fig. 5).

Regarding the GEMMA model, differences are up to ~20 km shallower and ~15 km deeper values for ANH2010 data (Fig. 5d), up to ~40 km shallower and ~25 km deeper estimates for EGM2008 (Fig. 5e), and up to ~32 km shallower and ~20 km deeper Moho depths for EIGEN-6C4 data (Fig. 5f). Those differences depict a normal distribution in all data sets, with a mean of 0.49 km and a variance of 27.56 km for ANH2010, a mean of 0.31 km, and a large variance of 52.51 km for EGM2008, and a mean of 0.31 km and a variance of 43.30 km for EIGEN-6C4 (Fig. 5). Correlation coefficients, when compared to CRUST1.0 and GEMMA models...
Figure 3. Mean residual gravity and standard deviation (SD) for the different gravity data sets, varying ρ, WH and SH parameters. (a) Using an average depth of 41 km. (b) Using an average depth of 31 km. Only set-ups with a standard deviation lower than 100 mGal were plotted.

Figure 4. Moho depth differences between inversion of data sets and global models using a 41 km average depth: (a) ANH2010 minus CRUST1.0; (b) EGM2008 minus CRUST1.0; (c) EIGEN-6C4 minus CRUST1.0. Using a 31 km average depth: (d) ANH2010 minus GEMMA; (e) EGM2008 minus GEMMA; (f) EIGEN-6C4 minus GEMMA. Extension of the area for comparison as depicted by the area for interpretation box in Fig. 1. Negative values are shown as squares and positive ones as circles. Active thrust faults as in Fig. 1.
respectively, are 0.27 and 0.52 for ANH2010, 0.24 and 0.36 for EGM2008, and 0.25 and 0.40 for EIGEN-6C4 inversion.

3.2.2 Consistency with receiver functions estimates

To evaluate the consistency of the Moho inversions from the gravity data sets with respect to seismic constraints (Poveda et al. 2015), we analyse the Moho depth distribution beneath the northwestern Andean region. The inversions resulting from all data sets, using an average depth of 41 km and associated parameters (Supporting Information Table S1), show a prevalent Moho depth of 40–50 km, with shallower 30–40 km values in the southern foreland region, beneath WC and southeast of the Merida Andes, and a deeper 50–60 km expression beneath the EC with the deepest anomaly around 1°–2 N (Figs 6a–c, see also Fig. 1 for geographical locations). Conversely, the inversion with a shallower average depth of 31 km, shows a dominant 30–40 km gravity Moho depth in all data sets (Figs 6d–f). As expected, by using a lower average depth, the inversion resulted in a regional-scale shallower Moho (e.g. Ydri et al. 2020), which strongly differs from available receiver functions estimates (see Fig. 1 for seismic depth estimates).

Because of the better agreement between the inverted Moho depth and seismic constraints, while using the 41 km average depth (Figs 1 and 6), we use these inversions to compare with depth values derived from receiver functions. For such comparison, we interpolate the inverted Moho depth at the location of individual stations reported by Poveda et al. (2015). An uncertainty of ±4 km is suggested for the inverted gravity values, obtained from a variation in the average depth parameter by ±2 km (e.g. van der Meijde et al. 2013).

For simplicity, given that seismic constraints are reported in the form ‘A ± B km’, we will refer to the depth ‘A − B km’ as the lower (shallower) seismic bound and ‘A + B km’ as the upper (deeper) seismic bound. Furthermore, because we refer to the seismic station’s abbreviation (e.g. ROSC), we provide a geographical location (e.g. central EC), although the stations are depicted in Fig. 7.

In this regard, shallower values (squares in Fig. 7) were suggested by the inversion with ANH2010 data for two stations, with a mismatch in-depth above 4 km (uncertainty) regarding the lower seismic bounds (Supporting Information Table S1). Those stations are ROSC (central EC) and ZAR (transition from CC to the Caribbean plains), where differences between the maximum estimate (inverted depth plus 4 km) and the lower seismic bound, are ∼0.5 and ∼10.8 km, respectively (Fig. 7a, Supporting Information Table S1). EGM2008 and EIGEN-6C4 suggest for seven stations, shallower values with a mismatch in-depth above 4 km compared with the lower seismic bounds. The differences between the maximum estimate (inverted depth plus 4 km) and lower seismic bound, range 2.6–10.6 km at ANIL, HEL and ZAR stations (northern CC and transition to Caribbean plains), between 1.2 and 11.8 km at BOCO, ROSC and RUS (central-northern EC), and < 1 km at PAM station (Santander Massif; Figs 7b and c, Supporting Information Table S1).

In terms of deeper estimates (circles in Fig. 7), the inversion with ANH2010 data suggests, for eight stations, greater Moho depths with a mismatch above 4 km (uncertainty) compared with the upper seismic bounds (Fig. 7a, Supporting Information Table S1). Differences between the minimum estimate (inverted depth minus 4 km) and upper seismic bound, range 0.2–9 km at CAP2 and MON stations in the Caribbean plains, station PAL on the Western Cordillera, stations POP2 and RREF along the Central Cordillera, station PRA and VIL along the Eastern Cordillera, and station PTLC within the foreland region (Fig. 7a). Inversions from EGM2008 and EIGEN-6C4 suggest deeper estimates with depth mismatching above 4 km at six stations (Figs 7b and c), including, MON station in the Caribbean plains, station YOT at the Western Cordillera, stations PCON, POP2 and RREF along the Central Cordillera, and station VIL on the Eastern Cordillera. Differences between the minimum estimate (inversion depth minus 4 km) and the upper seismic bound, range between 2.9 and 12.7 km at the mentioned stations for inverted satellite-derived data sets (Supporting Information Table S1). The largest mismatch between the data sets and the upper seismic bound...
Insights into Moho depth beneath northwestern Andes

Figure 6. Inversion using a z_0 of 41 km, from different data sets: (a) ANH2010; (b) EGM2008; (c) EIGEN-6C4. Inversion using a z_0 of 31 km: (d) ANH2010; (e) EGM2008; (f) EIGEN-6C4. Active thrust faults as in Fig. 1. The black box depicts the area for interpretation shown in Fig. 1. A smooth interpolation was not applied at this stage. When reducing the average depth parameter from 41 to 31 km, a regional shallower Moho depth inversion is obtained.

are depicted at VIL station (eastern foothills of EC), yielding differences of ~ 9 km using the ANH2010 inversion, and between 11.6 and 12.7 km in the inversion from satellite-derived data sets (darker circles in Fig. 7). A correlation coefficient between the inverted values and the mean seismic depths yields 0.60 for ANH2010, 0.16 for EGM2008 and 0.17 for EIGEN-6C4 (Supporting Information Table S1).

In summary, the ANH2010 inversion results in a higher number of matching stations in terms of Moho depth, in fewer stations differing in more than 4 km in depth with respect to seismic bounds, and in a higher correlation coefficient when compared to mean seismic estimations (Fig. 7). The latter, coupled with the ability shown by this data set to achieve a higher number of set-ups with low residual gravity and standard deviation lower than 10 mGal (Fig. 3), reflects its potential to be used for the northwestern Andes and surroundings. Therefore, we choose this data set to obtain the final Moho inversion.

4 RESULTS: IMPROVED INVERSION AND OVERVIEW OF THE NORTHWESTERN ANDEAN MOHO TOPOGRAPHY

To improve the ANH2010 inversion, we further investigated the parameter values that minimize the differences with seismic constraints while yielding a standard deviation < 10 mGal (minimizing residual gravity). For this, the WH range was incremented (0.001–0.0095 km$^{-1}$) to filter lower frequencies for evaluating the sensi-
Figure 7. Depth comparison between inverted Moho and seismic constraints when using a 41 km average depth: (a) ANH2010; (b) EGM2008; (c) EIGEN-6C4. Zero represents inverted values in the range of seismic constraints, shallower values (negative) are represented by squares and deeper values (positive) are represented by circles (see also Supporting Information Table S1).

Activity of deeper sources. Furthermore, the average depth parameter was varied between 31 and 41 km with a 0.25 km step increment. The best combination of parameters minimizing the differences regarding mean Moho depth values from receiver functions was: an average depth of 37 km, a density contrast of 0.35 g cm$^{-3}$, and lower (WH) and upper (SH) cut-off frequencies of 0.001 and 0.0155 km$^{-1}$, respectively. The improved Moho inversion is shown in Fig. 8 depicting a broad depth distribution for which uncertainty of ±4 km is also considered as previously mentioned. It is worth noting that expanding the range of the lower cut-off frequency increased the agreement with respect to seismic constraints and allowed using a lower density contrast for the inversion.

This set-up yields a mean residual gravity of 6.7 mGal and a standard deviation of 9.9 mGal, with a correlation coefficient with respect to mean seismic values of 0.63 (Supporting Information Table S1). In a broad view, the inverted Moho depicts a 40–50 km depth beneath the cordilleran belt reaching depths beyond 50 km below the Eastern Cordillera, and shallower depths between 30–40 km mainly along the foreland region, the Western Cordillera and the coastal plains (Fig. 8a). Within the foreland region, residual gravity shows small patches up to 10 mGal where shallow anomalies are also depicted (<30 km), which are considered inversion artefacts; the rest of the foreland region agrees with a Moho between 30–40 km, although a deeper expression (>40 km) is shown beneath the EC trend in an irregular pattern between 2°N and 6°N, and a deeper expression (>60 km) is depicted at a southern position below the modern magmatic arc (1°S–1°N). Within the EC and the Santander Massif, residual gravity shows only small patches of 10 mGal and up to 20 mGal in the southern cordilleran belt, arguing in favour of some degree of volcano-sedimentary basin residual gravity to the south. For the northern and central Eastern Cordillera (TAM, RUS, ROSC, CHI, BOCO stations) the gravity Moho (40.5–53.8 km) agrees well with seismic constraints (34.9–69.0 km), although for stations PRA and VIL the inversion suggests deeper values (Fig. 8c; Supporting Information Table S1). For the Santander Massif, seismic constraints at the PAM station suggest a 48.1–56.5 km Moho depth, for which the gravity inversion agrees well, yielding 45.3 ± 4 km. Our inversion differs in this part of the orogen with respect to the estimates presented by Uieda & Barbosa (2017; Fig. 9) mainly because as they discussed, their method does not fully recover deeper Moho expressions within the Andean region.

In the CC, a Moho depth between 40–50 km is shown with a positive residual gravity around 10 mGal. Beneath the RREF station (see Fig. 8c), located at ~4.6°N at the Nevado del Ruiz active volcano, the suggested gravity Moho depth yields 45.3 ± 4 km which is slightly deeper than the depth suggested by seismic constraints (37.1–39.3 km). However, the Moho determination beneath this station is of higher complexity than that at ANIL station at the Cerro Machín volcano (see Fig. 8c), which in fact, yields a Moho depth between 47.4–54.1 km being located ~60 km to the south of RREF station. At the RREF station, the compiled receiver functions show a larger azimuthal variation in delay times for the Moho determination, which implies a non-simple crust–mantle transition allowing a wider expression of the P to s converted phase arrival in the receiver functions, and thus, a higher uncertainty in the reported Moho depth. Higher delay times for the RREF station are observed for backazimuths between 153° and 282°, whereas at ANIL station...
the delay time for the converted phase (Ps) is better constrained, and therefore the Moho depth provides a lower uncertainty (Poveda 2013). At ANIL station our inversion suggests 44.2 ± 4 km, which together with the previous value at RREF station, correlates well with seismic constraints.

For the southern CC, seismic estimates argue in favour of a $40.3-57.1$ km Moho depth beneath MARA, PCON and SOTA stations, which are similar to values of $47.7-51.5$ km estimated at those sites from our inversion (Fig. 8c). The deepest Moho (>60 km) lies in a southern latitude beneath the Central Cordillera (1°S–1°N), suggesting a spatial correspondence with the central-southern volcanic segment (Fig. 8a). At station GCUF, our inversion suggests 51.6 ± 4 km depth, matching the seismic constraints that indicate 54.7 ± 8.2 km Moho depth. The CC claims a thinner crust compared to the EC; our inversion agrees well, in that sense, with the estimations presented by Uieda & Barbosa (2017), although they present slightly shallower values beneath the northernmost Central Cordillera (Fig. 9).

Along the Western Cordillera, where residual gravity yields 0–10 mGal, a 30–40 km gravity Moho depth is estimated, which agrees well with seismic constraints, arguing a 31–40 km depth (Monsalve et al. 2013; Poveda et al. 2015). A deeper Moho (>40 km) is depicted beneath the Pacific plains between 3°N and 5° N; the nature of this anomaly is not well understood but it might be reflecting an overestimated depth caused by the overlooked effect of a thick sedimentary infill (Case et al. 1971). Hence, the Moho in this anomalous

Figure 8. Results of gravity inversion after selecting the best set-up for the ANH2010 data set (see Supporting Information Table S1). (a) Gravity Moho depth with dotted contours. Regions of active volcanism are represented by white thick solid polygons (see also Fig. 1). (b) Gravity residual associated with the inversion. (c) Inverted depth compared with respect to seismic constraints (Poveda et al. 2015). Thrust faults in all panels as in Fig. 1.
region could be shallower than suggested from our inversion. Except for such presumable overestimation, a general agreement with the Moho depths estimated by Uieda & Barbosa (2017) is achieved (Fig. 9).

Seismic estimations in the Caribbean plains claim 23.2–30.6 km Moho depth at MON station, whereas gravity inversion suggests a slightly deeper Moho of 35.9 ± 4 km. The latter may reflect the contribution of sedimentary units to some degree, which in fact, have been constrained in the order of 4–6 km-thick in several parts of this region (Bernal-Olaya et al. 2015; Poveda et al. 2018). However, as shown in Fig. 8(a), the Caribbean plains show a broad 30–40 km Moho depth which is in good agreement with estimations based on integrated seismic and gravity data (Bernal-Olaya et al. 2015). In this region though, a large mismatch at ZAR station is obtained: while seismic constraints suggest a depth of 57.6 ± 2.9 km, our gravity inversion yields 36.7 ± 4 km; taking into account the location of the station within the southern Caribbean plains and to the north of the termination of the high topography of Central Cordillera (see Fig. 1), we consider our inverted value not to be highly mistaken, especially when considering similar values obtained from integrated seismic and gravity data along this region (Bernal-Olaya et al. 2015).

5 DISCUSSION

A general tendency of a relatively deep continental Moho beneath the three cordilleras of the northwestern Andes is observed, with higher values beneath the EC and lower values beneath the WC (Fig. 9). A moderately shallow Moho is depicted along the foreland region, while the lowest values were obtained within the coastal plains (Fig. 9). In a broad sense, the inverted Moho shows some consistency with isostatic equilibrium, and although residual topography has been argued within the orogen especially in northern Eastern Cordillera (Yarce et al. 2014; Siravo et al. 2019), the magnitude of such positive residual topography of less than 2 km lies within our depth uncertainty (± 4 km). Because some influence of sedimentary basins along the coastal plains might be affecting the inversion, overestimating in some degree the Moho depth, our tectonic interpretation will be mostly focused beneath the cordilleran belts.

Several interesting features are shown by the obtained gravity Moho distribution. In a first instance, a deep expression of the Moho (>40 km) in the northwesternmost foreland and the northeastern foothills of the Eastern Cordillera (Fig. 9), is located to the east of the EC in a region where the mountain range is wider, shows its highest elevations, and where a thickened crust, even above 60 km, have been constrained by receiver functions (Poveda et al. 2015; Monsalve et al. 2019). Under the assumption of a gentle shallowing of the Moho, we consider that the expression of the northwestern foreland can be explained as a direct consequence of the adjacent thickened EC involving the fold and thrust deformation migration from the range towards the foreland, and the flexural deformation constrained in the eastern foothills and adjacent foreland region (Bayona et al. 2008; Parra et al. 2012; Siravo et al. 2018). The wider and thicker expression of the EC in the central-northern part of the cordillera where thick-skin deformation has been constrained (Parra et al. 2012; Mora et al. 2013; Siravo et al. 2018), allows for a higher load which can trigger a flexural deformation in the eastern foothills (see Bayona et al. 2008), resulting in a deepening of the Moho beneath the westernmost foreland adjacent to the cordilleran belt, as it has been proposed for the Central Andes (e.g. Whitman 1994).

For the northern and central Eastern Cordillera, the gravity Moho agrees well with seismic constraints, although it suggests deeper values beneath the eastern foothills (Fig. 8c). We consider the deep expression of the Moho beneath this part of the orogen to be related
to the thickening history of the range, especially during the Cenozoic when thick-skinned deformation took place, as constrained along different segments of the cordillera (Bayona et al. 2008; Mora et al. 2013; Mora-Páez et al. 2016; Saeid et al. 2017; Siravo et al. 2018). This shortening history is somehow represented in the inversion, by the spatial correspondence between deeper values along the EC and active thrust faults (Fig. 9a). Furthermore, the tectonic shortening resulting in the thickening of the crust will allow higher topographic expressions associated with an isostatic response. This is the case of the Eastern Cordillera, where the highest topographic features are depicted above the thicker crustal regions, as shown by receiver functions (Poveda et al. 2015), and although there have been some suggestions of positive residual topography in the range (Yarce et al. 2014; Siravo et al. 2018), as previously mentioned, the amount of excess in topography (<2 km) is within our inversion uncertainty (±4 km).

For the central section, a contribution of magmatic underplating has also been interpreted more clearly beneath the RUS station (Fig. 8c; Monsalve et al. 2019). We speculate that localized magmatic underplating at the base of the crust in this part of the orogen allows a deeper Moho expression beneath the central part of the EC and shallower depths towards the north of the range and the Santander Massif.

The relationship between the volcanically active segments of the hinterland and the Moho depth is not easy to envision. The northern segment of the modern volcanic arc does not seem to be correlated with a distinctive geometry of the Moho depth. Conversely, the southern portion of the arc lies above the deepest Moho expression within the inverted area (>60 km at 1°S–1°N; Fig. 9). For this region, lower crustal xenoliths brought to the surface by Pliopleistocene volcanism, argue for a much thicker crust (up to 80 km) than available seismic constraints and our inversion estimates (e.g. Bloch et al. 2017). However, the thickening history of this part of the orogen is still poorly constrained. Poveda et al. (2015) discussed high Vp/Vs ratios beneath the volcanic centres, claiming the potential presence of mafic materials at the base of the crust, which might be contributing to its thick structure. Because our approach is not robust enough to discuss in more detail the magmatic underplating hypothesis, we consider it as one of the possibilities to explain the thicker expression at this latitude. On the other hand, Bloch et al. (2017), based on depth and density estimations from recovered xenoliths, interpreted a gravitationally unstable lower crust for which they claimed foundering tectonics. Again, our approach is not able to discern between these two feasible mechanisms and are thus, included as possibilities.

Furthermore, we include an extra possibility for thickening this part of the orogen, based on the work presented by Bishop et al. (2017) in the Central Andes, where the increase in crustal thickness is associated with the Nazca ridge; this can be a good example to compare with, since it is proposed, for a segment of the Andes associated with a ridge that resembles the Carnegie setting interacting obliquely with the margin. The projection of the subducted part of the Carnegie ridge in our study area (Fig. 9a) allows us to hypothesize that it might be affecting the upper plate structure, particularly along the southern part of the area where our inversion yields a thick crust; yet, little is known about the role of this buoyant entity in the deformation pattern in this part of the orogen. We speculate that the subduction of this element could be causing crustal thinning in the overriding South American plate, localized along the trajectory of the ridge, and prompting local thickening in the surrounding areas by lateral lower crust displacement, as suggested for the central Andes due to the subduction of the Nazca ridge (Bishop et al. 2017). As shown in Fig. 1, the thinning of the overriding plate agrees well with receiver functions (Poveda et al. 2015, 2018) suggesting a disrupted thickened crust along the Colombian-Ecuador border (see also Koch et al. 2021), where the continuation of the Carnegie ridge subduction has been proposed (Gutscher et al. 1999). Additionally, xenolithic data claiming a much thicker crust compared to seismic constraints in the Colombian region, coupled with the short-wavelength pattern shown by our inversion in this area, allowed us to favour a local thickening during the advance of the ridge subduction rather than a regional crustal shortening mechanism.

6 CONCLUSIONS

Through a comparison of multiple gravity data sets, the regional airborne Bouguer gravity anomaly map, built by the National Hydrocarbon Agency of Colombia (Graterol & Vargas 2010), was selected as the most suitable data set to gain insights into the Moho depth beneath the northwestern Andes. A general tendency of a Moho depth between 30 and 60 km beneath the three cordilleras in the Colombian Andes is observed, with deep values found beneath the Eastern Cordillera (50–60 km), relatively shallow values beneath the Western Cordillera (30–40 km) and an anomalously deep Moho in the southern cordilleran belt beneath the modern magmatic arc (>60 km). A moderately shallow Moho (30–40 km) is obtained along the foreland region and the coastal plains; in the latter region, some influence of the sedimentary basins is likely causing an overestimation of the Moho depth.

Three main expressions of regional extent were detected in our inversion: (1) a deep expression (>40 km) in the northwesternmost foreland, interpreted as a direct consequence of a gentle shallowing of the Moho from the adjacent thickened Eastern Cordillera involving the fold and thrust deformation migration from the range towards the foreland, and the flexural deformation constrained in the eastern foothills and adjacent foreland region (Bayona et al. 2008; Parra et al. 2012; Siravo et al. 2018), (2) a regional deep expression (50–60 km) along the Eastern Cordillera trend, interpreted as a combination of its shortening history involving multiple Cenozoic thick-skinned deformational events (Bayona et al. 2008; Mora et al. 2013), and magmatic underplating (Monsalve et al. 2019) and (3) a deep anomaly (>60 km) in a southern latitude beneath the modern magmatic arc (1°S–1°N), which can be interpreted as a combined result of the potential presence of mafic materials at the base of the crust (Poveda et al. 2015), a gravitationally unstable lower crust experiencing foundering tectonics (Bloch et al. 2017) and lateral lower crust displacement triggered by the subducting Carnegie ridge.

ACKNOWLEDGMENTS

We thank G. Posada and L. Ramírez-Hoyos for their help in gathering the ANH data in a useful format, and Thorsten Becker for fruitful discussions, which allowed us to improve the quality of our manuscript. Comments and suggestions from editors B. Vermeersen and F. Storey, as well as those from R. Bernal and two anonymous reviewers substantially improved the quality of this work. DSA-J contributed to this paper in its conceptualization, formal analysis and visualization; led the selection of the methodology to be applied; processed the data; wrote the original draft; and led the writing–review and editing. GM contributed to the conceptualization and formal analysis; supervised the chosen methods; validated results; and led with the first author the writing–review and editing.
SL contributed to the formal analysis, and writing–review and editing. AMG-G contributed to the visualization, conceptualization, and writing–review and editing. This work was supported by the Fundación para la Promoción de la Investigación y la Tecnología (Project 4.634).

DATA AVAILABILITY

All used data and codes can be obtained from the cited references. In Supporting Information Table S1, the reader can find the parameter values used in the multiple inversions as well as the comparison regarding seismic constraints discussed in this paper.

REFERENCES

Cardona, A. et al., 2012. From arc-continent collision to continuous convergence, elides from Paleogene conglomerates along the southern Caribbean–South America plate boundary, Tectonophysics, 580, 58–87.

Förster, C. et al., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Serv., https://doi.org/10.5880/icgem.2015.1.

León, S. et al., 2018. Transition from collisional to subduction-related regimes: an example from Neogene Panama-Nazca-South America interactions, Tectonics, 37, 119–139.

1976 D.S. Avellaneda-Jiménez et al.

Poveda, E., 2013. Discontinuous isismas in the litosfera bajo la zona andina y el occidente colombianos a partir de formas de onda de sismos distantes, Universidad Nacional de Colombia.

Pinilla–Pachón, A.O., Servicio Geológico Colombiano.

Poveda, E., 2013. Discontinuidades sísmicas en la litosfera bajo la zona andina y el occidente colombianos a partir de formas de onda de sismos distantes, Universidad Nacional de Colombia.

