At an important tephrostratigraphic crossroads: cryptotephra in Late Glacial to Early Holocene lake sediments from the Carpathian Mountains, Romania

R.J. Kearney a,b,*, P.G. Albert a,c, R.A. Staff a,d, E.K. Magyari e, I. Pál e, D. Veres f,g,*, C.S. Lane g, A. McGuire a,b, C. Bronk Ramsey a

a Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, 1 South Parks Road, Oxford, UK
b Climate Dynamics and Landscape Evolution, GFZ Research Centre for Geoscience, Telegrafenberg, Potsdam, Germany
c Department of Geography, College of Science, Swansea, UK
d Scottish Universities Environmental Research Centre, University of Glasgow, Rankine Avenue, East Kilbride, South Lanarkshire, UK
e Institute Loránd University, HUN-RIN-MTM-ELTE Research Group for Palaeontology, Department of Environmental and Landscape Geography, Pázmány P. str. 1/C, Budapest, Hungary
f Roman Academy, Institute of Speleology, Cluj-Napoca, Romania
g Department of Geography, University of Cambridge, Cambridge, UK
h School of Earth and Environment, Faculty of Environment, University of Leeds, Leeds, UK

ARTICLE INFO
Handling Editor: Giovanni Zanchetta

Keywords:
- Tephrochronology
- Cryptotephra
- Tephrostratigraphy
- Carpathian Mountains

ABSTRACT

Understanding the temporal and spatial environmental response to past climate change during the Last Glacial-Interglacial Transition (LGIT, 16-8 ka) across Europe relies on precise chronologies for palaeoenvironmental records. Tephra layers (volcanic ash) are a powerful chronological tool to synchronise disparate records across the continent. Yet, some regions remain overlooked in terms of cryptotephra investigations. Building on earlier work at the same sites, we present the first complete LGIT high-resolution cryptotephra investigation of two lake records in the Carpathian Mountains in Romania, Lake Brazi and Lake Lia. Numerous volcanic glass shards have been recognised as originating from various volcanic regions, including: Iceland (Katla, Askja, and Torfajökull), Italy (Campi Flegrei, Ischia, Lipari, and Pantelleria), and central Anatolia (Acigöl and Eríye). In total, four distinct tephra horizons have now been identified in these records: 1) an LGIT Lipari tephra (11,515–12,885 cal BP, 95.4% range); 2) Askja-S (11,070–10,720 cal BP, 95.4% range); 3) an Early Holocene Lipari tephra, (12,590–10,845 cal BP, 95.4% range) and; 4) an Early Holocene Ischia tephra (11,120–10,740 cal BP, 95.4% range). The use of trace element analysis on selected cryptotephra layers provided additional important information in identifying volcanic source and facilitating correlations. These tephra layers, along with numerous other discrete cryptotephra layers, offer promise as significant future isochrons for comprehending the spatial and temporal fluctuations in past climate change throughout Europe and the Mediterranean area. This research has emphasized the significance of the Carpathian region in expanding the European and Mediterranean tephra lattice and establishing it as a keystone area within the framework.

1. Introduction

Investigating the spatial and temporal environmental response to past abrupt climatic oscillations requires palaeoenvironmental records to have independent and precise chronologies (Björck et al., 1998; Lowe et al., 2008). The Late Glacial to Interglacial transition (LGIT, c.16-8 ka) was a period that experienced several abrupt climatic changes on centennial to decadal timescales, observed and dated in palaeoenvironmental records across Europe (e.g. Clark et al., 2001; Wohlfarth et al., 2006; Steffensen et al., 2008; Magyari et al., 2012; Rasmussen et al., 2014). Yet, challenges remain when trying to understand the timing and propagation of environmental responses to rapid climatic
oscillations. Despite progress in geochronological methods, large dating uncertainties and the use of wiggle-matching or ‘tuning’ of disparate records continue to limit our ability to fully investigate assumptions of climatic (a)synchrony between regions (e.g. Blaauw, 2012; Brauer et al., 2014; Bronk Ramsey et al., 2014).

The identification of distal volcanic ash (tephra) preserved in a range of climatic archives, such as ice cores (e.g. Cook et al., 2018), marine (e.g. Albert et al., 2015), and terrestrial (e.g. Lane et al., 2013) sedimentary records, has provided a powerful tool to precisely date (tephrochronology) and correlate (tephrostratigraphy) important environmental records together (e.g. Lowe, 2011; Davies, 2015). The development of specific laboratory methods, including the application of density separation (Turney, 1998), has allowed the detection of cryptotephra (non-visible) horizons within disparate palaeoenvironmental records to be made (e.g. van der Bilt et al., 2017; Pyne-O’Donnell and Jensen, 2020). Where well-characterised and widespread tephra marker layers are found in numerous palaeoenvironmental records within a region, a tephrostratigraphic framework or lattice can be established and expanded between regions (Bronk Ramsey et al., 2015; Lowe et al., 2015). This facilitates precise temporal integration of important palaeoenvironmental records across vast distances, providing insight into the temporal and spatial complexities of abrupt climatic events during the LGIT (e.g. Lane et al., 2013; Muschitiello and Wohlfarth, 2015; Wohlfarth et al., 2018; Reinig et al., 2021).

Numerous European records have undergone cryptotephra investigations, particularly in northern and western Europe during the LGIT (e.g. Lowe et al., 2015; Timms et al., 2018). Yet, regions such as Central Eastern Europe, particularly Romania, have been largely overlooked for cryptotephra studies until now. This limits important continental-scale tephrostratigraphic frameworks from being developed. Previous tephra investigations have instead focused on visible volcanic ash layers in a range of sedimentary records across Romania, providing correlations to Mediterranean sources, as well as the Carpathian volcano, Giomadul (e.g. Veres et al., 2013; Karätson et al., 2016; Obreht et al., 2017). The first cryptotephra investigation from sites in Romania undertaken by Kearney et al. (2018) highlighted the significant potential of the region in extending the European tephrostratigraphic framework with the successful identification of the ultra-distal Askja-S tephra from Askja Volcano, Iceland, dated to 10,824 ± 97 cal BP (2, Kearney et al., 2018). Further potential for Romania to provide a crucial tephrostratigraphic connection results from the close location of multiple volcanic fields that have been active throughout the Late Quaternary (Fig. 1), and being at the convergence of three major air masses, the Atlantic, the Mediterranean and the Siberian High (Halicic et al., 2017; Longman et al., 2017a, 2017b; Obreht et al., 2017).

Here, we present the first complete LGIT cryptotephra investigation from two lacustrine palaeoenvironmental records in Romania, Lake Lia and Lake Brazi, located in the Southern Carpathian Mountains. The findings from this investigation provide a crucial connection between palaeoenvironmental records and volcanic regions within Europe and beyond.

2. Regional setting

The Retezat Mountains are located in southern Romania and form the western massif of the Southern Carpathian Mountains (Fig. 1). During the Last Glacial Maximum, the area underwent extensive glaciation (Urdea, 2004; Reuther et al., 2007; Ruszkiczay-Rüdiger et al., 2016). The retreat of glacial ice since the Last Glacial period resulted in 58 permanent glacial lakes (Jancsik, 2001). In the Galesul valley, two glacial lakes, Lake Brazi and Lake Lia, were selected for cryptotephra investigations. Both lakes were cored as part of the PROLONG project (‘Providing long environmental records of Late Quaternary climatic oscillations in the Retezat Mountains’, Magyari et al., 2018). The sediments retrieved from each lake have undergone high-resolution palaeoenvironmental investigations using numerous different proxies such as pollen, chironomids and diatoms (e.g. Magyari et al., 2009; Magyari et al., 2012; Pál et al., 2018). The results highlighted the importance of

Fig. 1. A) Map of Europe showing the proximity of selected volcanic centres that were known to be active during the LGIT period. The Neapolitan Volcanoes here refers to Campi Flegrei, Ischia and Vesuvius. The star indicates the location of Lakes Lia and Brazi. B) Location of Lake Lia (C) and Lake Brazi (D) in the Retezat Mountains (adapted from Kearney et al., 2018) with satellite images for B-D using Google Earth Pro application (version 7.3.6, 2023) with data from CNES/Airbus.
this region in fully understanding environmental responses to past climatic change during the LGIT period (Pål et al., 2018). Both sites have chronologies provided by radiocarbon dating (Magyari et al., 2009, 2012; Hubay et al., 2018; Pål et al., 2018) which indicate a rapid sedimentation rate, ideal for the preservation of tephra layers, particularly cryptotephra (e.g. Lane et al., 2014; Davies, 2015). By providing a detailed reconstruction of the cryptotephra record at both sites, the aim of this study is to refine their ages of these tephas to aid palaeoenvironmental comparisons between other sedimentary records in Europe.

2.1. Lake Lia (LIA, 45°21′7.3″N, 22°52′27.0″E, 1910 m a.s.l)

Lake Lia is located on the southern side of the mountain range (Fig. 1). It is a small (12,600 m²), shallow glacial lake (0.8 m deep), with two inflow streams from higher altitude lakes, principally Lake Bucura, and one outflow stream (Magyari et al., 2018). In 2008, an 880 cm long sediment core (LIA-1) was taken close to the western shore with a modified Livingstone corer (Hubay et al., 2018). Several multi-proxy palaeoenvironmental studies are currently underway with a chronology provided by seventeen radiocarbon dates (Hubay et al., 2018) and the identification of the Askja-S cryptotephra isochron (Kearney et al., 2018). No visible tephra layers have been identified within the core.

2.2. Lake Brazi (TDB, 45°23′47″N, 22°54′06″E, 1740 m a.s.l.)

Lake Brazi (Taul dintre Brazi, TDB) is located on the northern flank of the mountain range (Fig. 1). The lake is a kettle hole feature with a shallow depth (1.1 m max depth) and smaller surface area (5,000 m², Magyari et al., 2009; Hubay et al., 2018). The lake receives seasonal underground inflow along the northern side with additional water sources from rainfall and slope inwash (Magyari et al., 2018). It has a single outflow located on the southern shore (Fig. 1). A modified Livingstone piston corer was used to retrieve a 490 cm long sediment core in 2007 (Magyari et al., 2009). A chronology is provided by twenty-one radiocarbon dates (Hubay et al., 2018) along with the identification of the Askja-S tephra (Kearney et al., 2018). No visible tephra layers have been identified within the core.

3. Material and methods

3.1. Cryptotephra sample preparation

Both cores were continuously sub-sampled at 5 cm resolution across the intervals relating to the LGIT (Magyari et al., 2009; Vincze et al., 2017). To reduce contamination issues, the sediment surface was cleaned as well as sampling instruments being cleaned between each sample. Where high cryptotephra shard concentrations were detected, the sediment was re-sampled at 1 cm resolution to better constrain the stratigraphic position of the shard count peaks. Glass shards were concentrated following a density separation procedure modified slightly from Turney (1998) and Blockley et al. (2005). Samples with high organic matter (peat) were combusted at 550 °C. Carbonates were subsequently removed by adding 10% HCl to each sample. The remaining residue was then sieved at 80 μm and 15 μm (instead of 80 μm and 25 μm) to further remove organic and minerogenic material. The retained sample then underwent density separation at 1.95 g cm⁻³. Blank samples also went underwent the same laboratory treatment as these samples to rule out potential contamination. This extracted residue was then mounted on microscope slides using Canada balsam. A high-powered, polarizing optical microscope was used to identify and count the volcanic glass shards for each sample with shard concentrations given as the number of shards per gram of dry weight sediment. The individual tephra layers are named according to the site/core name and their respective depth (i.e. LIA-603 cm, TDB-564 cm).

3.2. Geochemical analysis

At depths where peaks in glass shard concentrations were observed, new samples were extracted from the cores and prepared for geochemical analysis as above, although without ashing, to avoid geochemical alteration due to high temperatures (Blockley et al., 2005). Individual glass shards were picked from extracted residues on a well-slide, using a micromanipulator under high-power microscopy, and mounted onto an epoxy resin stub (Lane et al., 2014). Each stub was sealed with resin and hand sectioned to expose a flat surface of the glass shards, which was then carbon-coated prior to electron probe microanalysis.

3.2.1. Major and minor element composition analysis

Individual glass shards were measured for major and minor element compositions using a JEOL-8600 wavelength-dispersive dispersive electron probe microprobe (WDS-EPMA) at the Research Laboratory for Archaeology and History of Art (RLAHA), University of Oxford using a 15 kV accelerating voltage, 6 nA beam current and 5–10 μm diameter beam. The probe was calibrated using a collection of mineral standards with the PAP absorption correction method for quantification. Peak counting times were 12s Na, 40s Mn, 50s Cl, 60 s P and 30s for all other elements. The MPI-DING reference glasses (ATHO-G, GOR132/5, St/Hs6/80-g) were used to assess the accuracy and precision of the analyses (Jochum et al., 2006).

All the data with analytical totals <92 wt% were removed. The major and minor element data was normalised (100%) on a volatile-free basis to allow comparisons and to account for hydration.

3.2.2. Trace element composition analysis

Analyses of specific samples were performed using an Agilent 8900 triple quadrupole ICP-MS (ICP-QQQ) coupled to a Resonetics 193 nm ArF excimer laser-ableation system housed in the Department of Earth Sciences, Royal Holloway, University of London. A spot size of 20 μm was selected due to the small shard sizes. A repetition rate of 5Hz with a count time of 40s on the sample with 40s gas blank was implemented. Instrument calibration was undertaken, analysing NIST612, with 29Si (determined by EPMA) as the internal standard. The MPI-DING reference glasses (St/Hs6/80-G, ATHO-G, GOR132-G) were analysed alongside unknowns to monitor analytical accuracy (Jochum et al., 2006). Full analytical methods and data reduction methods are outlined by Tomlison et al. (2010). The full geochemical dataset can be seen in Supplementary Table S1.

3.3. Age depth modelling

A Bayesian age-depth model for Lake Lia and Brazi was constructed using previously published radiocarbon dates by Hubay et al. (2018) and OxCal version 4.4 (Bronk Ramsey, 2021), applying the updated IntCal20 calibration curve (Reimer et al., 2020). A total of seventeen radiocarbon ages for Lake Lia and twenty for Lake Brazi were incorporated into the model (Hubay et al., 2018). However, one radiocarbon age from each of the lakes was subsequently removed due to being erroneously young for their stratigraphic positions, Dea-3247 for Lia and Poz-26113 for Brazi. The age model was constructed using ‘P_Sequence’ deposition models for both sites with a variable k parameter to allow flexibility in sedimentation rate within the models (Bronk Ramsey, 2008; Bronk Ramsey and Lee, 2013). A ‘General Outlier_Model with 5% prior probability that individual radiocarbon dates were statistical outliers was applied to the individual radiocarbon dates (Bronk Ramsey, 2009). As a result of the previous identification of the Askja-S tephra layer, and with the assumption that the tephra layers are synchronous between depositional records (Lowe, 2011), cross-referencing was applied to the depths where the Askja-S has been identified. The ages presented in the remainder of this paper are all derived from this composite age model, and are presented at 95.4% (~2σ) highest probability density, unless stated.
4. Results

4.1. Tephrostratigraphy

Within Lake Lia, eighteen cryptotephra peaks were identified at high resolution (1 cm) through the LGIT part of the LIA-1 core and geochemically investigated (Fig. 2). Certain intervals of the core contained no glass shards. The peak shard concentrations ranged from 38 shards/g \(^{-1}\) (LIA_713) to 908 shards/g \(^{-1}\) (LIA_603). The lower depths of the core contain lower shard counts, with higher concentrations observed towards the top.

In Lake Brazi tephra glass shards appear, in varied concentration, within all samples that were investigated from the LGIT record of TDB-1. A total of twelve cryptotephra horizons were identified based on having higher shard concentration compared to the preceding sample or where no shards were present in the sample below (Fig. 2). The highest peak in shard concentration, at 564 cm depth, with 1,135 shards/g \(^{-1}\), appears as a sudden increase from previous samples, none of which contain greater than 400 shards/g \(^{-1}\). Due to the constant shard background, other peaks were less clearly defined in the record (e.g. TDB_540 and TDB_541).

4.2. Glass chemistry compositions

The geochemical results for the individual glass shards from the identified cryptotephra peaks in both lakes are presented in Fig. 3. For simplicity, and due to the high number of analyses, the variations in major and minor elemental glass composition from both lakes were assigned to two broad geochemical groups that correspond to differences in SiO\(_2\) values: 1) rhyolitic and 2) trachytic (Table 1, Table 2 and Fig. 4). Within these groups, there are further sub-divisions reflecting differing heterogeneous compositions. Many of the cryptotephra horizons from Lake Lia and Brazi contain glass shards that belong to several geochemical groups and which may be associated with reworking within the sediment profile (see Section 5.1).

Fig. 2. Shard concentration profile along with lithostratigraphy and loss-on-ignition for Lake Lia and Lake Brazi for the Late Glacial and Early Holocene period. Low resolution shard counts (5 cm) are indicated with light grey and higher resolution shard counts (1 cm) in black. Red indicates shard peaks that underwent major and minor element analysis. Symbols indicate tephra geochemical groups, assigned to their volcanic source, as described in section 4. Order of these symbols (L-R) indicates relative proportions (high-low) of each compositional population in each layer (see Table 3 for more information). Palaeoecological zones and percentage arboreal pollen (AP, solid green line) and Pinus Dyploxylon (PD, dotted green line) presented according to information from Magyari et al. (2009a, 2018) and Vincze et al. (2017). For further explanation of the pollen stratigraphic zonation see Magyari et al. (2018).
Fig. 3. Total alkali versus silica (TAS) classification plots showing the glass compositions of analysed cryptophrma samples from the following depths in Lake Lia (A–B: LIA_829-LIA_631; C–D: LIA_613-LIA_576 [cm]) and Lake Brazi (E–F) (Le Bas et al., 1986). Error bars represent 2 standard deviations of repeat analysis of the MPI-DING StHs6/80-G glass standard.
Table 1
Summary information for Lake Itepha groups.

<table>
<thead>
<tr>
<th>Depth</th>
<th>LIA 829</th>
<th>LIA 815</th>
<th>LIA 805</th>
<th>LIA 796</th>
<th>LIA 769</th>
<th>LIA 713</th>
<th>LIA 686</th>
<th>LIA 668</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sub-group</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Shards</td>
<td>n-5</td>
<td>n-9</td>
<td>n-13</td>
<td>n-27</td>
<td>n-1</td>
<td>n-4</td>
<td>n-1</td>
<td>n-2</td>
</tr>
<tr>
<td>Major</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
</tr>
<tr>
<td>SiO2</td>
<td>78.24</td>
<td>0.18</td>
<td>78.09</td>
<td>0.26</td>
<td>78.07</td>
<td>0.33</td>
<td>77.87</td>
<td>0.41</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.07</td>
<td>0.09</td>
<td>0.09</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Al2O3</td>
<td>12.56</td>
<td>0.34</td>
<td>12.50</td>
<td>0.16</td>
<td>12.52</td>
<td>0.24</td>
<td>12.55</td>
<td>0.22</td>
</tr>
<tr>
<td>FeO</td>
<td>0.84</td>
<td>0.21</td>
<td>1.08</td>
<td>0.22</td>
<td>0.99</td>
<td>0.17</td>
<td>0.94</td>
<td>0.20</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>0.02</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>CaO</td>
<td>0.62</td>
<td>0.07</td>
<td>0.78</td>
<td>0.17</td>
<td>0.74</td>
<td>0.17</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Na2O</td>
<td>4.07</td>
<td>0.45</td>
<td>4.01</td>
<td>0.35</td>
<td>3.75</td>
<td>0.44</td>
<td>3.72</td>
<td>0.80</td>
</tr>
<tr>
<td>K2O</td>
<td>3.47</td>
<td>0.64</td>
<td>3.67</td>
<td>0.51</td>
<td>3.62</td>
<td>0.62</td>
<td>3.86</td>
<td>1.01</td>
</tr>
<tr>
<td>Total</td>
<td>93.65</td>
<td>0.70</td>
<td>93.21</td>
<td>0.62</td>
<td>93.13</td>
<td>0.90</td>
<td>94.34</td>
<td>1.26</td>
</tr>
<tr>
<td>Group</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sub-group</td>
<td>D</td>
<td>A1</td>
<td>A1</td>
<td>B</td>
<td>A1</td>
<td>B</td>
<td>A1</td>
<td>B</td>
</tr>
<tr>
<td>Shards</td>
<td>n-1</td>
<td>n-6</td>
<td>n-3</td>
<td>n-12</td>
<td>n-5</td>
<td>n-1</td>
<td>n-1</td>
<td>n-8</td>
</tr>
<tr>
<td>Major</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
</tr>
<tr>
<td>SiO2</td>
<td>74.62</td>
<td>n/a</td>
<td>75.56</td>
<td>0.40</td>
<td>77.94</td>
<td>0.20</td>
<td>75.57</td>
<td>0.60</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.21</td>
<td>n/a</td>
<td>0.09</td>
<td>0.05</td>
<td>0.07</td>
<td>0.03</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Al2O3</td>
<td>11.76</td>
<td>n/a</td>
<td>12.56</td>
<td>0.56</td>
<td>12.64</td>
<td>0.13</td>
<td>12.90</td>
<td>0.19</td>
</tr>
<tr>
<td>FeO</td>
<td>2.82</td>
<td>n/a</td>
<td>1.52</td>
<td>0.47</td>
<td>0.93</td>
<td>0.10</td>
<td>1.32</td>
<td>0.32</td>
</tr>
<tr>
<td>MnO</td>
<td>0.23</td>
<td>n/a</td>
<td>0.08</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>n/a</td>
<td>0.02</td>
<td>0.02</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>CaO</td>
<td>0.35</td>
<td>n/a</td>
<td>0.63</td>
<td>0.23</td>
<td>0.77</td>
<td>0.24</td>
<td>0.74</td>
<td>0.14</td>
</tr>
<tr>
<td>Na2O</td>
<td>4.93</td>
<td>n/a</td>
<td>4.17</td>
<td>0.42</td>
<td>3.98</td>
<td>0.29</td>
<td>3.76</td>
<td>0.49</td>
</tr>
<tr>
<td>K2O</td>
<td>4.62</td>
<td>n/a</td>
<td>4.99</td>
<td>0.23</td>
<td>3.31</td>
<td>0.32</td>
<td>5.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Total</td>
<td>95.87</td>
<td>n/a</td>
<td>94.80</td>
<td>0.79</td>
<td>92.95</td>
<td>0.67</td>
<td>95.53</td>
<td>0.94</td>
</tr>
<tr>
<td>Group</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sub-group</td>
<td>C1</td>
<td>A1</td>
<td>A1</td>
<td>C2</td>
<td>B</td>
<td>A1</td>
<td>B</td>
<td>A1</td>
</tr>
<tr>
<td>Shards</td>
<td>n-1</td>
<td>n-3</td>
<td>n-6</td>
<td>n-1</td>
<td>n-3</td>
<td>n-5</td>
<td>n-1</td>
<td>n-8</td>
</tr>
<tr>
<td>Major</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
<td>Mean</td>
<td>±1sd</td>
</tr>
<tr>
<td>SiO2</td>
<td>71.36</td>
<td>n/a</td>
<td>75.29</td>
<td>0.21</td>
<td>71.24</td>
<td>0.06</td>
<td>70.87</td>
<td>0.22</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.17</td>
<td>n/a</td>
<td>0.06</td>
<td>0.02</td>
<td>0.29</td>
<td>0.02</td>
<td>0.34</td>
<td>0.05</td>
</tr>
<tr>
<td>Al2O3</td>
<td>13.50</td>
<td>n/a</td>
<td>12.88</td>
<td>0.19</td>
<td>13.65</td>
<td>0.14</td>
<td>7.58</td>
<td>0.13</td>
</tr>
<tr>
<td>FeO</td>
<td>4.04</td>
<td>n/a</td>
<td>1.43</td>
<td>0.07</td>
<td>3.83</td>
<td>0.14</td>
<td>8.40</td>
<td>0.21</td>
</tr>
<tr>
<td>MnO</td>
<td>0.28</td>
<td>n/a</td>
<td>0.05</td>
<td>0.06</td>
<td>0.16</td>
<td>0.11</td>
<td>0.30</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>0.23</td>
<td>n/a</td>
<td>0.02</td>
<td>0.02</td>
<td>0.22</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>1.43</td>
<td>n/a</td>
<td>0.72</td>
<td>0.08</td>
<td>1.36</td>
<td>0.07</td>
<td>0.45</td>
<td>0.04</td>
</tr>
<tr>
<td>Na2O</td>
<td>5.17</td>
<td>n/a</td>
<td>4.10</td>
<td>0.19</td>
<td>5.43</td>
<td>0.12</td>
<td>6.79</td>
<td>0.27</td>
</tr>
<tr>
<td>K2O</td>
<td>4.04</td>
<td>n/a</td>
<td>5.07</td>
<td>0.12</td>
<td>3.57</td>
<td>0.15</td>
<td>4.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>98.45</td>
<td>n/a</td>
<td>93.84</td>
<td>0.75</td>
<td>98.62</td>
<td>0.28</td>
<td>93.02</td>
<td>0.15</td>
</tr>
</tbody>
</table>

(continued on next page)
4.2.1. Group 1 rhyolitic tephras

Throughout both Lia and Brazi, the majority of tephra layers contained glass shards of rhyolitic composition (Figs. 3 and 4). However, there are variations in the SiO₂ content, allowing broad sub-divisions into A-, B- and C-type tephra groupings.

4.2.1.1. Group 1A rhyolites with intermediate SiO₂ (75.0–76.5 wt%) content. Group 1A comprises of glass shards that are rhyolitic in composition with intermediate SiO₂ content (74.70–75.89 wt%). Further sub-division of this geochemical group can be made based upon K₂O and CaO content (Tables 1 and 2). Group 1A1 tephra can be distinguished based upon higher K₂O content (4.79–5.61 wt%) associated with a HKCA (High-K calc-alkaline) affinity composition and lower CaO (<1.0 wt%) content (Fig. 4A and B). These clear shards are comprised of fluted, platy and cuspatate morphologies, ranging from 20 to 100 μm in length. Glass shards with this chemical composition were identified in Lia at depths labelled LIA_686, 637, 633, 631, 613, 612, 610, 607, 605, 600, 576 and Brazi at TDB_588, 564, 559, 556, 549, 546, 541, 540 (cm). Trace element analysis was conducted on certain tephra shards (n = 16) associated with Group 1A1 (LIA_637, 633, 631, TDB_564, 566; Fig. 5). Normalised to primitive mantle, these glasses show depletions in Ba, Sr and Eu, consistent with K-feldspar fractionation (Fig. 5). These shards show enrichment in Light Rare Earth Elements (LREE) relative to Heavy Rare Earth Elements (HREE) (La/Yb = 6.5–10.2).

The second sub-divided group, Group 1A2, has lower K₂O (<3.0 wt%) and CaO content (1.5–1.7 wt%) compared to preceding group 1A1 (Fig. 4A and B). These shards have a colourless, fluted appearance with shard sizes ranging from 20 to 25 μm. Group 1A2 can be found in Lia at LIA_603, 600, 576 and Brazi at TDB_541, 540. This group has identified and reported previously by Kearney et al. (2018).

4.2.1.2. Group 1B rhyolites with high SiO₂ (>76 wt%) content. Group 1B has glass shards with high SiO₂ content (>76.0 wt%), with low CaO (<1.3 wt%) and FeO₂ (<1.5 wt%) (Fig. 4D). Group 1B tephras have variations in K₂O (2.06–7.16 wt%), straddling the calc-alkaline and HKCA boundary. The clear shards’ morphologies are mixed between platy, cuspatate and fluted glass with shard sizes ranging from 20 to >100 μm. Trace element analysis was undertaken on these high-SiO₂ rhyolitic shards from both lakes (LIA_796, 637, TDB_588, 575, 556). Normalised to primitive mantle, these glass shards show LREE enrichment relative to the HREE (La/Yb = 7.3–30.9) with element concentrations of: Th 12.4 ppm, Rb 140.4 ppm, Y 5.2 ppm, and La 17.4 ppm. These glasses show a depletion in Nb and Ta with an enrichment in Th (Fig. 5), consistent with an origin from a subduction setting.

Glass shards with Group 1B compositions were identified in cryptotephra layers from Lia (LIA_829, 815, 805, 796, 769, 713, 686, 637, 633, 631, 612, 591, 589, 576) and in the majority of Brazi layers (TDB_599, 588, 582, 575, 570, 564, 559, 556, 554, 546, 541, 540 (cm)).

4.2.1.3. Group 1C rhyolites with low SiO₂ (<74 wt%) content. The glass shards of Group 1C are rhyolitic with lower in SiO₂ content and heterogeneous compositions clearly originating from different volcanic sources, allowing further sub-division into Groups 1C1 and 1C2 reflecting lower and higher FeO₂ distributions, respectively (Fig. 4E and F). Group 1C1 has 71.39–71.75 wt% SiO₂ content with 1.31–1.43 wt% CaO and 3.73–4.04 wt% FeO₂. Glass shards associated with this sub-group were identified in cryptotephra layers of Lake Lia (LIA_631, 610, 613 and 576 [cm]) and two layers in Lake Brazi (TDB_546 and 561 [cm]). A single shard associated with this sub-group underwent trace element analysis (LIA_631 [cm], Fig. 5). Trace element analysis normalised to primitive mantle shows enrichment in Rb, Th, Nb and Ta, indicative of anorogenic volcanic settings. The shard morphologies geochemically assigned to Group 1C1 are predominately platy, with some cuspatate and fluted glass, with shard sizes ranging from 20 to 80 μm.
<table>
<thead>
<tr>
<th>Depth</th>
<th>TDB_599</th>
<th>TDB_588</th>
<th>TDB_582</th>
<th>TDB_575</th>
<th>TDB_570</th>
<th>TDB_564</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sub-group</td>
<td>B</td>
<td>D</td>
<td>A1</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Shards</td>
<td>n-16</td>
<td>n-1</td>
<td>n-15</td>
<td>n-1</td>
<td>n-8</td>
<td>n-5</td>
</tr>
<tr>
<td>Major</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
</tr>
<tr>
<td>SiO2</td>
<td>77.95 ±0.82</td>
<td>76.85 n/a</td>
<td>75.59 n/a</td>
<td>77.60 ±1.08</td>
<td>77.53 n/a</td>
<td>77.16 ±0.62</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.08 ±0.09</td>
<td>0.10 n/a</td>
<td>0.09 n/a</td>
<td>0.07 ±0.10</td>
<td>0.07 n/a</td>
<td>0.05 ±0.07</td>
</tr>
<tr>
<td>Al2O3</td>
<td>12.44 ±0.29</td>
<td>12.21 n/a</td>
<td>12.66 n/a</td>
<td>12.52 ±0.30</td>
<td>13.09 n/a</td>
<td>12.51 ±0.38</td>
</tr>
<tr>
<td>FeOt</td>
<td>0.96 ±0.33</td>
<td>1.04 n/a</td>
<td>0.94 n/a</td>
<td>0.94 ±0.46</td>
<td>1.12 n/a</td>
<td>0.81 ±0.56</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04 ±0.11</td>
<td>0.10 n/a</td>
<td>0.14 n/a</td>
<td>0.03 ±0.06</td>
<td>0.02 n/a</td>
<td>0.03 ±0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>0.05 ±0.08</td>
<td>0.11 n/a</td>
<td>0.02 n/a</td>
<td>0.06 ±0.08</td>
<td>0.03 n/a</td>
<td>0.04 ±0.06</td>
</tr>
<tr>
<td>CaO</td>
<td>0.80 ±0.43</td>
<td>1.09 n/a</td>
<td>0.79 n/a</td>
<td>0.83 ±0.53</td>
<td>0.63 n/a</td>
<td>0.89 ±0.38</td>
</tr>
<tr>
<td>Na2O</td>
<td>3.56 ±0.95</td>
<td>2.29 n/a</td>
<td>3.83 n/a</td>
<td>3.69 ±1.63</td>
<td>3.96 n/a</td>
<td>2.95 ±1.55</td>
</tr>
<tr>
<td>K2O</td>
<td>3.56 ±1.03</td>
<td>6.09 n/a</td>
<td>5.05 n/a</td>
<td>4.12 ±2.66</td>
<td>3.44 n/a</td>
<td>5.38 ±1.72</td>
</tr>
<tr>
<td>Total</td>
<td>93.71 ±2.15</td>
<td>93.81 n/a</td>
<td>96.17 n/a</td>
<td>93.32 ±1.73</td>
<td>94.67 n/a</td>
<td>94.03 ±1.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth</th>
<th>TDB_561</th>
<th>TDB_559</th>
<th>TDB_556</th>
<th>TDB_554</th>
<th>TDB_549</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sub-group</td>
<td>A1</td>
<td>C1</td>
<td>A1</td>
<td>B</td>
<td>A1</td>
</tr>
<tr>
<td>Shards</td>
<td>n-1</td>
<td>n-5</td>
<td>n-3</td>
<td>n-14</td>
<td>n-31</td>
</tr>
<tr>
<td>Major</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
<td>Mean ±1sd</td>
</tr>
<tr>
<td>SiO2</td>
<td>75.36 n/a</td>
<td>71.67 n/a</td>
<td>77.88 ±1.01</td>
<td>75.45 ±0.43</td>
<td>75.23 ±0.50</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.06 n/a</td>
<td>0.25 n/a</td>
<td>0.08 ±0.11</td>
<td>0.04 ±0.04</td>
<td>0.07 ±0.07</td>
</tr>
<tr>
<td>Al2O3</td>
<td>12.96 n/a</td>
<td>13.33 n/a</td>
<td>12.63 ±0.47</td>
<td>12.96 ±0.08</td>
<td>12.95 ±0.35</td>
</tr>
<tr>
<td>FeOt</td>
<td>1.44 n/a</td>
<td>3.78 n/a</td>
<td>0.80 ±0.23</td>
<td>1.35 ±0.03</td>
<td>1.37 ±0.21</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05 n/a</td>
<td>0.15 n/a</td>
<td>0.09 ±0.11</td>
<td>0.07 ±0.12</td>
<td>0.06 ±0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00 n/a</td>
<td>0.21 n/a</td>
<td>0.05 ±0.09</td>
<td>0.05 ±0.04</td>
<td>0.03 ±0.03</td>
</tr>
<tr>
<td>CaO</td>
<td>0.75 n/a</td>
<td>1.42 n/a</td>
<td>0.61 ±0.08</td>
<td>0.69 ±0.09</td>
<td>0.72 ±0.18</td>
</tr>
<tr>
<td>Na2O</td>
<td>3.74 n/a</td>
<td>5.39 n/a</td>
<td>3.59 ±1.06</td>
<td>3.87 ±0.31</td>
<td>4.15 ±0.42</td>
</tr>
<tr>
<td>K2O</td>
<td>5.20 n/a</td>
<td>3.56 n/a</td>
<td>4.11 ±1.47</td>
<td>5.10 ±0.11</td>
<td>5.05 ±0.62</td>
</tr>
<tr>
<td>Total</td>
<td>95.18 ±2.15</td>
<td>95.74 n/a</td>
<td>96.17 n/a</td>
<td>93.32 ±1.73</td>
<td>94.67 n/a</td>
</tr>
</tbody>
</table>
[Summary information for each tephra layer from Lake Lia and Brazi.]

4.2.2. Group 2 trachytic tephras

These glasses are distinctly lower in SiO₂ with an HKCA affinity (4.18 wt% K₂O) and distinctly lower in SiO₂ (65 wt%), which can be sub-divided based upon alkali ratio (K₂O/Na₂O) into 2A-(high), 2B-(low) and 2C-(very low) type tephras (Fig. 4G and F).

4.2.2.1. Group 2A trachytic tephra with high alkali ratio.

Group 2A consists offo single High-K trachytic glass shard (SiO₂ = 61.69 wt%; K₂O = 8.50 wt%) from LIA_796 (cm). This shard also displays high Al₂O₃ (18.54 wt%), FeO (2.91 wt%) and CaO (2.16 wt%) with a high alkali ratio (K₂O/Na₂O = 1.87 wt%). Trace element analysis reveals enrichment in incompatible trace elements for instance 372.60 ppm Rb, 37.69 ppm Th, and 422.90 ppm Zr with significant LREE enrichment relative to the HREE (La/Yb = 26.11). Depletion in Nb and Ta indicate an subduction related origin (Fig. 5).

4.2.2.2. Group 2B trachytic tephras with low alkali ratio. The high-K trachytic glass shards of Group 2B (61.96–62.93 wt% SiO₂, 6.19–6.59 wt% K₂O) contain higher Na₂O (7.27–8.05 wt%) than K₂O content, resulting in a distinctly low alkali ratio (K₂O/Na₂O = 0.81–0.85 wt%). These Group 2B shards are found in cryptotephra layers in Lake Lia between 612 and 613 cm depth (LIA_613 and 612).

4.2.3. Uncorrelated glass shards (UCG) with mixed geochemistry

This group is composed of both rhyolitic and trachytic glass shards at the several stratigraphically different depths in both Lake Lia and Brazi. The various differences are found in that do not fit into the previously described groups. A single rhyolitic shard from Lake Lai at 607 cm depth (LIA_607) exhibits lower SiO₂ (73.05 wt%), higher K₂O (5.22 wt%), high FeO (3.62 wt%; Fig. 4A and B) compared to potential group
equivalents of Group 1B. LIA_633 also contains a single rhyolitic shard with higher SiO$_2$ (76.55 wt%), high K$_2$O (5.60 wt%), and low FeOt and CaO (1.00 wt% and 1.14 wt% respectively). In addition, a single analysis from LIA_686 with similar SiO$_2$ (74.62 wt%), yet lower K$_2$O (4.62 wt%) content, displaying an HKCA affinity was also identified (Fig. 4A and B). A single trachytic shard from LIA_633 is also assigned to this group, with higher SiO$_2$ (65.17 wt%), with lower Na$_2$O (5.95 wt%), and lower K$_2$O (2.64 wt%) producing a very low alkali ratio of 0.44 wt% (K$_2$O/Na$_2$O), making it a distinctively different population from Groups 2A and 2B.

In Lake Brazi, a distinct single rhyolitic (SiO$_2$ 74.20 wt%) glass shard from TDB_570 displayed particularly high K$_2$O (6.00 wt%) and FeO$_t$ (2.15 wt%) content and resides on the HKCA/shoshonitic boundary (Fig. 4A and B). While a single rhyolitic shard in TDB_599 (SiO$_2$ 76.85 wt%) exhibits similar K$_2$O (6.09 wt%) content but lower FeO$_t$ (1.04 wt%) content.

5. Interpretation and discussion

5.1. Identifying primary and secondary cryptotephra deposits

In an ideal cryptotephra concentration profile, the largest peak in shard concentration can be described as an isochron, in addition to peaks preceding the sterile sediment. This implies primary tephra deposition, and therefore can be directly associated with the timing of a
volcanic eruption itself (Lowe, 2011; Davies et al., 2012). In reality, within lake sediment records, lower shard concentrations are often seen to underlie and overly distinct peaks and may be associated with taphonomic processes such as bioturbation and redistribution of sediment by underwater currents (Pyne-O’Donnell et al., 2008; Davies et al., 2012). Secondary mobilisation of shards from the surrounding local catchment due to erosional events and melting snow-beds and/or melting lake ice cover can also result in the input of glass shards up a profile (Hunt, 1994; Bergman et al., 2004; Davies et al., 2007; Harning et al., 2018). Coring-related reworking is largely excluded due to the sampling procedure undertaken of taking sediment from the central part of the core, avoiding contamination.

There are two very clear shard peaks identified from the shard concentration profiles of Lakes Lia and Brazi. These peaks are interpreted as the prolonged inwash of shards from the surrounding lakes’ catchments, probably due to melting snow beds or ice.

Davies et al. (2007) have highlighted that the presence of snow-beds can become ‘tephra traps’ and, with subsequent melting, release tephra into the catchment and lake over an extended period after the primary deposition. Multi-proxy evidence from Lia and Brazi indicates the presence of prolonged snow-beds within the catchments, particularly during the early part of the Younger Dryas period which saw an increase in melting around the time of the primary isochron deposition of LIA_637 and TDB_564 (Buczko et al., 2009; Magyari et al., 2009, 2012; Finsinger et al., 2018). In addition, there was a rock glacier located on the western side of Lake Lia during the Last Glacial period (Urdea, 2004). A glacier is also located near Lake Bucura, which would have influenced inflow to Lia (Urdea, 2004). These glaciers could also be interpreted as ‘traps’ for tephra shards, which would then be released into the catchment with melting and subsequently deposited into the record (Davies et al., 2007). This is hypothesised due to the continuous lower shard concentrations of heterogeneous glass chemistry within both lake profiles, making identification of clear isochrons difficult.

5.2. Chronological modelling

The output from the new comprehensive Bayesian age model for Lake Lia and Lake Brazi incorporates the cross correlation of the previously identified isochron of the Askja-S from both sites (Kearney et al., 2018) to improve their age-depth models (Fig. 6). The age derived for the Askja-S tephra in this study is given as 11,070–10,720 cal BP (Table 3). This is in good agreement with the previous, higher precision estimate produced by Kearney et al. (2018) of 10,824 ± 97 cal BP (2σ) that utilises data from additional sites, but models on to IntCal13, although the two calibration curves are essentially identical at this point in time.

The subsequent newly discovered tephra layers identified as representing primary deposition, and therefore isochrons, can be dated from both sites (see Table 3 and section 5.3). Comparing the output ages from both sites, Lia has larger age uncertainties compared to Brazi, particularly for the Late Glacial tephra layers of Lia (Table 3 and Fig. 6). This can be attributed to the lack of radiocarbon dates located close to the depths of where these tephras were found (Fig. 6). Hubay et al. (2018) highlighted the lack of organic material at this time to provide reliable radiocarbon dates. This is in contrast to Brazi with several macrofossils’ radiocarbon dated throughout the record (Fig. 6, Hubay et al., 2018). We therefore suggest that the ages produced by Brazi are more reliable for dating the Late Glacial tephra layers reported in this study. However, during the Early Holocene period of Lia, additional reliable radiocarbon dates improve the chronological uncertainty for tephra layers identified in this part of the core. There is potential to improve the Late Glacial part of Lia’s age-depth model by correlating the identified tephra layers reported here to another well-dated record in future.

5.3. Cryptotephra correlations

5.3.1. Group 1A1 (Lipari, Aeolian Islands, Italy)

The rhyolitic shards with high K2O content (HKCA) of Group 1A1 correlate well to the HKCA rhyolites from Lipari, Aeolian Islands (Fig. 7A and B; Albert et al., 2012; McGuire et al., 2022). These shards
are found across several depths in the LGIT studied sediments of Lakes Lia and Brazi (Fig. 2).

A clear isochron of Lipari-type Group 1A1 shards is identified in Brazi at 564 cm depth (TDB_564) during the Younger Dryas period (Fig. 2), and is dated by pollen stratigraphy and radiocarbon dating to between 12,885–11,515 cal BP (Fig. 2, Table 3; Magyari et al., 2009). In Lake Lia, at 637 cm (LIA_637) a Lipari-type isochron is identified, whilst the peak is not as pronounced as the layer in Lake Brazi, this Lipari-type deposit in Lake Lia is preceded by sediments completely sterile of glass shards (Fig. 2). Shards with similar Lipari-type compositions extending across a broader sediment interval above this initial depth (LIA_637), including analysed intervals of 633 cm (LIA_633) and 631 cm (LIA_631; Fig. 2).

In both Lia and Brazi, glass shards of Lipari geochemistry are seen throughout depths after these isochrons. This may hamper finding the LGIT aged Lipari cryptotephra layers, as their isochron positions are poor constrained by radiocarbon dates being affected by a ‘hard water’ effect (Lawson et al., 2004; McGuire et al., 2022). Correlating Lia and Brazi Lipari tephras to a precise Ioannina Lipari layer is difficult, even with using trace element compositions due to the overlap in the glass compositions. However, distinct compositional differences between the overlying ‘Vallone del Gabellotto’ (VdG) eruption dated at 8,430–8,730 cal BP (Siapi et al., 2004; Albert et al., 2017). Moreover, recent evidence for other widespread rhyolitic ash fall events from Lipari, chronologically older than the VdG tephra.

In addition, two LGIT age Lipari tephra layers have also been identified by trace element analysis at Lake Ioannina, Greece, these are indistinguishable in major elements compositions from the overlapping VdG tephra also recorded at the site (McGuire et al., 2022). Correlating Lia and Brazi Lipari tephras to a precise Ioannina Lipari layer is difficult, even with using trace element compositions due to the overlap in the glass compositions. However, distinct compositional differences between the overlying ‘Vallone del Gabellotto’ (VdG) eruption dated at 8,430–8,730 cal BP (Siapi et al., 2004; Albert et al., 2017). Moreover, recent evidence for other widespread rhyolitic ash fall events from Lipari, chronologically older than the VdG tephra.

HKCA explosive rhyolitic eruptions on Lipari have occurred period-ically through approximately the last 40 kyr (Forni et al., 2013; Albert et al., 2017). The distal occurrences of these tephras are mainly limited to marine records in the Tyrrhenian, Adriatic and Ionian Seas (e.g. Paterno et al., 1988; Siani et al., 2004; Caron et al., 2012; Albert et al., 2017) with only limited occurrences in distal terrestrial records (e.g. Narcisi, 2002; Di Roberto et al., 2018). The most widely traced rhyolitic tephra sourced from Lipari relates to the early Holocene ‘Vallone del Gabellotto’ (VdG) eruption dated at 8,430–8,730 cal BP (Siapi et al., 2004; Albert et al., 2017). Moreover, recent evidence for other widespread rhyolitic ash fall events from Lipari, chronologically older than the VdG tephra.

In addition, two LGIT age Lipari tephra layers have also been identified by trace element analysis at Lake Ioannina, Greece, these are indistinguishable in major elements compositions from the overlying VdG tephra also recorded at the site (McGuire et al., 2022). Correlating Lia and Brazi Lipari tephras to a precise Ioannina Lipari layer is difficult, even with using trace element compositions due to the overlap in the glass compositions. However, distinct compositional differences between the overlying ‘Vallone del Gabellotto’ (VdG) eruption dated at 8,430–8,730 cal BP (Siapi et al., 2004; Albert et al., 2017). Moreover, recent evidence for other widespread rhyolitic ash fall events from Lipari, chronologically older than the VdG tephra.
are found in LIA_686 with one in TDB_588 mixed amongst other glass chemistries. These shards did not undergo trace element analysis.

In Lia, there sterile glass-free sediments between the LG Lipari isochron (LIA_637) and the older LIA_686 depth, combined with their positions in different climato-stratigraphic zone (pollen) suggest the possibility of earlier Lipari eruptions recorded in the region. However, in these deeper intervals, the Lipari-type glasses are subsidiary components, reflected by the very minor number of analyses, as such it is difficult to use these horizons to provide clear evidence of additional older eruptions on Lipari recorded in the region. Given the very low Lipari glass shard numbers, we cannot rule out that core-related displacement has resulted in these stratigraphically older Lipari-type composition shards from the LGIT Lipari peaks of LIA_637 and TDB_564. The absence of tephra in laboratory blanks reduce the likelihood of contamination.

Nevertheless, we can propose, using stratigraphic and chronological evidence from both Lake Lia and Brazi, that there are at least two Lipari eruptions responsible for widely dispersing ash during the LGIT: 1) the Younger Dryas TDB_564 (12,885–11,515 cal BP) isochron seen in Brazi and; 2) The Late Glacial/Early Holocene transition isochron of LIA_637 (12,590–10,845 cal BP). At source, there is an absence of a prominent or widely trace eruption unit on the island in correct chrono-stratigraphic position between the ‘Monte Guardia’ eruption (ca. 27 ka BP) and the VdG. The patchiness of near-source volcanic stratigraphies is not uncommon, particularly on volcanic islands, owing to limited on-land exposures, with much of the erupted material possibly entering the sea (Albert et al., 2012; Cassidy et al., 2014). This highlights the importance of distal sedimentary records for understanding past eruption frequencies of volcanic centres. The rhyolitic HKCA Lipari-derived TDB_564 cryptotephra clearly presents a useful tephrochronological marker for the Mediterranean region capable of synchronising sedimentary archives in the LGIT period.

5.3.2. Group 1A2 rhyolites (Askja-S, Askja, Iceland)

Previous identification of LIA_603 and TDB_540.5 as distinct isochrons correlated to the Askja-S tephra has been made by Kearney et al.
Further Askja-S type shards are seen higher up the stratigraphy in Lia only at LIA_600 and LIA_576 (Figs. 2 and 8) and labelled as compositional group 1A2. Whilst other, younger tephra deposits from Askja volcano have been reported in the Holocene (e.g. the Askja-L and Askja-H; Jóhannsdottir, 2007; Striberger et al., 2012; Gudmundsdottir et al., 2016), there is no evidence to date of these tephra deposits having been identified beyond Iceland. This strongly suggests that these shards are possibly reworked from the earlier, primary airfall deposit of the Askja-S tephra in the catchment of lake Lia. No further samples were geochemically analysed above TDB_541 in Brazi in this study.

5.3.3. Group 1B (Anatolian unknown eruption(s), Turkey)

The high SiO$_2$ composition of Group 1B represents highly evolved rhyolitic volcanic glass. Within these glass populations there is a variation in K$_2$O content, ranging across the CA/HKCA boundary. This divergence in K$_2$O may reflect late-stage fractionation (K-feldspar) or distinctly different magmas from different but chemically similar volcanic sources.

Several volcanoes are known to have produced high-silica rhyolites (>76 wt%) during the Late Glacial period. Volcanic sources from the Aeolian Islands, including Lipari, Vulcano and the Salina Islands, are known to have erupted evolved rhyolitic magmas in the last ~15kyr (Albert et al., 2015, 2017). However, tephra deposits produced by Lipari and Vulcano exhibit lower SiO$_2$ (75–76 wt%) and higher Fe$_2$O$_3$ (>1.5 wt%) content than Group 1B glasses. Salina has also produced variable high SiO$_2$ (70–77 wt%) with higher CaO (~1.3 wt%) than the Brazi and Lia Group 1B glasses described (Albert et al., 2017). The Aegean Arc volcanoes of Nisyros and Kos have also produced similar high SiO$_2$ content tephra yet have higher CaO (>1.1 wt%) and lower Fe$_2$O$_3$ (<0.75 wt%) (Fig. 9; Tomlinson et al., 2012a; Karkanas et al., 2015; Satow et al., 2015).

Far travelled ash from Icelandic volcanic eruptions during the LGIT has been recorded as far south as the Italian Alps (e.g. Lane et al., 2012b, c) and at Lakes Lia and Brazi (the Askja-S tephra, as previously reported by Kearney et al. (2018)). The Icelandic Borrobol and Håsselfjeld cryotephra deposits found across Europe from unknown specific volcanic
sources are similar in geochemistry to Group 1B (Lind et al., 2016; Cook et al., 2018; Wastegård et al., 2018). These tephras have similar high-silica compositions (>76 wt%), but can be discriminated easily from Group 1B by comparing FeO\textsubscript{t} and CaO content, indicating that known Icelandic volcanoes are not the source for these cryptotephra deposits.

Further evidence of a different volcanic source for Group 1B high-silica glasses is provided by trace element composition. Trace element analysis was conducted on multiple volcanic glasses at depths associated with Group 1B high-silica rhyolites from both lakes. Results indicate a continental subduction setting with a depletion in Nb and Ta, and with an enrichment of Th (Fig. 9; Tomlinson et al., 2015). This further confirms that Icelandic volcanoes are not the source for these glass shards. The nearest volcano with a continental subduction setting is Ciomadul, Romania.

The chemical compositions of Ciomadul glass shards to Group 1B are similar but have a subtle offset (Fig. 9A and B). The timing of known volcanism at Ciomadul precludes Lake Lia and Brazi correlations, with the most recent explosive eruption dated to 31.5–27.7 ka BP (Karátson et al., 2016; Wulf et al., 2016b; Harangi et al., 2020).

With the exclusion of Carpathian subduction-related rhyolites, Italian and Aegean Arc settings, the next plausible source region for subduction zone volcanoes is Anatolia. Glass shards with HKCA affinity are similar in composition to tephra deposits from Acigöl, Erçiyes Dagi, Hassan Dagi and Göllü Dagi in the Central Anatolian Volcanic Province (Bakke et al., 2009; Hamann et al., 2010; Cullen et al., 2014; Schmincke and Sumita, 2014). Other volcanoes located in the EAVP and Western Anatolian Volcanic Province currently lack sufficient published glass chemistry data to allow a comparison to Group 1B, particularly glass shards with a CA affinity (Pearce et al., 1990; Yılmaz et al., 1998; Cullen et al., 2014; Schmincke and Sumita, 2014; Neugebauer et al., 2021).

Identifying a precise geochemical correlation of Group 1B glasses to a volcano and/or eruption from the Anatolian region is extremely challenging. Firstly, this region lacks proximal volcanic glass geochemistry (major, minor and trace elements). This is exacerbated by
limited stratigraphic and geochronological constraints on past volcanic activity (proximal and distal) (Cullen et al., 2014; Neugebauer et al., 2021). In addition, there are multiple shard peaks of mixed >76 wt% SiO₂ chemistry within the lower depths of both Lakes Lia and Brazi. It is unclear if this is due to constant secondary inwash from snow-traps or production of geochemically similar tephra from a volcano or volcanoes. Previous research has highlighted that many volcanic systems can produce similar major and minor element glass chemistries over prolonged timescales (e.g. Smith et al., 2011; Lane et al., 2012b; Karatson et al., 2016; Cook et al., 2018). Trace element analysis can help distinguish between eruptions (Tomlinson et al., 2015; Albert et al., 2015), although certain volcanoes can also produce identical trace element compositions with each eruption (e.g. Lane et al., 2012c; Cook et al., 2018) resulting in unclear correlations to specific eruptions. This could be the case for the Anatolian region. However, current trace element analysis from this study and comparison to limited published data, show at least three shards in TDB_575 having a strong geochemical correlation to Acigöl, Central Anatolian Volcanic Province (Fig. 9-D-F). In addition, a single shard from LIA_631 suggests an origin from Western Anatolian Volcanic Province as indicated by trace element results (Fig. 9-D-F). Yet, once again, a direct attribution to an eruption cannot be made at this time due to the lack of currently glass geochemistry from volcanoes in this region.

Nonetheless, the geochemical evidence presented from Lake Lia’s and Lake Brazi’s high-silica rhyolites suggests, via the process of source elimination of Italian, Icelandic and Aegean volcanic sources, that Central Anatolian volcanoes are the most likely ash sources. That is despite being ~1,000 km away.

5.3.4. Group 1C1 (Katla-type, Katla, Iceland)

The glass shards of Group 1C1 exhibit a glass chemistry similar to the rhyolitic products of Katla volcano, Iceland (e.g. Vedde Ash, Dimna Ash; Fig. 8A and B). Trace element analysis conducted on a single Katla-type shard in LIA_631 provides further evidence for the correlation to this volcano (Fig. 8C-E).

The chrono-stratigraphic position of these Group 1C1 shards in both Lia and Brazi suggest a Younger Dryas (GS-1) to Early Holocene transition deposit (Fig. 2). During the LGIT period, multiple tephua deposits were produced by Katla volcano displaying similar rhyolitic chemical compositions recorded at sites across Europe (e.g. Bond et al., 2001; Pilcher et al., 2005; Thormar et al., 2011; Matthews et al., 2011; MacLeod et al., 2015). This includes the Vedde Ash, which is traced across northern (e.g. Birks et al., 1996; Timms et al., 2018), central (e.g. Blockley et al., 2007; Lane et al., 2013) and southern European regions (e.g. Lane et al., 2012a; Lane et al., 2012c) with extension into western Russia (e.g. Vastegård et al., 2008, 2000; Haffidason et al., 2019). Recently, the Vedde Ash has been identified in Lake Latoritei, Romania (Szabó et al., 2023). The Vedde Ash has been radiocarbon dated to 12,100–11,915 cal BP (95.4% range; Bronk Ramsey et al., 2015) and has an age of 12,171 ± 114 b2k (maximum counting error, MCE equivalent to 2σ) in the Greenland ice cores, where it occurs in the middle of GS-1 (GICC05, Rasmussen et al., 2006). Two deposits with Katla-type shards in Lake Lia and Brazi overlap in age estimates with the age for the Vedde Ash, LIA_631 and TDB_561 (see Table 3). However, only TDB_561 is stratigraphically positioned in the Younger Dryas period while LIA_631 is within the Early Holocene period (Fig. 2). The single shard of TDB_561 is most likely correlated to the widespread Vedde Ash. However, with only one shard being identified, no isochron is drawn from this data.

The age estimates of LIA_631, LIA_613, LIA_610, LIA_576 and TDB_546 produced in age models from the present study (Table 3, see section 5.3) along with locally described pollen zones (Magyari et al., 2009, 2012; Vincze et al., 2017), show that these cryptotephra deposits are too young to represent primary deposition of the widespread Vedde Ash. While younger Katla-type tephra have been identified post the Vedde Ash in many cryptotephra records in northern Europe. For example, the younger Abernethy Tephra, dated to 11,584–11,340 cal BP (Bronk Ramsey et al., 2015) are restricted to sites in north-west Europe (Matthews et al., 2011; MacLeod et al., 2015; Timms et al., 2018; Jones et al., 2018), making it unlikely that the younger Katla-type deposits in Lake Lia and Brazi are from potential smaller magnitude eruption of Katla during this younger time frame. Several authors have identified single Katla-type shards within European records as well during the Early Holocene (e.g. Timms et al., 2017, 2018; Jones et al., 2018). However, re-working of underlying Vedde Ash material has been suggested to be responsible for these isolated shards from these studies, rather than a primary deposit from the Abernethy Tephra eruption or an unknown Katla eruption.

The most likely explanation for these successive identifications of Katla-type glass chemistries in both the Lia and Brazi lake sequences is re-working and secondary deposition of Vedde Ash material from within the lake catchments, most likely from melting ice and/or snow beds (see section 5.1; Hunt, 1994; Bergman et al., 2004; Davies et al., 2007; Harning et al., 2018). Additional evidence that supports this interpretation includes: 1) very low shard concentrations of Katla-type glass geochemistry (1–2 shards) at different core depths in both lakes; 2) only the Vedde Ash having been traced into central-southern Europe (Blockley et al., 2007; Lane et al., 2012a, 2012b); 3) the inclusion of other mixed glass chemistries within the same cryptotephra layers examined and 4) the Vedde Ash has recently been identified in the region (Szabó et al., 2023).

As a result, the discovery of ash fall from the Katla eruption that produced the Vedde Ash indicates that it likely did reach further into the Carpathian Mountains, expanding evidence of this already extensive ash fall to southeastern Europe.

5.3.5. Group 1C2 (Unknown eruption, Pantelleria, Italy)

This single shard is an Fe-rich peralkaline rhyolite, identified as a pantellerite originating from Pantelleria Island, located in the Sicilian Channel (Fig. 10A–B, 10E). Volcanic activity has been recorded at this island throughout the Late Quaternary (MacDonald, 1974; Givet et al., 1988; Tomlinson et al., 2015). The largest known caldera-forming eruption is the Green Tuff dated to 45,700 ± 500 ka by the ⁴⁰Ar/³⁹Ar technique (Scaillet et al., 2013). This tephra layer has been identified throughout the Mediterranean region (e.g. Paterne et al., 1988, 2008; Margari et al., 2007; Vogel et al., 2010; Tamburrino et al., 2012; Kar kansas et al., 2015; Nitinou and Kyparissi-Apostolika, 2016).

Following this large-scale eruption, more localised pyroclastic and lava flows have been recorded during the LGIT period (Mahood and Hildreth, 1986; Givet et al., 1988; Speranza et al., 2010; Neave et al., 2012). Previously, only one occurrence of distal ash from Pantelleria has been recorded. Magney et al. (2011) identified several pantellerite rhyolite shards in Lago Preola, southern Sicily, dated to 7,444–7,136 cal BP. This has been related to the VI cycle of volcanic activity from Pantelleria where K–Ar dating of lava flows places it in the LGIT period (Givet et al., 1988; Neave et al., 2012). The single Pantellerite rhyolite shard from Lake Lia is significantly older at 11,120–10,745 cal BP. This chronologically coincides with the V cycle of volcanic activity of Pantelleria (Givet et al., 1988). Dated lava flows do overlap in chronological uncertainty with the Lake Lia Pantellerite glass shard (Neave et al., 2012). However, no prominent explosive eruption deposits have yet been identified on the island, making a firm correlation challenging for now.

5.3.6. Group 2A (Campi Flegrei, Italy)

A single trachytic composition glass shard (LIA_796) is consistent with the product of Campi Flegrei caldera, Italy (Fig. 10A and B). The largest known eruption from the Campi Flegrei during the LGIT is that of the caldera-forming Neapolitan Yellow Tuff (NYT), this eruption has been dated to 14,433–13,795 cal BP (95.4%, IntCal13, (Bronk Ramsey et al., 2015) and is the most widely traced ash dispersal from Campi Flegrei during the LGIT (Lane et al., 2012a, 2015; Schmidt et al., 2002; Tomlinson et al., 2012b) While the single shard analysis of LIA_796 is consistent with the most evolved products of the NYT (Lower Member,
Fig. 10, a correlation to this eruption is problematic based on its climato-stratigraphic position in Lake Lia. LIA_796 is identified in the Older Dryas (Fig. 2), whereas the NYT is routinely identified in the sediments associated with the early Bolling-Allerød (e.g. Siani et al., 2004; Schmidt et al., 2002; Lane et al., 2011b). A compositional similarity with the NYT is unsurprising as the evolved (trachytic) end-member of the NYT is not unique within the overall tephrostratigraphy of Campi Flegrei (e.g. Smith et al., 2011; Tomlinson et al., 2012b). Activity prior to the NYT at Campi Flegrei is characterised by a complex succession of eruption units, broadly termed the Tufi Biancastri (TB). This succession of eruption units extends between the NYT and Campanian Ignimbrite (Orsi et al., 1996). While the older portions of TB succession have been more recently characterised (glass chemistry; e.g. Tomlinson et al., 2012b), particularly in relation to the 29.3ka Masseria del Monte Tuff (Albert et al., 2019), the younger TB deposits remains poorly characterised at source. Consequently, we are only able to compare LIA_796 to a single Campi Flegrei derived shard, and the limited amount of proximal glass data for the pre-NYT eruption units, a confident correlation is not possible (Fig. 10 C and D). Furthermore, given only a single shard is identified, it is unclear if this can be confidently attributed to a primary ash fall deposit, and as such, it cannot be ascribed as an isochronous marker in Lake Lia’s sedimentary record. Nonetheless, our finding provides further evidence for widespread ash dispersals associated with eruptive activity of Campi Flegrei in the period leading up to the NYT caldera-forming eruption during the LGIT (i.e. Siani et al., 2004).

5.3.7. Group 2B (Unknown eruption, Ischia, Italy)

Several K-rich trachytic glass shards were identified in two adjacent samples from Lake Lia (LIA_612 and LIA_613 – isochron position LIA_612.5), these trachytic glasses are consistent with those erupted in the Campanian volcanic zone. The high-Na content and subsequent low-alkali ratio (0.85 ± 0.10 wt%) preclude a link to Campi Flegrei, instead...
the glasses are more consistent with eruptive products from Ischia Island (Fig. 10A-B; Paterne et al., 1988; Civetta et al., 1991; Wulf et al., 2008; Tomlinson et al., 2015). Ischia was active throughout the end of the Late Glacial and into the Holocene period (10 uncalibrated ^{14}C yrs BP -1302 AD; Civetta et al., 1991; de Vita et al., 2006). Within the annually laminated sediments of Lago Grande di Monticchio (LGrM) record (Wulf et al., 2008), three sub layers, TM-6-3, were attributed to unknown activity of Ischia and varve dated to 11,520 ± 580 cal BP (varves ± 5% error, Wulf et al., 2008). Additional shards displaying Ischia-like geochemistry are also found in Lago Glacial sediments in the KET8004 Tyrrenhian Sea core (Paterne et al., 1988).

The modelled age for LIA_612.5 is 11,120–10,740 cal BP, with pollen and sediment stratigraphy confirming it as an early Holocene tephras layer. This age overlaps in uncertainty with the age of TM-6-3 from LGrM (Wulf et al., 2008) and is certainly too young to relate to the older dated St. Angelo Tuff (15,820 ± 395 cal BP [varves ±5% error], Wulf et al., 2008). To mitigate for potential Na$_2$O loss affecting the SiO$_2$ content (due to differing EPMA instrumental conditions, Hunt and Hill, 1996), geochemical comparisons between LIA_612.5 and TM-6-3 were made using CaO vs FeO (Fig. 10). The apparent correlation in age and composition between LIA_612.5 and TM-6-3 provides further evidence for a major widespread ash dispersal originating from Ischia during the earliest Holocene period (Fig. 10).

5.3.8. Group 3 (Unknown eruptions, unknown volcanic sources)

There are several single rhyolitic glass shards at TDB_570 and LIA_686 that possess chemical compositions of possible Icelandic origin (Fig. 8A and B). However, correlating them to known Icelandic volcanic sources and/or eruption(s) is difficult. Yet, with the confirmed ultradistal occurrence of the Askja-S tephra and Vedde Ash in both records, additional Icelandic eruptions may also be recorded at Lia and Brazi.

Tentative correlations of single glass shards from TDB_570 and LIA_686 can be made to the contentious Torfajökull volcano as a source for these shards (Fig. 8). The data for these correlations comes from the recently re-examined volcanic source for the Þórrsmörk Ignimbrite eruption by Moles et al. (2019) to Torfajökull rather than the previously attributed Tindfjallajökull volcano. Similar correlations were made to Torfajökull with rhyolitic shards of the Crudale Tephra from the British Isles by Timms et al. (2019). Both TDB_570 and LIA_686 plot within this volcano’s chemical envelopes (Fig. 8). However, the modelled ages (13, 270–12,720 cal BP TDB_570; 14,265–13,110 cal BP LIA_686) and Younger Dryas stratigraphy for both of these tephras is older than the proposed Crudale Tephra age, which is placed between 12,111 and 11,174 cal BP (Timms et al., 2019; Table 3). The Lia and Brazi tephras may present evidence for additional eruptions from Torfajökull during the LGIT. However, only single shards are present, and at different ages, in both sites. In addition, further geochemical and chronological examination of the Crudale Tephra and Torfajökull proximal outcrops needs to be undertaken before direct correlations to this volcano/eruption can be securely made.

The single glass shard from TDB_556 can be described as a “Borrobol-type” due to its correlation within the broad major and minor element geochemical envelopes of the distally-traced Borrobol-type tephra deposits found across NW Europe, for which no volcanic source is confirmed (e.g. Pyne-O’Donnell, 2007; Lind et al., 2016; Cook et al., 2018; Plunkett and Pilcher, 2018). There are distinctly lower FeO and CaO compositions (Fig. 8A and B). Trace element data obtained from this shard further corroborates an Icelandic origin (Fig. 8C) however, comparisons to the Borrobol-type trace element data of Cook et al. (2018) sees no overlap in key elements, suggesting a different volcanic source, possibly Katla (Fig. 8C–E). In addition, the date for this Lake Brazi tephra is placed within the Early Holocene period and hence is significantly younger than the age of the Borrobol itself, which is dated within the LG (Bronk Ramsey et al., 2015). The volcanic source and eruption for this shard therefore TDB_556 remains unknown.

The additional single rhyolitic shards identified in TDB_599 and LIA_633, with the single trachytic glass shard from LIA_633, currently cannot be correlated to any known volcanic sources from the Anatolian, Italian, Aeolian or Icelandic regions (Fig. 9). As a result, these tephra shards remain uncorrelated.

5.4. Expansion of the tephrostratigraphic framework

The records of Lake Lia and neighbouring Brazi have provided the first detailed LGIT tephrostratigraphy for Romania with four primary cryptotephra horizons successfully identified deriving from three different volcanic source regions: Askja, Iceland (TDB_540.5 and LIA_603); Lipari, the Aeolian Islands (Italy) (TDB_564 and LIA_637); and Ischia, the Campanian Volcanic Zone (Southern Italy) (LIA_612.5; Fig. 2). Additional potential important cryptotephra found includes the Vedde Ash, Iceland (TDB_561) and the NYT, Campanian Volcanic Zone (LIA_796). The Bayesian age-depth modelling performed, incorporating radiocarbon dating and cross-correlation of the Askja-S tephra from both sites, has provided refined ages for these eruptions. These important findings extend the European and Mediterranean tephrochronological framework eastward (Fig. 11).
Unfortunately, challenges still remain with the numerous glass shards identified in both Lake Lia and Brazi that exhibit various different geochemistries from unknown volcanic sources and/or eruptions. The continued use of the 15 μm sieve mesh size has shown to be crucial in retaining and subsequently identifying the finest grained ash particles produced (and transported) during some eruptions (<25 μm; Kearney et al., 2018), increasing the number of glass shards that could be geochemically analysed. Confidently correlating these glass shards to exact volcanoes/and or eruptions is limited due to the lack of proximal single glass shard geochemistry (major, minor and trace element data) for certain volcanic regions, most prominently Anatolia. The current lack of proximal glass geochemistry from these regions, coupled with a poor chronology of past eruptions from these volcanic sources, limits the potential of these tephras to provide regional markers and is a clear future endeavour to undertake. In addition, the taphonomic processes experienced at each site, particularly with regard to snow/ice trapping (section 5.1), are limiting because we cannot currently confidently identify the positioning of these isochrones currently within each record.

Yet, finding individual glass shards with compositions, confirmed with major, minor and trace element analysis, from Iceland, Italy and Anatolia do highlight the significant potential of the Carpathian region in extending the tepharostratigraphic framework to link between NW Europe and the eastern Mediterranean. There are several factors that could be responsible for the distal occurrences of the widespread ash from Iceland, Italy and Anatolia found in both records. The region of the Southern Carpathians is seasonally subjected to three major air circulation patterns originating from the Atlantic, the Mediterranean and with the influence of the Siberian High (Longman et al., 2017a, 2017b; Obreht et al., 2016). This atmospheric circulation pattern would result in the high potential of ash fall from the three different volcanic sources being deposited at the sites. The variable and constantly evolving weather patterns may have led to varying directions of ash plume dispersals from the different volcanic sources, resulting in patchy distribution of tephra identifications at sites across Europe (Jones et al., 2018). In addition, different atmospheric circulation patterns at varying elevations of ash plume heights from the associated eruptions may have resulted in divergent directions (Fisher, 1964). This could well be the case for the Anatolian tephra distribution to Lakes Lia and Brazi.

The resulting complex atmospheric circulations over Lakes Lia and Brazi have governed the distribution of ash fall from these different volcanic sources. It could be suggested that the dominance of tephra from a volcanic source potentially indicates the dominance of prevailing palaeo-wind directions, i.e. the presence of Italian tephra shows the influence of Mediterranean air masses (Bogaard and Schmincke, 1985). Geochemical analyses of cryptotephra shards from Lake Lia shows a higher occurrence of glass shards derived from Mediterranean volcanic eruptions compared to that is seen in Lake Brazi (Table 3). This may be due to the location of Lake Lia on the southern side of the Carpathian Mountains, where it is mainly influenced by the different air masses from the Mediterranean atmospheric circulation (Obreht et al., 2016; Longman et al., 2017a, 2017b).

A speculative factor for the identification of cryptotephra in Lakes Lia and Brazi records may have been the influence of the orography of the Carpathian Mountain range. The Carpathians rise up out of the low topography of central Europe forming a large barrier to atmospheric circulation. Turbulence caused by these mountains can influence the localised deposition of tephra transported within atmospheric circulation (Watt et al., 2015). In addition, orographic precipitation can enhance tephra deposition (Stevenson et al., 2015; Watt et al., 2015). The Retezat Mountains, where Lakes Lia and Brazi are located, is one of the wettest alpine regions in the Carpathian Mountains (Magyari et al., 2012; Obreht et al., 2016; Longman et al., 2017a, 2017b). Additional factors such as regional bias of cryptotephra investigations especially in south-eastern Europe (Watson et al., 2017), site-specific sedimentary taphonomic processes (Pyne-O’donnell, 2011) and lack of continuous high-resolution cryptotephra searches (Timms et al., 2017) may have all influenced the currently limited known spatial distribution of these tephrostratigraphic markers in other European records.

6. Conclusion

Building upon the work of Kearney et al. (2018) that identified the Askja-S tephra in Lakes Lia and Brazi, additional far-travelled volcanic glass shards have been identified and geochemically characterised using major, minor and trace element analysis. These cryptotephras are correlated to several volcanoes originating from three highly important volcanic centres and their volcanoes: 1) Iceland with Askja, Katla and Torfajökull; 2) Italy with Campi Flegrei, Ischia and Pantelleria and; 3) Anatolia with potential sources from Acgöl and/or Erzylces. Of these, three cryptotephra isochrons, in addition to the Askja-S, have been identified and dated in this study: 1) a LG Lipari tephra layer, identified in Lake Brazi (TDB_564); 2) an chrono-stratigraphic separate Early Holocene Lipari tephra (LIA_637) recorded in Lake Lia and; 3) an Early Holocene Ischia tephra traced in Lake Lia (LIA_612.5).

The use of trace element geochemical analysis was particularly successful in validating volcanic origins of high silica glass shards from either Iceland or Anatolia, in addition to confirmation of a LG Lipari tephra layer (Albert et al., 2017; McGuire et al., 2022). By using this combined geochemical analysis approach, there is future potential to discover additional/new important tephra layers as well as to refine the age of these distal tephras in other dated palaeoenvironmental records. These results show the importance of investigating distal records for volcanic ash to accurately understand past volcanic eruptive histories, particularly where there is no known proximal deposit or there is a current lack of geochemical data (i.e. Anatolia).

These important findings have highlighted the pivotal link that the Romanian palaeoenvironmental sites of Lake Brazi and Lia have within the wider European and Mediterranean tephra framework. Being uniquely located at the confluence of major atmospheric circulations and within proximity of several active volcanic centres, this region provides multiple opportunities to extend important tephrostratigraphic connections to numerous palaeoclimatic archives across the continent. This provides future opportunities to investigate the temporal and spatial environmental response of abrupt climatic changes from NW to SE Europe and beyond into the eastern Mediterranean, using tephra as a time synchronous marker during the LGIT.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data is available as Supplementary material.

Acknowledgements

RJK was funded by the UK National Environmental Research Council (NERC, grants: NE/L002612/1) as part of the Environmental Research Doctoral Training Program at the University of Oxford. PGA and RAS are supported by Early Career Fellowships from the Leverhulme Trust (grants: ECF-2014-438 and ECF-2015-396), while PGA has also been supported by a UKRI Future Leaders Fellowship (MR/S035478/1). The research was also supported by the National Multidisciplinary Laboratory for Climate Change, Hungary (NKFH-471-3/2021, RRF-2.3.1-21-2022-00014), co-financed by the projects GINOP-2.3.2-15-2016-00019 and KKP 144209. AM was funded by a PhD studentship at the Department of Geography, University of Cambridge. Special thanks is given to Prof. Victoria Smith (Oxford, EPMA) and Dr. Christina Manning (RHUL, LA-ICP-MS) for their help with the analysis. The authors would like to
Mabod, G.A., Hildreth, W., 1986. Geology of the perralkaline volcano at Pansticella,
Murphy, A., Pyle, D.M., Beghin, P., 2002. Mediterranean tephra: a stratigraphy revisited: results from a terrestrial sequence on Lesvos Island,
Matthews, I.P., Birks, H.J., Bow, A.J., Brooks, S.J., Lowe, J.J., MacLeod, A., Pyne-
O’Donnell, S.D.F., 2011. New age estimates and climatotephrochronologic correlations for the Bohorol and Penellitier tephras: evidence from Abernethy forest,
Matthews, I.P., Trincardi, F., Lowe, J.J., Bourne, A.J., MacLeod, A., Abbott, P.M.,
tephrochronological framework for Late Quaternary marine records in the Southeast
https://doi.org/10.1016/j.quascirev.2015.07.003.
https://doi.org/10.1016/j.quascirev.2019.10.007.
Moles, J.D., McGeary, D., Stevenson, J.A., Sherlock, S.C., Abbott, P.M., Jenet, F.E.,
https://doi.org/10.1130/G46604.1.
https://doi.org/10.1016/j.quascirev.2014.01.015.
tephrochronological framework for Late Quaternary marine records in the Southeast
https://doi.org/10.1016/j.quascirev.2015.07.003.
https://doi.org/10.1016/j.quascirev.2019.10.007.
Moles, J.D., McGeary, D., Stevenson, J.A., Sherlock, S.C., Abbott, P.M., Jenet, F.E.,
https://doi.org/10.1130/G46604.1.
https://doi.org/10.1016/j.quascirev.2014.01.015.
tephrochronological framework for Late Quaternary marine records in the Southeast
https://doi.org/10.1016/j.quascirev.2015.07.003.
https://doi.org/10.1016/j.quascirev.2019.10.007.
Moles, J.D., McGeary, D., Stevenson, J.A., Sherlock, S.C., Abbott, P.M., Jenet, F.E.,
https://doi.org/10.1130/G46604.1.
https://doi.org/10.1016/j.quascirev.2014.01.015.
tephrochronological framework for Late Quaternary marine records in the Southeast
https://doi.org/10.1016/j.quascirev.2015.07.003.
https://doi.org/10.1016/j.quascirev.2019.10.007.
Moles, J.D., McGeary, D., Stevenson, J.A., Sherlock, S.C., Abbott, P.M., Jenet, F.E.,
https://doi.org/10.1130/G46604.1.
https://doi.org/10.1016/j.quascirev.2014.01.015.
tephrochronological framework for Late Quaternary marine records in the Southeast
https://doi.org/10.1016/j.quascirev.2015.07.003.