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Abstract

High resolution transformations between regular geophysical data and harmonic model

coefficients can be most efficiently computed by fast Fourier methods (fft). However, a

prerequisite is that the data grids are given in the appropriate geometrical domain.

For example, if the data are situated on the ellipsoid at equi-angular reduced latitudes,

spherical harmonic analysis can be employed and the coefficients subsequently converted

by Jekeli’s transformation. This results in the spherical harmonic spectrum in the domain

of geocentric latitudes.

However, the data are most likely given at geodetic (ellipsoidal) latitudes which means

that the fft base needs to be shifted by latitude dependent phase lags in order to obtain

the correct spherical harmonic spectrum. This requires appropriate sample rate conversion

about the shifted latitudes by means of Fourier summation and cannot be treated efficiently

by an fft algorithm.

In this article another solution is discussed instead.

Since the variable heights between the spherical and ellipsoidal surfaces can be accu-

rately approximated by a series of Tschebyshev polynomials, they can be convolved into

the spherical basis. It will be shown how this new type of fast Fourier transformation to

and from the ellipsoid in combination with Jekeli’s conversion of the spectra between the

two surfaces allowes eventually the sample rate conversion to shifted latitudes. This avoids

the inexpedient Fourier summation mentioned previously.

In this paper three applications for fft in the domain of spherical and ellipsoidal

surfaces, and using geocentric, reduced and geodetic latitudes are discussed. The Earth



gravitational model egm2008 of 5 arcminutes resolution has been used to demonstrate

numerical results and computational advantages.

Key words: 2-D Fourier expansion · gravity anomalies · spherical harmonics · ellipsoidal har-

monics · spectral transformation · Tschebyshev transformation · spherical and ellipsoidal har-

monic analysis and synthesis · Jekeli transformation ·
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1 Introduction1

During the last decades the growing demand in Earth sciences to model geophysical processes in2

unprecedented resolution provides the need for reliable and efficient computational algorithms.3

Spherical harmonic transformation between space and frequency domains (both analysis and4

synthesis) are of high practical interest in geodesy when applied to globally distributed physical5

quantities such as gravity. By employing the fft, the computational burden can nowadays be6

easily implemented on an ordinary desktop computer system, despite the improved resolution of7

latest and forthcomming gravitational models and their increased parameter extention.8

9

The spherical harmonic series are based on the solution of the Laplace equation by the as-10

sociated Legendre functions. Their general applicability is limited by the numerical stability of11

the algorithms that are used to generate these special functions. Stable computations can be12

achieved by either choosing extremely large floating point numbers with extended mantissa or13

by controlling them during computation, into the numerical range of double precision numbers,14

(e.g. Fukushima, 2012) [18]. Following Seljebotn (2012) [16] where the Legendre Transform15

for synthesis is discussed, underflow values for the associated Legendre Functions can be safely16

neglected (from Pl|m| < 10−30) if the dynamic range of the input data is small enough. Other17

numerical libraries can be found (e.g. Mohlenkamp, 2000 [14]) but it is often not clear to what18

extend the expansions are rigorous or approximate. Some authors truncate for certain latitudes19

of higher spherical harmonic orders.20

21

If analysis or synthesis of regular, equi-angular values is applied, the Fourier domain is use-22

ful not only for the transformation of the data but for the employed base functions as well.23

Mantissa under- and overflow for each frequency can be handled then individually, (see Gruber,24

2011) [8]. This is impeded by an independent scaling of the constants during their computation.25
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Standard recursive algorithms for the associated Legendre functions pass the entire signal band-26

width to the successive computational step and are therefore difficult to scale in double precision.27

28

The performance and stability of the fft algorithm concerning spherical harmonic expansions29

are outstanding and numerical double precision accuracy can be maintained to highest resolu-30

tion. Computer systems and compilers are generally optimized for this type of numbers and31

operations, and so the majority of written programs are compliant with them. Since an exter-32

nal rescaling factor can be conveniently introduced to the significand in case of an exponent33

under-/overflow we can easily avoid computation in the extended precision domain.34

35

The computation of the respective Fourier coefficients belonging to a given spherical or ellipsoidal36

harmonic model is performed by the analysis (2D fft) of the discrete data. In a subsequent37

step, the Fourier coefficients are transformed into spherical (or ellipsoidal) harmonic coefficients38

by least squares (e.g. Colombo, 1981 [3]) or numerical integration (Sneeuw and Bun, 1996 [17]).39

Of course, the point-wise, discretized data and the fast Fourier methods applied are only an40

approximate solution to the continuous spherical harmonic transformation that is defined by41

complete surface integrals, (e.g, Hwang et al., 2005 [13]) but with increasing resolution, this42

discretization error evenly diminishes.43

44

By computing the synthesis (inverse 2D fft) of linearly assembled spherical harmonic coeffi-45

cients (known as: lumped harmonic coefficients), they are transformed into globally distributed46

equi-angular gravity data of high resolution onto the sphere or ellipsoid. Here, we consider the47

ellipsoid as a biaxial body or surface of revolution that resembles thus an oblate spheroid. In48

Gruber et. al (2011b)[7] it has been shown that this formulation remains stable even in very49

high resolution as well as efficient when using state-of-the-art shared memory and multicore50
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architectures. Abrykosov and Förste (2012 [1]) showed that fft can be used partially for the51

transformation of global gravity anomalies given in geodetic latitudes but the spectra has to be52

shifted to reduced latitude which requires direct synthesis by means of a Fourier summation.53

54

In the sequel we discuss three different processing examples where emphasis is placed on the55

processing of data located in geocenteric and geodetic latitude. We will show how Jekeli’s56

(1988) [15] transformation in combination with a Tschebyshev approximation of the continua-57

tion term can be applied for an implicit transformation of the grids.58

For this purpose we will first commit an independent coefficient recovery using the [5×5] arcmin59

global gravity field model computed by external software (HARMONIC SYNTH, see Holmes &60

Pavlis, [12]) in geocenteric coordinates on the ellipsoid. Second, the same will be done in regu-61

lar reduced latitude positions enabling the direct analysis on the ellipsoid by applying Jekeli’s62

spectral transformation and third, this will be repeated for data centered in regular geodetic63

coordinates. The last recovery can be achieved through a combination of the two previous meth-64

ods thereby offering new applications and transformations by fft between regular data grids.65

66

Fig. 1 shows the gravity anomaly field that will serve as a reference data set.67
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Figure 1: Test data that has been used: globally distributed [5 × 5] gravity anomalies according to

egm2008. Colorbar range has been limited to ±100mGal for better visibility (peak values are 10 ×

higher).

2 Spherical transformation68

Any harmonic function on the sphere, f(θ, λ, r), can be expanded into a series of solid spherical69

harmonics70

f(θ, λ, r) =
∞∑
l=0

Rl

rl+1

l∑
m=−l

ĉl,mŶl,m (1)

where R is the radius to the reference sphere, the complex base functions Ŷl,m are fully normalized71

surface spherical harmonics and ĉl,m are the respective normalized spherical harmonic coefficients.72

The triplet (θ, λ, r) defines the spatial position by geocentric radius r, spherical co-latitude θ and73

longitude λ counted positive eastwards. The complex functions Ŷlm are fully normalized surface74
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spherical harmonics, obtained by75

Ŷl,m =

√
(2l + 1)(2− δ0m)

(l −m)!(l +m)!
Pl |m|(cos θ) exp(im λ) , δ0m =

 1 if m = 0

0 else ,
(2)

with the associated Legendre Functions Pl |m|(cos θ).

In Gruber et al. (2011) a compact expression for the spherical function

f(θ, λ, r) =
∞∑
l

l∑
m=−l

l∑
k=−l

Rl

r̄l+1
exp [ i(k θ +m λ) ] q̂lmk , r̄ = const, (3)

has been introduced with the transformed coefficients

q̂lmk = Âlmk ĉlm , k = −l, . . . , l step 2, (4)

obtained from a Fourier expansion of the associated Legendre functions (Hofsommer and Potters

1960 [11]), √
(2l + 1)(2− δ0m)

(l −m)!(l +m)!
Pl |m|(cos θ) =

l∑
k=−l (2)

Âlmk exp(ik θ) . (5)

For more details on the arithmetic for Âlmk, refer to Gruber (2011)[8]. As we are now interested76

in those cases, where r̄ ̸= const. in Eq. (3), such as along the surface of an ellipsoid, we77

approximate the radial continuation by truncating a Tschebyshev expansion of the type78 (
R

r

)l+1

=
l∑

n=0

t(l)n Tn(x), Tn(x) = cos(n arccosx), t(l)n = 0 ∀ n− odd (6)

and

x = cos(θ),

(
R

r

)
=

√
1− e2 sin2 θ

1− e2
, θ ∈ [0, π] , (7)

with e2 = (a2 − b2)/a2 being the squared first eccentricity of the ellipsoid of revolution with79

semi -major and -minor axis a, b , and t
(l)
n are the polynomial coefficients, differing for each80

degree. Substituting the transformed continuation into Eq. (3) leads to81

f(θ, λ, r) =
1

R

∞∑
l

l∑
m=−l

l∑
k=−l

l∑
n=0

[
t(l)n · Tn(cos θ)

]
q̂lmk exp [i(k θ +m λ)] . (8)
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Our intention is then to first convolve the t
(l)
n with the Âlmk since they belong to the same82

trigonometric function in the Fourier basis. This is achieved with Ālmk’s, converted into real83

notation84

Ālmk = Âlmk · i mod (l−m,2) · (2 δ0[k/2] − 1) , (9)

2δ0[k/2] − 1 =

 1 ∀ mod ([k/2], 2) = 0

−1 else ,
(10)

leading to modified coefficients85

Ā&
lmk =

l∑
n=−l

1

2
t
(l)
|n|(1 + δ0n) · Āl,m,k−n , (11)

where86

Āl,m,k−n = 0 ∀ |k − n| > l (12)

and87

k =

 −2l, . . . , 2l step 2 ∀ l − even

−2l + 1, . . . , 2l − 1 step 2 else .
(13)

After the reverse transformation88

Â&
lmk = Ā&

lmk · (−i) mod (l−m,2) · (2 δ0[k/2] − 1) , (14)

we obtain continued normalized associated Legendre Functions,

P̄&
l |m|(cos θ) =

2l∑
k=−2l

Â&
lmk exp(ik θ) . (15)

We can then write Eq. (8) as89

f(θ, λ, r) =
1

R

∞∑
l

l∑
m=−l

ĉlmP̄
&
l|m| exp(im λ) . (16)
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The well known spherical approximation for gravity anomalies, (e.g. Heiskanen & Moritz90

1967 [9]) limited to a specific bandwith {l | 0 < l ≤ L}91

∆g =
GM

R2

L∑
l=2

(l − 1)

(
R

r

)l+2 l∑
m=−l

ĉl,m Ŷl,m(θ, λ) , (17)

with GM the universal gravitational constant times mass of the Earth, is thus constructed by92

the adopted surface spherical harmonics93

∆g =
GM

R2

L∑
l=2

(l − 1)
l∑

m=−l

ĉl,m Ŷ &
l,m(θ, λ) (18)

Ŷ &
lm(θ, λ) = P̄&

l|m| exp(im λ) (19)

=
∑
k

Â&
lmk exp[i (kθ +mλ)] (20)

=
∑
k

(Âl,m ∗ t)k · exp[i (kθ +mλ)] (21)

t :

(
R

r

)l+2

=
l∑

n=0

t(l)n · Tn . (22)

that contain radial continuation and can be used for computations in the spectral domain in the94

same way as the solid spherical harmonics.95

96

Next, we briefly outline the computational steps necessary to recover given data computed97

from the Earth gravitational model egm2008 where gravity anomalies ∆g are aligned in regular98

geocentric latitudes on the ellipsoid (or are to be computed):99

▷ perform a degree-wise Tschebyshev transformation of the continuation100

l∑
n=0

t(l)n Tn(cos θ) =

(
1− e2 sin2 θ

1− e2

) l
2
+ 1

(23)

In practise only a few terms are necessary as convergence is quick. The following serves as101

a rule of thumb: max(n) ≈ 2
√
l .102
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▷ convolve with the Fourier coefficients of the associated Legendre functions (cf. Eq. 11)103

to obtain the adopted surface spherical harmonics Ŷ &
l,m. In Fig. 2 the spectral “finger-104

prints” for both Fourier coefficients of the associated Legendre Functions before and after105

convolution with the continuation term are illustrated. It can be observed that further106

frequencies arise and hence additional harmonic degrees have to be introduced in order to107

preserve a defined upper bandwith L for the solid spherical harmonic expansion. This is in108

full anology to the extension of the coefficients when Jekeli’s transformation of the spectra109

is applied (see section 3 below).110

▷ forward computation: assemble 2-d harmonic coefficients from the adopted base functions111

and apply an inverse fft to obtain grid values. Refer to Gruber et al. (2011b) for details.112

▷ perform fft analysis of the given regular gravity data in order to obtain 2-d harmonic113

coefficients.114

▷ complete the transformation by Least squares spherical harmonic coefficient estimates with115

the adopted surface spherical harmonics from the 2-d harmonic coefficients. Refer to116

Colombo (1981) for details.117

118

After performing the described transformation steps the resulting spherical harmonic coefficient119

errors are compared in Fig. 3 on the level of individual coefficients |ĉl,m− ĉ◦l,m|, degree variances120

νl =

√
1

2l + 1

l∑
m=−l

∣∣ĉl,m − ĉ◦l,m
∣∣2, and order variances ζm =

√
1

2(L−m) + 1

L∑
l=m

∣∣ĉl,m − ĉ◦l,m
∣∣2 .121
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Figure 2: Amplitudes for Fourier coefficients of the associated Legendre Functions for l = 700 , 0 ≤

m ≤ 700 , 0 ≤ p ≤ 350. Left: original band of the positive spectra to an upper frequency of k = 2p.

Right: continued positive spectra in the adopted (ellipsoidal) basis showing additional frequencies to

arise, mainly in low orders. Substantially, only a small extension of the frequency range suffices. Figures

are condensed to non-zero (positive) frequencies for better legibility.

3 Ellipsoidal transformation122

Data are now given in equi-angular reduced latitudes (β) on the ellipsoid or shall be computed123

there. We confine our derivation to the case where data is located on the surface of the ellipsoid,124

with semi-major and -minor axes a, b125

f(
π

2
− β, λ, b) =

∞∑
l=0

l∑
m=−l

Ql |m|(i
b

E
) ĉl,mŶl,m , (24)

where E is the linear eccentricity E2 = a2− b2. Ql |m| are the Legendre Functions of second kind.126

For more general details on the theory of spherical and ellipsoidal harmonics refer to Hobson127

(1955) [10]. In Jekeli (1988) the theory was elaborated to directly transform between ellipsoidal128

and spherical spectra. Note, that the transformation of a truncated series in one domain leads129

to an infinite number of degrees in the other domain, while the maximum order is preserved. In130

practice this concerns only few additional degrees and poses no numerical restriction concerning131
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Figure 3: Closed loop comparison to egm08 gravity field coefficients: fft result from geocentric

gravity anomalies computed on the surface of an Earth ellipsoid applying the Tschebyshev transformed

continuation to the surface spherical harmonics. Degree and order variances are computed from dimen-

sionless coefficients.

convergence and comparability of the solutions. As was done for egm2008, the maximum degree132

for the computed output spectrum is 30 degrees (n) higher than that of the input spectrum. The133

computational steps to be considered are,134

▷ fft data analysis of the regular gravity grid leading to 2-d harmonic coefficients and135

subsequent spherical harmonic coefficient estimation (cf. section 2) resulting in ĉεl,m.136

▷ Jekeli’s (re-)transformation of the ellipsoidal spectrum to the spherical one ĉεl,m → ĉl,m.137
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For practical reasons, the surface spherical harmonic expansion for the ellipsoidal gravity anoma-138

lies in reduced latitude is either performed by139

r∆g = GM
L+30∑
l=0

(l − 1)
l∑

m=−l

ĉεl|m|Ŷl|m|(π/2− β, λ) , (25)

or by the corresponding solid spherical harmonic series, now in θ140

r∆g = GM
L+30∑
l=0

(l − 1)
Rl

rl+1

l∑
m=−l

ĉl|m|Ŷl|m|(θ, λ) , (26)

rather than by the expansion in ellipsoidal harmonics themselves. Note that no continuation

term in Eq. (25) anologuous to Eq. (24) is required, but the ellipsoidal radius r has been applied

to the gravity data in order to convert them into a harmonic function. For the details, refer to

(Gleason 1988 [5]). The relation

ϕ = arctan
(
tan β ·

√
1− e2

)
, ϕ = π/2− θ (27)

connects reduced and geocentric coordinates.141

Jekeli’s (re-)transformation was implemented from Gleason’s (ibid.) revised algorithm and shows142

that it should be processed with quad-precision numbers in order to recover machine epsilon143

(double) precision. This explains few missing digits in our recovery (Fig. 4).144

Note that quad precision needs to be applied only to a small sequence of the algorithm and145

is not critical for this study. For higher resolution it can be easily considered and does not affect146

the general fft concepts being discussed.147

148

It needs to be pointed out that reduced latitudes have not changed during this transformation,149

although from a spherical harmonic perspective the solution on the ellipsoid now corresponds150

to geocentric latitudes which are not equi-angular any more, as shown by comparing Eqs. (25)151

and (26). It is important to keep this in mind in order to understand the combined approach152

following in the next section.153
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Figure 4: Misclosures in recovered spherical harmonic coefficients from reduced latitude spacing by

applying Jekeli’s transformation to the ellipsoidal spectra. Degree and order variances are computed

from dimensionless coefficients.

4 The combined transformation154

The main idea that is discussed in this paper is to rigorously transform data on graticules based in155

equi-angular geodetic latitudes on the ellipsoid to spherical harmonic coefficients. This is a very156

common case, concerning not only gravity anomalies but also spaceborn radar topography data,157

GPS/ Levelling data, and numerous others. It is shown how the combination of the previous158

two methods leads to appropriate results that are useful for practical applications, such as the159

derivation of topographic potential from global DEM models (Gruber 2014 [6]). There exist160

also methods for evaluating Fourier series at non-equispaced points, so that the time-consuming161
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direct synthesis by Fourier summation can be avoided (cf. Dutt and Rokhlin, 1993[4], Beylkin162

1995[2]) but the user has to adopt the filtering for the individual purpose and the dynamical163

range of the data.164

The transformation sequence reads as follows: data given on the ellipsoid are transformed to165

the sphere by a first Jekeli transformation. Then, they are implicitly downward continued by166

Tschebyshev modified base functions and re-analyzed. Eventually a second Jekeli transformation167

completes the transformation. More in detail:168

▷ initial FFT analysis of the given data to obtain 2-d harmonic coefficients and subsequent169

estimation of the ellipsoidal spectra.170

▷ initial Jekeli transformation to the bounding sphere. As the reduced latitudes (section 3)171

now correspond to the equi-angular geodetic latitudes the subsequent downward continu-172

ation needs to be done in this domain.173

▷ convolution of the spectral coefficients for the Legendre Functions , Eq. (11) to obtain the174

adopted surface harmonics (section 2).175

▷ FFT synthesis (cf. forward, section 2) with implicit harmonic continuation to the ellipsoidal176

surface to obtain data on the ellipsoid in reduced latitude.177

▷ second FFT analysis of the shifted data to estimate the ellipsoidal spectra (now in the178

domain of reduced latitudes).179

▷ second Jekeli transformation to the bounding sphere, finalizing the coordinate/data trans-180

formation.181

In Fig. 5 the resulting spectral coefficients are again compared to the initial coefficient set.182

The described procedure demonstrates how the individual steps accumulate the respective183

errors towards the final solution in Fig. 6. The largest error contribution to the combined184
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solution (B) stems from the spectral transformation that is applied twice. See also com-185

ments on Gleason’s algorithm in the previous section. However, the current solution meets186

precision requirements and can be used for the transformation of gravity anomalies at the187

given resolution. See also Fig. 7 for the global distribution of the spatial error budget for188

the combined solution with min= −6.9× 10−3mGal and max= 10.5× 10−3mGal.

Figure 5: Residual coefficient results for the combined solution. Degree and order variances are

computed from dimensionless coefficients.

189
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Figure 6: Spectral error budgets of gravity field recoveries

Figure 7: Spatial errors in mGal, global error σ = 0.196µGal
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5 Conclusions190

A practical solution for the fast Fourier transformation of ellipsoidal data in geocenteric latitudes191

has been introduced. It can be used in conjunction with the well known transformation of192

the spectra between ellipsoidal and spherical surfaces introduced by Jekeli (1988). While on193

one hand Jekeli’s transformation modifies the coefficients in the harmonic functional basis, the194

Tschebyshev tranformation of the continuation term modifies on the other hand the surface195

spherical harmonic functions themselves. The radial continuation to a concentric harmonic196

surface has then been included. In fact and for this special application, the surface spherical197

harmonics are transformed to solid spherical harmonics. As a consequence, 2d-fft can be198

conveniently employed to these surfaces.199

By combining the two methods of modifications to the spectral coefficients and to the basis200

functions, it is shown how Jekeli’s transformation can be generalized to transformations between201

equi-angular coordinates in one domain and their reduced (or augmented) counterpart in the202

other. The relation between reduced and geocenteric latitudes has become a special realization203

of this transformation.204

The problem of spherical harmonic transformation of geophysical data on the ellipsoid, that205

are not given in reduced latitudes can be solved by the combination of Jekeli’s transformation206

and a Tschebyshev approximation of the continuation term. The inconvenient latitude shift207

for the transformation of data given in one equi-angular coordinate frame to another can then208

be successfully achieved by fft methods, which is often required for geodetic and geophysical209

transformation purposes.210

The stability and efficiency of the presented method are moreover a neccessary requirement for211

future spherical harmonic models with increased spatial resolution below 5 × 5 arcminutes. With212

the proposed approach, 1 × 1 arcminute fields with as many as O(108) distinct evaluation points213

become accessible on personal desktop computer resources, programmed by easy to administer,214
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high level programming codes such as python or matlabTM.215
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