

System Erde: Der globale Kohlenstoffkreislauf

Take-home message

Der Ozean enthält etwa 50mal soviel Kohlenstoff wie die Atmosphäre.

Physikalische + biologische Kohlenstoffpumpen

Ozeanversauerung: das andere CO₂-Problem (neben Erwärmung)

Der Ozean kann noch mehr CO2 aufnehmen, aber langsam

In welcher Form liegt Kohlenstoff im Ozean vor?

 CO_2 (gelöstes Gas) 300 Pg C HCO_3^- (Hydrogenkarbonat, Bikarbonat) 34300 Pg C CO_3^{2-} Karbonationen 2700 Pg C

Gelöster anorganischer Kohlenstoff $CO_2 + HCO_3^2 + CO_3^2 = \sum CO_2 = DIC$ (dissolved inorganic carbon) macht 98% des Kohlenstoffs im Ozean aus.

DOC gelöster organischer Kohlenstoff 700 Pg C C in Lebewesen 3 Pg C

Warum enthält der Ozean viel mehr Kohlenstoff als die Atmosphäre?

 CO_2 löst sich nicht einfach im Wasser (wie z.B. Sauerstoff, O_2): es reagiert mit Wasser und bildet Kohlensäure (H_2CO_3), die in Bikarbonat (HCO_3^-) und Wasserstoffionen (H^+) zerfällt: $CO_2 + H_2O -> H_2CO_3 -> HCO_3^- + H^+$ (Versauerung)

pH = $8.1 \rightarrow 90\% HCO_3^-$, $9\% CO_3^{2-}$, nur $1\% CO_2$

Gasaustausch Atmosphäre-Ozean: nur 1% des DIC direkt beteiligt (Atmosphäre 'sieht' nur 1% gelöstes CO_2 , aber viel mehr Kohlenstoff im Ozean gelöst)

System Atmosphäre + Ozean: O₂ zu 98% in Atmosphäre, Kohlenstoff zu 98% im Ozean

Wie ist Kohlenstoff im Ozean verteilt?

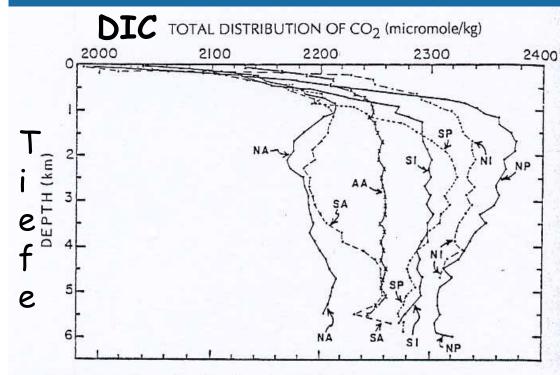


Figure 1. Depth distribution of the total CO₂ concentration in the global oceans. NA & SA = North & South Atlantic; NP and SP = North and South Pacific; NI and SI = North and South Indian Oceans; and AA = Antarctic ocean.

Inhomogene Verteilung: unter 2000 μ mol kg⁻¹ bis fast 2400 μ mol kg⁻¹, d.h. 20% Unterschied

- 1.Geringe Werte an der Oberfläche.
- 2. Maximale Werte in mittleren Tiefen.
- 3.Zunahme in mittleren Tiefen vom Nordatlanktik zum Nordpazifik.

Takahashi, T. 1989. The carbon dioxide puzzle. Oceanus, 32: 22-29.

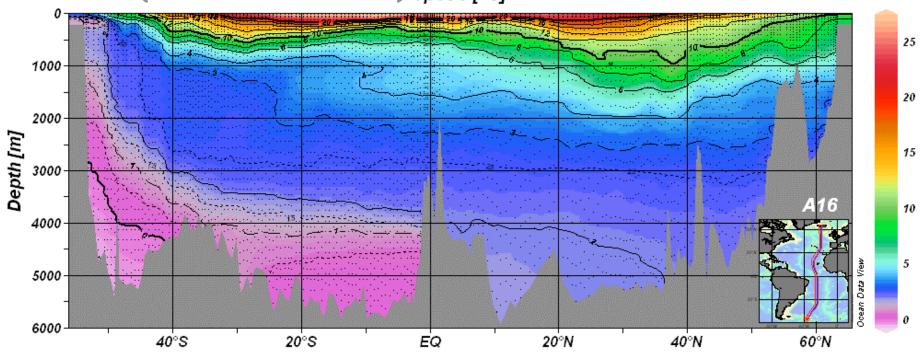
Welche Prozesse erzeugen die inhomogene Verteilung von C im Ozean?

Vermischung im Ozean (bis 1000 Jahre) deutlich langsamer als in Atmosphäre (1 Jahr zwischen Hemisphären)

Physikalische Kohlenstoffpumpe:

Die Löslichkeit von CO₂ hoch in kaltem Wasser

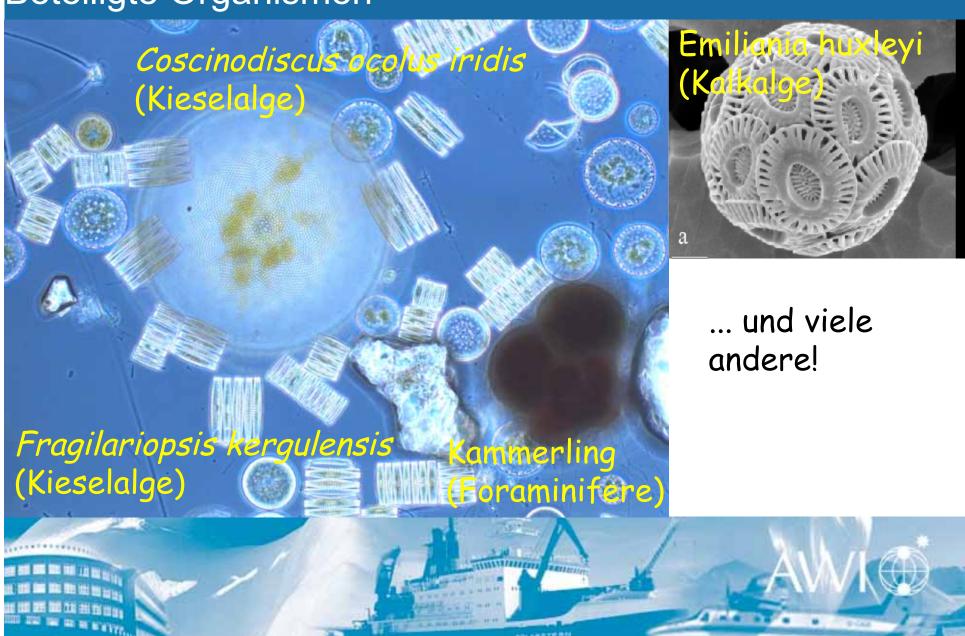
- >mehr CO2 und DIC in kaltem Wasser
- + Zirkulation


Der Ozean ist kalt

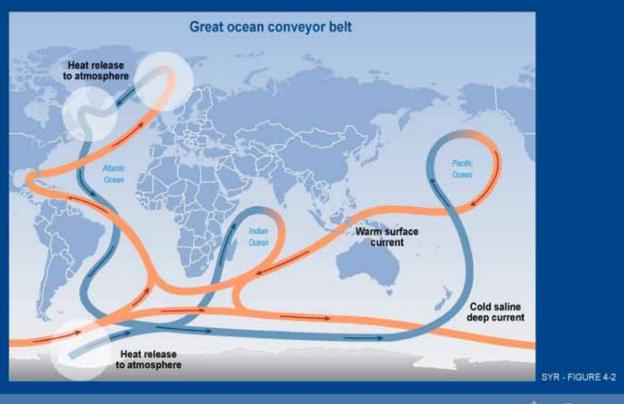
Die Warmwassersphäre ist auf eine dünne Oberflächenschicht begrenzt.

... der größte Teil des Ozeans ist kalt (unter $5^{\circ}C$) und CO_2 -reich

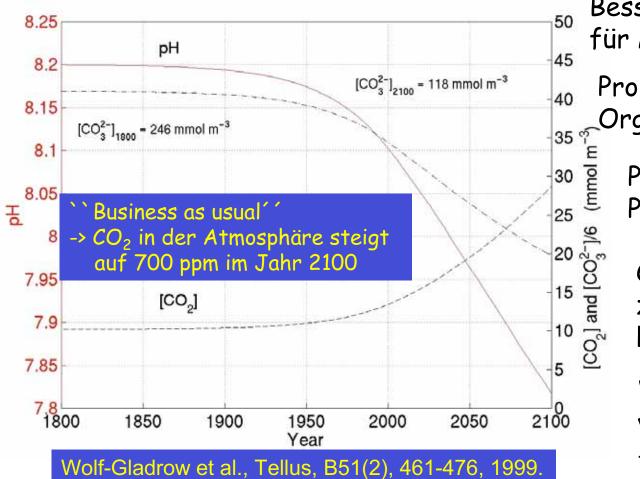
Welche Prozesse erzeugen die inhomogene Verteilung von C im Ozean?


Biologischen Kohlenstoffpumpen:

- 1. Organische C-Pumpe: Produktion von organischem Material an der Meeresoberfläche durch Mikroalgen, ..., Transport in Tiefe in Form von Algenaggregaten + Kotballen, Remineralisation und Freisetzung von CO_2 .
- 2. Kalziumkarbonat (CaCO₃) Pumpe: Produktion von Kalkschalen, Absinken in Tiefe, Auflösung
- ... kompliziert, aber wichtig: biol. C-Pumpen erzeugen 75% der DIC-Vertikalgradienten


Biologische Kohlenstoffpumpen: Beteiligte Organismen

Das ozeanische Förderband


Biologische
Kohlenstoffpumpen ->
mehr C in
mittleren
Tiefen im
Pazifik
verglichen
mit Atlantik

IPCC | WMO UNEP

Ozeanversauerung betrifft zunächst den Oberflächenozean

Bessere CO₂-Versorgung für Mikroalgen

Probleme für kallfällende Organismen (Kalk = CaCO₃)

Physiologie von marinen Pflanzen und Tiere

Ökosysteme: Artenzusammensetzung, Funktion

Verringerte Absorption von Schallwellen -> Ozeanakustik, Wale

Flügelschnecke *Limacina retroversa australis* (ca. 2 mm) aus dem Südlichen Ozean (Foto: Wolf-Gladrow)

