
DOI: http://doi.org/10.1016/j.marpetgeo.2015.01.008
Berthierine formation in reservoir rocks from the Siri oilfield (Danish North Sea) as result of fluid–rock interactions: Part III. Determining mineral stability and CO2-sequestering capacity of glauconitic sandstones

Yunjiao Fu a,1, Wolfgang van Berkb,*, Hans-Martin Schulza, Nana Mua

a Helmholtz Centre Potsdam–GFZ German Research Centre for Geosciences, Section 4.3 Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany
b Clausthal University of Technology, Department of Hydrogeology, Leibnizstraße 10, D-38678 Clausthal-Zellerfeld, Germany

Article history:
Received 3 July 2014
Accepted 15 January 2015
Available online 30 January 2015

Keywords:
Glauconite
pH-EH conditions
CO2-sequestration
Berthierine
Hydrogeochemical modeling

Abstract

Berthierine was proven as one of the most important products of glauconite alteration in the Siri oilfield (Danish North Sea). However, there is an ongoing debate regarding the main product of glauconite dissolution: siderite, berthierine, or berthierine as a precursor of siderite and/or magnesium-bearing carbonate. In order to investigate the consequences of glauconite dissolution in view of thermodynamic admissibility and the resulting CO2-sequestering capacity, a hydrogeochemical model, which is based on thermodynamics of chemical equilibrium, was developed. Calculating various modeling scenarios helps to conclude on the pH-EH conditions of glauconite dissolution as well as of berthierine formation and dissolution in generic, aqueous systems under elevated temperature-pressure conditions.

Our modeling results highlight that carbonate formation cannot be triggered exclusively by CO2 addition into glauconitic sandstones. The injection of pure CO2 into glauconitic sandstones leads to acidic and anoxic oxidizing conditions under which glauconite remains stable. To intensify glauconite alteration by CO2 injection, glauconitic sandstones have to be in contact with degradable organic matter, or, alternatively, reducing agents have to be co-injected with CO2. Sufficient electron transfer to ferric iron bound in glauconite is the ultimate control for intense glauconite alteration and for subsequent berthierine precipitation.

Once formed, berthierine remains stable over a broad pH range and is not transformed to any carbonate under reducing conditions. Thus, CO2 injection into glauconitic sandstones under reducing conditions mainly leads to formation of berthierine instead of iron- and magnesium-carbonates. However, hydrogeochemical conditions in the subsurface can affect CO2 sequestration via glauconite dissolution and the resulting carbonate formation, including the pH-EH conditions, the chemical composition of glauconite, and the overall mineralogical composition of glauconitic sandstones.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Glaucnite, which belongs to the mica group, is rich in ferric iron and contains small amounts of ferrous iron (Amouric and Parron, 1985; Mackenzie et al., 1988, and references therein). Apart from its high iron content, glauconite also contains magnesium as a major component. Therefore, glauconitic sandstones are often regarded as potential CO2 storage sites via carbonate precipitation (e.g., Gunter et al., 2000). In order to investigate whether glauconitic sandstones can efficiently trap CO2 in the subsurface, the sandstone aquifer of the Alberta Sedimentary Basin in Canada, which contains 5 wt.-% of glauconite, is often referred to as a natural laboratory in many studies (e.g., Gunter et al., 1997, 2000; Pruess et al., 2002; Kumar et al., 2004; Xu et al., 2004; Bacon and Murphy, 2011). Kumar et al. (2004) considered three aqueous reactions and five mineral reactions in their modeling approach in order to investigate the CO2-sequestering capacity of the glauconitic sandstones of the Alberta Sedimentary Basin. They stated that CO2 sequestration can be achieved via precipitation of calcite and
siderite. Gunter et al. (1997, 2000) substituted Mg-bearing glauconite, in which Fe(III) dominates, by Mg-free annite that exclusively contains ferrous iron. In their study, CO2-trapping was efficiently achieved via annite dissolution and siderite precipitation. However, such a substitution of glauconite by annite is clearly inappropriate due to the different hydrogeochemical behavior between Fe\(^{3+}\)(aq) and Fe\(^{2+}\)(aq) species. The modeling approaches presented by Pruess et al. (2002) and Xu et al. (2004) also substituted glauconite by annite, but assumed the presence of oxidizable organic matter in the sandstones to generically bypass the transformation of ferric iron bound in glauconite to ferrous iron in annite. Nevertheless, these approaches are incapable of correctly predicting the CO2-sequestering capacity in glauconite-bearing sandstones. The reason for this is that anite is free of Mg, and, therefore, such a replacement could bypass the potential formation of any Mg-bearing mineral, for instance, My-bearing silicates or Mg-bearing carbonates. Bacon and Murphy (2011) suggested that CO2 sequestration in the glauconitic sandstone of the Alberta Sedimentary Basin mainly occurs via precipitation of dolomite and siderite. However, there are also other studies that reported a limited CO2 trapping-capacity of glauconitic sandstones. For instance, Humez et al. (2011) suggested that injection of pure CO2 into glauconitic sandstones may lead to a low pH and even to dissolution of primary calcite.

The aforementioned studies offer opposite views about CO2 sequestration in glauconitic sandstones. Several of them considered selected and isolated hydrogeochemical reactions, and excluded the potential formation of any secondary Fe-und Mg-bearing silicate mineral, for instance, berthierine ((Fe\(^{2+}\),Mg)Al\(_2\)\(\cdot\)(Si,Al)\(_2\)O\(_5\)(OH)\(_4\)). A combination of analytical investigations and hydrogeochemical modeling highlights that berthierine formation acts as one of the most important diageneric processes of glauconite alteration in the reservoir rocks of the Siri oilfield (Danish North Sea; Fu et al., 2015). In addition, berthierine co-exists with altered glauconite in the Nullawarre Greensand containing organic lamellae and bone fragments (in southeastern Australia; Boyd et al., 2004). Berthierine forms only under reducing conditions and is transformed to other minerals in the presence of molecular oxygen (Sheldon and Retallack, 2002; Rivard et al., 2013). The exclusion or neglect of potential berthierine formation in glauconitic sandstones could lead to a strong overestimation of the calculated CO2-sequestration capacity. Although siderite formation was proven in the glauconitic reservoir rocks of the Siri field, it is not a product of glauconite alteration (Fu et al., 2015). In contrast, the calculated results of several modeling approaches stated that siderite newly forms in glauconitic sandstones due to CO2 injection (e.g., Gunter et al., 2000; Xu et al., 2004).

In summary, a debate about the CO2-sequestration in glauconitic sandstones focuses on which secondary Fe-bearing mineral (siderite or berthierine) acts as the thermodynamically stable product of glauconite alteration. Such debate leads to the following concrete questions:

(1) under which hydrogeochemical conditions does glauconite dissolve (especially regarding the pH-EH conditions)?

(2) which iron-bearing minerals are concurrently precipitated as a result of glauconite dissolution, berthierine or CO2-sequestering, Fe- and/or Mg-bearing carbonates?

(3) if berthierine newly forms, can it further be converted to Fe- and/or Mg-bearing carbonates?

(4) can CO2 sequestration be achieved via glauconite dissolution and concurrent carbonate formation?

(5) if so, which factors can influence the CO2-sequestering capacity of glauconitic sandstones?

Gaus et al. (2005) stated that CO2-sequestration via water-rock reactions can be sluggish and the sequestering capacity can be limited due to kinetic inhibition of several reactions involved in the CO2-water-rock web. However, kinetic rates can limit the progress and the mass transfer of reactions, only when such reactions are thermodynamically admissible. The presented study aims to answer the aforementioned questions from a thermodynamic point of view and therefore presents a hydrogeochemical model based on thermodynamics of chemical equilibrium. This model considers all chemical processes that potentially proceed as a result of glauconite alteration. Varying hydrogeochemical conditions of aqueous solutions in different modeling scenarios shall illustrate specific pH-EH conditions of glauconite dissolution as well as of berthierine formation and dissolution. Besides relevance for pure geoscience, the gained results offer a broad spectrum for further technical applications. Our modeling results could help to conclude on the CO2-sequestering capacity of glauconitic sandstones, to identify its influencing factors, and, consequently, to improve CO2 sequestration. Moreover, an elucidation of such physicochemical factors can be used to consider berthierine dissolution in order to improve hydrocarbon production, because berthierine formation can deteriorate reservoir permeability (e.g., in the Siri field; Stokkendal et al., 2009).

2. Hydrogeochemical modeling concept

The developed hydrogeochemical model uses a closed, isothermal, iso-chemical, generic reactor within which a state of chemical equilibrium among aqueous solutions, mineral phases and a free gas phase is reached. By means of hydrogeochemical modeling, Fu et al. (2012, 2013) demonstrated that several water—rock—gas reactions rapidly achieve equilibrium conditions at reservoir conditions. The presented study aims to investigate whether siderite or berthierine is the thermodynamically stable product of glauconite alteration resulting from CO2 injection. Thus, no kinetic aspect is integrated into this hydrogeochemical zero-dimensional (batch) modeling approach.

The reactor is filled with one liter of pore water and generically considers 1.0 mol of glauconite or berthierine as the single primary mineral which is initially present in the reactor (Table 1). A 1.5 molal NaCl solution is used as the pore water of the reactor and is exposed to temperature-pressure conditions of 78 °C and 230 atm which also prevail in the Siri field. This aims to compare the calculated results of this presented study with the observed and the calculated results of the diageneric features in the glauconitic sandstones of the Siri field (Fu et al., 2015). A series of modeling scenarios were calculated to investigate the pH-EH conditions of glauconite dissolution, as well as of berthierine formation and dissolution (Table 1). These scenarios cover a broad range of pH-EH conditions that were conceptually designed by stepwise addition of different reactants (CO2, CH4, or O2) triggering proton- and electron

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Primary mineral</th>
<th>Added reactants</th>
<th>Redox conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gl-CO2</td>
<td>Glauconite(^a)</td>
<td>CO2</td>
<td>Oxidizing</td>
</tr>
<tr>
<td>Gl-CH4</td>
<td>Glauconite</td>
<td>CH4</td>
<td>Reducing</td>
</tr>
<tr>
<td>Gl-CO2 + CH4</td>
<td>Glauconite</td>
<td>CO2, CH4</td>
<td>Reducing</td>
</tr>
<tr>
<td>Gl2-CO2 + CH4</td>
<td>Glauconite(^b)</td>
<td>CO2, CH4</td>
<td>Reducing</td>
</tr>
<tr>
<td>Be-CO2</td>
<td>Berthierine(^c)</td>
<td>CO2</td>
<td>Reducing</td>
</tr>
<tr>
<td>Be-O2</td>
<td>Berthierine</td>
<td>O2</td>
<td>Oxidizing</td>
</tr>
</tbody>
</table>

\(^a\) Composition presented in Equation (1).
\(^b\) Composition from Amouric and Parron (1985).
\(^c\) Composition presented in Equation (2).
transfer reactions (Table 1), until a gas phase begins to form or until the primary mineral completely dissolves. Dissolution of glauconite or berthierine (composition from Fu et al., 2015) releases different species into the pore water, such as $\text{Fe}^{3+}(\text{aq})$, $\text{Fe}^{2+}(\text{aq})$, $\text{Mg}^{2+}(\text{aq})$, and $\text{H}_2\text{SiO}_4(\text{aq})$ (Eqs. (1) and (2)). Therefore, this would lead to a supersaturation with respect to secondary minerals, and, consequently, allows their precipitation. All minerals that are included in the thermodynamic database of the computer code Phreeqc ("phreeqc.dat"; Parkhurst and Appelo, 2013) can newly form, provided that they reach saturation, for instance, calcite, dolomite, magnesite, siderite, berthierine, chrysotile, chlorite, and kaolinite with a basal spacing of 7 Å (chlorite7Å taken from the database "waterq4f.dat"; Parkhurst and Appelo, 2013), kaolinite, and $\text{Fe(OH)}_3(aq)$. Chalcedony (cryptocrystalline SiO$_2(s)$) is considered as a stable SiO$_2(s)$ mineral (e.g., chalcedony or cristobalite) commonly forming from aqueous solutions, which is supersaturated with respect to quartz. This is because formation of secondary SiO$_2(s)$ in form of small crystals or as overgrowth was proven as one product of glauconite alteration in the Sira field (Fu, 2014; Fu et al., 2015). Quartz formation from aqueous solutions, which is supersaturated with respect to quartz, is a sluggish reaction, whereas less stable SiO$_2(s)$ minerals (e.g., chalcedony or cristobalite) commonly control dissolved silica concentrations (Appelo and Postma, 1994).

$$K_{0.489\text{Na}_{0.045}\text{Mg}_{0.281}\text{Al}_{1.387}\text{Fe}_{1.183}\text{Si}_{3.327}\text{O}_{10}(\text{OH})_{2}}(\text{Glauconite})$$

$$+ 10\text{H}_2\text{O} \rightarrow 0.489\text{KF}^+ + 0.045\text{Na}^+ + 0.281\text{Mg}^{2+} +$$

$$+ 1.387\text{Al}^3+(\text{aq}) + 1.069\text{Fe}^{3+} + 0.114\text{Fe}^{2+} + 3.327\text{H}_4\text{SiO}_4 +$$

$$+ 3.144\text{OH}^-$$

(1)

$$\text{Fe}_1.634\text{Mg}_{0.328}\text{Al}_{1.342}\text{Si}_{1.526}\text{O}_3(\text{OH})_4(\text{Berthierine})$$

$$+ 7.896\text{H}^+ + 1.634\text{Fe}^{3+} + 0.328\text{Mg}^{2+} + 1.324\text{Al}^{3+} +$$

$$+ 1.526\text{H}_4\text{SiO}_4 + 2.896\text{H}_2\text{O}$$

(2)

Hydrogeochemical modeling was carried out by using the computer code Phreeqc (Parkhurst and Appelo, 2013). The database "phreeqc.dat" of Phreeqc (Parkhurst and Appelo, 2013) was applied for calculating the species distribution of equilibrium among pore water, minerals and gas. The equilibrium constants and their temperature-pressure dependence for the chemical reactions of all involved aqueous species, minerals and gas components are defined in this database except for glauconite, berthierine, magnesite, chlorite7Å. The thermodynamic data of magnesite and chlorite7Å were taken from the database “waterq4f.dat” of Phreeqc (Parkhurst and Appelo, 2013). The predictive approach for estimating the thermodynamic data of phyllosilicates (Vieillard and Mathieu 2009; Vieillard et al., 2011, and references therein) was used to calculate the thermodynamic data of glauconite and berthierine. These data (for details, see Appendix A) were defined in the input file. Phreeqc calculates the pressure dependence of the equilibrium constants of minerals by using the molar volume of these minerals (Parkhurst and Appelo, 2013).

Addition of different reactants in a series of modeling scenarios leads to a broad range of pH–E$_H$ conditions in the modeling reactor in which glauconite or berthierine is present as the single primary mineral (Table 1). An alternative scenario Gl2–CO2 + CH$_4$ uses a glauconite which composition is provided by Amouric et al. (1985; labeled as glauconite2; K$_{0.709}\text{Na}_{0.084}\text{Ca}_{0.043}\text{Al}_{0.427}\text{Fe}_{0.195}\text{Mg}_{0.176}\text{Mg}_{0.521}\text{Si}_{0.317}\text{Fe}_{0.039}\text{Al}_{0.197}\text{O}_{10}(\text{OH})_2$); for its thermodynamic data, see Appendix A. Such scenarios, on the one hand, shall identify the pH–E$_H$ conditions of glauconite dissolution as well as of berthierine formation and dissolution, and, on the other hand, determine the CO$_2$-sequestering capacity of glauconite and the factors influencing this capacity.

3. Modeling results

3.1. Scenario Gl–CO$_2$

Addition of CO$_2$ into the reactor triggers a decrease in pH of the pore water (from 5.8 down to 3.2 in Fig. 1). This leads to release of Fe$^{3+}(\text{aq})$ species into the pore water, and, consequently, to oxidizing conditions prevailing in the pore water (Figs. 1 and B.1; rH > 24; rH = 2 (pH + pe); E$_H$ from 293 to 614 mV; logarithm of oxygen fugacity: log f(O$_2$(g)) from –20 to –14). The calculated E$_H$ increases with increasing addition of CO$_2$ and reaches 614 mV at the final reaction step (Table 2; Fig. B.1). Less than 0.15 mmol glauconite dissolves in 1.0 L of a 1.5 molal NaCl solution, even when a very low pH of 3.2 and a high pCO$_2$ of 230 atm are achieved at the final reaction step (Figs. 1 and B.1). This indicates that only small amounts of glauconite dissolve in order to establish its solubility.

Figure 1. Calculated mass conversion of glauconite or berthierine and main hydrogeochemical parameters resulting from increasing addition of CH$_4$, CO$_2$ or O$_2$ as function of log f(O$_2$(g)) and rH value in scenarios Gl–CH$_4$, Gl–CO$_2$, Be–CO$_2$, and Be–O$_2$ (reaction steps 1–10). f(O$_2$(g)): fugacity of molecular oxygen; rH value: characterizing redox-conditions in combination of pH and pe values; rH = 2 (pH + pe); colored bars: classification of redox-conditions in terms of rH value according to Holting and Coldewey (2005); numbers next to symbols: calculated pH of pore water; abbreviations in brackets: minerals newly formed at the different reaction steps; Be: berthierine; Cha: chalcedony; Chr: chrysotile; Cli: chlorite7Å; FeO: Fe(OH)$_3(aq)$; Kao: kaolinite; Mu: muscovite.
equilibrium—in other words, glauconite remains stable under oxidizing conditions—spite of such a low pH. In consequence, no potential secondary mineral achieves saturation except for kaolinite which forms with negligible amounts during the reaction steps 3 to 5 (Figs. 1 and B.1).

3.2. Scenarios Gl-CH4, Gl-CO2 þ CH4 and Gl2-CO2 þ CH4

In contrast, glauconite can be regarded as a highly soluble mineral under reducing conditions which are established by continuous addition of CH4 in scenario Gl-CH4 (Table 1). With ongoing addition of CH4, the calculated log \(\log(f(O_2)) \) and the calculated \(\text{rH} \) constantly decrease to \(-61 \) and to 3.6 at the final reaction step, respectively (Fig. 1). The pre-assigned 1.0 mol of primary glauconite is completely dissolved by the CH4 addition of 0.13363 mol (Figs. 1 and 2). In parallel, berthierine, chalcedony, chrysotile, and muscovite form at the expense of glauconite (Fig. 2). This reductive transformation of glauconite to these secondary minerals is accompanied by an increase in the calculated pH of the pore water (up to 10.8; Figs. 1 and 2).

The calculated results of scenario Gl-CH4 show that glauconite can completely dissolve under reducing conditions. Consequently, an alternative scenario (Gl-CO2 þ CH4) was calculated to test whether glauconitic sandstones, which provide electrons for glauconite dissolution, could act as an efficient rock matrix for CO2 sequestration. To simulate this situation, CO2 is gradually added into the pore water together with CH4, until 1.0 mol of glauconite is completely dissolved. In this scenario, CH4 is generically considered as one of potential electron donors (e.g., degradable, methane-producing organic matter), which exist in the glauconitic sandstones or which are co-injected with CO2, in order to create reducing conditions and to drive reductive dissolution of glauconite.

The calculated diagenetic features of scenario Gl-CO2 þ CH4 resemble the results of scenario Gl-CH4: complete glauconite dissolution is associated with precipitation of berthierine, sn.

<table>
<thead>
<tr>
<th>Added reactants</th>
<th>pH</th>
<th>Redox-conditions</th>
<th>Primary mineral assemblage</th>
<th>Dissolved glauconite (mol per kg pore water)</th>
<th>Products</th>
<th>Amount of secondary carbonates (mol per kg pore water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gl-CO2 þ CH4</td>
<td>5.52</td>
<td>57.9</td>
<td>5.1</td>
<td>-177</td>
<td>Glauconite(^a)</td>
<td>1.0</td>
</tr>
<tr>
<td>Gl2-CO2 þ CH4</td>
<td>5.85</td>
<td>56.1</td>
<td>4.9</td>
<td>-200</td>
<td>Glauconite(^b)</td>
<td>1.0</td>
</tr>
<tr>
<td>Gl-CO2</td>
<td>3.20</td>
<td>-13.7</td>
<td>27.2</td>
<td>614</td>
<td>Glauconite</td>
<td>1.4 (\times 10^{-3})</td>
</tr>
<tr>
<td>Siri-ODP-siderite(^c) CO2, CH4, H2</td>
<td>7.03</td>
<td>-59.6</td>
<td>4.2</td>
<td>-292</td>
<td>Siri field</td>
<td>0.76</td>
</tr>
</tbody>
</table>

\(\text{rH} = 2(\text{pH} + \text{pH}) \) according to Holting and Coldewey (2005).
\(^a\) Composition presented in Equation (1).
\(^b\) Composition from Amouric and Parron (1985).
\(^c\) Scenario taken from Fu et al. (2015): the primary mineral assemblage of the Siri oilfield plus 1 wt.-% goethite.
chaledony, and muscovite (Fig. B.2). In addition, only 0.04 mol of magnesite forms, when 1.0 mol of glauconite is completely dissolved (Table 2; Fig. B.2). This implies a very limited CO₂-sequestering capacity of the glauconite in the Siri oilfield in form of carbonate precipitation.

Scenario Gl₂-CO₂ + CH₄ considers glauconite2 (composition according to Amouric and Parron, 1985) in order to test whether the chemical composition of glauconite affects the fate and behavior of CO₂. Glauconite2 contains more Fe and Mg, but is depleted in Al compared to the glauconite in the Siri field. Less available Al in glauconite2 leads to a reduced formation of berthierine in scenario Gl₂-CO₂ + CH₄ (0.5 mol kg⁻¹ berthierine in Fig. B.3) when compared to scenario Gl-CO₂ + CH₄ (0.7 mol kg⁻¹ berthierine in Fig. B.2). Therefore, more Fe- and Mg-species, which are not bound in berthierine, are removed from the pore water by formation of Fe- and Mg-bearing carbonates in scenario Gl₂-CO₂ + CH₄ (Table 2; Fig. B.3). In consequence, the glauconite2 affords a slightly higher CO₂-sequestering capacity compared to the glauconite from the Siri field when exposed to reducing conditions (Table 2).

3.3. Scenarios Be–CO₂ and Be–O₂

The calculated results of scenario Gl-CH₄ show that berthierine newly forms at the expense of glauconite under reducing conditions. The question still remains open whether the newly formed berthierine can subsequently dissolve and be transformed to Fe- and/or Mg-bearing carbonates under specific pH-EH-pCO₂ conditions. If so, this transformation would allow a further removal of gaseous and/or aqueous CO₂ in glauconitic sandstones. This was tested by calculating two additional scenarios Be–CO₂ and Be–O₂ to identify the pH-EH conditions of berthierine dissolution and its potential secondary minerals. Both scenarios consider 1.0 mol of berthierine in each reactor. The pore water of these two generic reactors undergoes stepwise addition of CO₂ and O₂, respectively, in order to create a broad range of pH-EH conditions.

Addition of CO₂ into the pore water equilibrating with berthierine leads to the release of aqueous Fe²⁺ species. Thus, reducing conditions prevail within the reactor (scenario Be–CO₂; RH < 8.6 and log f(O₂(g)) < -50 in Figure 1; E₈ < 7 mV in Fig. B.4). Although the pH of the pore water decreases to 3.8 and the pCO₂ increases to 230 atm due to CO₂ addition, less than 2.0 mmol of berthierine dissolve in 1.0 L of pore water to reach its solubility equilibrium (Figs. 1 and B.4). In other words, berthierine remains stable under reducing conditions, even at a low pH. In parallel, trace amounts of kaolinite form at the expense of berthierine (1.3 mmol kg⁻¹ at the final step in Fig. B.4), whereas formation of any Fe- and/or Mg-bearing carbonate is prevented.

On the contrary, addition of O₂ leads to oxidizing conditions in the pore water (scenario Be–O₂; RH > 26 and log f(O₂(g)) > -50 in Figure 1; E₈ > 360 mV in Fig. B.5). Berthierine gets unstable during stepwise addition of O₂ (Fig. B.5), as proposed by Rivard et al. (2013). An increase in pH is accompanied by weak berthierine dissolution and, finally, the calculated pH reaches 7.8 at maximum (Figs. 1 and B.5). At the final reaction step, the pre-assigned primary berthierine is completely converted to kaolinite, Fe(OH)₃, chlorite, and secondary SiO₂(s) under oxidizing conditions (Figs. 1 and B.5).

4. Discussion and implications

Several studies (see Section 1) considered deep glauconitic sandstones as suitable CO₂ storage sites. They suggested that the actual processes includes glauconite dissolution and carbonate formation (especially of siderite), because glauconite is rich in Fe and Mg. Our modeling results reveal that in view of thermodynamics injection of pure CO₂ (without any additional reducing agent) into glauconitic sandstones, which are free of any degradeable organic matter or other electron-donors, is incapable of inducing formation of Fe- and/or Mg-bearing carbonates with relevant amounts. The reason for this is that injection of pure CO₂ into glauconitic sandstones leads to mild acidic and oxidizing conditions under which glauconite remains stable due to its low aqueous solubility and under which formation of any secondary carbonate is prevented (scenario Gl-CO₂; Table 2). On the contrary, glauconite can completely dissolve under reducing conditions, provided that sufficient electron donors are available (scenario Gl-CH₄). There are several natural sites of such glauconitic sandstones, for instance, the Nullawarre Greensand with incorporated organic lamellae and bone fragments (Boyd et al., 2004) or the Siri oilfield after oil charging. Alternatively, reducing agents (such as CH₄) have to be co-injected with CO₂ in order to establish reducing conditions in glauconitic environments. Even under reducing conditions, sandstones with a glauconite, which chemical composition resembles the composition of the glauconite in the Siri field, have a limited CO₂-sequestering capacity due to only trace amounts of carbonates newly formed (scenario Gl-CO₂ + CH₄; Table 2). The reason is that berthierine acts as a “great attractor” due to its low aqueous solubility constant, therefore, the ultimate sink for aqueous Fe²⁺, Mg²⁺, Al³⁺, and H⁺SiO₄ species released by glauconite dissolution. Therefore, our modeling results demonstrate that a replacement of glauconite by aninite (e.g., Gunter et al., 1997, 2000) and calculations excluding berthierine formation are incapable of correctly predicting the CO₂-sequestering capacity in glauconitic environments. Apart from berthierine, secondary SiO₂(s) and potassium mica would concurrently form at the expense of glauconite. As one of the most important products of glauconite dissolution, berthierine remains stable over a broad pH range under reducing conditions. Even at a high pCO₂ in gaseous CO₂ to carbonate and potassium mica is concurrently formed. Concurrently, it will be transformed to secondary SiO₂(s), chrysotile, Fe(OH)₃, and kaolinite (scenario Be–O₂).

The CO₂-sequestering capacity is limited by berthierine formation in glauconitic sandstones under reducing conditions. Nevertheless, several factors can enhance the CO₂-sequestering capacity of glauconitic sandstones: an appropriate chemical composition of glauconite, and the overall mineralogical composition of glauconite-bearing sandstones (Table 2). Sandstones containing a glauconite with a composition similar to kaolinite, Fe(OH)₃, and chlorite (scenario Be–O₂; Table 2). In comparison, glauconite with higher contents of Fe, Mg, and Ca has a much higher CO₂-sequestering capacity via carbonate precipitation under reducing conditions (scenario Gl-CO₂ + CH₄; Table 2). It can be expected that the Ca:Fe:Mg ratio in glauconite could also affect the CO₂-sequestering potential of glauconite, as different carbonates are characterized by individual solubility constants under the same temperature-pressure conditions.
and H₂ (Seewald, 2003). Correspondingly, reducing conditions also prevail in scenario Siri-ODP-siderite. Thus, both scenarios, GI-CO₂ + CH₄ and Siri-ODP-siderite, have comparable pH-EH conditions at the starting conditions. In the case of less glauconite dissolution in scenario Siri-ODP-siderite, higher amounts of carbonates (calcite and siderite) are precipitated due to dissolution of anorthite and goethite, when compared with scenario GI-CO₂ + CH₄ (Table 2). This comparison shows that the CO₂-trapping capacity in glauconitic sandstones noticeably depends on the primary mineral assemblage of glauconitic sandstones, for instance, can be enhanced via carbonate precipitation due to anorthite and/or goethite abundance in the mineral assemblage (Table 2).

5. Conclusions

Under elevated temperature-pressure conditions (78 °C and 230 atm in the model), CO₂-induced acid attack on glauconite drives the evolution of acidic and oxidizing conditions in aqueous solutions. The reason for this is that glauconite-derived Fe⁴⁺ (aq) species are released into the pore water in absence of electron donors (e.g., degradable and sedimentary organic matter, crude oil, natural gas or co-injected methane). Under these acidic and oxidizing conditions, only trace amounts of glauconite will dissolve and carbonate formation is prevented. Electron transfer to ferric iron bound in glauconite is the key pre-requisite for its intense dissolution (reductive dissolution). Reductive dissolution of glauconite releases Fe³⁺, Mg²⁺, Al³⁺, and H₄SiO₄ species into pore water. Due to the low solubility of berthierine, berthierine formation strongly fixes Fe³⁺ and Mg²⁺-cations so that they are no longer available for carbonate formation. Such reductive dissolution of glauconite and the resulting berthierine formation should be commonly accompanied by formation of secondary SiO₂(s) and potassium mica. Although berthierine formation inhibits or strongly limits CO₂ sequestration via carbonate precipitation in glauconitic sandstones, in general, the case-specific chemical composition of glauconite affects the mass conversion of newly formed carbonates, and, consequently, the CO₂-sequestering capacity. In addition, the overall mineralogical composition of the rock matrix also affects the amount of authigenic carbonates. While calcite formation and the thereby caused CO₂ sequestration result from acid buffering reactions between the injected CO₂ and anorthite, siderite formation is triggered by the reductive (and acidic) dissolution of Fe(III)-oxide-hydroxide.

Injection of CO₂ in glauconitic or other sandstones is integrated in a complex reaction web. Thus, instead of modeling approaches limited to selected reactions of interest, hydrogeochemical modeling approaches considering a complex web of interconnected reactions must be used to correctly predict the final fate of injected CO₂ and the actual sequestering capacity via mineral precipitation. Our modeling results reveal that among other factors (1) the presence of electron donors (e.g., degradable and sedimentary organic matter, crude oil or natural gas), (2) the co-injection of methane or alternative reducing agents, (3) the availability of Ca²⁺, (4) the appropriate chemical composition of glauconite relatively rich in Mg, Fe, and Ca, and (5) the presence of goethite as a product of former, oxic goethite alteration enhance CO₂ sequestration in glauconitic environments via carbonate formation to different degrees. Besides its geochemical control on CO₂ sequestration, berthierine formation may change the physical properties of oil/gas reservoir rocks (e.g., decrease of permeability). Berthierine remains stable under reducing conditions due to its low aqueous solubility. Once formed, the relevant mass conversion of berthierine exclusively via acidic dissolution is negligible under typical reservoir conditions. This indicates that it is almost impossible to remove berthierine by technical measures such as acidification of formation water (without addition of any electron acceptor) in order to enhance the near-wellbore porosity/permeability properties of oil reservoirs. However, berthierine could dissolve under oxidizing conditions, but this is only a more or less theoretical, and non-realistic technical measure for oil reservoirs.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.marpetgeo.2015.01.008.

References

