Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations

Urheber*innen
/persons/resource/jowagner

Wagner,  Johannes
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Adjaoud,  Omar
External Organizations;

Marquardt,  Katharina
External Organizations;

/persons/resource/jahn

Jahn,  S.
4.3 Chemistry and Physics of Earth Materials, 4.0 Geomaterials, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wagner, J., Adjaoud, O., Marquardt, K., Jahn, S. (2016): Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations. - Contributions to Mineralogy and Petrology, 171, 98.
https://doi.org/10.1007/s00410-016-1308-y


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1972941
Zusammenfassung
Diffusion rates and associated deformation behaviour in olivine have been subjected to many studies, due to the major abundance of this mineral group in the Earth’s upper mantle. However, grain boundary (GB) transport studies yield controversial results. The relation between transport rate, energy, and geometry of individual GBs is the key to understand transport in aggregates with lattice preferred orientation that favours the presence and/or alignment of specific GBs over random ones in an undeformed rock. In this contribution, we perform classical molecular dynamics simulations of a series of symmetric and one asymmetric tilt GBs of Mg 2 SiO 4 Mg2SiO4 forsterite, ranging from 9.58° to 90° in misorientation and varying surface termination. Our emphasis lies on unravelling structural characteristics of high- and low-angle grain boundaries and how the atomic structure influences grain boundary excess volume and self-diffusion processes. To obtain diffusion rates for different GB geometries, we equilibrate the respective systems at ambient pressure and temperatures from 1900 to 2200 K and trace their evolution for run durations of at least 1000 ps. We then calculate the mean square displacement of the different atomic species within the GB interface to estimate self-diffusion coefficients in the individual systems. Grain boundary diffusion coefficients for Mg, Si and O range from 10 −18 10−18 to 10 −21 m 3 10−21m3 /s, falling in line with extrapolations from lower temperature experimental data. Our data indicate that higher GB excess volumes enable faster diffusion within the GB. Finally, we discuss two types of transport mechanisms that may be distinguished in low- and high-angle GBs.