Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Interactions between energetic electrons and realistic whistler mode waves in the Jovian magnetosphere

Urheber*innen

de Soria-Santacruz,  M.
External Organizations;

/persons/resource/yshprits

Shprits,  Yuri
2.8 Magnetospheric Physics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Drozdov,  A.
External Organizations;

Menietti,  J. D.
External Organizations;

Garrett,  H. B.
External Organizations;

Zhu,  H.
External Organizations;

Kellerman,  A. C.
External Organizations;

Horne,  R. B.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

2824937.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Soria-Santacruz, M., Shprits, Y., Drozdov, A., Menietti, J. D., Garrett, H. B., Zhu, H., Kellerman, A. C., Horne, R. B. (2017): Interactions between energetic electrons and realistic whistler mode waves in the Jovian magnetosphere. - Journal of Geophysical Research, 122, 5, 5355-5364.
https://doi.org/10.1002/2017JA023975


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_2824937
Zusammenfassung
The role of plasma waves in shaping the intense Jovian radiation belts is not well understood. In this study we use a realistic wave model based on an extensive survey from the Plasma Wave Investigation on the Galileo spacecraft to calculate the effect of pitch angle and energy diffusion on Jovian energetic electrons due to upper and lower band chorus. Two Earth-based models, the Full Diffusion Code and the Versatile Electron Radiation Belt code, are adapted to the case of the Jovian magnetosphere and used to resolve the interaction between chorus and electrons at L = 10. We also present a study of the sensitivity to the latitudinal wave coverage and initial electron distribution. Our analysis shows that the contribution to the electron dynamics from upper band chorus is almost negligible compared to that from lower band chorus. For 100 keV electrons, we observe that diffusion leads to redistribution of particles toward lower pitch angles with some particle loss, which could indicate that radial diffusion or interchange instabilities are important. For energies above >500 keV, an initial electron distribution based on observations is only weakly affected by chorus waves. Ideally, we would require the initial electron phase space density before transport takes place to assess the importance of wave acceleration, but this is not available. It is clear from this study that the shape of the electron phase space density and the latitudinal extent of the waves are important for both electron acceleration and loss.