English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data

Martinis, S., Twele, A. (2010): A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data. - Remote Sensing, 2, 9, 2240-2258.
https://doi.org/10.3390/rs2092240

Item is

Files

show Files
hide Files
:
442896.pdf (Publisher version), 689KB
Name:
442896.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Martinis, Sandro1, Author
Twele, André1, Author
Affiliations:
1RIMAX Publications, RIMAX, Deutsches GeoForschungsZentrum, Potsdam, ou_368066              

Content

show
hide
Free keywords: SAR-HQ, RIMAX
 Abstract: In this contribution, a hybrid multi-contextual Markov model for unsupervised near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) data is presented. It incorporates scale-dependent, as well as spatio-temporal contextual information, into the classification scheme, by combining hierarchical marginal posterior mode (HMPM) estimation on directed graphs with noncausal Markov image modeling related to planar Markov random fields (MRFs). In order to increase computational performance, marginal posterior-based entropies are used for restricting the iterative bi-directional exchange of spatio-temporal information between consecutive images of a time sequence to objects exhibiting a low probability, to be classified correctly according to the HMPM estimation. The Markov models, originally developed for inference on regular graph structures of quadtrees and planar lattices, are adapted to the variable nature of irregular graphs, which are related to information driven image segmentation. Entropy based confidence maps, combined with spatio-temporal relationships of potentially inundated bright scattering vegetation to open water areas, are used for the quantification of the uncertainty in the labeling of each image element in flood possibility masks. With respect to accuracy and computational effort, experiments performed on a bi-temporal TerraSAR-X ScanSAR data-set from the Caprivi region of Namibia during flooding in 2009 and 2010 confirm the effectiveness of integrating hierarchical as well as spatio-temporal context into the labeling process, and of adapting the models to irregular graph structures.

Details

show
hide
Language(s):
 Dates: 2010
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Remote Sensing
Source Genre: Journal, SCI, Scopus, OA
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2 (9) Sequence Number: - Start / End Page: 2240 - 2258 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals426