English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effect on a deep-learning, seismic arrival-time picker of domain-knowledge based preprocessing of input waveforms

Lomax, A., Gaviano, S., Bagagli, M., Cianetti, S., Carlo, G., Jozinović, D., Lauciani, V., Michelini, A., Zerafa, C. (2023): Effect on a deep-learning, seismic arrival-time picker of domain-knowledge based preprocessing of input waveforms, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4352

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lomax, Anthony1, Author
Gaviano, Sonja1, Author
Bagagli, Matteo1, Author
Cianetti, Spina1, Author
Carlo, Giunchi1, Author
Jozinović, Dario1, Author
Lauciani, Valentino1, Author
Michelini, Alberto1, Author
Zerafa, Christopher1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Automated procedures for seismic arrival-time picking on large and real-time seismological waveform datasets are critical for many seismological tasks. Recent, high-performance, automated arrival-time pickers mainly use deep-neural-networks applied to nearly raw, seismogram waveforms as input data. However, there is a long history in earthquake seismology of rule-based, automated arrival detection and picking algorithms that efficiently exploit variations in amplitude, frequency and polarization of seismogram waveforms.Here we use this classical, seismological domain-knowledge to transform raw seismogram waveforms into input features for a deep-learning picker. We preprocess 3-component, broadband seismograms into 3-component characteristic functions of a multi-band picker (FilterPicker), plus the instantaneous modulus and inclination of the waveforms. We use these five time-series as input instead of the 3-component, raw seismograms to extend the deep-neural-network picker PhaseNet within the SeisBench platform. We compare the original, purely data-driven PhaseNet and our extended, domain-knowledge PhaseNet (DKPN), using identical training and validation datasets, with application to in- and cross-domain testing datasets.We find that the explicit information targeting arrival-time detection and picking introduced by the domain-knowledge processing enables DKPN to be trained with smaller datasets than PhaseNet. Relative to PhaseNet, DKPN shows improved performance and stability for P picking and slightly improved S picking, especially for cross-domain application. With increasing training dataset size PhaseNet performance generally improves and converges to that of DKPN, except for cross-domain P picking. The results suggest that DKPN primarily needs to learn pick characterization, while PhaseNet additionally requires learning the more difficult task of arrival detection.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4352
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -